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IMPURITIES IN A HOMOGENEOUS ELECTRON GAS

1. INTRODUCTION

The electronic structure of many-electron systems such as atoms, molecules,

metals, and semiconductors is of great importance for analyzing and developing

materials. Hartree-Fock or second quantization calculations for many-electron sys-

tems, especially for solids, are, however, almost impossible or computationally very

demanding. One of the most successful theoretical and practical approaches to such

complex systems is density functional theory, in which systems are described by

the electron density rather than wave functions. Density functional theory has now

been generalized for molecular dynamics, spin-polarized systems, superconductors,

excited systems, time-dependent systems, and so on.

In 1964, Hohenberg and Kohn published density functional theory, in which

the ground state properties of a many-electron system can be calculated in terms

of the electron density by minimizing energy functionals. [1] The Hohenberg-Kohn

theorem, however, has a critical shortcoming in that the energy functionals are

impossible to determine or can only be approximated for slowly varying charge dis-

tributions, as in the Thomas-Fermi theory. The Kohn-Sham equations form an ef-

fective implementation of the Hohenberg-Kohn theorem. They were derived by in-

troducing a non-interacting kinetic energy functional and the exchange-correlation

energy functional and utilizing the energy variational principle of the Hohenberg-

Kohn theorem. [2] Since the exchange-correlation term includes every interaction

other than Coulomb interaction and depends on the entire density distribution, it

is, at present, not possible to calculate the exchange-correlation interaction exactly.
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Hence approximations are needed, for instance, LDA(Local Density Approxima-

tion) and GGA(Generalized Gradient Approximation).' Since the Kohn-Sham

equations are a self-consistent set of one-particle equations, they have been used

widely for computer calculations such as the band structure. [3] [4]

Computer calculations for a model of an impurity atom in a homogeneous

electron gas were performed in 1981 by Puska, Nieminen, and Maninen. [5] This

model has been developed originally to study metal vacancies and has been ap-

plied to chemisorbed atoms on metal surfaces and to molecular bonding. [6] [7]

The density of states induced by impurities were calculated, as well as the im-

mersion energies. Recently, numerical calculations have also been performed for

non-spherical systems, such as an impurity moving through a uniform electronic

gas, and diatomic molecules in an electronic gas, within the Kohn-Sham scheme.

[8] [9]

The important properties of this model were already discussed by J. Friedel

in 1950s in the context of metallic alloys. [10] [11] [12] For a given perturbation

potential due to impurity atoms, a free-electron gas shows two important features,

the Friedel sum rule and Friedel oscillations, which are related to the total induced

charge in the vicinity of an impurity and to the long-range oscillations of the elec-

tronic density at large distances. In Friedel's papers, transition metal impurities in

metals such as Al and Cu were discussed. He considered the d shell of a transition

metal impurity at the Fermi energy and used the concept of virtual bound states.

1The exchange-correlation interaction in LDA dependsonly on the local electron density.

In GGA it depends not only on the local density but also on the gradient of the local

density.
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The density of states at the Fermi energy induced by an impurity is used in the

discussion of a variety of physical properties such as Pauli paramagnetism, orbital

diamagnetism, electrical resistivity, and thermal properties.

This model can be used to study the behavior of a single impurity, for in-

stance, to analyze the violation of Hund's second rule for a single iron atom in

metals. This is important for properties like crystalline magnetic anisotropy and

quenching of the orbital moment. It can also be considered as a first approxima-

tion to analyze any system, consisting of impurities and an electronic gas, when the

impurities hardly interact and lattice vibrations can be neglected. This model can

be used to investigate the magnetic behavior of an electron gas due to an impurity.

Analysis of the spatial distribution of an electron gas and the concentration of

impurities may also shed light on phenomena like diffusion and indirect exchange

interactions via conduction electrons.

The calculations in this thesis first follow the scheme used in the Puska, Niem-

men, and Maninen paper. LDA is used for the exchange-correlation interaction in

this work. Their model is extended for excited systems and spin-polarized systems

with or without an external magnetic field. The spin-moment for the model system

is also calculated, considering spin-coupling only, with an external magnetic field.

A variety of results such as immersion energies, phase shifts, potentials, dielec-

tric functions, partial-wave decompositions of the Friedel sum rule, and electronic

densities are obtained.

Density functional theory and the Kohn-Sham equation are briefly explained

in Chapter 2. The model used in this work is introduced, and theoretical calcula-

tions and general properties of an electronic gas are discussed in Chapter 3. The

numerical methods developed in this work are explained in Chapter 4. The results

and discussion follow in Chapter 5. Chapter 6 is dedicated to conclusions.
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2. DENSITY FUNCTIONAL THEORY

The Hohenberg-Kohn theorem provides the theoretical foundation for func-

tional calculations of the electronic structure for interacting particle systems and

suggests a universal functional FHK {n] which is independent of the nature of the

external potential in a system. The Kohn-Sham equations can be obtained using a

variation principle by comparing with a Schrödinger equation and they incorporate

FHK[n] via the exchange-correlation energy E[n}. E[m} can be approximated as

in LDA or GGA, since FHK[n] is impossible to find. The Kohn-Sham equations are

a set of self-consistent one-particle equations and have a variety of applications,

especially in a numerical way. In this chapter we will review the Hohenberg-Kohn

theorem and the Kohn-Sham equations briefly. The Kohn-Sham equations will

be extended for a spin-polarized system. The exchange-correlation energies and

potentials will be discussed and expressed explicitly within the LDA scheme.

2.1. The Hohenberg-Kohn theorem

In 1964, Hohenberg and Kohn pointed out that it is possible to derive the

ground state properties of a many-electron system in terms of the electron density.

[1] The Hamiltonian for interacting particles under the influence of an external

potential v(r) is of the form [13]

where, in the second quantized notation,

(2.1)
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1

I_V2(r)I(r)dr (2.2)
L2m

r (2.3)

=
f

(r')w(r, r')bi (r')b(r) drdr' (2.4)

where a is for spin degeneracy and m i the mass of particles. Note, that T'7

indicates a two-particle interaction such 4 the Coulomb interaction.

We assume for simplicity that the ground state is non-degenerate. (The

theory can be, however, easily extended to the degenerate case [13].) Since a non-

degenerate ground state çb is determined by solving the Schrödinger equation with

an external potential v(r)

, (2.5)

a map C : V i-+ 1' is defined from the set of external potentials V to the set of

ground states 1. Now, for any ground state, the electronic density in the ground

state q can be calculated by

nfr) = (r)(r)) , (2.6)

which leads to a second map D: c1 -+ N from the set of ground states to the set

of ground state densities. The map CD : V '-+ N clearly tells us that n(r) is a

functional of v (r).

. 1.1. Uniqueness of the external potential in terms of the density

The Hohenberg Kohn theorem states that the map C and D are both

invertible uniquely, that is, the external potential is uniquely determined up to

an additive constant by the ground state density. One can show this simply by



credueio ad absurd'um as in [1]. For the map C, assume that two different external

potentials give rise to the same ground state. Suppose

(t + + W)q5) = E93,iI) (2.7)

and (It + V2 + T'7)) = E93,2q) (2.8)

where Vj V + c by assumption. Note that two potentials with only a constant

difference are equivalent. By subtraction, one has, due to non-degeneracy,

(1 ) ) = (E98,i E98,2) I) (2.9)

Since V1 and V2 are multiplicative operators, one must have V1 1/2 Egs,i Egs,2

which is in contradiction with the assumption at the beginning. More clearly, the

statement can be proved as follows. Assume, for simplicity, that the system has a

single particle with a spin a at position r. Then,

(ra'i = (ra(E98,i

(v(r) v(r))q(r) = (Egs,i Egs,2)cbct(r)

(v(r) v(r)) = (E98,1 E93,2)

assuming that ) does not vanish. Finally,

V1 = dr(v(r)

= (E98,1 E98,2) fdr(r)(r)
= Egs,i Egs,2

Two different potentials, hence, lead to the different ground states and the

map C is invertible.

The proof for the map D follows by the same procedure. Assume that two

different ground states Øi) and Ic2) yield the same ground state density, n1(r) =

n2(r). Then one has
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E93,1 = (1H1&) < (&JHi) = (2IH2 + V1 V2I2)

= E93,2 + f drn(r)(vi(r) v2(r))

Similarly

Egs,2 = (2ft22) < (&J2I1) = Egs,i
+ f

drn(r)(v2(r) vifr))

Now, adding of both inequalities leads to a contradiction again

E9,1 + E98,2 < E9 + Egs,2 (2.10)

and two different ground states qi) and 2), hence, yield different ground state

densities. The map D must be invertible. Due to this invertibility, the ground state

expectation value of any observable O (e.g. H, the Hamiltonian) is determined

by the ground state density and is thus a unique functional of the ground state

density.

([nfiOI[n]) = O[n} (2.11)

The map CD is, therefore, invertible and is thus the ground state density uniquely

determines the external potential up to an additive constant.

2.1.2. Variational principle

Now, the energy functional with the external potential V is, for any density

E[n] = ([n]It+1+T'ITqf[n]). (2.12)

Since there exist a non-degenerate ground state density n98 and ground state en-

ergy E93 for this specific external potential via the map CD, we derive from the

variational principle



r

Egs = E[ngsl = + V + T'7[ngs])

E[n] = ([n]Ii+1+i'iT[n])

E95 <E[n] if n

The exact ground state density is, therefore, determined by minimizing the energy

functional E[n]: E = minE[n].
nEN

Therefore, one can conclude that there exists a unique energy functional for

a given external potential from the Hohenberg and Kohn theorem and the exact

ground state density is determined by the variational equation 8E{n] = 0.

2.1.3. Universal functional FHK[n]

Since the map D is independent of the external potential of the particular

system, one can write the energy functional E[n] as

E[n] = ([n]+'+T'IT[n]) (2.13)

= FHK[n] + fdrvo(r)n(r)

where FHK[n] = ([nfiu'+T'i'i[n]). As one can see FHK[n] does not depend on the

external potential (e.g. the interaction between electrons and nuclei), and it is in

principle possible to calculate the universal functional FHK [n], which is the same for

all electronic systems such as atoms, molecules and solids since, for these systems,

T'7 is the Coulomb repulsion between electrons. Now, the functional FHK En] has

a very important meaning, since once FHK[n] is known, one can apply it for any

systems (any number of particles and any external potential).



2.2. The Kohn-Sham equations

At first sight, density functional theory seems to lead to a new way for the

physics of many-body systems. The universal functional FHK [n] is, however, in

most cases not possible to obtain. One can make some progress to find approxi-

mate expressions for FHK[n] for a gas of slowly varying density or almost constant

density. [1] Kohn and Sham, in 1965, suggested an alternative way to solve the

problem, using a set of self-consistent equations for single particles including the

exchange-correlation potentials. [2] This single particle picture, the Kohn-Sham

equations, of a many-body system is quite accessible especially in a numerical way

and, thus, provides a new computational way using single particle aspects of solid

state physics.

The key point in deriving the Kohn-Sham equations is that, ifn is the ground

state density of an interacting particle system, one can assume there exists a unique

external potential VNI of a non-interacting particle system corresponding to the

ground state density n. (Uniqueness of VNI is proven from the Hohenberg-Kohn

theorem, but the existence of '0N1 must be assumed.) It is possible, now, to de-

rive one-particle equations of the interacting system by comparison with the non-

interacting system.

2.2.1. Non-interacting particle system in an external potential vNI(r)

The Schrödinger equation for a non-interacting system in an external poten-

tial vNI(r) is
1

I ---v2 + vNI(r)j çb(r) = eçb(r). (2.14)
L2m

The ground state is again assumed to be non-degenerate for simplicity.
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The ground state density NI is

nNI(r) = (2.15)

where /.(r) occupies the lowest eigenstates.

If the ground state density NI is given, the external potential vNI(r) is

determined up to a trivial constant from the Hohenberg-Kohn theorem. Since the

wave functions çb (r) of the Schrödinger equation are, thus, unique functionals of

the density NI, = qj([n]; r), the kinetic energy TNI[n] of the non-interacting

system is a unique functional and hence so is the total energy. The kinetic energy

and total energy functional with the ground state density nNI are

r 1

TNI[n] = fdr(r) I_V2(r)I (2.16)
L 2m j

and ENJ[n] = TNJ[n} + fdrvNl(r)n(r) . (2.17)

The ground state density, equivalently, can be obtained from the variational

principle öE = 0 [13} of the Hohenberg-Kohn theorem or the Euler equations:

[ENI[nI
NI f n(r) dr] + vNI(r) NI = 0 (2.18)

8n(r)Snfr)

where INI is a Lagrange multiplier to keep the total number of particles constant,

fn(r)dr=N.

Interacting particle system in an external potential v(r)

The energy functional for an interacting particle system is, from the

Hohenberg-Kohn theorem,

E[n] = FHK[n] +fdrvi(r)n(r) (2.19)



11

If we define E[n] as

E[n] = FHK[n]
f

dr dr' n(r)w(r, r')n(r') TNI[n] (2.20)

where TNJ[n] is the non-interacting kinetic energy, the energy functional follows

the form

E[n] = TNJ[n] + f dr dr' nfr)w(r, r')n(r') + E[n] + f dr vi(r)n(r) (2.21)

The ground state density nj(r) of the interacting system can be obtained

from the Euler equation, [14]

where

[Ei[n]_Lifdrn(r)] (2.22)n(r)
öTNJ [n]

ön(r)
+ vi(r) + fdr' w(r, r')n(r') + v([n}; r) = 0 (2.23)

v([n];r) 8E[n]
8nfr)

As mentioned before, if there exists the unique external potential vNI(r) for

a non-interacting system corresponding to the ground state density ni(r) of the

interacting system, one can find from (2.18) and (2.22) that

VNJ(V) = vj(r) + f dr' w(r, r')n(r') + v([n]; r) NI)

= v1(r) + f dr' w(r, r')n(r') + v([n]; r) (2.24)

where the arbitrary constant in vNI(r) is chosen to cancel out the term (i1

,UNI) and, of course, the potentials on both sides of the equation satisfy the same

boundary conditions.

One can finally write down, the Kohn-Sham equations, a set of the self-

consistent equations of a non-interacting system with vNI(r) corresponding to the

interacting system.
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[ vi(r) +
f

dr' w(r, r')n(r') + v([n]; r)](r) = (2.25)

n(r) = jfr)I2 for the lowest eigenstates i = 1, , N (2.26)

These equations are the self-consistent equations in a sense that one can solve

(2.25) to obtain the ground state density and the effective single particle potential

depends on the density.

2.2.3. Ground state energy of an interacting system

The ground state energy for the Kohn-Sham equations can be easily derived.

From (2.25),

= fdr(r)(_ V2)(r) +fdri(r)2vNJ(r) (2.27)

T[n] fdrn(r)vNI(r) (2.28)

where VNI follows (2.24).

By inserting (2.28) into (2.21), the ground state energy Eg S

Eg
f

dr dr' n(r)w(r, r')n(r') + E[n] fdr v(r)n(r) . (2.29)

2.2.. The chemical potential jt and Fermi surface

The following proof is taken from [13].

With the definition of the energy functional (2.21), equation (2.22) leads to

5E1[n]
= /Lj (2.30)

6nfr)
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If EN is the ground state energy and N is the ground state density of a N-particle

system,

Then,

6Ei[n]
= pj[N]

n(r)
N

= lim = hm dr (nN+f(r) nN(r))
aEN . EAr EN 1

f
Ei[n]

N +O E-+o f ön(r)
N

= limJdrpI(nN+Er) nN(r))
E)M

=

(2.31)

The Lagrangian multiplier, therefore, equals the exact chemical potential of the

interacting system.

The eigenvalues of the Kohn-Sham equation are less than or equal to the

chemical potential p. The Kohn-Sham Fermi surface in k space is, thus, defined

by Fermi p. The Kohn-Sham Fermi surface is, in general, not the same as

the physical Fermi surface, which can be found from the Dyson equation, since

Veff(r) in the Kohn-Sham equation is not the same as the self-energy >(r, r'; E)

in the Dyson equation. They are, however, identical in the case of a uniform

system of interacting particles since the Fermi surface must be spherical no matter

what equations are used. Even in the case of a non-uniform system, it turns

out that the difference between two Fermi surfaces is small since the electrostatic

potential(external and Coulomb potentials) which is the primary term to cause the

anisotropy of the Fermi surface is the same for both cases. (See Chapter 2, [14]

and section 6.4, [13] for more details.)
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2.2.5. Excited states; Eigenvalues in the Kohn-Sham equations

Koopmans' theorem states that the eigenvalue of the eigenstate m in the

Hartree-Fock equation is the same as the negative of the energy required to remove

the electron in the state rn. [15] (This theorem does not apply to small systems. See

[15].) It is natural, thus, to think of higher eigenstates in the Kohn-Sham equation

as those in the Hartree-Fock equation and obtain excitation energies from the

Kohn-Sham equation.

Density functional theory is, however, essentially a ground state and static

(frequency-independent) theory, which means that eigenvalues or energy levels of

the Kohn-Sham equation do not represent excitation energies which are required

to excite electrons. The primary reason is that the effective exchange-correlation

potentials must vary in the excited system. (See Section 4, [13].) One can also

compare the real eigenvalues of the Kohn-Sham equation with the excitation en-

ergies of the Dyson equation. The excitation energies of the Dyson equation are,

however, in general complex, which means the finite lifetime, and the real parts

are in general different from the eigenvalues of the Kohn-Sham equation as well.

[14]

In order to find the excitation energy in the Kohn-Sham scheme, one needs

to solve two Kohn-Sham equations and find two self-consistent solutions for the

ground state and excited state. In this thesis, the excited states for a hydrogen

and a carbon impurity will be examined by varying the number of electrons in the

bound states. It is, however, possible to find the approximate excitation energy

using Janak's theorem and the Slater transition state [13] and also, for an infinite

system, derive a theorem of self-consistent equations similar to Koopmans' theorem

(P. 142, [14]).
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2.2.6. Spin-polarized systems

If there's an external magnetic field, one generally has to consider the elec-

tronic orbital coupling as well as spin coupling. In this thesis, only spin coupling

is discussed and the Kohn-Sham equations are derived accordingly.

The external potential term, (2.1), is modified as follows. [13]

=
f

dr (r) [v0' (r)ö102 + ILBB(r) U1a2 (r)]
2
(r) (2.32)

Ui 02

where 1LB eh/2me is the Bohr magneton.

The magnetic moment density operator is defined as

= JiB1fr)o102(r)r2(r) (2.33)
0102

where o denotes the vector of Pauli matrices.

With the density operator

ñ(r) = ñ(r) +ñ_(r) = ñ0(r) = l,t(r),10(r) , (2.34)

the external potential term can be rewritten as

= fdr [v(r)ñ(r) B(r) . ñi(r)] . (2.35)

Now the ground state density n(r) and magnetization density m(r) is

n(r) = (I(r)) (2.36)

m(r) = (qth(r)qf) . (2.37)

One can work either with (n(r), mfr)) or, equivalently, with the ground spin

density matrix n0102(r) = Note that both cases have

four independent real functions.
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For simplicity, it is assumed that only a z-component in the external magnetic

field B(r) and the magnetization m(r) have a non-vanishing value. Note that, for

a z-component of m(r),

mfr) = /iB(n+fr) n_(r)) . (2.38)

As in the case of the spin-independent Hohenberg-Kohn theorem, two differ-

ent non-degenerate ground states lead to two different spin density matrices (r)

or, equivalently, to two different sets of (n(r),mfr)) or (n+(r),n_(r)).

Now one can derive the Kohn-Sham equations for a spin-polarized system

from the variational principle of the Hohenberg-Kohn theorem as in the spin-

independent case, Sec. 2.2.

[_V2 + vi(r) + atBB(r) + fdr'wfr,r')n(r')

+ v([n+, n_]; r)]q(r) = e(r) (2.39)

n(r) = (r) for the lowest eigenstates i = 1,... , N (2.40)

where a denotes + or corresponding to the spin projection in the z direction.

The exchange-correlation potential v([m+, n_]; r) is, as in the spin indepen-

dent case,
8E[n+, n_]

(2.41)v([n+,n_];r) = 6nfr)
and the functional E[n+, n] is, as in the spin independent case, given by

Ejn+, n_I = FHK[n+, n_] f n(r)w(r, r')n(r') TNI[n+, n_] (2.42)

The ground state energy with an analogy to (2.29) is given by

Eg = f dr n(r)w(r, r')n(r') + E[n+, n_]

- f dr v([n+, n_]; r)n(r). (2.43)



17

2.2.7. Exchange-correlation; LDA

At this point the only problem in the Kohn-Sham scheme is to find a func-

tional E[n] instead of a functional FHK[n] in the Hohenberg-Kohn theorem.

In this work, the local density approximation(LDA) is used for the exchange-

correlation functional E[n].

2.2.7.1. A functional

Suppose there is a functional E[n] for a system with a varying electron density.

A functional E[n], in general, is nonlocal and, thus, E[n] depends on the whole

distribution of the electron density. [16]

If E[n} has the form E[n] = f e[n} dr where e[n] is a density functional, for

a very slowly varying density, e[n] can be expanded in Taylor series in terms of a

density gradient.

e[n] = eo(n(r)) + ei(n(r))Vn(r) +... (2.44)

In LDA, using the first term only, the exchange-correlation functional becomes

E[n] f n(r)e(n(r)) dr (2.45)

where (nfr)) is the exchange-correlation energy per electron for a uniform gas

of interacting electrons with density n. [17] The problem is now reduced to finding

the exchange-correlation energy in a homogeneous electron gas.

2.2. 7.2. Exchange- correlation energy

The energy of the Hartree-Fock model with plane-wave states can be easily

obtained using the Slater determinant or using the field operators in the second



quantization notation (Ch. 5, [15]) or the exchange term of the self energy (Ch.

5, [18]) since the Hartree energy is zero. The exchange energy, subtracting the

kinetic energy, is given by

E(k)
e2kF k_k2iIkF+k)

r 2kFk kFk (2.46)

The average exchange energy contribution per particle to the ground state energy

is easily obtained as well (See [15] and [18]). Allowing two electrons (spin-up and

spin-down) per state,

= 2nkE(k) -
4ir

k

(2.47)

The exchange part (called the Kohn-Sham or Gáspár potential [17]) of the chemical

potential is, using the Seitz's theorem [18], given by

d 4
= (nf) = --kF (2.48)

Collecting the kinetic term and the exchange term gives the first two terms for the

ground state energy per particle

2.2099 0.9163

r
+... Ryd.

r3

where r is the Wigner-Seitz radius, defined by nr = 1.

(2.49)

The exclusion principle in the Hartree-Fock model introduces the strong re-

pulsion between the electrons of parallel spin but the Hartree-Fock model fails to

correlate the motion of electrons of antiparallel spin since the electrons of antipar-

allel spin tends to separate due to the Coulomb repulsion. Now the difference

between the exact energy and the Hartree-Fock energy is called the correlation

energy and thus one can write

2.2099 0.9163
gs + Ryd. (2.50)
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The high density limit of r8 -+ 0 for was first given by GelI-Mann and Brueckner

(1957) and the same result has been obtained by many other people. Quinn and

Ferrell (1958) used the Seitz's theorem to find the correlation energy from the

correlation chemical potential They found ,u, by calculating the self-energy

terms of an electron at the Fermi energy. The exchange-correlation terms in the

self-energy can be categorized in the Feynman diagrams by the number of internal

Coulomb lines [18]. The exchange energy term has only one Coulomb line. The

correlation terms have two or more Coulomb lines. The correlation energy from

one of self-energy diagrams was given by Onsager et al. (1966), which is 0.0436.

The correlation energy in the RPA is

= 0.142 + 0.0622 In r8 + Ryd. (2.51)

Collecting these terms gives the result, with another term from Carr and

Maradudin (1964),

= 0.094 + 0.0622 ln r8 + 0.018r8 in r8 Ryd. (2.52)

This result gives, however, positive values for low densities (r8 > 2.5), which

is not correct since the correlation energy must be negative considering the pair

distribution function. (The correlation effects lower the energy of an interacting

electron system and increases the magnitude of the binding energy.) [18]

Wigner (1934) found that the system with the positive background charge

gains energy by localization of electrons. The total energy for a simple system in

which there is an electron at the center of a sphere in the unit cell of the lattice

(Wigner-Seitz model) and the electric field is zero outside of each sphere due to

the uniform positive charge is 1.8/r8. In the low density limit, subtracting the

exchange correlation energy 0.91 63/r3,
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0.8757
Ryd.

rs

(2.53)

Interpolation schemes between these two limits have been made by several

people. For instance, Nozières and Pines (1958) recommend, for the range of actual

metallic densities, the interpolation result 0.115 + 0.031 ln r3 Ryd.

The correlation energy also can be calculated using dielectric functions for

which there are several models such as Thomas-Fermi, RPA, Hubbard, Singwi-

Sjölander. The Singwi-Sjölander correlation energy is considered to be the best

due to its positive pair distribution function for most densities. [18]
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2.2.7.3. Interpolation scheme; Spin-independent

In this work, the interpolation scheme by Hedin and Lundqvist (See [17] and

[14]) is used. They used a model given by

= (r8) + (r8) = /3(r8)p(r8) (2.54)

where jx(rs) is the exchange-correlation contribution to the effective potential

Veff and /3(r8) is a correlation enhancement factor.

With the expression

/3(r3) = 1 + Bxln (i + , (2.55)

one can obtain, using (2.48),
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c(rs)_Cln(1+) Ryd. (2.56)

= -c ((1 + x3) in (i + + Ryd. (2.57)

where x = r8/A and C = 2B((97r)/4)'/3/7rA. The parameters

A 21 and C = 0.045 (2.58)

are chosen to reproduce the Singwi et al. (1970) results for

Since /3(r8) varies from 1.0 to 1.33 for 0 r8 6, the exchange effect of ,

dominates the correlation contribution for the range of actual metallic densities.

The behavior of the exchange and correlation energies is shown in Fig. 2.1 and

Fig. 2.2. The correlation energies are always negative as it should be. A system
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of the interacting electrons reaches a lower exchange-correlation energy as the

density increases. A simple model, which includes the exchange-correlation and

Thomas-Fermi kinetic energy only, as in Fig. 2.2, however, has a minimum energy

at n 0.015. One can argue that, if Coulomb effects and the variation of the

wave functions are neglected, a system of interacting electrons favors the density

n 0.015.

2.2.7.4. Interpolation scheme; Spin- dependent

The LDA can be extended for the spin-polarized case (called the local spin

density approximation, LSDA) and, by choosing the z-axis along the local spin

direction,

E[n+, n_]
f

dr (n(r) + n_ (r))e(n(r), n_(r)) (2.59)

and the variables are now n+(r) and n(r) or

n(r) =n(r)+n_(r)

and (.(')
nfr) n_fr)

nfr)

where ( describes the degree of local magnetization. For instance, the exchange

energy can be, using a simple superposition principle (Ch.5, [13]), written as

E,0j[n,(} = n}

which can be expanded in a series using a gradient expansion. In lowest order, the

exchange energy per particle is

fr) = [(1 + ((r))1 + (1 ((r))1] (2.60)
2

where e follows the form (2.47).
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For the spin-polarized case, there are several parametrizations, such as von

Barth and Hedin (1972), Gunnarsson and Lundqvist (1976), and Monte Carlo

results of Ceperley and Alder (1980). (See [13] or their papers for more details.)

In this work, the parametrization of von Barth and Hedin is used. They used a

generalized random phase expression for c in terms of the polarization propagator

and the two-bubble ring approximation for the irreducible propagator. [19]

The parametrization is based on an interpolation between the paramag-

netic(unpolarized, (= 0) and the ferromagnetic(fully polarized, (= ±1) state:

f(n(r), ((r)) = e(m(r), (fr)) + (m(r), ((r)) (2.61)

f(n(r), ((r)) = (n, ( = 0) + ((n, ( = 1) j(fl, ( = 0))f(((r)) (2.62)

where i denotes the exchange (i = x) or correlation (i = c) contribution to the

exchange-correlation energy per particle. The interpolation function is:

(1 +((r))1 + (1 ((r))1 2
f(((r)) 2/ 2

(2.63)

from which one can obtain again the (-dependence of the exchange energy term

(2.60). The exchange energy in the paramagnetic limit, c(n, ( 0), is given by

(2.47). In the ferromagnetic limit, (n, ( = ±1) = 21/3e(m, ( = 0).

The correlation energy follows again the Hedin-Lundqvist form using the

parameters

(= 0: C" = 0.0504, A" = 30

(= 1: C' = 0.0254, A' 75

The exchange-correlation potential can be easily calculated using (2.41) and

(2.59).

cr0
v ((n++n_)(n+,n_)) (2.64)

afxc

For instance, v = f(n+, n_)) + n (2.65)
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FIGURE 2.4. The exchange-correlation energy per electron from the parame-
trization of von Barth and Hedin. m = n where n is the total density.

After some algebra,

= ((n, ( 0) + 7(Ec(n, ±1) (n, ( = o)))(1 +

/
C1ri 11 + -) 'y(Ec(n,( = ±1) c(n, =

\ r3,,

where = _CF'1n(1+) +C"ln(1+) (E(n,( = ±1) c(n,( = 0))

4and 7 = 3(2'/-1)

Since the correlation energy for the spin polarized case uses the Hedin-

Lundqvist model which is already obtained for the non-spin polarized case (al-

though the coefficients are different) the behavior of c and v, for the spin-

polarized case is not much different from those for the non-spin polarized case.

(See Fig. 2.4 along m = 0.) Note that is the exchange-correlation energy per

electron.
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FIGURE 2.5. The exchange-correlation energy n.

The behavior of the correlation effect in a polarized case (m 0) is, however,

different due to the degree of local magnetization. Notice that the exchange-

correlation potential for spin-down has the mirror image of that of spin-up and

satisfies the symmetry relation v(() = v;((). Along the line m = n (fully

polarized limit) in Fig. 2.8 and Fig. 2.9, the exchange potential vanishes and the

correlation potential opposes this effect. [13] As a result, the correlation effect

reduces the polarization dependence of v, which is consistent with the behavior

of the pair distribution function. [18]

A system with a uniform density can reach a lower exchange-correlation

energy as the magnitude of m increases as shown in Fig. 2.5. The kinetic en-

ergy ri TTF, however, makes the situation opposite and dominates the exchange-

correlation energy especially for high densities. The system reaches a higher energy
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due to the term n TTF as m( increases in most of the density range.(See Fig. 2.6)

One can notice, however, in Fig. 2.7, that for extremely low densities (n 0.001)

the exchange-correlation energy dominates the kinetic energy n TTF as mj in-

creases and thus n TTF does not keep the system away from a polarized state.

The density ii at which there's no dominant term between n TTF and n and

the system is in equilibrium is r. 0.00 153.

One can conclude that the exchange energy favors a spin-polarized solution

and the kinetic energy opposes the exchange-correlation effects.
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FIGURE 2.6. The exchange-correlation e and Thomas-Fermi kinetic energies
TTF = 2.2O99/r multiplied by the electron density n.
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FIGURE 2.7. The exchange-correlation and Thomas-Fermi kinetic energies for
extremely low densities.
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FIGURE 2.8. The exchange-correlation potential v for the spin-up density.

29

FIGURE 2.9. The exchange-correlation potential v for the spin-down density.
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3. A MODEL AND ITS PROPERTIES: AN IMPURITY IN A
HOMOGENEOUS ELECTRON GAS

Immersion energy calculations for an impurity in a homogeneous electron

gas can be simplified using the symmetry of the potentials. Physical quantities,

like density of states and phase shifts, are very important in the discussion of

theoretical aspects, such as immersion energy calculations and the behavior of an

impurity, as well as in the discussion of numerical aspects, such as normalization

conditions for scattered wave functions and criteria for the maximum number of

angular momentum 1 for each momentum k. Various aspects of an impurity system

can be examined in terms of Friedel oscillations, dielectric functions, virtual bound

state resonances, and scattering lengths.

3.1. An impurity in a homogeneous electron gas

The model system used in this work consists of an impurity atom immersed

in a homogeneous electron gas with a uniform positive background charge density.

(See Fig. 3.1.) This impurity system is neutral and also infinite. The immersion

energy is now calculated by subtracting the energies of two isolated systems, an

impurity atom and the background, from the impurity system.

+ . =

Epur. Emp

FIGURE 3.1. An impurity system consists of an impurity atom and a homoge-
neous electron gas. The electron density fluctuates due to the impurity atom.
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Atoms V. B. H. Experiment1 KS-KG1 KS-X1 HF'

Li 14.710 14.956 14.656 14.349 14.865

Ne 256.747 257.880 256.349 254.986 257.094

K 1195.943 1199.97 1196.215 1193.387 1198.329

TABLE 3.1. Energies of free atoms (in Rydbergs).

Atoms V. B. H. Experiment' KS-KG' KS-X' HF'

Li 0.417 0.396 0.396 0.331 0.393

Ne 1.641 1.585 1.657 1.551 1.461

K 0.347 0.319 0.330 0.271 0.295

TABLE 3.2. Ionization energies of one electron from a neutral atom (in Rydbergs).

Eimm = Eimp Epure Eatom (3.1)

The energy of a free atom Eatom is easily calculated by solving the Kohn-Sham

equations for bound states. Some examples from this work (V. B. H.), in which

spin-polarized and spherically symmetric systems are used, are shown in Table 3.1

and 3.2 and are compared with the results of Tong and Sham {20]. KS-KC denotes

the exchange-correlation energy in which the correlation energy is simply inter-

polated between Gell-Mann and Brueckner and Wigner schemes. KS-K and HF

1Ref. [20]
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denote the exchange energy only (--) and Hartree-Fock calculations respec-

tively. (See [20] for more details.) Ionization energies can be found by evaluating

E[N] E[N 1], as mentioned in Sec. 2.2.5.

Differences between numerical calculations and experimental values for free

atom energies are larger than those for ionization energies. LDA gives relatively

large numerical errors for core states such as is and 2s states due to the rapid

variations in the density. Numerical errors are, however, reduced in ionization

energy calculations since core states in E[N] and E[N i] do not vary much and

thus errors are canceled out. The same reasoning applies to immersion energies,

which is explained in detail in Sec. 4.4.5.

3.2. Energy calculation

Since this work focuses on spherically symmetric potentials, the Kohn-Sham

equations and density and energy calculations can be greatly simplified and the

computational work can be reduced using this spherical symmetry. It is, however,

important to extend this work to non-spherical systems, since most systems such

as molecules and solids have non-spherical potentials and even in the case of a

single impurity atom, the electronic structure and immersion energies depend on

the non-spherical densities if the angular momentum shell of an impurity atom is

not fully occupied and thus the spherical symmetry is broken. Phase shifts are

very important quantities used to calculate density of states and energy and also

provide boundary conditions for scattered states. In this section, the Kohn-Sham

equations for non-spherical potentials are briefly introduced and phase shifts and

energy calculations will be reviewed.
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3.2.1. Symmetry in potentials and phase shifts

Since angular momentum shells in general have cylindrical symmetry (q sym-

metry), non-spherical potentials have the same symmetry. (Note that v depends

on oniy local density and is q-symmetric. The readers may refer to [21], [9], and [8]

for this section.) The Kohn-Sham equations can be simplified accordingly. There-

fore, if the input density used to calculate the potentials of the KS equations is

-symmetric, the output density from the KS equations is also çb-symmetric since

[H, L] 0 and the iterative procedure of the KS equations does not break the

symmetry. The Kohn-Sham equations are, in Rydberg atomic units (APPENDIX

B),

{_V2 + Veff(r)} bj(r) = qb(r) (3.2)

The angular dependence of the Kohn-Sham states '/j (r) can be expanded in terms

of spherical harmonics.

uitm(r)y()
r

Im

(3.3)

One can express the electronic density n(r) as a sum over bound states and scat-

tered states with a reference of zero-energy.

lim Veff(r) = 0 . (3.4)
r-*x

The total density is, as in (2.15),

N M
n(r) nb0d(r) + nc01(r) = 1./boundfr)f2 + ,condfr)12 (3.5)

i j

where i and j are ordering indices for the lowest occupied states, and i in !)0uh1c(r)

and j in ,c0(r) denote the KS states in which f < 0 and > 0, respectively.
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Note that m is a good quantum number since [H, L] = 0 and the Kohn-Sham

equations can be written down for each and m value.

Using (3.3), one obtains coupled equations, similar to radial equations for a

spherically symmetric potential,

uzjm(r)
{-v2 + Veff(r)} 1mYjm(r) = Yim(r)r

Im Im

by projection onto Yi'm@lr),

where

Id2 1(1+1)1
+ f

r2 ]
ujjm(r) = V'(r)uji'm(r) , (3.6)

1'

V(r) = f dY (r)Ve11(r,0)Yprn(r) . (3.7)

Notice that since Veff(r, 0) does not depend on , V(r) and the solutions in 3.6

are real.

The linearly independent solutions '4m (j is a simple ordering index2 varying

from 0 to Imax) can be found from coupled equations (3.6) and their behavior at

small r is

00

limujm(r) l_2H1bri_1 , (3.8)
r*O

j=1

which provides the boundary conditions of independent solutions at small r. (See

APPENDIX C.)

One can now expand Ujim in terms of linearly independent solutions.

ujjm(r) = 7im(7) , (3.9)

j

2one has to use the cut-off maximum 1max in a computer program.
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where the coefficients can be determined by the asymptotic behavior of the

solutions and do not depend on 1 but on , and m. One can determine cc by

boundary conditions, which uniquely determines the radial wave functions Uiim(T)

and Kohn-Sham eigenstates r). For instance, one has, for bound states, two sets

of linearly independent of solutions which are ujm(r) from the outward integration

started from the origin and Vm(T) from the inward integration started from the

infinity. The asymptotic behavior of Vm (r) is

lim virn(r) -' 83i exp' . (3.10)
r*oo

The condition for the existence of bound states is that the two sets of linearly

independent solutions must match at an intermediate r.

= 13Yvirn(r) (3.11)

(3.12)

Since a nontrivial solution exist only if the determinant of (3.11) is zero, one needs

to search for the zeroes of the determinant to find bound states. Notice the Eq.

(3.11) becomes the standard Wronskian condition for the spherically symmetric

potentials. Once the bound state energy has been determined, one can use the

singular value decomposition method (APPENDIX D) to find the eigenfunction

/'j (r). For scattered states, one can use the asymptotic behavior of the scattered

wave function for large r to determine the coefficients cc. Notice that the wave

number vector k in uklm(r) also depends on the direction of the incident plane

wave, which thus leads to considerably more computational work compared to

spherical systems. (The readers refer to [9] and [8] for more details.)
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In addition, it is known, in a case of a free atom calculation, that the energy

difference between the non-spherical potential and the spherical potential is much

smaller than that between the non-spin polarized and spin polarized systems. [22]

A spherical potential can, therefore, be considered the best for a first try

and a spin-polarized system with a spherical potential still has many interesting

properties. If the potential is spherically symmetric, the angular momentum 1

is a constant of a motion and also a good quantum number since [H, L2] = 0.

The eigenenergies do not depend on 1 and m and eigenstates are degenerate. The

coupled equations (3.6) can be simplified to the radial equations.

d2 1(1+1)1
+ i,i 2

]
u,1(r) = V(r)u,1(r) (3.13)

For scattered states,

1d2 1(1+1)1
I + k[dr2 r2 ]

uk,1(r) V(r)uk,l(r) . (3.14)

If the potential vanishes for the exterior region r > Rb, the solutions for the

scattered states in (3.14) follow a form of free particle waves.

t1k,l (r)
Rk,j(r) = = A1j1(kr) + Birij(kr)

r

Using the asymptotic approximations

uk,1(r) sin(kr - 1!!) cos(kr 1)
A1r kr kr

r > Rb (3.15)

for kr >> 1 . (3.16)

If the potential vanishes at the origin (r = 0), B1 must be zero as n1 diverges at

the origin. The intensity of scattering by the potential, hence, can be compared

with the ratio B1/A1. The phase shift 6, is now defined by

B1
= tan61

For large kr, (3.16) can be written as

(3.17)
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uk,l(r) sin(kr l +
for kr >> 1 , (3.18)

r kr

from which one can deduce that the quantity 8 represents the phase difference

of the radial wave function between the scattering (V 0 and 0) and the

non-scattering (V 0 and 8 = 0) cases.

The radial-wave solution of a free particle in the scattering case can be rewrit-

ten, using (3.17), as

Uk,1(T) iöt[cosokjjl(kr) Slfl 6k,Inl(kr)] r > Rb , (3.19)Rk,1(r) = e
r

where the normalization constant is chosen so that Rk,1(r) is jj(kr) for V = 0.

Note that the wave function for r > Rb is [23]

1
'k(r) (2)3/2 (21 + 1)Rk,l(r)Pl(cosO) r > Rb (3.20)

1=0

and thus the electronic density is

2 kF

n(r)
f

dk (kbk(r)2 (3.21)
(2ir)3 o

8ir kF

(2)3
(2l + 1)

I
dk k2(Rk,l(r))2 . (3.22)

0

The boundary condition for the interior radial wave function (r < Rb) is the

logarithmic derivative at the boundary.

(1 dR
dr

r=Rb

( 1 dRt

)r=Rb
Rct drk,1

(3.23)

where R is a interior radial wave function and R a exterior radial wave func-

tion which is given by (3.15).

One can easily obtain, using the phase shift definition (3.17),

kRbj((kRb)uk,1(Rb) + jl(kRb)uk,z(Rb) Rbjl(kRb)'i41(Rb)
(3.24)tan 6

kRbm(kRb)uk,1(Rb) + nl(kRb)uk,1(Rb) Rbn1(kRb)u',l(Rb)



where uk,1(r) is a interior solution (for r < Rb).

Once the radial equations (3.14) for r < Rb are solved, the phase shift can be

obtained by (3.24) and normalization of the radial wave function can be performed

by (3.19). For very small kr, one can use the asymptotic approximations3 again

and obtain the expression

tan8j+a1k21' ask+O . (3.25)

For s-waves, this equation becomes

tan6060+a0k ask*O . (3.26)

One sees that the scattering length4 a0 is a slope of 5 (k) for small k values, which

can be used to determine whether the potential is attractive or repulsive and also

to determine the required interval of a k-mesh for small k values. If there's a

virtual bound state (scattering resonance) around the bottom of conduction band,

the scattering length will be very large due to the large density of induced states for

small k values. In this case, one needs to use a corresponding very small interval

in a k-mesh around k = 0.

3r - 0, krjj(kr) (kr)11/(H02i -f- 1) and krnj(kr) (lli2i + 1)/(kr)1,

r -* , krjj(kr) sin(kr lir/2) and krnj(kr) cos(kr lir/2).

4a1 is called the scattering volume.

51n the computer program, one has to use discrete values of k for the continuum states

k = 0. kF and the interval between k values affects the numerical precision of inte-

gration in k-space. The larger the magnitude of ao is , the smaller the interval between

small k values is.
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3.2.2. Density of induced states in terms of phase shifts

The density of induced states can easily derived from the phase shifts as

follows. [18] If one can assume all charges are contained in a very large sphere of

radius R0 (V(Ro) + oc), the radial wave functions for scattered states must vanish

at r = R0. The asymptotic approximations3 can be used again due to the large R0

and one can obtain, using (3.16), boundary conditions for free particle states and

for scattered states. For free particle states,

171

kR0 = nf 71

2

and for scattered states,

One can assume that k is continuous due to a very large radius R0 (kR0 >> 1) and

obtain the number of induced states per k, AD(k),

1 d5 (k'

AD(k)dk=dkd1c=_> dk

,m
'dk (3.27)

I ,m,u

where do1(k) is summed over 1, m, and a to include the degenerate states.

3.2.3. Immersion energies

If Eatom is given in the immersion equation (3.1), the only term which one

needs to find is Eimp Epure. This is composed of the induced kinetic energy, the

electrostatic energy, and the exchange-correlation energy.

Eimp Epure = /2T + /C + /2E (3.28)
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1. The kinetic energy AT

The kinetic energy which is similar to (2.28) can be written as

AT = fdrn(r)veiifr)

= ATbOlirnI + ATC0

=
(f dr

abound
(r)ve11(r) + f dr

cond
(r)veff(r))

where i includes the spin s and bound and cond denote bound states and

scattered states respectively.

For bound states,

N
ATb0und

= - f (r)ve11(r) , (3.29)
i

where i is only for the occupied bound states.

Similarly, for scattered states, since k is continuous,

kF

ATc0nd
f k2AD(k) dk f dr cond (r)v(r) , (3.30)

where AD(k) is the number of states per k induced by the potential veff.

The first term can be rewritten, using (3.27) and E = k2, as

kF

/
kAD(k) dk = f k

dö(k)
dk (3.31)

Jo

=
IEF

dE (3.32)
1,m,TJ0

1 EF

= Y EF8m(EF)
f 6m(E) dE (3.33)

71
-'

1,m,r 1,m,r

where EF is the Fermi energy which is k. Adding the kinetic energies for

the bound and scattered states together,
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N
AT = fdrn(r)veii(r)

1
fEF

+EF6m(EF)__j m(E (3.34)

t,m,u

Note that the first term in (3.33) is the energy, EFZ, required to add the

extra Z electrons to the system, which is easily verified by the Friedel sum

rule (See (3.45).) and the second term is the kinetic energy caused by the

interaction between an impurity and an electron gas in a metal.

2. The electrostatic energy AC

Since the Hartree energy of the background system which has a uniform

density n0 is zero, one can write the Coulomb energy as

AC = e2
f

dr dr'
An(r)An(r')

e f.dr An(r)Vext (r) (3.35)r'-rI
= e2fdr (fr, An(r') An(r) , (3.36)Jr'rJ r1

where An(r) = rifr) nofr) and the second term () is the external po-

tential due to the nucleus of an impurity atom. However, this can be further

simplified using [24]

fdr'
Ir

-4 f
P1(cos 9)r'2 dr' sin dOd4' (3.37)

= 2ir f dr' r'2 f Pi(x)dx (3.38)

where 0 is the angle between r and r' and P1 (x) are the Legendre polynomials.

Using the fact that Po(x) = 1 and f11dxPj(x)Po(x) = 2

Idr'
1

=
f

r'2 dr' + f r' dr'1 . (3.39)j rr' Lr ro r ]

Finally,
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pRb

LC = 4irj rzn(r)
ro

x e2 [2
f

n(r')r'2 dr' + 2r
f

n(r')r' dr' z] dr . (3.40)

3. The exchange-correlation energy LEXC

The exchange-correlation energy for non-spin-polarized systems is simply

E[n] E[no], in which n0 is the background electron density and E[n] =

f dr nfr)f(nfr)).

The exchange-correlation energy for spin-polarized systems can be written

as

m] E[i4, n] for spin-up (3.41)

+ E[n, +] n} for spin-down, (3.42)

where n is the spin-up density and n is the spin-down density.

Now, the immersion energy is

Eimm = fdrn(r)veii(r)

+ Eö(EF) J
6jE) dE

l,m,o

Rb r Rb

+ 4e2
f

rn(r) [2
f

n(r')r'2 dr' + 2r
f

n(r')r' dr' z] dr

+ n] nfl

+ E[rt, n] n] Eatom (3.43)

Note that the effective potential energy is, by (2.24) and (3.39),

Rb

eVe ff(r) = 4 e2
f

n(r')r'2 dr' + f n(r')r' dr']
Lr ro

e2Z- + v(n(r)) v(no) (3.44)
r



43

3.3. Friedel sum rule and Friedel oscillations

Two important phenomena in many-body problems are the screening of an

impurity atom in an electron gas and the oscillatory behavior of the electron density

in the vicinity of an impurity atom. [10] [11] [12]

The number of induced electrons due to an impurity atom can be easily

obtained using (3.27).

AN = z dk AD(k) dk
1 rn(k)

(21 + 1)61(kF) , (3.45)
1,m,o- I

where Z is the positive valence on an impurity, the factor of 2 is the spin degeneracy

a, and (21 + 1) is the orbital degeneracy related to m. This relation is called the

Friedel sum rule and states that the displaced electronic charge AN e exactly

cancels the charge Z e of the impurity and that the Coulomb potential of 1/r

becomes a screened potential with the density of the screening electrons determined

in a self-consistent way. It should be noted that if an impurity atom has one

electron in bound states and thus has an excess valency Z 1, one has to remove

the contribution 5/ir of the single bound state on the right-hand side of (3.45).

The value of the phase shift for a bound state should be it to be consistent. [15]

This is actually another statement of Levinson's theorem.

In order to see how the density varies at large distances (Friedel oscillations),

one needs to take the asymptotic limit. (See Sec. 3.2.1, [15], and [18].) Since the

radial wave function of free particles depends on only j1(kr)) as mentioned in Sec.

3.2.1,



2 dk (I,,k(r)I2 - 4k(r)12)n(r) no = Ln(r)
(2ir)3 o

8ir rkp

(2ir)3
>2(21 + 1) I

Jo

1 PkF

urn n(r) = irr >2(21 + 1) I

Jo

1
kF

=--->2(21+1) I
Jo

dkk2((uk1(r)) (jj(kr))2)
r2

(3.46)

(3.47)

dk (si n2 (kr + 81(k) lir/2) (sin2 (kr lir/2) (3.48)

dk (cos(2kr lir) (cos(2kr + 261(k) lir) , (3.49)

where the normalization constant for radial solutions uk(r) is chosen as in (3.19).

Notice that one can use (3.47) to find the density difference for scattered

states numerically.

Approximately using 81(k) = 61(kF) + (k kF)(dS/dk), [18]

(_i)I
lim LXn(r)

2ir2r2
>2(21 + 1)

r-+oo

pkF d6
x J dk cos(2kr) cos(2kr + 261(kF) + 2(k kF)) (3.50)

>2(21+ 1) [Sifl(2kFr) (sin(2kFr + 2öI(kF)))J

dk

(3.51)

_() >22(21+1) sin(61(kF)) cos(2kFr + öj(kF)) + O() (3.52)

The electronic density difference at large distances oscillates with the wave number

2kF and decreases as r3. The Friedel's theorem is independent of the nature of

the impurity atom and the impurity determines only the values of phase shifts. [18]

The wave length ) r'i 'lr/kF is thus frequently used to verify the numerical results

as in Ch. 4 and 5.

3.4. Dielectric functions

The screening of the Coulomb potential of an impurity and the behavior of

the induced electronic density can be derived using dielectric functions as well. [15]
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[18J It is convenient to define the dielectric functions using potentials since one has

to use potentials in the Kohn-Sham equations and the Fourier components of the

potential are easily calculated numerically. The dielectric function can be found

in the usual definition,

Eq + 4lrPq = Dq f(w, q)Eq , (3.53)

where Eq is the longitudinal electric field. If one writes the effective potential Veil

as the external potential Vext plus the induced potential Veff = ve2t +

using eEq = iqVq, one can obtain from (3.53)

VqU - Vmnd = VCXt = (w, q)V (3.54)

Vqt
(3.55)

Vq

Note that Pq = E/4ir. Since the dielectric function is calculated as the ratio

of the external potential to the effective potential, one can estimate the response

of an electron gas due to an impurity atom, which is very important in a sense that

one needs to determine the stability of the self-consistent procedure for a particular

impurity atom. (See Sec. 4.2.)

If the charge of the impurity is Z, the external potential becomes

Z 1

(2ir)3 f
dqe

2
(3.56)

The effective potential in the linear response region is

V(r,w) (2)
fdqemv(w,q) (3.57)

(2) f
dq eiQr

Vt(w, q)
(3.58)

(w, q)

(2ir)3
fdqem Z4ir

(3.59)
q2e(w,q)



Density functional theory is essentially a static theory and further more if the

impurity is stationary, one can use w = 0. The Poisson equation is

V2Vefl'(r) = 47r[Ln(r) + ZS(r)] (3.60)

where Ln(r) is the charge induced by Z8(r). The screening electronic density is

now

z
n(r) (2)3

fdqer i) . (3.61)

One notices that if there is a singularity in the dielectric constant, the screening

electronic density will be oscillating as the Friedel oscillations.

The total induced charge is

= fdrn(r) (2) fdqdre i) (3.62)

= zfdq6(q) i) (3.63)

=
(

(3.64)

If one use the Thomas-Fermi dielectric constant for f(0, q) ([15], [18], and [25]),

ETF(0, q)
q + k

(3.65)
q2

=
0)

i) = z (3.66)

where k2 - 4e2mkF = 4.6/r8 and r is the Wigner-Seitz radius. The Thomas-Fermi
s h2ir

dielectric constant shows the correct Friedel sum rule result but does not include

the Friedel oscillations. The effective potential screened by the electron gas is

V(r,w)
(2ir)3

fdqe--1i_q2
(3.67)

q2 q2+k

=
. (3.68)

r



Note that this potential is also exactly the same as the Yukawa potential. The

screening length is defined by (3.67) as = 1/k3 r2.

The Lindhard dielectric constant (at T = 0) can be derived by the self-

consistent field [15] or RPA approximations [18] or straightforward calculations

[25]. The dielectric constant in the Lindhard theory is

4lre2mkF
(3.69)fL2fl()=l+222

L
4qkF q-2kF]

Note that the Lindhard dielectric constant is not analytic at q = 2kF, which results

in that the induced density and the screened effective potential of an impurity

charge oscillate as cos 2kFr. The Friedel's theorem has been verified again with

dielectric constants. The limit of the Lindhard dielectric constant as q + 0 is just

the Thomas-Fermi dielectric constant. As one can notice, the dielectric constant is

in general getting close to 1 as q increases, which means the effective potential at

high q's will be almost same as the external potential and thus the induced density

at high q's does not contribute much. However, if there is a virtual bound state at

high q values, one can see a small peak in the dielectric function at corresponding

q values since there's a contribution of the induced density at the q values to the

dielectric constant. (see Ch. 5.)

3.5. Virtual bound state resonance

If an impurity atom has bound states, the electrons in bound states will be

localized in the vicinity of the impurity ion. If the attractive effective potential of

the impurity is reduced or not sufficiently strong enough to have a bound state, the

bound state will be merged into the conduction band in a metal. In this case, the

electrons with positive energy relative to the bottom of the conduction band still

tend to localize around the impurity ion and induce a narrow peak in the density



of states of the conduction band, which is called a virtual bound state resonance.

A virtual bound state can be seen very well in the non-interacting Anderson model

by calculations of density of states using Green's functions. [26] The Hamiltonian

takes the form, in the non-interacting Anderson model,

H = + kCCk,o + ( VkC1Ck,O. + V4,aCd,o) , (3.70)

where Vk is an overlap matrix element between the atomic d level of the impurity

ion and the conduction electrons and d is the energy of the d level of the impurity.

By taking appropriate matrix elements of ( ± is H)G() = I, one can find

the coupled equations of Green's functions, which lead to the T matrix element by

comparing with the expression G = G + GT(f)G04. Note that = E ± is.

(kT(e)k') = VGd(E)Vk' , (3.71)

where

1
= (3.72)

E+i5fd> Vk2
k E+isfI.

One can find the phase shift from T matrix element using the prescription

lim80 = P + iir8(x).

8() = arg det T() (3.73)

tan
(_c+cd+A(c)

() )
(3.74)

where

A(c) = P lk:, L(f) =
I

V6(c Ek) . (3.75)

One can derive the density of states p() from the expression of the Green's function

p(e) = +ImTrG(f) [26] or from the Friedel sum rule (3.45). The density of state

induced by the impurity is given by
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1 d6(c)
zp(c)

ir de
' (3.76)

where 6(c) = 2 >(21 + 1)oi(c) for spherically symmetric potentials. If one tries to

find A(c) and L(c) with a simple density of states,

Po(c) = Po for D < <D , (3.77)

by neglecting the k dependence of 17k, one can obtain

= 7rpoV2 = C for D <c < D , (3.78)

=0 for c<Dorc>D (3.79)

A(c) = poVI21n I I (3.80)IDcl
Note that A(c) can be easily calculated by the Kramers-Kronig relation.

1
dc' (3.81)A(e)_ D

It can be shown that the density of induced states approximately follows a

Lorentzian form and thus there's a virtual bound state at c.

71

6(c) = tan (3.82)

Lp(c)
dS(c) 1 C

(3.83)
dc qr(c_c)2+C2

where c A(c) = 0. Fig. 3.3 shows the density of states induced by the

impurity with the density of states (Fig. 3.2) in the conduction band. Since the

potential (V = 0.13) is weak and d = 0.3 is well within the conduction band,

there is a resonance around the energy of 0.3. This virtual bound state becomes

a real bound state below the bottom of the conduction band for V < 0.6. (Fig.

3.4) Since there is one electron in a bound state for V < 0.6, the number of

electrons in the conduction band is zero as shown in Fig. 3.4. Note that in this
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FIGURE 3.2. The density of states P0(E) in the conduction band and the corre-
sponding phase shift. d 0.3 and /(E) = (-0.13)2irpo() are used.

-0,5 0.5

FIGURE 3.3. There is a virtual bound state resonance at the solution of
A(E) = 0. The density of states Lp(E) induced by the impurity. Cal-

culated from Fig. 3.2 in Mathematica.

case the system has always one extra electron due to the impurity, regardless of

the number of virtual bound states. Actually, the transition between bound and

unbound states is smooth and the properties such as the total energy are smooth

functions of the strength of the potential as well. [27]
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FIGURE 3.4. Shows how the density of states zp(e) varies in the conduction band
for the different strength of the potential. Calculated from Fig. 3.2 in Mathematica.
The number of electrons in the conduction band is obtained numerically.

3.6. Scattering length and bound state energy

The purpose of this section is to give emphasis to the relationship between

the scattering length and the bound state energy, which easily can be derived for
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scattering by a spherically symmetric square-well potential at low energies (such

as a deuteron system). [28] [29] Notice that it is sufficient to consider only the

S-wave for low energies. Suppose the potential has the form,

V(r)=Vo forr<r0

=0 forr>r0 (3.84)

One can immediately write the corresponding radial equations and solutions for

bound states of the energy EB,

d2(r)

+ k2u(r) = 0 and u(r) = Asin(kr) for r <r0 (3.85)

ku(r) = 0 and u(r) = B exp(kBr) for r > r0 , (3.86)

with k2 = Vo EBI and k = EB. The boundary condition at r = r0 gives rise

to

kcot(ka) = kB . (3.87)

Since the deuteron system has a small binding energy El, using k0 k(k0 = V0'12),

k0 tan(1 koro) = kB (3.88)

If k0r ir/2, one obtains

it kB
k0r0 = + . (3.89)

2 k0

For low-energy scattering, similarly,

u(r) = Asin(kr) for r <r0 (3.90)

u(r) = Bsin(k'r + 8) for r > r0 , (3.91)

with k2 = V0 + E and k'2 = E. Using the boundary condition at r =
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k cotkr0 = k' cot(k'ro + ö) (3.92)

tan kr0 tan k'r0
tans = (3.93)

1 + tan kr0 tan k'r0

For k' + 0, one can use k + k0, which leads to

5 tanS k'r0
k0r0

i) (3.94)
tan k0r0

Note that the total cross section is given by

02urn = sin
k'-*O k'2

4ir(7) (3.95)

4r [To
k0r0

2

k0r0
i)] (3.96)

= 4ira2 , (3.97)

where the scattering length a is defined by

S ak' as k' + 0 (3.98)

and k0 cot k0r0
a

(3.99)

The quantity 4ira2 only depends on the potential.

One can also rewrite (3.93) to obtain

k'cot6
kcotkr0 + Wtank'r0

(3.100)
1 cot kr0 tan k'r0

One finally can expand (3.100) in terms of k' keeping terms up to k'2, with (3.99),

k = ,/kl2 + k02 k0 + , and tan k'r0 k'r0 + (k'ro)3,

kFCOt8__+kI2Teff+ , (3.101)

where TelI = T0 {i (koro)2
(2]. This result is known as the effective range

expansion for k' cot (5 for low-energy scattering.

Now, in order to relate the bound state energy to the scattering length, one

needs to write from (3.89), since kB/ko << 1,
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tan k0r0 = tan(ir/2 + k/k0) = ko/kB (3.102)

One can now rewrite (3.100) with tan k'r0 k'r0 as

IcB
+

r0
k'2 . (3.103)k'cot6_

l+rOkB 1+rOkfi

By comparing this equation with the effective range expansion (3.101), one can

obtain

1
a = r0 + (3.104)

This result provides a way to see whether the self-consistent solutions from the

numerical calculations are correct or not by comparing the scattering length a and

the binding energy. The potential range r0 also can be estimated from the equation

above.
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4. IMPLEMENTATION

In general, the procedure to implement a theory and translate it into corn-

puter codes is not easy due to the limitations of a computer. Two numerical

problems which directly affect the numerical precision originate from approxima-

tions to infinity and continuity, which frequently become the largest problems and

can be expressed only approximately in numerical calculations. In most cases, one

needs to use a large cut-off value for infinity and very small interval for continuity

in numerical calculations to obtain a reasonable answer. It is important to find

out how those parameters can be determined. In this chapter, the iterative scheme

to accomplish the self-consistent solutions and the numerical methods to find the

eigenstates will be introduced. The technique to solve the numerical problems, in

which physical understanding is indispensable, will be discussed. It needs to be

emphasized that spherically symmetric potentials are used throughout this work.

4.1. Perspective scheme for self-consistent solutions

.1.1. Non-spin polarized system

Fig. 4.1 shows one possible flow chart to find a self-consistent solution for

the KS equations. One can also start with the initial electronic density, but in

this case the effective potential is more convenient to deal with since the relative

numerical response of the effective potential in r-space is much larger than that of

the density. With an input effective potential, one can solve the KS equations to

find the density, from which one can construct the output effective potential. A

self-consistent solution means that the input effective potential must be the same

as the output effective potential. In practice, one can stop the calculations if the
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Try a new guess from End
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FIGURE 4.1. Flow chart for non-polarized systems.

input potential is very close to the output potential, when numerical precision

required for the immersion energy can be achieved and thus further calculations

do not affect the final answers. In order to compare the input potential with the

output potential, one can use

(V)2 = dr[T/7jUi(r) - V0utt(r)]2
, (4.1)ef f

where 1 is the total volume of the system. The potential difference /V can be

used to find the physical quantities such as immersion energy, bound state energy,
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and magnetization since the self-consistent solution means that LV = 0. One can

attempt to determine the physical quantities corresponding to the zero value of

LW by using an appropriate fitting method for the data points.

In order to make progress, one needs a numerical method to determine the

input potential from the output potential for the next iteration, which will be

explained in Sec. 4.2.

.1.2. Spin polarized system

One big difference between spin polarized systems and non-spin polarized sys-

tems is the need to solve two different sets of KS equations, for n+ (r) and n_ (r),

which doubles the calculation time. Only the exchange-correlation energies and po-

tentials are, however, explicitly dependent upon the spin density (n+(r) n_(r))

as in (2.41), (2.42), and Sec. 2.2.7.4. The Coulomb potentials and energies do not

depend on the spin density, but only on the total density (n+(r) + n_ (r)).

4.2. Mixing scheme

Since the KS equations are solved self-consistently in this work and the time

to find self-consistent solutions is directly proportional to the number of iterations

of the self-consistent ioop in Fig. 4.1, it is important to find an efficient method

to construct the next input potential from the output potential. The simplest

mixing scheme is Vit2at,j (r) f znal (r). This simple scheme, however, does

not work since the response in the output potential is usually enormous compared

to the change in the input potential, even for the high densities of an electron
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gas.' The main purpose of a mixing scheme is to make the convergence faster,

that is, to reduce the program-running time to reach self-consistency while the

solutions maintain the stability such that they don't diverge. Another straight

mixing scheme is

out,ir,jflj/ \Vi+l() = v + a (V (r) (4.2)

where i is the number of the iteration. The mixing ratio a ensures the stability

of the convergence during the self-consistent calculations. One can keep reducing

a until stability is acquired. One way to speed up the convergence is Broyden's

method which is

1 in,iV7/ (r) Vff (r) + a(r) F2(r)
V2zl(r)

a(r)
ff eff

F(r) F'(r)
where F(r) = V7,t2(r) VeTf(r). One can obtain Broyden's method by try-

ing to find the point on the line of V1(r) V7j(r) between the two points,

(Ve%'(r), 7''(r)) and (Ve7/(r), Vr'(r)). Since the mixing ratio in Broy-

den's method depends on the input and output potentials of last two iterations,

discontinuities in the potential of r-space may show up during the calculations and

the integration for wave functions based on the potential may go wrong as well.

Another problem in this case is the long range tail of Friedel oscillation, which is

usually strongly coupled to the electronic density in the vicinity of an impurity

due to the Coulomb potential. The idea to avoid this problem and speed up the

1Results for dielectric constants suggest the response of electron gases of high densities

is small compared to those of low densities. See chapter 5.
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convergence at the same time is to use the straight mixing scheme and the mixing

ratio of an exponential-like function.

a(r) = aexp(a r2)

The mixing scheme is now

(4.3)

= V7;(r) + aexp(a r2) (V7'(r) Veii )) (4.4)

There are two parameters a and a in this mixing scheme. a can be determined

by considering the response of a region in the vicinity of an impurity and a is

a parameter to suppress the strong response of the tail of Friedel oscillations.

Now one can allow as large a change as possible in the vicinity of an impurity

by increasing the a value while one suppresses the response of the tail by using

large value of a. In most cases, 0.02 for a and 0.002 for a have been found

appropriate. Another idea to make convergence even faster is to utilize the last

two input potentials and add the response of those to the mixing scheme.

r,jflj/ \ rin,i-1
V r) + a(r) (1/°)'(r) V1 (r) + V7f(r) veil (r))

/ \r) + a(r) (V7'(r) V7;'(r)) . (4.5)

One can make two vectors '(r) + V°'(r) and V7;'(r) + V(r) for each r.

If those vectors have the same directions, the mixing scheme (4.5) will accelerate

the convergence (large mixing ratio) compared to the previous mixing scheme (4.4)

and if they have opposite directions, (4.5) will decelerate the convergence (small

mixing ratio) to avoid the possible oscillations of potentials between two iterations.2

2The divergence can be noticed usually by fluctuations of potentials between iterations

during the numerical calculations.



Once satisfactory self-consistency is obtained in the vicinity of an impurity,

one can reduce a to avoid the possible large variation of the density around the

impurity and reduce a to allow now larger variation of the tail of potentials to

make convergence faster. One can implement this in the program by calculating

the potential difference /V of (4.1) and have the program automatically vary

the parameters a and a. If /V is small enough, especially in the vicinity of an

impurity, and the convergence is too slow, a and a can be reduced by a small

amount during calculations. One idea is to calculate the relative ratio of LW

between two iterations.

(zV)2 (Vj')
(4.6)Ratio =

((zV)2 + (V_1)2)/2.0

If the ratio is too small, one can try to reduce a and a values. However one needs

to find the appropriate iterations at which the parameters can be reduced and the

values of parameters by trial and error. It has been found in this work that if the

LV2 is smaller than 108 iO and the ratio is smaller than 0.002 r'.1 0.005, a

and a can be reduced by 10% r'.. 20%. A minimum number of iterations between

the iterations at which the parameters are reduced, however, often needs to be set

to ensure the convergence of the calculations.

4.3. Search for eigenstates and eigenvalues of the infinite system

.8.1. Bound states

The method for the search for bound states is well established and calcu-

lations are quite simple for spherically symmetric potentials. [30] Since only the

principle quantum number n and the angular momentum number 1 for spherically

symmetric potentials are necessary to distinguish eigenstates, each eigenstate can
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be categorized by n and 1 or the number of nodes anodes and i. One can then

search for bound states from the minimum energy to the maximum energy using

Tinodes and 1. Note that the possible lowest energy for the bound states can be set

to Ryd., which is bound state energy for a pure Coulomb potential, since once

the pure Coulomb potential is screened, the energy eigenvalues are always higher

than those for the pure Coulomb potential. An upper limit for bound states is

zero with a reference of zero energy limr,o V11 (r) = 0.

The method used in this work is known as the bisectional algorithm. [30]

There is a better and faster method than the bisectional algorithm, which has

never been tried in this work since the time required to search for bound states is

relatively quite small compared to that for scattered states and is usually less than

a few seconds for today's computers. For the bisectional algorithm, one takes half

the minimum energy as the initial energy for the energy eigenvalue one tries to

achieve and integrates the KS equation with this energy. If the current energy is

higher or smaller than the eigenenergy, one can use the current energy as an upper

limit or a lower limit for the next iteration and integrate the KS equation with the

new middle energy between the upper and lower limits. One can try to repeat the

process until the bound state energy is obtained within the required tolerance for

the numerical error.

In order to decide whether the current energy is higher or smaller than the

eigenenergy, one uses two conditions, which both must be satisfied for correct wave

functions. The first one is that the number of nodes in the wave functions must

be the same as required in Tinodes = n I 1. The second one is that the first

3Spin-orbit coupling is neglected in this work, and hence n = nodes + 1 + 1.
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derivative of one wave function integrated from the origin outwards must match at

a matching point with the first derivative of the other wave function integrated from

the maximum radius inwards. The numerical best point for a matching point is a

innermost classical turning point, since one can expect that the oscillatory behavior

of a solution becomes a decreasing exponential-like behavior at this turning point.

Note that Friedel oscillations in the tail of potentials may give rise to a number of

turning points. First, one can narrow the range of the energy using the number

of nodes. If the number of nodes in a wave function is larger or smaller than that

required, the current energy is higher or lower than the eigenenergy. If the number

of nodes is correct, one can check if first derivatives of wave functions match at

the matching point.4 If the magnitude of a first derivative of an outward solution

is larger or smaller than that of an inward solution, the current energy is higher

or lower than the eigenenergy. If the energy is needed to be higher than the initial

maximum energy (zero as in (3.4)), one can stop the search since there is no bound

state.

The KS equations can be integrated only with appropriate boundary condi-

tions. For bound states,

as r-5O

u,j(r) r1 and u,1(r) + (1 + 1)rt

as r+c'o

(4.7)

n,1(r) + exp(V11r) and u1(r) * \/111iexp(\/11r) . (4.8)

4Since the numerical solutions are not normalized, one has to ensure they both have

the same numerical scale to compare first derivatives, for instance, by using logarithmic

derivatives.
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The normalization condition for bound states is

fdru(r)2=1 . (4.9)

The density difference for spherically symmetric potentials due to the bound states

of an impurity is given by

n(r) no 2(2l+1)'u,1(r)
47r r2

' (4.10)
n,1

where the factor 2 is for spin degeneracy5

. 3. . Scattered states

The Fermi wave vector kF of a homogeneous electron gas can be calculated

as follows.

2
(2ir)33 F

where the left hand side is the number of states available in a system of the volume

, the factor 2 in the left hand side is for spin degeneracy, and N is the total number

of electrons in a system. In the thermodynamic limit, the above equation leads to

= (4.11)

where n0 is the electronic density of the system. Since the system used in this

work is extended to infinity, and thus there are no boundary conditions, there are

5The factor (21 + 1)/4ir is obtained by using the addition theorem:

21 + 1
Yi,m(9,q)2_

4m=I



no quantized k values and all k values up to kF are available. In addition, the

chemical potential is assumed to be a constant and the same as the Fermi energy

of a homogeneous electron gas at T = 0 since the dimension of the system is much

larger than that of an impurity. Now one needs to integrate the KS equations

in the k-mesh for the continuum states k = 0. . kF. The wave functions can be

normalized by (3.24) and the density difference for scattered states is given by

(3.47).

The main numerical problem is that the maximum number of angular mo-

mentum values should be determined for each k. Theoretically kR is a good value

for the maximum 1 whereR is the radius of the potential. [23] On the other hand,

only 10 1 values were used in the work of Puska, Nieminen, and Maninen.(1981)

None of these are, however, good criteria for the maximum 1 value. The kR tends

to neglect the low-energy scattering due to very small k values. Ten for the max-

imum 1 value is more than enough for small k values and is too small for large k

values. It is found that using too small a number for the maximum I value gives

an error in the energy and an instability in terms of convergence. A better way

is using the values of the phase shift to see how close the scattered state at the

current 1 value is to the free particle state. In other words, if the phase shift is

sufficiently small and thus 1 values larger than the current 1 value are not impor-

tant, the calculation for the current k value can be terminated and one begins the

calculation for the next k value in the k-mesh. A good value for the smallest phase

shift is 10-8, which turns out to give a good convergence.
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FIGURE 4.2. Phase shift values of I = 0 for a zero potential.

4.4. Numerical problems

Convergence of phase shifts

The accuracy of the phase shifts needs to be tested to see if 108 suggested

for the smallest phase shift in the previous section is well within the precision of

the numerical error. One idea taken from [21] is to test the phase shift values for

zero potential since the phase shift is zero for the zero potential. One can see the

peak in Fig. 4.2 around k = 0.6 and that the phase shift deviates more strongly

from zero after this value. The test has been performed for the electronic density



-C

a
CC,

a
-C
0.

2

-2 L

Potential: -e(-r/25)/r Maximum r
k: 1.2 ----20

-40
60
90

(00
C,,

Co
ar
0

I

Potential: 1/((0.02*r)04+1)
Maximum

(1

k:1.2
:

I
100
200

H 300

I

20 40 60 0 20 40 60

L L

FIGURE 4.3. Phase shift values for an attractive potential of Yukawa type and a
repulsive potential.

of n0 = 0.6.6 One can conclude that the numerical error in the phase shifts is

less than 3 10_li for the range of actual metallic densities. It is found that the

numerical error of higher I values is smaller than that of 1 = 0. This numerical

behavior may be, however, dependent on the numerical libraries one uses. Fig.

4.3 shows the relationship between the maximum radius Rm used in the numerical

calculation and the phase shift values. As seen in Fig. 4.3, if Rm is too small and

thus the potential does not go to zero fast enough, the phase shift calculations

fail. If the potential has such a long range, phase shift values at very low 1 show a

6Parameters for the test are = 8.1250520W 10_6, R109 = 8.0, Rm 31.02, N109 = 465,

and N1 = 230, where Niog is the number of points used in the logarithmic r-space

between R0 and R109 and N1 is the number of points used in the linear r-space between

R109 and Rm.
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zig-zag behavior, which is similar to that of hard sphere scattering for high energy

approximations. [23] They are, however, eventually approaching zero as 1 increases.

Then one can stop the calculation for each k if phase shift values are small enough,

for instance, less than 10-8 as argued in the previous section.

,.4.2. Correction for potentials

The main problem in solving the KS equations numerically is that the effective

potentials in the KS equations have physically and numerically essential defects,

especially at the beginning of calculations. These defects may not only slow down

the convergence but also lead the calculations to incorrect self-consistent solutions.

The first problem is that, during the numerical calculations, since the effective

potential has not reached self-consistency yet, especially at the beginning, there

may be a surplus or deficiency of charge to screen the impurity and the system does

not satisfy the Friedel sum rule. The effective potentials in this case are oscillating

around some constant value due to the extra charge. This extra charge appears as

a constant (intersecting point with r = 0) in the rV plot of Fig. 4.4. The second

problem is that, since the system is extended to infinity, the upper limit of the

integral in the Coulomb potential must be infinity as well. No matter how large

a radius is used for the numerical calculations, the integral from the maximum

radius to infinity in the Coulomb potential is always missing, which appears as a

slope in the rV plot in Fig. 4.4. If one uses naively this incorrect output potential

to mix with the input potential for the next iteration, the phase shift calculations

cannot be performed since the phase shift calculations and thus the normalization

for scattered wave functions are based on the fact that the potentials are zero or
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FIGURE 4.4. Typical example showing defects in the output potential during the
numerical calculations.

almost zero at the end of the maximum radius.7 In addition, special phase shifts

have to be used for Coulomb potentials.8

7At the maximum radius, it is assumed that an impurity is completely screened and

the system satisfies the Friedel sum rule.

8This may be much more difficult than zero Coulomb potentials. Besides, allowing non-

zero Coulomb potential at the maximum radius may be a wrong guide for a self-consistent

solution of the system used in this work.



One can simply make the potential zero at the maximum radius and run

the program for many iterations until the extra charge (Constant in Fig. 4.4)

disappears. This is, however, not only time consuming, but also the potential is

not likely to go to the zero at the maximum radius due to the Friedel oscillations.

One can also try to remove the extra slope in the rV plot using an analytic or

a numerical model for the missing integral, but this turns out to be not good

enough.9 The best way is simply to determine the extra constant and slope in the

rV plot and subtract them from rV. One can not, however, simply subtract the

constant from rV because the potential in the vicinity of an impurity is affected by

the interaction between the impurity and an electron gas as well as by the Friedel

oscillations and thus one has to allow for a variation of the electronic charge around

an impurity. Since at the same time the potential must be oscillating around zero

at the maximum radius, the formula to correct the potential can be written as

r x V r x V r x (Slope + Constant/Rm) , (4.12)

where Rm is the maximum radius r in the r-mesh for the numerical calculations.

One can try other functions instead of a linear r in r x Cortstarit/Rm. However

other functions may suppress the variation around an impurity too much or too

little, either of which makes the convergence slower. The slope and constant can

be easily calculated by four points of maximum and minimum peaks near the end

of the potential. Then one can set up two line equations, from which one can find

the average slope and constant at r 0. Fig. 4.5 shows the typical examples of

the effective potentials before and after the correction and the right figure in Fig.

4.5 shows that the potential is oscillating around zero at large r values after the

91t has been found that there is still a noticeable slope after correcting the potential.
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FIGURE 4.5. Typical examples to show how the effective potentials behave before
and after the correction. These potentials are calculated for a hydrogen impurity
and n0 = 0.0025.

correction, which means an impurity is completely screened and Friedel sum rule

is satisfied as it should be.

3. Calculations for induced electrons and energies

One detail previous papers [5] have overlooked is that after including all of

the screening charge around impurity the electronic density is simply oscillating

due to the Friedel oscillations and thus the integrated values of the electronic

density, needed to find the number of electrons induced due to an impurity, are

also oscillating, which is shown in Fig. 4.6. In addition, the number of induced

electrons in the system should not depend on the maximum value of r since the

system goes to infinity and thus this number can not be found by simply integrating

from zero to the maximum of r. In order to find the charge induced in the system,

integrated values of the charge density as a function of r should be examined as in
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FIGURE 4.6. Calculated for a hydrogen impurity and n0 = 0.0025. This example
shows the oscillations of integral values of the induced electronic density as a
function of r.

Fig. 4.6 and the average charge from the oscillation should be calculated to find the

total number of electrons induced due to an impurity. It is important to note that

the r dependence of energies such as the exchange-correlation and the Coulomb

energy can be removed in the same way.

4.4. Mesh for r-space and k-space

In order to integrate functions numerically, one needs to use small interval to

approximate the continuous space over which the functions are to be integrated.
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FIGURE 4.7. Typical example for the effective potential. The logarithmic mesh
is used for the rapid variation of the potential in the vicinity of the origin.

The term, mesh, is defined in this work as how intervals vary between two adjacent

points in a continuous space. If the interval does not vary and is simply a constant,

the integral space is called a linear mesh. Since the numerical precision directly

depends on the mesh used for the integral in r or k-space, the behavior of functions

which are to be integrated needs to be examined to choose the appropriate mesh for

each space. The r-space can be categorized into two regions, based on the density

variation. The first region covers the core states in which the electronic density

usually varies rapidly. In the second region, the net electronic charge induced

by a electron gas is almost zero and the Friedel oscillations dominate the density

variation. Therefore a logarithmic r-mesh is appropriate for the first region which

includes the core states in the vicinity of an impurity and after that, a simple linear
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FIGURE 4.8. Example for phase shifts. The phase shift varies rapidly at the
bottom of the conduction band if the energy of a bound state is close to the
bottom of the conduction band.

r-mesh can be used for the second region as shown in Fig. 4.7. In this work, the

logarithmic r-mesh always corresponds to the first region and the linear r-mesh

corresponds to the second region.

Phase shifts at I = 0 need to be examined in order to see how the wave

functions behave in k-space. Based on this information, one can choose the mesh in

k-space. The appropriate mesh in k-space is, however, quite difficult to determine

before calculations since at least the energies of bound states, or the scattering

lengths are necessary to estimate how large the slopes of phase shifts at 1 = 0 are

in the vicinity of the bottom of the conduction band. Note that the scattering

length is inversely proportional to the energy of bound states - (See Sec. 36.) One
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FIGURE 4.9. Integrand in (3.22). Calculated for a Hydrogen impurity at 0.04
background density.

may try very low or high background densities of an electron gas first and try to

determine the range of the background densities where the energies of bound states

are close to the bottom of the conduction band. (See Fig. 4.8.) If the calculations

need to be performed for this range of the background density, the phase shifts in

k-space also need to be examined in order to determine the range of k-space where

the phase shifts vary fast. In that case, a different k-mesh is necessary due to the

different variation of the phase shifts. One can try the logarithmic mesh for the

fast variation of phase shifts at the bottom of the conduction band as in r-space.

However, it turns out that a logarithmic mesh causes more numerical errors than

the simple linear mesh. Fig. 4.9 shows how the wave functions in k-space vary at

different r values. A logarithmic mesh may work well at low r values but causes
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more numerical errors for the ordinary oscillating wave functions in k-space. A

better way is simply to use two different linear k-meshes with different intervals

to deal with the rapid variation at the bottom of the conduction band. The very

small interval should be used for the range of k in which the phase shifts vary fast.

Because of the smooth behavior of the phase shifts, a large interval can be used

for large k values in order to reduce the time to integrate in k-space.
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FIGURE 4.10. The density of a free carbon atom and the density induced by a
carbon impurity in a homogeneous electron gas. The is and 2s core states remain
almost the same. These calculations are performed for a spin polarized system.

Cancelation of numerical errors in immersion energies: Number of r
points

In this section, the calculations are based on the logarithmic r-mesh which is

used for the range from 0 to 8 a.u. and on the linear r-mesh which is used after 8

a.u. Due to the approximations in LDA, the rapid variation of the density of the

core states in the vicinity of an impurity may cause significant numerical errors.

However, since the core states hardly interact with the environment, numerical

errors of the core states of an impurity system can be reduced by those of a free

atom in the immersion energy calculations. That is,

°impuritysystem °freeatorn 0 , (4.13)
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where 0 denotes the numerical errors in the core states. Fig. 4.10 shows that the

core states of an impurity actually do not interact with a homogeneous electron gas

and hence do not contribute to the immersion energy significantly. Table 4.1 and

Fig. 4.11 illustrate how the r-mesh in the vicinity of an impurity affects the energies

and how numerical errors in the immersion energies can be reduced within a few

milli-Rydbergs by calculating the free atom energy with the same r-mesh as for

the impurity system. These results may depend on the range of the logarithmic r-

mesh which covers the core states. The hydrogen impurity for a non-spin polarized

system in Table 4.2 shows the same numerical behavior. Therefore it is important

to use the same r-mesh in calculating the free atom energy and the energy of an

impurity system to avoid large numerical errors due to the core states.

In order to minimize the remainder of the numerical errors due to the interval

in the r-mesh and find the correct immersion energy, one can attempt to use the

linear relationship between the immersion energies and the number of r-points as

r-mesh LE Eatom Eimm = LE Eatom

525 -73.43094 -73.29770 -0.13324

550 -73.51473 -73.38030 -0.13443

600 -73.64172 -73.50606 -0.13566

650 -73.75003 -73.61365 -0.13638

TABLE 4.1. Energies of a carbon impurity system LE and energies of a free
carbon atom Eatom (in Rydbergs). A carbon impurity in a spin polarized system
and a background density of 0.002 are used for calculations. The r-mesh in the
table represents the number of r- points used in the range from 0 to 8 a.u., which
corresponds to the logarithmic r-mesh and includes most core states. (See Sec.
4.4.4.)
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r-mesh LE Eatom Eimm = LE Eatorn

450 -1.06535 -0.87278 -0.19257

550 -1.07140 -0.87725 -0.19415

650 -1.07576 -0.88037 -0.19539

750 -1.07884 -0.88285 -0.19599

850 -1.08129 -0.88458 -0.19671

1050 -1.08471 -0.88707 -0.19764

TABLE 4.2. Example for a hydrogen impurity. (Non-spin polarized system.) A
background density of 0.0025 is used for these calculations.
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FIGURE 4.11. Comparison between immersion energies calculated with a constant
free atom energy and the free atom energy calculated with the same r-mesh as the
impurity system. The immersion energies calculated with the same free atom
energy show relatively large variation with the different number of r-points due to
the numerical errors of core states.
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FIGURE 4.12. Fitting by inverse power law to find the correct immersion energy.
Data from Table 4.1 and Table 4.2

in Fig. 4.12. Now since the number of r-points is in the denominator, the number of

r-points can be easily extrapolated to infinity to make the interval of r-mesh zero.

Using this method, the immersion energy can be determined up to 1 milli-rydberg.

J.4.6. Further numerical precision tests

The results of numerical calculations may depend on other numerical param-

eters such as the maximum radius Rmax and the number of points in k and r-space.

The effect of the logarithmic r-mesh in the vicinity of an impurity is already tested

in Sec. 4.4.5 and it is shown that the immersion energy can be obtained within 1

milli-rydberg. Other important parameters are the maximum radius Rmax and the

number of points in k and r-space. The tests in this section have been performed

for a Hydrogen impurity in a non-spin polarized system of a homogeneous electron

gas. The electronic density is 0.0025. The logarithmic r-mesh is used for the range

from 0 to 8 a.u. and the linear r-mesh is used after 8 a.u. The maximum radius



Rmax Immersion energy(Ry.)

40 Not converged

50 -0.19392

60 -0.19449

70 -0.19395

80 -0.19402

90 -0.19415

120 -0.19411

TABLE 4.3. Immersion energies for a hydrogen impurity. 70 k points, 550 r points
for the logarithmic r-mesh, and 0.1 for the interval of the linear r-mesh are used
for these calculations.

is a very important parameter for convergence and stability of the calculations.

Since the phase shift calculations are based on a zero potential at the maximum

radius R, the Coulomb potential due to the extra charge must vanish at least

at Rmax. Therefore it is important to include enough Friedel oscillations and also

not to loose any significant charge of the bound states. For instance, the conver-

gence required to obtain an immersion energy within a error bar of 1 milli-Rydberg

((zW)2 10's, See Sec. 4.1.1.) can not be accomplished for Rmax = 40 in Table

4.3. Since the bound state has a very short range at this background density, the

main reason is the long tail of Friedel oscillations which prevent the self-consistent

calculations from converging. (See Fig. 4.13.) One good barometer for the Friedel

oscillations is to include at least 10 A's where A = 7r/kF. As the background density

increases, the bound state plays a more important role and the extended bound

state should be considered to determine the maximum radius Rmax.
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FIGURE 4.13. Extra densities induced by an impurity.

The immersion energies in Table 4.3 show small fluctuation, less than 1 milli-

Rydberg, especially for Rmax larger than 70. Note that the convergence process

is smooth for Rmax larger than 70. The results for the number of r points in

the linear r-mesh show a very regular pattern in Table 4.4, similar to that for the

number of r points in the logarithmic r-mesh. Fig. 4.14 shows that the immersion

energy decreases as the number of r points for the linear r-mesh increases. The

difference is, however, not larger than 1 milli-Rydberg. One can use simply 0.1 for

the interval of the linear r-mesh to obtain the immersion energy within an error

bar of 1 milli-Rydberg. Another important parameter is the number of k points

in k-mesh. Since the k-mesh is a simple linear mesh, one can expect simply that

a larger number of k points give rise to the better results. However, for smooth



Number of r points Immersion energy(Ry.)

320 -0.19353

520 -0.19387

720 -0.19402

920 -0.19411

1120 -0.19417

TABLE 4.4. Immersion energies for a hydrogen impurity. 70 k points, 80 for Rmax,
and 550 r points for the logarithmic r-mesh are used for calculations.
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FIGURE 4.14. Immersion energy versus the inverse of the number of r points in
the linear r-mesh. Data from Table 4.4.



Number of k points Immersion energy(Ry.)

60 -0.19403

70 -0.19402

80 -0.19402

90 -0.19402

100 -0.19402

TABLE 4.5. Immersion energies for a hydrogen impurity. There is no difference
within i0 Rydbergs for k points more than 70. 80 for Rmax and 550 r points for
the logarithmic r-mesh are used for these calculations.

behavior of phase shifts, increasing the number of k points does not improve the

results significantly. The results for different number of k points are given in

Table 4.5, which show there is no noticeable improvements within iO Ry. in

the immersion energies for more than 70 k points. It should be noted that this

result may be quite different for systems which have a large scattering length as

mentioned in Sec. 4.4.4. Increasing the number of k points for those systems can

adjust the significant charge amount correctly and yield better immersion energies.

4.5. Self-consistent solutions

The self-consistent solutions may depend on the methods to solve numerical

problems as well as the boundary conditions. Incorrect numerical parameters or

methods may lead to incorrect self-consistent solutions. That is, self-consistency

is not a sufficient condition for a correct solution. The only way to obtain the

correct self-consistent solutions is to compare the solutions with the results of



other theories or experiments. There are several ways to see if the iterative process

converges correctly. The extra charge induced by an impurity can be calculated by

the Friedel sum rule, integrating the electronic density in r-space, or integrating

the density of states in energy space.

Z =
47r f

dr r2/n(r)
f

dzp() = Zb + + 1)S1(kF)

where Zb is the number of electrons in the bound states and the density of states

can be calculated from the phase shift values as in (3.27):

= (2l+
1)dl(f)

. (4.14)
7r d

All three results for the extra charge must be very close to each other after the

required convergence is achieved. The electronic density far away from an impurity

should follow the form of the Friedel oscillations as mentioned in Ch. 3.

cos(2kFr + ) at large r = A 27r/2IcFJCF

Therefore the wave length of oscillations of the electronic density, A, should be

about 2r/2kF at large distances. There could be a virtual bound state if the

number of bound state electrons is smaller than that of the positive charge of the

impurity. At low background densities, since only low energies are allowed for the

conduction band, only s-waves can contribute to the virtual bound state resonance

in the density of states. The scattering length can be very important as in the case

of a hydrogen impurity when the virtual bound state resonance is located near

the conduction band minimum and the non-zero angular momentum states can be

neglected. In that case, the sign of the scattering length can also be used to verify

the behavior of the conduction band during the iterative loops of the numerical

calculations.
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FIGURE 4.15. The density of states at absolute zero temperature. With an
external magnetic field, the energy of the spins (magnetic-moment-up) parallel to
the field is lowered by 1aB, while the energy of the spins (magnetic-momentdown)
antiparallel to the field is raised by B. The chemical potential of the spin-up
band is equal to that of the spin-down band.

4.6. Spin paramagnetism

A system with an external magnetic field is discussed in Sec. 2.2.6. In this

section, details of the numerical implementation will be discussed. Note that the

spin-up band is assumed to be parallel to an external magnetic field in this work.'°

The energy shift by an external magnetic field in Fig. 4.15 is +1iB where and

+ should be taken for the spin-up and spin-down band respectively and p is the

Bohr magneton. Some electrons near the Fermi energy transfer from the spin-down

band to the spin-up band such that the chemical potential (Fermi energy) of the

10The term, spin-up, in this work denotes spin-magnetic-moment-up since the magnetic

moment is opposite in sign to the spin S for an electron.



spin-up band equals that of the spin-down band. The range of k corresponding to

the range of the energy from the conduction band minimum to the Fermi energy

adjusts as well.

spin-up: 0 ++ \/F + U

spin-down: 0 ++ u

where u = ,iB. The number of electrons is:

V4
N

(2ir)3
7r(EF + u)312 for spin-up (4.15)

V4
N_

(2)
1r(EF u)3!2 for spin-down. (4.16)

Now one can easily obtain the equation for the Fermi energy

6ir2n = (eF + u)312 + (EF u)3!2 . (4.17)

Note that the Bohr magneton t in atomic Rydberg unit is and one atomic

Rydberg unit for the magnetic induction B corresponds to 3.324 x io T in SI.

Since the Fermi wave vector kF of the spin-up band is different from that

of the spin-down band with an external magnetic field, one can expect from the

Friedel oscillations that the electronic density for each band behaves differently

even at large distances. Now, since there are two different frequencies in the Friedel

oscillations of the density, there should be patterns of beats11 in the total electronic

density induced by an impurity. The Coulomb potential calculated from the total

The term, beat, is originally used to describe fluctuations in the amplitude variation

caused by two sound waves of different frequency. In this work, beats are used to

emphasize the alternating constructive and destructive interference of two electronic

density oscillations of different frequency.



electronic density, hence, has also patterns of beats as well. In that case one can

not use the method for the potential correction, which was introduced in Sec.

4.4.2 because the method takes advantage of the shape of the regular oscillations.

However, one can avoid the beat patterns by calculating the Coulomb potential

separately from the density of the spin-up and spin-down band and applying the

method for each part of the Coulomb potential. After correcting each Coulomb

potential, one can find the total Coulomb potential by adding both contributions

to Coulomb potential and finally the effective potential for each band by adding the

exchange-correlation potential of each band to the total Coulomb potential. The

Coulomb potential separately calculated from the density of each band, however,

still may have irregular patterns but not as strong as the total Coulomb potential.

This is a second order effect since the calculations for the density are essentially

based on an effective potential which has these beat patterns. Therefore it is

important to use a very large maximum radius to reduce the numerical error in

case that the irregular pattern causes a large numerical error. One often needs

to examine the Coulomb potential and the effective potential during the iterative

loops of numerical calculations and find the appropriate maximum radius. Note

that the beat frequency kbeat is the difference of the two frequencies.

kbeat = 2k 2k (4.18)

Thus one can estimate how many beats exist for a given range of r in the electronic

density.
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5. RESULTS AND DISCUSSION

Two important quantities for the model used in this work are the positive

charge of an impurity and the electronic background density. The Coulomb poten-

tial is determined by the positive charge of an impurity and the induced electronic

density while the exchange-correlation potential is determined by the induced elec-

tronic density and the electronic background density. If the induced electronic den-

sity remains the same for the same impurity,' the exchange-correlation interaction

makes a difference between two different background densities, which, for a differ-

ent background density, leads to a different self-consistent solution with different

induced charge densities, potentials, bound states, phase shifts, densities of states,

and dielectric functions. The system still obeys the Friedel sum rule and exhibits

Friedel oscillations. The results in this chapter are categorized by spin polariza-

tion. For a spin-polarized system, the total spin-moment will also be an important

physical quantity, which may distinguish between self-consistent solutions.

'This is not true. As the difference between background densities becomes larger, the

response of an electron gas becomes more important due to the difference in Fermi

energies and in Friedel oscillations. This effect is related to the amount of induced

charge in the vicinity of an impurity as well as to the oscillations of the density at large

distances.



5.1. Non-spin-polarized system

The non-spin-polarized system is tested mainly with a hydrogen impurity.

The discussion in this section will proceed using a hydrogen impurity unless noted

differently.

5.1.1. Behavior of a system during the numerical calculations

The number of electrons induced by a hydrogen impurity should always be

equal to one in order to screen the hydrogen impurity in a self-consistent manner,

as mentioned in Ch. 3. Fig. 5.1 shows one example how the system evolves to

satisfy self-consistency. Since the input effective potential for the first iteration is

calculated from the electronic density of a free hydrogen atom plus a background

density of 0.06, the effective potential is sufficiently attractive at the beginning and

thus there are two extra electrons in the bound states. The background density

is, however, very high. Since the system with two electrons in the bound states

of a hydrogen impurity can not be the self-consistent solutions for such a high

background density, the system goes through a transition from having a bound

state to not having a bound state and adds one extra electron in the conduction

band. Notice in Fig. 5.1 that the Friedel sum during the transition responds to

the change in the number of electrons in the bound states, while the conduction

band continuously adds electrons to make one extra electron.

5.1.2. Charge densities and potentials

As already mentioned in Ch. 3, the Friedel oscillations are independent of

the nature of an impurity. The induced electronic densities at large distances
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FIGURE 5.2. The electronic density induced by a hydrogen impurity. It is plotted
as a function of 2kFr. Friedel oscillations are independent of the background
density. The range of the background density is from 0.0005 to 0.06.

show Friedel oscillations and they all have the same frequency 2kF, as illustrated

in Fig. 5.2. The induced electronic densities as a function of r are shown in

Fig. 5.3. Note that although there is always one extra electron in the system

of a hydrogen impurity, regardless of the background density, the amount of the

electronic charge in the vicinity of the impurity (r : 0 "-' 4) is dependent upon

the background density. There is relatively a large amount of electrons near the

impurity for low background densities as a result of the effect of bound states

and the Friedel oscillations in the conduction band. (Fig. 5.4 and Fig. 5.5) These

phenomena are related to the behavior of the dielectric functions, different from
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FIGURE 5.3. The electronic density induced by a hydrogen impurity.

the Thomas-Fermi dielectric functions, which will be discussed in Sec. 5.1.4. The

electronic density in the bound states becomes more extended and the maximum

value of the density decreases as the background density increases. (Fig. 5.4) The

bound states disappear for the background density higher than about 0.03. The

numerical calculations for the background density between 0.02 and 0.03 are very

difficult due to the greatly extended bound states. These results are not included

in Fig. 5.4 and Fig. 5.5 since the required convergence could not be obtained. As

discussed in Sec. 3.5, however, the transition from bound states to resonance states

should not result in any non-analytic behavior of the properties of the system such

as the immersion energy. The maximum value of the induced electronic density in
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FIGURE 5.4. The electronic density induced by a hydrogen impurity in the bound
states.

the conduction band increases in the vicinity of the impurity as the background

density increases. (Fig. 5.5) As a result, the impurity is always screened sufficiently

regardless of the existence of bound states.

5.1.3. Phase shift, Scattering length, and Density of induced states

Phase shifts for 1 = 0 at zero energy have the value of ir for low background

densities, due to the presence of a bound state of a hydrogen impurity. The result

is shown in Fig. 5.6. Note that there are two electrons in the bound state due

to the spin degeneracy. The variations of the phase shifts of p-waves in the case
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of a hydrogen impurity are relatively very small compared to those of s-waves2

and thus the leading contribution to the change in the density of states arises

from the phase shifts for 1 = 0. The slope of the phase shift (or the scattering

length) for low background densities is negative, from which one sees that the

2This is only true if there are two electrons in the bound states. If the number of elec-

trons is smaller than two, phase shifts of p-waves also become important and contribute

significantly to the change in the number of electrons in the conduction band. See Sec.

5.1.6.
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potential is attractive enough to have a first bound state and, considering the

density of states, the conduction band loses one electron to keep the number of

total extra electrons one. The magnitude of the slope of the phase shifts in general

becomes smaller in Fig. 5.6 as the background density decreases, which one can

expect considering the relationship between the strength of the potential and the

scattering length.3 However, as the background density decreases more, the phase

3One may expect that the potentials become more attractive as the background density

decreases, which means that the scattering length decreases in magnitude. f31J
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shifts near the conduction band maximum tend to have a larger negative slope than

those of the higher background densities. At extremely low background densities

such as 0.0005, even the slope near the conduction band minimum becomes larger.

(See Fig. 5.7.) The reason for this is that a smaller negative slope in the phase

shifts can not yield a correct negative excess charge at such a low background

density to satisfy the Friedel sum rule as the conduction band becomes narrower.4

4Moreover, as the background density decreases, the contribution of s-waves to the

number of induced electrons becomes larger, and thus the phase shifts of s-waves at the

Fermi energy should respond accordingly.
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FIGURE 5.8. Phase shifts for a hydrogen impurity for two different background
densities (0.0025 and 0.06).

As a result, the system behaves such that the potentials are less attractive at the

extremely low background densities. For high background densities ( 0.03) for a

hydrogen impurity, since there are no electrons in the bound states, there should

be one extra electron in the conduction band, for which the contribution of s-waves

to a virtual bound state resonance is significantly larger than the higher angular

momentum states. (Fig. 5.8) The scattering lengths corresponding to the phase

shifts in Fig. 5.9 are shown in Fig. 5.7. The transition from a bound state to a

resonance state occurs at about 0.03 of the background density, close to when the

sign of the scattering length changes. The inverse of the scattering length increases

as the background density increases from 0.0015. The magnitude of the scattering

length, however, rapidly increases as the background density decreases from 0.0015

and becomes large at extremely low background densities ( 0.001), which creates

a minimum point at about 0.0015 in Fig. 5.7. This behavior is already discussed

with the phase shifts above.
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FIGURE 5.10. The density of states for a hydrogen impurity for two different
background densities (0.0025 and 0.06).



Typical examples for the density of states are shown in Fig. 5.10. At the

background density of 0.0025, there are two electrons in the bound state, and the

leading contribution to the conduction density of states comes from s-states, which

show a negative scattering length and a sharp negative peak at the conduction

band minimum in the density of states. The conduction band loses one electron,

which removes the excess charge of the bound state electrons. At the background

density of 0.06, there are no electrons in the bound states. The effective potential

is, however, attractive enough to induce an extra electron in the conduction band,

which appears as a narrow peak in the conduction density of states due to the

rapid increase of the phase shift of I = 0 in the region of the conduction band

minimum. Therefore one sees that the Friedel sum rule is always satisfied and can

be achieved at self-consistency during the numerical calculations. The phase shifts

for a lithium impurity are shown in Fig. 5.11. At the background density of 0.0005,

the electron configuration of a lithium impurity is 1s22s2 and the phase shift of

the zero energy must be 2ir (third branch5 of tan 6o) by Levinson's theorem. The

phase shift at 0.0005 shows a large negative slope, which gives rise to the negative

density of states in the conduction band to remove the excess charge due to the

bound states. As the background density increases, the effective potential becomes

less attractive and the system loses a bound state (second branch of tanSo) and

the scattering length becomes positive. (phase shifts at 0.0025 in Fig. 5.11) If the

background density further increases, the scattering length decreases (phase shifts

at 0.03 in Fig. 5.11) and becomes negative. At the higher background density the

5See (3.26) and [31].
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same cycle of the phase shifts repeats, after loosing one more bound state. (first

branch of tanSo)

5.1.. Dielectric constant and compressibility

The dielectric constants can be easily calculated using the definition in (3.55)

and the Fourier transform.

v;xt
(5.1)c(w,q)

fdr exp(iqr)-
(5.2)

fdr exp(iqr)V(r)
e2Z

= (5.3)
qfdrV(r)rsin(qr)

The Thomas-Fermi dielectric constant, already introduced in Sec. 3.4, is given by

q2 + qTF (5.4)ETF(0,q)_
q2

where q2 4e2mkF The Thomas-Fermi dielectric constants in Fig. 5.12 show aTF h2ir

simple behavior which gives a screening length6 proportional to n113. One can ex-

pect from the Thomas-Fermi dielectric constants that a higher background density

has a shorter screening length. The numerical results of the dielectric constants

for a hydrogen impurity and the Thomas-Fermi dielectric constants both approach

the value of one as q + 00. The density functional calculations, however, show

quite different results for the dielectric constants, especially at small q values. Note

that the presence of electrons in the bound states and the long wave length of the

6The screening length for the Thomas-Fermi dielectric constants can be easily obtained

from the Yukawa potential, 1 = l/qTF. See (3.67).
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FIGURE 5.12. Dielectric constants which are numerically calculated for a hydro-
gen impurity. The Thomas-Fermi dielectric constants are also plotted for compar-
ison.
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FIGURE 5.13. Compressibility calculated numerically for a hydrogen impurity.
A dotted line which is taken from [6] is for the result predicted by theories such
as Hubbard, VS, and SS. Both lines are going through zero around r3 = 5.0. The
electronic density which corresponds to r5 of the bottom x-axis is given in the top
x-axis.

Friedel oscillations result in a larger amount of screening charge near the impu-

rity for low background densities than for high background densities, as already

mentioned in Sec. 5.1.2. One sees that dielectric constants may have very large

negative or positive values for a certain q while the integral term in (5.3) increases

from negative to positive values near zero. Actually, it turns out that the integral

term in (5.3) changes its sign from negative to positive as the low background

density (n 0.00191 or r8 5.0) decreases further. At extremely low background

densities (< 0.0015), therefore, the dielectric constants for q -+ 0 are negative, as
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FIGURE 5.14. Comparison of the compressibility calculated numerically for a
hydrogen impurity with scattering length.

illustrated by Fig. 5.12. This result can be verified by discussing compressibilities.

The compressibility can be obtained in terms of the dielectric function by [13]

2

limf(q,0)
q +qK

q2 Kf
' (5.5)

where qTF = 6'lrne2/EF is the Thomas-Fermi wave number and the quantity Kf =

3 (32) _2/3_5/3 [1 /e2ao] is the isothermal compressibility of the non-interacting

electron gas at zero temperature. The compressibility is already obtained by sev-

eral theories.7 The RPA gives the constant value 1.0 for K1/K while many other

7Readers should refer to [18] for more details.
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theories such as Hubbard, Singwi-Sjölander, and Vashishta-Singwi give results for

Kf/K, which all go through 0 around r8 = 5.0. [18] The density functional cal-

culations for the compressibility give rise to nearly the same result for K1/K as

those theories for low background densities but to much larger values for high

background densities, which results in the curved line of a hyperbolic type in Fig.

5.13. One sees from (5.5) and Fig. 5.13 that the dielectric constant for the high

background density as q -p 0 has a smaller value than expected by theories8 while

the dielectric constant for the low background density has a larger value.9 In other

words, if the screening length can be defined for any potential10, it can be stated

that the screening length for the high background density has a larger value than

expected by analytical theories while the screening length for a low background

density has a smaller value.

As shown in Fig. 5.14, one sees that the negative minimum (at r3 5.0)

of a value of the scattering length corresponds to infinity of the compressibility

and infinity (at r3 2.0) of a value of the scattering length corresponds to the

compressibility close to K1. Note that infinity of a scattering length indicates the

transition from a bound state to a resonance state. One may think that the most

attractive potential corresponds to the maximum of the compressibility, which

8See the dotted line in Fig. 5.13. As r3 -+ 0, the expected dielectric constant is the

Thomas-Fermi dielectric constant.

9Note that, in Fig. 5.13, the dielectric constants calculated by theories are always larger

than or equal to the Thomas-Fermi dielectric constants.

'0One can try to find the screening length for a particular potential by comparing with

the Thomas-Fermi dielectric constant. 1 = l/qTF = (((q) 1)q2)'/2 as q -* 0
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may be related to the localization of electrons The relationship between the

scattering length and the compressibility, however, needs further investigation.

5.1.5. Immersion energy

Immersion energies for H, Li, and C are shown in Fig. 5.15. A minimum in

the immersion energy exists for H and C, while calculations for Li can not verify

"Wigner lattice [18]
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the existence of a minimum immersion energy.12 The background densities at

which the minimum immersion energies exist are 0.0024 for H and 0.0033 for C.

The immersion energy after the minimum value increases almost linearly as the

background density increases, which is due to the repulsion related to the increase

12To verify the existence of the minimum immersion energy for Li, it is necessary to

perform the calculations for very low background densities as shown in Fig. 5.15, which

is, however, very difficult due to the long range wave length of the Friedel oscillations as

mentioned in Ch. 4.



in the kinetic energy. [5] The Coulomb and exchange-correlation energies actually

become lower as the background density increases. The rate of the increase in the

kinetic energy is, however, large enough to compensate this decrease, as illustrated

in Fig. 5.16.

The zero background density limit in this infinite system may be different

from a free atom without an electron gas. Since the system, at constant chem-

ical potential, is extended to infinity, the impurity will be screened, no matter

how small the background density, (but not zero) and, for this non-spin-polarized

infinite system, the impurity is not allowed to have partially occupied orbitals.13

Calculations show that a hydrogen impurity has no electrons in the bound states

for high background densities( 0.03) and two electrons in the bound states for

low background densities but no electrons again for extremely low background

densities( 0.0001), which can be seen from the fact that a free hydrogen atom

can not have two electrons in the bound states in LDA. The interesting result

is that the immersion energy for a hydrogen impurity shows a linear behavior as

illustrated in Fig. 5.15 when the hydrogen is forced to have only one electron in

the bound states regardless of the background density. Immersion energy in this

case approaches zero as the background density goes to zero, which one can easily

expect from the fact that a free hydrogen atom has only one electron. A helium

impurity which has two bound state electrons in a homogeneous electron gas shows

the same linear behavior in Fig. 5.15.
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FIGURE 5.17. Immersion energies for the different number of electrons in the
bound states. 465 points for the logarithmic r-space and 0.81205 x i0 for the
first value of r-mesh are used in these calculations.

5.1.6. Excited system

One can easily calculate the immersion energies of excited systems and obtain

the excitation energies by varying the number of electrons in the bound states as

mentioned in Sec. 2.2.5. The bound state energy decreases as the number of

electrons in an is state decreases while the immersion energy increases. (See Fig.

5.17.) This can be verified by Janak's theorem:

i9Eimm - f(n)

'3For instance, only two or zero electrons are allowed in an is state.

(5.6)
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where n denotes the occupation number of the level i. However, one needs to

consider the change in the number of electrons at the Fermi energy as well as the

bound states in order to compare the bound state energy with the variation of

the immersion energy using Janak's theorem. Janak's theorem (5.6) should be

modified as

aEimm
= F + i(n2) , (5.7)

arli

where F is the Fermi energy. Fig. 5.18 shows the result of (5.7) with the bound

state energy plot. Bound state energies obtained from (5.7) are in error with

respect to actually calculated bound state energies by an energy difference smaller

than 0.005 Rydbergs.14 Bound state energies of a free hydrogen atom are included

in Fig. 5.18. One should, however, recall that the zero background density limit

may be different from a free atom as discussed in Sec. 5.1.5. One sees from the

Friedel sum rule that the screening in the model used in this work will always occur

as long as there is a background density. The extra electrons in the conduction

band will respond to the excess core charge, which makes the zero background

density limit different from a free atom. A hydrogen impurity which has only

one electron in a homogeneous electronic gas is, however, expected to reach a free

hydrogen atom as the background density goes to zero. Since the extra electron

in the conduction band in this case must be zero, as the background density goes

to zero, the only response of the conduction band will be that the wave length

of the Friedel oscillation gets longer and it is found that the amplitude of the

Friedel oscillation near an impurity gets smaller. This statement is, however, not

14These differences are mainly due to inaccurate numerical derivatives.
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verified numerically for a background density lower than 0.001 due to the numerical

problems discussed in Ch. 4.
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5.2. Spin polarized system

5.2.1. Zero external magnetic field

5.2.1.1. Carbon impurity at low background densities

A carbon impurity is mainly used for a spin-polarized system in this work

and interesting results are obtained at low background densities. Fig. 5.19 shows

immersion energies for a spin-polarized system and a non-spin-polarized system of a

carbon impurity. Overall, immersion energies of a spin-polarized system are slightly

lower than those of a non-spin-polarized system. Note that these calculations are

based on the same energy of a free atom, that is, the same reference and thus only
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in the number of electrons between spin-up and spin-down electrons in a system.

relative energies between two systems are meaningful. One important difference

between the two systems is the response of the conduction band to the number of

extra electrons in the bound states at low background densities(< 0.005). For both

systems, there are only four electrons in the bound states with the configuration

1s22s2, for a background density higher than 0.002. Note that there should be

two electrons in the conduction band due to the Friedel sum rule if there are

four electrons in the bound states of a carbon impurity, which is true for both

systems. However, a spin-polarized system shows a non-zero magnetization for a

background density lower than 0.005, which makes a difference in the immersion

energy compared to the non-spin-polarized system. One sees that, in Fig. 520,
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FIGURE 5.21. The electronic density and the spin density induced by a carbon
impurity.
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FIGURE 5.22. The electronic density (spin-up and spin-down) induced by a car-
bon impurity in the conduction band.
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N (which is the difference in the number of electrons between spin-up and spin-

down electrons in a system) becomes larger as the background density decreases

and thus a spin-polarized system favors a spin-polarized solution for a background

density lower than 0.005. Fig. 5.21 shows that the spin density becomes larger

in the vicinity of an impurity as the background density decreases while the total

density induced by an impurity remains almost the same. This spin density also

can be seen in Fig. 5.22. The maximum peak of the density induced by an impurity

in the conduction band of spin-up electrons increases in the vicinity of an impurity

between 0.002 and 0.005 background densities and decreases in the conduction

band of spin-down electrons. The density of states in the conduction bands of

spin-up and spin-down electrons in Fig. 5.23 clearly show that there is a resonance

in the conduction band of spin-up electrons between 0.002 and 0.005 background

densities while there is none in the conduction band of spin-down electrons. One

other difference between a spin-polarized system and a non-spin-polarized system

is that a spin-polarized system has a 2p bound state in the spin-up band for a

background density smaller than 0.002 and hence there are seven bound state

electrons in a system while a non-spin-polarized system can not have six electrons

in a 2p bound state.15 One sees now in Fig. 5.22 that, due to a 2p bound state,

the induced density in the conduction band of spin-up electrons sharply drops

in the vicinity of an impurity as the background density decreases from 0.002

15a non-spin-polarized system is not tested for a background density lower than 0.0005.

It is, however, found by considering the rate of the variation of the bound state energy

as a background density decreases that a non-spin-polarized system does not have a

bound state at any background density.
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to 0.001. Note that the induced density in the conduction band of spin-down

electrons at 0.0004 background density has a relatively large hole (radius around

10) compared to that at 0.0005 background density, while there is a small difference

of the induced density in the conduction band of spin-up electrons between 0.0004

and 0.0005 background densities. One can expect that N in Fig. 5.20 is even

larger than 3.0 at 0.0004 background density.'6 One possible explanation for this

is that, due to the strong effect of the exchange-correlation interaction, a system

may get a lower immersion energy by making the magnetization larger at these

extremely low background densities. (See Fig. 2.7, Fig. 2.8, and Fig. 2.9.)

5.2.1.2. Electrical Resistivity

The general idea is taken from [15] and [32].

Within the scheme of density functional theory, the single particle wave func-

tions are used to calculate the ground state densities. The use of these wave func-

tions for other purposes is not formally justified. However, the phase shifts (which

are related to the wave functions) give reasonable agreement with experiment as

discussed in [32].

The contribution of scattering centers to the electrical resistivity can be de-

rived in terms of the phase shifts by

e2kFZh
(l + 1) Sin2 [1(cF) ö1+,(F)] , (5.8)

'6At 0.0004 background density, it is difficult to obtain a self-consistent solution with

the required convergence due to the strong tendency toward a spin-polarized system.
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FIGURE 5.24. The values of Q versus Z for the background density of 0.01. The
calculations are performed only for Z = 1, 3, 6. Note that, at this background den-
sity, there is no difference between spin-polarized and non-spin-polarized systems
for these impurities.

where n is the impurity concentration and Zh is the number of valence electrons

per host ion.17 (See [32] and [15].) A useful expression is

Q (l + 1) Sin2 [1(f F) 81i(fp)] , (5.9)
kFr

1=0

where r3 is the Wigner-Seitz radius. The electronic stopping power for an ion

slowly moving through the electron gas can be obtained from this equation by

multiplying Q by hvj, where v1 is the velocity of an ion. Fig. 5.24 shows the Q

values for H, Li, and C. The result agrees with Ref. [32]. The one important feature

'7CGS units are used in this section.
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of such results is the oscillations of Q values as a function of Z.'8 These oscillations

were observed experimentally in impurity residual resistivity measurements and in

the stopping power data for well-channeled slow ions. [33] The reader should refer

to [32] for more details.

5.2.1.3. Excited system

As discussed in Sec. 5.2.1.1, a spin-polarized system with a carbon impurity

has a very strong tendency toward a large spin-moment solution(parallel to spin-

up) at low background densities(< 0.005). (See Fig. 5.20.) However, a strong

tendency toward an anti-spin-moment solution(parallel to spin-down) in the con-

duction band has been observed for excited systems as well. Fig. 5.25 shows the

variation of immersion energies and /N as a function of the number of spin-up

electrons in a 2p bound state.19 The small variation in the slope of the immersion

energies in Fig. 5.25 can be verified with the bound state energies (Fig. 5.26) of a

2p state using the Janak's theorem as in Sec. 5.1.6. Electrons in the conduction

band behave in such a way that the difference in the total induced density due to

the change in a 2p bound state is as small as possible as illustrated in Fig. 5.27

Fig. 5.38. However, one sees immediately in Fig. 5.25 that decreasing the number

of spin-up electrons in a 2p bound state results in reducing the spin-moment, that

is, in a large anti-spin-moment in the conduction band.

181n order to observe the oscillations of Q values, one needs to obtain the results for Z

at least up to Z = 20. See [32].

'9Note that there is no 2p bound state for spin-down electrons.
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FIGURE 5.27. The density and the spin density induced by a carbon impurity at
0.0005 background density.
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FIGURE 5.28. The density in the bound states of spin-up and spin-down electrons
induced by a carbon impurity at 0.0005 background density.
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FIGURE 5.29. The density and the spin density in the conduction band induced
by a carbon impurity at 0.0005 background density.
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FIGURE 5.30. The density and the spin density induced by a carbon impurity at
0.00075 background density.
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FIGURE 5.31. The density in the bound states of spin-up and spin-down electrons
induced by a carbon impurity at 0.00075 background density.
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FIGURE 5.32. The density and the spin density in the conduction band induced
by a carbon impurity at 0.00075 background density.
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FIGURE 5.33. The density and the spin density induced by a carbon impurity at
0.001 background density.
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FIGURE 5.34. The density in the bound states of spin-up and spin-down electrons
induced by a carbon impurity at 0.001 background density.
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FIGURE 5.36. The density and the spin density induced by a carbon impurity at
0.0011 background density.
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FIGURE 5.37. The density in the bound states of spin-up and spin-down electrons
induced by a carbon impurity at 0.0011 background density.
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FIGURE 5.38. The density and the spin density in the conduction band induced
by a carbon impurity at 0.0011 background density.
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Fig. 5.26 shows in this systemthat the bound state energy as a function

of the number of spin-up electrons in a 2p bound state behaves unusually as a

quadratic function.2° Important parameters of quadratic functions are also shown

in Fig. 5.26. The bound state energy decreases as the number of spin-up electrons

in a 2p bound state decreases from 3.0 electrons as expected. However, the bound

state energy increases as the number of spin-up electrons in a 2p bound state

decreases from the bound state energy minimum due to the largely induced spin-

down electrons near an impurity in the conduction band.

This behavior is consistent with the potential.(Fig. 5.39) For instance, the

induced spin up and down electrons results in a behavior of the Coulomb potential

for each band for 0.0005 background density as illustrated in Fig. 5.40. The total

Coulomb potential near an impurity (r 1) in Fig. 5.41 decreases as the number of

spin-up electrons in a 2p bound state decreases and increases as spin-up electrons

in a 2p bound state decreases from 2.5. One sees also that the change in the total

Coulomb potential (r 1) between 2.0 and 2.5 spin-up electrons in a 2p bound

state is not as large as that between 2.5 and 3.0 spin-up electrons in a 2p bound

state. However, with the increase of spin-up exchange-correlation potential(Fig.

5.42), one sees that the total effective potential of spin-up electrons at 2.0 electrons

in a 2p bound state is now close to that at 3.0 electrons. (See Fig. 5.39.) This

potential behavior accounts for the variation of the bound state energy in Fig.

5.26 and the exchange-correlation interaction in Fig. 5.42 causes the decrease of

20Note that one can not use a simple first order of a Taylor series for this bound state

energy as usual.
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FIGURE 5.39. The effective potential of the spin-up band vs the number of
spin-up electrons in a 2p bound state for 0.0005 background density.
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the spin-moment(the increase of the anti-spin-moment in the conduction band)

since spin-up and down electrons experience the same Coulomb potential.

The phase shift in Fig. 5.43 shows a consistent behavior. Note in the overall

scattering length and volume a decrease for spin-up electrons and an increase for

spin-down electrons. One knows that the Friedel sum rule forces the phase shift

at the Fermi energy to adjust to screen the excess charge of the core correctly.

The way this system behaves due to the Friedel sum rule is that the decrease in

the number of spin-up electrons in a 2p bound state causes an increase in the

phase shift of the spin-down electrons at the Fermi energy and the decrease in

the phase shift of the spin-up electrons, which is consistent with the behavior of

the spin-density in the conduction band. With 3.0 electrons in a 2p bound state,

the phase shift in Fig. 5.43 shows that there is a scattering resonance in the high

energy region ( EF) of the phase shift of the spin-down electrons. The resonance

moves closer to the Fermi energy as the number of electrons in a 2p bound state

decreases. Accordingly, one sees large increases at the Fermi energy in the density

of induced states of the spin-down band, as illustrated in Fig. 5.44 and Fig. 5.45.

These results can be explained by self-consistency and the exchange-

correlation interaction.21 If the induced density in the bound states is reduced

artificially, electrons in the conduction band simply can not be induced more to

maintain the same total induced density since the same total induced density yields

the same Coulomb potentials and accordingly the same induced density in the con-

21 explanations need further investigation.
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FIGURE 5.44. The density of induced states for spin-up and spin-down electrons
at 0.0005 background density.
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FIGURE 5.45. The density of induced states for spin-up and spin-down electrons
at 0.00 1 background density.
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FIGURE 5.46. The exchange-correlation potential with different induced densities
in the spin-up band. Background density is 0.0005. The induced density in the
spin-down band is assumed to be 0.047.

duction band.22 The reduced density in the bound states, thus, tends to cause a

more extended induced density. Moreover, the potential due to the exchange-

correlation interaction23 also can vary corresponding to the change in the density.

Fig. 5.46 shows one example of the exchange-correlation behavior in the case that

the induced density in the spin-up band varies. The reduced density in the spin-

22Once the density in the bound states is changed, the old bound states and scattered

states which are orthogonal to each other do not satisfy the self-consistency anymore.

23The exchange-correlation interaction used in this work only depends on the local

density.
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up band gives rise to a more repulsive exchange-correlation potential and thus the

spin-down band has relatively more induced electrons in the conduction band due

to the Coulomb interaction as the number of electrons in a 2p bound state of the

spin-up band decreases. Fig. 5.47 shows the response of the conduction bands in

terms of the phase shifts at the Fermi energy. One sees that, as the the number of

electrons in a 2p bound state of the spin-up band decreases, the spin-up conduction

band loses more electrons in overall angular momentum states and the decrease of

induced electrons in the p state of the spin-up band is compensated by mainly the

same p state of the spin-down band.
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moment, and the immersion energies vs the magnetic field for a hydrogen impurity
with 0.0025 background density.

5.2.2. Non-zero external magnetic field

A hydrogen impurity in a spin-polarized system has been tested by applying

an external magnetic field. Detailed information for the implementation can be

found in Sec. 4.6. Results for three different background densities are obtained.

Fig. 5.48 shows the induced spin-moment in a system, bound state energies, the

conduction band minimum, and the immersion energies for a background density

of 0.0025. As the magnetic field increases, the background density (conduction

band width) of spin-up (majority) electrons increases and the background density

of spin-down (minority) electrons decreases. Therefore, N in this case is the

excess spin-moment, the deviation from the moment due to the background by
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FIGURE 5.49. The exchange-correlation potential with different background den-
sities of the spin-up band. The total background density is 0.0025 and the induced
density is assumed to be 0.03 for each spin-up and spin-down band. This plot
shows how the exchange-correlation potential for each band may vary with the
increasing magnetic field.

itself. There are two electrons in a is state without an external magnetic field as

in a non-spin polarized system. (See Sec. 5.1.) One sees that bound state ener-

gies behave as in non-spin polarized systems in Fig. 5.48. That is, the bound state

energy in the spin-up band approaches the conduction band minimum as the back-

ground density of the spin-up band increases while the bound state energy in the

spin-down band becomes lower compared to the band minimum. As the magnetic

field in Fig. 5.48 approaches 0.09894,24 where the spin-down conduction band corn-

24The unit for the magnetic field in this work is 3.3241346- i05 T, which will be omitted

in this paper for convenience.
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pletely disappears, the calculations are not performed correctly due to numerical

problems (long wave length of Friedel oscillations) as mentioned in Ch. 4 and thus

data are not available for a magnetic field between 0.08 and 0.10. One important

phenomenon is the spin-moment which decreases with the increasing magnetic field

and then rapidly increases after a magnetic field of 0.06, as illustrated in Fig. 5.48.

Two important facts are, due to the difference between spin-up and spin-down

electrons, the exchange-correlation interaction and the Coulomb interaction of the

Friedel oscillations with two different Fermi wave vectors.

Fig. 5.49 shows that, if the total background density remains the same, the

exchange-correlation potential of the spin-up band becomes more repulsive and

the exchange-correlation potential of the spin-down band rapidly becomes more

attractive due to the exchange-correlation interaction as the background density

of the spin-down band approaches zero, which suggests that there may be a rapid

variation in potentials of spin-up and spin-down electrons when the external mag-

netic field increases. The potential variation in Fig. 5.49 is actually very large

compared to the potential difference at the atomic 2p location (r '-' 4) for a hy-

drogen impurity between the high and low background densities (such as 0.04 and

0.0025). As the external magnetic field increases, this behavior yields not only a

more repulsive potential in the vicinity of an impurity but also a large peak in r

times the potential near the 2p location for the background density of the spin-

up band, as illustrated in Fig. 5.50, which is the opposite behavior compared to

the potentials of systems without a magnetic field in Fig. 5.51.25 The number of

25The lower background density has a larger fluctuation at large distances in the r times

potential for a system without the external magnetic field as in Fig. 5.51.
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FIGURE 5.50. The effective potentials for the different magnetic field 0.01 and
0.04. A hydrogen impurity with 0.0025 background density is used.



0.1

0.0

-0.1

>
-0.2

-0.3

-0.4

-0.5

I I

Hydrogen impurity Backgorund density

/ '\ No magnetic field

5 10 15 20 25

r

152

FIGURE 5.51. The effective potential for a hydrogen impurity. No external mag-
netic field is applied. The potential of the spin-up band is identical to that of the
spin-down band.

induced electrons, therefore, decreases in the spin-up band due to the repulsive

exchange-correlation interaction and increases in the spin-down band due to the

attractive exchange-correlation interaction and, as a result, the spin-moment de-

creases up to 0.05 magnetic field as shown in Fig. 5.48. The phase shifts at the

Fermi energy show a consistent behavior in Fig. 5.52. Without any external mag-

netic field, there is no difference between the spin-up and spin-down bands. This

means that, if the number of induced electrons in the s-state of the conduction

band is reduced by a higher background density, the higher angular momentum

states must have a larger contribution to the number of induced electrons, due to

the Friedel sum rule as shown in Fig. 5.53. The phase shifts at the Fermi energy
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FIGURE 5.52. Partial wave decompositions of the Friedel sum rule. These plots
show the change in the number of electrons induced by a hydrogen impurity for
each band. 0.0025 is used for a background density.
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FIGURE 5.53. Partial wave decompositions of the Friedel sum rule. no external
magnetic field is applied. This plot for the spin-up band is identical with that for
the spin-down band.

with a non-zero magnetic field, however, in Fig. 5.52, show a different behavior

for the higher angular momentum states. One sees in Fig. 5.52 that the variation

in the number of induced electrons due to a different magnetic field for the high

angular momentum states of the spin-down band ( p) is small up to 0.05 mag-

netic field compared to that for a system without a magnetic fleld(Fig. 5.53). One

sees also that the phase shifts at the p-state in the spin-up band become lower as

the magnetic field increases and thus lose more electrons in the p-state while the

s-state lose electrons as well. This behavior is also opposite to a system without a

magnetic fleld(Fig. 5.53). The strong exchange-correlation interaction due to the

magnetic field for this background density is believed to cause these phenomena.
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FIGURE 5.54. The induced electronic densities in the conduction band for dif-
ferent magnetic fields. A hydrogen impurity with 0.0025 background density is
used.
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FIGURE 5.55. The induced electronic densities in the conduction band of spin-up
electrons for each angular momentum state. These plots correspond to the mag-
netic field 0.08 in Fig. 5.48 and Fig. 5.54. A hydrogen impurity with 0.0025 back-
ground density is used.
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FIGURE 5.56. The density of states of the spin-up and spin-down bands for
different magnetic fields. The arrows in the first plot indicate the locations of the
scattering resonances. A hydrogen impurity with 0.0025 background density is
used.
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FIGURE 5.57. Comparison of kF of the spin-down band with k values which
correspond to the scattering resonances in Fig. 5.56.

There is another important interaction which causes the rapid increase in

the spin-moment (Fig. 5.48) and the fluctuations in the high angular momentum

states of the spin-up band as in Fig. 5.52. Since there is a difference in Fermi

wave vector between the spin-up and spin-down bands, one may easily expect that

there is a beat pattern in the induced density. The spin-down band has a larger

range of Coulomb holes and peaks in the density than the spin-up band due to

the smaller Fermi wave vector as shown in Fig. 5.54. The spin-up band tries to

compensate a large range of these Coulomb fluctuations in the induced density

of the spin-down band and results in the increased values of the phase shifts of

high angular momentum states at the Fermi energies. On the other hand, the

spin-down band also tries to keep the same Coulomb holes as usual by removing
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spin-down electrons.26 One sees that the increases for I = 3, 4, and 5 of the

spin-up band in Fig. 5.52 and consistently the induced densities in the spin-up

band for the high angular momentum states, which are at locations of the large

Coulomb holes of the spin-down band, are unusually large as illustrated in Fig.

5.54 and Fig. 5.55. Also note that, for large magnetic fields, there are significant

decreases in the I = 1, and 2 phase shifts of the spin-down band in Fig. 5.52.

This interaction dominates the exchange-correlation interaction as the spin-down

background density approaches zero and yields a large spin-moment as in Fig.

5.48. One can see this interaction in the density of states as well. (See Fig. 5.56.)

There is a scattering resonance in the density of states for the spin-up band which

becomes large as the background density of the spin-down band approaches zero.

One sees also in Fig. 5.57 that the momentum value corresponding to the scattering

resonance closely follows the Fermi wave vector of the spin-down band, which is

related to the Coulomb compensatioh of the spin-up band. After the spin-down

conduction band disappears, the spin-moment is simply -1 since only the spin-

down band has a bound state. The immersion energy varies in Fig. 5.48 opposite

to the spin-moment since the induced spin-up electrons have a lower energy when

the energy is shifted by the magnetic field.

26This Coulomb interaction of the Friedel oscillations makes obtaining a numerical self-

consistent solution much more difficult.
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FIGURE 5.58. Bound state energies, the conduction band minimums, the spin
moment, and the immersion energies vs the magnetic field for a hydrogen impurity
with two different background densities, 0.01 and 0.04.
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The calculations for a background density of 0.01 yield similar results as

shown in Fig. 5.58.27 The background density 0.04, however, gives different results

as shown in Fig. 5.58. Note that, without an external magnetic field, there are no

electrons in the bound states for a background density of 0.04 and a is bound state

exists in the spin-down band for the magnetic field larger than 0.25. The main

271n the results for 0.01 background density, there is a discontinuity in the spin-moment

near 0.19 magnetic field as shown in Fig. 5.58, which is believed to be a numerical

problem due to the large spatial extension of the bound state in the spin-up band.
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FIGURE 5.60. The integrated values of the density of states of the spin-up band
for different magnetic fields to find the total induced number of electrons in the
spin-up conduction band. A hydrogen impurity with 0.04 background density is
used. The band minimums are shifted in such a way that they have the same
minimum.

difference is that the spin-moment slightly increases as the magnetic field increases

from zero but shows the same behavior as results for the background densities of

0.0025 and 0.01 after 0.035 magnetic field. This may be explained by the exchange-

correlation interaction for this high background density and the difference in the

band width(kF) between spin-up and spin-down bands. Since this is such a high

background density, the exchange-correlation potentials vary relatively slowly as

the magnetic field increases from zero compared to Fig. 5.49 (See Fig. 5.59.) and

the change in the band width due to the magnetic field becomes more important.

In this case, the number of induced electrons increases as the Fermi wave vector
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FIGURE 5.61. Partial wave decompositions of the Friedel sum rule. These plots
show the change in the number of electrons induced by a hydrogen impurity for
each band. 0.04 is used for a background density.
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FIGURE 5.62. The density induced by a hydrogen impurity for each conduction
band. The background density is 0.04 and the magnetic field is 0.3.

of the spin-up electrons increases, since there are more states available which can

contribute to the induced electrons. One can integrate the density of states to

find the number of induced electrons, which is shown in Fig. 5.60. The integrated

number of induced electrons as a function of energy in the spin-up band is slightly

different between a magnetic field of 0.1 and 0.35, but the higher Fermi wave vector

results in a gain of more electrons as illustrated in Fig. 5.60. The phase shifts at

the Fermi wave vector in Fig. 5.61 for values of the magnetic field between 0.1

and 0.35 show a significant change for high angular momentum states (such as

1 = 1 i-'-' 4) compared to the change in the s-state as the magnetic field increases.

The induced density of the spin-up band is much larger than that of the spin-down

band for a magnetic field greater than 0.35 as illustrated in Fig. 5.62. However, as
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the magnetic field increases, the spin-moment in Fig. 5.58 decreases for a magnetic

field larger than 0.03528 where the exchange-correlation potential of the spin-down

band may decrease very rapidly and thus the difference in the exchange-correlation

potentials becomes very large as shown in Fig. 5.59. The same reasoning which is

applied to analyze the results for a background density of 0.0025 can be applied to

the results for a magnetic field larger than 0.035 for this high background density

as well.

280.035 magnetic field corresponds to 0.032796 background density of the spin-up band.
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6. CONCLUSIONS

Immersion energies are calculated for H, Li, C, and excited systems of H and C

using the Kohn-Sham equations in the LDA scheme. The self-consistent solutions

are verified and compared with the Friedel sum rule, Friedel oscillations, phase

shifts, the scattering length, bound state energies, potentials, Janak's theorem,

and compressibilities.

In order to obtain the correct self-consistent solutions, numerical problems

must be solved first. The numerical and theoretical errors in LDA due to the rapid

density variation in the vicinity of an impurity are canceled out by subtracting

the reference energy of a free atom. The Friedel sum rule and Friedel oscillations

play a crucial role in solving numerical problems during the numerical iteration

process. The long tail of the Friedel oscillations is strongly coupled to the induced

density near an impurity by the Coulomb interaction. A mixing ratio as a function

of r is used to accelerate the convergence by suppressing this coupled interaction

in the mixing step in the self-consistent calculation. In the numerical calculation,

infinity must be replaced with a cut-off large number and numerical results must

be corrected using the behavior of the Friedel oscillations.

The background density at the immersion energy minimum is 0.0024 for a

non-spin polarized system of H and 0.0033 for a non-spin polarized system of

C. The behavior of immersion energies as a function of the background density

depends on the number of bound states as well as on the impurity. For a neutral

impurity, which is forced to have the same number of electrons as the impurity

charge, the immersion energies show a simple linear behavior and approach zero as

the background density becomes zero. The immersion energies for excited systems

are verified with Janak's theorem.
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The impurity is completely screened, which is consistent with the Friedel

sum rule, regardless of the number of bound states or the background density. In

the low energy scattering cases, one can predict the behavior of the phase shifts

from the Friedel sum rule and the number of bound states. The phase shifts may,

however, show a complicated behavior due to the narrow width of the conduction

band at an extremely low background density. This behavior can be expressed in

terms of scattering lengths and compressibilities, which is verified with analytical

theories.

At low background densities, the calculations show that the immersion en-

ergy for the spin-polarized system of a carbon impurity continues to decrease as the

background density decreases and does not have the immersion energy minimum

near the background density where the non-spin-polarized system of a carbon im-

purity has a minimum. For these spin-polarized systems, the exchange-correlation

interaction at low background densities becomes very important, causing a very

strong tendency toward a spin-polarized solution. It induces a 2p bound state in

the spin-up band only, and can yield a non-zero magnetization even without an

external magnetic field. These phenomena lead to an unusual angular momentum

state behavior in terms of the number of induced electrons for excited systems of

a carbon impurity at low background densities.

With an external magnetic field, the strong Coulomb interaction appears due

to two different wave lengths of Friedel oscillations, for spin-up and spin-down

bands. With this Coulomb interaction, several interactions such as the exchange-

correlation interaction and the change in the band width due to an external mag-

netic field give rise to a complicated behavior of the induced spin-moment. For

instance, there is a rapid increase of the spin-moment as the band width of the

spin-down band goes to zero. This magnetic behavior of a spin-polarized system



due to the exchange-correlation interaction at low background densities is driven by

the response of an electron gas in the conduction band and, as a result, has a long

range effect compared to usual lattice constants. These results, therefore, suggest

that the separation distance between impurities is important, and the magnetic

behavior of impurities may largely depend on the separation distance.

The model used in this work is spherically symmetric, the spin-orbit inter-

action is ignored, and the self-interaction correction is not implemented. A non-

spherical model must be used for partially occupied angular momentum shells and,

hence, may yield angular dependent results especially with an external magnetic

field. The spin-orbit interaction also may lead to very different results since non-

zero angular momentum states can show the complicated behavior as explained

in Ch. 5. In the future, a non-spherical model should be studied with the spin-

orbit interaction and the self-interaction correction. Further, a non-local density

scheme for the exchange-correlation interaction should be used to investigate the

important dependance of our results on the exchange-correlation potential.
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APPENDIX A. Atomic Rydberg units

Atomic Rydberg units are defined by h = 2me = e2/2 = 1.

The unit for length is the Bohr radius:

h2
a0 = 2

= 1 0.529 10-8 cm
mee

The unit for time is the ratio of an angular momentum and the Rydberg

energy:

to== 2h3148410_17
ER mee

The unit for energy is the Rydberg energy:

ER =
mee4

1 Rydberg 13.6 eV
2a0 2h2

The unit for charge is:

eq0= 1= 1.1329105.10_19 C

The unit for charge density is:

Po = 1 = 7.6452571 10" C/m3

Other units for important physical quantities are as follows.

The unit for electric field:

E0 = 1 3.6360903 1011 V/rn

The unit for current:

1 = 1 2.3418037 mA
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The unit for conductivity:

a0 = 1 2.2999241 106 S/rn

The unit for resistance:

R0 = 1 8.2164712 k1

The unit for magnetic induction:

B0 = 1 3.3241346 T

The unit for magnetization:

M0 = 1 4.4253673. i07 A/rn
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APPENDIX B. Comparison with published data

This section is dedicated to focus on the main difference between this thesis

and Puska, Nieminen, and Maninen's work( [5]).

B.1. Numerical aspects

In Puska, Nieminen, and Maninen's work, only 10 partial waves were used.

The Pratt improvement scheme(Broyden's method) is used for the mixing ratio.

They used a first order approximation of Taylor series to remove the dependence

of the cut-off radius in the calculation of the exchange-correlation energy.

In this thesis, a cut-off value of 10-8 for the phase shifts is used to determine

the number of partial waves for each k. Hence, the number of partial waves is

variable. Exponential-like functions are used for the mixing ratio since discontinu-

ities in the potential in r-space are found in Broyden's method. The information

of the last two input potentials is utilized in the mixing scheme to consider the

response of iteration process. The cut-off radius dependance of the calculations is

removed by considering the oscillation of integrated values, which is believed to be

accurate due to the regular behavior of the Friedel oscillations at large distances.

The output potentials also must be corrected after each iteration of the numerical

calculations. This is performed in such a way that the system satisfies the Friedel

sum rule and correct Friedel oscillations. It is also pointed out that the systematic

numerical error of core states of an impurity in an electronic gas can be canceled

out by that of the reference of a free atom energy. In order to obtain this cance-

lation, one must use the same r-mesh for both calculations. Detailed information

can be found in Ch. 4.
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B. 2. Results

The immersion energies obtained in this thesis are slightly lower than those

in Puska, Nieminen, and Maninen's work. For instance, the background density is

about 0.025 at zero immersion energy for H while it is 0.02 in Puska, Nieminen, and

Maninen's work. However, the result for the background density at the immersion

energy minimum is very close to that of Puska, Nieminen, and Maninen's work.

They showed 0.0026 for H and 0.0035 for C while, in this work, 0.0024 for H and

0.0033 for C are obtained. While they focused on the partial-wave decompositions

of the density of induced states, the results for the partial-wave decompositions of

the Friedel sum rule' are obtained and used to analyze the behavior of the poten-

tials especially for spin-polarized systems. The following new results are obtained.

Dielectric functions and compressibilities for H are calculated and compared with

the theory in this work. Immersion energies for excited systems are also calculated

and verified with the Janak's theorem, and the results for spin-polarized systems

and spin-coupling with an external magnetic field are also newly obtained in this

work, which have not been performed in the older work.

kind of discussion also can be found in [32
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APPENDIX C. Boundary conditions for non-spherical potentials at
small r

The general idea is taken from [8]. The equations to be solved are

where

1d2 1(1+1)1
+

j
u,i(r) = V(r)uniim(r) , (Cl)

1'

V(r) = fdY (r)Veff(r,9)Ypm(r) . (C2)

The coupling terms must be examined in order to find the boundary conditions of

a set of linearly independent solutions of the coupled equations at small r. The

potential can be expanded due to its cylindrical symmetry as

V(r) = V(r)P(cose) (C3)

where P(cos 0) is a Legendre polynomial. The behavior of the components V(r)

of the potential at small r can be shown, which is

limVj(r)

{

r if i> 0
(C4)

_
r

Using the expansion for V(r),

V(r)
f

d [(r) Vo(r)Po(cos O)Ym(r) + Ytn(r) Vi (r)Pi (cos O)Ym(r)

Note that

+1(r)V2(r)P2(cos0)Yi'm(lr) + .] . (C5)

fdIl Yi(1lr)Pv(CO5 O)Yt'm(1r) 138(1v)+2i,1' ,

where i = 0,I1,2, until 1' (1+v).
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Now, using the form of 1/2(r) at small r in (C4), each term in (C5) contributes

to V(r) at small r as

lin 1'(r) = + c1r
f Yn(r)Pi(cos O)Ypm(lr)

+ 2r2
f 1(r)P2(cos O)Yi'm(1r) +... (C7)

= + i5i±i,i'r + 26i+2,i'r2 + , (C8)

where only the lowest order terms of r are kept for each coupling term 1' and /3

simply represents constants produced in integrals and coefficients in V(r). For

spherically symmetric potential, the form of Ujm at small T is

lijm() = (C9)

Using this form, the coupling terms become at small r

lim r)um(r) = or1+1 + 1r13 + 1r11r
1'

+ /32r1+5 + /32r1+l + 33rl+7 + /33r1+l + . (ClO)

One can see that the coupling terms follow the form of

rt4 ifj<l
r2j+l+1 jf j > 1

(Cli)

where j = 0, 1, 2, , lmax.2 Since there exist solutions following these form of

coupling terms, one can finally write power series form for linearly independent

solutions of coupled equations.

2lmax is the maximum I value used in the numerical calculation to truncate the partial

wave expansion in (3.3).
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uim(r) = br' (C12)

i=1

The lowest order terms r1 satisfy automatically the boundary conditions at small

r. For the higher order terms than rt+1, there are lower order terms to be coupled

in (Cl).
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APPENDIX D. Singular value decomposition(SVD)

The singular value decomposition(or SVD) is very popular, used for many

different areas such as image compression but essentially a technique to deal with

matrices which are singular or very close to singular and thus for which Gaussian

elimination or other decomposition methods may fail.

Any real mx n matrix A can be decomposed uniquely with a mx m orthogonal

matrix U and an n x ii orthogonal matrix V such that

A=U.D.VT (Dl)

where D = diag(ai, o2, , a,) and follows order of ai a2 a7-. The

scalars o, , a, are called the singular values of A and columns of U and V

are eigenvectors of AAT and ATA, respectively.

Let's consider a system of linear equations.

Ax=b (D2)

The nulispace is defined as a subspace of x such that A . x = 0 if A is a singular.

The range is defined as a subspace of b which can be obtained by mapping x with

A. The dimension of the range is actually the rank of A. The dimension of the

range is also can be obtained by subtracting the dimension of the nullspace from

m. If A is nonsingular, its range is all of the vector space b. If A is singular, the

rank r is less than m and Ur+1 = T+2 = = a = 0. Suppose that A is singular.

If b = 0, any column of V which corresponds to zero a3 becomes a solution of

Ax = 0. A solution is in this case x = a1v,. + a2vr+1 + + an_rvn where v is a

j column of V and a + a + + a_r = 1. If the vector b is not zero and lies in

the range of A, solutions can be found by

x = V [diag(1/a3)} . UT . b (D3)



with a condition of the smallest length x2 which removes any redundant solutions

since any column of V with a zero a3 (solutions correspond to the nullspace) can

be added to x in any linear combination. One important trick in (D3) is to equate

1/cr3 to zero if a3 = 0. The readers should refer to [34] for more details.

An example for A . x = 0 (calculated in Mathematica):

The matrix A is given by

136
245
2 6 12

4 8 10

Since the last two rows of A are just twi

10

3
(D4)

20

6

ce the first two rows, the rank of A is 2.

The matrix A can be decomposed using SVD as mentioned before. U, D, and V

are

-0.390888 0.217271 -0.729017 0.518202

-0.217271 -0.390888 0.518202 0.729017
U= , (D5)

-0.781776 0.434542 0.364509 -0.259101

-0.434542 -0.781776 -0.259101 -0.364509

30.5886 0 0 0

0 8.0212 0 0
D= ,and (D6)

0 0 00

0 0 00

-0.134925 -0.351883 0.695905 -0.611301

-0.333743 -0.568331 0.265892 0.703503
V= , (D7)

-0.560942 -0.405685 -0.627282 -0.356765

-0.74549 0.623376 0.227011 0.064138
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Since the rank of A is 2, a3 a4 = 0 which correspond to the nulispace. The

calculation can be confirmed a

1 3 6 10

245 3U.D.VT= =A . (D8)
2 6 12 20

48106

Last two columns of V give solutions of A x 0, which can be confirmed as

0.695905 1. x 10-6

0.265892 1. x 10-6
A. = . (D9)

0.627282 2. x 10_6

0.227011 2. x 10-6

0.611301 2. x 10_6

0.703503 1. x 10-6
A. = . (D10)

0.356765 4. x 10-6

0.064138 2. x 10-6

The right hand sides in the above equations show very small values which are

actually zero within the numerical tolerance. Note that for any column v of V,

VT . = 1.
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FIGURE 6.1. Behavior of phase shifts for k + oo.

The high energy behavior of phase shifts is tested numerically with a hydrogen

impurity and a background density of 0.0025. A discussion of phase shifts in

Coulomb-like potentials can be found in several places. [31] [35] [36]

For a potential of the type [36]

v(r)
ag(Ar)- , (El)

r

approximate expressions for high energy phase shifts are, up to a first order,

61(k) 6,. + [ln(2k/A)] (E2)
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where is the point-Coulomb phase shift, which is, as k is increasing, vanishing

much faster than the second term in (E2). The results in Fig. 6.1 are obtained

with the assumption, A = 1/Rm, which is correct for g(Ar) = 1 r/Rm.3

One can see in Fig. 6.1 that numerically obtained results well agree with the

analytic form.

3The potential is zero for r Rm.
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FIGURE 6.2. Scattering length versus i//[f, where EB is the bound state
energy relative to the conduction band minimum.

It is shown in 3.6 that the scattering length a can be related to the bound

state energy as in

1
a = r0 +

kB
(Fl)

If the effective potential range r0 is sufficiently small, as in the screened cases, the

scattering length can be estimated from the bound state energies using (Fl).

Fig. 6.2 shows that the numerical results calculated in this work are consistent

with (Fl).




