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APPLICATION OF THE SCHEMATIC MODEL TO FOUR-QUASIPARTICLE STATES
I. INTRODUCTION

In the few decades that nuclear physics has existed large
progress has been made in both explaining nuclear structure and
nuclear reactions. Nuclear structure theory can be subdivided into
macroscopic models, such as the liquid drop model, and microscopic
models, such as the nuclear shell model.

The liquid drop model of the nucleus was historically the first
model to be proposed as an explaﬁation of the different properties of
the nucleus. To describe the qualitative features of the nucleus,
especially collective motions, it is still generally accepted and
above all it gives transparent results. It is therefore a good first
order check for any microscopic model that describes collective
phenomena.

Microscopic models work best for one body excitation, which can
be described using an average potential and assuming that the nucleons
move independently obeying the Pauli principle. However, it turns out
that collective excitations can be explained only if we suppose that
coherent participation by many nucleons takes places in the nucleus.
The independent shell model fails to describe such states. If the
shell-model states are to be obtained as basis states, a residual
interaction has to be used. In general, collective phenomena cannot

be solved exactly, so approximations have to be made. Using realistic



interactions, including a large number of possible particle
configurations, requires large numerical calculations and the
transparency of the original problem and its results is usually lost.
However, there are several problems that can be solved analytically to
a reasonably good approximation.

In this first chapter we will discuss the background needed to

understand the calculations to follow.

1.1 Macroscopic Description of Collective Phenomena

Depending on the number of valence nucleons there are different
kinds of nuclear excitation spectra. One obtains the spectrum of a
one-particle excitation for closed shell nuclei, if there is only one
nucleon outside the major shell, or if only one nucleon is missing in
the major shell. As the number of valence nucleons increases toward
the middel of the shell the effect of the long-range nuclear force
increases and a collective motion of all nucleons arises. An
important collective motion for a spherically symmetric nucleus is the
surface vibration, which will be discussed in this study. In the
nuclear drop model, surface vibrations correspond to small elastic
vibrations in the shape of the drop about its spherical equilibrium.
If the number of valence nuleons is increased slightly away from a
closed shell, the equilibrium state of the nucleus is still a sphere
(due to the pairing force) but deformations are possible as vibrations

about its spherical shape. The frequency and therefore the energy of



the surface vibration then decreases and the vibrational states are
observable in a spectrum. The collective quadrupole motion appears to
be best developed and well separated from single-particle motion for
nuclei at least four protons and four neutrons (or four proton holes
and four neutron holes) away from closed proton and neutron shells.l

If the number of nucleons increases even more the tendency of
deformation increases. Finally, the spherical shape of the nucleus
becomes unstable and an elliptical equilibrium arises. The deformed
nucleus can now rotate as a whole, which yields a rotational spectrum.

The collective states discussed so far are part of the low energy
spectrum. At considerably higher energies of 10 - 20 MeV strong,
broad collective excitations appear, which are referred to as giant
resonances. The structure of the giant resonances varies smoothly
through magic numbers and shows no difference between nuclei with even
and odd numbers of nucleons. The excitation thus involves the entire
nucleus, and not just a few nucleons in the outermost shell. Although
our formalism can be applied to the giant resonance states it will not
be a subject of this study.

In order to describe the vibrational states in the liquid drop

model we will first parametrize the surface of the vibrating drop.2

’Rk\ﬂ‘f):no(‘*z a‘a\/u \/R,: ('qu))
)s,/l

Since A=0 gives the spherical shape and A=1 describes a translation of

(1.1.1)

the sphere, A=2 is the lowest interesting order in the expansion,



which is a quadrupole vibration. For A=2 u can have five different
values (2,1,0,-1,-2) corresponding to five independent vibrations.
If we limit ourselves to small deformations each amplitude a,,

oscillates. Each oscillation corresponds to a vibrational energy

1

lfu t 5

Hvih = %_ 31 5\ 3 C)\ 41,1/“

(1.1.2)
where B, are the inertia parameters and C, are the stiffness
parameters. They characterize the inertia of the collective motion
and the stiffness of the collective potential energy, respectively.
Since the Hamiltonian has to be a rotational invariant, the constants

are independent of u. The frequency of each vibration is given by

[4
2 = I
A \/ B (1.1.3)

and their energy is given by
Ex = h vy (1.1.4)

The quantum mechanical vibrational spectrum of the individual
oscillators is given by a series of states with equal distances #w.
Each phonon of a quadrupole vibration with A=2 has an angular momentum
quantum number of 2., Since phonons are bosons, only symmetric total
wavefunctions are possible. The degeneracy of the energy levels

vanishes for anharmonic vibrations.



1.2 Collective Phenomena and the Tamm-Dancoff Approximation

In the last two decades considerable research has been done in
the "microscopic" description of collective excitations of a many-body
system. In a quantal system like a nucleus, density variations occur
due to transitions of one or more particles between different states.
When a particle is excited (a particle-hole state created out of the
ground state), the corresponding fluctuations in the nuclear field
affect the motion of the other particles and tend to generate other
particle-hole excitations. Thus, because of the interaction between
the particles through the field, the randomly distributed fluctuations
from different single-particle excitations come in phase, and a more
or less collective movement of the particles, a vibration, arises. We
shall study the quadrupole vibrations which are known from experiment
to be the most collective among all vibrations.

Spherical even-even nuclei will now be considered. The particles
are supposed to move in a one-body potential, interacting by a short-

range and a long-range force. Thus the Hamiltonian is
H = H(shell mod.) + H(short range) + H(long range) (1.2.1)

The advantage of the Tamm-Dancoff approximation (TDA) is that the
fermion character of the nucleons is preserved, whereas in most other
microscopic collective models, such as the interacting boson model3 or
the various boson expansion models as used for example by S. G. Lie
and G. Holzwarthl, one deals with nucleon pairs, which are

approximately treated as bosons.



The Tamm-Dancoff equation diagonalizes the shell model and the
long-range part of the Hamiltonian. The ansatz of the Tamm-Dancoff
secular equation is the following. If the shell model potential is
filled with A nucleons up to a certain Fermi level, then all zero,
one, two, three, four,...,N particle shell model excitations form a
complete orthogonal set which can be used to expand the true many-
nucleon wave functions of the ground state |0> or the excited states
In>. The exact diagonalization of H within the full shell model space
is a task which cannot be solved. In ordinary TDA it is assumed that
the ground state is a Hartree-Fock ground state: that is, ground
state correlations are not taken into account, which is the main
drawback of this procedure. Since experimental operators are one-
body operators (that is they excite one particle-hole pair at a time)
the excited state is usually approximated by a linear combination of

one-particle, one-hole excitations.

oY = | w7

| ny =Z Com; an a; }o> 2.2,
™,

The Hamiltonian in second quantiziation is given by

. \ + o+ .
s fmi Um a; 44 Am G, d¢ 4 VmJ'.; (1.2.3)
m‘(_

m,nlL”'



Minimizing the energy and contracting all the operators, we

obtain the so-called Tamm-Dancoff equation of motion:

> (fmi Smin biy + Venjin ) Coj * E Cm

. (1.2.4)
n.J

where v stands for the residual interaction and indices m,n (i,j)
refer to states above (below) the Fermi level. The interaction matrix

element is given by

Vmiin = [4m (£) @l (F) V(55
et alt) - (f)e(t))
d§. 4,

(1.2.5)

It is very useful to represent the interaction graphically by a

Feynman diagram.4
D E
m L m t
\L /\ I -
n ] n J

Figure 1.2.1 Graphical representation of the matrix element vpjjip
and Vmjni



A dashed line stands for v and lines with arrows for the single-
particle functions (arrow up for particles; arrow down for holes),
which according to their coordinates, are linked to the interaction
points 1 and 2 of the dashed line. If we imagine a time scale
perpendicular to the dotted line, a particle-hole pair (nj) is
annihilated and another one created in the direct term, whereas in the
exchange term a pair (nj) is scattered into a new one (mi).

The solution of the Tamm-Dancoff equation is, in general, not
obtained in the full particle-hole space, which is an infinite
numerical task. In order to understand the qualitative features of
this solution and what is meant by "collective" states we will solve
the equation in the schematic model using a seperable interaction and

degenerate energies. The interaction is approximated by
Vm\;i.n - A Dwmi 3.\8 (1.2.6)

The justification for this ansatz is the following:5 v is the residual
interaction, i. e. it describes the change of the mean field due to
the nucleons being no longer in a self-consistent state. The mean
field can change the particle density by either absorbing or emitting

a gamma ray. This process is described formally by6

SHCey (hlr*Yalka)ag oy
b kg (1.2.7)

The multipolarity A agrees, of course, with the angular momentum to

which the particle-hole pair (mi) is coupled.



Now define

Dmi = <mi] §H |0) (1.2.8)

graphically this can be represented by Figure 1.2.2,

Figure 1.2.2 The absorption of a gamma ray

The direct term of the residual interaction looks exactly like the
product of two such matrix elements. The physical process then is
described by the direct term rather than the exchange term. Neglecting
the exchange term is only a fair approximation.

In general, the residual interaction is attractive for T=0 states

and repulsive for T=1 states. Therefore, now choose

x <0 for T=0

x>0 for T=1 (1.2.9)

With the ansatz (1.2.6), the secular equation (1.2.4) has the

following form

(F-‘E"“EC) Cone = L D Z 3)% C,,J. (1.2.10)
nJ '
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and is solved by

Cmi. = N J)m(.
E "‘Em ?&(

- - 1
N 9— a Z ‘Qm;l g
me (E-émt&) (1.2.11)

The eigenvalue equation for the excitation energies E is

2
L ‘ E: [ Dmild
X & F - (1.2.12)
In the degenerate case we set all epj=ep-€3 equal to €. This case is
realized, for example, if only one major shell is taken into account
for particles and another major shell is taken into account for holes

in a spherical oscillator potential without a spin-orbit term. The

solution for this case is

1 'i
C,,“'_ = (Z ‘ D"\ol > Dnu'.
me
E = £ « AL | Deme |1 (1.2.13)
™

The eigenvalue equation (1.2.12) can be solved graphically by
plotting the r.h.s. as a function of E. The eigenvalues are obtained
from the intersection of this function with the straight line 1/x.
All solutions are sandwiched between the original shell model
excitation , with only one solution being pushed up (if 1/x < 0) or
down (if 1/x >0) in energy. The one excitation which is pushed down

(T=0) or up (T=1) is a state which has a constructive superposition of
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all terms of equation (1.2.12). This state will be refered to as the

collective state. By "constructive" we mean that all particle-hole

terms contribute to the multipole matrix element, ¥ Cpj Dpi, with the
same sign. Examples for such states are the first octupole states
(T=0) appearing in 160, 40Ca, and 298pb at low excitation energies and

the giant dipole resonance (T=1).

2N ]
| | .
T \ez X Emi ¢ E E
] VA
\ i
Figure 1.2.3 Graphical solution of equation (1.2.12)4
1\A in the graph corresponds to 1/x in the secular

equation
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1.3 Quasiparticles and the BCS Theory Applied to Nuclei

For low lying states in open shell nuclei it is a crude
approximation to use uncorrelated Hartree-Fock ground states. Even
though the Fermi level is defined, it is rather artificial to seperate
particle states from hole states. Furthermore pair correlations
become so important that the "feedback" of these correlations on the
single-particle motion cannot be neglected any more. As was already
mentioned in the liquid drop model, the existence of low-lying 2%
levels for open shell even-even nuclei is closely connected. Nuclei
in the neighborhood of closed shells that are still spherical can
easily be excited to shape vibrations around their spherical
equilibrium position, since the restoring force, which is the
difference between pairing and deformation effects, is rather small.
The nucleus will therefore become deformed into an ellipsoid and
vibrate about its spherical shape with a low frequency (quadrupole
oscillations, 2% levels). Exactly these states will be investigated
in this study.

Pairing correlations are due to the short-range part of the
nucleon-nucleon interaction, and this interaction is most effective
between (I=0)-coupled pairs. In our formulation we will use ground-
state wave functions that diagonalize the shell model part and the
short range part of the Hamiltonian. There are basically two
formalisms that describe the pairing of the nucleons.

The Seniority Scheme is a very elegant method. It uses the SU(2)

algebra, which is the same algebra as the spin algebra. The Seniority
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Scheme is therefore very often called Quasispin. The main drawback of
this procedure is that it can be used only for degenerate shells.

The most commonly used method is the BCS-Theory, which was
invented by Bardeen, Cooper and Schrieffer who used a variational
principle to determine the ground state energy of a superconductor.
This method no longer provides an exact solution of the eigenvalue
problem (like the Seniority Scheme does), but rather like the Hartree-
Fock method, it can be derived from a variational principle. The
exact ground state cannot be used for this purpose because the method
makes use of a Hamiltonian that does not commute with the particle
number operator. The main disadvantage of this method is that the
particle number is not conserved any longer. For superconductors
where one deals with thousands of electrons this does not have any
effect. For nuclei, however, where there are only a few nucleons
outside the major closed shell this effect cannot always be neglected.
For the pairing energy in the nucleus by means of the BCS method the
folowing assumptions are made:

o Its two-nucleon spectrum is approximately the same as the spectrum
of a Dirac delta force

e Because of the Pauli exclusion principle pair correlations are
expected only in the neighborhood of the Fermi limit.

e The pairing energy is significant only for the energy spectra of
intermediate and heavy nuclei because the separations of the
single-particle energies are then sufficiently small. In these

nuclei, however, the protons and neutrons in unfilled shells occupy
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different states. The pair correlations of the two kinds of
nucleons may therefore be treated seperately.

The BCS method makes use of the Bogoliubov transformation, which
makes it possible to account for ground-state correlations. This
transformation changes from a particle-hole representation to a
quasiparticle representation, where a quasiparticle is defined to be a
linear combination of a particle and a hole. The coefficients in
front of the particle creation and annihilation operators give the
probability of the quasiparticle to be a particle or a hole. They are
called the occupation number (vi) and the non-occupation number (uy)

respectively.

+ + )
Lim = U Qim + () i %-m (1.3.1)
where a}m (ajm) is the creation (destruction) operator of a particle
and a}m (ajm) is the creation (destruction) operator of a

quasiparticle with quantum number j and projection quantum number of
the total angular momentum m. We require the quasiparticle operators
to be fermion operators and therefore to satisfy fermion anti-

commutation relations

+
{“jm ) % j‘m‘} ) SJJ‘ Smm' (1.3.2)
+

If € is much above the Fermi sea of nucleons ajm should be a particle

and Uj=1, Vj=0; if € is much below the Fermi limit then uj=0, Vj=1.
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The procedure for deriving the pairing equations starting from
the assumptions above is the following7: The pairing force

Hamiltonian is given by
H 1.
2. & Uim Ojm

+

' + J.LM .
-1 G Z Giwm Gj e D Ajm Aj-m L"fm(1.3.3>

where the first part of the second term describes the creation of a
pair coupled to angular momentum zero and the second part describes
the destruction of a particle pair coupled to zero. A Boguliubov
transformation of the Hamiltonian is made. Then <0| H-AN |0> is
minimized with respect to uj and v subject to the condition that the

average particle number be the actual particle number and that

(1.3.4)

<
+
<
"

This procedure yields the pairing equations

G {
‘.' ;‘ /AI. + (ZJ ‘A.)' (1.3.5)

zZ
"

Z ( 1, ‘) vil (1.3.6)
J

where A is the gap parameter of the spectrum.
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In the degenerate case the pairing equations can be solved in
closed form. The pairing constant G, the quasiparticle energy Eq and

the occupation and nonoccupation numbers U and vj for this case are

given by
G - A3
A (1.3.7)
G N
s 6N 1.3.8
E<2 A ( )
T N (1.3.9)
MR A
utg |- N (1.3.10)

where A is the total number of nucleons, No is the degeneracy of the
major shell and N is the number of nucleons in the major shell.

Making use of the Bogoliubov transformation the TDA particle hole
secular equation can be reformulated in quasiparticles. The particle
hole states become two quasiparticle states. For detailed discussion

see Chapter 2.

1.4 Four-Quasiparticle States

The anharmonicity of the vibrational states will now be
investigated. The Hamiltonian includes higher order terms, which
provide a coupling between the different phonon states. Whereas the
TDA and RPA calculations usually take only one-phonon states into

account, we will determine the mixing of the two-phonon (four-
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quasiparticle) and the one-phonon (two-quasiparticle) states and

determine its effect on the energy-level diagram.

The following states are used as basis states for a four-

quasiparticle wavefuncion:

+ + + +

o :
fom Ciamy L jymg % Jum,, [o)

where [0> is the quasiparticle vacuum defined by

°‘Jm10>=0

(1.4.1)

(1.4.2)

Then each four-quasiparticle state can be written as a linear

combination of these basis-states. The amplitude X1234 is then given

by the overlap of its basis-state and the wavefunction |[y>.

X»:.:L. = <°’ “qu., Liymy Flamy Fim, l”f'>

(1.4.3)

Rather than using a product representation a transformation to

the coupled representation is done.

1) = Z Xuauz Civjamimg |2 )

Ps,m's K‘;,/“_,,‘J’,M

Cis dumymu I R pa) ARy ppuy 1T M)

[{«; a}zll‘[«“ d_j“]lz]:”‘\ ‘O>

.-.Z Xiag, (T (X04,) M)

A s).j‘s) IM

[ [d; ﬂ};_]kl[oljlash] '\l]TM lo> (1.4.4)
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The last equality of equation (1.4.4) defines the coupled amplitude of

a four-quasiparticle state.

Xi23¢ (T2, 20 M)

s ol [l=uaiy]a, [®ia®iJa, Top 10

(1.4.5)

The transformation from the product representation to the coupled

representation and vice versa is given by

X3y (TLAYM)

Y Cdamoma] A (s ms M Do)
M's,/u‘s
<,\.>\{/A,/«A1|TM) anu,

(1.4.6)
and by
)(v,n:, : Z Covjpmomal ’\'/“‘>
l‘,,/u‘s,T,M
(s dumyme I X p) (AL g [ TMY
Kiag (T A M) (1.4.7)

Since the creation and the destruction operators of fermions fulfill

fermion commutation relations Xj934 is completely antisymmetric, that

is an even permutation of (1,2,3,4) gives the same amplitude back,

whereas an odd permutation yields the negative amplitude.
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From this property, symmetry conditions for the coupled amplitude
%1234 (JM(A1X9)) can be derived, which will be very useful for further
calculations and which can be found in the appendix. One important
result which evolves from these symmetry properties should be
mentioned here. In the case of (jj, j2) being equal to (j3, j4) and

A1 being equal to XAy
T
X (TR M) = ) ap, (TLARY M) (1.4.8)
i. e. for odd J values the amplitudes are exactly equal to their

negatives and the wavefunction is identically zero. This result is

found experimentally and accounted for by the liquid drop model.
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I1. THE TAMM-DANCOFF APPROXIMATION FOR QUASIPARTICLES

In this chapter the Tamm-Dancoff secular equations for two and
for four quasiparticles will be derived. These two equations will
then be solved in the limit of degenerate energy levels using a
separable interaction. Again, doing more realistic calculations is an
infinite numerical task. The intent, however, is merely to study the

qualitative features.

2.1 The Two Body Interaction in Quasiparticle Representation

Doing a Bogoliubov transformation of the two body residual interaction

yields

.

. Cow Ja~ma
v - Z 1 (u‘\‘ dJ‘m‘ b | (‘l) VJq in_”‘“)

j‘} m‘s . + Jb-mb v ‘ m
(W, & jgmy * 1) To %y 5)
j(-h\( +
( ujt“ic"\g* (-1 VJ'c.. dlc'"‘()
) ' Jd-my +
((Ujgejamgr (=D Vj.\“s.\-w)
Vab de (2.1.1)

The part of the interaction, that doesn’t change the quasi-particle

number is of the following operators

+ t
- SR~ S A (2.1.2)



This part of the interaction is given by

v Z [ i Uiy Wi Uiy iama el V| Sidmg Gy )
Jsms

ViV Yie Y < Bl ¥ B i)

*il(uia Vi Yie < Gime Zfib”'bl VI Giome cPJ‘”‘"'“DA
= Ui Uja Vi v, < Siome ‘?jbmd v ‘}}qw‘q %dch)A
- Uja Ujy Vie Vio|< Fiama Zf.]'d""llvl ij‘m" Siomy >A

’+u'jb u.lc. VJ.Q VJ.(1< ‘fic"‘c (fj.{mllvl ql'qmq %b"‘b>A )]
OL* '
famg % jeme Xjgmy, Ligma
(2.1.3)
where A means that the matrix element is antisymmetrized and the wavy

line has the following meaning

"}Tm> = (")3-"\ l‘f;....) (2.1.4)

It is often very convenient to consider the closed shell limit,
where the state weighted by a uj corresponds to a pure particle state
and the one weighted by a vj corresponds to a pure hole state (see
also chapter 1.3). In this limit the first two terms of equation
(2.1.3) describe transitions from a two-particle state to a two-
particle state and from a two-hole state to a two-hole state,
respectively, which stand for two-particle pick-up and stripping
reactions. The other four terms correspond in the closed shell limit

to the particle-hole residual interaction matrix element discussed in

21
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section 1.2 with the only difference that no distinctions are made

between particles and holes and therefore all possible index

permutations have to be considered, which corresponds to the four

different terms. In analogy to the particle-hole case the last four

terms of equation (2.1.3) will be considered.

Using a seperable interaction gives a result

V « -% XZ Ug, e (DQ(_(;\.) Up A DJB (X)
s g

+ +

or in coupled representation

V = —'E xz Ua,c :DQL(X) “b,d ,Ddb \/\)
i's

[, °‘+3«-J;1 [«ij “Jd]k

where the brackets denote angular momentum coupling.

(2.1.5)

(2.1.6)

For the reduced

matrix elements the phase convention of Yoshida8 is used.

Qac ) = il e* v Ya Il i)

(2.1.7)
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and for convenience we have defined

Ua,c : UJ‘VJ‘ + lAJ"qu (2.1.8)

"

4o (A)

1
Jac ) 3 (2.1.9)

A s AN (2.1.10)

Except for the weighting of the q’'s with the occupation and
nonoccupation numbers the interaction stands in direct analogy to the
particle hole case with the difference that quasiparticle-operators

are used instead of particle and hole operators.

2.2 Derivation and Solution of the TDA Equation for Two Quasiparticles

The derivation and solution of the Tamm-Dancoff equation for two
quasiparticles is in direct analogy to that in the particle hole case,
discussed in section 1.2. Therefore the details will be bypassed at
this time, stating only the results. The two-quasiparticle amplitudes
in product and coupled representation are defined in direct analogy to
the four-quasiparticle case (see section 1.4).

The equation of motion for a seperable interaction for this case

is

(Em + &, -).) X (TM)

:—legj (TH) u;,'j :Dc‘) (x) W n :Dm»\ (X) (2.2.1)

BFRY



In the case of degenerate energy levels this is solved by
™ in 3mh (T)

N
7
=1 2.
N 2 = z: n\n ( 3)
mn

<
X
h

(2.2.2)

Different from fhe particle-hole case is again the weighting by the
u's and v's. Furthermore since quasiparticles are indistiguishable
particles and because we have used redundent sums the amplitudes have
to be normalized to 1/2, whereas in the particle-hole case they were
normalized to 1.

The two-quasiparticle energy is given by

Eqp = 2¢ + x Y(2) (2.2.3)
where €: degenerate single quasiparticle energy
X: interaction strength parameter
2 2

Y(2)= £ upn” Dpn (2)

24
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2.3 Derivation and Solution of the TDA Equation for Four

Quasiparticles

The procedure is the same as for two quasiparticles (see 2.2).
First the matrix element between two four-quasiparticle collective
states is calculated, then the variation is done which yields the
equation of motion, finally the secular equation will be solved in the
degenerate limit.

For convenience the one- and the two-body part of the Hamiltonian
is calculated seperately. From the BCS-theory the one-body

Hamiltonian is given by

-+
H' :Z Ek °(k Xy
L (2.3.1)

where Ep is the quasiparticle energy

-

E, - -2
« TV aen? 4 (2.3.2)

with A : pairing gap

€ : shell energy



The matrix element of the one-body operator in coupled representation

then is

<'flt.op' H, , "”«Q)

= Z Ek X121y (J‘(x. ) M‘) Xscre (T(l,;\,‘)M)
j‘s}\‘sTHJ'M‘

< OHI o(J'qu'.j; ] 11 [xj:_ di.] 1,] T M“ QL:.«M“ OLJKMk

| [[ s °L+Jt Ja, [“5+1 “p ]11]m | 0} (2.3.3)

In order to do the contractions of the operators they have to be
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decoupled first. There are 2x4! = 48 different possible contractions.

With the symmetry conditions of the coupled four-quasiparticle
amplitude (see appendix A) it is straightforward to show that all 48

terms are equal. Thus the matrix element is given by

L
H‘ = ‘QQZ El(‘luy (T(l:’\l)M))

) 2.3.4
i A ( )
The two-body term is derived similarily
{
C tege | V] *tuge )
- Z | Cayy (T ONADR) Xegp (T3, 20 M)

Fs A, T, M T

<0 ,[[ o jy, ‘”3]%1 [.dJ-L O(J‘-]A,]T'H‘ l \/

+ + + +
I[[ “Jso‘ic]h [KJ"}OLJ']L,]TM (2.3.5)
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Again the operators have to be decoupled first in order to do the
contractions. Using Wick’s theorem to calculate the contractions
there are (4x3)2x2 = 288 terms. Using the symmetry conditions of the
X1234(jm(A1A9)) (see appendix A) all terms turn out to be the same and

the matrix element is given by

C¥age | V] tuee)

- ek XZ Xizzq (T (A A) M) Xseap (T AA,) M)
j‘S l‘;
U, 311 kl\.) Us ¢ D;‘ (k,) 83337 Sij.g (2.3.6)

Graphically equation (2.3.6) can be represented by Figure 2.3.1.

Figure 2.3.1 graphical description of equation (2.3.6)

Since a quasiparticle is partly a particle and partly a hole, there
are no arrrows drawn on the lines in figure 3.2.1. A two-quasiparticle
pair is annihalated at position 1, another one is created at position

2, and the other two-quasiparticle pair is a spectator.



This corresponds to the direct matrix element in the particle-hole
excitation with one particle-hole pair being a spectator. In the

closed shell limit this can be represented by Figure 2.3.2.

Figure 2.3.2 graphical description of equation (2.3.6) in the closed
shell limit

The equation of motion is derived by a variational principle

2 | [(,Z X %23, (TUA X M)
’Dlﬂr.:"l' (T, 2 ™)

s )“S
*sean (TR M) uy Dig () ug Dsg (Xa)

2
F(4E - Eyge) (*a3y (TOL20M)) -0
(2.3.7)

Since we are using an overcomplete basis, there are 24 different
permutations of xmnij(jm(AlAz)), that contribute to this
differentiation. In the one-body term all 24 terms turn out to be
equal, because of the product of the two antisymmetric amplitudes.

The two-body term consists of six different types of terms.
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The equation of motion can be written as

(EmeEL 6+ 6 - E o) X i | (T, A0M)

2 -X.Z {-Yf‘(j ( T ‘.A, ’\l) M) Ur" 'Dn (l') u'\,n Dm“ (ll)

J.S'J‘ -.x.-l
07T T e (T OGA) M) us D 0) Ui Do (A,)

Imoda X,

Z {u odi A X“..J-(J_(k.' A,) M)
D Sl |

uM'LDMf (A\‘) st DS‘; (’\‘)

in Im A, -
SUL G de Ay tseme (T2 M)

A AL T

x(—l)'\“ Ay tim tia4jcotii
X M;“ DIL (1:) u,.“' :DV\J (l;)

3"'\ jn Al
-U Ji d¢ A ] Xsenmd (T(R.‘ A) M)
AALT
* L")At-“ T Usg D (X)) Uny Dmj (X))
Jn o dm R,
-U Je Ji A X;—,_,.H-(T(l,‘x:)h)
A A, T
\(.l))‘u"jn'jm ur" :D.f( (1:) u"ﬂ' D".(A:)J}
(2.3.8)
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where, in terms of the Wigner 9-j coefficient (written with braces)

the unitary 9-j recoupling coefficient is

Im In ;\. ~A A DA ijm ;‘-c
Ul i; A ) ® ARy A Ay e ij Ay
AT A A3 (2.3.9)

The secular equation (equation 2.3.8) can be interpreted as
follows: In the first term the pair (ij) is the spectator pair, its
angular momentum coupling doesn’t change. The quasiparticle pair (mn)
is destroyed and the pair (56) is created. It is summed over all
possible final states (56). In order for the interaction to be a
scalar it is necessary that the two quasiparticle pairs, which take
part in the interaction ((56) and (mn)), are both coupled to the same
angular momentum.

All the other terms are exchange terms of the first term: that
is, each possible pair is in one of the terms the spectator and in
another term it takes part in the interaction. The 9j-recouplings
evolve from using an overcomplete basis for the four-quasiparticle
basis states.

For further calculations the first two terms will be referred to
as the direct terms (in that there is no recoupling necessary), even
though the second term is actually a boson exchange term. The other
four terms are fermion exchange terms.

The equation of motion for the degenerate case, i.e. Ep = E, = Ej
= Ey, will now be solved. Equation (2.3.8) is multiplied through by

u] 2 q12, then it is summed over jp and j,. The fermion exchange



terms will be neglected, which will be justified with some numerical

examples in the appendix.

. D S .
ki (L TO0N) - T (k.l L To ™M) Yo

+ K g T MU Di 02) timpy Do u,))

(2.3.10)

where the following convention has been used

hij VTOAD M) )7 Ul 90 (1) Ry [ TR M)

ImJn

(2.3.11)
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Multiplying equation (2.3.10) by u Dii(X), then summing over jji, ji
y Yy ui,j Pij Ji,» Jj

and solving for the four-quasiparticle energy yields

Eugqp = L E + l( Y, + yllz)) (2.3.12)
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Substituting all this back into equation 2.3.7 yields the four-

quasiparticle amplitude in coupled representation

X (TX, ALY M)

mm‘.j

k(T()\c;\t) M) ui.’.j ])

(A) Um n :bmn k’\l)
LY AV

g

YOO « Yal) k(T )m)
YO+ YR V) YQAaq)
AN,

Jm Jn Ay ‘ ‘
X(— j‘: Ji Az ) un,.: ®m£ Ll\) u..li ’D"S (kt)

A, T

Im o dn A . Ag- §eis
+ u J‘. Je¢ A UM'J 3"\_‘ (11\) Wac DN\' L;L;.) (“) )

N W

(2.3.13)

Since m, n, i1, j label quantum numbers of indistinguishable particles

the four quasiparticle amplitudes have to be normalized to 4!=24.

Z (‘Mn&i(TLAnll)H))l‘- 14

. 2.3.14
L ( )

Unlike in the boson-expansion methods as used for example by Lie
and Holzwarthl or in the interacting boson model as used by F.
Tachello and I. Talmi3 in our result the fermion character of the
wavefunction is still present, that is all possible exchanges of

quasiparticles (fermions) and of quasiparticle pairs (bosons) are



taken into account. Therefore the Pauli princple is obeyed and the

blocking effect is contained.
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ITI. FOUR QUASIPARTICLE - TWO QUASIPARTICLE CQUPLING MATRIX ELEMENT

FOR COLLECTIVE STATES

As an example of the effects of four-quasiparticle states, the
coupling between states with two and four quasiparticles will be
considered, which ‘corresponds to a coupling between states with one
and two phonons. A case of special interest involves the coupling of
the one-phonon (two-quasiparticle) state to the state of two phonons
(four-quasiparticles) of the same type. This interaction represents
the leading-order anharmonic effect in the vibrational motion, and its
consequences on the energy level diagram will be investigated in the
following chapters.

In this chapter we shall calculate the matrix element that
describes the transition from the four-quasiparticle collective state
to the two-quasiparticle collective state. The operator and its

Hermitian conjugate that contribute to this transition has the form

a  aaa (3.1)

that is three quasiparticles are destroyed and one is created,



This part of the operator (equation 2.1.1) is given by

' » -
v“‘ 2 Z { ub:“ an ulc
J'sm's

(< 2;4.\-”‘5 q’jk”‘n, VI Diam d “f;',_m(>
~J

- diama Gicmy| VI Digma “fhm))

+ ucld VJ‘ VJB

(( Z‘Fh my ’(‘?j’(mc] V) qquq ij.w,u)

= < :;Sb"‘b r(?,'\(vm,l v l qidvnd %«”‘a))}

+
X jama %iemy, Xicme Liamy

(3.2)
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The collective matrix element of this interaction has the following

form

V:U-o < *‘IQQ l v’-‘q ] wkop)

_..Z Z, (T'M") X“SL(T(AR)M)
s

o[ty %5, o Jam. % gy Leme Yamgd
[ o] n [#5 «cda, Jom 10

{ vea w v,

K ?fgbmb Diama | V] Giamg Ficme )

“{ Pigmg ??,{,,v..blvl Piamg LicmY)

+ Ugd Vi Viy

(( Sipmy Fiem V] Biama Digma)
< Figmy Fiem\ V1 Diamy Giama )}

(3.3)



Because of the symmetry-properties of the amplitudes (see appendix A)

all possible 96 contractions give the same result.

¢ .
V,_,, h?Z X,y (T'M) X3u5¢ (TO ) ™M)
S‘s.m's.l's./u‘s

Clodamomy [T MY gy jumime [Aou)
(s jo mgwm, IL,/.,) { /\,,\L/u./u,,lTM)
{ Us,a Uy Ui
(<C73,mg Gom V] Cimy @i, )

- Bim, Gismg ) V] Qigmy Giam, )
+Ua, Vi Vis

(< Higms Tam 1] Gom, @5,

‘< aj;m,- qjkm“"v| qj;"‘s "E.m,))}

(3.4)
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Graphically the first and the third term of equation (3.4) have the

form shown in Figure 3.1.

L
h———-—.p

Figure 3.1 Graphical representation of the first and the third term of
equation (3.4)

In the closed shell limit Figure 3.1 gets replaced by Figure 3.2.

Figure 3.2 Graphical representation of the first and the third term of
equation (3.4) in the closed shell limit

In the first term a particle-hole pair is destroyed at coordinate 1, a
particle is scattered at coordinate 2 and the spectator can be either
a particle or a hole. In the second term a particle-hole pair is
destroyed at coordinate 2, a hole is scattered at coordinate 1 and the

spectator can again be a particle or a hole. The second and fourth
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term are exchange terms of the above and they can be rewritten in
exactly the same form as the first and the third term.

Since the coupling of these matrix elements is very complex, the
coupling of one of the terms of equation (3.4) will be discussed in
detail. The third term has been chosen.

The operators shall first be rewritten, using

2 i 1 FmYy =) o T am)
m m

(3.5)
The operator can be represented by
(vlly )3 = -Z Ue d in¢ VJ-n,
j‘s,m's
e ~/
< cPJthb Lrjcmc ’Vl Lh“mq CfJJ"‘,\)
o o % «
Jamg Tigmy Tjem, Tiam ) 3.6

In equation (3.6) the matrix element consists only of angular momentum
eigenstates, whereas the operators are all complex conjugates of

irreducible tensor operators (ITO).
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An ITO is defined in the following way: An ITO , TE, is one which
transforms under rotations as an eigenstate of angular momentum k with

projection q.

9 + k q‘
uThu :Zﬁ)q.q(u)'rk
q' (3.7)

where Dléq'(U) are the matrix elements of the rotation, which are
defined by the expansion of the rotated states in terms of eigenstates
of |jm>.9 Therefore the same Clebsch-Gordan Coefficients can be used
for both the coupling of the quasiparticle operators as well as the

coupling of the matrix element.

Y
(Vak)z ) Z (-nyta-demid Ued Via Vi
i, ‘,\‘,,/-A'; A, e

R Tic 1V ] i 4500
Ny V!

*' B d. &.
[“‘Jq a’Jb]x./“‘[ Je J‘l]lz/uz

(3.8)



The next step is to use the schematic model, that is use a separable
interaction and degenerate energies. Let Ty be an ITO. Then the
interaction matrix element can be written as

A, pa,
~ ~ i .
CHy G IV g 90

Ay pag

= Z <qulTLM l“h’.) <2f'j‘.lTL; ’ Y )
LM (3.9)

Using the Wigner-Eckart theorem gives

Z e a '“5'“«\1-/“:5 (Jcia mcm.(lla/u;)
LM, m'g

<j“jb‘mth‘L-M) T[' (_‘)jqub-m,‘-mb
L
e iame-mal Loy £ ¥
L
L 4
< Y, ” T qjq) ( 9ia ” T ” (fj‘_) 3.10)

Using symmetry conditions of the Clebsch-Gordan coefficients and

defining Dy,(L) by

<°qu\, T ” ‘h'a> = Dlu (L)

(3.11)

we can represent the interaction can finally by

A A
(Vu.)g : éz Ued Via Vig SR :qu(l) 3Jc(l)
i's

~r
[[ i*J-a. “J’b] A [‘"J} “ja]x] 60 (3.12)

41



42

Similar calculations are done for the other three terms of this
interaction. Substituting all the results back into equation 3.4 the
complete collective matrix element is given by

Vgcl‘ - IOYZ Xiq (J"M') x3'($'( (TLA|:‘1)M>

I's

Uy D) (uuy, ¢ % %) Dis Q) (o3

(T' ) ™ l [[:: "‘is]k ["’iu “13]2\,]00

[ 702Gy i) 2 Gigi)) M) (3.13)
The part [ajaaj ]A u3’4 q34(A) describes the deétructlon of a
uasiparticle pair. The part [a} a, u, u, + v, v, describes
anaste P L P PPt Pl PRM PP

the scattering of a quasiparticle, which in the closed shell limit
either corresponds to a particle (uu) or to a hole (vv).

It is more "physical" to couple each of the two terms above than
to couple the wavefunction and the operator seperately. Therefore a

recoupling will be done.

[[ ;JT *js ];\ ["‘3:, “3;]1]” I T( ALy i) Az(isicﬂ >

N S
\ -7, -A
=Lu ;\1 A, T (-l)T 2

L L, T
Ll v L

f::\~a’ r~—
[[[&; “’55]2. llz(iric»]L [["‘J;."‘j; ];\] A (s Ju))JLJ

™

(3.14)
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where

~—_ A-
[, s b0 [ ws]

A (3.15)
This convention is needed to transform the complex conjugate of an ITO
to an ITO or vice versa. An angular momentum coupling is only
possible of two ITO's or of two complex conjugate ITO's but never of
an ITO and a complex conjugate ITO.

The rest of the calculation is straightforward and only the

results will be stated.

Colll =y iy Ty 120 G i) ).

= 2 § $ §
L,0 “My0 Pap, 3,‘/« (3.16)

The 9-j coefficient can be calculated by

A Ao -
T 44, -\
Wl A a7 ) = (-1) o 8ax S3,
L. o 7 A, A

(3.17)

With equation 6.25 of Rosel0

SO
(T Graa) MUTTD < 2] 12 Usdd 2]

- (-|))1*J.L"J.S %_ 8jl.jc W (JS :\1 “T; j.‘ ;\.)

< J\” [°‘; ;Jrl;\_ ll 55>
(3.18)
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The reduced matrix element is given by

Caoll T @ Higy = -2 (3.19)

Substituting equations (3.15) through (3.19) into (3.14) gives the
final result for the one phonon to two phonon transition matrix

element for collective states.

s

W (i A jT; ia )

(3.20)
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Using the results for the amplitudes from the previous chapter yields

-4 an
'

Cuj uic+ v, Vig) W(5‘1 BT 0 5\)

[k(TLA A M)

Ue D (& u D, LA
X Y(A) \/ (.1\1,) Ls 52 1) 34 34 )

YO = YA k(T A M)
Yy +Y)  Yay) Yay)

A,
v iy A
'(-u is'da e ) uye Dye (M) ug, Dy (A1)
A AT
3y Ju A ..
L ie A \ Ay Gy
+U J’; s 1) Uz, 331 ) uu'nggL’ 1) )]
A AL T

(3.21)
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IV. MIXING OF THE FOUR-QUASIPARTICLE COLLECTIVE STATE WITH THE TWO-

QUASIPARTICLE COLLECTIVE STATE

The mixing of the four-quasiparticle collective state with the
two-quasiparticle collective state is determined in diagonalizing the

matrix

Hpo Vau (
4.1)
Va4 Hye

where Hp9 and Hyy are the the two-quasiparticle energy and the four-
quasiparticle energy, respectively. The eigenvalues of the matrix
(4.1) give the shifted energy states. This calculation is done in a
truncated space. Only quadrupole states are taken into account. As
mentioned in the previous chapter, this interaction represents part of
the leading-order anharmonic effect in the vibrational motion. As an
example the isotopes of palladium, 106pd, 108pg ang 110pg, and the
isotopes of selenium, 743e, 763e and 783e, are chosen. The results of
the calculations are listed in the tables 4.1 and 4.2.

The reduced matrix elements are given by

KNEFILi* Y rMlINEG)

ey E TR a2
+2 -2 (IPL m ‘
L (e en (NP ey (EE)E

where the radial integrals were computed using Simpson’s rule.
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The pairing constant G, the quasiparticle energy Eq and the
occupation and nonoccupation numbers uj and vj are determined by
solving the pairing equations for the degenerate case, as discussed in
chapter 1.3. 1In the case of the palladium isotopes the pairing
constants G, and Gp for neutrons and protons were adjusted such that

the quasiparticle energy is given by the weighted average of ER and

Q
EP.
Q
The interaction strength x is determined such that the first 2%-

state agrees with the experimental value. The experimental data are

taken from the Nuclear Data Sheets.11

Table 4.1 Energies of the first and the second 2% state without the
two-quasiparticle, four-quasiparticle coupling matrix
element and including the two-quasiparticle, four-
quasiparticle cougling matrix element compared to the
experimental data 1 “The four-quasiparticle states are
normalized including the exchange term.

Isotope Energy in MeV

without including experimental

coupling coupling values

+ + + + + +

25 2, 25 2%, AP 27
106pg 0.633 1.265 0.512 1.385 0.512 1.128
108p4 0.568 1.136 0.433 1.271 0.433 0.931
110pg4 0.519 1.038 0.374 1.183 0.374 0.813
Thge 0.796 1.592 0.634 1.755 0.634 1.269
76g¢ 0.733 1.465 0.559 1.639 0.559 1.216

78ge 0.785 1.571 0.614 1.742 0.614 1.308
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Table 4.2 Energies of the first and the second 2% state without the
two-quasiparticle, four-quasiparticle coupling matrix
element and including the two-quasiparticle, four-
quasiparticle cougling matrix element compared to the
experimental data 1. "The four - quasiparticle states are
normalized using the direct term only.

Isotope Energy in MeV

without including experimental

coupling coupling values

+ + + + + +

2n 2% Y 2 2" 2
106p4 0.594 1.188 0.512 1.271 0.512 1.128
108pg4 0.528 1.056 0.433 1.152 0.433 0.931
110pq 0.478 0.957 0.374 1.061 0.374 0.813
Thge 0.728 1.457 0.634 1.552 0.634 1.269
763 0.662 1.323 0.559 1.426 0.559 1.216
78g5¢ 0.714 1.428 0.614 1.528 0.614 1.308

The strength of the crossover transition 2; -+ O{

can be
determined by the ratio of the amplitudes of the two-quasiparticle
state and the four-quasiparticle state. If the 2; state were a pure
four - quasiparticle state, as the harmonic model predicts, no such
transition would be possible. However, due to the two - quasiparticle
four - quasiparticle mixing this state is actually a mixture of a two
- quasiparticle and a four - quasiparticle state which makes such a
transition possible. The ratio of the amplitudes of the two -
quasiparticle state and the four - quasiparticle state gives the
amount of this mixture. This is compared to ratio of the deformation
parameters ﬂZI . O{ and ﬂ2+ R O{' That those two ratios are actually

2
the same can be explained in the following way: Both the first and
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the second 2% states (IZI) and |2;), respectively) are taken to be a
linear combination of the harmonic pure one-phonon and pure two-phonon

states 2% states (|2{> and |2;>, respectively).

| 2%)

a 20y v e [2]) s

| 23D

e [2) +a | 2% 4.4)

The reduced matrix elements of the dressed and pure states are given

by

Q)] o7 ) = df, (4.5)
CTN el 01) = d Py g (4.6)
(20l a@ll 0b) - 4/31.;_) oy (4.7)

where d is a constant of proportionality. With equations (4.3)
through (4.7) the following identity is deduced

/311-7 oT ¢
a
B - o ' (4.8)
The deformation parameters S are directly proportional to the square
root of the corresponding transiton strength.12 Therefore

3 (Eat
¢ . 1)
a 3(E2")

(4.9)



The transition strength was taken from the Nuclear Data Sheets.l0

Table 4.3 2} -+ 0% crossover transition strength. The first

tﬁeore%ical value is calculated using the direct term only
for the four quasiparticle normalization. In the third
column the exchange term was included for calculating the
four quasiparticle norm. The numbers in the fourth column
give the experimental values.

Isotope theory experiment
c/a c/a ,32; N OI //-‘321L N 041-
106pq4 0.348 0.402 0.162
108pgq 0.390 0.438 0.150
110p4 0.421 0.468 0;126
Th4ge 0.337 0.410 0.172
763 0.368 0.438 0.139
78ge 0.340 0.423 0.183
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V. DISCUSSION OF RESULTS

We have derived the Tamm-Dancoff secular equation for four-
quasiparticle states and have solved this equation in the degenerate
limit using a separable interaction. The resulting amplitudes for the
four-quasiparticle states include a term that has boson character,
that is, only quasiparticle pairs are interchanged. This term was
called the direct term. It also contains a term with fermion
character, where an odd number of quasiparticles is interchanged.
This term has been referred to as the exchange term. The exchange
term also couples a state which is made out of quadrupole phonons to
all other possible angular momenta.

We then applied the results of equation (2.2.2) and equation
(2.3.15) to calculate the four-quasiparticle, two-quasiparticle
coupling matrix element for low lying collective states for even
nuclei. This was done in using the part of the two-body interaction
of the form: a' @ a @. This coupling matrix element has two
important physical applications:

. It is part of the leading order anharmonic effect in the
vibrational motion.

. It also describes damping procsses, a property not investigated
in this study. This is especially useful for the description of
giant resonance states, where it contributes to the damping of
giant resonances.

The first of the above properties can be understood best in going to

one of the boson expansion models.



5.1, Boson Expansion Methods

The basic idea of boson expansion methods is to represent the
fermion Hamiltonian by pure boson operators B, Bt and diagonalize it
in a boson space.4 Mathematically, this corresponds to a mapping of
the Fock space of many fermion states into a space of boson states.
There are many types of boson representations. All these methods
start with a many-fermion Hilbert space Hf , which contains vectors
and operators. In second quantization the space is completely
specified by the vacuum |0> and a set of fermion operators ay, aﬁ.
The fermion space is then mapped onto a different Hilbert space, a
space of bosons Hy. The boson space is given by a boson vacuum |0)

and boson creation and annihilation operators By, Bi.
Bulo) =0 (5.1.1)

These operators have to fulfill boson commutation relations

[ B, B ] = IR (5.1.2)
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It generally turns out that the boson space Hp is much larger than the

fermion space Hf. This comes from the fact that in the boson

exXpansion of a fermion operator there is usually an infinite number of

boson operators needed. Therefore, the mapping is only unique in a
certain subspace of the boson space. There are two basic procedures
to introduce this mapping explicitly:

13

. Belyaev and Zelevinskii*~® propose to map the operators in such a

way that the commutation relations are preserved. Usually all
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important operators can be constructed from a set of basic
operators whose commutation relations form an algebra. Vectors
obtained in this way do not span the whole boson space but only a
physical subspace.

. Marumorila,15 proposed to map vectors in the Hilbert spaces Hf
and H, and to define the operators in such a way that the matrix
elements are conserved by the mapping. The mapping of fermion
states to boson states by this prescription, however, is not
unique.

The advantage of such boson representations is that very collective

modes - for instance, the quadrupole mode - can be approximated by

rather simple wave functions, namely one-boson states Bt |0>. In all
the applications, however, drastic approximations have to be used,

which are justified only in special physical cases.

3.2 Apharmonicity

Harmonic oscillations are characterized by an equidistant
spectrum. Experimental spectra of spherical nuclei in some regions of
the periodic table qualitatively show this structure (see 1.1). In
detail, however, some more or less dramatic deviations from this
simple picture, as, for instance, splitting of the higher multiplets
and a shift in the position of the energy centroid are found. Such
anharmonicities are caused by two effects:%

. The collective fermion pairs are not exact bosons.
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. The exact many-body Hamiltonian contains not only second-order
terms (two-body term) in the bosons, which diagonalize the TDA
approach, but also higher order terms. Such terms, neglected in
the harmonic approximation, provide a coupling between the
different harmonic modes.

The next higher order term in the Hamiltonian is the three-body

operator. In the boson approximation it is represented by BY B B.

et a a @ is part of this boson operator not taken into account in a

boson expansion. It can therefore be interpreted as part of the

leading order anharmonic effect of the vibrational motion.

We have investigated this effect for low-lying 2% states. As
expected, the 2t states push each other apart due to their mixing and
a splitting of the higher multiplets can be observed. However, the
J=0% and the J=4% are still degenerate.

In figure 5.2.1 and 5.2.2 our results for the energy spectrum are
graphically compared with the experimental values for the case of /0Se
and 106pd. 1n the case of 76se they are, in addition, compared with
the theoretical results of S. G. Lie and G. Holzwarthl, They start
out with the fermion Hamiltonian as described in equation (1.2.3),
then a Bogoliubov transformation is done. Finally they make use of a
modified Marumori’s expansion to map the fermion quasiparticle
Hamiltonian into the boson space including boson operators up to
fourth order. Marumori’s expansion is modified in the sense that the
boson expansion is formulated from the very beginning in terms of the
collective operators or states. Their phenomenological Hamiltonian

contains seven independent parameters which can be fitted to obtain
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the eight triplet plus quintet members of the phonon spectrum of a
given nucleus. Those parameters make it possible to fit the
experimental data quite accurately as can be seen in figure 5.2.1 (f).
It should be noted however, that dependent on their fitting parameters
they can achieve any possible order for the triplet state and also a
vast variety of energy shifts as shown in their paper for the case of
100g,,.

In contrast to this we have only one free parameter, the
interaction strength, which is fitted such that the first 2% state has
the experimental value.

We have also compared the crossover transition strength for 765e
and 78Se to the results of Lie and Holzwarth. Those are listed in
table 5.2.1.

Table 5.2.1 2% + 0} crossover transition strength. The first two
columns of numbers give our theoretical values, where the
first column uses the direct term only for the four
quasiparticle normalization. In the second column the
exchange term was included for calculating the four
quasiparticle norm. The third column of numbers gives the

theoretical values of Lie and Holzwarth. The fourth
column gives the experimental value.

Isotope theory experiment
c/a c/a c/a Bo+ + /Byt +
2, >0 7%~ 0]
76ge 0.368 0.438 0.247 0.139

78ge 0.340 0.423 0.139 0.183
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Figure 5.2.1 Energy level diagrams for 76ge

(a) Experimental values.

(b) Harmonic spectrum using the direct term only for the
four-quasiparticle normalization.

(¢) Harmonic spectrum including the exchange term in the
four-quasiparticle normalization.

(d) Results including the two-quasiparticle, four-
quasiparticle coupling using the direct term only for
the four quasiparticle normalization.

(e) Spectrum including including the two-quasiparticle,
four-quasiparticle coupling. The exchange term is
included for determining the normalization for the
four quasiparticle state.

(f) Spectrum of Lie and Holzwarth.
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Figure 5.2.2 Energy level diagrams for 106pgq

(a) Experimental values.

(b) Harmonic spectrum using the direct term only for the
four-quasiparticle normalization.

(c) Harmonic spectrum including the exchange term in the
four-quasiparticle normalization.

(d) Results including the two-quasiparticle, four-
quasiparticle coupling using the direct term only for
the four-quasiparticle normalization.

(e) Spectrum including including the two-quasiparticle,
four-quasiparticle coupling. The exchange term is
included for determining the normalization for the
four-quasiparticle state.
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5.3 Methods for Further Improvements

Our results, including the energy level diagram and the crossover
transition, indicate for all isotopes investigated that the two-
quasiparticle, four-quasiparticle coupling matrix element came out too
strong by a factor of approximately 2.5, i. e. our results are very
close to the experimental values if a factor of 2.5 is included.
Mechanisms that could account for this consitant behaviour are:

. Our calculations were done in a truncated space. Including the A
sum in the exchange term presumably lowers the value of the
coupling matrix element.

J Since we have used TDA quasiparticles, only ground state
correlations coming from the short range part of the nuclear
force have been taken into account. In order to be more precise
one should use RPA quasiparticle states, which include both
ground state correlations due to the short range part and the
long range part of the nuclear force. The ground state
correlations due to the pairing force are larger by a factor of
about three compared with the RPA particle-hole ground state
correlations. 16

. Ccore polarization, which is the effect on the interaction, if
states outside the model space are eliminated.

. Coupling to noncollective statesl?.

All of those effects push the first 2% level down in energy. If

they are included, the interaction strength needed to fit the first 2%
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state is not as strong, giving therefore a smaller two-quasiparticle,
four-quasiparticle mixing.

In the case of the Palladium isotopes the second 2+ state is
experimentally lower than the two other states of the triplet, whereas
our theory predicts the second 2% state to be higher than the 0% and
the 4% state. This deviation can have its origin in two effects. 1In
the schematic model the first 2% state gets pushed down in energy
whereas the second 2% state gets pushed up in energy. Noncollective
two-quasiparticle states, which have an energy of about 3 MeV and
which are not accounted for in this study, tend to push the second 2%
state down in energy. Another effect being worth investigating is the
influence of the rotational spectrum. Although the nuclei we
discussed are of primarily vibrational character, the coexistance of
rotations and vibrations must not be neglected completely.

Coexistance of the rotational 4% state and the vibrational 4% state is

+
1

We have used a degenerate model in order to solve the TDA

expected to raise the 47 state in energy.

equation of motion, since this is the only case in which the equation
is soluble in closed form. Although this procedure is admittedly
crude and is not meant to be a substitute for detailed nuclear-
structure calculations, the assumption of degeneracy for the major
filling shell is not as crude as one might think. The inclusion of
pairing forces puts in a gap between the ground state and the two-
quasiparticle excitations of about 3 MeV for medium-mass nuclei. With
this gap as a base, the variation of two-quasiparticle energies is

very much less than that of the independent particle levels.18
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We have not made a distinction between protons and neutrons.
However, because of the shell structure and the Pauli principle,
differences in the freedom of neutrons and protons to vibrate are
expected and actually observed. The ratio of neutron and proton
multipole matrix elements for collective vibrations differs, in
general, from N/Z. This is particularly true for single-closed-shell
nuclei, where one type of nucleon is "frozen in" by the shell
closure.1? 1In our work we are dealing with open-shell nuclei since
closed-shell nuclei don’'t have vibrational spectra as discussed here.
For these nuclei the ratio of neutron and proton multipole matrix
elements for collective vibrations may also depart from N/Z but the
differences tend to be much smaller than for single closed shell
nuclei. In addition to this, we are dealing with nearly isoscalar
states, so the use of an isoscalar force, which does not distingush

between neutrons and protons, is expected to be quite accurate, 20

5.4 Suggested Applications for our Formalism

We have investigated the effect of the four-quasiparticle, two-
quasiparticle coupling matrix element for low-lying 2% states, but it
can also be applied to high-lying states (2#w). Especially
interesting in this context would be to investigate its effect on the
broadening of giant resonances.

The effects of core polarization on the isospin has so far been

investigated for 2#fw two-quasiparticle states.2l Formally this is
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done using the Feshbach formalism to eliminate the 2#w space. This
calculation shows that after the transformed Hamiltonian is projected
into the OZw space it is no longer isospin conserving, i. e. the
proton - proton force is unequal to the neutron - neutron force. It
would be interesting to see how the inclusion of four-quasiparticle
states affects this feature, i. e. using the Feshbach formalism to
eliminate both, the 2#w space and the four-quasiparticle l#w space,

which corresponds to the same harmonic oscillator energy.
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A. SYMMETRY PROPERTIES OF THE COUPLED FOUR-QUASIPARTICLE AMPLITUDE

The fact that the four-quasiparticle amplitude in product
representation (equation 1.4.3) is completely antisymmetric with

respect to permutations of quasiparticles can mathematically expressed

by

»
X.n., = (-1) "’(X-m\

(A.1)
where P stands for permutation and (-1)P is positive for any even
permutation and negative for any odd permutation. Using equation
(1.4.7) the following relation holds for the amplitude in coupled

representation.
Z Ciciamomg Ay s by "‘s"'ulh/ﬁ)

Ay Ml TN
{ R.Az/u,/u,_IJ’M) gy ( T (R A M)

P (T Chiamom R Gl mam A
A‘s,/h‘l‘ R

CAoRa g [TM) x.nk(TLLl;)NO
(A.2)

Using angular momentum algebra, 24 symmetry properties of the coupled
four-quasiparticle amplitude can be derived. Five different examples
are listed below. The 9j-coefficients come from angular momentum

recouplings.
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(A.3)
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B. EXCHANGE TERMS

In equations (2.3.10) and (2.3.14) the exchange terms have been
suppressed. That they are smaller can be understood qualitatively in
that the direct terms comprise constructive interference Y(X))
whereas in the exchange terms the random phases of the individual
summands tend to cancel each other. Furthermore, the exchange terms
are all multiplied by a coefficient coming from the recoupling, which
is always less than or equal to one - usually well below one. For the
selenium and palladium isotopes discussed in this work the exchange
terms turn out to be less than ten percent in magnitude of the direct
terms and in most cases well below. As an example, the tables B.1,
B.2, B.3 and B.4 give the ratio of the exchange term to the direct

term (of equation 2.3.10) for 106pyq and 76Se, respectively.

Table B.1 Ratio of the exchange term to the direct term of equation

(2.3.10) of 106pg for proton quadrupole transitions

initial state final state exchange term/direct term
n 1 i n 1 j

3 1 1.5 3 1 1.5 0.003

3 1 1.5 3 3 2.5 0.014

3 1 1.5 3 1 0.5 0.021

3 3 2.5 3 3 2.5 0.013

3 3 2.5 3 1 0.5 0.030

4 4 4.5 4 4 4.5 0.031




Table B.2 Ratio of the exchange term to the direct term of equation
(2.3.10) of 106pg for neutron quadrupole transitions

initial state final state exchange term/direct term
n 1 j n 1 h|

4 2 2.5 4 2 2.5 0.030
4 2 2.5 4 4 3.5 0.046
4 2 2.5 4 2 1.5 0.541
4 2 2.5 4 0 0.5 0.065
4 4 3.5 4 4 3.5 0.038
4 4 3.5 4 2 1.5 0.066
5 5 5.5 5 5 5.5 0.054
4 2 1.5 4 2 1.5 _ 0.094
4 2 1.5 4 0 0.5 0.100

Table B.3 Ratio of the_exchange term to the direct term of equation
(2.3.10) of 763e for proton quadrupole transitions

initial state final state exchange term/direct term
n 1 j n 1 h|

3 1 1.5 3 1 1.5 0.005

3 1 1.5 3 3 2.5 0.027

3 1 1.5 3 1 0.5 0.042

3 3 2.5 3 3 2.5 0.026

3 3 2.5 3 1 0.5 0.061

4 4 4.5 4 4 4.5 0.060
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Table B.4 Ratio of the_exchange term to the direct term of equation
(2.3.10) of ’6Se for neutron quadrupole transitions

initial state final state exchange term/direct term
n 1 j n 1 J

3 1 1.5 3 1 1.5 0.006

3 1 1.5 3 3 2.5 0.030

3 1 1.5 3 1 0.5 0.046

3 3 2.5 3 3 2.5 0.028

3 3 2.5 3 1 0.5 0.066

4 4 4.5 4 4 4.5 0.066

The ratio of exchange to direct term of eqation (2.3.14) are 0.051 for

106Pd and 0.048 for 76Se.



