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Abstract

One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that 
are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well 
balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced 
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by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor 
microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue 
factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to 
tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote 
tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in 
relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity 
and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals 
with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening 
assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of 
important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. 
Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach 
to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic 
mixtures of chemicals with carcinogenic potential.

Introduction
Angiogenesis, the formation of new blood vessels from existing 
blood vessels, was identified as one of the ‘hallmarks of cancer’ by 
Hanahan and Weinberg (1,2) due to the recognition that this pro-
cess is of crucial importance during the transition from benign 
hyperplastic nodules to malignant lesions (3). This review article 
focused on angiogenesis constitutes an integral component of 
the 2013 Halifax Project on ‘Assessing the Carcinogenic Potential 
of Low-Dose Exposures to Chemical Mixtures in the Environment’ 
(see Capstone Article for details). Tumor expansion is dependent 
on the ability of the tumor to induce the growth of new blood ves-
sels, which provide nutrients and oxygen to the growing tumor 
mass and simultaneously serve as a conduit for tumor cells to 
metastasize to distant organs (4,5). Tumor angiogenesis is inte-
gral not only in solid tumor progression but also in leukemia 
(6). Recent cancer treatments target tumor angiogenesis using 
antiangiogenesis inhibitors (7,8), which prevent new vessel for-
mation, or by using vascular-disrupting/damaging agents (9–11) 
and neovascular-targeting immunoconjugates (12–14). However, 
angiogenesis is also necessary for normal organ function, tissue 
growth and regeneration (e.g. wound healing, female menstrua-
tion, ovulation and pregnancy), necessitating a fine balance to 
avoid complications due to antiangiogenic therapy (15–17).

Though human exposures to environmental chemicals, 
which often occur due to the leaching of plastics into food and 
water (18), have been found to promote tumorigenesis of mul-
tiple cancers through various mechanisms (19–24), less atten-
tion has been focused on their role in tumor angiogenesis. With 
increases in our knowledge of endocrine disruptors (25), new 
concerns have arisen about potential exposures to low doses of 
environmental chemicals that are generally regarded as non-car-
cinogens, but may be acting as proangiogenic agents. Here, we 
consider the possibility that certain chemical disruptors, which 
are prevalent in the environment (e.g. as pesticides and indus-
trial surfactants) (26), may have a role to play in environmental 
carcinogenesis by stimulating proangiogenic pathways, provid-
ing an environment conducive to tumor growth and metastasis.

In this review, we discuss emerging data on specific environ-
mental chemicals that may act as proangiogenic agents, and 
identify key angiogenesis pathways and corresponding molecu-
lar components as prioritized targets for future study. We briefly 
summarize in vitro and in vivo angiogenesis model systems with 
an emphasis on high-throughput screening (HTS) assays. We 
also consider the cross-hallmark relationships that a number 
of important angiogenic pathway targets have with other hall-
marks of the disease and we make recommendations for future 
research. 

Identifying VEGFR- and TF-mediated signaling 
as two key tumor angiogenesis pathways and 
corresponding molecular components as prioritized 
targets for assessing the carcinogenic potential of 
low-dose exposures to chemical mixtures in the 
environment

Tumor growth and metastasis require angiogenesis to provide a 
circuit for increased blood supply and dissemination of tumor 
cells (27). Angiogenesis is tightly controlled by diverse subsets of 
ligands and receptors. Enrichment of ligands, including growth 
factors, chemokines and cytokines or a decrease in the produc-
tion of endogenous angiogenesis inhibitors, has been exten-
sively observed in tumors during vascularization. The biology 
and mechanisms of tumor angiogenesis have been elegantly 
summarized elsewhere (4,28–33). Here, we will only briefly 
review some of the key angiogenic pathways [vascular endothe-
lial growth receptor (VEGFR) and tissue factor (TF)-mediated 
signaling] (Figure 1A) and pathway-associated molecular com-
ponents (Figure 1B) to provide a framework for our review and 
discussion of potential chemical disruptors (Figure 1B).

The vascular endothelial growth factor (VEGF) pathway is 
crucial for cancer angiogenesis. As a tumor enlarges, the tis-
sue becomes hypoxic and deprived of nutrients leading to 

Abbreviations	

AHR	 aryl-hydrocarbon receptor 
CXCL9 and 10	 C-X-C motif chemokine ligands 9 and 10 
CCL2	 monocyte-like chemoattractant protein 
COLIII	 collagen III 
ECM	 extracellular matrix
FGF	 fibroblast growth factor
HIF-1α	 hypoxia-inducible factor 1 alpha
HUVEC	 human umbilical vein endothelial cells
HPTE 	 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane
HTS	 high-throughput screening
IL	 interleukin 
ICAM1	 intercellular adhesion molecule 1
MMP1	 matrix metalloproteinase-1 
PAR	 protease-activated receptors 
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THBD 	 thrombomodulin 
TF 	 tissue factor 
TGF-β	 transforming growth factor-beta
uPAR	 urokinase-type plasminogen activator receptor 
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VEGF/VEGFR	 vascular endothelial growth factor/receptor 
VEC	 vascular endothelial cells 
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increased expression of factors involved in both fighting against 
and adapting to these stressful conditions (34). Such factors will 
activate the growth of new blood vessels to increase the oxy-
gen and nutrients supply but also lower the oxygen-dependent 
metabolism by causing a shift to glycolytic metabolism in the 
tumor cells (35). A  well-studied example of hypoxia-induced 
tumor angiogenesis is the stabilization of hypoxia-inducible fac-
tor 1 alpha (HIF-1α) in hypoxic tumor tissues which lead to pro-
duction of VEGF-A and nitric oxide synthase (NOS) that act as 
drivers of neovascularization and dilation of the existing blood 
vessels, respectively (36). In addition to VEGF-A, other growth 
factors including angiopoeitin-2 (Ang-2), fibroblast growth fac-
tors (FGFs), platelet-derived growth factors, insulin-like growth 
factor and transforming growth factor-beta (TGF-β) are also pro-
duced at high levels by hypoxic tumor or tumor stromal cells and 
lead to disruption of the tumor vessels (37). The tumor milieu, 
which has been compared to that of a healing wound (38), also 
leads to massive recruitment and activation of inflammatory 
cells types, including macrophages, neutrophils and lympho-
cytes, which are producing proangiogenic cytokines including 
tumor necrosis factor-alpha, interleukin 1 beta (IL-1β) and inter-
leukin 6 (IL-6). In addition, carcinoma-associated fibroblasts are 
also rich sources of a wide range of angiogenic factors, further 
complicating the proangiogenic phenotype of solid tumors 
(39,40). In addition to angiogenic factors, deregulated vessel 
sprouting and path finding through disruptions in, for instance 
Notch-activation by delta-like ligand 4 (Dll4) and Jagged1 ligands 
(41), are involved in disrupting the tumor vascular functions fur-
ther contributing to the pathological phenotypes of the tumor 
blood vessels. Activated endothelial cells and tumor-associ-
ated macrophages produce matrix metalloproteinases (MMPs) 
including a disintegrin and metalloproteases, MMP-2 and MMP-
9, which cleave extracellular matrix (ECM) to release more ECM-
bound angiogenic factors and further reduce the integrity of 
the vasculature, leading to a vicious circle driving pathologic 
progression in cancer (42,43). In addition to expressed proteins, 
angiogenesis-modulating miRNAs, so called angiomiRs, directly 

repress gene expression of several angiogenic or antiangiogenic 
factors by binding to the 3′-untranslated regions (3′-UTR) of tar-
get mRNAs (44). For instance, miR-21 promotes cancer progres-
sion and angiogenesis through Akt and ERK pathways (45).

As a consequence of such untamed and exaggerated angi-
ogenic signaling by the broad palette of proangiogenic factors 
existing at high levels in the tumor, the vasculature become 
highly chaotic, immature and of very low quality (in terms of 
the stability and barrier function of the vascular wall) and func-
tionality (in terms of supporting efficient perfusion through 
the tumor) (46). As such, tumor blood vessels exhibit excessive 
leakage, causing highly elevated interstitial fluid pressure and 
inhibited delivery of blood, paradoxically further contributing to 
tumor hypoxia and decreasing delivery of drugs injected to the 
blood stream. At the same time, such deregulated tumor blood 
vessels pose little opposition against tumor-cell intravasation 
and metastatic dissemination. As such the pathological vascu-
lature can be considered a main cause of resistance to therapy 
and progression of the cancer to metastatic disease (47).

While tumor angiogenic vascular endothelial cells (VECs) 
may express VEGFR at higher levels (48), VEGFRs are not spe-
cific for angiogenic endothelial cells, but are constitutively 
expressed also in the quiescent vasculature in normal organs 
(49,50). In contrast, TF may be a promising target, which is 
specifically expressed by angiogenic vessels, making it more 
specific for the tumor vasculature than VEGF receptors. Under 
physiological conditions, TF is only expressed on some cells 
outside of vessels, but is not expressed by quiescent endothe-
lial cells of blood vessels in normal organs (51). Accumulating 
evidence suggests that TF also contribute directly and indirectly 
to tumor angiogenesis (52–56). TF is a transmembrane protein 
receptor (57–60), which is composed of 263 amino acid (aa) resi-
dues with an extracellular domain (1–219 aa), a transmembrane 
domain (220–242 aa) and a short cytoplasmic domain (243–263 
aa). As a type I membrane bound receptor, TF forms an excep-
tionally strong and specific complex with its natural ligand 
coagulation factor VII (61,62), the initial step of the coagulation 

Figure 1.  VEGF and TF-signaling pathways as prioritized tumor angiogenic pathways (A) and proposed angiogenic molecular targets and their corresponding chemical 

disruptors (B). (A) The diagram shows VEGF produced by tumor cells binds to VEGFR on vascular endothelial cells to activate VEGF signaling pathways in tumor angio-

genesis. In addition, VEGF binding to endothelial cells can induce TF expression, an angiogenic endothelial receptor in pathological neovasculature. After its ligand 

fVII binds, TF could contribute to tumor angiogenesis via proteolysis-dependent pathways through PARs or proteolysis-independent pathway through its cytoplasmic 

domain. (B) Proposed list of specific angiogenesis molecular targets and corresponding chemical disruptors. 

 at O
xford Journals on July 14, 2015

http://carcin.oxfordjournals.org/
D

ow
nloaded from

 

http://carcin.oxfordjournals.org/


Z.Hu et al.  |  S187

pathway (63). In tumor angiogenesis, it is found that TF expres-
sion is only detected on angiogenic tumor VECs (13,64–66), a 
downstream product induced by VEGF that can be secreted by 
cancer cells (67,68) and cancer stem cells (69). More importantly, 
TF is selectively expressed in vivo in the tumor neovasculature 
(12,13,64,65,70) and in vitro by VEGF-stimulated VECs, thus the 
latter could serve as an in vitro model of angiogenic endothe-
lial cells (71–73). Other angiogenic factors and inflammatory 
chemokines (such as bFGF, IL-1β, tumor necrosis factor-alpha, 
bacterial lipopolysaccharide (LPS)) can also induce TF expres-
sion on VECs under pathological conditions (54). Thus TF can 
be regarded as an angiogenic-specific endothelial receptor 
(65,72,73). We believe that this unique feature makes TF a prom-
ising therapeutic target for neovascular-targeted therapy (73) 
and an interesting angiogenic receptor for discussion in this 
review and for future studies of chemical angiogenesis. 

After induction by VEGF and other factors, vascular endothe-
lial TF contributes to tumor angiogenesis via proteolysis-
dependent and -independent signaling pathways (Figure  1A). 
More details on TF signaling in tumor angiogenesis were pre-
viously described and reviewed (52,74–77). Briefly, coagulation 
factor VII/TF complex can initiate the proteolysis-dependent 
pathway by activating protease-activated receptors (PARs), 
which is modulated by thrombomodulin (THBD), the endothe-
lial-specific type I  membrane receptor that binds thrombin to 
reduce thrombin generation, and ultimately results in the tran-
scription of genes such as early growth response-1, adhesion 
molecules [intercellular adhesion molecule 1 (ICAM1), vascular 
cell-adhesion molecule 1 (VCAM1), P- and E-selectin], growth 
factors and cytokines (IL-6, IL-8, chemokines), whereas the cyto-
plasmic serine residues can be phosphorylated and ultimately 
influences endothelial cell migration. Note that many of these 
angiogenic components involved in VEGFR- and TF-mediated 
signaling are chosen as potential angiogenic targets for selected 
chemical disruptors (Figure 1B).

To review the role of low-dose exposures to environmental 
chemical disruptors in tumor angiogenesis, our angiogenesis 
team as part of the Halifax Project was asked to identify 10 
angiogenesis molecular targets and 10 corresponding potential 
chemical disruptors for these angiogenic targets. We choose 
the following angiogenic components involved in VEGFR- and 
TF-signaling pathways as prioritized VCAM1, C-X-C motif 
chemokine ligands 9 and 10 (CXCL9 and CXCL10), THBD, mono-
cyte-like chemoattractant protein (CCL2), ICAM1, urokinase-
type plasminogen activator receptor (uPAR), collagen III, MMP1 
and aryl-hydrocarbon receptor (AHR). These targets were cho-
sen based on their relevance to the signaling pathways reviewed 
above, and, importantly, based on previous work that examined 
a large database of animal toxicity studies (ToxRefDB; http://
actor.epa.gov/toxrefdb/) and the concordance between tumor 
incidence in vivo and chemical activity profiles in vitro. The 10 
molecular targets in Figure 1B were angiogenic signaling mol-
ecules that showed statistically significant associations with 
mammalian carcinogenicity (78).

This list of target sites was not intended to be compre-
hensive. Other targets exist, including well-known molecules 
such as collagen IV, CXCL4, thrombospondin, MMP9, etc., But 
we selected these targets because each of them are actively 
involved in tumor angiogenesis and all of them have been 
shown to be of considerable importance. For example, sup-
pression of the angiostatic molecules CXCL9 and CXCL10 and 
upregulation of the proangiogenic chemokine CCL2 would pro-
vide a local environment of proliferative and migratory signals 
to endothelial cells forming new vessels to feed a tumor (79,80). 

Decreased THBD expression was highly correlated with tumor 
invasiveness, metastasis and lower survival rates (81,82). CCL2 
is complementary to angiogenesis, through p53 regulation 
of CCL2 gene expression (83,84). ICAM1 is also complemen-
tary to angiogenesis through NF-κB-independent role for p53 
in ICAM1 regulation that may link p53 to ICAM1 function in 
various physiological and pathological settings (85). CXCL10 is 
complementary to angiogenesis through activation of p53 and 
p53-responsive genes. Over expression of IP10 upregulated p53 
and resulted in altered expression of p53-responsive genes such 
as the p21Cip1, p27kip1, NF-κB, Bax and PUMA genes and the 
mitochondrial translocation of Bax (86). The AHR is complemen-
tary to angiogenesis through its role in cell cycle regulation. AHR 
modulates angiogenesis through a mechanism requiring VEGF 
activation in the endothelium and TGF-β inactivation in the 
stroma. Activation of AHR by its various ligands disrupts contact 
inhibition and induces cell proliferation depending on the tis-
sue and cell type involved (87–93). THBD is contrary to angiogen-
esis due to over expression of p53 suppressed THBD expression 
(94,95). It is also complementary to genetic instability (96,97) and 
resistance to cell death (98). uPAR is contrary to angiogenesis 
(wild type p53 downregulates uPAR expression). P53 acts as an 
uPAR mRNA binding protein that downregulates uPAR mRNA 
stability and decreases cellular uPAR expression. Codepletion of 
Cathepsin B and uPAR reduced the expression of cyclin D1, cyc-
lin D2, p-Rb and cyclin E while the expression of Cdk2 was unaf-
fected. The MMP1 is contrary when cross validated with evasion 
of antigrowth signaling hallmark (99–102). Inactivation of Rb 
leads to increased expression of MMP1 and dysfunction of p53. 
p53 inhibits basal and UV-induced MMP-1 expression in human 
dermal fibroblasts and p53 dysfunction caused by XPC defects 
in lung cancers may enhance tumor metastasis via increased 
MMP1 expression (99–101,103).

To examine the role of these angiogenic pathways and pri-
oritized targets in chemical angiogenesis, we also identify 10 
corresponding chemical disruptors (Figure 1B) as novel environ-
mental chemicals in tumor angiogenesis, which are discussed 
below in the Sections of ‘Environmental Carcinogens Affecting 
Angiogenic Pathways’ and ‘Identifying Novel Environmental 
Chemical Disruptors’.

Environmental carcinogens affecting 
angiogenic pathways
Here, we review the evidence for proangiogenic actions of ciga-
rette smoke, nicotine and arsenic as case study compounds that 
provide supporting evidence for the subsequent selection of 
environmental chemicals that disrupt angiogenic signaling tar-
gets and potentially contribute to cancer.

Cigarette smoke

Cigarette smoke is one of the oldest environmental exposures 
linked to cancer (104) and contains numerous carcinogenic 
compounds, such as nicotine and its derivatives, described else-
where (105,106). Cigarette and second hand smoke have both 
been shown to induce or be associated with angiogenesis by a 
variety of mechanisms, although separating angiogenic effects 
from other carcinogenic activities is a challenge. Mouse models 
of chronic colitis were found to have dose-dependent increases 
in blood vessel formation and VEGF protein expression fol-
lowing exposure to CS (107). Tumor growth, capillary density, 
plasma VEGF levels and circulating endothelial progenitor cells 
were significantly increased in mice subcutaneously injected 
with Lewis lung cancer cells after a 17-day exposure to second 
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hand smoke compared to mice exposed to clean room air. These 
results were attenuated with mecamylamine, an inhibitor of 
nicotine cholinergic receptors (108).

A hospital-based case-control study consisting of 730 urothe-
lial carcinoma cases, 470 bladder cancers, 260 upper urinary 
tract urothelial carcinomas and 850 age-matched controls found 
significant correlations between bladder and upper urinary tract 
urothelial carcinomas (UUTUC) and both cigarette smoking and 
arsenic exposure (109). The risk for both bladder cancer (6.6; 95% 
CI, 3.1–13.9) and UUTUC (9.9; 95% CI, 4–24.5) were increased with 
the presence of VEGF polymorphisms associated with increased 
cancer risk.

Nicotine

Nicotine, one of the main carcinogenic components of ciga-
rettes, has been found to influence angiogenesis. Several in vitro 
studies have linked nicotine to proangiogenic effects in cancer. 
The ERK/COX-2 pathway was suggested to play a role in nico-
tine-induced VEGF expression in gastric cancer cells after VEGF 
levels were decreased by inhibitors of MEK (U0126) and COX-2 
(SC-236) (110). Nicotine was further shown to influence angio-
genesis in lung cancer (111). Nicotine significantly stimulated 
HIF-1α protein and VEGF expression in human non-small cell 
lung cancer (NSCLC) cells. Increased capillary and tubule for-
mation was shown in human umbilical VECs (HUVECs) follow-
ing treatment with conditioned medium containing nicotine. 
The possible mechanism of nicotine-induced VEGF expression 
was investigated with human dermal microvascular endothe-
lial cells, which showed that the nicotine acetylcholine receptor 
was needed for pro-migratory effects of VEGF and bFGF in cul-
ture (111). In addition, cultured HUVECs were observed to have 
increased cell proliferation, migration and tube formation fol-
lowing exposure to nicotine at concentrations similar to those 
found in smokers (112).

Although in vitro studies provide some evidence that nico-
tine has proangiogenic properties, animal studies further bol-
ster nicotine as a promoter of neovascularization, as well as 
provide possible biological mechanisms. An increase in lesion 
growth and lesion vascularity was seen in lung cancer and ath-
erosclerosis mouse models following nicotine exposure (113). In 
addition, in a mouse model of hind-limb ischemia systemically 
administered nicotine (100 μg/ml in drinking water) resulted in 
an increase of capillary density in the hind limb from 0.38 to 
0.71 (95% CI 0.55–1.01) capillaries/myocyte compared to control. 
Later it was shown that nude mice injected subcutaneously 
with HT-29 cells, a colon cancer cell line, exhibited significant 
increases in both blood vessels and microvessel densities after 
drinking water containing 200 μg/ml nicotine for 25 days. VEGF 
expression correlated with microvessel density. B1 and b2-selec-
tive antagonists reversed nicotine-induced tumor growth; sug-
gesting b-adrenoceptors may be involved in nicotine-induced 
angiogenesis in colon cancer (114). The growth rate of breast, 
colon and lung cancer tumor cells implanted in a chorioallan-
toic membrane model exhibited significant increases following 
1 week of exposure to nicotine (115). This study further showed 
that nicotinic receptor antagonists and integrin avb3 antago-
nists abrogated nicotine-mediated angiogenesis, suggesting 
molecular and cellular mechanisms of nicotine-mediated angi-
ogenesis (116).

Arsenic

Another carcinogen that shows angiogenic properties is arsenic, 
an environmental contaminant that humans may be exposed 
to via environmental, medical and occupational sources (117). 

An in vitro study using HUVECs revealed that low concentrations 
(≤ 1 μM) of sodium arsenite increased cell growth and vascular 
tubular formation compared to higher concentrations (> 5 μM) 
that induced cytotoxicity and inhibited angiogenesis (117). Low 
concentrations of arsenic also induced transcript expression of 
VEGF and von Willebrand Factor, an early detector of endothelial 
activation, in tumor metastasis. Several subsequent in vitro stud-
ies focused on the proangiogenic properties of arsenic in human 
microvascular endothelial (HMVEC) cells. Klei et al. (118) investi-
gated signaling interactions between arsenic and alcohols using 
non-cytotoxic concentrations of arsenite (1–5 mM) with or with-
out the presence of 0.1% ethanol. Data in this study showed that 
both agents together, but not ethanol alone, increased phos-
phorylation of the regulator of vascular integrin signaling PYK2 
and VEGF gene expression as well as endothelial tube formation 
(118). Another study revealed that the sphingsine-1-phosphate 
type 1 receptor is important for arsenic-stimulated signaling for 
angiogenic effects (119) and that heme oxygenase-1 plays a role 
in arsenic-induced angiogenesis (120). Moreover, environmen-
tally relevant levels of arsenic were shown to promote angio-
genesis, neovascularization and inflammatory cell infiltration 
in Matrigel plugs implanted in C57BL/6 mice following 5 weeks 
exposures (drinking water) to concentrations ranging from 5 to 
500 ppb (121).

These examples from the literature on known carcinogens 
indicate that environmental exposures to cigarette smoke, nico-
tine and arsenic can result in the increase of angiogenic activ-
ity through several pathways. There is a diversity of techniques 
available for investigating angiogenic activity, though there are 
challenges to separating effects that are specific to angiogenic 
pathways from other hallmark pathways.

Other environmental chemicals with proangiogenic 
properties

In addition to cigarette smoke, nicotine and arsenic, other poten-
tially carcinogenic compounds have been identified that induce 
proangiogenic effects. Whole diesel exhaust has been shown to 
enhance angiogenesis in mice with either subcutaneous scaf-
fold implantation or hindlimb ischemia (122). Increased CD31 
expression, vessel volume and VEGF and HIF-1 gene expression 
was observed in these models. Bisphenol A has been intensively 
studied over the past few years due to its detrimental effects 
on developmental processes and metabolic effects and has 
recently been shown to influence angiogenesis (123). Increased 
gene expression of VEGFR-2, VEGF-A, eNOS and Cx43 and pro-
duction of nitric oxide was found after HUVECs were exposed to 
1 M bisphenol A for 6 h (123). Furthermore, manganese induced 
hypoxia-associated transcript expression of proangiogenic 
genes in mice (124) and both dioxin (125) and trimethyltin chlo-
ride (109) were found to influence angiogenesis and vasculariza-
tion during early development in rat and zebra fish models.

Identifying novel environmental chemical disruptors

As discussed above, tumor angiogenesis is critical for carcino-
genesis, and despite the evidence that several known carcino-
gens are targeting proangiogenic pathways the role of most 
environmental chemicals in tumor angiogenesis is largely 
unknown. In this project, we were tasked to identify ‘prototypi-
cal’ environmental chemicals with disruptive potential that met 
the following criteria: chemicals that are ubiquitous in the envi-
ronment; chemicals that have been shown to disrupt specific 
mechanisms/pathways for angiogenesis; and chemical expo-
sures that are not related to ‘lifestyle’ choices (i.e. chemicals that 
are not already known or designated to be human carcinogens). 
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Our intent was to explore the possible synergies of disruptive 
environmental chemicals with proangiogenic capabilities that 
could potentially contribute to carcinogenesis (especially when 
combined, or when acting with other chemicals that are known 
to perturb other cancer hallmark pathways).

Thousands of untested chemicals in the environment lack 
hazard characterization of their carcinogenic potential. The 
Tox21 partnership of regulatory and scientific federal agencies, 
including USA. EPA, the National Toxicology Program (NTP), the 
National Center for Advancing Translational Science (NCATS) 
and USA. FDA, are addressing this data gap using in vitro HTS 
and computational modeling to predict hazard and prioritize 
compounds for targeted testing (126,127). The EPA’s ToxCast 
research project (127), part of Tox21, has tested over a thousand 
chemicals with known and unknown toxicities in hundreds of 
assays for human gene and protein targets in pathways linked 
to cancer disease processes (128). This effort is concurrent with 
the creation of the Toxicity Reference Database (ToxRefDB) con-
taining >40 years’ worth of in vivo animal toxicity data, such as 
2-year chronic cancer studies, broken down into a computable 
and searchable ontology structure (129). A model was recently 
published that used the ToxCast Phase I HTS data to predict in 
vivo rodent carcinogenicity endpoints from ToxRefDB (78). This 
work employed an unsupervised statistical approach to iden-
tify significant correlations between in vitro assay activity and 
preneoplastic and neoplastic lesions in a variety of tissue types, 
across a training set of 232 compounds with both in vitro and in 
vivo data. The model was able to accurately predict carcinogenic-
ity classifications from the EPA’s Office of Pesticide Programs for 
an external test set of compounds, based solely on their in vitro 
HTS data. Interestingly, the majority of HTS assays that were 
strongly associated with particular types of rodent cancers were 
linked to genes, pathways and hallmark processes documented 
to be involved in tumor biology and cancer progression, includ-
ing stimulation of angiogenesis.

Most of the chemical carcinogens in the model training set 
were food-use pesticides, meaning they are non-genotoxic and 
instead act as tumor promoters (130). In addition to broad activ-
ity across assays that were mapped to other hallmark processes 
(i.e. apoptosis, proliferative signaling, evading growth sup-
pression, enabling replicative immortality, metastasis, avoid-
ing immune destruction, tumor-promoting inflammation and 
deregulating cellular energetics) some of these compounds were 
linked to targets in angiogenic pathways (1,2). Thus, a subset of 
these chemicals may have the potential to act as tumor promot-
ers primarily via induction of angiogenesis, based on specific 
patterns of bioactivity against in vitro targets associated with 
vascular development. Many of these targets were from enzyme-
linked immunosorbent assay-based chemokine expression 
assays in human primary cell cocultures. Statistically significant 
associations were observed between pesticide exposures caus-
ing rodent liver, thyroid, spleen and kidney tumors and differen-
tial regulation of inflammatory chemokines as well as cellular 
adhesion molecules, and elements of the plasminogen activat-
ing system. Many of these targets, shown in Figure 1, belong to 
signaling pathways reviewed above. Therefore, the results from 
the in vitro screens of these mammalian carcinogens were in all 
cases consistent with a proangiogenic and thus a protumori-
genic program.

Analysis of bioactivity patterns of over a thousand chemicals 
across hundreds of in vitro assays revealed that other carcino-
gens were preferentially affecting targets in chemokine signal-
ing, vascular cellular adhesion molecules and ECM interactions 
controlling vascular growth factor release (78). These results 

strongly support the concept that at some point in cancer pro-
gression, the angiogenic switch is turned ‘ON’, facilitating tumor 
growth, and that carcinogenic environmental chemicals may 
participate in this process by regulating cellular signaling in a 
proangiogenic fashion.

A number of environmental chemicals tested in the ToxCast 
program were identified as potential tumor promoters through 
their ability to interact with the angiogenic signaling molecules in 
vitro that had been shown to be significantly associated with in vivo 
tumorigenesis. Many of these compounds had associated in vivo 
data and evidence in the literature confirming their carcinogenic 
effects (78), while others are candidates for further study. In the 
ToxCast Phase I study, there were 27 chemicals tested in the in vitro 
assays for which there was no corresponding in vivo guideline data 
or EPA carcinogenicity classification (examples shown in Table 1). 
As shown in Figure 1B, we identify several of these Phase I com-
pounds that may be acting via proangiogenic mechanisms, their 
cancer hallmark score and the specific angiogenic targets affected. 
All of these compounds are present in the environment, are pre-
dicted to be selectively disruptive, are not ‘lifestyle’-related, and 
not known to be ‘Carcinogen to Humans’ (i.e. IARC Group 1). The 
Toxicological Priority Index (130) (ToxPi, key shown in Figure 2) dis-
plays the activity of each chemical against the angiogenic in vitro 
assay targets that were previously identified as significantly asso-
ciated with tumor endpoints in vivo. The size of the slice is deter-
mined by the potency of the compound in the assay, based on the 
half-maximal activity concentration (AC50). The chosen angiogenic 
prototypical disruptors are Bisphenol AF, Methoxychlor, perfluo-
rooctane sulfonate (PFOS), Diniconazole, Ziram, Chlorothalonil, 
Biphenyl, Tributyltin Chloride, 2,2-bis-(p-hydroxyphenyl)-1,1,1-
trichloroethane (HPTE) and C.I. Solvent Yellow 14 (Figure 1B). For 
several of these compounds, there is literature evidence that sup-
ports their potential angiogenic activity. For example, Bisphenol 
AF may induce angiogenesis via inactivation of the p53 axis and 
underlying deregulation of proliferation kinetics and cell death in 
human epithelial cells, as well as through its effect on Estrogen 
Receptor (ERα) (131). Bisphenol AF also affected a number of 
vascular targets in the ToxCast assay portfolio, including uPAR, 
THBD and ICAM1, as well as downregulating the antiangiogenic 
chemokines CXCL9 and CXCL10. Methoxychlor (the parent com-
pound to HPTE) was shown to induce increases in histological 
expression of angiogenic factors such as VEGF, VEGFR2 and ANG1 
in rat pituitary and uterus (132). The angiogenic HTS targets of 
HPTE include CXCL10, CXCL9, MMP1, uPAR, THBD, ICAM1 and 
VCAM1. Exposure to PFOS induced actin filament remodeling 
and endothelial permeability changes as well as ROS production 
in human microvascular endothelial cells (133). PFOS could also 
overwhelm homeostasis of antioxidative systems, boost ROS gen-
eration, impact the mitochondria and affect protein expression of 
apoptotic regulators in endothelial cells (134). Diniconazole (a pes-
ticide) is predicted to be carcinogenic and shown to target certain 
angiogenic molecules CXCL10, uPAR and VCAM1 in vitro. Ziram 
may induce angiogenesis through activation of mitogen-activated 
protein kinases (MAPK) and decreases cytolytic protein levels in 
human natural killer cells (135,136).

Phase II of the ToxCast program expanded the chemi-
cal library beyond pesticides to over a thousand compounds, 
many of which lack cancer data but appear to be targeting 
angiogenic signaling and may also be candidates for future 
examination. A  number of organotin compounds, including 
tributyltin chloride, tributyltin methacrylate and triphenyltin 
hydroxide, caused a decrease in expression of THBD in vascu-
lar smooth muscle cells as well as other proangiogenic activ-
ity in the ToxCast assays. As in the case of dioxin, AHR ligands 

 at O
xford Journals on July 14, 2015

http://carcin.oxfordjournals.org/
D

ow
nloaded from

 

http://carcin.oxfordjournals.org/


S190  |  Carcinogenesis, 2015, Vol. 36, Supplement 1

may be potential tumor promoters via angiogenic pathways, 
and it has been hypothesized that AHR signaling may suppress 
VEGF-A expression by competing with HIF-1α for their common 

dimerization partner ARNT (137). Compounds such as C.I. sol-
vent yellow 14, Benzo(b) fluoranthene and 7,12 dimethyl(benz)
anthracene are active in the AHR assay in addition to multiple 

Table 1.  Examples of  ToxCast Phase I chemicals predicted to be carcinogens and shown to target certain angiogenic molecules in vitro, but lack-
ing in vivo data or EPA carcinogenicity classifications

Chemical name Chemical use class
Cancer hazard model score 
(#cancer hallmark assays hit) Angiogenic targets Proangiogenic ToxPi

Diniconazole Pesticide 18 CXCL10, uPAR, VCAM1

HPTE Pesticide metabolite 17 CXCL10, CXCL9, MMP1, uPAR, 
ICAM1, THBD, VCAM1

Methylene bis(thiocyanate) Pesticide 16 CXCL10, CXCL9, MMP1, uPAR, 
ICAM1, THBD, VCAM1

PFOS Industrial surfactant 7 CXCL10, MMP1, uPAR, VCAM1

These compounds were identified in an analysis linking rodent chemical carcinogenesis to HTS assay targets in cancer hallmark pathways (78). All of these com-

pounds are ubiquitous in the environment, are predicted to be selectively disruptive, are not ‘lifestyle’ related and not known to be ‘Carcinogen to Humans’ (i.e. IARC 

Group 1). The Toxicological Priority Index (ToxPi) key mapping assays to slices is shown in Figure 2. CXCL9 and 10, C-X-C motif chemokine ligands 9 and 10.

Figure 2.  The ToxPi key for proangiogenic in vitro assay targets that were previously identified as being statistically significantly associated with tumor endpoints in 

vitro. The number of components represents the number of ToxCast assays for that target. Results for certain ToxCast Phase I test chemicals are shown in Figure 1B. 
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other angiogenic targets, however their downstream effects 
on VEGF expression and angiogenesis will be dependent on 
their agonist vs. antagonist activity and are not yet known. 
Other chemicals exhibited specific activity on cytokine sign-
aling, such as acrylamide and biphenyl, both of which caused 
increased expression of the proangiogenic chemokine CCL2 in 
vascular smooth muscle cells. The release of the full ToxCast 
Phase II dataset in late 2013 (http://www.epa.gov/ncct) is assist-
ing in further identification of key assay targets and prioritiza-
tion of potential chemical modulators of tumor angiogenesis. 
There are also a number of compounds that emerged from this 
analysis that have been tested in animals and assigned positive 
carcinogenicity classifications, but whose effects have not been 
well characterized histologically. If some of these were studied 
in more depth, they could also potentially serve as proangio-
genic reference compounds.

In vitro and in vivo angiogenesis assays including 
HTS assay for assessing the effects of environmental 
chemicals in tumor angiogenesis

To screen the effects of environmental chemicals in tumor 
angiogenesis, there are many well developed in vitro and in vivo 
angiogenesis model systems that can be used or adapted (138–
151). Each model has distinct advantages and disadvantages. 
Microvascular endothelial cells or well-characterized immortal-
ized microvascular endothelial cell lines are generally considered 

superior to HUVEC in tumor angiogenesis studies, since tumor 
blood vessels are presumably microvessels. In vitro assays are usu-
ally designed to examine endothelial cell proliferation, migration 
and ability to form tube-like structures in coculture, matrigel or 
other matrix-containing environments. In vivo assays include, but 
are not limited to, the chorioallantoic membrane assay (chicken 
embryos), mesenteric window assay (small gut of rats and mice), 
corneal angiogenesis assay (rabbit, rat or mouse eyes), matrigel 
plug assay (mice and rats), sponge implant assay (rats) and alter-
nate animal models such as hamster and zebrafish.

With technological advancement and the development 
of HTS, several in vitro angiogenesis assays have been used to 
screen and profile large numbers of chemical compounds that 
can be assayed in 96-well to 1536-well microplates. Because can-
cer cells can survive through compensation pathways, a battery 
of angiogenesis assays in HTS formats are needed to rapidly pro-
file thousands of environmental chemicals and to build better 
predictive toxicology models. These assays are grouped into bio-
chemical and cell-based categories and summarized in Table 2.

Biochemical HTS assays directly measure the effects of test 
chemicals on target protein or peptide samples. These methods are 
particularly useful for well-validated angiogenic signaling compo-
nents. Several biochemical assays have been implemented in large 
scale screens for VEGFR (166), TF (171), TGF-β (175), HIF (176) and 
integrins (177). Particularly, Yauch et al. (171) described a HUVEC-
based HTS assay for the VEGF signaling pathway followed by quan-
titative real-time PCR for measuring downstream gene products TF 

Table 2.  HTS assays for assessing the role of environmental chemicals in tumor angiogenesis

Assay technology Target Assay principle HTS format Reference

Biochemical HTS assays
  Fluorescence intensity Integrin Binding to dye-labeled fibronectin Microarray (163)
  FP VEGF, Competitive binding of dye-labeled 

proteins or ligands
384 well, microfluidics (164)

  TRF HIF-1α Protein–ligand binding interactions 96 well (176)
  AlphaScreen VEGFR Protein–ligand binding interactions 1536 well (165)
  TR-FRET TGF, VEGFR Product formation catalyzed by ac-

tive enzymes
96 well, 384 well (175,166)

Cell-based HTS assays
  Phenotype Tube formation Total tube length measured by ds-

Tomato fluorescent protein, nuclear 
stains or cell permeable dyes

96 well, 384 well, 1536 well, 
microfluidics

(179,167,168, 169, 
170,172)

Wound closures Scratch assays or stopper assays, 
with some measured by cell perme-
able dyes

96 well, 384 well, microfluidics (173,174, 357, 
358,359)

Chemifluorescence IL-1α/β, IL-6, IL-10 Detection of endogenous target 
proteins

96 well (360)

  β-lactamase reporter IL-6, HIF-1α, NFκB, Target-driven β-lactamase reporter 
gene system and β-lactamase- 
cleavable FRET substrates

384 well, 1536 well (181,182,361,184)

  GFP reporter NFκB, VEGF, IL-8 Target-driven GFP reporter gene 
system

96 well, 384 well (362–364)

  Luciferase reporter NFκB, HIF-1/2, VEGFR, 
IL-8, TGF- β

Target-driven luciferase reporter 
gene system

96 well, 384 well, 1536 well (184,365,366,180, 
185)

HIF-1α Degradation of a luciferase-fused 
HIF-1α reporter

384 well (183)

  TRF E-selectin, ICAM-1, 
VCAM-1

Detection of endogenous targets 96 well (367)

  RT-PCR VEGFR mRNA levels of ICAM-1 and tissue 
factor

96 well (171)

FP, fluorescence polarization; GFP, green fluorescent protein; HIF-1, HIF-2, HIF-1α, hypoxia-inducible factor 1, 2 and 1 alpha; ICAM-1, intracellular cell adhesion mole-

cule 1; IL-1α, IL-1β, IL-6, IL-8 and IL-10, Interleukin 1 alpha, 1 beta, 6, 8 and 10; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; RT-PCR, real-time 

polymerase chain reaction; TRF, time-resolved fluorescence; TR-FRET, time resolved fluorescence resonance energy transfer. 
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and ICAM1 as transcriptional readouts. This HTS/real-time qPCR 
assay could be improved, e.g. using microvascular endothelial cells 
as discussed above, for future study of assessing chemical disrup-
tors in tumor angiogenesis, as we propose in this review.

Cell-based HTS assays can be used to assess phenotypic 
changes or specific pathway activation/inhibition caused by 
exposure to test chemicals in cells or tissues. Active compounds 
identified from biochemical screens do not always exhibit similar 
activities in physiological conditions, thus cell-based assays, espe-
cially human primary cells, are useful to identify chemicals that 
exert adverse effects in the natural environment. Angiogenesis-
associated phenotypic changes such as proliferation, apoptosis, 
motility and tube formation are routinely quantified in endothe-
lial cells by a wide selection of commercially available assay kits 
and instruments (178,179). Chemicals that alter gene expression 
or protein–protein interaction can be detected by immunofluo-
rescence or intracellular reporter gene assays. A battery of such 
assays have been applied to screen and identify chemicals tar-
geting cellular signal pathways including HIFs (180,182,183,361), 
NF-κB (184), IL-6 (181), IL-8 (185) and TGFs (186,187).

The environmental chemicals can be assessed and profiled 
using the aforementioned assays in a quantitative HTS platform 
in which each test chemical is assayed at multiple concentrations 
covering at least four-log concentrations (188). The quantitative 
HTS-generated concentration response curves greatly reduce 
rates of false positives and false negatives, facilitating chemical 
prioritization for follow-up in-depth studies. For example, a cell-
based hypoxia-response element-β-lactamase reporter assay has 
been optimized and miniaturized into a 1536-well format, and 
utilized to identify inhibitors and activators of the HIF-1 signaling 
pathway from 73 000 compounds from the Molecular Libraries 
Screening Centers Networks (MLSCN) (361) and 1408 environ-
mental chemicals from the collection of the National Toxicology 
Program (182). Three environmental chemicals—iodochloro-
hydroxyquinoline, cobalt sulfate and O-phenanthroline were 
identified as chemical inducers of hypoxia signaling pathway. 
These quantitative HTS assays combined with a robotic system 
will greatly increase screening throughput for future assessment 
of environmental chemicals that may be affecting angiogenesis 
and other cancer hallmarks (189).

Discussion
When tumor vasculature was first successfully targeted in 
cancer to prevent growth and dispersion of malignant cells, it 
appeared that not only the blood vessels but the entire microen-
vironment within the tumor was participating in tumor growth, 
progression and resistance to treatment (152). A  new concept 
providing additional relevant factors in this already complex 
multifaceted pathology was emerging to explain why current 
therapies are not fully or only transiently efficient (153). It is not 
only that ‘normal cells’ could turn into ‘conscripted or subverted 
cells’ to establish a cancer but some other normal cells would 
be triggered by the mutant cancer cells to help them proliferate 
and survive. These include normal host cells such as endothelial 
cells, fibroblasts, monocytes/macrophages, mesenchymal cells 
and cells of hematopoietic origin, at sites distant from and local 
to the site at which malignant transformation occurs (154). In 
addition, host and cancer cell interactions are occurring within 
a network that governs and influences both cancer and host cell 
properties. This ECM is now recognized as a crucial regulator of 
cancer evolution (152). Thus, several cell types in a complex and 
dynamic non-cellular environment collaborate to stimulate angi-
ogenesis. One would therefore predict that chemical mixtures 

potentially modifying the tumor environment would therefore 
affect angiogenesis for the benefit of the cancer cells. On the 
other hand, tumor angiogenesis is also closely tied to hypoxia 
and thus deregulated metabolism, tumor-promoting inflamma-
tion, accelerated tumor growth, invasion and metastasis.

The carcinogenicity of low-dose exposures to chemical 
mixtures in any given tissue will probably depend upon simul-
taneous activation of several important tumor promotion 
mechanisms and the disruption of several important defense 
mechanisms. The potential synergies of combinations of chemi-
cals will ultimately be involved in several mechanisms of dis-
ruptive actions that are known to be relevant in cancer biology. 
We undertook a thorough cross validation activity to illustrate 
the importance of the prioritized target sites for disruption (i.e. 
across multiple aspects of cancer’s biology) and to illustrate the 
extent to which the prototypical chemical disruptors that were 
identified disrupt other mechanisms that are also relevant to 
carcinogenesis. Since tumor angiogenesis is not only an early 
and central event in the development of a tumor, but also criti-
cal and essential for tumor growth, invasion and metastasis. In 
addition, it is closely tied to hypoxia and deregulated metabo-
lism. Therefore, we cross validate their potential participation of 
these angiogenic targets in other cancer hallmarks (Table 3) and 
their potential effects of chemical disruptors of angiogenesis in 
other cancer hallmarks (Table 4).

When studying the role of chemical disruptors in tumor 
angiogenesis, it is also important to keep in mind that inflam-
mation and angiogenesis are closely linked (126,155–157). Many 
of the angiogenic molecule targets that are selected as impor-
tant targets in this review are also involved in inflammation 
pathways. However, the critical role of VEGFR and TF pathways 
in chemical angiogenesis can be examined in vitro with HTS 
systems where individual chemical disruptors can be added to 
the assay wells to explore their role in angiogenesis, followed 
by a variety of assay techniques as reviewed and summarized 
above and in Table 2 for measuring the changes of these angio-
genic priority targets (CCL2, ICAM1, CXCL9, CXCL10, AHR, THBD, 
uPAR, MMP1, VCAM1 and collagen III) that we choose as poten-
tial targets for chemical disruptors (Bisphenol AF, Methoxychlor, 
PFOS, Diniconazole, Ziram, Chlorothalonil, Biphenyl, Tributyltin 
Chloride, HPTE and C.I. Solvent Yellow 14).

It is worth noting that many common drugs and some die-
tary compounds can prevent cancer by inhibiting tumor angi-
ogenesis. For example, aspirin and metformin are two cases 
where epidemiological evidence indicates cancer prevention 
(158,159), and experimental evidence suggested that inhibition 
of angiogenesis plays a part in this role (160,161). As well, there 
is substantial experimental evidence for phytochemicals, in par-
ticular dietary phytochemicals, preventing angiogenesis (162). 
So simultaneous exposures to both antiangiogenic and proan-
giogenic substances may represent two competing forces that 
could influence the process of environmental carcinogenesis. 
However, it is beyond the scope of this review to simultaneously 
consider these antiangiogenic exposures as well. Primarily, we 
believe that proangiogenic environmental exposures have not 
been considered in detail elsewhere, so they are the focus of 
this review. However, we do recognize that the combined effects 
of these constituents with other chemicals warrant careful 
consideration.

Conclusions
In conclusion, we propose to study the role of environmental 
chemicals on angiogenesis, particularly at low doses of selective 
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chemical disruptors. We believe there is a great need for future 
research that explores the potentially carcinogenic synergies 
produced by low-dose exposures to a wide range of chemicals 
with disruptive potential. Those with proangiogenic potential 
may be non-carcinogenic, but combinations of those chemicals 
may warrant further research and how they might combine 
with other chemicals that act on other hallmarks may help us 
better understand whether or not these types of combination 
exposures have a role to play in environmental carcinogenesis. 
In this regard, we identify prioritized vascular signaling targets, 
identify various environmental chemicals as novel, potential 
selectively disruptive agents in tumor angiogenesis, consider 
the cross-hallmark relationships within tumor angiogenesis 
pathways and targets as well as with other cancer hallmarks 
and make suggestions for assessing environmental chemicals 
in tumor angiogenesis for future studies. Understanding of the 
role of low-dose exposure of chemicals with disruptive poten-
tial could help us to refine our approach to cancer risk assess-
ment, and may ultimately aid in preventing cancer by reducing 
or eliminating exposures to synergistic mixtures of chemicals 
with carcinogenic potential.
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