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APPLICATION OF THE SCHEMATIC MODEL TO FOUR-QUASIPARTICLE STATES

I. INTRODUCTION,

In the few decades that nuclear physics has existed large

progress has been made in both explaining nuclear structure and

nuclear reactions. Nuclear structure theory can be subdivided into

macroscopic models, such as the liquid drop model, and microscopic

models, such as the nuclear shell model.

The liquid drop model of the nucleus was historically the first

model to be proposed as an explanation of the different properties of

the nucleus. To describe the qualitative features of the nucleus,

especially collective motions, it is still generally accepted and

above all it gives transparent results. It is therefore a good first

order check for any microscopic model that describes collective

phenomena.

Microscopic models work best for one body excitation, which can

be described using an average potential and assuming that the nucleons

move independently obeying the Pauli principle. However, it turns out

that collective excitations can be explained only if we suppose that

coherent participation by many nucleons takes places in the nucleus.

The independent shell model fails to describe such states. If the

shell-model states are to be obtained as basis states, a residual

interaction has to be used. In general, collective phenomena cannot

be solved exactly, so approximations have to be made. Using realistic
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interactions, including a large number of possible particle

configurations, requires large numerical calculations and the

transparency of the original problem and its results is usually lost.

However, there are several problems that can be solved analytically to

a reasonably good approximation.

In this first chapter we will discuss the background needed to

understand the calculations to follow.

1.1 Macroscopic Description of Collective Phenomena

Depending on the number of valence nucleons there are different

kinds of nuclear excitation spectra. One obtains the spectrum of a

one-particle excitation for closed shell nuclei, if there is only one

nucleon outside the major shell, or if only one nucleon is missing in

the major shell. As the number of valence nucleons increases toward

the middel of the shell the effect of the long-range nuclear force

increases and a collective motion of all nucleons arises. An

important collective motion for a spherically symmetric nucleus is the

surface vibration, which will be discussed in this study. In the

nuclear drop model, surface vibrations correspond to small elastic

vibrations in the shape of the drop about its spherical equilibrium.

If the number of valence nuleons is increased slightly away from a

closed shell, the equilibrium state of the nucleus is still a sphere

(due to the pairing force) but deformations are possible as vibrations

about its spherical shape. The frequency and therefore the energy of
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the surface vibration then decreases and the vibrational states are

observable in a spectrum. The collective quadrupole motion appears to

be best developed and well separated from single-particle motion for

nuclei at least four protons and four neutrons (or four proton holes

and four neutron holes) away from closed proton and neutron shells.1

If the number of nucleons increases even more the tendency of

deformation increases. Finally, the spherical shape of the nucleus

becomes unstable and an elliptical equilibrium arises. The deformed

nucleus can now rotate as a whole, which yields a rotational spectrum.

The collective states discussed so far are part of the low energy

spectrum. At considerably higher energies of 10 - 20 MeV strong,

broad collective excitations appear, which are referred to as giant

resonances. The structure of the giant resonances varies smoothly

through magic numbers and shows no difference between nuclei with even

and odd numbers of nucleons. The excitation thus involves the entire

nucleus, and not just a few nucleons in the outermost shell. Although

our formalism can be applied to the giant resonance states it will not

be a subject of this study.

In order to describe the vibrational states in the liquid drop

model we will first parametrize the surface of the vibrating drop.2

(17(q) = a E axle, A; (.7 (f)
Xv.J (1.1.1)

Since A =0 gives the spherical shape and A-1 describes a translation of

the sphere, A-2 is the lowest interesting order in the expansion,
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which is a quadrupole vibration. For A-2 p can have five different

values (2,1,0,-1,-2) corresponding to five independent vibrations.

If we limit ourselves to small deformations each amplitude aAm

oscillates. Each oscillation corresponds to a vibrational energy

a. ,
1-1 3x + C x ex/v.

(1.1.2)

where BA are the inertia parameters and CA are the stiffness

parameters. They characterize the inertia of the collective motion

and the stiffness of the collective potential energy, respectively.

Since the Hamiltonian has to be a rotational invariant, the constants

are independent of p. The frequency of each vibration is given by

SX

and their energy is given by

Ex = t% tox

(1.1.3)

(1.1.4)

The quantum mechanical vibrational spectrum of the individual

oscillators is given by a series of states with equal distances &v.

Each phonon of a quadrupole vibration with A-2 has an angular momentum

quantum number of 2. Since phonons are bosons, only symmetric total

wavefunctions are possible. The degeneracy of the energy levels

vanishes for anharmonic vibrations.
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1.2 Collective Phenomena and the Tamm-Dancoff Approximation

In the last two decades considerable research has been done in

the "microscopic" description of collective excitations of a many-body

system. In a quantal system like a nucleus, density variations occur

due to transitions of one or more particles between different states.

When a particle is excited (a particle-hole state created out of the

ground state), the corresponding fluctuations in the nuclear field

affect the motion of the other particles and tend to generate other

particle-hole excitations. Thus, because of the interaction between

the particles through the field, the randomly distributed fluctuations

from different single-particle excitations come in phase, and a more

or less collective movement of the particles, a vibration, arises. We

shall study the quadrupole vibrations which are known from experiment

to be the most collective among all vibrations.

Spherical even-even nuclei will now be considered. The particles

are supposed to move in a one-body potential, interacting by a short-

range and a long-range force. Thus the Hamiltonian is

H H(shell mod.) + H(short range) + H(long range) (1.2.1)

The advantage of the Tamm-Dancoff approximation (TDA) is that the

fermion character of the nucleons is preserved, whereas in most other

microscopic collective models, such as the interacting boson model3 or

the various boson expansion models as used for example by S. G. Lie

and G. Holzwarthl, one deals with nucleon pairs, which are

approximately treated as bosons.



The Tamm-Dancoff equation diagonalizes the shell model and the

long-range part of the Hamiltonian. The ansatz of the Tamm-Dancoff

secular equation is the following. If the shell model potential is

filled with A nucleons up to a certain Fermi level, then all zero,

one, two, three, four,...,N particle shell model excitations form a

complete orthogonal set which can be used to expand the true many-

nucleon wave functions of the ground state 10> or the excited states

In>. The exact diagonalization of H within the full shell model space

is a task which cannot be solved. In ordinary TDA it is assumed that

the ground state is a Hartree-Fock ground state: that is, ground

state correlations are not taken into account, which is the main

drawback of this procedure. Since experimental operators are one-

body operators (that is they excite one particle-hole pair at a time)

the excited state is usually approximated by a linear combination of

one-particle, one-hole excitations.

1°) - )14-0

I h C rh Clc

The Hamiltonian in second quantiziation is given by

+4
11 E 4 Q r1 CI n 4 e.

(1.2.2)

(1.2.3)

6
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Minimizing the energy and contracting all the operators, we

obtain the so-called Tamm-Dancoff equation of motion:

gm,n * vrAjt; 2 ECM
(1.2.4)

where v stands for the residual interaction and indices m,n (i,j)

refer to states above (below) the Fermi level. The interaction matrix

element is given by

j cr: (t.) Lf:` (h.)

(!,) cfs, ( ) Y. ( (,)tie(t)

61.f, ckta
(1.2.5)

It is very useful to represent the interaction graphically by a

Feynman diagram.4

MEI

m

Figure 1.2.1 Graphical representation of the matrix element vmjin
and vmjni



8

A dashed line stands for v and lines with arrows for the single-

particle functions (arrow up for particles; arrow down for holes),

which according to their coordinates, are linked to the interaction

points 1 and 2 of the dashed line. If we imagine a time scale

perpendicular to the dotted line, a particle-hole pair (nj) is

annihilated and another one created in the direct term, whereas in the

exchange term a pair (nj) is scattered into a new one (mi).

The solution of the Tamm-Dancoff equation is, in general, not

obtained in the full particle-hole space, which is an infinite

numerical task. In order to understand the qualitative features of

this solution and what is meant by "collective" states we will solve

the equation in the schematic model using a seperable interaction and

degenerate energies. The interaction is approximated by

Vrt14iirt = (1.2.6)

The justification for this ansatz is the following:5 v is the residual

interaction, i. e. it describes the change of the mean field due to

the nucleons being no longer in a self-consistent state. The mean

field can change the particle density by either absorbing or emitting

a gamma ray. This process is described formally by6

&H- CeE KtOrlh1141.) CI i(2

(1.2.7)

The multipolarity A agrees, of course, with the angular momentum to

which the particle-hole pair (mi) is coupled.



Now define

rn. 1-1 1o)

graphically this can be represented by Figure 1.2.2.

Figure 1.2.2 The absorption of a gamma ray

(1.2.8)

The direct term of the residual interaction looks exactly like the

product of two such matrix elements. The physical process then is

described by the direct term rather than the exchange term. Neglecting

the exchange term is only a fair approximation.

In general, the residual interaction is attractive for T=0 states

and repulsive for T=1 states. Therefore, now choose

X < 0 for T=0

X > for T=1 (1.2.9)

With the ansatz (1.2.6), the secular equation (1.2.4) has the

following form

(1.2.10)

9



and is solved by

= N 3""'
E- E,r,tLi

N-2- E
(E-i"%4Z;)1

The eigenvalue equation for the excitation energies E is

In the degenerate case we

realized, for example, if

for particles and another

in a spherical oscillator

solution for this case is

rni.1

E i-t

(1.2.11)

(1.2.12)

set all emiem-ei equal to e. This case is

only one major shell is taken into account

major shell is taken into account for holes

potential without a spin-orbit term. The

n%

(1.2.13)

The eigenvalue equation (1.2.12) can be solved graphically by

plotting the r.h.s. as a function of E. The eigenvalues are obtained

from the intersection of this function with the straight line 1/x.

All solutions are sandwiched between the original shell model

excitation , with only one solution being pushed up

down (if l/' >0) in energy. The one excitation which

(T=0) or up (T=1) is a state which has a constructive

10

(if l/x < 0) or

is pushed down

superposition of
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all terms of equation (1.2.12). This state will be refered to as the

collective state. By "constructive" we mean that all particle-hole

terms contribute to the multipole matrix element, E Cmi Dmi, with the

same sign. Examples for such states are the first octupole states

(T-0) appearing in 160, "Ca, and 208Pb at low excitation energies and

the giant dipole resonance (T-1).

4
1/)1/4

i'%.,.............

;

----....., Et E2 Erni

1/A
E, E

Figure 1.2.3 Graphical solution of equation (1.2.12)4
1\A in the graph corresponds to 1/x in the secular
equation
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1.3 Quasiparticles and the BCS Theory Applied to Nuclei

For low lying states in open shell nuclei it is a crude

approximation to use uncorrelated Hartree-Fock ground states. Even

though the Fermi level is defined, it is rather artificial to seperate

particle states from hole states. Furthermore pair correlations

become so important that the "feedback" of these correlations on the

single-particle motion cannot be neglected any more. As was already

mentioned in the liquid drop model, the existence of low-lying 2+

levels for open shell even-even nuclei is closely connected. Nuclei

in the neighborhood of closed shells that are still spherical can

easily be excited to shape vibrations around their spherical

equilibrium position, since the restoring force, which is the

difference between pairing and deformation effects, is rather small.

The nucleus will therefore become deformed into an ellipsoid and

vibrate about its spherical shape with a low frequency (quadrupole

oscillations, 2+ levels). Exactly these states will be investigated

in this study.

Pairing correlations are due to the short-range part of the

nucleon-nucleon interaction, and this interaction is most effective

between (I-0)-coupled pairs. In our formulation we will use ground-

state wave functions that diagonalize the shell model part and the

short range part of the Hamiltonian. There are basically two

formalisms that describe the pairing of the nucleons.

The Seniority Scheme is a very elegant method. It uses the SU(2)

algebra, which is the same algebra as the spin algebra. The Seniority



13

Scheme is therefore very often called Quasispin. The main drawback of

this procedure is that it can be used only for degenerate shells.

The most commonly used method is the BCS-Theory. which was

invented by Bardeen, Cooper and Schrieffer who used a variational

principle to determine the ground state energy of a superconductor.

This method no longer provides an exact solution of the eigenvalue

problem (like the Seniority Scheme does), but rather like the Hartree-

Fock method, it can be derived from a variational principle. The

exact ground state cannot be used for this purpose because the method

makes use of a Hamiltonian that does not commute with the particle

number operator. The main disadvantage of this method is that the

particle number is not conserved any longer. For superconductors

where one deals with thousands of electrons this does not have any

effect. For nuclei, however, where there are only a few nucleons

outside the major closed shell this effect cannot always be neglected.

For the pairing energy in the nucleus by means of the BCS method the

folowing assumptions are made:

Its two-nucleon spectrum is approximately the same as the spectrum

of a Dirac delta force

Because of the Pauli exclusion principle pair correlations are

expected only in the neighborhood of the Fermi limit.

The pairing energy is significant only for the energy spectra of

intermediate and heavy nuclei because the separations of the

single-particle energies are then sufficiently small. In these

nuclei, however, the protons and neutrons in unfilled shells occupy
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different states. The pair correlations of the two kinds of

nucleons may therefore be treated seperately.

The BCS method makes use of the Bogoliubov transformation, which

makes it possible to account for ground-state correlations. This

transformation changes from a particle-hole representation to a

quasiparticle representation, where a quasiparticle is defined to be a

linear combination of a particle and a hole. The coefficients in

front of the particle creation and annihilation operators give the

probability of the quasiparticle to be a particle or a hole. They are

called the occupation number (vk) and the non-occupation number (uk)

respectively.

cit. a+. t (-1)= v q
(1.3.1)

where at
m J

(a.
m

) is the creation (destruction) operator of a particle
J

and at
m J

(a.
m

) is the creation (destruction) operator of a
J

quasiparticle with quantum number j and projection quantum number of

the total angular momentum m. We require the quasiparticle operators

to be fermion operators and therefore to satisfy fermion anti-

commutation relations

4
mm (1.3.2)

If is much above the Fermi sea of nucleons at should be a particlee

Jm

anclulvO'if
J

is much below the Fermi limit then u--0 v--1J' J '

ej
' J



The procedure for deriving the pairing equations starting from

the assumptions above is the following: The pairing force

Hamiltonian is given by

1-1 -E Fj a j

a. J-a , (-1) a. a-
""

yip, j-
(1.3.3)

rvl rn'

where the first part of the second term describes the creation of a

pair coupled to angular momentum zero and the second part describes

the destruction of a particle pair coupled to zero. A Boguliubov

transformation of the Hamiltonian is made. Then <01 H -)N 10> is

minimized with respect to uj and vj subject to the condition that the

average particle number be the actual particle number and that

(4,1

1
+ v- = I

This procedure yields the pairing equations

/es ( - X).

N = ( 2 i 4 t ) vi

where A is the gap parameter of the spectrum.

(1.3.4)

(1.3.5)

(1.3.6)

15
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In the degenerate case the pairing equations can be solved in

closed form. The pairing constant G, the quasiparticle energy EQ and

the occupation and nonoccupation numbers uj and vj for this case are

given by

6 = AA
A (1.3.7)

E
Q

G
= (1.3.8)

4

N

.

V = IL (1.3.9)
14 .

lA

t
= 1 -

N (1.3.10)

No

where A is the total number of nucleons, No is the degeneracy of the

major shell and N is the number of nucleons in the major shell.

Making use of the Bogoliubov transformation the TDA particle hole

secular equation can be reformulated in quasiparticles. The particle

hole states become two quasiparticle states. For detailed discussion

see Chapter 2.

1.4 Four-Ouasiparticle States

The anharmonicity of the vibrational states will now be

investigated. The Hamiltonian includes higher order terms, which

provide a coupling between the different phonon states. Whereas the

TDA and RPA calculations usually take only one-phonon states into

account, we will determine the mixing of the two-phonon (four-



quasiparticle) and the one-phonon (two-quasiparticle) states and

determine its effect on the energy-level diagram.

The following states are used as basis states for a four-

quasiparticle wavefuncion:

a. a.
Jena °( ,13013

a
Joy, °>

where 10> is the quasiparticle vacuum defined by

04 :Irv, 1 0> = 0

(1.4.1)

(1.4.2)

Then each four-quasiparticle state can be written as a linear

combination of these basis-states. The amplitude X1234 is then given

by the overlap of its basis-state and the wavefunction (0>.

X12.3 II <° I °tit., c't :ivy), Jam,. aj., o 1.) (1.4.3)

Rather than using a product representation a transformation to

the coupled representation is done.

rt> E X12.34 E < it :12 rnl I A'r4,

IS,rn`S

< 33 it* rn3 m4 'k1".41) < A, Al /-vAt 17M)

[ c4,;+. 04:2 [ °cis
oe- 34,4

s)J15)7)P-1

X k T ( XAt) M

[r 4 4 1

L °LSI J x Tm

I o>

I (1.4.4)

17
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The last equality of equation (1.4.4) defines the coupled amplitude of

a four-quasiparticle state.

X1134 (T(1, XL) hi)

( (3) r Ncj. c(is ] Ai r c(at °(:11] A, ] TM I '4.> (1.4.5)

The transformation from the product representation to the coupled

representation and vice versa is given by

X,2:34 (7 (X, AO M

= E < i, .it m, m1 I kr) (j3 iLt m3 PI LI I Aa./Ak)

i ,r^ VA S

C A , X tr,/u2. I TM) Xlz 34

and by

xilli., E <SI jtrti, rrli I A14.)

X' s /A's, T, fri

< j3 jk m3 m4 I X 2./J I) < A,At 7,44/AJ 7 m

x123,, (7 (X, X NI)

(1.4.6)

(1.4.7)

Since the creation and the destruction operators of fermions fulfill

fermion commutation relations X1234 is completely antisymmetric, that

is an even permutation of (1,2,3,4) gives the same amplitude back,

whereas an odd permutation yields the negative amplitude.
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From this property, symmetry conditions for the coupled amplitude

x1234(JM(A1A2)) can be derived, which will be very useful for further

calculations and which can be found in the appendix. One important

result which evolves from these symmetry properties should be

mentioned here. In the case of (ji, j2) being equal to (j3, j4) and

Ai being equal to A2

xt2,2. (T (X M) '1/412x2. (7. LA M (1.4.8)

i. e. for odd J values the amplitudes are exactly equal to their

negatives and the wavefunction is identically zero. This result is

found experimentally and accounted for by the liquid drop model.
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II. THE TAMM-DANCOFF APPROXIMATION FOR QUASIPARTICLES

In this chapter the Tamm-Dancoff secular equations for two and

for four quasiparticles will be derived. These two equations will

then be solved in the limit of degenerate energy levels using a

separable interaction. Again, doing more realistic calculations is an

infinite numerical task. The intent, however, is merely to study the

qualitative features.

2.1 The Two Body Interaction in Quasiparticle Representation

Doing a Bogoliubov transformation of the two body residual interaction

yields

V uick d40'4 (-I ) vJot at
ad-ollek

j 3 wt
r

t ib V' -Mb)
tAib ib"lb ) jb

(-1) Vit.. 0(11,

tA ok ajAmoik (-1)
.i rn A

V 3.0i ot jok

Vab do (2.1.1)

The part of the interaction, that doesn't change the quasi-particle

number is of the following operators

* t
e4 04 04 Oct. (2.1.2)
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This part of the interaction is given by

°E i
3 s ppl's

Ujq Ujb US c US A ( Ii0P111 (LW%LI V I (6.0011 %lbw% )

I

V i
i ^;

t V14. Vi k) Vic Vj \ 'lion, (fie" t. 1 "1 i A " vl rfSbvh b

t 1 (1,1 U V. 1./-
.1 Pt+2 o4 J.1 JD J c < 21'isrn4 qii" I V I 2fic.m c Cfha ii),4

- lift IA iA Via Vib < Cticync. [Fjobl V I 41mq CricinIcA)A

...,

uict [Ail, vSc vioi ( ctiAnic qi,4,,(1 vi Lfievi c cl'ibme )A

+ Lt.!.
(A

s/j-,, via C qj, FriA,A1111 4,1-,,,,, to, b),, )J
-4 +a s,y,10, °4. jc *lc c4i 43 von h °L ia i"J

(2.1.3)

where A means that the matrix element is antisymmetrized and the wavy

line has the following meaning

ti 1 WII ql,) : (- s) I qi-nt ) (2.1.4)

It is often very convenient to consider the closed shell limit,

where the state weighted by a uj corresponds to a pure particle state

and the one weighted by a vj corresponds to a pure hole state (see

also chapter 1.3). In this limit the first two terms of equation

(2.1.3) describe transitions from a two-particle state to a two-

particle state and from a two-hole state to a two-hole state,

respectively, which stand for two-particle pick-up and stripping

reactions. The other four terms correspond in the closed shell limit

to the particle-hole residual interaction matrix element discussed in



section 1.2 with the only difference that no distinctions are made

between particles and holes and therefore all possible index

permutations have to be considered, which corresponds to the four

different terms. In analogy to the particle-hole case the last four

terms of equation (2.1.3) will be considered.

Using a seperable interaction gives a result

V
1

X E 1.4c,,c. Zac. (X) t46,01 D.16 (X)

4- 1
GC - 04. 04. -

lemma c4Jc. Pic. Jblyb J.1"A

or in coupled representation

V . ± 1E uk,x.c. Tc,c_(A) kAbia 3A10 GI)

J
,

s
4.

431. PiI PC' 0(-Su, .14.ix r 31, Jjk

(2.1.5)

(2.1.6)

where the brackets denote angular momentum coupling. For the reduced

matrix elements the phase convention of Yoshida8 is used.

(Lc () <j4 11 i-7' r' Yx II ic) (2.1.7)

22
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and for convenience we have defined

(Attic z tAi4 Vi4 + tA,i4 vJa

0," (X) :

X 1/71+7.

(2.1.8)

(2.1.9)

(2.1.10)

Except for the weighting of the q's with the occupation and

nonoccupation numbers the interaction stands in direct analogy to the

particle hole case with the difference that quasiparticle-operators

are used instead of particle and hole operators.

2.2 Derivation and Solution of the TDA Equation for Two Ouasiparticles

The derivation and solution of the Tamm-Dancoff equation for two

quasiparticles is in direct analogy to that in the particle hole case,

discussed in section 1.2. Therefore the details will be bypassed at

this time, stating only the results. The two-quasiparticle amplitudes

in product and coupled representation are defined in direct analogy to

the four-quasiparticle case (see section 1.4).

The equation of motion for a seperable interaction for this case

is

( in -X) X, (IM)

'E)618.-J
(Ti)

° 1.44/j Cj (X) U nim lryn (X) (2.2.1)
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In the case of degenerate energy levels this is solved by

Yoh Nit ) (T)fi

N 2 = E u O.)

(2.2.2)

Different from the particle-hole case is again the weighting by the

u's and v's. Furthermore since quasiparticles are indistiguishable

particles and because we have used redundent sums the amplitudes have

to be normalized to 1/2, whereas in the particle-hole case they were

normalized to 1.

The two-quasiparticle energy is given by

E2Qp 2e + x Y(2) (2.2.3)

where e: degenerate single quasiparticle energy

X: interaction strength parameter

2Y(2)
m,n

um n
2
Dmn (2)
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2.3 Derivation and Solution of the TDA Equation for Four

Quasiparticles

The procedure is the same as for two quasiparticles (see 2.2).

First the matrix element between two four-quasiparticle collective

states is calculated, then the variation is done which yields the

equation of motion, finally the secular equation will be solved in the

degenerate limit.

For convenience the one- and the two-body part of the Hamiltonian

is calculated seperately. From the BCS-theory the one-body

Hamiltonian is given by

I-I, .E E., cc '.4k

k

where Ek is the quasiparticle energy

Ek = ,/(tk-A)2 +Q

with A : pairing gap

e : shell energy

(2.3.1)

(2.3.2)



The matrix element of the one-body operator in coupled representation

then is

< -f11,Qp l WI I

EEtc x12314 (71( X, At) Xrcie (7 "3 Aa) M)

T 117'M'

< 01[C ocii, 0i-j3 J X 1 re4j1 ail] 711 11 A1 QL+,itemw ci-jkmw

4
4

I [ ]x 3 H7 air 14]Tm 1 (2.3.3)
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In order to do the contractions of the operators they have to be

decoupled first. There are 2x4! 48 different possible contractions.

With the symmetry conditions of the coupled four-quasiparticle

amplitude (see appendix A) it is straightforward to show that all 48

terms are equal. Thus the matrix element is given by

HI . 4 2 I E, ( 4,2,4 (7 (X, Az) P1))

,i`s

The two-body term is derived similarily

< t:clp v 140

E
j`s,a's, 7, M,V,M'

2.

(2.3.4)

X,23 ( ( 11)119 X3-4 (T (A3 AO M)

(o ) [[ (4i4 aLj3] X L 14i4- °`J.] x

Ir 4 + r_,+ ,+.
EL °C.'S '2(.4.43 V.J1I'Jf -I

I V

(2.3.5)
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Again the operators have to be decoupled first in order to do the

contractions. Using Wick's theorem to calculate the contractions

there are (4x3)
2
x2 288 terms. Using the symmetry conditions of the

x1234 (jm(A1A2)) (see appendix A) all terms turn out to be the same and

the matrix element is given by

< 14' Lt a P 1 v I *4 C19 )

rz II+ Li XE X,134 (i (), Xa.) M) Yrog ( T (X, Az) M)

TS 1.%.;

L14, 1,1 l'A,) L4s,c ls4 (,) 1.33.1-7 'S.i4j8 (2.3.6)

Graphically equation (2.3.6) can be represented by Figure 2.3.1.

4 3

Figure 2.3.1 graphical description of equation (2.3.6)

Since a quasiparticle is partly a particle and partly a hole, there

are no arrrows drawn on the lines in figure 3.2.1. A two-quasiparticle

pair is annihalated at position 1, another one is created at position

2, and the other two-quasiparticle pair is a spectator.
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This corresponds to the direct matrix element in the particle-hole

excitation with one particle-hole pair being a spectator. In the

closed shell limit this can be represented by Figure 2.3.2.

6 5-

Figure 2.3.2 graphical description of equation (2.3.6) in the closed
shell limit

The equation of motion is derived by a variational principle

[ 6E %. xvz31+ (7-Lx, XI) M)

(-X: 722.) N)

rc314 t 11. X%) NA) u,l a (X1) usc.s.c (X1)

i- (4 E1 E4429 ) Xia34 (7. D, ai) M))1 0

(2.3.7)

Since we are using an overcomplete basis, there are 24 different

permutations of xmnii(jm(A1A2)), that contribute to this

differentiation. In the one-body term all 24 terms turn out to be

equal, because of the product of the two antisymmetric amplitudes.

The two-body term consists of six different types of terms.



The equation of motion can be written as

E 4 F; - Elroy) X hthi (T(X, Az) P*1)

Js j4

fyrc.i ( 17(A,;(I) ti) uric 215/ (At) um.), ,(x,)
-1,-At

- (-1)7 x3-4 (T* (A.I.X, ) M) uil,Tn(2,)1.4f,i Tcj (A2)

/iv^ 4,
.E [u. j'; ii At kr4 ( 1 (x, alo pi)

a: xi A,' 1 T

umiLl.,- (X,) 14u psi. (A ' )

I. j, X\
4 ii ji AZ X n the ( 7U. (Xti Ai 1 M )(

A,' A; Ti/

4 A *,jb. +1.4.'144 jj
1. z

4,5;, psL (A, )

(it%
jc At

XI A
T

u

xri,ni. (7 (A,' M )

-
x (-1)

A
1 lAr,C

(in 1,
A2.

xi 7

(a.) ta mj )

Xromi T (A:)`) M )

us-,4 Est (1:) LAN- D.,i tA:)J1
(2.3.8)
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where, in terms of the Wigner 9-j coefficient (written with braces)

the unitary 9-j recoupling coefficient is

Min.in. A-."
= A, Al X. Xi JC Jj t

Vt (2.3.9)
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The secular equation (equation 2.3.8) can be interpreted as

follows: In the first term the pair (ij) is the spectator pair, its

angular momentum coupling doesn't change. The quasiparticle pair (mn)

is destroyed and the pair (56) is created. It is summed over all

possible final states (56). In order for the interaction to be a

scalar it is necessary that the two quasiparticle pairs, which take

part in the interaction ((56) and (mn)), are both coupled to the same

angular momentum.

All the other terms are exchange terms of the first term: that

is, each possible pair is in one of the terms the spectator and in

another term it takes part in the interaction. The 9j-recouplings

evolve from using an overcomplete basis for the four-quasiparticle

basis states.

For further calculations the first two terms will be referred to

as the direct terms (in that there is no recoupling necessary), even

though the second term is actually a boson exchange term. The other

four terms are fermion exchange terms.

The equation of motion for the degenerate case, i.e. Em = En Ei

EJ, will now be solved. Equation (2.3.8) is multiplied through by

u1,2 c112, then it is summed over jm and jn. The fermion exchange



31

terms will be neglected, which will be justified with some numerical

examples in the appendix.

k ;i (X, Tt A,NOM) - ( kif (a, ,1z) Y(A0

+ kMti l).2 T (xt 03. )

(2.3.10)

where the following convention has been used

1<`j IA, ,T(A, Az) M) E T, T (X, 2) M)

jftjK
(2.3.11)

Multiplying equation (2.3.10) by ui,i Dii(A), then summing over ji, jj

and solving for the four-quasiparticle energy yields

E74clp = 4 E + X ( - YL;l4) ) (2.3.12)
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Substituting all this back into equation 2.3.7 yields the four-

quasiparticle amplitude in coupled representation

(3- (x, xl) )
vol

("3- ()" XI) M) ( Az) up,,,..
y (A,1 vcx)

Y (At) + `Icy;) k ( T ) ek)

\I/LA.) y L.xt) y )

V41 4) h 11

jc az

A, A;,

Tvz (A.') unj (x l.`)

ub,s (A;) Dni(-1) (7')

(2.3.13)

Since m, n, i, j label quantum numbers of indistinguishable particles

the four quasiparticle amplitudes have to be normalized to 4! =24.

rn,r1,
(2.3.14)

Unlike in the boson-expansion methods as used for example by Lie

and Holzwarthl or in the interacting boson model as used by F.

Iachello and I. Talmi3 in our result the fermion character of the

wavefunction is still present, that is all possible exchanges of

quasiparticles (fermions) and of quasiparticle pairs (bosons) are
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taken into account. Therefore the Pauli princple is obeyed and the

blocking effect is contained.
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III. FOUR QUASIPARTICLE - TWO QUASIPARTICLE COUPLING MATRIX ELEMENT

FOR COLLECTIVE STATES

As an example of the effects of four-quasiparticle states, the

coupling between states with two and four quasiparticles will be

considered, which corresponds to a coupling between states with one

and two phonons. A case of special interest involves the coupling of

the one-phonon (two-quasiparticle) state to the state of two phonons

(four-quasiparticles) of the same type. This interaction represents

the leading-order anharmonic effect in the vibrational motion, and its

consequences on the energy level diagram will be investigated in the

following chapters.

In this chapter we shall calculate the matrix element that

describes the transition from the four-quasiparticle collective state

to the two-quasiparticle collective state. The operator and its

Hermitian conjugate that contribute to this transition has the form

a+aaa (3.1)

that is three quasiparticles are destroyed and one is created.



This part of the operator (equation 2.1.1) is given by

vry's

{ 14 bi 01 "ie. /Alt

t qilumb

(Tit% ' 0,

(47 .14. Mc& 1 v I %Ay .1 clic....c)

,...,
Crier" bl vi trjet INA (fit

+ IA A vi. vj

I

--,

(< (ri rml, 60.,, I v 1 gri4Vvici CiliAY)14)
(

e..

< Clibmbl tflomj V 1 CriaVvicA lian'a))1

+
0C jo, "a l.o

44 it, r` .1 c v" c a4 i a r"ok

(3.2)
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The collective matrix element of this interaction has the following

form

C

V2424 ... 1 I

1# 3c21) I
V234 ) loll )

't.,. ( 7' M') r3gisc (7 (A, Al ) M

4
< 0 i [a. c' 1 0(.

ogn
04..113JZ J`J l' M' Jq ,"

ot"b Jcvnc

,4 . e,f [ + 1
r + i

J5 314, X. L al iS Cit j4 i Na -I TM

tU13, A u31 04 i c

I O)

el..'Jsirnot

( < 'rib . b Ch come, 1 V I CriAvh,), (fic.'"c

< (-PjAvhct r-l'i 4 vnb I v I 1.i amok cficrnc))

+ LI ct A N./J-4x \lb

10 F..."

(( Cti i b w1 b (f i LW)C I V 1 (4) J kr" g C.fi j ornok)

- < cf.i.,,,,b cgs, oi, \ V' cfsa 01., (to. fn a I) j

(3.3)
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Because of the symmetry-properties of the amplitudes (see appendix A)

all possible 96 contractions give the same result.

1/24 4 ?E
.,)S 016 S VA'S

)(12, (7' NO Xi1/25-4 (la, AO NI)

< j, it ng, nil 7' Mt) < ,14 Vh3 V1144 'AtigA,)

< is jc b9"4 I kart) ( X 1.14 vut T M)

(Aril ui

< 4:j5 vti IS, 'Pt, I V I (1°33M3 ( v"4

< Tis-mc 1 qiirpt cns,n,

4 U. 3,4 Vjt Vjs

r.""'
< CrjSrAg (tit. V I Cfi I MI qi3M5

.,,
tissv,s. I v 1 %lois )

(3.4)
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Graphically the first and the third term of equation (3.4) have the

form shown in Figure 3.1.

4 6 6 5

38

Figure 3.1 Graphical representation of the first and the third term of
equation (3.4)

In the closed shell limit Figure 3.1 gets replaced by Figure 3.2.

4 6

1

6 5 3 4

Figure 3.2 Graphical representation of the first and the third term of
equation (3.4) in the closed shell limit

In the first term a particle-hole pair is destroyed at coordinate 1, a

particle is scattered at coordinate 2 and the spectator can be either

a particle or a hole. In the second term a particle-hole pair is

destroyed at coordinate 2, a hole is scattered at coordinate 1 and the

spectator can again be a particle or a hole. The second and fourth



term are exchange terms of the above and they can be rewritten in

exactly the same form as the first and the third term.

Since the coupling of these matrix elements is very complex, the

coupling of one of the terms of equation (3.4) will be discussed in

detail. The third term has been chosen.

The operators shall first be rewritten, using

, ,....+
L oc+ )J.., Icfin, - ct j. ..., I c f pi")
PYt rrt

The operator can be represented by

(V ) t - E IA ti a V.). Vjb

lj S, yvt
Is

^, 0...../

CPjb,,,,13 4%, , I v I `-fs.ic. vyq, cf.i.J. .1 A)

0C c:4 at cC t

JawIc4 Jhrotb .ic r^ J A Y) 0

(3.5)

(3.6)
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In equation (3.6) the matrix element consists only of angular momentum

eigenstates, whereas the operators are all complex conjugates of

irreducible tensor operators (ITO).
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An ITO is defined in the following way: An ITO , Tk, is one which

transforms under rotations as an eigenstate of angular momentum k with

projection q.

ceTc` (IA) T
3 3-

9' (3.7)

where Dk ,(U) are the matrix elements of the rotation, which are

defined by the expansion of the rotated states in terms of eigenstates

of Ijm>.9 Therefore the same Clebsch-Gordan Coefficients can be used

for both the coupling of the quasiparticle operators as well as the

coupling of the matrix element.

(-0 1-S, -jot j VJa vjb

>(IS trii Gi VI (4j C4

12 /A.1

I.

a4j.. c".id [ °L.i4] Xir42.

(3.8)



The next step is to use the schematic model, that is use a separable

interaction and degenerate energies. Let TIA be an ITO. Then the

interaction matrix element can be written as

A.,ft,

< 47i4 I V I (rift )

A
1. /4A 2.

= E < ) 2-fi, -rtm+ cf4.,

L,11 (3.9)

Using the Wigner-Eckart theorem gives

< Jd jc, r^12Tha I 1./44.> (j,j,A 01,4I Xi/u2>

Ja 16 vna L- M) ( -1)
J4 4 ib -n14 -"lb

L.

< -"IA( M) (-1)2jc

< (-rib II ( Cfic )t (3.10)

Using symmetry conditions of the Clebsch-Gordan coefficients and

defining Dba(L) by

< TL (fla (L )

we can represent the interaction can finally by

(V14)1 E L4t,a vi I) A 13c4 (X) 'D cic (1)X l

(3.11)

c Ja 45tJb a, L P(.1 c4i4L1 00 (3.12)

r .4.

41
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Similar calculations are done for the other three terms of this

interaction. Substituting all the results back into equation 3.4 the

complete collective matrix element is given by

- 4 f E (7' M') x34, (7 CA, Az) M)

V. (A) ( LAis ) (1) ()

( (ii ja) M' I [ rcq. c(is]x ['Liu ah La

( (j1.144) Lich)) (3.13)

The part [a
j4

a
j3

]

A
u
3,4

q
34

(A) describes the destruction of a

quasiparticle pair. The part [at a. ] (u. u. + v. v. ) describes
J1 J5 A Jl J5 J1 J1

the scattering of a quasiparticle, which in the closed shell limit

either corresponds to a particle (uu) or to a hole (vv).

It is more "physical" to couple each of the two terms above than

to couple the wavefunction and the operator seperately. Therefore a

recoupling will be done.

Cr IL *cif lx laL4 al31] ],c) I TCAICisi4) AzCisi4))

/A- A A
= u. Ai

L., L., r/Lt

/._,/
[E of-jsix. 1 Xt (Jr JO)] [r c(J4aJ3 xl ? U 3 JO)]

(3.14)



where

[ ot. 1
.11-1 'x/A = I)

r
L

J L4 J 1 J it -/A
(3.15)
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This convention is needed to transform the complex conjugate of an ITO

to an ITO or vice versa. An angular momentum coupling is only

possible of two ITO's or of two complex conjugate ITO's but never of

an ITO and a complex conjugate ITO.

The rest of the calculation is straightforward and only the

results will be stated.

< I ([ ce-J, oc.; J 1, i ) >3

£L1,0
ma, 0 SxjA,

The 9-j coefficient can be calculated by

lk
(%

N,

L,

A

"
0

o
1-

71

7 4 XI
- t )

With equation 6.25 of Rosel°

1

<7' (s,j,_) M l [[ eq, air 1 2 lig iL)>J,m

- W (is 'Al is

< I C asirl 11 is )

(3.16)

(3.17)

(3.18)



The reduced matrix element is given by

< II c ot4i, II ) = 31/4 (3.19)

Substituting equations (3.15) through (3.19) into (3.14) gives the

final result for the one phonon to two phonon transition matrix

element for collective states.

V24 C̀ 47E
J's

X12

1-4314

(TM) X345-2. (7-1XXL) M) 1 52

T3I4 (X) ( Lai %A-+vi,ds JS

(-0A'

(t)

(1s A T j2. A)

(3.20)
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Using the results for the amplitudes from the previous chapter yields

va4c.44E (zyLx.)) 2 CA)

j's
( 41, tAir * sr

C k (3-LA ),)

x ya) y at)

A: XI

ctli, 034 (A) 1 12 ()

u CIO D3i, 11)

y(x:)_t, (AO k (rt A,' As') ri)
`ILA) t Y (At) 'I LA,') 'l Lx; )

J3. i4 A

is J1 At

Ji

u15 DAs. 144.1142 (A;.)

31 T33- LA') Li4s5D44S1\1)

(3.21)
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IV MIXING OF THE FOUR- UASIPARTICLE COLLECTIVE STATE WITH THE TWO-

QUASIPARTICLE COLLECTIVE STATE

The mixing of the four-quasiparticle collective state with the

two-quasiparticle collective state is determined in diagonalizing the

matrix

H22 V24
V24 H44

(4.1)
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where H22 and H44 are the the two-quasiparticle energy and the four-

quasiparticle energy, respectively. The eigenvalues of the matrix

(4.1) give the shifted energy states. This calculation is done in a

truncated space. Only quadrupole states are taken into account. As

mentioned in the previous chapter, this interaction represents part of

the leading-order anharmonic effect in the vibrational motion. As an

108pd and 11example the isotopes of palladium, 106pd °Pd, and the

isotopes of selenium, 74Se, 76Se and 78Se, are chosen. The results of

the calculations are listed in the tables 4.1 and 4.2.

The reduced matrix elements are given by

< es 4' r l l N e 4)

eX+t- A ,
(-I) <i 413-010

i l I + I)
ti+ -1 < tf rx I Ne)(411

(4.2)

where the radial integrals were computed using Simpson's rule.
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The pairing constant G, the quasiparticle energy EQ and the

occupation and nonoccupation numbers uj and vj are determined by

solving the pairing equations for the degenerate case, as discussed in

chapter 1.3. In the case of the palladium isotopes the pairing

constants Gn and G
P for neutrons and protons were adjusted such that

the quasiparticle energy is given by the weighted average of EQ and

E.

The interaction strength x is determined such that the first 2 +-

state agrees with the experimental value. The experimental data are

taken from the Nuclear Data Sheets.11

Table 4.1 Energies of the first and the second 2+ state without the
two-quasiparticle, four-quasiparticle coupling matrix
element and including the two-quasiparticle, four-
quasiparticle coupling matrix element compared to the
experimental datall. The four-quasiparticle states are
normalized including the exchange term.

Isotope
without
coupling

Energy in MeV
including
coupling

experimental
values

2+
1

2+
2

2+ 2+2
2

2+
1

2+
2

106pd 0.633 1.265 0.512 1.385 0.512 1.128

108pd 0.568 1.136 0.433 1.271 0.433 0.931

110pd 0.519 1.038 0.374 1.183 0.374 0.813

74Se 0.796 1.592 0.634 1.755 0.634 1.269

76Se 0.733 1.465 0.559 1.639 0.559 1.216

78Se 0.785 1.571 0.614 1.742 0.614 1.308
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Table 4.2 Energies of the first and the second 2+ state without the
two-quasiparticle, four-quasiparticle coupling matrix
element and including the two-quasiparticle, four-
quasiparticle coupling matrix element compared to the
experimental datall. The four - quasiparticle states are
normalized using the direct term only.

Isotope
without
coupling
24-

1
2+2

2

Energy in MeV
including
coupling

2 +2
2

experimental
values
2+ 2+

21

106pd 0.594 1.188 0.512 1.271 0.512 1.128

108Pd 0.528 1.056 0.433 1.152 0.433 0.931

110pd 0.478 0.957 0.374 1.061 0.374 0.813

74Se 0.728 1.457 0.634 1.552 0.634 1.269

76Se 0.662 1.323 0.559 1.426 0.559 1.216

78Se 0.714 1.428 0.614 1.528 0.614 1.308

The strength of the crossover transition 2+
2
- 04- can be

1

determined by the ratio of the amplitudes of the two-quasiparticle

state and the four-quasiparticle state. If the 24-
2

state were a pure

four - quasiparticle state, as the harmonic model predicts, no such

transition would be possible. However, due to the two - quasiparticle

four - quasiparticle mixing this state is actually a mixture of a two

- quasiparticle and a four - quasiparticle state which makes such a

transition possible. The ratio of the amplitudes of the two -

quasiparticle state and the four - quasiparticle state gives the

amount of this mixture. This is compared to ratio of the deformation

parameters 1324. 0+ and /32+ 0+. That those two ratios are actually
1 1 2 1

the same can be explained in the following way: Both the first and
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the second 2+ states (12+) and 12+2 )
'

respectively) are taken to be a
1

linear combination of the harmonic pure one-phonon and pure two-phonon

states 2+ states (121-> and lq>, respectively).

I = -c 1 2+1 + a I 2.42.

(4.3)

(4.4)

The reduced matrix elements of the dressed and pure states are given

by

(2t Q (a) II O ot fiN

it a (1)1I 0+1) = d /3a4,-)0

02 (1)11 0+1) ra.--)

(4.5)

(4.6)

(4.7)

where d is a constant of proportionality. With equations (4.3)

through (4.7) the following identity is deduced

24. -1 o

a
21 01 (4.8)

The deformation parameters /9 are directly proportional to the square

root of the corresponding transiton strength.12 Therefore

-
E at )
E 24, )

(4.9)
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The transition strength was taken from the Nuclear Data Sheets.1°

Table 4.3 2+ )" 0+ crossover transition strength. The first
tfieoretical value is calculated using the direct term only
for the four quasiparticle normalization. In the third
column the exchange term was included for calculating the
four quasiparticle norm. The numbers in the fourth column
give the experimental values

Isotope theory
c/a c/a

experiment

/32+ - 0+ /412+ - 0+
2 1 1 1

106pd 0.348 0.402 0.162

108pd 0.390 0.438 0.150

110pd 0.421 0.468 0.126

74Se 0.337 0.410 0.172

76Se 0.368 0.438 0.139

78Se 0.340 0.423 0.183
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V. DISCUSSION OF RESULTS

We have derived the Tamm-Dancoff secular equation for four-

quasiparticle states and have solved this equation in the degenerate

limit using a separable interaction. The resulting amplitudes for the

four-quasiparticle states include a term that has boson character,

that is, only quasiparticle pairs are interchanged. This term was

called the direct term. It also contains a term with fermion

character, where an odd number of quasiparticles is interchanged.

This term has been referred to as the exchange term. The exchange

term also couples a state which is made out of quadrupole phonons to

all other possible angular momenta.

We then applied the results of equation (2.2.2) and equation

(2.3.15) to calculate the four-quasiparticle, two-quasiparticle

coupling matrix element for low lying collective states for even

nuclei. This was done in using the part of the two-body interaction

of the form: a+ a a a. This coupling matrix element has two

important physical applications:

It is part of the leading order anharmonic effect in the

vibrational motion.

It also describes damping procsses, a property not investigated

in this study. This is especially useful for the description of

giant resonance states, where it contributes to the damping of

giant resonances.

The first of the above properties can be understood best in going to

one of the boson expansion models.



5.1. Boson Expansion Methods

The basic idea of boson expansion methods is to represent the

fermion Hamiltonian by pure boson operators B, B+ and diagonalize it

in a boson space.4 Mathematically, this corresponds to a mapping of

the Fock space of many fermion states into a space of boson states.

There are many types of boson representations. All these methods

start with a many-fermion Hilbert space Hf , which contains vectors

and operators. In second quantization the space is completely

specified by the vacuum 10> and a set of fermion operators ak, al-t.

The fermion space is then mapped onto a different Hilbert space, a

space of bosons Hb. The boson space is given by a boson vacuum 10)

and boson creation and annihilation operators B1, Bt.

4,.., 10) 0 (5.1.1)

These operators have to fulfill boson commutation relations

E -3,1 zi,4, ] . 5,,,,,,,
(5.1.2)
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It generally turns out that the boson space Hb is much larger than the

fermion space Hf. This comes from the fact that in the boson

expansion of a fermion operator there is usually an infinite number of

boson operators needed. Therefore, the mapping is only unique in a

certain subspace of the boson space. There are two basic procedures

to introduce this mapping explicitly:

Belyaev and Zelevinskii13 propose to map the operators in such a

way that the commutation relations are preserved. Usually all
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important operators can be constructed from a set of basic

operators whose commutation relations form an algebra. Vectors

obtained in this way do not span the whole boson space but only a

physical subspace.

Marumori14,15 proposed to map vectors in the Hilbert spaces Hf

and Hb and to define the operators in such a way that the matrix

elements are conserved by the mapping. The mapping of fermion

states to boson states by this prescription, however, is not

unique.

The advantage of such boson representations is that very collective

modes - for instance, the quadrupole mode - can be approximated by

rather simple wave functions, namely one-boson states 3-1- JO>. In all

the applications, however, drastic approximations have to be used,

which are justified only in special physical cases.

5,2 Anharmonicity

Harmonic oscillations are characterized by an equidistant

spectrum. Experimental spectra of spherical nuclei in some regions of

the periodic table qualitatively show this structure (see 1.1). In

detail, however, some more or less dramatic deviations from this

simple picture, as, for instance, splitting of the higher multiplets

and a shift in the position of the energy centroid are found. Such

anharmonicities are caused by two effects:4

The collective fermion pairs are not exact"bosons.
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The exact many-body Hamiltonian contains not only second-order

terms (two-body term) in the bosons, which diagonalize the TDA

approach, but also higher order terms. Such terms, neglected in

the harmonic approximation, provide a coupling between the

different harmonic modes.

The next higher order term in the Hamiltonian is the three-body

operator. In the boson approximation it is represented by B-1- B B.

a+ a a a is part of this boson operator not taken into account in a

boson expansion. It can therefore be interpreted as part of the

leading order enharmonic effect of the vibrational motion.

We have investigated this effect for low-lying 2+ states. As

expected, the 2+ states push each other apart due to their mixing and

a splitting of the higher multiplets can be observed. However, the

J-0-1" and the J-44- are still degenerate.

In figure 5.2.1 and 5.2.2 our results for the energy spectrum are

graphically compared with the experimental values for the case of 76Se

and 106Pd. In the case of 76Se they are, in addition, compared with

the theoretical results of S. G. Lie and G. Holzwarthl. They start

out with the fermion Hamiltonian as described in equation (1.2.3),

then a Bogoliubov transformation is done. Finally they make use of a

modified Marumori's expansion to map the fermion quasiparticle

Hamiltonian into the boson space including boson operators up to

fourth order. Marumori's expansion is modified in the sense that the

boson expansion is formulated from the very beginning in terms of the

collective operators or states. Their phenomenological Hamiltonian

contains seven independent parameters which can be fitted to obtain
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the eight triplet plus quintet members of the phonon spectrum of a

given nucleus. Those parameters make it possible to fit the

experimental data quite accurately as can be seen in figure 5.2.1 (f).

It should be noted however, that dependent on their fitting parameters

they can achieve any possible order for the triplet state and also a

vast variety of energy shifts as shown in their paper for the case of

100Ru.

In contrast to this we have only one free parameter, the

interaction strength, which is fitted such that the first 2+ state has

the experimental value.

We have also compared the crossover transition strength for 76Se

and 78Se to the results of Lie and Holzwarth. Those are listed in

table 5.2.1.

Table 5.2.1 2+
2
- 0+

1
crossover transition strength. The first two

columns of numbers give our theoretical values, where the
first column uses the direct term only for the four
quasiparticle normalization. In the second column the
exchange term was included for calculating the four
quasiparticle norm. The third column of numbers gives the
theoretical values of Lie and Holzwarth. The fourth
column gives the experimental value.11

Isotope theory experiment
c/a c/a c/a

/92+ - 0+
2 1

//32+ - 0+
2 1

76Se 0.368 0.438 0.247 0.139

78Se 0.340 0.423 0.139 0.183
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Figure 5.2.1 Energy level diagrams for 76Se
(a) Experimental values.
(b) Harmonic spectrum using the direct term only for the

four-quasiparticle normalization.
(c) Harmonic spectrum including the exchange term in the

four-quasiparticle normalization.
(d) Results including the two-quasiparticle, four-

quasiparticle coupling using the direct term only for
the four quasiparticle normalization.

(e) Spectrum including including the two-quasiparticle,
four-quasiparticle coupling. The exchange term is
included for determining the normalization for the
four quasiparticle state.

(f) Spectrum of Lie and Holzwarth.
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Figure 5.2.2 Energy level diagrams for 106Pd
(a) Experimental values.
(b) Harmonic spectrum using the direct term only for the

four-quasiparticle normalization.
(c) Harmonic spectrum including the exchange term in the

four-quasiparticle normalization.
(d) Results including the two-quasiparticle, four-

quasiparticle coupling using the direct term only for
the four-quasiparticle normalization.

(e) Spectrum including including the two-quasiparticle,
four-quasiparticle coupling. The exchange term is
included for determining the normalization for the
four-quasiparticle state.
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5.3 Methods for Further Improvements

Our results, including the energy level diagram and the crossover

transition, indicate for all isotopes investigated that the two-

quasiparticle, four-quasiparticle coupling matrix element came out too

strong by a factor of approximately 2.5, i. e. our results are very

close to the experimental values if a factor of 2.5 is included.

Mechanisms that could account for this consitant behaviour are:

Our calculations were done in a truncated space. Including the A

sum in the exchange term presumably lowers the value of the

coupling matrix element.

Since we have used TDA quasiparticles, only ground state

correlations coming from the short range part of the nuclear

force have been taken into account. In order to be more precise

one should use RPA quasiparticle states, which include both

ground state correlations due to the short range part and the

long range part of the nuclear force. The ground state

correlations due to the pairing force are larger by a factor of

about three compared with the RPA particle-hole ground state

correlations. 16

Ccore polarization, which is the effect on the interaction, if

states outside the model space are eliminated.

Coupling to noncollective states17.

All of those effects push the first 2+ level down in energy. If

they are included, the interaction strength needed to fit the first 2+
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state is not as strong, giving therefore a smaller two-quasiparticle,

four-quasiparticle mixing.

In the case of the Palladium isotopes the second 2+ state is

experimentally lower than the two other states of the triplet, whereas

our theory predicts the second 2+ state to be higher than the 0+ and

the 4+ state. This deviation can have its origin in two effects. In

the schematic model the first 2+ state gets pushed down in energy

whereas the second 2+ state gets pushed up in energy. Noncollective

two-quasiparticle states, which have an energy of about 3 MeV and

which are not accounted for in this study, tend to push the second 2+

state down in energy. Another effect being worth investigating is the

influence of the rotational spectrum. Although the nuclei we

discussed are of primarily vibrational character, the coexistance of

rotations and vibrations must not be neglected completely.

Coexistance of the rotational 4+ state and the vibrational 4+ state is

expected to raise the 4+ state in energy.

We have used a degenerate model in order to solve the TDA

equation of motion, since this is the only case in which the equation

is soluble in closed form. Although this procedure is admittedly

crude and is not meant to be a substitute for detailed nuclear-

structure calculations, the assumption of degeneracy for the major

filling shell is not as crude as one might think. The inclusion of

pairing forces puts in a gap between the ground state and the two-

quasiparticle excitations of about 3 MeV for medium-mass nuclei. With

this gap as a base, the variation of two-quasiparticle energies is

very much less than that of the independent particle levels.18
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We have not made a distinction between protons and neutrons.

However, because of the shell structure and the Pauli principle,

differences in the freedom of neutrons and protons to vibrate are

expected and actually observed. The ratio of neutron and proton

multipole matrix elements for collective vibrations differs, in

general, from N/Z. This is particularly true for single-closed-shell

nuclei, where one type of nucleon is "frozen in" by the shell

closure.19 In our work we are dealing with open-shell nuclei since

closed-shell nuclei don't have vibrational spectra as discussed here.

For these nuclei the ratio of neutron and proton multipole matrix

elements for collective vibrations may also depart from N/Z but the

differences tend to be much smaller than for single closed shell

nuclei. In addition to this, we are dealing with nearly isoscalar

states, so the use of an isoscalar force, which does not distingush

between neutrons and protons, is expected to be quite accurate.2°

5.4 Suggested Applications for our Formalism

We have investigated the effect of the four-quasiparticle, two-

quasiparticle coupling matrix element for low-lying 2+ states, but it

can also be applied to high-lying states (2hw). Especially

interesting in this context would be to investigate its effect on the

broadening of giant resonances.

The effects of core polarization on the isospin has so far been

investigated for 2hw two-quasiparticle states.21 Formally this is
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done using the Feshbach formalism to eliminate the 2hw space. This

calculation shows that after the transformed Hamiltonian is projected

into the Ohw space it is no longer isospin conserving, i. e. the

proton - proton force is unequal to the neutron - neutron force. It

would be interesting to see how the inclusion of four-quasiparticle

states affects this feature, i. e. using the Feshbach formalism to

eliminate both, the 2hw space and the four-quasiparticle lhw space,

which corresponds to the same harmonic oscillator energy.
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A. SYMMETRY PROPERTIES OF THE COUPLED FOUR- UASIPARTICLE AMPLITUDE

The fact that the four-quasiparticle amplitude in product

representation (equation 1.4.3) is completely antisymmetric with

respect to permutations of quasiparticles can mathematically expressed

by

121

-p

a (-1) ? XII31/2)
(A.1)

where P stands for permutation and (-1)P is positive for any even

permutation and negative for any odd permutation. Using equation

(1.4.7) the following relation holds for the amplitude in coupled

representation.

< ji I < J w "114 I Al /Mt )

(

apiAt I 7 Pl) Aq.34 T (X. M)
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,i(A si 7, t-4

<X, 11/A,/A1 TM > X1234 ( 101"A))
(A.2)

Using angular momentum algebra, 24 symmetry properties of the coupled

four-quasiparticle amplitude can be derived. Five different examples

are listed below. The 9j-coefficients come from angular momentum

recouplings.
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B. EXCHANGE TERMS

In equations (2.3.10) and (2.3.14) the exchange terms have been

suppressed. That they are smaller can be understood qualitatively in

that the direct terms comprise constructive interference (Y(A))

whereas in the exchange terms the random phases of the individual

summands tend to cancel each other. Furthermore, the exchange terms

are all multiplied by a coefficient coming from the recoupling, which

is always less than or equal to one - usually well below one. For the

selenium and palladium isotopes discussed in this work the exchange

terms turn out to be less than ten percent in magnitude of the direct

terms and in most cases well below. As an example, the tables B.1,

B.2, B.3 and B.4 give the ratio of the exchange term to the direct

term (of equation 2.3.10) for 106Pd and 76Se, respectively.

Table B.1 Ratio of the exchange term to the direct term of equation
(2.3.10) of 106Pd for,-- proton quadrupole transitions

initial state
n 1 j

final
n 1

state exchange term/direct term

3 1 1.5 3 1 1.5 0.003

3 1 1.5 3 3 2.5 0.014

3 1 1.5 3 1 0.5 0.021

3 3 2.5 3 3 2.5 0.013

3 3 2.5 3 1 0.5 0.030

4 4 4.5 4 4 4.5 0.031
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Table B.2 Ratio of the exchange term to the direct term of equation
(2.3.10) of 106Pd for neutron quadrupole transitions

initial state
n 1 j

final state
n 1 j

exchange term/direct term

4 2 2.5 4 2 2.5 0.030

4 2 2.5 4 4 3.5 0.046

4 2 2.5 4 2 1.5 0.541

4 2 2.5 4 0 0.5 0.065

4 4 3.5 4 4 3.5 0.038

4 4 3.5 4 2 1.5 0.066

5 5 5.5 5 5 5.5 0.054

4 2 1.5 4 2 1.5 0.094

4 2 1.5 4 0 0.5 0.100

Table B.3 Ratio of the exchange term to the direct term of equation
(2.3.10) of 76Se for proton quadrupole transitions

initial state
n 1 j

final state
n 1 j

exchange term/direct term

3 1 1.5 3 1 1.5 0.005

3 1 1.5 3 3 2.5 0.027

3 1 1.5 3 1 0.5 0.042

3 3 2.5 3 3 2.5 0.026

3 3 2.5 3 1 0.5 0.061

4 4 4.5 4 4 4.5 0.060
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Table B.4 Ratio of the exchange term to the direct term of equation
(2.3.10) of 76Se for neutron quadrupole transitions

initial state
n 1 j

final state
n 1 j

exchange term/direct term

3 1 1.5 3 1 1.5 0.006

3 1 1.5 3 3 2.5 0.030

3 1 1.5 3 1 0.5 0.046

3 3 2.5 3 3 2.5 0.028

3 3 2.5 3 1 0.5 0.066

4 4 4.5 4 4 4.5 0.066

The ratio of exchange to direct term of eqation (2.3.14) are 0.051 for

106Pd and 0.048 for 76Se.


