QUALITY EVAXUASION OX CANTHE BUSE SRAP BLANS CROWZT IH OREGON
 by
 MCPMIM ARIT ARATM

A TXESIS
submitted to OREGOV SMATK COLTEGE

in partial fuleillment of the requirements for the degree of

RRASTHER OF SCTEAVGZ
June 1951

APPROVED:

Head of Department of Pood medroology

Dean of Graduate School

Date thesis is presented
 Typed by Clara Hogger

The authox is deeply graterul to Dr. Oliver J. Worthington for suggesting the subject of this work and for Mis guidance and supervision.

Indebtedness is elso acknowledged to Dr. H. Darwin Reese who gave oonstructive oxttichsin and oncouraganent throughout the work.

Thanks are also Que to Dr. Thomas B. Niven, Dr. Saxl M. Lituillar and Psocessox Thomas Onsdores for theix helpiul suggestions.

TABLE OF CONTENYS

Chaptex Page
 1
II REVIEM OF LITERATURE 3
III TKPERTIEMTAL RROCEDURE 10
A. Haterials 10
B. Mothods of Analyoss 10
TV RESULSS 17
A. Presextation 17
B. Discussion of Resuics 17
7 SUMFARE AND COIVCLUSTONS 30
BIBLIOGRASHIX 33
APPENDIX 37

ETST OF NA官HES

Table Page
1 Bean Varieties Listed in Order of gercent of Sceas by Weight (Wet) 22
II Bean Varieties Listed in Order of percent of pirrous dacerial 24
III Been Varicties Listed in Order of Clarity Os Liquor 26
IV Combined List rrom 22 Varieties Best in All Taree quality ractors 28
 Quality ractors 28
VI Quajity Factors for 40 Papiatims of Shap Beans (Canned) (two Pickings of a Few Variatios 37
VII List of Vaxleties, Date Canned and Date Analyzed 42
Figuse 1
Quality Factors for 40 Varieties ofSnap zeanc (Canned)29

QUALIEY TVALUATION OF CANNED BUSZ SNAP BRABS GRORAN TN OREGON

CEAPTER I

INTRRODUCTIOA

Snap (string, green) Beans (Phaseolus vulgaris L.), the garden varieties developed for adible pods, are or two cormon groups: ereen-poded and yellow-podded or
 ed as to warrant the name "stringless", (36, $p .347$).

Oregon ranked second among all states in the total tonnage of beans produced in 2946. It ranked first in yield obtained per acre, with an average yield 3 times larger than the national average. In Oregon beans are quite widely erown for canning and freezing. In 1934, only 900 acres of baans were grown for processing, In 1949, approximately 6,600 acres of land were planted to this crop for canning and sreezing, (3, p. 3).

The cost of picking Pole Beans is very high. Labor accounted for about 80 percent of their total cost of farm production, (10, p. 4). A mechanical ban harvester has already been developed, but the ideal snap bean adapted for the mechanical harvester has not yet been developed, (38, p. 40).

This stuay is an attempt to evaluate the canning quality of 40 varieties of snap beans grown in oregon by noting and comparing the ractors: 1. Percent os seeds by welegh (wet and dxy seeds), 2. Foreent of fibrous matarial, and 3. Turbidity number of the canned bean liquor.

CKAPTME II

RGYTEMO OM KIMMRATURE

"Wittmack, in his investigations or seeds or PeruVian tombs, sound a number which he identified as varieties of phaseolus vuleapis and obtained evidence conclusite enough to contince De Candolle that the specios is os soutb Accricen origin. " (36, p. 347).

The snap bean 15 an impartant and widely grown vegetable crop wish many pectorg contributing to its wide digtribution. These factors are adaptability for growth on a wide raxge of soil types: the whore period from planting to usabla maturity maich allow the crop to tit easily into cropping systeras; and breeding selection which bes adapted the plant to each great acriculbusal region in the Unitad States. (4, pp. 309-311).

Framer (2h, 2p. 38-46) tells us that tine three important ractors of qualisy for creen bans are maturity, size, and iack of fibrousness. Fe states that meturity may be masured by the proportion of the weight of seeds to the pods; size by deteraining the man dianeter from suture to suture: and fibsousmess by alkali digestion. Maturity is apparentiy judece in various ways, such as ratio of hull to seed, size of
pod, and length of seed.
The United States standards for grades of canned green beans ($30, p, 1$) are concerned with the following factors: clearness of liquor, color, absence of defects, and maturity. The relative importance of each factor is expressed numerically on the scale or 100. The maximum number of points that may be given each factor is:

Points

2. Clearness of liquor 10
3. Color 15
4. Absence of defects 35
5. Maturity 40
Total score 100

The factor of maturity refers to the degree of development of pods and seeds and the tenderness of the pods. Stark and Mahoney (3k, pp. 353-359) have shown that the parchment of fibrous sheath of the side walls, as they call its is actually in the inner mesocarp. The tissue starts as a one-celled layer of parenchyma and later develops into a region several cells in thickness. These workers have shown that the varlets Bountiful differentiates these mall closefitting parenchmatous cells into fibers three days sooner than the variety Giant Stringloss Green Pod, but at twenty days after anthesis, both varieties show equal developraent and
thickness of the cells of the fibrillar layer. They further show thet cool temperatures and abundant raindall produce less thickening of these cells and that high temperatures accelerate cell wall thickening. Herris (20, pg. 4h-47) has show that the seed weight is correlated vith the relative position in the pod as well as with the number of seds per pod.

Culpaper (9, pp. 357-377) states, whe value of any vegetable as a rood product dopends primaxily upon its composition and palatablilyy. Both are generoily greatly influezced by the stage of matuxity at which the material is prepared for use." Flynn, et al, (12, 2. 419) mention chat with increasing maturity at the time of harvest the yield progressively decreased from 2698 kg . per acre for immature beans to 73 h kg . for beans harvested wher markedy overminture.

Rramer (25, pp. 55-63) states that quality nay be measured by one of two methods: githar the organoleptic or the objective. The organoleptic method resers to ovaluation by the senses, such as seeing with the unalded eye, feeling with the fingers, chowing or swelling. the objective nethod is one that is besed on the use of an impersonal instrument or oy cherical procedure. The adrantage of the organoleptic methot is that the determination is made by employing the very same senses
that are used by the consumer. The organoleptio grader does not possess a flued point of reference, and for that reason he may vary considerably from day to day and certainly between seasons. In some cases where the quality evaluations are not based on objective measures, the desinition of the factor of quality is not satisfactory. The objective method, on the other hend, ellminates to large extont this possibility of disagreeraent because it automatically eliminates the human eloment. So matter how precise and accurate a method may be, it is not wortin very mucin if the determination is made on an unrepresentative sampie, is the procedure is not followad exactly, 0 is the particular instrument used is not properiy adjusted.

Gould (17. 1.54) stites that all or the measures of quality evaluated on canned snap beans (seed length, tendernesw, lack of fiber and clearness of liquor) were found to correlate with maturity. The value round to have the highest positive correlation was seed length. This would seem to be an ozcellent objective measurement of maturity in contrest to deseeding of the pericarps and weighing the seeds. the lenget of the seads could bs measured direoty in the fleld, since weighing equipment would not be needed and a vary relieble indication of maturity would result. The values proposed as maximums
to corressond with the inmature, optinum, and mature stages of maturity are 9, 13, and 17 aillimeters, respectively, fresh basis. Clearness of liquor on the canned product gave a negative correjaision of -0.63 with paroent by weight of seeds. It is possible that eloudy liquors can be produced by using pieces of map beans; extra long cook, excessive agitation, or cloudy wteres.

Gould's laboratorg has constructod an instrument called the sexturcomster, (14, pp. 26-27), by which the tenderness of canned beens can be determined. It is easy to use and to clean. Mifturity in coula's work was based on percent os seade wy wight; thet is, the gods were deseeded and the seads weighed. Samples with forcent or less seed. were comsidered crede a or imature, sto 16 percent were graded B or optimum, and those with seed content from 16 to 25 percent were graded C or mature.

One of the majoz problems confronting the snap bean processors today is the maxtmum folerances set by the $\mathbb{H o d}$ and Drug ddainistration Por Piber in the conned product. This value was originally (1947) set at 0.12 percent. However, in June 1948 the tolerance was ralsed to 0.15 percenc, since fem grocessors could meet this lower level, (16, pp. 42-44). The rapid procedure set up by Rowe and Bonney was the method used in determining the siber content.

The Food and Drug Administration (13, p. 3726) an-
nounced that the details of the chemical method for
determinine fibrous matesial have not been sureloiantly
clear, and suggestod that a rew changes in its wording
would wake it easisr to apply. The following expanded
description should be used:
mpransere to the metal cup of maltodmilk stixrer and mash wich a pestlo. Wash miteriel adhering to the pestie beck into cusp with 200 cc . of boiling water. Bring mixture neariy to a boil, ade 25 co . of 50 percent (by weight) sodium bydrord de solution and bring to a boll. (If roaming is excessive, 1 co. of capryl alcohol may be adaded.) Boil for 5 minutes, then stir for 5 minutes with a majtad-mill stirrex capable of a no-load speed of at least 7200 r.p.tin. Uso a roter with two scalloped buttons. Pransfar the material from the cup to a previously weighed 30 -mesh monel metal screen having a diameter or about 3 公 to \& inches and side wells about 1 inch high, and wash fiber on the serean with a stream os. water, using a pressure not exceoding a head (vertical distance between upper level or water and outlet of glass tube) of 60 inches, delivered through a elass tube 3 inches long and $2 / 8$ inch inside diameter. inserted into a rubber tube of $\frac{1}{4}$ inch inside diateter. Wesh the pulpy portion of the material through the screen and continue washing until the remaining fibrous material. molstened with phonolphthalein solution, does not shov any red color aiter standing 5 minutes. Again wash to rexsove phenolphtha2ein. Dry the scresn containing the inbrous watersal for 2 hours at $100^{\circ} \mathrm{C}$. , cool, and cleduct weight of sereen. Divide the weight or fibrous material by the weight of combined deseeded pods, irimmings, and strings and multiply by 100 to obtain the percentage or ribrous material. ${ }^{3}$

Percent by weight fiber (15, pp. 26-70): According to Could, the maxinum for grade A should be 0.05 perm cent, for grade 0.10 percent, and for grade c 0.15 percent. In the eanned product, varleties that he sound to meet the riber standaras or 0.15 percent and percent by weichit or soods under 16 percent or in the exade a and B range ware: fano Rofuger, Giant Strimeless, Greer Pod, Asgrow Stringless Croon Rod, and Landreths Stringless Greos god. Fardeties that wete derinloly unsuitable for candige mere Bountrul, Fenmessee Green Pod, Kopkins Rarliest Red Valemtine, Sure Crop Vare, Stringiess Black Walentine, Flerida Belle, Striagless Refugee, V. S. Refugae No. 5, Hmproved Comodore, Pencil pod black Wau, and teystonian (29, 7. 28).

Slegel $(32, \mathrm{D} .18$) analyzed round-pod Asgrow Stringiess grean beans whioh were packed in western Raryland. Seed perceatage wes 3.7 to 24.6 . Sibrous material percentage ranged from 0.003 to 0.069 . Gould concluces that:
"wher is an lader of quality ror each
variety at the afferent stages or meurity.
and thus it should evaluated aocordingly.
(16, pp. 42-44). This fact sugesest that
processors must have varieties evaluated
twithin their own production areas. if
climatic conditions do efrect plber develop-
ment; ox processoxs camnot rely wholly on
seedmen's statements as to the amount of fiber
in the particular varieties at the different
stages of maturity. "

CHAPTER III

EXPERMEHTHAL PROCEDURE

A. Materials

Data were obtained on forty varieties of bush snap beans (Table VI) grown in Oregon by the Horticulture Department of Oregon State College and camned by the Food 'sechnology Department in July, 2950, using a regular bean oanning process (8, pp. 220-223). Shere were a few replicatsd lots and a rew second pickings. Those which have nuabers only were from the United States Departmant of Agriculture irials. After four monchs storage ent the warehouse of the Food Technology Deparemant we opened oacs variety of beans and testod them for three quality ractors by the objective mathods described below. Thase tests wera run for evary variaty until the deviation of the two resules appeared reasonably irreducible.

2. Wethods of Analysis

玉ach variety of canaed bush snap beans was analyzed ror the rollowing:

> 1. Percent of seeds by weight (wot and dry seeds)
2. Fibrous material
3. Turbidity number

The methods of analysis were:

1. Peroent of soeds by weicht (wet and dyy seods)
a. Mer sseas. The general standard mothod for determinine the pereent of seeds by weight was follow© with little change, (31, Pp. 620-628).

The contents of the can were transferred to a container. Two oans of water were aded, mired, and spread on an 8 -mesh screen. The screen was tilted as much as possible without shifting the beans, and they were dxainad for 2 minutes axactig by using an interval timer.

One hundred filty grams of axained beans wese whighed out. The saeds were separated from the pods by using knife, and soparated into alumirum voighing boxes. The seads (S) and pods (B) wre weighed separately.

From these two weighinge, the parcent of seed by weigat was calculetod in this formula:

$$
\frac{S}{(B+S T} \text { स } 100=8 \text { soed }
$$

The pods were waighed accurately on a ersple-beam balance to the nearest 0.1 gm. and estimated to 0.05 gm. The seede were woighed on an analytical balance to greater accuracy.
b. Dry seads. The method for determinathon of the parcent ly weight of dry seeds was not in tho literature. It was thought thet it would be better to make determanations on the dry seeds, because water collected on the seeds when they were belag picked from the pods. To get the true weight of sceds, the aluminum box of wet seeds was aried in a 100° C. oven for 2 hours, cooled in a desiccator, and weighed on an analytical balanee. Percent by weight or ary seeds was calculated in the same way as of wot sceds.
2. Tibrous maerial. The mothod adopted rot the Librous material coceraination was esmentially that of Rowe and Bonney (31, pp. 620-628). One hundred erans of the poas, mbich had boen separated from the seeds, were woighod. these pods wore out into pieces approximately贫 finch 28 length. This cutting was done as the seads were pickod from the pods. The samples were pulped in a large mortar for five minutes eractiy, without stopping, and in the same manner each time. The pulp samples were transserred to the mothl cup of a maltad milu mixar with 200 ce . of boiling water to which was added否 gram or pararcin. the mixtures were brought to a. tomperature of $99^{\circ} \mathrm{C}$. , and 25 cc . of 50 percent sodium Hydrozide solution wore adced, (The 50 percent sodium hycroxide solution was prepared by dissolving 50 grams
sodium hydrozide in the 100 ml . distilled water.)
Arterwards sodium hydrozide solution was added to the raixtures. Theg were boiled exactly 5 minutes; then they were stirred for szacely 5 minutes with a malted milk stirrer (capable of a no-lead speed of at least $7200 \mathrm{r} . \mathrm{p} . \mathrm{m}$.$) . The gitutures were piltered with suction$ through a tared 30 -nesh monel metal soreen itited into a Buchner rungel.

Tha pulp was washod through the serean with a公-Inch stream of boiling Qisellied wator.

After whening the siber on the screen free of altalinity (1-1.5 1iteze of mater), it was further washed with a stream of bodling wacer untll the pulp was removed and the maning wero clear. two and onebali litess of boiling distillod water vere used for atery test. The Food and Drug maministration method (13, p. 3726) has the disadvantage that a standard volune of wash water is not called fof.

The screen and ibor were ariod at $100^{\circ} \mathrm{C}$. oven for 2 hours, cooled in a desiccator, and waighed on an analytical balance.

The dirforence in wighings was reported as Elbrous material.

It way notioed that the original Rowe and Bonney mothods (31, pP. 620-628) geve such directions as:
a. mpulp the somple in a large mortar. We ourselves saw that a time length is necossary for this pulpine. whe longer we pulpea, the less plber we got. So we pulped every sampe fow 5 minutos and exescised care to guly the sapple uniformy.
b. Mrenge the mizture to boil and add sodium hydroride. Since it is airicult to dosermine the right tins to ade sodiun hydroxide (dracti, because tho oontainer Ls metel and debp, we added Haor when each sample was at $99^{\circ} \mathrm{C} ., 320$ wo continued hearing it for exactiy 5 minutes; sor is any wase bolled fors more than 5 whmutes, it would yiold low xiber .
c. rwath the ithers until tho puip is removed and weshines are cleat." th is hated to tell whethar or not the wash almag present. Whasea ereoty 2.5 liters of water sor wanimg eots eost. The more weter we used, the less siber wo got.

Whese thre duproverames of Rove and Bonney methods wero made by the Food and Druc Administration also, but ins ditexent ways. $(23, p .3726)$:
3. Turbidity rumber. The turbiaity eeseer of reatesz (23, pp. 15-16) was used for detomining the turbidity number of bean liquor. The can was shaken
five tines up and down as in bacteriology laboratory technique, and then it was openod. The liquid wes poured into the testor, and the number was read as rapidy as possible.

The Turbidity Tester consists of a pair of wedgeshaped containers obtained by diagonal segaration of a box-1ike struceure consiructed from Plexiglas or ang other transpaxent material. It has two side wells of 9.5 з 12.8 cm . dimensions, held together by two narrow plates, 2.52512 .8 orm. in size. The structure thus formad is open on the bottom and the top but is diagonalIy divided by plate on whicts a scalo is exgraved.

For the determination, the top section of the instrument is rilled with the test liquid, and then the observer's vistion is diracted horizontally from the direction of the narrow side of the instrument through the liquid and toware the divicing plate with the soale. Whe last line which is still visible through the liquid colum is established, and then this point is read to the nearest 0.25 or 0.50 unit on the scale. Since the scale indicates the thiekness of the liquid colum in centimeters at any of the different levels, the reading, called the "Turbidity Wumber or m, will indicate the maximum distance in centimeters through which the scale is visible.

It is recomended that the observer hold the device away from the light, with the major light source behind his back. Within reasonable linits, the intensity of the light and the coloring of the test liquid do not arfect the my values obtained. Good light makes the reading easior. When a reading is completed, the test liquid is poured out and the container is rinsed. Thereupor the device is turned upside down and the top wedge is used for the next test while the other drains and dries.

CRAPMER IV

EESULTS

A. Presentation

The complete lise of smap beans phoseotu velsexis L.) and the resulte or the analyses are presented in the Appendix sable VI. Twis taple ghows sor every variety of pam percent of wat seads oy weight, percent of ary seded by weight, percen of fibrous material, and turbidits number of liquor, freluding also their averages and deviations.

Table VII includes identifloation of the beans, dats thes were canned, and ames opened.

The raw data from the Appendits Table VI wre rearranged in rables \bar{X}, II, and III to 1150 the varieties and pickings in order of merit for each onjoctive quality ractor inveselgated.

B. Discuspion of Results

1. Perecent of wot seeds by weifht: In the Appendix appears Table VI which sumarizes the results of percent of wet seeds and percent of deviation. Table I re-arranges the varieties from Table VI in order of percent of seeds by weight. The range of percent of seeds is between 2.02 and 7.14 percent as shown in

Table I. All samples having less than 5 percent seeds are classified as grade A by Gould's standaxds, (15, p2. 26-70).

The 14 best varietieg of beang (Table TV) have 2.02-3.65 perceat tret seeds. In this list Rival is on top with 2.02 parcent. We acere with other woxsers (29. 9.39) that Rival is the best variety for percent wet seed, beause it gives a very low percentage of seeds. (Table IV.)

Wext to Rival ranks the new Waited States Repartemont of Agricuiture variaty $2334-1-1$ with 2.05 pereent
 varletios which was complied rroin the 22 best varieties in all three quallty factors (wable IV) for parcent riber and oleaxness of liquor of canned beanc.

When ploking the seeds from the pois and putting Chers into the aluminum bor, nuch care was erereised in order not to collect water with the soods. This special care is needod when the seede axe smail in size becauss In such cases it is ainficult to giok the seeds without collecting water, and some inacouracy in the data may result.
2. Percent of dry sebds by waight: From Appendis Table UI we can see that the rigure of percent of dry
seads for these forty varieties of snap beans lies betwaen 0.22 and 1.16 percent. The deviation of the results is very high compere with the wet seeds data. Permaps the varying sizes of the seeds cause them to contain different mounts of water, and in addition to instrumental error, give these lexge percentage deviations in the results. Aiso chis method is more expensive because it requites more power, nore aquipment, and more time. Shererore, it is not satisfactory, and no soparate table 1isting the varioties according to this factor was compiled.
3. Tibrous material lotude piber, or paroant os

Piber): The Riguxss for the fibrous matorial of soxty varioties bush snap beans show a range os 0.008-0.207 percent (Table JI). Dirferent varieties of even approximataly the same percent wet sead give direerent percentmag of A iber.

From these varieties we pioked the 22 best varlaties with a siber content of 0.008-0.031 peroent. Tiventy-two variowies were chosen in oxder to have Toperop, an important new variety, appear on all three 1ists, Rival variety was in this list with 0.011 percent fiber. From these listg of 22 best varieties, including Topcrop, which were selected for wat seeds, Piber and turbidity number, we sound oniy is varieties present on
all Ehree lists. Sosae varieties are near the top on one
 aple, the nery united States Dapartment of Agriculturg vextety, $1229-1-2-6$, is sth on the wat seocs $2 i s t$ (rable I), but 29th on the riber list (Table II).
 result ros mogerop does not quite agree with Wegener (35, pp. 54-56) and Zqumayer (38, p, 40), but our vasiactes were not the samas theirs in every instanco. For example, they compared Toperop with Tendergreen, Stringleas Green Pod, Stringless Black Palemtine, ote.; we aid not test these varteties.

In general, we found a low fiber contont in bean varieties. Perhaps the olimatie condition eaused this resuit in 1950. Starls and Rahoney (34. pp. 353-359) state, "It appears that conditions or high temperature and low rainrall have an accelerating erect on oell wall thickening*"
4. Surbidity Number: th Appendiz Table vi, we have recoreo the result of this work. (sable IXI) In general, we gound that the higher the riber, the lower the turbidity number. A low turbidity number Indicates cloudy canned bean liquor.

We did not ind ang other results cited in the

Iiterature, becaupe the use of turbidity tester of
 or tests have not get been reported. Rapid and ependable results an be obtalnad men tais testor. Of pole Beans wa san 4 vasicties. Ghey yiolded Fery high turbiduty numbers, higher than that of all bum beang arcept Untrad Statos Daparbment of Agzicultura
 to pake a sinal conclusion based on any one ranor. (Table IIX).

TABL I

Eesn Verieties Listed in Order of Percent of Seeds by Weigit (wot)

TABLE I - Continued

4 All varieties are grade a by Gould's standaras.

TABLE II

Bean Varioties Listed in Order of Percent of Fibrous Meterial

Variety			Percent of Fibrous Marial
1	Puregold	(\%T. 61)(Replicato)	0.008
2	Rivol	(\%5. 7)	0.011
3	B 2095-1-2	(87. 60)(Replicate)	0.011
4	Puragold	(Fit. 11)	0.012
5	1515-1-7-1-2	(4. 58) (Replicate)	0.014
6	3 2248-1	(\%7.39)	0.016
7	Tendergxeen	(FT. 62)(Replicatt)	0.016
	Pole besms 2066		0.016
8	B 1762	(FT. H_{4})(2nd picking)	0.017
9	B 1661-7	(5]. 41)	0.017
10	Rival	(FR. 63)(Roplicate)	0.017
11	B 2884-4-1	(FIT.31)	0.018
	Pole Beans Associated 231		0.018
12	Toperop	(8R. 59) (Replicate)	0.019
13	8 2096-4-1	(19.25)	0.020
14	82869	(FT. 28)	0.020
15	B 2637	(\%. 6)	0.022
16	B 2334-1-1	(FT. 36)	0.022
17	B 1763	(Ex. 27)(2nd pieking)	0.022
18	Tenderlong	(FT. 22)	0.022
	Pole Beans Ha 65		0.022
19	B 2669	(FI. 38)	0.023
20	B 1801-4	(29.29)	0.024
22	B 1468-1-17-12	(E1.53)(2nd picking)	0.024
22	Toperop	(FTP. 18)	0.031
	Pole beans 2006		0.031
23	Idagreen	(F2.36)	0.032
24	5 1515-1-7-1-2	(5\%.30)	0.035
25	B 1763	(FT. 49)	0.035
26	B 1468-1-17-12	(FI. 27)	0.036
27	2095-1-2	(T7. 45)	0.037
28	B 9126	(FT. 25)	0.039
29	Logan	(FI. 43)	0.040
30	в 1482-5-32	(FT. 52)	0.040

TABLE II－Continued

Variety			Percent of Tibrous matorial
31	B 1229－1－2－6	（F2．19）	0.042
32	［GCA－5002	（\％9．26）	0.0448
33	B 1755－1－1	（WT．4）	0.045
344	8 2095－1－2	（Mi．10）（2nd picking）	0.048
35	nCCA	（FT．20）	0.048
36	B 1762	（12．56）	0.048
＊37	B 2733	（42．24）	0.049
＊＊38	Contender	（mig．9）	0.067
4＊＊39	L．Schreiber		
	Helva घma	（F2．12）	0.114
\％4x\％ 0	B 2568－1	（\％）3）	0.207

＊All preceding are Grade is by Gould＇s atandiscis

TABIE III

Bean Perieties Listed in Order of Clarity of Liquor

TABLE III - Continued

Variety				Turbidity Number (TN)
33	Logan	(FP. 43)	(replicate)	4.00
34	B 1468-1-17-12	(FT. 53)	(2nd picking)	3.75
35	B 1755-1-1	(FT. 4)		3.50
36	Contender	(FT. 9)		3.50
37	LCACA	(FT. 20)		3.50
38	B 1468-1-17-12	(FT. 27)		3.50
39	82568 -1	(ET. 3)		3.25
40	MCCA-5002	(F7. 26)		

TABLB IV

Combined List From 22 Varieties Best in All Threc Quality Factors

Variety			Bercent of - Wet Secde		cent Piber	TM (cm)
1	Rival	(स. 7)		2.02	0.011	6.50
2	B 2334-1-1	(Fi. 16)		2.05	0.022	. 7.75
3	B 2869	(ER.28)		2.18	0.020	6.00
4	B 2884-4 4	(5T.31)		2.26	0.018	5.50
5	1515-1-7-1-2	(17.58)	(xaplicate)	2.41	0.014	8.50
6	B 2095-1-2	(48.60)	(replicate)	2.53	0.011	6.50
7	Puregold	(FT.61)	(replicate)	2.54	0.008	6.75
8	- 2669	(57.38)		2.94	0.023	6.75
9	Tenderlong	(22.21)		3.06	0.022	6.50
10	(2248-1	(F2.39)		3.14	0.016	7.00
11.	Toperoy	(FT.1.8)		3.25	0.031	5.50
12	Tendergreen	(\$2.68)	(raplicate)	3.148	0.016	7.50
13	B 1801-4	(EP.29)		3.56	0.024	5.50
14	B 1763	(FI.17)		3.65	0.022	5.50

TABLE 7
List of Varieties Poorest in Three Quality Pectors

Variety			Percent of Wet Seads	cent Piber	T23(cm)
1	B 2568-1	(51.3)	7.14	0.207	3.25
2	Contender	(F2.9)	6.90	0.067	3.50
3	Logan	(ET.43)	6.50	0.040	3.75
4	B 1755-1-1	(FI. 4)	5.57	0.045	3.50
5	Idagreen	(FT.36)	5.23	0.032	5.00
6	B 1762	(Fr.56)	5.10	0.048	5.00

FIG. 1

CRAPMTMR V

SURALARY AND CORCLUSIONS

Shis investigation was an attempt to evaluate the quality of 40 varieties (including a few replicates) of busk snap beans (Phaseolus vulgaxis L.) grown in Oregon. Pole varieties wers included for comparison. The work this gear was prelimsnary and of the nature of screening tests to select the most promisime varieties for further comparisons.

The following ractors were used as quality
indices:

1. Peroent or wet seeds by weight: Rows and Bonney getmod
2. Percent of dry seeds by weight: a new mathod
3. Parcent or fibrous material: modiried Rowe and Bonney method
4. Niturbieity number: Kertesz devica

Additional data on these beans have beon obtained by other workers.

Drying the seeds in the ovan before weighing increased the deviations of the results and was thus proved to be an unsuitable mathod.

For percent of ribrous gaterial determination,
improvements in techniques over Rowe and Bonney methode were made on pulping time, on the temperatura of
the solution when adajae socitur Mydroxyce, and on whe use of sterdard voluge of wash water.

Kertesz deviee (2), 1.15$)$ for doternining turbidm ity of liquor was found paluabla and confeniont. There are no data yet in the licerature on 1 ts use sor canned snap beens; theresore, the reaules here cannot be conpared with the work of other investigetors. The data hare reportea can help it tho future arawing uo of grade standarat for olarsey of $114 u 0$ of canned snay beans.

Whe rew data from the Appendix Table TI were rearranged in qables $I, I I$ and III to 1 ist tho varieties and plekings in oxere of mexit rox aech objective quelity ractor investieated.

Or Ghe 22 best varieties, including Togerop, which Were tested for mat seeds, siber and turbidity number, we found only 14 variecies present on all three lists or best vaxieties, as Sollors:

1. Rival
2. $2334-2-1$
3. 2869
4. $52884-4-1$
5. 1515-1-7-1-2 (replicate)
6. B 2095-1-2 (replicate)
7. Puregola (replicate)
8. 2669
9. Render long
10. B 2248-1
11. Topcrop
12. Tendorgeen (replicate)
13. 1801-4
14. B 1763

A reviem of the literature on varietiss of snap beans (Phaseolus vulgaxis L.) Por processing has been presented.

BELTOCRAPMT

1. American Can Company. Whe cansed rood reference manual. 3 ra ad. New Yors, IV.T., RogersKellogestillson, 1947.
2. Associayion or Oficial Agsicultural Chemists. ofricial and tentative methods of analysis. Geh ed. Washington is, D.C.,A.O.A.C., 1945. 134 9.
3. Bouquet, A. G. B. Growing shav beans for maxke and for manuractuse. Corvallis, oregon, Oregon state College Extemsion Service, 1950. (Buidetin 705).
4. Caldwell, Joseph S., and Chaxles W. Culpepper. Snap beax varieties suitod to dehydration. Conning Age, 24:309-311, 313. Nay, 1943, and 24:363-364, 366, 368. June, 1943, and $24: 420,422,4240$ Ju2y, 1943.
5. Campell, Clyde H. Caupbell's book; a manual on canning, pickilng and preserving. 3rded. Chicago, Vance, 2950. 30 p.
6. Canning trade. Green and wai Deara standards amended. The Canning mrade 70:7-8, 19-20. Hay 24; 1948.
7. Ghasfield, Cherlotto, and Georgian Adexus. Proxinate composition of fresh vegetables. Warhington, D.C., Unitad States Department of Agriculture, January, 1931. (Circular 146).
8. Cruess, W. V. Commercial fruit and vegetable
 1948. 220-223p.
9. Culpepper, C. W. The Brfect of stage of maturity of the shap bean upon its compositions and its use as a rood product. Food Research 1:357-377. 1936.
10. Davis, G. F., and D. Curtis humiord. Cost of producing Pole Beans in the Fillamette Valley, Oregom. Corvallis, O.S.C. Experiment Station, Apri1, 2948. (Bulletin 452).
11. Deviin, Kenneti Arthur. Determination of yiold, matuenty, and viteandin in single-harvest bush
 at Oregon Stato College, 2949.

12. Food and Drug Administration. Cannad vogetables: Definitions and standards of identity; quality and fill of contaducr. Canned green osans and canned wax beans. Federal Register 13:37243728. JuIy 3, 1948.
13. Cound, Wilbur A. Instrowent to quickly reveal quality of snap and wax beans. Food packor 30:26-27. Dacember, 1949.
14.

 What factors produce a rancy pack bean. Food Packer 31:26-27, 68, 70. 1Ray, 1950.
16.
 Fiber content of snap heans avaluated by vasiaty, saturity, Food Packer 31:42-44. July, 1950.
17.
18.
\longrightarrow
Results trom chemical analysen of smap means. good Packer 31:26-27, 51-52, 54. Septembex, 1950.
19.
quality evoluation or frosh, frozen and cannod smap beans. Hooster, ohio. ohio Agricultwal Fmperiment station, februazy, 1953. (Researen bulle仓tin 701).
20. Warris, J. Axthur. The inarluence of position in the pod upon the weight of the bean seed. The Arerican Naturalist 49:4444.7. 1915.
21. Kodgnan, Charles D. Handbook of chemistry and physics. 31st ed. Cleveland, Ohiq. Chemical Rubber, 2049. 518 p .
22. Jacobs, Horyis 3. The ohemistry and technology of food and lood products. Wew York, Intersefence. 1944. 742 p . (1), and 335 p. (2).
23. Kerteaz, z. I. A simgle burbidity geatex. The Canner 110: 15-16. Hay 20, 1950.

2k. Kramer, Amihud. Correlation of quality and nutritive ractors. Food Packer 29:38, 40, 42, 46. April, 1948. 29:55-56, 59-60, 62; 63. December, 194..
and A. R. Smith. Preitanaxy Lavastigation on mearrement of color in conned foods. Food Research 11:14, $20 \rightarrow 24$, 31. 1946.
27. Lencasmire, E. R. Xiela and quality or suap beans as influenced by harvestixag zuethods. The Canner 74:55, 56, 59-60, 63. Pobruary 27, 1932. (Convention number 1932).
25. Haerz, A. and Mrea Paul. A dicuionary of color.

 chemical composition of erean suap baans arter harvest. Hiargiand Agrioulturad Hxperiment Station, 1935. (Bulletin 383).
30. Production and itarketing Administration. Unitad States Department of Agrioulture standaras for grades of connsd green bams and canned war beans. 4th issue. September 27, 1948.
31. Rowe, S. C. and V. B. Bonney. A study of chemical and physieal zethods ror deterasning the maturity or canned snap (stringless) beans. Jourxich of the Associetion or orticial Agriculturel Chemists 19:620-626. 1936.
32. Siegel, Maurice. Minimum standards of quality for canaed snap (stringless) baans. The Cannsr 100:16, 18. December 16, 1944.
33. Smedecor, George W. Statistical Methods. 4th ed. Ames, Jowa, The Iow Stat College gress, 1946.
34. Starls, F. C., Jx., and C. H. Mahoney. A study ox the tiras of development of the ribrous sheath in the side wall of odible snap bean pods with respect to quality. American society of norticultural science 41:353-359. 1942.
35. Wagener, John B., and Beverly F, Bacr. Quality comparison favors Toperop bean for freezing. Food Packer 31:54-56. October, 1950.
36. Winton, A. L., and K. B. Winton, Structure and composition of roods. DJem York, John Wiley, 1936. 347-357 р. (2).
37. Woodman, A. G. Food Analysis. 4th od, Mew Yoxk, ReGraw-R1i11,1941. 304p.
38. Zaumeyer. W. J. soperon is sop-noteh ally in fight on snap bean mosaic. Food Packer 32:38, 40: 42, 45. Agrin. 1950.

Quslity Factors for 40 Varieties of Snap Beans (Canned)

(Tro Piekings of a Fem Varicties)

1	B 2568-1	$\begin{aligned} & 6.83 \\ & 7.45 \end{aligned}$	7.14	9.08	$\begin{aligned} & 1.12 \\ & 1.20 \end{aligned}$	1.16	7.14	$\begin{aligned} & 0.168 \\ & 0.246 \end{aligned}$	0.207	46.43	3.25
2	B 1755-1-1	$\begin{aligned} & 6.47 \\ & 4.67 \end{aligned}$	5.57	38.54	$\begin{aligned} & 0.99 \\ & 0.67 \end{aligned}$	0.83	47.76	$\begin{aligned} & 0.051 \\ & 0.038 \end{aligned}$	0.045	34.21	3.50
3	B 2637	$\begin{aligned} & 5.03 \\ & 5.11 \end{aligned}$	5.07	1.59	$\begin{aligned} & 0.69 \\ & 0.75 \end{aligned}$	0.72	8.70	$\begin{aligned} & 0.023 \\ & 0.021 \end{aligned}$	0.022	9.52	4.50
4	Rival	$\begin{aligned} & 1.79 \\ & 2.25 \end{aligned}$	2.02	25.70	$\begin{aligned} & 0.21 \\ & 0.23 \end{aligned}$	0.22	9.52	$\begin{aligned} & 0.012 \\ & 0.009 \end{aligned}$	0.011	33.33	6.50
5	Contender	$\begin{aligned} & 6.41 \\ & 7.39 \end{aligned}$	6.90	15.29	$\begin{aligned} & 0.92 \\ & 1.02 \end{aligned}$	0.98	9.68	$\begin{aligned} & 0.073 \\ & 0.061 \end{aligned}$	0.067	19.67	3.50
6	B 2095-1-2	$\begin{aligned} & 6.29 \\ & 5.82 \end{aligned}$	6.06	8.08	$\begin{aligned} & 0.96 \\ & 0.82 \end{aligned}$	0.89	17.07	$\begin{aligned} & 0.052 \\ & 0.043 \end{aligned}$	0.048	20.93	4.00
7	Puregold	$\begin{aligned} & 4.81 \\ & 5.09 \end{aligned}$	4.95	5.82	$\begin{aligned} & 0.62 \\ & 0.64 \end{aligned}$	0.63	3.23	$\begin{aligned} & 0.012 \\ & 0.011 \end{aligned}$	0.012	9.09	7.00
8	I Schreiber, Helva was	$\begin{aligned} & 4.42 \\ & 4.76 \end{aligned}$	4.59	7.69	$\begin{aligned} & 0.60 \\ & 0.66 \end{aligned}$	0.63	10.0	$\begin{aligned} & 0.123 \\ & 0.105 \end{aligned}$	0.114	17.14	6.25

Sarapl -820	－－E $\overline{\text { U }} \cdot \bar{S} \cdot \overline{\mathrm{D}}$.		Ave． 8	可可．		Ave． 虫	：Dev． ： S				(TN)
9	B 1762	$\begin{aligned} & 4.61 \\ & 4.21 \end{aligned}$	4.47	9.60	$\begin{aligned} & 0.60 \\ & 0.53 \end{aligned}$	0.57	13.21	$\begin{aligned} & 0.018 \\ & 0.016 \end{aligned}$	0.017	12.50	5.50
10	B 2096－4－1	$\begin{aligned} & 4.65 \\ & 3.64 \end{aligned}$	4.15	27.75	$\begin{aligned} & 0.59 \\ & 0.41 \end{aligned}$	0.50	43.90	$\begin{aligned} & 0.016 \\ & 0.023 \end{aligned}$	0.020	43.75	5.75
11	B 2334－1－1	$\begin{aligned} & 1.83 \\ & 2.27 \end{aligned}$	2.05	$24_{4.04}$	$\begin{aligned} & 0.24 \\ & 0.24 \end{aligned}$	0.24	0.00	$\begin{aligned} & 0.028 \\ & 0.016 \end{aligned}$	0.022	75.00	7.75
12	B 2763	$\begin{aligned} & 3.66 \\ & 3.63 \end{aligned}$	3.65	0.33	$\begin{aligned} & 0.46 \\ & 0.47 \end{aligned}$	0.47	2.13	$\begin{aligned} & 0.019 \\ & 0.024 \end{aligned}$	0.022	26.32	5.50
13	Topcrop	$\begin{aligned} & 3.49 \\ & 3.00 \end{aligned}$	3.25	16.33	$\begin{aligned} & 0.41 \\ & 0.32 \end{aligned}$	0.37	28.13	$\begin{aligned} & 0.032 \\ & 0.029 \end{aligned}$	0.031	10.34	5.50
14	81229－1－2－6	$\begin{aligned} & 2.38 \\ & 2.15 \end{aligned}$	2.27	10.70	$\begin{aligned} & 0.30 \\ & 0.23 \end{aligned}$	0.27	30.43	$\begin{aligned} & 0.054 \\ & 0.029 \end{aligned}$	0.042	86.21	6.50
15	RGCA	$\begin{aligned} & 3.74 \\ & 4.19 \end{aligned}$	3.97	12.03	$\begin{aligned} & 0.47 \\ & 0.52 \end{aligned}$	0.50	20.64	$\begin{aligned} & 0.049 \\ & 0.046 \end{aligned}$	0.048	6.52	3.50
16	Tenderlang	$\begin{aligned} & 3.22 \\ & 2.90 \end{aligned}$	3.06	11.03	$\begin{aligned} & 0.39 \\ & 0.31 \end{aligned}$	0.35	25.81	$\begin{aligned} & 0.026 \\ & 0.017 \end{aligned}$	0.022	52.94	6.50
17	B 1733	$\begin{aligned} & 4.52 \\ & 4.29 \end{aligned}$	4.41	5.36	$\begin{aligned} & 0.65 \\ & 0.56 \end{aligned}$	0.61	16.07	$\begin{aligned} & 0.052 \\ & 0.045 \end{aligned}$	0.049	15.56	4.00

(푠)											
18	B 9126	$\begin{aligned} & 4.94 \\ & 5.07 \end{aligned}$	5.01	2.63	$\begin{aligned} & 0.62 \\ & 0.62 \end{aligned}$	0.62	0.00	$\begin{aligned} & 0.042 \\ & 0.035 \end{aligned}$	0.039	20.00	7.25
19	NGCA-5002	$\begin{aligned} & 3.78 \\ & 3.07 \end{aligned}$	3.43	23.13	$\begin{aligned} & 0.51 \\ & 0.27 \end{aligned}$	0.39	88.89	$\begin{aligned} & 0.045 \\ & 0.043 \end{aligned}$	0.044	4.65	
20	в 1468-1-17-12	$\begin{aligned} & 3.62 \\ & 3.78 \end{aligned}$	3.70	4.42	$\begin{aligned} & 0.50 \\ & 0.48 \end{aligned}$	0.49	4.17	$\begin{aligned} & 0.046 \\ & 0.025 \end{aligned}$	0.036	84.00	3.50
21	B 2869	$\begin{aligned} & 2.08 \\ & 2.27 \end{aligned}$	2.18	9.13	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.25	4.17	$\begin{aligned} & 0.017 \\ & 0.022 \end{aligned}$	0.020	29.41	6.00
22	B 1801-4	$\begin{aligned} & 4.01 \\ & 3.10 \end{aligned}$	3.56	29.35	$\begin{aligned} & 0.56 \\ & 0.37 \end{aligned}$	0.47	51.35	$\begin{aligned} & 0.030 \\ & 0.017 \end{aligned}$	0.02)	76.47	5.50
23	B 1515-1-7-1-2	$\begin{aligned} & 4.5 ? \\ & 3.32 \end{aligned}$	3.95	37.65	$\begin{aligned} & 0.62 \\ & 0.39 \end{aligned}$	0.51	58.97	$\begin{aligned} & 0.026 \\ & 0.063 \end{aligned}$	0.035	65.38	5.00
24	B 2884-4-1	$\begin{aligned} & 2.17 \\ & 2.34 \end{aligned}$	2.26	7.83	$\begin{aligned} & 0.27 \\ & 0.25 \end{aligned}$	0.26	8.00	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	0.018	40.00	5.50
25	Idagreen	$\begin{aligned} & 5.25 \\ & 5.21 \end{aligned}$	5.23	0.77	$\begin{aligned} & 0.66 \\ & 0.62 \end{aligned}$	0.64	6.45	$\begin{aligned} & 0.036 \\ & 0.028 \end{aligned}$	0.032	28.57	5.00
26	B 2669	$\begin{aligned} & 3.05 \\ & 2.03 \end{aligned}$	2.94	7.77	$\begin{aligned} & 0.38 \\ & 0.30 \end{aligned}$	0.34	26.67	$\begin{aligned} & 0.023 \\ & 0.023 \end{aligned}$	0.023	0.00	6.75

List of Varioties, pate Canned and Date Analyzed

TABLE VII - Centinued

TABLI UII - Continued

-- Va $\overline{\text { Vièt }} \bar{y}$

- U.S.D.A. ${ }^{\text {MO }}$ poim beans

