Visual Specifications of Correct Spreadsheets*

Robin Abraham Martin Erwig Steve Kollmansberger Ethan Seifert

School of EECS
Oregon State University
[abraharo, erwig, kollmast, seiferet|@eecs.oregonstate.edu

January 24, 2005

Abstract

We introduce a visual specification language for spreadsheets that allows the definition of
spreadsheet templates. These templates are used by a spreadsheet generator to create Excel
spreadsheets that are provably free from a large class of errors, such as reference, omission, and
type errors.

We demonstrate how spreadsheets can be categorized into classes of spreadsheets that are
related through well defined update operations. For each class we can identify a template that
can be expressed in our visual language. We present a formal definition of the visual language
for templates and describe the process of generating spreadsheets from templates. In addition,
we present an editor for these templates and analyze the editor using the Cognitive Dimensions
framework.

Keywords: Visual Language, Spreadsheet, Specification, End-User Software Engineering, Pro-
gram Generation, Software Correctness

1 Introduction

Visualization is often used to analyze and solve software engineering tasks [19, 25]. Especially
in large software engineering projects, visualization provides a means to display varying levels of
detail in easily understood formats. This helps to keep software engineering projects manageable
and consistent. UML is the standard for visualizing and modeling object-oriented software projects
[1]. UML diagrams and other visualizations do not exist in a vacuum—there are numerous tools
which allow visualizations to be manipulated [23]. Some systems, such as Fujaba [15], even convert
diagrams automatically into framework code. Others, such as VIATRA [10], allow diagrams to be
checked for correctness and adherence to specification.

While a spreadsheet environment, such as Excel, is a software program, the spreadsheets users
create in it may also be considered as software programs. If a program is an executable specification

*This work is partially supported by the National Science Foundation under the grant ITR-0325273 and by the
EUSES Consortium (http://EUSESconsortium.org).



of computations, then a spreadsheet certainly is a program. Spreadsheets also have input (data
cells), processing (formulas) and output (“bottom-line” cells).

Spreadsheets are also widely used: It is estimated that each year tens of millions of profes-
sionals and managers create hundreds of millions of spreadsheets [21]. These spreadsheet users are
performing programming tasks everyday, even if they are not consciously aware of it. In many
cases, these spreadsheets contain errors. Numerous studies have shown that existing spreadsheets
contain errors at an alarmingly high rate [5, 20, 21]. Some studies even report that 90% or more
of real-world spreadsheets contain errors [24].

These errors can cause significant real-world losses. In one case, a spreadsheet to calculate a bid
was incorrect, which caused TransAlta Corp. to underbid a contract and, bound to stand by the
terms of the contract, to take a $2.4 million loss [11]. In another spreadsheet error, two Shurgard
executives were overpaid by $700,000 each [28]. While the executives surely enjoyed that particular
error, these and similar errors can be financially devastating to companies and individuals.

Since spreadsheets are themselves programs, spreadsheet design, modification and use can
also be considered a software engineering task. The importance of applying software engineering
methodologies to spreadsheets lies in the high error rates and potential (and occasionally actual)
million dollar impacts of spreadsheet errors. In many cases, these errors are a result of the ad-
hoc, undocumented operation of spreadsheets where a sheet may be created by one person, then
used and modified by another who does not fully understand its functionality. Since spreadsheet
systems offer no abstractions and do not even separate data from computation, attempts to reuse
spreadsheets can easily result in errors.

This paper introduces a visual language for structuring spreadsheets, allowing reuse and pre-
venting errors. The idea originates by noticing that a given spreadsheet may evolve in a number of
predictable ways, and various instances of a spreadsheet could emerge from a common template.
The visual language introduced in this paper, ViTSL (an acronym for visual template specification
language), provides a method for modeling the template of a spreadsheet and the ways it can
evolve.

ViTSL specifications are constructed with an editor and are loaded into Gencel [13], which is an
Excel extension providing an environment where update operations behave dependent on the given
specification. With the introduction of abstraction provided by ViTsL, spreadsheets become not
only safer, but also more re-usable. The Gencel environment manages the evolution of a spreadsheet
from a ViTSL specification. This environment automatically handles all formula generation and
spreadsheet structure modification, ensuring that all spreadsheet formulas are correct and allowing
the user to focus on data entry and analysis. Since the computational function and structure of
a spreadsheet is abstracted from the data, a spreadsheet modeled with ViTSL can be confidently
reused. Specifications also act as a form of documentation to describe the functionality of the
spreadsheet without reference to particular instances.

The architecture of the ViTSL/Gencel system is depicted in Figure 1 and reflects the observation
that the creation of spreadsheets can be conceptually split into two phases: First, a computational
schema, or template, is developed, which defines headers, data cells, and computations. Second,
this schema/template is filled with data, which includes the possible insertion and deletion of rows
and columns. The ViTSL editor serves the first task, whereas the Gencel system is responsible for
the second. In Excel these two different phases are not separated, which is the source of many



errors in Excel spreadsheets as will be illustrated in Section 2.

ViTsL Editor

(= .C s 7 T~ T = c o -l e [ ¢ 1]
[ Jvatues Total 2008 Tol
T =sUMe2) [ Jostenory_any Cost Total co

0 o

onty =
g =@y =SUME3)  =SUMD3)

:sUM(AD =5UME2)
Template

Erm:\ =SUM©3) =SUMF3)
Template

Gencel

Correct Spreadsheet Correct Spreadsheet

Figure 1: Architecture of the ViTsL/Gencel system

The benefit of the chosen two-level approach to creating spreadsheets is that users can still apply
update operations to their spreadsheets (such as row/column insertions or deletions), but only those
that keep the spreadsheet within the specified evolution and do not introduce any reference, type,
or omission errors.

Just as software engineering practices allow separation of modeling and implementation duties
as well as standards and quality control, the ViTSL specification language provides these benefits to
spreadsheets. An organization could hire domain experts to construct ViTSL specifications for the
domains they wish to operate in. These specifications can be confidently used by other employees
without a precise understanding of all aspects of the how the spreadsheets work. Furthermore, by
enforcing the structure and formulas, Gencel acts as an automatic quality control system, ensur-
ing that spreadsheets stay within the bounds prescribed by the domain experts and approved by
management.

In Section 2 we first present an example of how Gencel can protect a spreadsheet from errors
and how ViTSL can be used to design a specification to that end. In Section 3, we describe a
formal model for ViTSL specifications. We briefly discuss the process of spreadsheet generation
from specifications in Section 4. In Section 5, we show the design of the ViTSL editor and describe

3



how it can be used to create specifications. An analysis of the ViTSL editor using the Cognitive

Dimensions framework [16, 4] follows in Section 6. Finally, we discuss related work in Section 7
and present conclusions in Section 8.

2 Editing Spreadsheets

Consider the Excel spreadsheet shown in Figure 2.

B3 Microsoft Excel - Book2

EBEX
@_] File Edit V¥iew Insert Format  Tools Data  Window Help  Adobe PDF -8 X
¥ - 3
A [ B [ ¢ ] D [ E ] F | ]
| 1] 2005 Tatal
| 2 |Categary  Qnty Cost Total Cnty Cost
| 3 |Computers (10 1000 =B3*C3 =B3 =03
| 4 |Students & 12000 =B47C4 =B4 =04
| & |Contracts & 7000 =B5"CE =EB5 =05
| B |Total =SUM(DE: DE) =SUMF3:FE)
7 v
4 « » »\Sheetl /sheetz / sheet3 / |< >
Ready MM

Figure 2: Excel budget spreadsheet

This spreadsheet allows the user to maintain quantity and costs for a variety of items within a
single year. Note that the individual year consists of three actual Excel columns. If the user wanted
to add another year to the spreadsheet, a series of operations would be required. First, three new
columns would need to be inserted and the appropriate headers copied. Next, the formula for the

total of that year could be copied from another year. At this point, the table looks correct and is
shown in Figure 3.

E3 Microsoft Excel - Book2

@_] File Edit Wiew Insert Format  Tools Data  window Help  Adobe PDF -8 X
K5 hd fx

A | B[c] ©o T[TETF[T & THT 1T [ 3
L1 2005 2006 Total
| 2 |Category  Qnty  Cost  Total Cinty Cost | Total Qnty | Cost
| 3 |Computers |10 1000 =B3*C3 g 1000 |=E3*F3 =B3 |=D3
| 4 |Students 8 15000 =B4*C4 9 16000 |=E4"F4 =B4 |=D4
| 5 |Contracts |5 7000 |=B5*CS 4 8500  |=E5"F5 =B5 =D&
| B |Tatal =3UM(D3:D5) =3UM(E3:55) =3UM(I3:15)

v

|4}r 4 » W] Sheetl {Sheet2 f Shests / [¢ Sl
Ready UM

Figure 3: Excel budget spreadsheet, updated

However, critical updates have not yet been made, and could easily be overlooked: In addition
to inserting and filling the new columns, the user must also remember to update the grand totals
at the far right. In this case, no copy/paste operation will suffice—references to the new year’s
quantity and total cost must be added manually. This error-prone process must be repeated for each

4



year the user wishes to add. Mistakes in this operation will cause the total values to be incorrect,
but no feedback is given by Excel to indicate a mistake may have been made. In addition, if the
updates are forgotten in some cells, they will still appear to have reasonable values, and Excel will
grant no warning to the user. A corrected version of the spreadsheet is shown in Figure 4.

Microsoft Excel - Book2

@_] File Edit Wiew Insert Format  Tools Data  Window Help  Adobe PDF -8 X
L10 - &
A [ B [ c] D [ E T F ] G T T
| 1] 2005 2006 Tatal
| 2 |Categaory  Qnty  Cost  Total Qnty  Cost | Total Qnty Cost
| 3 |Computers |10 1000 =B3*C3 g 1000 | =E3*F3 =B3+E3 =D3+F3
| 4 |Students 8 15000 =B4*C4 a 16000 =E4*F4 =B4+E4 =D4+F4
| 5 |Contracts 5 7000 | =B5*Ch 4 8500 =E5*F5 =B5+E5 =D5+F5
| B |Tatal =SLMDE: D5) =SLIM(G3:59) =3UM(I3: 1)
|<? 4 » W[\ Sheetl { Sheet2 f Shests / [< 3]
Ready UM

Figure 4: Excel budget spreadsheet, corrected

Likewise, if the user wishes to add additional items to their spreadsheet, they may insert rows.
However, once the rows have been inserted, the formulas for each year must be copied down from
the previous year. Moreover, the formulas for the grand totals must also be copied. In case a row
is added at the bottom, the aggregation formulas along the bottom must all be updated, all by
hand. Again, if the user fails to update a formula or inadvertantly selects the incorrect cell, Excel
will happily present them with the erroneous value. Any single forgotten or incorrect update will
likely lead to an error on the bottom line, which could be substantial in magnitude and difficult to
detect, isolate, and fix.

As the user progresses with this spreadsheet there are basically three updates that the user
will perform: add another item (row), add another year (three columns), or update quantities and
header labels. The user may also choose to delete years or categories, although this is probably less
common. In addition, each of these operations can be broken down into a fixed set of necessary
steps. In this way, the initial spreadsheet with one year, a spreadsheet with two years, and a
spreadsheet with twenty years are all related. In this sense, the spreadsheets from Figures 2 and 4
can be thought of as deriving from the one shown in Figure 5.

From this template, any number of spreadsheets may be derived using the operations provided
by Gencel [13]. These operations, which consist of row or column insert, value update, and row
or column delete, are specialized for the template to ensure that updates occur correctly with all
necessary changes. For example, if the user presses the insert column button (see right panel in
Figure 5) when the cursor is within a year group, three new columns representing a new year will be
inserted at once and all formulas will be correctly updated instantly. The Gencel system provides
these specialized updates to ensure correctness. For example, a spreadsheet with twenty years and
forty items could be reached using the specialized, correct update operations. Since a template is
generic with respect to the actual categories, years and other labels and values, it may be reused
by various users at different times. In all cases, the safety and correctness of the formulas and
structure within the Gencel system is assured.



B4 Microsoft Excel - budget.xls

File Edit Yiew Insert Format Tools [Data  Window Help  Acrobat - X
G12 - 13
A B © D E F W= =

1 2005 Total il =)
2 |Category | Qnty Cost Total Qnty Cost :_|
3 u] 0 =(B3"C3) =3UM(BE3) |=SUM(D3) =
4 |Tatal =5UMID3) =5UM(F3) | =
2 e
7 W
8 =3
9 - !

4 4 » W} Sheetl [«] o[

Ready MM

Figure 5: Gencel budget spreadsheet

From the template shown in Figure 5 it is not clear which columns and rows are fixed and
which are expandable. However, it is possible to represent these templates in some more abstract
way than simply a Gencel spreadsheet. It is possible to analyze the spreadsheet and abstract the
basic building blocks which make it up—a three column repeating group which forms a year, an
aggregation formula (for example, the grand total of quantity) which sums all the left-most cells in
each year, as well as headers and values. By abstracting out the building blocks from the concrete
Gencel spreadsheet in this way, we can fully and formally describe the operations required to create
a spreadsheet. This is the purpose of ViTsL—to provide a formal visual specification language for
these templates.

The ViTSL template for the above Gencel spreadsheet looks as follows.

A [ & & D lees [ E [ F |
1 2004 Total
| 2 |categoy  amy Cost Total anty Cost
EN 0 0 =(BTCY =SUMEI)  =SUMDI)
H
(¢ _Jrota —SUMD) —SUMEFD)

This specification describes how the three columns repeat and how the total formulas on the right
sum up the quantity and total cost. In particular, we group the three columns for a year together
and make them horizontally repeat, showing that any number of years are allowed. The relative
references, B3 and D3, in the grand total columns refer three cells to the left for Qnty and two cells
to the left for Cost, respectively. As these cells are repeated (for additional years) the formulas for
the grand totals are automatically updated by Gencel to include the Qnty and Cost, respectively,
for each year. Similarly, the third row is specified as vertically repeating.

In this way, spreadsheets can be derived mechanically, ensuring that formulas are always correct
and that the correct types of data are always used. This provides a substantial amount of safety
against errors which may occur in a manual update process, especially as a spreadsheet becomes
large with many references.



3 Visual Spreadsheet Specifications

ViTsL is a visual language to formally describe spreadsheet structure and evolution. A ViTSL figure
is a template for a class of tables that all share essentially the same structure.

The structure of tables is determined by different kinds of cells and their relationships. For
example, the cells of a table can be distinguished according to their content into header, data, and
computation cells. Moreover, some rows or columns of a table are fixed, like header and footer rows
and columns, while other rows and columns are duplicated if new data is to be added.

ViTsL offers constructs to define a table as a horizontal sequence of fixed and extendable columns
where a column is constructed as a vertical sequence of fixed and extendable blocks, which are
rectangular collections of cells containing values and formulas.

Consider, for example, all tables that consist of a plain column of numbers with a header at the
top and a summation formula at the bottom. A corresponding table template can be specified by
the following ViTSL expression.

A |
1 [|alues
2 |0

3 sumen

The specification consists of three elements: two cells, the header containing the label and the footer
containing the summation formula, and a vertically expandable group (also called vezx group for
short) that consists of a single cell containing the value 0. The argument of the summation formula,
A2, is shown as an absolute address in the ViTSL specification. However, it actually represents a
relative address that is translated and expanded by Gencel into a range of addresses according to
the number of times the second row is expanded.

The above template describes a class of tables that all consist of one column with the shown
(or another) header and footer and that have one or more number cells in between.

ViTsL offers the following visual elements for describing templates:

e (lells, represented by rectangles and containing data and formulas.

e References, represented by cell addresses.

e Vex groups, represented by vertical dots that indicate the possible expansion of a (group of)
cell(s) in vertical direction.

o Hex groups, represented by horizontal dots that indicate the possible expansion of one or
more columns in horizontal direction.

An example for a horizontally expandable group (hez group) is given in the following summation
table.



A o B |
1 |values Total
2 |n =SUM(AZ)
3 [sumian —SUM(EZ)

This template is obtained by taking the previously shown summation column, making it horizontally
expandable, and joining it by a column that also contains a header and a summation footer, but
whose vex group contains a summation formula whose argument references the number cell of the
hex group.

The hex group in the last example illustrates that expandable groups may consist of groups of
cells and not just single cells. Moreover, one column can also contain multiple vex groups. Similarly,
a table can contain multiple hex groups. However, vex groups and hex groups cannot be arbitrarily
nested. The only possible nesting is indicated by the example: hex groups may contain vex groups.

In addition, a couple of structural constraints are needed to ensure that a reasonable definition
for the update operations of Gencel exists. For example, all columns in a table have to align
vertically. To explain the idea of alignment, consider a column as a sequence of fixed and expandable
blocks (cell groups), say ¢ = [b1,...,by]. Now ¢ matches another column ¢ = [b],...,b,] only if
(a) b; has the same height as b} and (b) b; is an expandable group iff b} is. This constraint ensures
that all existing vex groups are horizontally aligned, which allows the insert-row command to be
defined to insert a number of rows according to the common height of the vex groups. Similarly, we
require that all blocks in a column have the same width. For columns in hex groups, this constraint
ensures that the insert-column command can be defined to create a number of columns according
to the common width of the blocks of the hex group.

An example for a table containing multiple vex groups is the following accounting sheet.

A |
Income

=S LI (A2
Expenses
0

=S LI GAA)
MHet Earnings
=A3-AR

DN | gpga|(T]| =] g2

The formula A3-A6 computes the difference between the two summation cells.

The relative references used in templates are very expressive: First, unlike absolute addresses,
relative references are compositional, that is, they need not be adjusted when cells or blocks are
composed with other blocks. Second, depending on their origin and target, relative references can

8



express single-cell addresses as well as ranges. For example, the references from the summation
formulas point into a vex group and refer to all the cells that will be generated within that group,
in contrast to the references A6 and A3, which point to nonexpandable cells and refer always to
single values.

In the following we provide a formal definition of the ViTSL syntax. A template t is given by a
horizontal composition (|) of fixed (¢) or expandable (¢~) columns, where a column is given by a
vertical composition () of fixed (b) or expandable (b') blocks. A block is given by a composition of
formulas (f). Formulas consist of basic values (¢), references (p), and expressions that are built by
applying functions to a varying number of arguments given by formulas (¢(f, ..., f)). Functions
can generally be applied to an arbitrary number of arguments of the same type, like addition SUM
and multiplication PROD.

Formally, references are given by pairs of integers and represent relative references in the form
of offsets. We use the following abbreviations for cell offsets: ¢ = (—1,0), » = (1,0), u = (0, —1),
and d = (0,1). We sometimes use sequences of abbreviated offsets to represent larger offsets, for
example, /¢ = (?> = (—2,0). The syntax of templates is summarized in Figure 6.

f e Fml w= ol pl|lolf,...,f) (formulas)

b € Block w= flblb|b7b (blocks, tables)
c € Col = b|bl|ce (columnys)

t € Template == c|c |tlt (templates)

Figure 6: Abstract Syntax of ViTSL.

The constructs correspond directly to the visual notation. As an example, consider the sum-
mation column, which was shown at the beginning of this section. This column is represented by
the following template.

VaIuesAOlASUI\/I(u)

The summation table is represented by the following expression.
(Values™ 0t *SUM(u)) ™ | Total "SUM(£)} *SUM(u)

The abstract syntax representation of ViTSL templates is an important prerequisite to facilitate a
precise formal definition of the spreadsheet generation process and the derivation of safety proper-
ties.

4 Automatic Generation of Spreadsheets

We present here only an informal description of the spreadsheet generation process in this paper.
Details of how tables and updates operations are created from specifications can be found in [13]
and in [12].

The definition of update operations relies on an intermediate structure, called a template in-
stance, which is a slight generalization of a table specification in which vertical and horizontal



repeating groups are marked with numbers instead of arrows to represent the number of expan-
sions of the corresponding groups, that is, b'* instead of b' and £ instead of ¢~. These group
sizes are, in particular, needed to correctly generate references in formulas. In the initial template
instance all — and | exponents are replaced by ones. Then each application of an insert-column
command to a hex group increases its exponent by one, whereas each application of an insert-row
command increases the exponents of all vex groups in one row by one.

Since a template instance contains all the required information to generate all formulas with
references for a table, update operations, such as insert column, simply create an updated template
instance by increasing the repeating group index and then derive the changed formulas from the
new instance. All values from the old table are copied, whereas values for possibly inserted rows
or columns are taken from the template.

The translation of a template instance into a spreadsheet works by recursively traversing the
template instance. During this traversal, four different kinds of actions are performed. (The formal
definition of the translation is indicated by equations of the form T'(¢) = ¢'; the actual definition is
a bit more involved since it maintains information about the position of a block or column within
the template to facilitate the proper translation of references.)

1. Constants and functions are copied unchanged (that is, T'(¢) = ¢).

2. Horizontally and vertically joined blocks and columns are translated separately, and the
results are joined as in the template instance (that is, T'(t1 |t2) = T'(t1) | T (t2) and T'(¢1 " co) =
T(Cl) AT(CQ)).

3. A horizontal (vertical) repeating group that is marked with a number k£ will be translated
k times, and all results will be horizontally (vertically) joined together (that is, T'(ck) =
T(c)IT(c)l...1T(c) and T(b'*) =T (b)"T(b)" ... T(b)).

4. Relative references will be translated into absolute references or ranges, depending on the
target cell of the reference. The absolute addresses are computed based on the current
position of the cell that contains the reference, the relative offset, and possible exponents of
vex and hex groups that are “crossed” by the offset.

The translation of relative into absolute references requires the consideration of many different cases.
The main idea is described in the following. Suppose (z,y) is the absolute address of a cell that
contains a formula with a relative reference p = (4, 7). If (¢,7) points to a cell that is contained in
a horizontally and/or vertically repeating group, the reference might denote a horizontal, vertical,
or two-dimensional range, but only if the current cell (z,y) that contains the reference (i,j) is
not contained in a repeating group that is expanded in parallel with the referenced one. This
information can be obtained for the horizontal dimension by checking whether x + i lies outside
the horizontal range of a possible repeating group containing (z,y), in which case the cells are
expanded independently of one another. Similarly, only if y + j lies outside the vertical range of
the group containing the current cell, it is not expanded together with the group containing (i, 7).

If the relative address is to be translated into a range, this range is computed by selecting
from the already expanded table area (see item 3. above) that corresponds to the repeating group
containing the referenced cell (x + i,y + j) all addresses (2,y") whose relative offset from the

10



beginning of the repeating group is the same as the offset of the referenced cell from the first
repeating group. The ViTSL budget sheet specification presented in Section 2 illustrates this case
where the generated range for the summation formula under Qnty consists only of two cells, which
both start at the beginning of each repeating-group instance, that is, columns B and E. A similar
example is the summation formula under Cost.

Apart from the translation of references the table generation process is rather straightforward,
and the described process yields Gencel tables like the one shown in Figure 4 for the template
instance derived from the template from Figure 5.

We have designed a type system for ViTSL that guarantees a very high level of spreadsheet
correctness, namely, any spreadsheet that is created with Gencel from a ViTSL template will never
contain any omission, reference, or type errors. This is possible because type- and reference-correct
ViTsL templates will be translated into specialized update operations, such as insert row, used by
Gencel to modify spreadsheets. For details of the type system we refer to [13, 12].

We believe that this safety property can have a huge positive impact on the correctness of
spreadsheets, because once a particular ViTSL template has been created that is appropriate for a
particular application, all spreadsheets that will ever be instantiated from it will be always correct.

5 The ViTSL Editor

The ViTsL editor is a tool used to create ViTSL specifications, that is, templates. To create these
specifications the ViTsL editor uses a GUI which has intentional similarities to Microsoft Excel.
This design goal intends to make a user familiar with Excel “feel at home” when using this editor.
When working with the editor a user will create a ViTSL specification much like they would create
a spreadsheet. Both ViTsL sheets and spreadsheets are expanded by the insertion of rows and
columns, describing values for cells, and the application of operations on those cells.

Consider the following scenario. Suppose a user is interested in creating the template for budget
spreadsheets discussed in some detail in Section 2. Creating the basic structure for one year will
require the user to insert four rows and three columns. The user will also need to describe the
header cells and provide definitions of the formula cells. Defining a formula cell starts by selecting
the target cell and typing = into the cell and then providing the formula and the cells it references.
A user can reference a cell either by typing in the cell address or by clicking on the target cell when
in a formula, just like in Excel.

In order to create a hex group the user selects the columns that will be expanded together
(Qnty, Cost, Total) and chooses to make a hex group. This hex group is a representation of each
year. The - button is then pressed. The editor provides feedback to let the user know the effect of
the operation. First, because the hex group consists of more than one column, the header division
between each member of the expanding group will be removed. Also, ellipses will be placed in the
header trailing each repeating group. Finally, the user will need to insert two more columns and
create formulas referencing the newly created hex group to get total cost and total quantity of all
possible years.

To finish the budget sheet specification the user will select the row 3 and will choose to make
it a vex group by pressing the : button. This vex group represents a category and its costs within
a year. The user will have to insert one more row and create formula references to total cost for

11



Bws =

File Insert Delete Repeat Preferences Help

F4 | x|
e a | s & D Jese] E G
== 2004 Total
S 2 |Category Gnty cost Total Cinty Cost
== 3 0 0 =(B3°C3) =SUM(B3)  =SUMD3)
=0 ¢
4 =SUM(D3) =SUM(F3)

-
* aws
.

Figure 7: Budget template created in the ViTsL editor

each year and another formula to reference total cost for all years. This will complete the budget
specification; the final result is pictured in Figure 7.

6 Analysis of the ViTSL Design

In this section we describe how our choices in designing the system have been guided by the
Cognitive Dimensions of Notations framework [16, 4]. For the sake of brevity, we discuss, with
suitable examples, the ones that are of primary interest in the context of the ViTSL editor.

Viscosity The viscosity of a system is an indicator of how much effort is required to accomplish
user goals using the system. Two kinds of viscosity might be present in a system—repetition
viscosity which refers to the system forcing the user to carry out many actions of the same kind
individually (for example, replacing all occurrences of one string by another), and knock-on viscosity
which refers to the system requiring the user to perform many actions to restore consistency after
the user has performed some action to achieve a certain goal (for example, variable renaming in a
program using a replace-all feature of a simple text editor).

To facilitate easy editing of specifications, we have been especially careful in providing facilities
to reverse any action performed by the user. The insert-row and insert-column operations have
corresponding delete-row and delete-column operations. The grouping operations that specify if
cells are in horizontally or vertically repeating groups have corresponding ungroup operations. The
system supports the deletion of repeating or non-repeating rows or columns. We also provide the
facility to undo an unlimited number of operations.

Viscosity can be lowered, in general, when the system provides suitable abstractions. The
current version of our system does not provide facilities to lower repetition viscosity. It does aim to
lower knock-on viscosity relating to specification-edit actions. For example, affected cell references
in formulas get automatically updated when a row or column is deleted.

Error proneness The error proneness of a system is an indicator of how the notation causes
the user to commit errors. In situations where this problem might arise, the system should have

12



built-in mechanisms to protect the user from committing errors.
We minimize editing errors that can occur during the creation of the specification by only

allowing logically valid operations at every step during the edit process. For example, if any cell
within a vertically repeating group is selected, the button for creating vertically repeating groups

is disabled (this situation is shown in Figure 8).

File Insert Delete Repeat

VIl fx0
A
Wallues

1

S| IR )
= T

Figure 8: Within a vertically repeating group

A similar situation arises when any cell within a horizontally repeating group is selected. An-
other example is everything else is disabled while the user is in edit mode for formulas (this situation

is shown in Figure 9).

File Insert Delete Repeat Prefers

A3 fx/=5 LM
e a
- 1 |Walues
- IEE
= = .
eI 3 Fsum

Ij

Figure 9: In formula-edit mode

Provisionality Users might view spreadsheet specification design as an exploratory activity.
Provisionality refers to the support provided by the system to encourage the user to “play around”

13



with possible alternatives and to carry out “what-if experiments” with their tasks.

The ViTsSL system is very flexible as far as update and undo operations are concerned. Even
though the system does not impose any constraints on how the user goes about creating the
specifications, it limits the errors the user can make. The limitations discussed under progressive
evaluation might restrict a “trial and error” approach to creation of specifications.

Closeness of mapping The closeness of mapping is an indicator of how closely related the
notation is to the result it is describing.

Since the specifications developed in ViTSL will eventually be used with Gencel, we have adopted
a structure similar to Excel to maintain closeness of mapping. Moreover, operations like insertion
or deletion of rows or columns work the same way as in Excel. We deviate from the Excel model in
that we provide separate buttons to insert rows above or below or to insert columns to the left or to
the right of the currently selected cell. This design choice was made to provide greater flexibility to
the user and is also consistent with the editing model of Gencel. We allow selection of ranges with
shift-click to specify horizontally or vertically repeating groups and the cell addresses also work the
same way they do in Excel.

Consistency When similar semantics are expressed in similar syntactic forms, users find it easier
to infer the structure of the presented information. If this consistency is not maintained and
there are many representations for the same thing in the notation, usability might be severely
compromised.

Since ViTSL is targeted at expert users of Excel, the basic update operations in ViTSL have been
designed to be consistent with those in Excel. The main deviation from FExcel is that ViTSL has
additional operations for forming repeating groups. In this case, the visual notation for vertically
and horizontally repeating groups are similar as shown in Figures 10 and 11.

Secondary notation and escape from formalism Oftentimes the user might need to record
additional information without using the formal syntax of the notation. To cater to this need,
many systems support secondary notations that can be used any way the user likes. For exam-
ple, programming languages allow users to include documentation within the source code using
comments.

The current version of the system does not support any secondary notation. In future versions
of the system, we plan to incorporate mechanisms by which the user can include documentation,
both at cell and specification level, within the ViTSL specifications.

Progressive evaluation This dimension refers to facilities within the system that allow the users
to assess their progress, even with partially complete specifications.

The current version of the ViTSL system does not have a readily available test drive mechanism
so users could preview their work to check their progress. The user has to build the specifications
using the ViTSL interface, save to file, and load it into Gencel to evaluate the effect of the customized
update operations. The lack of a more direct feedback mechanism is a problem we hope to rectify
in future versions by integrating the ViTSL editor within Gencel. The users would then be able to
more easily switch between the ViTSL specification-edit mode and the Gencel table-creation mode

14



to check their progress.

Role expressiveness This dimension refers to the ease with which the role or purpose of an
entity in the notation can be inferred. A role expressive notation is easier to “pick up” since the
roles of the entities and their relationships can be easily discovered.

Mainly, there are two kinds of entities in the ViTSL system—buttons for edit operations and the
cells used to build specifications. In a given specification, cells can have two possible roles—they
can be singleton cells or they can be part of a repeating group. This information is conveyed to
the user through the row and column address bars to show the rows or columns that are part of a
repeating group and by shading the backgrounds of cells within repeating groups differently from
those that are not part of repeating groups.

Figure 10 shows the horizontally repeating group from the template given in Figure 7. The fact
that columns B, C, and D are part of the same group is depicted by the absence of separators. The
three horizontally aligned dots in the visual notation show that the group to its left is a horizontally
repeating group. We have three horizontally aligned dots as the icon on the corresponding grouping
button to show this relation.

A I i D

annA Tntal

Figure 10: Horizontally repeating group.

An example of a vertically repeating group is shown in Figure 11. In this case, the three
vertically aligned dots indicate that the group above it, row 3 in this case, repeats vertically. As in
the case with the horizontally repeating cells, we have three vertically aligned dots as the icon on
the button for the vertical grouping action to show the relation between the button and the action
it performs.

ﬂooo"—*—" k2

Figure 11: Vertically repeating group.

Hard mental operations This dimension is an indicator of the cognitive load the system places
on the user. The notation would not be very usable if it made it complex or difficult for the
user to figure things out by making high demands on the user’s cognitive resources like attention
and memory. Cell references in formulas within a template behave differently in generated tables
depending on the cell the formula is in and the cell the reference is pointing to. The translation of
references was briefly sketched in Section 4. The different cases are shown in Table 1.

Since this behavior is not very obvious from the visual notation, we have provided tooltip help

15



Source cell | Target cell Behavior
non-repeating | non-repeating reference
non-repeating repeating range

repeating | non-repeating reference
repeating | repeating (same group) reference
repeating | repeating (different group) range

Table 1: Behavior of References
that indicates if a reference will get expanded to a range in the spreadsheet.

Premature commitment Ideally, the notation should not impose any artificial constraints on
the order of doing things. Such constraints would force the user to make choices before they need
to and with insufficient information. Therefore a notation which demands a high level of premature
commitment would automatically be high on error proneness.

We had some initial concerns about the system forcing the user to think out the entire specifica-
tion before starting the edit process. These concerns arose primarily from the fact that specifications
start from a single cell and expand to the right and down depending on the update operations carried
out by the user. To protect the user from imposition of any particular sequence of editing actions,
we have provided separate buttons for inserting rows above and below and inserting columns to
the left and to the right of the current cell. This feature allows the creation of a specification to
proceed in all directions within the plane of the interface.

Visibility and juxtaposability The system should provide mechanisms that allow users to
view components easily. For example, exploratory activities like debugging would require that
reasonably-sized chunks of code can viewed in isolation and side by side with other code or execution
windows.

Even in the case of very large spreadsheets (in terms of number of cells), the basic specification
can be very small as can be seen in the budget sheet example shown in Figure 7. As a result of
this higher level of abstraction, in most cases the specification will only require minimal screen
real estate. In the rare case of very large specifications, we run into the same problem Excel users
face with large spreadsheets—the need to scroll to view the full sheet. Another important aspect
that reduces problems ViTsL might have with visibility and juxtaposability is that specifications
are created at a table level. Therefore all the update operations are local to a table. On the other
hand, an Excel spreadsheet might have more than one table and an update operation, an insert or
delete column for example, might affect tables above or below the table the user is working on.

Summary The dimensions are not independent of each other and in many cases the language
designer has to make trade-off decisions. In the case of ViTSL we have chosen to go with a
representation similar to that of Excel since the target audience is assumed to be comfortable
with Excel. Another factor that guides choices for trade-offs would be to aim at making common
tasks easier to perform with respect to less common tasks. This concern has led us to provide easily

16



accessible buttons for the common tasks. Cognitive Dimensions do not really help in this context
since they are task neutral. However, they give us a good starting point and also help us focus on
potential problem areas.

7 Related Work

Fujaba, short for “From UML to Java And Back Again”, is a visual UML modeling tool which
can automatically generate Java frameworks [15]. Fujaba can also reconstruct UML diagrams by
analyzing Java code. Fujaba is similar to our system in that it may be considered a program gener-
ator from a specification. However, the Fujaba system does not provide any additional assurances
on the safety or correctness of the Java code after it is generated, whereas we provide the Gencel
environment to continue to ensure the specification is followed and the spreadsheet is correct.

Viatra, short for “VIsual Automated model TR Ansformations”, is a UML-based tool which is
designed to check consistency, completeness, and requirement satisfaction of code being designed
[10]. This tool only performs these checks on the UML specification, thus ensuring that the spec-
ification is correct. However, once the specification is turned into code (either by hand or using a
tool such as Fujaba), no assurance of the continued correctness is granted.

Gutwenger et al. have devised a system for visualizing complex UML diagrams in an attractive
manner [17]. Their system takes a given abstraction (UML class network) and prepares a visualiza-
tion for it. In contrast, our system uses visualization to define the abstraction (ViTSL specification)
and establish a mapping between the visual elements, the Gencel spreadsheet, and the specification.

The pervasiveness of errors in spreadsheets has motivated some research into spreadsheet design
[18, 29, 26], testing [27], and consistency checking [14, 7, 3, 2].

However, only little research has been performed on creating new, safer spreadsheet systems.
The spreadsheet language Forms/3 [6] extends the spreadsheet paradigm by a number of features
found in other programming languages. The language contains many experimental features, such
as time, generalizations, gestures, and a model of sequence I/0.

Whereas the Forms/3 system focuses on extending spreadsheet expressiveness, the
ViTsL/Gencel system places a strong emphasis on correctness of spreadsheets. However, both
approaches share a commitment to using the spreadsheet model as a vehicle to bring an enhanced
experience to end user programmers.

Evaluation of end user products may be done experimentally or through analysis. In this paper,
we have chosen the Cognitive Dimensions model of analysis to direct the usability of the ViTsL
editor. The Cognitive Dimensions of Notations was created to help designers evaluate their systems
with respect to its usability [16, 4]. In addition to our use here, Cognitive Dimensions have been
broadly applied to other programming and softfware engineering environments, such as evaluating
the C# programming language [8] or UML use-case diagrams [9].

The approach of Peyton Jones and others [22] to extend Excel by user-defined functions uses a
strong basis in end-user usability. The authors’ primary goal is to design a method for end users
to easily create new functions in their spreadsheets. They use a familiar spreadsheet model and
attempt to minimize the impact (learning curve) on users while maximizing the user’s productiv-
ity. The authors note that traditional spreadsheets often compute very complex models, but do
not include any user-defined functions, which makes the spreadsheets needlessly complicated and

17



difficult to maintain. The authors introduce a system which allows users to define functions within
the existing spreadsheet model. The user creates a function sheet (which appears the same as any
ordinary sheet) and defines the function from input cell(s) to an output cell. They may then use
the function like any other built-in function. The authors’ approach differs from our own in that
they add uncontrolled power to a spreadsheet, while we seek to structure the actions a spreadsheet
user takes. However, the works have many similarities. In addition to the common application of
Cognitive Dimensions, both the authors’ and our approach start with a familiar spreadsheet model.
Both seek to improve end-user experience specifically. Both are more concerned with usability than
adding new features to the spreadsheet system.

8 Conclusions and Future Work

In this paper, we have introduced a new visual language for describing spreadsheet models. Al-
though software visualization techniques have been applied to other forms of programming, no gen-
eral purpose visual abstraction of spreadsheet models has previously been described. In conjunction
with the Gencel environment, spreadsheets designed with our model, ViTSL, are guaranteed to be
free of formula or reference errors. In addition to the visual language, we have presented an editor
which allows end users to graphically design spreadsheet models, which may then be imported into
Gencel for safe use.

We have also analyzed the design of the ViTsL editor according to the Cognitive Dimensions
framework in order to make the editor as straightforward and usable as possible. With the ViTsL
editor and the Gencel environment, we have created and presented both a formalized, visual lan-
guage for specifying correct spreadsheets as well as an implementation of the language and tools
to operate such spreadsheets.

There are several directions for future work. First of all, we plan to carry out user studies using
the ViTsL interface. The feedback from such a study would help us in refining the interface. Second,
one major obstacle to the adoption of this new system is the collection of spreadsheets individuals
and companies might already have. The users might have invested a lot of time and money in
the creation of their spreadsheets and would not be willing to port them to the new system. This
problem would be even more serious in cases where the model behind the original spreadsheet is not
clear (or documented). To solve this problem, we are also working on a spreadsheet structure parser
that would support the user in extracting possible ViTSL specifications from a given spreadsheet.

References

[1] UML. http://www.uml.org.

[2] R. Abraham and M. Erwig. Header and Unit Inference for Spreadsheets Through Spatial
Analyses. In IEEFE Int. Symp. on Visual Languages and Human-Centric Computing, pages
165-172, 2004.

[3] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A Type System for Statically
Detecting Spreadsheet Errors. In 18th IEEE Int. Conf. on Automated Software Engineering,
pages 174-183, 2003.

18



[4]

[10]

[11]
[12]

[14]

[15]

A. F. Blackwell and T. R. G. Green. Notational Systems - The Cognitive Dimensions of
Notations Framework. HCI Models, Theories, and Frameworks: Toward and Interdisciplinary
Science, pages 103-133, 2003.

P. S. Brown and J. D. Gould. An Experimental Study of People Creating Spreadsheets. ACM
Transactions on Office Information Systems, 5(3):258-272, 1987.

M. M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S. Yang. Forms/3: A
First-Order Visual Language to Explore the Boundaries of the Spreadsheet Paradigm. Journal
of Functional Programming, 11(2):155-206, 2001.

M. M. Burnett, C. Cook, J. Summet, G. Rothermel, and C. Wallace. End-user Software
Engineering with Assertions. In 25th IEEE Int. Conf. on Software Engineering, pages 93-103,
2003.

Steven Clarke. Evaluating a New Programming Language. 13th Workshop of the Psychology
of Programming Interest Group, pages 275289, 2001.

K. Cox. Cognitive Dimensions of Use Cases—Feedback From a Student Questionnaire. In 12th
Annual Psychology of Programming Interest Group Workshop, pages 99-122, 2000.

G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varré. VIATRA: Visual
Automated Transformations for Formal Verification and Validation of UML Models. In 17th
IEEE Int. Conf. on Automated Software Engineering, pages 267-270, 2002.

D. Cullen. Excel snafu costs firm $24M. The Register, June 2003.

M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. Gencel — A Program Gener-
ator for Correct Spreadsheets. Technical Report TR04-60-11, School of EECS, Oregon State
University, 2004.

M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. Automatic Generation and
Maintenance of Correct Spreadsheets. In 27th IEEE Int. Conf. on Software Engineering, 2005.
To appear.

M. Erwig and M. M. Burnett. Adding Apples and Oranges. In jth Int. Symp. on Practical
Aspects of Declarative Languages, LNCS 2257, pages 173—-191, 2002.

T. Fischer, J. Niere, L. Torunski, and A. Ziindorf. Story Diagrams: A New Graph Rewrite
Language Based on the Unified Modeling Language. In 6th Int. Workshop on Theory and
Application of Graph Transformation, LNCS 1764, pages 296—-309, 1998.

T. R. G. Green and M. Petre. Usability Analysis of Visual Programming Environments: A
‘Cognitive Dimensions’ Framework. Journal of Visual Languages and Computing, 7(2):131—
174, 1996.

C. Gutwenger, M. Junger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel. A new Approach for
Visualizing UML Class Diagrams. In ACM Symp. on Software visualization, pages 179-188,
2003.

19



[18]

[19]

[20]

[21]

T. Isakowitz, S. Schocken, and H. C. Lucas, Jr. Toward a Logical/Physical Theory of Spread-
sheet Modelling. ACM Transactions on Information Systems, 13(1):1-37, 1995.

R. Koschke. Software Visualization in Software Maintenance, Reverse Engineering, and Re-
Engineering: A Research Survey. Journal of Software Maintenance, 15(2):87-109, 2003.

J. F. Lerch, M. M. Mantei, and J. R. Olson. Skilled Financial Planning: The Cost of Translating
Ideas Into Action. ACM Conf. on Human Factors in Computing Systems, pages 121-126, 1989.

R. R. Panko. Spreadsheet Errors: What We Know. What We Think We Can Do. In Symp. of
the European Spreadsheet Risks Interest Group (EuSpRIG), 2000.

S. L. Peyton Jones, A. Blackwell, and M. M. Burnett. A User-Centered Approach to Functions
in Excel. In ACM Int. Conf. on Functional Programming, pages 165-176, 2003.

T. Quatrani. Visual Modeling with Rational Rose and UML. Addison-Wesley, 1998.

K. Rajalingham, D. R. Chadwick, and B. Knight. Classification of Spreadsheet Errors. Symp.
of the European Spreadsheet Risks Interest Group (EuSpRIG), 2001.

C. Roman and K. C. Cox. Program Visualization: The Art of Mapping Programs to Pictures.
In Int. Conf. on Software Engineering, pages 412-420, 1992.

B. Ronen, M. A. Palley, and H. C. Lucas, Jr. Spreadsheet Analysis and Design. Communica-
tions of the ACM, 32(1):84-93, 1989.

G. Rothermel, M. M. Burnett, L. Li, C. DuPuis, and A. Sheretov. A Methodology for Testing
Spreadsheets. ACM Transactions on Software Engineering and Methodology, pages 110-147,
2001.

A. Scott. Shurgard Stock Dives After Auditor Quits Over Company’s Accounting. The Seattle
Times, November 2003.

A. G. Yoder and D. L. Cohn. Real Spreadsheets for Real Programmers. In Int. Conf. on
Computer Languages, pages 20-30, 1994.

20



