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This research explores the hypothesis that methods from decision theory and 

machine learning can be combined to provide practical solutions to current 

manufacturing control problems. This hypothesis is explored by developing an integrated 

approach to solving one manufacturing problem - the optimization of die-level functional 

test. 

An integrated circuit (IC) is an electronic circuit in which a number of devices are 

fabricated and interconnected on a single chip of semiconductor material. According to 

current manufacturing practice, integrated circuits are produced en masse in the form of 

processed silicon wafers. While still in wafer form the ICs are referred to as dice, an 

individual IC is called a die. The process of cutting the dice from wafers and embedding 
them into mountable containers is called packaging. 

During the manufacturing process the dice undergo a number of tests. One type 
of test is die-level functional test (DLFT). The conventional approach is to perform 

DLFT on all dice. An alternative to exhaustive die-level testing is selective testing. With 

this approach only a sample of the dice on each wafer is tested. Determining which dice 

to test and which to package is referred to as the "optimal test problem", and this problem 

provides the application focus for this research. 
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In this study, the optimal test problem is formulated as a partially observable 

Markov decision model that is evaluated in real time to provide answers to test questions 

such as which dice to test, which dice to package, and when to stop testing. Principles 

from decision theory (expected utility, value of information) are employed to generate 

tractable decision models, and machine learning techniques (Expectation Maximization, 

Gibbs Sampling) are employed to acquire the real-valued parameters of these models. 

Several problem formulations are explored and empirical tests are performed on 

historical test data from Hewlett-Packard Company. There are two significant results: (1) 

the selective test approach produces an expected net profit in manufacturing costs as 

compared to the current testing policy, and (2) the selective test approach greatly reduces 

the amount of testing performed while maintaining an appropriate level of performance 

monitoring. 



Just Enough Die-Level Test: 

Optimizing IC Test via Machine Learning and Decision Theory  

by  

Tony R. Fountain  

A THESIS  

submitted to  

Oregon State University  

in partial fulfillment of 
the requirements for the 

degree of 

Doctor of Philosophy 

Presented August 21, 1998  
Commencement June 1999  



Doctor of Philosophy thesis of Tony R. Fountain presented on August 21, 1998 

APPROVED: 

Major Professor, representing Computer Science 

air of Department of Computer Science  

Dean

I understand that my thesis will become part of the permanent collection of Oregon State 
University libraries. My signature below authorizes release of my thesis to any reader 
upon request. 

Tony R. Fountain, Author 

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



Acknowledgements 

A number of people contributed, either directly or indirectly, to the research 

described in this dissertation. Three people deserve special recognition for their 

critical contributions. 

Professor Tom Dietterich of Oregon State University served as thesis advisor. Dr. 

Dietterich provided direction and inspiration through all phases of this project, from 

problem definition to evaluation. It was both an honor and a pleasure to work with 

him on this project. 

Mr. Bill Sudyka of Hewlett-Packard Company served as domain expert and 

technical consultant. Mr. Sudyka provided the manufacturing details and the test 

data that made this project possible. His enthusiasm, commitment and patience were 

unwavering during our exploration of IC manufacturing. His assistance far exceeded 

the call of duty. 

Professor Bruce D'Ambrosio of Oregon State University served as initial project 

advisor and facilitator. Dr. D'Ambrosio provided funding and direction throughout 

most of my graduate studies. His assistance was instrumental in my attending 

Oregon State University and in determining the direction of my graduate studies. 

His generous support was essential to the successful completion of this project. 

The benefits derived from my relationships with these individuals extend beyond 

the completion of this project. My gratitude extends far beyond this simple 

acknowledgement. 



TABLE OF CONTENTS  

Page 

1. INTRODUCTION 1 

1.1 Integrated Circuit Manufacturing 2  

1.2 Optimizing IC Test 2  

1.3 Thesis Overview 5  

2. PROBLEM DESCRIPTION 7  

2.1 The Integrated Circuit Industry 7  

2.2 IC Manufacturing Processes 10  

2.3 IC Manufacturing Control 14  

2.4 Models of Wafer Test Data 16  

2.5 Die-Level Functional Test 20  

2.6 Wafer Test Data Set 24  

2.7 Testing Policy Alternatives 27  

2.8 Summary 28  

3. DECISION-THEORETIC WAFER TEST 30  

3.1 Structuring the Problem: Wafer Test Control as Staged Decisions 32  

3.2 Decision Theory for the Wafer Test Problem 35  

3.3 Belief Networks, Inference Algorithms and Influence Diagrams 38  

3.3.1 Representing Conditional Independence of Die Test Results .. 47  
3.3.2 Evidence Processing and Belief Updating 50  
3.3.3 Representing Package Test Results 52  
3.3.4 Evaluating the Wafer Test Influence Diagram 54  
3.3.5 Inference with Ensembles of Models 57  

3.4 Summary 58 



TABLE OF CONTENTS (Continued) 
12ge 

4. LEARNING METHODS FOR STOCHASTIC MODELS 60  

4.1 Measuring Model Quality 61  

4.2 Incomplete-Data Problems and Data Augmentation Algorithms 64  

4.3 The EM Algorithm for the Wafer Test Models 65  

4.4 The Gibbs Sampling Algorithm for the Wafer Test Models 68  

4.5 Learning Experiments 72  

4.5.1 EM Tests 73  
4.5.2 Gibbs Sampling Tests 77  

4.6 Summary 83  

5. EXPERIMENTAL WAFER TESTS 85  

5.1 Model Performance 86  

5.1.1 The Best EM Model 88  
5.1.2 The Best Gibbs Sampling Model 94  
5.1.3 Model Comparisons 100  

5.2 Evaluation of the Myopic VOI Stopping Rule 104  

5.3 Training Policies 107  

5.4 Detection of Process Problems 111  

5.5 Robustness to Changes in Utility Parameters 119  

5.5.1 Changes to Package Cost 120  
5.5.2 Changes to Functional Test Cost 123  

5.6 Tests with Holdout Data 127  

6. CONCLUSIONS 129  



TABLE OF CONTENTS (Continued) 
Page 

6.1 Summary 129 

6.2 Recommendations for Future Research 134 

BIBLIOGRAPHY 135 



LIST OF FIGURES  

Figure Paae 

1. Major IC Manufacturing Steps 11  

2. Exhaustive Test Flowchart 22  

3. Sample Wafer Maps 24  

4. Wafer Data Average Yield 25  

5. Wafer Data Average Standard Deviations 25  

6. Wafer Data T-Statistics 26  

7. Selective Test Flowchart 33  

8. Single Die Belief Net 39  

9. Single Die Influence Diagram 41  

10. Simplified Single Die Influence Diagram 44  

11. Wafer Test Influence Diagram 45  

12. Naive Bayes' Belief Network for the Wafer Test Probabilities 49  

13. Belief Network with Package Test Results 53  

14. CI Wafer Test Influence Diagram 54  

15. Wafer Test Belief Network 60  

16. EM Learning Curves for Training Data 73  

17. EM Learning Curves for Validation Data 74  

18. EM Wafer Class Distribution 4 Classes 75  

19. EM Wafer Class Distribution 8 Classes 76  

20. Gibbs Learning Curves for Training Data 78  

21. Gibbs Learning Curves for Validation Data 79  



LIST OF FIGURES (Continued) 

Figure Page 

22. Gibbs Ensemble Learning Curves 81  

23. Gibbs Ensemble: 80 Models: Training Data 82  

24. Gibbs Ensemble: 80 Models: Validation Data 83  

25. Wafer Test Profit Model 88  

26. EM Tests: Learning Curves 89  

27. EM Tests: Profit 90  

28. EM Tests: Number Tests 91  

29. EM Tests: Number Packages 91  

30. EM Tests: Number True Negatives 92  

31. EM Tests: Number False Positives 93  

32. Gibbs Tests: Learning Curves 95  

33. Gibbs Tests: Profit 96  

34. Gibbs Tests: Number Tests 97  

35. Gibbs Tests: Number Packages 97  

36. Gibbs Tests: Number True Negatives 98  

37. Gibbs Tests: Number False Positives 99  

38. Model Comparisons: Profit .102  

39. Model Comparisons: Number Packages 103  

40. Optimal Stopping Tests: Profits 106  

41. Optimal Stopping Tests: Number Tests and Packages 106  

42. Training Policies: Learning Curves .108  



LIST OF FIGURES (Continued) 

Figure Page 

43. Training Policies: Profits .110  

44. Training Policies: Profit vs. Test Negative Log Likelihood 110  

45. Detecting Process Problems: Wafer 1 113  

46. Detecting Process Problems: Wafer 2 113  

47. Detecting Process Problems: Wafer 3 114  

48. Detecting Process Problems: Wafer 4 114  

49. Detecting Process Problems: Wafer 5 115  

50. Detecting Process Problems: Wafer 6 115  

51. Detecting Process Problems: Yields and Tests 116  

52. Detecting Process Problems: Number Tests and Packages 117  

53. Detecting Process Problems: Yield vs. Number Tests 118  

54. Detecting Process Problems: Number Tests Histogram 118  

55. Robustness Tests: Changes to Package Cost: Number Tests 121  

56. Robustness Tests: Changes to Package Cost: Number Packages 122  

57. Robustness Tests: Changes to Package Cost: Number True Negatives 122  

58. Robustness Tests: Changes to Package Cost: Number False Positives 123  

59. Robustness Tests: Changes to Functional Test Cost: Tests and Packages 124  

60. Changes to Functional Test Cost: Number True Negatives 125  

61. Changes to Functional Test Cost: Number False Positives 126  



LIST OF TABLES  

Table Page 

1. EM vs. Gibbs Scores 81  

2. EM Tests: Results 89  

3. EM Tests: Correlation Coefficients 94  

4. Gibbs Tests: Results 95  

5. Gibbs Tests: Correlation Coefficients 100  

6. Test Wafers Statistics 101  

7. Model Comparisons: Results 101  

8. Optimal Stopping: Results 105  

9. Training Policies: Learning Results in log likelihoods 108  

10. Training Policies: Profits Results 109  

11. Detecting Process Problems: Wafer Summary 112  

12. Robustness Tests: Changes to Package Cost: Results 120  

13. Robustness Tests: Changes to Functional Test Cost: Results 124  

14. Test Data Statistics .127  

15. Holdout Data Tests: Results 127  



Just Enough Die-Level Test:  
Optimizing IC Test via Machine Learning and Decision Theory  

1. INTRODUCTION 

This research explores the hypothesis that methods from decision theory and 

machine learning can be combined to provide practical solutions to current 

manufacturing control problems. The control of a modern computer-integrated 

manufacturing line is a formidable task. The process complexities, real-time pressures, 

and the economic bottom-line all combine to make process analysis and control 

difficult. Intelligent decisions require accurate information and rational decision 

policies. Although high-speed data networks are capable of providing volumes of data 

on process parameters, the translation of data into information and the application of 

this information to process control remain a challenge due to the complexity of the task. 

One consequence of this complexity is that the real-time application of process data is 

often ignored and naïve sub-optimal control policies are implemented. At times it is 

simply easier to treat all manufactured items the same rather than detecting and 

responding to individual differences. Recent developments in the fields of 

computational decision theory and machine learning offer attractive theoretical tools to 

address complex analysis and control problems. Computational decision theory offers 

efficient formulations of optimal decisions, and machine learning offers efficient data 

analysis. Taken together these methods provide a principled approach to solving some 

of the complex control problems encountered in a computer-integrated manufacturing 

environment. This research extends that body of knowledge by developing an 

integrated approach to solving one such problem: the real-time optimization of die-level 

functional test. 
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1.1 Integrated Circuit Manufacturing 

An integrated circuit (IC) is a circuit in which a number of elements are 

fabricated and interconnected on a single chip of semiconductor material (Van Zant, 

1997; Zorich, 1990). According to current manufacturing practice integrated circuits 

are produced en masse in the form of processed silicon wafers. A single wafer can 

yield up to several thousand ICs. While still in wafer form, the ICs are referred to as 

dice; an individual IC is called a die. The process of cutting the dice from the wafers 

and embedding them into mountable containers is called packaging. 

During the manufacturing process the dice undergo a number of tests. One type 

of test is die-level functional test (DLFT). During DLFT, electrical signals are fed to 

each individual die, and the outputs are measured to determine whether the die is 

operating correctly. The conventional approach is to perform DLFT on all dice while 

they are still in wafer form. Once this testing is complete, the individual dice are cut 

from the wafers, sorted, then either packaged to yield ICs or are scrapped. Those that 

are packaged are then tested again. These final tests are similar to those that were 

performed in DLFT. Die-level functional tests are expensive (testers, personnel, 

production time), may cause damage to the dice, and in some cases may be 

unnecessary, since the ICs are tested again prior to sale. An optimal testing approach 

would minimize the number of functional tests while maximizing net profit. 

1.2 Optimizing IC Test 

An alternative to the exhaustive test policy for wafer test is a selective test 

policy. Under a selective test policy, wafers are tested only to the degree needed to 

make informed package decisions. The assumption is that die defects exhibit a spatial 

distribution that can be predicted by testing only a sample of the dice on any wafer. 

This assumption is exploited by the testing policy in order to make package decisions 

for all dice on a wafer while only testing a sample of the dice on that wafer. Thus, the 
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decision to package a die is based on the expected utility of the package test result for 

that die, rather than on the observed functional test result for that die. In other words, a 

die is packaged if it is expected to pass package test and produce a profit regardless of 

whether it was functionally tested while in wafer form. Since all packaged dice are 

functionally tested after packaging, there is no chance that a bad die will be shipped to a 

customer. Thus the selective test approach attempts to eliminate unnecessary functional 

tests. The selective test approach is distinctive in that during wafer testing the policy is 

updated in real time with the observed functional test results. Thus testing behavior is 

customized for each wafer. 

The selective test approach is based on the following four hypotheses: 

1.	 Die defects exhibit stochastic spatial patterns. 

2.	 Machine learning techniques can be developed to discover and capture these 

patterns. 

3.	 Decision-theoretic models can be constructed to exploit these patterns through 

selective test policies. 

4.	 Selective test policies can reduce the number of functional tests while improving net 

profits and maintaining adequate process feedback. 

In this dissertation, these hypotheses are examined throughthe development and 

evaluation of a system that implements the selective test policy for die-level functional 

test. The overall approach can be summarized as follows: 

1.	 The wafer test problem was formulated as a series of decisions. A flowchart was  

created in which the control points in the testing process were identified. Each  

control point corresponds to a decision in the selective test policy.  

2.	 Statistical decision theory was employed to structure each of the decisions. This 

involved the following steps: 
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A utility model for measuring wafer test costs and profits was developed. Profit 

is determined by the selling price of good ICs. The relevant costs include the 

functional test cost, the cost of packaging, and the cost of package test. 

The sources of uncertainty in the problem were identified. The selective test 

approach makes package decisions without complete knowledge of functional 

test results. Thus the functional test results for the untested dice are a source of 

uncertainty in this problem. 

Each of the wafer test decisions was expressed in terms of expected utility. 

Since the overall goal of the selective test policy is to maximize net profits, and 

since there is some uncertainty about test results, the appropriate decision rule is 

to act to maximize expected profits. Thus each of the wafer test decisions was 

formulated as an expected utility calculation. 

3.	 Probabilistic inference techniques were used to derive computable models of the 

wafer test decisions. A belief network was developed to represent the stochastic 

model of wafer test results. Influence diagrams were developed for key control 

decisions. Inference algorithms were developed to perform probability and 

expected utility calculations. 

4. Unsupervised machine learning techniques were developed to acquire the 

parameters to the stochastic model. The Expectation-Maximization (EM) algorithm 

and the Gibbs sampling algorithm were applied to the parameter estimation 

problem. Holdout validation was employed to evaluate alternative model structures. 

Performance was measured in terms of a negative log likelihood score. 

5.	 Experimental tests of the selective test approach were performed. The trained 

stochastic models were combined with the utility model and embedded within a 

selective test control structure. The performance was evaluated in simulated wafer 

testing over historical data provided by Hewlett-Packard Company. The selective 

test policies were compared to the current exhaustive test policy, to a no-test policy, 

and to an optimal (Oracle) policy. Performance was measured in terms of net 
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profits and overall testing behavior, i.e., the number of dice tested, the number of 

packages, and the number of correct and incorrect package decisions. Additional 

tests were performed to measure the following: 

The robustness of the selective test policy to changes in utility parameters.  

The response of the selective test policy to test process problems as evidenced  

by abnormal wafers.  

The effects of various training policies on testing performance.  

The ability of the selective test policy to generalize to other data sets.  

An overall evaluation of the system yields two significant results: 

1.	 The selective test approach produces an expected net profit in manufacturing costs 

as compared to the current testing policy. 

2. The selective test approach greatly reduces the amount of testing performed while 

maintaining an appropriate level of performance monitoring. 

The details of the development and evaluation of the selective test system are provided 

in the remaining chapters of this thesis. 

1.3 Thesis Overview 

The remainder of this thesis is organized into the following chapters. 

Chapter 2 describes semiconductor manufacturing in some detail. The application of 

mathematical models and operations research methods to IC testing is reviewed. The 

conventional approach to wafer testing is presented. This exposition provides the 

context and the details of the die-level functional test problem. 

Chapter 3 presents the decision-theoretic analysis of the die-level functional test 

problem. The selective test approach is developed as an alternative to the conventional 

exhaustive test approach. The formulation of the selective test approach is 
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accomplished by applying methods from decision theory and probabilistic inference. 

Belief net models are created for modeling wafer test results. Influence diagrams are 

developed for key wafer test decisions. Inference algorithms are developed to compute 

probability and expected utility values. 

Chapter 4 presents the machine learning methods that were developed for generating the 

parameters to the stochastic models of wafer test results. The parameter estimation 

problem is formulated as maximum likelihood estimation with a latent-class model. 

The expectation-maximization (EM) algorithm and the Gibbs sampling algorithm are 

developed for estimating model parameters from historical test data. Results from 

learning experiments are presented. 

Chapter 5 describes the experiments that were performed with the selective test 

approach. Various EM-trained and Gibbs-trained models are evaluated by simulated 

wafer testing. Issues of model adequacy and robustness are explored. Experimental 

results are presented and discussed. 

Chapter 6 provides a summary of the research results and makes recommendations for 

future research. 
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2. PROBLEM DESCRIPTION 

2.1 The Integrated Circuit Industry 

Since its inception in the late 1950s, the integrated circuit (IC) manufacturing 

industry has experienced continual growth at a rate exceeding that of such high-growth 

industries as automobiles, telecommunications, and pharmaceuticals (Van Zant, 1997). 

One reason for this continual growth is the number of applications in which ICs are 

essential. Primary industrial consumers of ICs are computer and consumer-electronics 

manufacturers, the telecommunications industry, the automotive industries, and the 

military. In addition to traditional semiconductor consumers, engineers continue to 

develop new markets by inserting ICs into everything from car keys to household pets 

(e.g., http://www.identichip.com). There is no reason to suspect that this trend will not 

continue for some time. 

Along with continued growth, the industry has experienced a phenomenal 

increase in product complexity, from the early devices containing only a few transistors 

to the recent release of the 400 MHz Intel Pentium II processor, which contains millions 

of transistors. 

The evolution of circuit complexity is reflected in the names given to IC classes: 

SSI (small-scale integration): Up to 100 electronic components per chip 

MSI (medium-scale integration): From 100 to 3,000 electronic components 

per chip 
LSI (large-scale integration): From 3,000 to 100,000 electronic components 

per chip 

VLSI (very large-scale integration): From 100,000 to 1,000,000 electronic 

components per chip 

ULSI (ultra large-scale integration): More than 1 million electronic 

components per chip 

http:http://www.identichip.com
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In 1964, Gordon Moore predicted that the IC density would double every year. 

In the following 34 years the accuracy of Moore's prediction has been established and 

his prediction is now commonly referred to as "Moore's Law" (Maniwa, 1996; Boyd, 

1997). 

With every increase in IC performance, a new application develops, thus it 

appears that the growth of the IC market will continue for some time. Some analysts 

have predicted a 4Gb DRAM chip by the year 2005 (Van Zant, 1997), and a 100 

billion-transistor chip by the year 2020 (Meindl, 1993). With the development ofhigh-

quality multimedia, voice processing, and other compute-intensive applications, there is 

little doubt that these advanced chips will find an active market. 

IC manufacturing is a complex process, involving large capital investmentsand 

significant risks. It is also a high-volume, high-value operation where small changes in 

productivity can have a large effect on company profits. As IC performance improves, 

the manufacturing process grows more complex and more expensive. This is a direct 

result of two factors: (1) the miniaturization of components and (2) the increase in IC 

size. Smaller components require expensive specialized fabricationequipment and 

facilities. Larger ICs drive the yield requirements up, since they are bigger, more 

expensive, and there are fewer per wafer. Thus it is necessary to get more good dice 

from each wafer. A complicating factor with larger ICs is defect density and its effect 

on yield. Large surface areas and small components make particle contamination more 

likely. 

In addition to IC trends, the manufacturing environment is evolving. For 

example, networked workstations, in situ sensors, and database servers are common 

components of the modem manufacturing environment. These components make the 

physical acts of data collection more feasible, but increase the need for principled 

methods to integrate evidence and evaluate control policies. In addition, the process 

technology is changing. For example, plasma etchers, x-ray lithography, and new 

generations of testers are being deployed in the manufacturing environment. All of 
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these are expensive and thus place additional pressures on manufacturing yield. Finally, 

the product development environment is changing in response to pressures to minimize 

the time to market. These factors combine to make IC manufacturing an expensive 

enterprise. The cost of bringing one of the newest wafer fabrication facilities on-line can 

exceed $1 billion. With the increased costs of wafer fabrication comes increased 

pressure for efficient operation. The containment of manufacturing costs is currently 

the biggest problem for the semiconductor industry (Kohyama, 1994). 

The concern for efficient operations has spurred the development of computer-

integrated manufacturing (CIM) environments and the application of operations 

research and other mathematical tools to problems of manufacturing control (Lin, 1996; 

Cobb, et. al., 1994). The modern IC manufacturing plant could not function without 

some level of computer-integrated manufacturing. A key element of this environment 

is the statistical process control (SPC) component that gathers and analyzes 

manufacturing data in order to maintain process control and increase yields. Often the 

SPC component is the most complex program in the CIM environment, since it is 

required to process tremendous volumes of data and respond in real-time to correct 

problems and minimize downtime (Zorich, 1991). For example, in the fabrication plant 

considered in this study, a single wafer generates over 70,000 data values. 

As the industry matures, technological advance faces the limits imposed by 

nature and therefore the role of efficient manufacturing operations becomes more 

significant. Unlike technological advances, manufacturing improvements are not 

limited by the physical barriers such as the speed of electrical conductance, which 

becomes a factor when constructing sub-micron devices. It is widely accepted that 

sometime early in the 21g century Moore's law will confront nature's laws of physics. 

At this time miniaturization will have reached its practical limits and further progress 

will be driven by the gradual improvement in conventional manufacturing methods or 

by radical new approaches such as quantum and DNA computing. Although 

technological advances will continue to drive the semiconductor industry for some time, 
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the role of efficient manufacturing operations is expected to play an increasingly 

significant role in the industry's growth. 

Another factor influencing the evolution of manufacturing practices is the 

globalization of the IC industry and the attendant increase in competitive pressures. 

The increased production among the Pacific-rim countries, in particular, has resulted in 

greater pressure on IC manufactures to optimize manufacturing operations in order to 

maintain profits. In addition, semiconductor manufacturing often involves a global 

value delivery system (VDS) in which manufacturing operations are distributed across 

continents. For example, it is common for fabrication plants in the United States to ship 

wafers to Asia for final processing. An efficient global VDS requires shared data and 

rapid international data access. 

The history of IC manufacturing and the predictions for its future evolution all 

suggest an increased pressure on efficient operations and an attendant increase in the 

importance of methods for achieving this efficiency. Manufacturing trends are clear -

changes in technology (e.g., linewidth miniaturization, larger wafers, new process 

technologies and testers) and changes to methods (e.g., global VDS) will combine to 

complicate the control problem, placing stricter requirements on control procedures. 

The next section presents an overview of the IC manufacturing processes. 

2.2 IC Manufacturing Processes 

According to current manufacturing practice, integrated circuits (ICs) are 

fabricated en masse in the form of processed silicon wafers. A single wafer can yield 

up to several thousand ICs, also called chips. While still in wafer form, the ICs are 

often referred to as dice; an individual IC is called a die. Wafers are created in lots. A 

lot usually contains from 20-50 wafers (a lot is sometimes called a batch, sometimes 

"batch" refers to a group of lots). The wafers within a lot travel together through most 
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processing steps. The structure of IC manufacturing gives rise to multiple levels of data 

granularity (Turney, 1995): 

1. IC-level 

2. Site-level: test areas of the wafer 

3. Wafer-level 

4. Lot-level 

The multiple levels of granularity raise interesting issues in data analysis and modeling 

and present challenging problems for process engineers and managers (Tumey, 1995; 

Ou and Wein, 1996; Albin and Friedman, 1989). 

Figure 1 is a simplified schematic of the major IC manufacturing steps. 

Wafer Fabrication 

ii 
Parametric Test 

II  
Functional Test  

II  
Assembly  

li 
Package Test 

8 
Final Yield 

Figure 1: Major IC Manufacturing Steps 

Brief descriptions of the manufacturing steps are provided below. 
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1.	 Fabrication: 

In simple terms, the fabrication process can be described as follows. Wafers 

undergo a series of processing steps. First the surface is coated with a thin film, 

either a semiconductor (e.g., silicon), dielectric (e.g., silicon dioxide), or a 

conductor (e.g., aluminum) (Van Zant, 1997; Zorich, 1990). Then a pattern is 

created on this new surface by a process referred to as masking or photolithography. 

Next the areas delineated by this pattern are either doped (i.e., an impurity is 

introduced in order to change the electrical properties) or etched (i.e., physical or 

chemical removal of the surface material). This description is greatly simplified 

since there are a variety of alternative methods for performing each of the steps, and 

a typical wafer requires more than 100 process steps. 

2.	 Wafer parametric test: 
Although the above diagram depicts parametric testing as a distinct stage following 

wafer fabrication, in reality, parametric tests are performed throughout the 

fabrication process. Parametric tests typically measure physical and electrical 

characteristics of the wafer rather than specific characteristics of the individual dice. 

There are three general types of parametric tests (Van Zant, 1997, Zorich, 1990): 

Device performance measures to infer process parameter control, e.g., diode 

leakage, voltage thresholds, resistor value tests, contact resistance, and 

capacitance. 

Direct measures of physical parameters such as film thickness, width, and 

composition. 

Direct measures of contamination, e.g., particle counts. 

Parametric tests are usually performed on special devices in test die or on special 

structures in the scribe line areas between dice (Van Zant, 1997). 
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3.	 Die-level functional test (DLFT)  

Functional testing is a distinct stage that typically occurs once the wafers are  

completely fabricated and the dice are completely formed and functional.  

Functional tests measure the operational quality of the individual dice. Electrical  

probes are connected to die contacts and input signals are fed to the circuit and  

output signals are measured. Functional testing typically simulates normal and  

abnormal operating conditions (e.g., high and low voltage tests). Sometimes  

functional testing is called final wafer probe.  

DLFT is described in more detail in section 2.5. 

4. Wafer Assembly 

Wafer assembly is the process of turning wafers into packaged ICs. The individual 

dice are sawn from the wafers using a high-precision diamond saw. The resulting 
chips are mounted into packages, electrical contacts are bonded in place, and then a 
protective covering is added. Wafer assembly is often referred to as the package 
process. 

5.	 Package test 

Once the ICs are packaged they are tested again to ensure that the packaging process 
was successful. It is at this stage that the integrity of the electrical contacts that 

were established during the packaging process is verified. Package testing also 

ensures that the chips were not damaged during the package process. Package tests 

usually repeat many of the functional tests that were performed during DLFT. 

Finally, the performance measures from package testing are used to sort the ICs and 
this determines final part disposition. 

Although the above diagram only identifies final yield, there is actually a yield measure 

associated with each manufacturing step. At each step there is the option of removing 

wafers from the production line, for example, those that fail parametric test may be 
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pulled for analysis prior to functional test. A more detailed description of yield 

measures is presented in the next section. 

2.3 IC Manufacturing Control 

The control of a typical IC manufacturing plant is dictated by a management-by-

exception policy. Expectations are established, manufacturing parameters are 

monitored, and exceptions (i.e., unusual events) trigger responses. These responses can 

be automated to various degrees, from simple operator alerts to complex analyses via 

expert systems. 

The key to an effective management policy is accurate measures of process 

behaviors. This is accomplished by monitoring key process parameters, including the 

following: 

Yields: various measures of the number of products surviving processing  

steps (see below). Yield sometimes refers to counts, sometimes to the  

fraction of surviving parts.  

Good-to-functional ratio: the ratio of the number of parts that work and meet  

specification limits to the number that work but do not meet specification  

limits. (Hansen, et al., 1997).  

Inventory levels.  

Machine downtime due to failures or maintenance.  

Cycle time - the length of time that it takes for a wafer (or wafer lot) to pass  

through the manufacturing process. Modem cycle times typically take from  

a couple of weeks to several months. (Hansen, et al., 1997).  

Parametric and functional test results.  

The single most important measure of IC manufacturing success is yield (Cunningham, 

J. 1990). Each process step has an associated yield measure. These can be 

characterized as 
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line yield is defined as the ratio of the number of wafers in to the number 

out. Line yield is typically measured after functional test. 

Ythe: die yield is defmed as the ratio of good die-per-wafer at die test to total die-

per-wafer. Die yield is measured after functional test. 

Yassembly: assembly yield is defmed as the ratio of ICs that survive packaging to 

the total number of die-per-wafer. Assembly yield is measured after the 

assembly (package) step. 

Ypackagetest : package test yield is defined as the ratio of number of ICs that pass 

package test to the total number of ICs packaged. Package test yield is 

measured at the conclusion of package test. 

Y.ne line

Given these definitions, overall yield is defined as follows (Cunningham, J. 1990; Van 

Zant, 1997): Yoverall ane Y, ussemblyYpackage_test 

The key goal in optimizing a production line is to simultaneously maximize 

yield and minimize cycle time. The standard approach to implementing a management-

by-exception policy to achieve this goal is via statistical process control (SPC). Under 

an SPC approach, statistical limits for manufacturing parameters are determined and 

observed performance is compared to these limits. There are two types of limits: 

control and specification. Control limits delineate the normal operating range of 

process parameters and are usually set by analysis of manufacturing data. Specification 

limits denote levels at which the work-in-progress (WIP) is considered unacceptable. 

There are numerous ways that these limits can be determined, but they are typically 

derived from statistical analysis of process data, for example ±2 standard deviations 

around the sample mean. Another set of parameter limits is the set of engineering limits 

that are defined by the design engineers. These engineering limits are often used to 

define the specification limits. It should be obvious that control limits place tighter 

constraints on the process than specification limits. 
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As indicated by the manufacturing process description in the previous section, 

product testing plays a significant role in IC manufacturing, providing the data that 

informs key decisions in process control and analysis. The acquisition of wafer data 

comes at some expense. Some analysts estimate that the cost of testing comprises 

greater than 50% of the product price (Dislis, et al., 1993). Others claim that test 

dominates the cost of IC manufacturing (Kumar and Erjavic, 1993). This is due, in part, 

to the fact that dice are created en masse (i.e., as wafers), but tested individually. 

Others note that wafer test is the bottleneck on production and that reducing testing can 

result in increased production starts and greater throughput (Longtin, et al., 1996). 

There are several aspects to the expense of IC testing. First, IC testers are 

expensive; many cost several million dollars each. Second, testing is expensive, 

requiring personnel and production time. Third, testing can cause damage to devices, 

both physical (e.g., probes) and electrical (e.g., faulty test signals). Since testing is both 

expensive and potentially damaging, it is important to optimize the number and the 

types of tests performed. This process is assisted by intelligent analysis of test results 

so that maximum benefit is derived from this resource. The key to interpreting and 

exploiting test results is accurate models of process performance. It is important to be 

able to predict correct performance and to detect deviations. Accurate models allow 

engineers and managers to plan, monitor, and control manufacturing operations. 

2.4 Models of Wafer Test Data 

Mathematical models of process performance play several important roles in IC 

manufacturing and considerable research has been devoted to developing accurate 

models. 

There are three major applications of mathematical models of wafer test results: 

1.	 Yield prediction and cost estimation. Yield models can be used to predict the 

manufacturing costs for other products or products under consideration. 
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(Cunningham, J. 1990). Accurate estimates of yields and costs allow planners to 

make decisions about expanding manufacturing operations or initiating new 

projects. The costs of changing or creating a wafer fabrication line make reliable 

forecasts necessary. 

2.	 Yield analysis and feedback to fabrication. Test results can be compared to 

predictions from models and discrepancies can focus attention on processing 

problems. The models developed for yield analysis often include some 

representation of spatial information, since such information is useful for 

determining root causes of process problems. This class of models includes 

techniques from spatial statistics, (e.g., cluster analysis, (Cunningham, S., 1995a; 

Hansen, et al., 1997)) and artificial intelligence (AI) (e.g., artificial neural nets 

(Zhang and Milor, 1993; Koppenhoefer, et al., 1997; Zinke, et al., 1997), fuzzy 

classifiers (Luria, 1993), and the k-nearest-neighbor algorithm (Tobin, 1998)). The 

spatial statistics models are employed primarily to decide if test results indicate 

significant spatial clustering. The Al models are typically classifiers, and their 

purpose is to determine whether the test data exhibits patterns associated with 

known problems. These models are used as part of a post-test analysis of process 

data. 

3.	 Process control and product disposition. Actual yields can be compared to 

predictions from yield models and the results can guide decisions about processing 

of the current parts under test. The models employed in this application are usually 

simple lot-level and wafer-level summary statistics. They typically provide 

estimates of the expected number of good or defective parts. Until recently, models 

developed for this application ignored spatial information. They essentially 

assumed that wafer defects were uniformly distributed across the wafer surface. 

Some newer models include spatial analysis, but they typically employ this 

information only to compute summary statistics, i.e., the spatial information is used 

to make more accurate yield estimates. A more thorough review of process control 

models is presented below. 
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The key distinction between yield analysis and process control is that yield 

analysis is focused on understanding the process in order to effect changes to future 

production, whereas process control is concerned with making decisions about the 

current work in progress (WIP). This corresponds to the difference in focus between 

statistical quality control (SQC) and statistical process control (SPC) (Zorich, 1991). 

The yield analysis models are typically employed off -line after testing. The control 

models are on-line and operate in real time. In practice these two tasks are closely 

related and the distinction between them is often blurred. Accordingly, "SPC" and 

"SQC" are usually treated as synonyms. A sample of the models commonly applied to 

process control is reviewed next. 

SPC systems employ a variety of relatively simple statistical models in the 

construction of process control limits. The most common is standard deviations around 

the mean of process parameters, including various yield measures. Assuming that the 

process is stationary, then successive sample means will be normally distributed. Thus 

control limits are established by collecting a sample of test data and computing 

confidence intervals of ±26 or ±3c7 around the sample mean. Process data is then 

collected and compared to these limits in real time. Often the process data statistics are 

charted and monitored for both trends and exceptions. Other common forms of 

statistical models employed in SPC systems include the range, the standard deviation, 

the variances, and various counts, e.g., the number and rate of defective parts. 

Slightly more complex models are employed in acceptance sampling. In 

acceptance sampling, yield models are used to derive screening policies for determining 

whether products pass to the next processing step (Albin and Friedman, 1989; Longtin, 

Wein, and Welsh, 1996, Tomlinson, 1997). The standard application employs a 

Poisson distribution with mean set to np, where n is the number of parts and p is the 

fraction of parts that are defective (Albin and Friedman, 1989). This approximates a 

binomial distribution with parameters n and p. A fixed number of parts is examined 

(the sample size) from a finite population. If the number of defective parts exceeds a 

critical level determined by the Poisson distribution then the population of parts is 
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rejected. This approach is commonly applied to screening wafer lots. In this case a few 

wafers are examined to determine the disposition for the entire wafer lot. If the 

examined wafers contain too many bad dice, then either the entire lot is rejected or more 

testing is performed. Otherwise it is passed on to the next processing step (Albin and 

Friedman, 1989). Acceptance sampling is motivated by the desire to minimize testing 

and is based on the realization that no money can be made by testing bad parts. 

A number of researchers have noted the limitations of the Poisson distribution in 

semiconductor yield modeling (Albin and Friedman, 1989; Cunninham, J. 1989, 

Cunningham, S. 1995a, Lontin, et al., 1996). First, as chip area increases, the Poisson 

model becomes less accurate than other models, e.g., the negative binomial. Also, it 

assumes a uniform distribution of failures and therefore doesn't capture the spatial 

distribution of wafer defects. Thus, the Poisson model is only useful in estimating 

overall wafer yields, not in predicting where those yields will occur on the wafers. 

Another criticism of the Poisson distribution is that it doesn't provide any 

support for more intelligent test policies. It can be employed to determine how many 

wafers per lot to test, and how many dice per wafer to test, but it can not answer the 

question of which dice should be tested. Lately some researchers have begun to 

consider wafer-testing policies that attempt to exploit the spatial distribution of wafer 

test results. Such policies require a more explicit treatment of spatial dependencies than 

that provided by the Poisson distribution. Lontin (Longtin, et al., 1996) considered 

eight different screening strategies that attempt to exploit yield nonuniformities. Each 

strategy provided a policy for deciding which dice to test on a wafer. Their strategies 

included exhaustive (test every chip), radial (concentrate on the center of the wafer), 

checkerboard (every other chip), and a variety of other partial test policies. Each policy 

was designed to exploit a particular type of spatial distribution of wafer defects. They 

propose two models of yield, the Markov random field and the Bayesian gamma-

gamma and note that these models avoid the simplifying independence assumptions of 

the Poisson, Bernoulli, and binomial random variables (Lontin, et al., 1996; Ou and 

Wein, 1996). A final interesting aspect of the work performed by Longtin is their 



20 

attention to the relationship between testing, product starts, throughput, and profits. 

They argue that wafer test is often a process bottleneck, and in such operations a 

decrease in testing allows an increase in wafer starts and therefore an improvement in 

overall throughput and profits (Longtin, et al., 1996). 

2.5 Die-Level Functional Test 

DLFT is an important and complex process and provides the application focus 

of the research described in this thesis. This section describes the conventional 

approach to DLFT in more detail. 

Die-level functional tests (DLFT) measure the operational integrity of the 

individual die. While they are still in wafer form, signals are fed to the individual dice, 

and the outputs are checked to verify that the dice are operating correctly. Tests are 

performed across a range of operating conditions for the device under test (DUT). For 

example, dice are tested under conditions of low voltage, nominal voltage, and high 

voltage to ensure robust performance across the spectrum of possible voltage levels. In 

functional testing, each die is subjected to a sequence of tests. This testing sequence is 

often terminated at the conclusion of the first failed test. A die that passes the entire 

sequence of tests is deemed good. 

The resulting distribution of functional die test results provides a basis for making 

decisions regarding the following: 

wafer disposition (ship, scrap, retest, hold for yield analysis) 

tester diagnosis and maintenance (preventive maintenance., alignment 

problems, failures) 

manufacturing process corrections/improvements 

Thus functional testing performs several roles. First, as the basis for the 

disposition decision for the device tested, e.g., ship or scrap. Second, for feedback 
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about the processes that created the device. Third, as the basis for other models, e.g., 

yield models. 

Testing is expensive and testing can cause defects, either physical (through 

probing) or electrical (through faulty test signals). Thus process engineers strive for 

"just enough test." Functional test determines which dice to package, and, since 

packaging is expensive, it is important to avoid poor package decisions. Functional tests 

are also expensive, so optimizing the test and package decisions is a non-trivial 

problem. A closer examination of functional testing is presented next. 

There are three key decisions involved in die-level functional test: 

1. Which dice to test? 

2. Which wafers to hold, which to send to package? 

3. On the wafers sent to package, which dice to package? 

The conventional approach to these decisions can be described as follows: 

1. Exhaustive test, i.e., test all dice on each wafer. 

2. Hold wafers that exceed SPC limits; send others to package. 

3. On wafers sent to package, package all dice that passed die-level functional test. 

This approach to functional testing is depicted in figure 2. 
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Figure 2: Exhaustive Test Flowchart 
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Brief descriptions of the key elements of figure 2 are presented next: 

1.	 Test Next Die: dice are tested sequentially in an exhaustive serpentine (sweep) 

pattern. 

2. Ink Die: a die that fails functional test is marked with an ink dot ("inked"). 

3.	 Stop Testing: testing continues until the wafer is finished. There are no intra-wafer 

interrupts except for emergencies, for example symptoms of tester problems. 

4.	 Ship to Package: basic SPC (statistical process control) rules determine wafer 

disposition. 

5.	 Package: all unmarked (uninked) dice on accepted wafers are packaged. 

6. Package Test: all packaged dice are tested and sorted prior to shipment. 

Functional test results can be summarized as wafer maps. This makes it easier to 

perform visual inspections of test results to detect spatial patterns of failures. Figure 3 

presents a sample of four wafer maps. Red (dark) squares indicate failed dice, green 

(light) squares indicate good dice. 
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Figure 3: Sample Wafer Maps 

2.6 Wafer Test Data Set 

For this study a data set containing the functional test results from 50 lots was 

provided by Hewlett-Packard Company. The data originated from a stable run of a 

mature product. Each wafer had a 6" diameter and contained 209 dice. Each lot 

contained 24 wafers for a total of 1200 wafers. As part of the analysis, summary 

statistics were computed, including the mean and standard deviation for the number of 

good dice for each lot. These statistics are presented in figure 4 and figure 5, 

respectively, and indicate that these test results were from a relatively stable 

manufacturing line. 
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Figure 4: Wafer Data Average Yield 
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Figure 5: Wafer Data Average Standard Deviations 

In addition to the summary yield statistics presented above, another interesting 

characteristic of the test results is the degree of spatial clustering of defects. Hansen, 

Friedman, and Nair (1997) developed their T-statistic to measure this aspect of wafer 

test data. Their test statistic is a sum of two weighted join-count' statistics; one counts 
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the number of defective neighbors of defective dice and the other counts the number of 

nondefective neighbors of nondefective dice. For a given yield level, the test statistic 

will be large if either the defective or the nondefective dice tend to be spatially 

clustered. They prove that this statistic is approximately normally distributed with the 

corresponding moments. Figure 6 depicts a 90% confidence interval for various yield 

levels with the computed T-statistics for the 1200 wafers. 

Figure 6: Wafer Data T-Statistics 

There are 43 points outside the confidence limits, or approximately 3.6% exceptions. 

Thus, spatial clustering of the defective dice is not a significant issue with this data set. 

This means that there were few clusters of failed dice, however the T-statistic does not 

detect other types of spatial regularities, for example, dice around the edge of the wafers 

often fail at a higher rate. Thus although this data set does not contain significant 

spatial clustering as measured by the T-statistic, it may contain other types of defect 

patterns. 
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2.7 Testing Policy Alternatives 

There are three general types of policies for determining which dice undergo 

die-level functional test: exhaustive test, no test, and selective test. The advantages and 

disadvantages of these types of policies are discussed in this section. 

The conventional approach to die-level functional testing is exhaustive test, in 

which every die on every wafer is tested. There are two significant advantages to the 

exhaustive test policy. First, the test results provide informationabout the quality of the 

manufacturing process. Second, the exhaustive test approach produces accurate 

package and disposition decisions. Since the functional test results are known for each 

die, bad dice can be identified and rejected prior to the package process. Also, wafers 

that contain a significant number of bad dice can be identified and held for yield 

analysis. Thus, the exhaustive test policy provides timely process feedback and 

supports accurate disposition and packaging decisions. There are two significant 

disadvantages to the exhaustive test policy. First, die-level functional tests are 

expensive due to the costs of the testing machines, the associated personnel, and the 

production time. Second, die-level functional tests can damage the dice, either through 

the physical act of probing to establish electrical contact, or through faulty test signals. 

A second type of testing policy is one in which no die-level functional testing is 

performed, i.e., a test-none policy. Under a test-none policy all wafers are shipped to 

package and all dice are packaged. The advantage of a test-none policy is that no 

resources are expended on die-level functional test. Thus, the resources normally 

associated with testers, personnel, and production time are saved. When the yield is 

high and the manufacturing process is stable then the test-none approach can produce 

profits that exceed the profits of the exhaustive test approach. However, since yield is 

never perfect, the test-none policy results in some bad dice being packaged. Final 

package test prevents any bad die from being shipped to a customer, so product quality 

is assured. However, if the cost of packaging is high, then a relatively few bad dice will 

result in lost profits. Thus, there are two disadvantages to the test-none policy. First, 
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the test-none policy results in some bad dice being packaged. Second, and perhaps 

more significant, is that the test-none policy provides no feedback on the quality of the 

manufacturing process. Under a test-none policy, process problems are only detected at 

final package test. Given a global value delivery system, for example, one in which 

wafer fabrication occurs in Corvallis, OR and packaging occurs in Singapore, this delay 

in feedback would be risky. Without die-level functional test, an out-of-control process 

would continue to generate bad wafers for an intolerably long time. 

A third type of testing policy is a selective-test policy, in which only some of the 

dice are tested during die-level functional test. A selective-test policy attempts to 

achieve the benefits of the exhaustive-test and test-none policies, while avoiding their 

disadvantages. The idea is to test only to the degree required to make accurate package 

and disposition decisions, and to detect process problems. The advantages of a 

selective-test policy are that it conserves testing resources, and provides adequate 

process feedback. There are two possible disadvantages. First, since the selective-test 

policy makes package decisions without complete functional test results, there is some 

possibility of incorrect package decisions. Second, a selective-test policy is more 

complicated than either the exhaustive-test or test-none policies. This dissertation 

explores the development and evaluation of a selective-test policy for die-level 

functional test. 

2.8 Summary 

Semiconductor manufacturing is a complex operation in which IC testing plays 

a significant role. One type of IC test is die-level functional test (DLFT), which 

measures the operational characteristics of individual dice. The conventional approach 

to DLFT involves testing every die on every wafer. These tests serve two purposes. 

First, they determine which dice to package. Second, they provide process monitoring 

and feedback information. However, functional testing is expensive (testers, personnel, 

production time), can induce problems, and may be unnecessary, since all packaged 
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dice undergo package testing. In cases where the product is mature and the process is 
stable, simply packaging all dice and eliminating final wafer testing would lead to 
increased profits. The problem with this approach is that there is no guarantee that a 
stable process will remain stable and, without DLFT, changes in yield are only 
discovered at package test. The selective test approach provides a middle path between 
exhaustive test and no test. The idea is to test only a sample of dice from each wafer 
and then use these results to make package decisions for all dice on the wafer. Thus 
testing is minimized, yet process problems and bad wafers are caught prior to wafer 
assembly. The selective test approach is the subject of chapter 3. 
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3. DECISION-THEORETIC WAFER TEST  

An alternative to the exhaustive test policy for wafer test is a selective test 

policy. Under a selective test policy, wafers are tested only to the degree needed to 

make good package decisions. The assumption is that die defects exhibit a spatial 

distribution that can be predicted by testing only a sample of the dice on any wafer. 

This assumption is exploited by the testing policy in order to make package decisions 

for all dice on a wafer while only testing a sample of the dice on that wafer. Thus, the 

decision to package a die is based on the expected utility of the package test result for 

that die, rather than on the observed functional test result for that die. In other words, a 

die is packaged if it is expected to pass package test and produce a profit regardless of 

whether it was functionally tested while in wafer form. Since all packaged dice are 

functionally tested after packaging, there is no chance that a bad die will be shipped to a 

customer. Thus the selective test approach attempts to eliminate unnecessary functional 

tests. 

The selective test approach requires a mapping from the functional test results of 

some dice to the package test results of other dice on the same wafer. Since that 

relationship is non-deterministic, this mapping will be accomplished with a stochastic 

model. The selective test approach also requires methods for evaluating testing 

alternatives with respect to their effects on expected profits. Since this is a problem of 

decision making under uncertainty, techniques from statistical decision theory will be 

employed. Thus uncertainty will be represented by probability theory, and decisions 

will be based on maximizing expected utility. These assumptions lead to the 

formulation of the wafer test problem as a type of partially observable Markov decision 

model (POMDP). The details of that formulation are the focus of this chapter. 

In general terms, a wafer test controller based on the selective test approach can 

be described as follows. The system begins with a prior probability model of wafer test 

results and a utility model over processing costs. The system chooses the best die to 

test according to a value-of-information metric. This die is tested, and the results are 
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incorporated into the system's model. The system then repeats this test-and-update 

cycle until the expected value of further testing is non-positive. At that stage, the 

system makes an individual package decision for each of the dice on the wafer, marking 

those that are rejected. Once this is complete, the system determines wafer disposition, 

either ship to package or hold for analysis. For each of the wafers that make it to 

package, the unmarked dice are packaged and sent to package test. Those that survive 

package test are shipped to customers. 

The remainder of this chapter the organized into the following sections: 

3.1 Structuring the Problem: Wafer Test Control as Staged Decisions. The selective 

test approach is decomposed into a series of decisions corresponding to the major 

control points in the process. This structure is analogous to the task structure of the 

exhaustive test approach presented in chapter 2. 

3.2 Decision Theory for the Wafer Test Problem. This section reviews the relevant 

concepts of statistical decision theory and operations research. 

3.3 Belief Networks, Inference Algorithms and Influence Diagrams. This section 

describes the application of probabilistic inference techniques to the formulation and 

solution of the wafer test control decisions. 

3.4 Summary. The development of decision models for the wafer test problem is 

summarized. 
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3.1 Structuring the Problem: Wafer Test Control as Staged Decisions 

The selective test policy can be decomposed into a series of decisions and 

structured into a real-time control procedure. The main body of this procedure is a loop 
over die test selection and test execution steps. Upon termination, the system makes 

packaging and wafer disposition decisions. This control structure is depicted in 

flowchart format in figure 7. 
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Figure 7: Selective Test Flowchart 

In the flowchart presented in figure 7, numbered boxes indicate key decisions. 

Note that the multiple borders around the Ink Dice decision denote that the inking 
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decision is actually n separate decisions, one for each die on the wafer. Since the 

decision to ink any single die is independent of the decision to ink any other die, these 

decisions are represented as distinct decisions (rather than a single decision to ink the 

wafer). This independence of inking decisions will play a critical role in managing the 

complexity of control decisions, and therefore it is introduced at this point and 

maintained throughout the development. 

The key decisions from the selective test flowchart are described in general 

terms below. The details of how these decisions are actually made are deferred until 

section 3.3. 

1.	 Best Test: Choose the best die to test. 

Among the untested dice on the wafer, select the die that is predicted to provide the 

most useful information for making package decisions for all dice on the wafer. 

Since wafers exhibit variability, it is reasonable to expect that the optimal sequence 

of dice tested will differ across wafers. On some wafers, certain dice will provide 

the most useful information; on other wafers other dice will provide more useful 

information. Thus an optimal policy should incorporate the flexibility of selecting 

any die to test from among the remaining untested dice at any point during testing. 

2.	 Test Termination: Continue testing of the current wafer or stop testing and proceed 

to the package decisions. 

For each wafer, selectively test dice on that wafer until there is no expected profit in 

testing any of the untested dice. At that point, stop testing, make package decisions, 

and initiate testing of the next wafer. Given the variability among wafers, it is 

reasonable to expect that the optimal number of tests will vary across wafers. 

Therefore an optimal policy should incorporate the flexibility of performing varying 

degrees of testing. 
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3. Inking: For each die on the wafer, decide if it should be packaged or scrapped. 

Since it is possible for any subset of dice to be rejected, the optimal policy should 

incorporate the flexibility of inking any subset of dice. Individual inking decisions 

are independent of one another (the decision to ink any single die has no effect on 

the inking decisions of the other dice). Therefore for each wafer there are n 

individual inking decisions to determine which dice to package and which to reject. 

4. Wafer Disposition: Decide if the wafer should be sent to package or held for 

analysis. 

There is a shipping and handling cost incurred for each wafer sent from the 

fabrication plant to wafer assembly to be packaged. Only wafers whose expected 

profits exceed these costs should be packaged. Therefore an optimal testpolicy 

should provide estimates of net profit value and be able to weigh these against the 

shipping and handling costs. Wafers that are not sent to package are assumed to be 

defective and are held for yield analysis or recycled. 

The next section presents a formal statement of the wafer test decisions in terms of 

expected utility. 

3.2 Decision Theory for the Wafer Test Problem 

Statistical decision theory is a formal model of rational decision making under 

uncertainty and provides a mathematics of uncertainty, a logic of predictionand 

decision making, and real-valued utility measures for expressing preferences and 

ranking alternatives (Savage, 1954; Raiffa, 1968; Berger, 1985, North, 1968). 

Statistical decision theory is founded on the notion of lotteries and preferences among 

lotteries, but for applications, the key concept is expected utility, which is defined as the 
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product of utility and probability. In an uncertain world, expected utility provides a 

principled basis for rational behavior. 

Statistical decision theory provides techniques for representing decision 

problems and performing expected utility calculations. It assumes that a decision 

problem can be described in terms of a set of states, a set of actions, a transition 

function that maps states and actions to other states, and a utility function over states. 

From this representation, the expected utility of actions can be computed. According to 

the principle of rationality, a rational agent will act in such a way as to maximize its 

expected utility. Thus a rational agent operating in an uncertain world will choose 

actions consistent with those specified by statistical decision theory. A rational decision 

will produce optimum expected utility; therefore an optimal decision policy is a 

decision policy that specifies a rational course of action. Statistical decision theory is 

concerned with the development of optimal decision policies. 

It is often noted that decision theory is a normative model of decision making 

and a distinction is drawn between the formal rationality of decision theory and the 

normal behavior of human decision-makers (Simon, 1983). It is well established that 

human decision-making exhibits systematic deviations from normative behavior (so-

called "cognitive illusions" to borrow Pearl's phrase; Pearl, 1988, Tversky and 

Kahneman, 1981; Einhorn and Hogarth, 1981; Shepard, 1964). This effect is quite 

apparent in probability assessment tasks, where alternative framings of a single problem 

elicit contradictory responses. The cognitive limitations of human reasoning and the 

imperfections of short-term memory in particular, are the usual explanations for the 

irrationality of human decision-makers. Decision theory is offered as a model of ideal 

decision-making, a standard to be emulated, and a tool to compensate for the frailties of 

human cognition. In these roles, decision theory has found broad acceptance and wide 

application. However, with the advent of computerized decision-making and the 

development within the Artificial Intelligence community of the notion of the 

autonomous agent, decision theory has found new applications and new practitioners. 

In addition to assisting human decision-makers, decision theory provides a foundation 
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for constructing automated decision-making systems (Holtzman, 1988; Horvitz, Breese, 

and Henrion, 1991; Pearl, 1988). The application of decision theory to the wafer test 

problem follows this line of development. 

Statistical decision theory distinguishes two types of actions: those that affect 

the state of the world and those that provide information about the state of the world. 

These latter actions correspond to information gathering acts, for example, 

observations, tests, and experiments. The value of an information-gathering act is 

measured as the difference between (1) the expected utility that results from performing 

the information-gathering act and then following an optimal decision policy, and (2) the 

expected utility of following the optimal decision policy alone. When value of 

information (VOI) is measured as immediate gain, i.e., only a single information act is 

considered, then it is referred to as myopic VOI. When it is assumed that the result of 

the information-gathering act will be known with certainty, then VOI is sometimes 

referred to as the value of perfect information (VPI). For some problems all aspects of 

the problem states are observable, in other problems there exist aspects that are 

unobservable. 

A sequential decision problem is a decision problem whose solution requires a 

sequence of decisions to reach an overall goal. A stochastic sequential decision 

problem with observable states is called a Markov decision problem (MDP) (Russell 

and Norvig, 1995). Exact solutions for MDPs are provided by the methods of value 

iteration and policy iteration, both of which were developed by Howard (1960) and are 

related to dynamic programming and Bellman's principle of optimality (Dean and 

Wellman, 1991). This principle states that "An optimal policy has the property that, 

whatever the initial state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision" 

(Bellman, 1957; White, 1978). Thus the formula for computing the optimal policy can 

be expressed as a set of recurrence relations in which the maximum expected value of a 

state is determined by a linear combination of the current state value and the maximum 

expected value achievable in the remaining states. 
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When a stochastic sequential decision problem contains unobservable states, it is 

called a partially observable Markov Decision problem (POMDP) (Russell and Norvig, 

1995). Solutions to POMDPs are particularly complex due to the combination of 

uncertainty and unobservability. The standard approach to solving a POMDP is to first 

create an equivalent MDP and then apply value iteration or policy iteration (Smallwood 

and Sondik, 1973; Monahan, 1982). The translation from POMDP to MDP involves 

encoding the state uncertainty as a model variable with continuous parameters. To 

avoid a potentially infinite state space, the range of these parameters is discretized. 

Unfortunately the computational complexity of exact solutions remains prohibitive 

except for small problems (Littman, et al., 1995). Several approximation techniques 

have been proposed, however complexity issues prohibit even these methods from 

scaling to large problems (Cassandra, Kaelbling, and Littman, 1994; Parr and Russell, 

1995). In practical applications, the solutions to POMDPs generally rely on simplifying 

assumptions about the complexity of model interactions and the length of the decision 

sequence. In the wafer test problem, several assumptions are employed to keep the 

complexity manageable. These assumptions and the problem formulation are described 

in following sections. 

3.3 Belief Networks, Inference Algorithms and Influence Diagrams 

Belief networks provide a succinct representation for probabilistic models and 

inference algorithms provide computational answers to questions of interest (Pearl, 

1988; Charniak, 1991; Oliver and Smith, 1990). The key idea is to take advantage of 

independence relations within the probabilistic model in order to factor the model into 

more primitive elements. Then probability theory is employed to compute other values 

of interest. 

A belief network has a graphical representation in terms of a directed acyclic 

graph (DAG). In this representation, nodes correspond to variables and arcs between 

nodes correspond to conditioning relations. At the mathematical level, a belief network 
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is a collection of marginal and conditional prior probability distributions. A marginal 

distribution is defined for each source node (unconditioned variable) and a conditional 

distribution is defined for each of the other nodes. These distributions can be either 

discrete or continuous, and a single model can contain a mixture of both. From a 

computational perspective, probabilistic inference is the calculation of prior or posterior 

probability distributions over a set of random variables. A fully specified belief 

network implicitly defines a coherent (complete and correct) probability model. From 

such a network, any prior or posterior marginal, conditional, or joint probability 

distribution can be computed by means of probabilistic inference algorithms. 

Figure 8: Single Die Belief Net 

Figure 8 depicts a simple belief network for modeling the test results for a single 

f, and p,. These variables are describeddie. It consists of three random variables: di , 

below. 
d, represents to the true state of die i. There are two possible die states: good 

and bad. P(d,) denotes the corresponding marginal probability distribution over die 

states. 
f represents to the functional test result for die i. There are two possible test 

results: pass and fail. P(fld,) denotes the corresponding conditional distibution over 

the functional test results given the true die state. 
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p, represents the package test result for die i. There are two possible test 

results: pass and fail. P(p,1 f,) denotes the corresponding conditional distribution over 

the package test results given the functional test result. 

There are several general approaches to developing probabilistic inference 

algorithms for computing probability values from belief networks. For small models 

and fixed probability queries, often the simplest and most efficient approach is the 

direct application of probability theory, in particular Bayes' Theorem and the product 

rule. This is the approach taken in this study. More general solutions are provided by 

graph-theoretic and algebraic approaches. Examples of the graph-theoretic approach 

include belief propagation (Pearl, 1988), clustering (Lauritzen and Spiegelhalter, 1988) 

and cutset conditioning (Horvitz, Suermondt, and Cooper, G. 1989). The principal 

algebraic approach is symbolic probabilistic inference (SPI) (Shachter, D'Ambrosio, 

and DelFavero, 1990 ; Li, and D'Ambrosio, 1992). There are also numerous 

approximation algorithms, including simulation approaches (Shwe and Cooper, 1990; 

Henrion, 1988) and search-based methods (D'Ambrosio, 1992; Henrion, 1991). At the 

logical level, the probability calculations performed by the probabilistic inference 

algorithms correspond to various inference tasks, such as predictive (causal), diagnostic 

(abductive), and intercausal reasoning. They also provide a basis for statistical decision 

making (Shachter and Peot, 1992; Cooper, 1988). 

For the die test belief network depicted in figure 8, the package test probabilities 

can be computed by the following formula: P(p,)=EP(d,)P(fld,)P(p,If). 

The influence diagram formalism is a graphical knowledge representation for 

decision problems and is closely related to the belief network representation (Howard 

and Matheson, 1989, Oliver and Smith, 1990; Horvitz, Breese, and Henrion, 1991, 

Shachter, R., 1990). Influence diagrams extend the belief network representation by 

adding decision and value nodes, and additional interpretations for the arcs associated 

with these nodes. The decision nodes represent decisions, and the value nodes represent 

the utility function. In the graphical representation, boxes represent decisions, and 
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diamonds represent value functions. Arcs into decision nodes imply prior knowledge. 
Arcs into value nodes indicate preference dependencies. Solving an influence diagram 

means identifying values of the decision variables that maximize the expected value of 
the value nodes. 

Figure 9: Single Die Influence Diagram 

Figure 9 presents a graphical representation of the testing and packaging 

decisions for a single die. This influence diagram extends the belief network offigure 8 
by adding decision nodes and a value node. These new model elements are described in 
more detail below. 

F, is a decision variable and corresponds to the decision to functionally test die 

i. There are two possible decision alternatives to the functional test decision: test and 
not-test. 

I, is a decision variable and corresponds to the decision to ink die i. There are 

two possible decision alternatives to the ink decision: ink and not-ink. Recall that 

inking a die means that the die will be scrapped. On wafers that are sent to the package 
process, all dice that are not inked are packaged and then packaged tested. 

V, represents the value function for the decision model. It incorporates the 

associated costs of functional testing and inking (i.e., packaging and package testing), 
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and the die value (i.e., the single die selling price). Thus there are four parameters to 

the value function: 

the cost of a single functional testc 

ck the cost of packaging a single die 

c ?_-- the cost of package testing a single die 

Va.= the value of a single packaged die 

These value function parameters are provided by the manufacturer. Note that a die that 

is functionally tested incurs the functional test cost. A die that is not inked is packaged 

and thus incurs the packaging and package testing costs. A die that is inked is neither 

packaged nor packaged tested, and therefore has no package test result. A die that 

passes package test can be sold and thus accrues the single package value. 

Given these parameters, the value function for the single-die influence diagram can be 

defined as follows: 

Pi 
not - test not - ink fail CkCp 
not - test not ink pass CkCp+V 
not - test ink n/a 0 

test not - ink fail Cf CkCp 
test not - ink pass Cf CkCp+V 
test ink n/a C 

The following formula can be evaluated to determine the expected utility of 

functionally testing die i: 

EU(F, = test). 

Max,, E [( E P(di)P(fild,F, = test) P(pal f = test, I, p,)] 
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Similarly, the expected utility of not functionally testing die i can be computed, 

and the testing alternative that results in the maximum expected utility is deemed best 

(i.e., the rational choice). Thus, this procedure provides a method for deciding whether 

a single die should be tested, and it also provides a numeric value of the expected utility 

of this decision. 

Recall that there are two decisions in the single-die influence diagram: the 

functional test decision and the ink decision. The decisions are ordered so that the ink 

decision follows the test decision. Thus the result of the functional test decision is 

known at the time that the ink decision is made, and if the decision was to test, then the 

functional test result is also known. The following formula can be evaluated to 

compute the expected utility of inking die i given that this die was functionally tested 

and passed: 

EU(I, = inky F, = test, f = pass) = 
E[P(Alf, = pass, I, = ink) V,(F, = test, I, = ink,p,)] 

The expected utility for the other cases can be computed similarly. Thus the 

influence diagram of figure 9 provides a model for making testing and inking decisions 

for a single die. This model can be extended to provide a method for making decisions 

about multiple dice, which is what the selective test approach requires. First, notice that 

the influence diagram of figure 9 can be simplified by making the following 

assumption: functional tests provide an accurate measure of true die state. In other 

words, if a die is good, then it passes functional test; if a die is bad, then it fails 

functional test. Since functional tests are the sole indicator of die quality, this 

assumption is reasonable. This means that P(f,)= P(fild,), and the influence diagram 

of figure 9 can be simplified to that depicted in figure 10. 
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Figure 10: Simplified Single Die Influence Diagram 

This results in a simplification of the formula for computing the expected utility 
of testing a single die: 

EU(F, =test)= MaxIiIEP(f,IF:= test)P(pilf,1,))V,(F;=test,1,,p,)] 

The formulas for computing the expected utility of package test decisions are 
simplified in a similar manner. 

The single-die influence diagram of figure 10 provides a basis for developing an 
influence diagram for the entire wafer. A wafer test influence diagram is first 
developed under an assumption that die test results are independent. Then this wafer 
test influence diagram is modified to model the assumption that die test results are 
conditionally independent. 



45 

Figure 11: Wafer Test Influence Diagram 

The influence diagram in figure 11 represents the test and ink decisions for an 

entire wafer. For each die on the wafer, there is a test and an ink decision. In addition 

to the test and ink decisions, there is also a wafer disposition decision, D, which 

represents the decision to either ship the wafer to package or to scrap the wafer. The 

influence diagram of figure 11 also conatains a value node that incorporates all of the 

costs and values associated with the wafer. This value function is defined as the sum of 

the values for the individual die decisions minus the wafer handling cost; i.e., the cost of 

shipping and cutting (sawing) the wafer. This handling cost depends on whether the 

wafer was shipped to package or scrapped. If the wafer was shipped, then it incurs a 

fixed cost; otherwise there is no handling cost. The handling cost is an additional 

parameter that is provided by the manufacturer. 
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The influence diagram in figure 11 can be evaluated to provide answers to the 

wafer test decisions. Recall that the selective test approach is an iterative decision cycle 

as depicted in the flowchart in figure 7. Thus, rather than deciding a priori which dice 

to test, the system chooses the single best die to test next. The result from this test is 

then incorporated into the decision to choose the next best test. This cycle is repeated 

until it is determined that further testing is unprofitable, and at that time a decision is 

made to either ship the wafer to package or to scrap the wafer. The selective test 

approach can be implemented by repeatedly evaluating and updating the influence 

diagram of figure 11. This process is described in general terms below. Inthese 

descriptions, each of the key decisions in the selective test approach is expressed in 

terms of expected utility. The details are presented in the following sections. 

Best test: What is the best die to test next? 

Select the test that results in the maximum expected utility that would be achieved if the 

wafer were to be packaged after that test. Thus the best test is determined by a single 

step lookahead followed by an evaluation of the package decisions based on the 

expected test results. For each of the untested dice, the probabilities of the functional 

test results for that die are computed. Then, based on these functional test probabilities, 

package decisions are made for all dice on the wafer and the overall expected utility is 

computed. The die whose corresponding test yields the maximum expected utility is 

selected as the next best die to test. 

Test termination: Stop testing or continue? 

The decision to stop testing or to continue with the next test is determined by myopic 

(one-step) value of information (VOI). Myopic VOI is defined as the difference 

between the expected utility of stopping and packaging and the expected utility of 

performing the next best test and then stopping and packaging. The decision to stop 
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testing is made when there is no expected value of testing further, i.e., when the myopic 

value of information is non-positive. 

Inking: Which dice should be packaged? 

The decision of which dice to package and which to reject is based on the expected 

utility of each individual die. An independent inking decision is made for each die on 

the wafer. These decisions are based on the expected utility of inking the die. For each 

die, if the expected utility of inking the die is greater than the expected utility of not 

inking the die, then the die is inked. 

Wafer disposition: What happens with a wafer once it is through DLFT? 

The decision to ship a wafer to package or to hold the wafer for analysis or recycling is 

based on the expected utility of shipping vs. the expected utility of holding. Ifthe 

expected utility of shipping the wafer exceeds the expected utility of holding the wafer 

then the wafer is shipped. 

The next section extends the wafer test influence diagram to model conditional 

independence of wafer test results and presents the details on the probability and 

expected utility computations. 

3.3.1 Representing Conditional Independence of Die Test Results 

For the wafer test decisions, expected utility depends on an estimate of the 

package test results given a set of functional test results. Thus, the key probability 

values that are needed are the probabilities of package test results conditioned on a set 

of functional test results. If it is assumed that the relationship between functional test 

results and package test results is the same for all dice, i.e., that there is a uniform 

probability of damaging dice during packaging, then the critical probability values that 



48 

are needed for the expected utility calculations are the probabilities of unobserved 

functional test results conditioned on the set of observed functional test results. In other 

words, the key probability calculation is P(f,I = f = r,,) where f is the 

unobserved test result for die d, and { f, = rf,..,f,=r,} is the set of observed test 

results for dice {d, ,..,d,}. = rj } denotes the proposition that the functional test 

result for die j is 7; . In order to create a stochastic model to provide these probability 

values, some assumptions about the relationship among the dice must be made. The 

models developed up to this point have all assumed that functional test results are 

independent. This is a common modeling assumption and greatly simplifies the 

modeling requirements. However it is widely recognized that functional test results are 

not independent and that the information ignored by this assumption is valuable in yield 

predictions (Albin and Friedman, 1989; Cunningham, J., 1990; Longtin, et al., 1996). A 

more accurate assumption is that the functional test results are correlated, because the 

physical processes that create defects operate over regions of the wafer or even the 

entire wafer. For example, a drip or scratch may damage several adjacent die, and a 

bad processing step may damage all of the dice on a wafer. For this study, we will 

model these correlations using a finite mixture model. According to this model, there 

are K different "classes" or "families" of wafers. Within each wafer class, each die has 

its own probability of being defective. When a new wafer is processed, this model 

assumes that the defects on the wafer were generated according to the probability 

distribution of one of the K classes. The identity of this class is never known (or 

observed), but there is a probability distribution that specifies the probability that the 

wafer is generated from each class. This is called a "mixture model", because the 

probability that a die is defective is a mixture of the probability that it defective 

according to each of the different wafer class models. This model can be represented as 

a Naïve Bayes network. 

A naïve Bayes' belief network is a relatively simple stochastic model that has 

proven to be useful in diagnostic systems (Henrion, 1990) and learning and discovery 

systems (Dietterich, 1997, Cheeseman, Self, Kelly, Taylor, and Stutz, 1988). The naïve 
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Bayes' belief network also provides a convenient representation for latent-class and 

finite- mixture models. Figure 12 presents the graphical representation of a naive Bayes' 

belief network for computing the wafer test probabilities. 

Figure 12: Naïve Bayes' Belief Network for the Wafer Test Probabilities 

In this belief net, the root node represents the possible wafer types (or wafer 

classes), and the leaf nodes correspond to the functional test results for the dice on the 

wafer. There is a one-to-one correspondence between the leaves of the model and the 

dice on the wafer. The mathematical definition of this model includes a single marginal 

distribution over the possible wafer classes, P(w) , and a distinct conditional distribution 

for each of the functional test results, P(f,jw),i = 1..n . This model encodes the 

assumption that the functional test results are conditionally independent of one another 

given the wafer class. This model can also represent the assumption that functional test 

results are independent of one another simply by restricting the number of wafer classes 

to one. 

For this study, the wafer classes are assumed to be abstract and unobservable. 

This means that the wafers can be partitioned into a number of groups, where members 

of a group share some stochastic pattern of test results. Each group corresponds to a 

distinct wafer class. Although the stochastic patterning of the wafers may have some 
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physical basis in the fabrication process steps, this basis is not explicitly identified. 

Instead wafer classes are given abstract names, and their probability distributions are 

determined by machine learning techniques that were designed for incomplete-data 

problems. In other words, the wafer classes are defined by statistical analysis of wafer 

test data. These techniques are described in chapter 4. 

Among the useful probabilities that can be computed from this belief network 

are the probabilities that are needed for test selection, ie., the marginal posterior 

probabilities for functional test results. A direct method for computing the marginal 

posterior probabilities of die test results can be derived from basic probability theory. 

For example, the following formula computes the probability of the functional test 

results for die j given a set of observed tests, E 

P(f) = «E[P(w)P(41 )nP(fk = rkiw)1 
fk.E. 

Note that although this probability calculation is straightforward, it is not 

particularly efficient for inference tasks in which the probability values for numerous 

untested dice are needed, since each calculation recomputes the product of the observed 

tests. This approach is also inefficient for incremental inference tasks where evidence 

accumulates over time. In this case the evidence must be saved and considered anew at 

each probability calculation. As evidence accumulates the complexity of the probability 

calculation increases. Bayesian belief updating provides an alternative approach for 

incremental inference tasks (Pearl, 1988; Lauritzen and Spiegelhalter, 1988). 

3.3.2 Evidence Processing and Belief Updating 

With belief updating, the probability model is updated after each observed test 

result. This corresponds more closely to the task requirements of the wafer test problem 

in which observations are monotonic (test results accumulate during the testing of a 
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wafer) and control decisions are made after each test. Under beliefupdating, the model 

is explicitly modified to reflect the effects of the new evidence. This addresses both of 

the shortcomings of the approach mentioned above. First, evidence is incorporated into 

the model, so it is no longer necessary to save evidence. Second, the complexity of the 

probability calculations remains constant. 

Bayesian belief updating is based on the application of Bayes' rule. The following 

formula is Bayes' rule for the wafer test model: 

P(w)P(f = rjw)
P (141 f, = r) = P(f, = r) 

This formula describes how to compute the posterior probability of the wafer class 

given a single functional test result. This provides the basis for a recursive updating 

formula. 

Let E represent the test results observed up to this point in testing. Then the impact of 

the next test result can be computed by the following formula. 

P(wl E)P(f; = rlw, E)P(wlE,f = r) = 
P(f, = 71E) 

Since the functional test results are conditionally independentwith respect to the wafer  

class the following identity holds:  

P(.1; = rlw, E) = P(f, = r1w)  

This identity simplifies the updating formula to the following. 

P(wIE)P(f, r1 w)
P(wIE, f, = r) = P(f, = rIE) 

Since the denominator only serves to normalize the result, the computation of this term 

can be performed by normalizing the numerator. This yields an efficient method for 

incrementally incorporating functional test results. 
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Thus after each observed test result, the wafer class distribution is updated 

according to this formula. There is no need to explicitly save evidence, and the 

complexity of the probability calculations remains constant with respect to the number 

of dice tested. 

Given the belief updating method, incremental evidence and query processing is 

straightforward. For example, consider the process of incorporating a single functional 

test result and then computing the functional test probabilities of a single untested die. 

Let ( = Pass) represent the proposition that die j passed functional test. Then update 

the wafer class distribution with this result, and then compute the functional test 

probabilities for die k. 

Update wafer class distribution: P(wifj = Pass) = a P(w) P(f, = Pass1W) 

Compute the functional test probabilities for die k: 

P(fk)= E p(wif, = Pass)P(fklw) 

3.3.3 Representing Package Test Results 

The extension of the belief network from the previous section to incorporate 

package test results is straightforward. Figure 13 depicts this modified belief network. 
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Figure 13: Belief Network with Package Test Results 

Since it was assumed that there is a fixed probability of damaging any die during 
the package process, the addition of the package test nodes requires the specification of 
only a two additional parameters, P(p, = pass! f,. = pass) and P(p, = pass' f; = fail) . 

The conditional probabilities for cases where (p, = fail) are simply the complement to 

the cases where (p, = pass) . 

Since typical cost models for IC manufacturing condition IC value on package 
test results, the belief network depicted in figure 13 provides an appropriate basis for 
the wafer test decisions. 

The belief nets and the inference algorithms presented in this section can be 

employed to compute the probabilities needed in the expected utility equations. The 

next section provides the details of how these probabilities are combined with the utility 

model to solve the wafer test decisions. 
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3.3.4 Evaluating the Wafer Test Influence Diagram 

Figure 14 depicts an influence diagram for the wafer test decisions in which the 

functional test results are modeled as being conditionally independent. This influence 

diagram can be evaluated to provide solutions to the wafer test decisions. First, 

consider the best test decision. 

Figure 14: CI Wafer Test Influence Diagram 

In this problem, a single functional test is followed by n package decisions (one 

for each of the dice). The value of a functional test decision is determined by the results 

of the package tests for all dice, combined with the utility model over test and inking 

costs and package values. The best functional test is the test that results in the highest 

expected value over all inking decisions. The evaluation procedure is described next. 
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At any time during testing, there exists a set of untested dice and a set of dice 

that have been tested. The evaluation of the best next test model involves considering 

each of the untested dice and computing the expected utility that would result from 

testing that die and then making the package decisions for all dice on the wafer. The die 

for which testing yields the maximum expected utility is the best die to test. For 

example, the expected utility of testing a single die can be computed as follows. 

First, compute the expected utility that would result if this die was tested and it 

passed. This involves computing the expected utility of inking each of the dice on the 

wafer, conditioned on the tested die passing functional test. The expected utility of 

inking a single die depends on the probability of the package test results for that die. 

The package test probabilities for a single die conditioned on an observed functional 

test result for another die can be computed as follows. 

Let di represent the tested die with result 4 = pass . Let dk be the die for which the 

expected utility of testing is desired. Then the package test probabilities for dk can be 

computed as follows: 

EP(w)P(ff = pass) w)P(fkiw)P(Pic 
= Pass) = w.fk 

P(1, = pass) 

Given the package probabilities for dk , the expected utilities are computed as 

the product of the package probabilities and the associated package value. This 

includes the value of the package, the cost of packaging, and the cost of package test. 

This procedure can be repeated to compute the expected package utilities for all 

dice conditioned on the result 4 = pass . The sum of these utilities is the expected 

utility of testing di and observing result fi = pass . This value can be denoted by 

EU(Fj = test,ff= pass). Similarly the expected utility of testing di and observing 

result 4 = fail can be computed. This yields the value EU(Fj = test,ff= fail). 
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Then, given these expected utility values, the overall expected utility of testing d3 is 

computed as the weighted sum of the probabilities of the test results and the expected  

utility values minus the cost of testing (i.e., the fixed cost for performing one  

functional test):  

EU(Fj = test) = EIP(w)P(fi = passlw)EU(Fi = test, = pass)} +  

E{ P(w) P(f, = failiw)EU (Fs, = test, = fail)} c 

To choose the best test, this procedure is repeated for each of the untested dice. The 

best test is the test that results in the maximum expected utility. 

There are several key assumptions that keep the best test computation tractable. 

1	 The single-step lookahead assumes that only one additional functional test will be 

performed and then the packaging decisions will be made. This approximation is a 

form of greedy search and requires experimental verification. 

2	 The inking decisions for the dice are independent. This assumption is not an 

approximation, since this is how actual inking is performed. In this case it is just a 

fortuitous circumstance. 

3	 Testing actions do not change the state of the wafer; they only provide information 

about the wafer state. This is an approximation, because in rare cases, the testing 

procedure may damage a die. But this possibility is ignored in this analysis. 

The test stopping and wafer disposition decisions are relatively simple given the 

expected utility calculations that were performed during the course of determining the 

best die to test. Testing continues as long as there is one functional test that has a 

higher expected utility estimate than the expected utility of stopping. Computing the 

expected utility of stopping involves the following steps: 

1. Compute the package test probabilities for each of the dice. For any die this is 

accomplished by P(p,) = E P(w)P(f,1w)P(pilf) . 
w >f 
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2. Multiply these probability values by the appropriate utility parameters. This yields 

two expected utility measures for each die. These correspond to the options to ink 

and to not ink. 

3. For each die choose the inking action with the highest expected utility. 

4. Sum all of these values and subtract the wafer handling costs. 

The resulting value is the expected utility that would be realized if testing was 

stopped and packaging was performed with the current information. The difference 

between the expected utility associated with the best test and the current expected utility 

is the value of information. If this value is non-positive, then testing is terminated. 

Notice that in computing the expected utility of stopping, the inking decisions for all 

dice are made. Thus the only decision left is the wafer disposition decision, and this is 

trivial given the expected utility values computed during the test stopping decision. If 

the expected utility of stopping minus the wafer handling cost is positive, then the wafer 

is shipped. 

3.3.5 Inference with Ensembles of Models 

The modeling and inference methods presented so far assume a single model. 

An alternative is to employ an ensemble of wafer models. The motivation for an 

ensemble approach is that for some problems it is better to combine the results from 

several models than it is to rely on a single model. The primary requirement for this 

approach to be beneficial is that the models must have uncorrelated errors. By 

combining models that have uncorrelated errors, it is sometimes possible to produce 

better results than those produced by any one of the component models. For some 

problems it may be impossible or impractical to generate a single model with acceptable 

performance. In these cases a practical alternative may be to generate an ensemble of 

lower-quality models whose combined performance is acceptable (Smyth and Wolpert, 

1997). 
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For the wafer test problem, the ensemble approach involves generating a suite of 

parameterized belief nets. Given an ensemble of this form, inference is performed by 

having each of the models in the ensemble vote on the result. The combined votes from 

the models serves as the basis for the wafer test decisions. In the wafer test problem, 

models vote on probability values for inference queries. Each model votes with equal 

weight. 

As an example, consider the formula for computing the package testprobabilities for a 

single die. 

Let Mrepresent the ensemble of models. 

Let tn., represent a single model in the ensemble. 

Let s represent the size of the ensemble, s =I M. 

All probability distributions are now explicitly conditioned on a model variable, e.g., 

P(w1m)represents the wafer class distribution associated with model j. 

Then the formula for the package test probabilities is 

P(A)= 1E E Povi P(.f-,tw,m, )P(Alf,,m,) 

The other inference formulas are modified in a similar manner to work with an 

ensemble of models. 

3.4 Summary 

In this chapter, principles from statistical decision theory were employed to 

formulate the wafer test problem as a collection of maximum expected utility decisions. 

Probabilistic inference techniques were applied to derive computable solutions to these 

decisions. This included belief nets for representing stochastic models, influence 

diagrams for representing decisions, and inference algorithms for computing 
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probabilities and expected utilities. Taken together, these elements define a selective 

test approach to the optimal test problem. The next chapter describes the machine 

learning methods that were developed to acquire the parameters to the belief network 

distributions. 
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4. LEARNING METHODS FOR STOCHASTIC MODELS 

The decision models that were developed for the wafer test problem are 
composed of two major components, a stochastic model of wafer test results and a 
utility model over processing costs. The parameters to the utility model are provided by 
the manufacturer. The stochastic model parameters must be generated. In this chapter 

the methods that were developed to generate the stochastic model parameters are 
described and results are presented that show how well these methods perform. 

Figure 15: Wafer Test Belief Network 

Figure 15 depicts a belief network representation of the stochastic model of 

wafer test results. The root node corresponds to the wafer class. Each of the leaf nodes 

corresponds to the functional test of a specific die. There is a probability distribution 
associated with each node, and the entries to these distributions are the parameter values 

that must be determined. In this study, the distribution entries are generated by analysis 
of historical test data with machine learning algorithms. This historical test data 
contains the observed results from the functional tests of numerous wafers, however it 

does not contain the wafer class information. Thus the parameter estimation problem is 

one that contains missing values, and the stochastic model is one that has a hidden, or 

latent, variable (the wafer class, w). This latent variable makes the parameter estimation 
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problem more challenging. In this study, data-augmentation algorithms are applied to 

the parameter estimation problem for the wafer class models, specifically, the EM 

algorithm and the Gibbs sampling algorithm. 

The remainder of this chapter is organized into the following sections: 

4.1 Measuring Model Quality. The sample likelihood and negative log 

likelihood measures are defined and the rationale for their application is 

discussed. 

4.2 Incomplete-Data Problems and Data-Augmentation Algorithms. A brief 

overview of incomplete-data problems and data-augmentation algorithms is 

presented. 

4.3 The EM Algorithm for the Wafer Test Models. The EM algorithm is 

introduced and developed for estimating the parameters to the wafer test model. 

4.4 The Gibbs Sampling Algorithm for the Wafer Test Models. The Gibbs 

sampling algorithm is introduced and developed for estimating the parameters to 

the wafer test model. 

4.5 Experimental Tests. The EM and Gibbs sampling algorithms are tested on 

the parameter estimation task for the wafer test models. Results are presented 

and performance is summarized. 

4.1 Measuring Model Quality 

The general approach to solving the wafer test problem is to train a stochastic 

model on historical wafer test data, then combine the trained model with the utility 

model to produce a parameterized decision model. This decision model is then 

embedded within a selective test control structure and testing proceeds. Performance of 
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the entire system is measured in terms of net profit, testing accuracy, and the system's 

responsiveness to the wafers tested. Thus, these test performance measures will provide 

the ultimate evaluation of the quality of the learned models. During the development 

phase, an estimate of these performance measures is needed. For decision problems, the 

obvious candidate is expected utility, however in practice surrogate measures such as 

mean square error, cross entropy, classification rates, Bayes Factors and model 

likelihood are often employed (Heckerman, Geiger, and Chickering, 1995; Kass and 

Raferty, 1994). There are two motivations for these surrogate measures. First, utility 

measures are difficult to construct. Second, it is often convenient to develop the trained 

models apart from the rest of the decision structure. For the wafer test problem, the 

expected utility calculations require a relatively complex computation. Therefore the 

performance measure for the parameter estimation algorithms is initially provided by a 

model likelihood score. The testing performance of the models is evaluated in a 

separate set of tests. 

Model likelihood provides a relative probabilistic measure of how well the model fits 

the data (Madigan, et al. 1994; Buntine, 1994; Buntine, 1996; Dietterich, 1997; 

Heckerman, 1997). Model likelihood is defined as follows. 

Notation: 

D = data sample = training set 
E D = single training example, (i.e., test results for each die on the training wafer) 

S. = model structure  
0, model parameters  

For the wafer test problem, S., refers to the belief network in figure 15, and O. refers 

to the entries in the corresonding probability distributions. The training set is the 

historical wafer test data. 
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Given this notation and assuming that the training examples are independent and 

identically distributed, then the model likelihood can be defined by the following 

formula. 

Model likelihood: P(DIS,0,) = nP(D,IS0.) 
ED 

This provides a measure of how well the model predicts the data. In practice, logs are 
employed to keep the values within reasonable limits and the resulting value is negated 

to yield positive values. This final measure is referred to as the negative log likelihood 

and is computed as follows: 

NL(0,) = log(P(DISm,0m)) = Elog(P(/), IS., 0.)) 
Di 1) 

This is the form of the likelihood measure that is used to measure model quality in this 

study. Thus, the objective of the learning algorithms is to find a set of model 

parameters that minimizes the negative log likelihood score. 

Within the machine learning framework, parameter estimation often involves 

two data samples assumed to be drawn from the same population. One data sample is 

employed to train the model; the other is used to measure performance. This approach 

is referred to as holdout-validation and its purpose is to ensure that the trained models 

generalize and haven't been overfit to the training data (Smyth, et al., 1998; Russell and 

Norvig, 1995). In this study, holdout-validation is employed as part of the model 

development strategy. 

In separating the measure of model quality from actual task performance, in this 

case wafer tests, an interesting question arises: how do likelihood measures relate to 

actual testing performance? One aspect of this study is the evaluation of learned models 

with respect to utility, that is, within the context of a decision-making task. In the wafer 

test problem, the utility is measured as net value and the units are dollars. The 
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relationship between model likelihood and wafer test profits is one of the issues 

explored in chapter 5. 

4.2 Incomplete-Data Problems and Data Augmentation Algorithms 

An incomplete-data problem is a problem for which the data values for some 

variables are unavailable, either because these values are missing or because some 

model variables correspond to non-observable entities. In the wafer test problem, the 

wafer class values are missing, and the reason that they are missing is that wafer classes 

are unobservable. If the wafer class values were available, then the maximum 

likelihood estimates of the model parameters would be simple to determine. Their 

absence makes the parameter estimation problem more difficult and necessitates a more 

complex solution. A general approach to solving incomplete-data problems is provided 

by data-augmentation algorithms (Tanner, 1991; Tanner and Wong, 1987; McLachlan 

and Krishnan, 1997; Neal, 1993; Dietterich, 1997). 

The basic idea behind data-augmentation algorithms is that incomplete-data 

problems can be translated into complete-data problems by augmenting the observed 

data with estimates of the missing values. The resulting problem can then be solved by 

conventional methods for complete-data problems. More formally, Tanner (1991) 

states the Principle of Data Augmentation as follows: 

Augment the observed data Y with latent data Z so that the augmented posterior 

distribution P(01Y,Z)is "simple". Make use of this simplicity in 

maximizing/marginalizing/calculating/sampling the observed posterior Nein 

The class of data-augmentation algorithms includes the EM algorithm, the Gibbs 

Sampling algorithm, Tanner's Data Augmentation algorithm, and the Sampling-

Importance Resampling (SIR) algorithm. Tanner (1991) and McLachlan and Krishnan 

(1997) discuss the relationships among these algorithms in detail. 
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For this study, the EM algorithm and the Gibbs Sampling algorithm are 

developed to generate parameters for the wafer test models. From a machine learning 

perspective, the application of data-augmentation algorithms to wafer test parameter 

estimation is an example of unsupervised machine learning. 

4.3 The EM Algorithm for the Wafer Test Models 

The Expectation Maximization (EM) algorithm is a general-purpose iterative 

algorithm for maximum likelihood estimation (MLE) (Dempster, Laird, and Rubin, 

1976; McLachlan and Krishnan, 1997). The EM algorithm is a common statistical 

procedure that has been applied to a variety of statistical models including regression, 

finite mixtures, hidden Markov, and latent class models. For many problems, the EM 

algorithm provides accurate and efficient solutions and is straightforward to implement. 

There are two steps to the EM algorithm, the expectation step (E-step) and the 

maximization step (M-step). In the E-step, the algorithm computes the expected 

sufficient statistics of the hidden variables. In the M-step, the algorithm computes the 

maximum likelihood estimates for the model parameters. In data-augmentation terms, 

the E-step augments the observed data with the expected sufficient statistics of the 

missing values, and the M-step solves the resulting complete-data problem. The EM 

algorithm iterates over these two steps until the parameters converge. Within a 
Bayesian framework, maximum a posteriori (MAP) estimates are possible with the EM 

algorithm (McLachlan and Krishnan, 1997; Cheeseman, et al., 1988). The extension to 

MAP estimates is handled by the inclusion of a prior density in the M-step of the EM 

algorithm. The basic operations are the same for both types of estimates. 

The primary criterion for the applicability of the EM algorithm is that there 

exists a mapping from the incomplete-data problem to a complete-data problem for 

which MLE is feasible. The E-step takes expectations over the complete-data 

conditional distributions and the M-step performs the complete-data maximum 
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likelihood (ML) estimation. For members of the exponential family of distributions, 

and for discrete multinomial distributions in particular, these operations often have 

closed-form solutions. Under these conditions, the EM algorithm produces reliable 

global convergence with monotonic increases in likelihood (McLachlan and Krishnan, 

1997). These characteristics make the EM algorithm an attractive candidate for solving 

the parameter estimation problem for the wafer test models. 

With incomplete data problems, the model variables can be partitioned into 

those that are observable and those that are not. Let 0 represent the set of observed 

variables, and let U represent the set of unobservable variables. Since the wafer test 

models assume a fixed model structure, i.e., the naïve Bayes' belief network of figure 

13, the model structure parameter is omitted from the following formulas. 

The goal is to generate a set of model parameters that minimizes the negative log 

likelihood of the observed variables. This value is computed as follows: 

NL(0.). log P(010.) = log E(Pw,1910,0) 
U 

With these definitions, the EM algorithm can be described as follows. 

EM Algorithm: 

Guess at initial parameters 0.,(0) 
E - step: compute P(Ulo,em(r)) 
M - step: set em(r+1) to maximize E[P(U,010;:"))] 

The EM algorithm begins with a guess at the initial model parameters, 0(,()), and then 

iterates between the E-step and the M-step. On each iteration, the parameters are 

updated in the M-step, U.') 0(:1) . The EM algorithm terminates at convergence, 

i.e., when NL(0(,`)) reaches a local minimum. 
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A detailed description of the EM algorithm for the wafer test models requires 

additional notation. Let D E D represent a complete set of test values for a single 

wafer, (i.e., one test result for each die on the wafer). Let ep represent the result 

of testing die j on wafer i. These wafer test result values provide an instantiation for 

each of the functional test variables in the model. The wafer classes for each of the 

training examples are unknown. Thus the E-step of the EM algorithm augments each 

example with a conditional distribution over wafer classes. For each training 

example D, E D , compute the following wafer class distribution: 

P(Dziwoe.)P(wzie.) 

= a P(D,1w,,O,JP(w ,n)  

=aP(w,10.)nP(d, lw .)  

Where a is a normalization operator. 

The M-step updates the wafer class and functional test distributions. First, update the 

wafer class distribution: 

P(wl Om) = aZ P(w, ID Om) 

Second, update the functional test distributions. For each functional test, compute the 

following distribution: 

P(ipwie.) P(wie.)P(f,10.) 
P(fliw'em)= P(wlem) P(wie,n) 

Note that P(410.) is either 0 or 1 depending on the test result for . So this 

computation is equivalent to the following:  

Let a be defined as the sum of the P(wi) for each wafer i where f1 = d .  

Let b be defined as the sum of the P(w,) for all wafers. 

Then P(1,1w , Om) = 

This completes the development of the EM algorithm for estimating parameters to the 

wafer test models. Experiments exploring the performance of this algorithm are 
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described in section 4.5.1. The next section presents a similar development of the 
Gibbs sampling algorithm for the parameter estimation task. 

4.4 The Gibbs Sampling Algorithm for the Wafer Test Models 

The Gibbs sampling algorithm presents an alternative method for generating the 

parameters to the wafer test models. Gibbs sampling is a Markov chain Monte Carlo 

method that is useful for generating random samples from joint distributions thatare 

difficult to sample directly (Geman and Geman, 1984; Gefland and Smith, 1990; 

Buntine, 1996; Neal, 1993, Dietterich, 1997). The key insight is that knowledge of 
conditional distributions is sufficient to determine a joint distribution (Case la and 

George, 1992). The Gibbs sampling algorithm exploits this idea by sampling 

conditional distributions to provide values for complex densities. Thus, the Gibbs 

sampling algorithm is most applicable to density estimation problems where the 

conditional distributions are easy to sample (Neal, 1993, McLachlan and Krishnan, 

1997). Like the EM algorithm, the Gibbs sampling algorithm is a practical approach 
and has been applied to numerous problems, including generalized linear models, 

mixture models, logistic regression, and latent-class models (Case la and George, 1992; 

McLachlan and Krishnan, 1997). There is a close relationship between the EM and 

Gibbs sampling algorithms, and it is commonly noted that the EM algorithm is an 

approximation to the Gibbs sampling algorithm (Buntine, 1991; Dietterich, 1997). The 

EM algorithm is often more efficient (i.e., faster), but less accurate. 

In general terms, the Gibbs sampling algorithm can be described as follows. 

Assume that there is a set of random variables, X = {X,, X2,..., X, } , whose joint 

distribution is of interest, P(X) = P(X,, X2,..., X) . Assume further that the 

conditional distributions for each of the X, are known, P(X,IX {X, }) . Then start 

with arbitrary initial values for each of the X, Ito = {x1,0, x2,o,..., xn,c, , i.e., 
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X1 = x10, X2 = x20, , X = xnc, . Next, for each variable X, sample a new value x,, 

from the following conditional distribution: 

P(X, I X, = xi,, , Xj_l = Xi+, = Xk = X ic .1) 

This yields a new sample x, f As long as distribution entries are 

bounded away from 0, iterations of this procedure will produce an empirical distribution 

of the x, that converges to the desired joint distribution. In order to measure the 

parameters of the joint distribution, the Gibbs sampling algorithm is employed to 

generate a large sample of values. These values are used to compute the parameters of 

the joint distribution. Hence, Gibbs sampling does not directly generate the parameters 

of interest, but only a sample drawn from the distribution. 

For the wafer test problem, the Gibbs sampling algorithm augments each 

training example with a specific wafer class assignment, rather than a distribution over 

wafer classes as in EM. The following description is based on the development by 

Dietterich (1997). 

Let Om represent the set of model parameters. Let w represent the unobservable 

wafer class variable. Using Gibbs sampling, we will generate samples from the joint 

distribution. From these samples, we can extract an ensemble of values for the 

parameters, 0.. We will then apply the ensemble techniques described in the previous 

chapter to make probabilistic inferences. The Gibbs sampling process works as 

follows: Begin by choosing initial random values for the model parameters, 0,n . Then 

iterate over the following two steps until convergence. 

1.	 Augment each of the training examples, R D , with a wafer class assignment 

drawn randomly according to P(wI0,n,R). Since the current values of en, and the 

observed values for D are known, computing P(wienR) is straightforward. This 

yields a class assignment (an instantiation of the wafer class variable, w) for each 

D, e D . Let {c,,c...,c } represent these class assignments. 
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2.	 Generate new values for the parameters by drawing them from the appropriate 

conditional distribution. 

The model parameters can be partitioned into those associated with the wafer class  

distribution and those associated with the functional test distributions,  

Om = {Om. U Onif } .  

First update the parameters for the wafer class distribution: 

Let 0,_ represent the parameters for the wafer class distribution, P(w) and let q, be  

the distribution entry corresponding to the probability of wafer class c. Let tic represent  

the number of training examples currently assigned to class c. Then assuming uniform  

priors over qc, the posterior probability is a beta distribution with parameters  

(n, +1,n +1) . Thus fl(n, + 1,n n, +1) can be sampled to provide a value for qc .  

Various algorithms exist for sampling from the beta distribution (Devroye, 1986). This  

process is performed for each of the wafer classes.  

Next, update the parameters to the functional test distributions: 

Let Om/ represent the parameters to the conditional distributions for functional test 

results, P(/illy), =1,...,n . Let q, be the parameter in 0,f that represents the 

probability that the jth feature (test result) will have value v when generated from wafer 

class P(f j=v1w = c). Let niv, represent the number of training examples 

with a class assignment of c in which the jth value is v. Assuming uniform priors 

for P then P is distributed as a beta distribution with parameters 

+1, n, n +1) . Thus fl(n +1, n +1) can be sampled to provide the(n  

parameters for P(f1w) . This procedure is repeated to generate the parameters for all  

functional tests and all wafer classes. This completes one iteration of the Gibbs  

sampling algorithm and results in a new set of parameters for the wafer test model.  
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Successive iterations of this procedure produce additional sets of parameters and the 

collection of parameters generated over a number is iterations is referred to as the Gibbs 

sequence. 

Unlike the EM algorithm, the Gibbs algorithm does not converge to a single 

parameter vector. This is a reflection of the Monte Carlo aspect of the Gibbs sampling 

algorithm in which class assignments for the training samples are made 

probabilistically. In practice, rather than selecting the parameters generated on the last 

iteration, a collection of parameters is chosen from the Gibbs sequence. This results in 

an ensemble of parameters, which define an ensemble of models. In notation, an 

ensemble of size s is denoted by M = {0,i } . 

There are a number of strategies for selecting the Gibbs ensemble (Casela and 

George, 1992; Tanner, 1991; Dietterich, 1997; Neal 1993). The general approach is to 

allow the Gibbs sampling algorithm to iterate for a fixed number of steps and then to 

collect elements from the Gibbs sequence at regular intervals. For example, in the 

Markov random field application of Longtin, et al. (1996) 10,000 initial iterations were 

performed and then every nth element of the Gibbs sequence after that point was 

collected, where n was on the order of 1000. For the wafer test models a more modest 

strategy was employed. In this strategy, only 30-50 initial iterations were performed 

and then every element of the Gibbs sequence after that point was collected until the 

desired ensemble size was reached. In general this is not a recommended approach, 

since for some problems it is possible to get trapped in a nonoptimal subspace (Tanner, 

1991). However for the wafer test problem, empirical tests failed to elicit this bad 

behavior. The performance measure for a Gibbs ensemble on the learning task is the 

negative log likelihood of the ensemble. Assuming that M represents an ensemble of 

models and that there are s models, i.e., s = IM, then the negative log likelihood 

measure for M is defined as follows. Let P(O,U, Om) be the joint distribution of the 

observables, the unobservables, and the model parameters. 
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P(0)= E P(O,U,O.)= 
u,e,  

E p(01 u, 0,)P(U10,)P(0.) =  
U,e. 

1 E P(01U,OJP(U10,)
S u,e, 

[For an entire data sample, this becomes E log 1 E P(0,KI,,On,)P(U,10.) . This is 

just the usual likelihood computation for model 0 , but it will involve a product over all 

the dice, i.e., P(01U, Om) = 'up.) . This formulation captures the assumption 

that each model in the ensemble votes with equal weight and corresponds to the 
realization that the Gibbs algorithm generates models in proportion to their likelihood. 
More likely models occur more often in the Gibbs sequence (Dietterich, 1997). 

4.5 Learning Experiments 

In order to determine how well the learning algorithms performed on the 

parameter estimation task and also to identify the best models to employ in the selective 

test policy, a number of learning experiments were performed. Each test consisted of 

instantiating the naïve Bayes' network model of wafer test results with a specific 
number of wafer classes. The model parameters were then initialized to random values. 

Next each model was trained on a historic wafer data set that contained the functional 

test results from 600 wafers. After training, each model was then evaluated on a 
separate data set that contained the functional test results from an additional 600 wafers. 

This data set is referred to as the "validation" set. The results from the learning trials on 
the training and validation data sets are used to make design decisions about model 

structure and training policy. A third data set is employed in the wafer test simulations 

in the following chapters. This data set is referred to as the "test" data set. In this 

chapter the performance on the training and validation data sets is measured in terms of 
negative log likelihood. The results are presented in the sections below. 
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4.5.1 EM Tests 

In order to explore the behavior of the EM algorithm on the task of learning 

parameters for the wafer test models, a number of tests were performed. For these tests, 

eight models were constructed by instantiating the naïveBayes' network with different 

wafer class dimensions. Wafer class distributions of the following sizes were 

considered: 1,2,4,8,12,16,20,24. 
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Figure 16: EM Learning Curves for Training Data 

Figure 16 presents the results from the EM learning trails on the training data 

set. The results show that as the number of wafer classes increases, the negative log 

likelihood decreases, indicating a better fit to the data. There is a perfect negative 

relationship between the number of wafer classes and the negative log likelihood score 

on the training data. The learning curve for the 1-class model indicates a significantly 

poorer fit to the training data. Recall that the 1-class model effectively encodes an 

assumption of independence among the dice, whereas the n-class models encode an 

assumption of conditional independence. These learning curves suggest that 
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conditional independence provides a significant improvement in modeling accuracy for 

the wafer test data. 
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Figure 17: EM Learning Curves for Validation Data 

Figure 17 presents the results from the EM learning trials on the validation data 

set. This indicates that the best fit to the validation data was achieved with four wafer 

classes. For models with more than four classes, the EM algorithm overfit the training 

data as indicated by the higher negative log likelihood score. Note that the single-class 

model performed poorly on the validation set as well. This confirms that the additional 

expressiveness provided by the conditional independence assumption of the n-class 

models results in better overall predictions for the wafer class data. 

In order to determine the structure of the wafer class distributions that were 

generated by the EM algorithm, models with four and eight wafer classes were trained 

100 times on the training set of 600 wafers. After each training trial, the wafer class 

probabilities were sorted from lowest to highest value. The sorted values from all trials 

were averaged together. Thus, the probability for class 1 is the average prior probability 
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value of the least likely wafer class. The probability for class 2 is the average prior 
probability value of the second least likely wafer class. The probabilities for the other 
classes are defined similarly. These results are presented in the figures 18 and 19, 
respectively. The actual average probability values are listed across the top of the chart, 

e.g., .05347 is average prior probability value for the least likely wafer class in the 4-
class model. 
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Figure 18: EM Wafer Class Distribution 4 Classes 

Figure 18 depicts the average wafer class distribution over 100 training sessions 
of the EM algorithm with a model that contained four wafer classes. The results show 

that one wafer class dominated the probability distribution, accounting for over 63% of 
the mass. 
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Figure 19: EM Wafer Class Distribution 8 Classes 

Figure 19 depicts the average wafer class distribution over 100 training sessions 

of the EM algorithm with a model that contained eight wafer classes. As with the 4-

class model, the results show that one wafer class dominated the probability 

distribution, in this case accounting for approximately 52% of the mass. This suggests 

that most of the training examples shared a common stochastic pattern, however this 

doesn't suggest that a single-class model is an adequate representation of wafer test 

results. In fact, even though these tests demonstrate that a single class typically 

dominates the resulting wafer class distributions, they also demonstrate that significant 

mass is associated with the non-dominant classes. Approximately 37% of the mass of 

the wafer class distribution for the 4-class models and 48% of the mass of the wafer 

class distribution for the 8-class models were allocated to the non-dominant classes. As 

indicated by the likelihood scores, the additional wafer classes provide a significant 

improvement in predictive performance. The fact that the wafer class distributions were 

skewed towards one class is only of marginal interest or significance. 
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There are several important results from the EM tests. First, the EM algorithm 

works. The learning curves indicate that the EM algorithm was able to extract a signal 

from the wafer test data. Second, the best performance, as determined by holdout 

negative log likelihood, was achieved with four wafer classes. Third, the EM algorithm 

was efficient. Convergence was achieved within 30 iterations. These results suggest 

that the EM algorithm provides an appropriate method for generating parameters to the 

wafer test models. The performance of the learned models on wafer tests is explored in 

chapter 5. 

The next section presents the results from similar training experiments with the Gibbs 

sampling algorithm. 

4.5.2 Gibbs Sampling Tests 

For the Gibbs sampling algorithm, two sets of training experiments were 

performed. The tests of the first set were similar to those performed with the EM 

algorithm. In these tests, six individual models were trained, where each model was 

instantiated with a different number of wafer classes. Models with 1, 2, 4, 8, 16 and 20 

classes were created. Each model was created by running the Gibbs sampling algorithm 

for a fixed number of iterations, and then the next parameter vector was retained for 

testing and the process was halted. For ensembles with multiple models, this process 

was modified so that the last m models were retained. Performance was measured in 

terms of negative log likelihood on the training and validation data sets. For the second 

set of tests, the effects of ensemble size were investigated. In these tests, all models 

were instantiated with four wafer classes and ensembles of various sizes were created. 

As before, performance was measured in terms of negative log likelihood on the 

training and validation data sets. The results from both sets of tests are presented in 

learning curves and these are described next. 
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Figure 20: Gibbs Learning Curves for Training Data 

Figure 20 presents the learning curves for six models trained with the Gibbs 
algorithm. Individual curves correspond to models with different size wafer 
distributions, 1, 2, 4, 8, 16 and 20. Performance is measured as negative log likelihood 
of the training data. There are several points to note. First, as with the EM algorithm, 
the models converge quickly. Second, the single-class model performed significantly 
poorer than the other models. This also corresponds to the EM results. Third, 

convergence was not monotonic. This is the expected behavior for the Gibbs sampling 

algorithm. Fourth, the final values for the Gibbs-trained models were not as low as the 
values for the EM-trained models. For example, the lowest negative likelihood score 
for any of the Gibbs-trained model on this task was 132.99 with a model containing 20 
classes. The EM-trained model with 20 classes achieved a value of 128.22 on the 
identical task. Recall that lower values indicate better fit. Thus for a single model, the 
EM algorithm produces parameters that fit the training data better than those produced 
by the Gibbs sampling algorithm. The next graph considers the performance of the 
same Gibbs- trained models on the validation data set. 
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Figure 21: Gibbs Learning Curves for Validation Data 

Figure 21 presents the results of the Gibbs-trained models on the validation data 

set. As with the EM-trained models, the validation set values exceed the training set 

values. However, unlike the test set values for the EM-trained models, the test set 

values of the Gibbs-trained models exhibit less overfitting. The best test set likelihood 

was achieved with 2-class model, with similar values produced with the 4-class model. 

As with the EM algorithm, increasing the number of wafer classes beyond eight resulted 

in poorer performance; however the effect is not as significant. It is also interesting to 

note that the best performance of a Gibbs-trained model on the test set was a negative 

likelihood score of 136.29. This score was achieved with a model that contained 2 

classes. The best score on this task for an EM-trained model was 136.48, with a model 

that contained 4 classes. Thus, the Gibbs algorithm produced a single model that 

outperformed the best EM-trained model on test set fit, although the differences in 

negative log likelihood are negligible. Considering that the Gibbs algorithm is 

performing a randomized search in parameter space it is not surprising that it 

occasionally hits upon a particularly good fit. In general, determining the optimal 

stopping point in the Gibbs sequence from consideration of training scores is 

impossible. In practice, a sample of models from the Gibbs sequence is chosen and 
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these models are combined to produce a composite model that outperforms each of the 

individual models. This is the idea behind ensemble methods. It is interesting, and 

somewhat counter-intuitive, to note that averaging models can produce above-average 

results. The next set of tests demonstrates this behavior by constructing a Gibbs 

ensemble for the wafer test models. 

A Gibbs ensemble for the wafer test model was created by the following 

method. Thirty initial iterations of the Gibbs algorithm were performed. Then an 

additional 30 iterations were performed and on each of these iterations the parameters 

were collected. This resulted in an ensemble of30 models. Performance was measured 

on each iteration by means of the negative log likelihood score. For each of the first 30 

iterations this process produced two likelihood scores, one for the training set and one 

for the validation set. For iterations 31 through 60 there were fourperformance 

measures per iteration: 

1. single model training set negative log likelihood 

2. single model test set negative log likelihood 

3. ensemble training set negative log likelihood 

4. ensemble test set negative log likelihood 

These performance measures are presented in figure 22. 
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Figure 22: Gibbs Ensemble Learning Curves 

Figure 20 presents the results from the ensemble tests. Notice that the 

performance of the ensemble is better than any single model on both the training and 

validation sets. Also the performance on the test set is better than that realized with the 

EM-trained models. The actual likelihood scores are presented in table 1. 

EM Best Single Gibbs Gibbs Ensemble 

Training Score 127.68 134.20 133.20 

Validation Score 136.48 136.29 135.99 

Table 1: EM vs. Gibbs Scores 

These scores suggest that the best EM algorithm, as judged by test set negative 

log likelihood, overfit the training data. The Gibbs ensemble outperformed the best 
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Gibbs model on both training and validation sets, and outperformed the EM algorithm 

on the validation set. 

The results presented in figure 22 suggest that larger ensembles produce better 

results. The next set of tests explores this behavior further by generating ensembles 

containing from one to eighty models. As before, the number of wafer classes was held 

constant at four. The negative log likelihood scores for the test and training data sets 

are presented in the next two figures. 
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Figure 23: Gibbs Ensemble: 80 Models: Training Data 

Figure 23 presents the negative log likelihood scores from the Gibbs ensembles 

on the training data set. The results show convergence to a minimum value of 133.72 

with about 50 models. With 30 models the negative log likelihood score is within .01 of 

this minimum value. 
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Figure 24: Gibbs Ensemble: 80 Models: Validation Data 

Figure 24 presents the negative log likelihood scores for the ensemble models on 

the validation data set. These results show that a minimum value of 136.11 was reached 

with ensembles containing more than 70 models. With 10 models the likelihood score 

was 136.17. These results suggest that improved negative log likelihood scores can be 

attained by increasing the size of the Gibbs ensemble, however the actual utility of these 

improved scores is unclear. 

4.6 Summary 

In this chapter, the EM algorithm and the Gibbs sampling algorithm were 

applied to the parameter estimation task for the wafer test models. Performance was 

measured as cross-validated negative log likelihood scores. The effects of varying the 

wafer class dimension were investigated, and for the Gibbs sampling algorithm the 

effects of varying the ensemble size were examined. There are several significant 

results from these tests. First, both the EM algorithm and the Gibbs sampling algorithm 

worked. Both were able to generate parameters for the wafer class model that resulted 

in improved negative log likelihood scores. For the EM algorithm, the best 



84 

performance was achieved with four wafer classes. Additional classes resulted in 

overfitting of the training data set. A single-class model performed poorly, suggesting 

that the conditional independence assumption embodied in the multiple-class models is 

of some benefit. For a single Gibbs-trained model, the results were similar to those of 

the EM-trained models, although the 2-class model performed slightly better than the 4-

class model. Experiments with Gibbs ensembles indicate that negative log likelihood 

scores can be improved by combining models. Training tests were performed in which 

ensembles were generated that contained from one to eighty models. In general, 

performance improved as the number of models was increased, although the size of 

performance improvements diminished as the ensemble grew beyond 10 models. For 

both the EM algorithm and the Gibbs sampling algorithm, convergence was relatively 

fast requiring approximately 30 iterations for a single model. 

The next chapter explores the question of whether these learned models are 

actually useful in wafer test. It also explores the adequacy of negative log likelihood as 

a predictor of expected utility for the wafer test problem. 
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5. EXPERIMENTAL WAFER TESTS 

A number of experiments were performed to determine how well the learned 

models would perform when embedded within the decision-theoretic test structure. A 

variety of stochastic models were trained on wafer test data, and the performance of 

these models was measured on various testing scenarios. These experiments were 

designed to address the following questions: 

1.	 What is the best stochastic model and how well does this model compare to the 

exhaustive test approach and to an optimal testing policy? Also, how well does 

model likelihood predict testing profit? Various EM and Gibbs Sampling models 

are trained, and the testing performance of these models is compared to that of the 

exhaustive test and optimal test policies. 

2. How well does myopic value of information (VOI) perform in deciding when to 

stop testing? Myopic VOI stopping is compared to optimal stopping. 

3. How much training data is needed for reasonable performance? The effects of 

varying the size of the training data sets are measured. 

4. How does the system respond to abnormal wafers?	 Is the approach sensitive to 

process problems? Individual wafers representing normal and abnormal conditions 

are tested and system performance is evaluated. 

5. How robust is the system with respect to changes in utility parameters? Do changes 

in utility parameters result in rational responses from the system? Various utility 

parameters (functional test costs and package costs) are varied, and performance is 

evaluated. 
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6. How well does this approach generalize to wafers not considered in the 

development phase of this research? Testing performance is measured on a separate 

data set that was not analyzed during system development. 

Each of these questions is addressed in a separate section in this chapter. 

5.1 Model Performance 

In order to evaluate the performance of the proposed approach, four types of 

testing policies were compared through simulated wafer testing. These approaches 

include the current exhaustive test approach, an optimal testing policy, and selective test 

approaches based on stochastic models trained by EM and Gibbs Sampling. 

Wafer test policies: 

1.	 Exhaustive testing This corresponds to the current testing policy. All dice on all 

wafers are tested, all dice that pass functional test are packaged, and all dice that are 

packaged are package tested. 

2.	 Oracle This is the ultimate optimal test policy. It assumes knowledge of which 

dice would pass functional test without performing any functional tests. The 

purpose of the oracle models (sometimes described as being omniscient) is to 

provide a measure of optimal performance. Under the oracle testing policy no 

functional tests are performed, but all dice that would have passed functional test are 

packaged, and all packaged dice are package tested. 

3.	 Selective sampling with EM models Test and package decisions are based on 

expected utility calculations from a single stochastic model trained with the EM 

algorithm. Myopic value of information (VOI) is employed to decide when to stop 

testing. All dice with non-negative expected utility are packaged. All dice that are 
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packaged are package tested. A variety of EM-trained models are generated by 

varying the number of wafer classes. 

4.	 Selective sampling with Gibbs ensembles Test and package decisions are based on 

expected utility calculations from an ensemble of stochastic models trained by 

Gibbs Sampling. Myopic value of information (VOI) is employed to decide when 

to stop testing. All dice with non-negative expected utility are packaged. All dice 

that are packaged are package tested. Ensembles of varying sizes are considered. 

The key performance measure of a testing policy is net profit as determined by 

the profit model presented in figure 25. Secondary measures include the number of 

tests performed, the number of dice packaged, the number of true positives (good dice 

that are packaged), true negatives (bad dice that are rejected), false positives (bad dice 

that are packaged), and false negatives (good dice that are rejected). 
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wafer, 

Nd (W.]) E number of dice on wafer,  
Nf ) ----- number of functional tests performed on wafer  
NfP ) = number of passing functional tests on wafer,  
Np(Wi ) = number of package tests performed on wafer,  
Nk(W.1)- number of dice packaged from waferj  

Y(W) package yield of waferj  
cf a-- cost of single functional test  
Ck -a cost of packaging a single die  
cp = cost of single package test  

single wafer handling cost (shipping and sawing)  
vk = value of single good package  

value of package yield V(Y(W,)) =Y(Wi)*vk  
total cost of wafer functional tests = Cf = Nf (W.j)* cf  
total cost of packaging m Ck = (Nk )* ck ) ch  

total cost of package tests Cp = Np(Wi)*Cp  
wafer profit V (Y(W.,)) Cf(Wi) Ck(Wi)-Cp(Wj)  

Figure 25: Wafer Test Profit Model 

5.1.1 The Best EM Model 

In order to determine which EM-trained model performs best in wafer testing, a 

variety of EM-trained models were generated by varying the number of wafer classes. 

Models with 1, 2, 4, 8, 12, 16, and 24 wafer classes were created. These models were 

trained on 25 lots (600 wafers) of wafer test data. The trained models were embedded 

in the decision-theoretic selective test structure, and performance was measured on 

simulated testing of 25 lots (600 wafers) of wafer test data. The training and testing 
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data sets were distinct. These data sets were the same ones that were used in chapter4. 
The results from these tests are presented in table 2. 

Number Learning Testing Profit Number Number Number Number 
Classes -log -log 

Likelihood Likelihood 
Tests Packaged False True 

Positives Negatives 

1 133.6546 138.9136 1228787 7200 122227 19939 3173 
2 134.6209 136.5204 1229337 8093 121685 19397 3715 
4 133.2200 136.4924 1229417 8137 121635 19347 3765 
8 131.5449 136.8713 1229531 8210 121560 19272 3840 

12 130.6172 137.2648 1229403 8014 121682 19394 3718 
16 129.6295 137.5456 1229368 7989 121706 19418 3694 
24 127.8068 138.2524 1229457 7828 121720 19432 3680 

Table 2: EM Tests: Results 

Selected results are considered in more detail below. 

Figure 26: EM Tests: Learning Curves 
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Figure 26 depicts the learning curves for the EM model as the number of wafer 

classes is increased. These results were originally presented in chapter 4. As expected, 

an increase in the number of wafer classes results in a better fit to the training data and 

thus a lower negative log likelihood rating. The only exception to this trend is that the 

negative log likelihood value on the training set increases slightly when moving from 

one to two classes. However, after this point the negative log likelihood values 

decrease monotonically as the number of wafer classes is increased. The test set 

negative log likelihood values indicate the best fit of the test set occurs with fourwafer 

classes. As the number of wafer classes is increased past four, the values indicate 

overfitting, i.e., the negative log likelihood values for the training set decrease as the 

values for the test set increase. 
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Figure 27: EM Tests: Profit 

Figure 27 shows the relationship between total net profit over the test set wafers 

and the number of wafer classes in the model. There is a weak relationship between the 

number of wafer classes and profit, but the differences in profit are relatively small. The 

difference between the best model (8 classes, $1229531 profit) and the poorest (1 class, 

$1228787) is only $774. So the poorest model produces over 99% of the profits 

produced by the best model. 
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Figure 28: EM Tests: Number Tests 

Figure 28 shows the relationship between the total number of functional tests 

performed on the test set and the number of wafer classes. In general a lower negative 

log likelihood score on the test set (i.e., a better fit) corresponds to a higher number of 

tests. The actual correlation coefficient between test set negative log likelihood and the 

number of functional tests is -.8996. 
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Figure 29: EM Tests: Number Packages 



92 

Figure 29 summarizes the relationship between the number of wafer classes in 

the models and the number of dice packaged from the test set. The number of packages 

is directly related to the number of functional tests that were performed, more testing 

leads to fewer packages. The explanation of this behavior is that during the extra 

testing, more bad dice were discovered, and this resulted in few dice being packaged. 

This relationship can also be seen in the graphs of true negatives and false positives in 

which more tests correspond to more true negatives and fewer false positives. 

An interesting issue is the ability of the model to predict good and bad dice as 

measured in terms of true positives, true negatives, false positives, and false negatives. 

In general, the system is optimistic in that it tends to assume that dice are good rather 

than bad. With the default utility parameters, the system never misses a good die in its 

package decisions. Therefore the number of true positives is always equal to the 

number of good dice. Correspondingly, the number of false negatives is always zero. 

Thus the only measures that vary are the number of true negatives (i.e., the number of 

bad dice rejected) and the number of false positives (i.e., the number of bad dice 

packaged). 

Figure 30: EM Tests: Number True Negatives 
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Figure 30 shows the relationship between the number of wafer classes and the 

number of true negatives from the test wafers. This is the number of bad dice that were 

rejected by the system. 
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Figure 31: EM Tests: Number False Positives 

Figure 31 shows the relationship between the number of wafer classes and the 

number of false positives. This shows that false positives are the complement to true 

negatives - as the number of true negatives increases, the number of false positives 

decreases. The strength of this relationship can be seen in the table of correlation 

coefficients presented in table 3. 
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Test -log False True 
likelihood Profit Tests Packages Positives Negatives 

Test -log likelihood 1 -0.6768 -0.8996 0.8061 0.8061 -0.8061 
Profit -0.6768 1 0.9224 -0.9797 -0.9797 0.9797 
Tests -0.8996 0.9224 1 -0.9811 -0.9811 0.9811 

Packages 0.8061 -0.9797 -0.9811 1 1 -1 

False Positives 0.8061 -0.9797 -0.9811 1 1 1 

True Negatives -0.8061 0.9797 0.9811 -1 1 1 

Table 3: EM Tests: Correlation Coefficients 

To summarize the EM tests, likelihood and profit are related, but not directly 

correlated. The EM-trained model with four wafer classes had the lowest negative log 

likelihood score on the test data set, but the model with eight wafer classes produced the 

most profit. Testing and packaging are inversely related. In general the more the 

system tests, the less it packages. This reflects the fact that the system is initially 

optimistic about the quality of the wafer and tends to package all dice until it acquires 

some evidence that dice are not good. Further testing generally reveals some bad dice, 

which the system then rejects. Interestingly, this extra testing to detect bad dice and 

avoid false positives doesn't always pay off in terms of net profit. 

5.1.2 The Best Gibbs Sampling Model 

Tests similar to those performed on the EM-trained models were performed for 

models trained via Gibbs Sampling. For these tests the number of classes was fixed at 

four, and the effect of varying the ensemble size was investigated. Results from 

ensembles of size 1, 2, 4, 8, and 12 are reported. As with the EM tests, the models were 

trained on a data set consisting of 25 lots (600 wafers) and tested on a separate data set 

of 25 lots (600 wafers). Performance measures include training and testing set negative 

log likelihoods, the net profit, the number of tests, the number of packages, the number 

of false positives, and the number of true negatives. The results are summarized in 

table 4. 
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Number Learning Testing Profit Number Number Number Number 
Models -log -log Tests Packages False True 

Likelihood Likelihood Positives Negatives 

1 134.3082 136.687 1229476 7785 121726 19438 3674 

2 133.9960 136.4806 1227836 11916 121078 18790 4322 

4 133.8065 136.3636 1228155 11499 121075 18787 4325 

8 133.7356 136.2936 1228073 11998 120945 18657 4455 

12 133.7400 136.1679 1228640 11392 120895 18607 4505 

Table 4: Gibbs Tests: Results 

Figure 32: Gibbs Tests: Learning Curves 

The learning curves for the Gibbs-trained models are shown in figure 32. Both 

the training and testing measures (negative log likelihood) decrease as the ensemble size 

increase, although differences are small. There is no evidence of overfitting. 
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Figure 33: Gibbs Tests: Profit 

The relationship between ensemble size and net profits is presented in figure 33. 

This figure shows that the maximum profit was realized with the ensemble of size one. 

The second highest profit was attained with the largest ensemble considered which 

included 12 models. This shows that for this task, ensemble test likelihood is not a 

good predictor of testing profit. In fact the correlation coefficient between negative log 

likelihood and profit is .4904 (see table 6 below). 
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Figure 34: Gibbs Tests: Number Tests 

The relationship between ensemble size and the number of functional tests is 

presented in figure 34. This shows that there is a distinct shift in performance when 

increasing the ensemble size beyond one. An ensemble of size one results in fewer tests 

than ensembles containing multiple models. For ensembles containing more than one 

model the number of tests appears to be unrelated to the number of models. 

Figure 35: Gibbs Tests: Number Packages 
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The relationship between ensemble size and the number of packages is depicted 

in figure 35. In general, the larger ensembles produced fewer packages. As with the 

testing behavior, there appears to be a distinct shift in performance when moving to 

ensembles containing multiple models. A single model tests less and packages more 

than any of the larger ensembles. 

Figure 36: Gibbs Tests: Number True Negatives 

Figure 36 presents the relationship between the ensemble size and the number of 

true negatives. From this graph, it is clear that the extra testing performed by the larger 

ensembles results in the discovery of more bad dice which are then rejected. By testing 

less and packaging more the single model rejects fewer bad dice (i.e., true negatives). 
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Figure 37: Gibbs Tests: Number False Positives 

The relationship between ensemble size and the number of false positives (i.e., 

package bad die) is presented in figure 37. As with the EM model, the false positives 

are simply the complement to the true negatives. This graph also displays a distinct 

performance difference when the ensemble size is increased to more than one model. 

The single model tests less and packages more than the other models. The result is that 

the single model packages more bad dice (i.e., false positives). It is interesting that this 

testing behavior produces more profit than is realized by the more extensive testing 

performed by the larger ensembles. This demonstrates that there are times when the 

cost of extra information (i.e., additional tests) exceeds the value of the improved 

package decisions. This also calls into question the quality of the myopic VOI 

estimations for determining test stopping with ensembles of stochastic models. 

The correlation coefficients for the various performance measures are presented in table 

5. 
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Test -log False True 
likelihood Profit Tests Packages Positives Negatives 

Test log likelihood 1 0.4904 -0.7628 0.9203 0.9203 -0.9203 
Profit 0.4904 1 -0.9364 0.7859 0.7859 -0.7859 
Tests -0.7628 -0.9364 1 -0.9529 -0.9529 0.9529 
Packages 0.9203 0.7859 -0.9529 1 1 -1 
False Positives 0.9203 0.7859 -0.9529 1 1 -1 
True Negatives -0.9203 -0.7859 0.9529 -1 -1 1 

Table 5: Gibbs Tests: Correlation Coefficients 

To summarize the Gibbs tests, the most salient result is that a single Gibbs 

model outperforms the larger ensembles, even though the larger ensembles fit the test 

data better (as measured by negative log likelihood). The larger ensembles tend to test 

more than the single model and they package less. They discover more bad dice and 

avoid more false positives, but the extra cost of testing outweighs the gain in profit. 

These results demonstrate that the relation between likelihood and performance is more 
complicated when considering ensembles. 

5.1.3 Model Comparisons 

In the previous two sections, model performance was compared between models 

trained according to the same learning algorithms. EM-trained models were compared 

to other EM-trained models, Gibbs-trained models were compared to other Gibbs-

trained models. In these section, the best of the selective test models are compared to 
one another and to several non-VOI approaches. In all, five approaches are compared: 

1.	 Exhaustive test, package all dice that pass functional test. This approach 

corresponds to the current manufacturing practice. 

2.	 Test none; package all dice. Under this approach die-level functional test is 

eliminated. All dice are packaged then package tested. 
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3.	 Selective test with Gibbs-trained model. For these tests a single Gibbs-trained 

model was employed. 

4.	 Selective test with EM-trained model. 

5.	 Test none; package all good only. This approach assumes an oracle that can 

determine which dice are good without testing. Since oracles for this task do not 

exist, the purpose of this approach is to provide a benchmark for optimal 

performance. 

All approaches are evaluated on the identical task of testing 25 wafer lots (600 wafers). 

Each wafer contains 209 dice. Summary statistics are provided in table 6. 

Total Number Good Dice 102288 

Total Number Dice 125400 

Yield	 0.8157 

Table 6: Test Wafers Statistics 

The results from the model tests are presented in table 7. 

Total Number Number  
Profit Tested Packaged  

Exhaustive Test 1184550 125400 102288  

No test, Package All 1226598 0 125400  

Gibbs 1229414 7313 121911  

EM 1229531 8210 121560  

Oracle 1278600 0 102288  

Table 7: Model Comparisons: Results 
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The profits that were realized under the various testing policies are summarized 

in figure 38. The first result to consider is that the current approach of exhaustive test 

produces the least profit. The oracle produces the most profit, of course. The no-test 

approach produces slightly less profit than the selective test approach using either the 

Gibbs or the EM. 

Figure 38: Model Comparisons: Profit 

The number of tests performed by the various approaches is not surprising. The 

exhaustive test approach tests all 125400 dice. The two test-none approaches (no test 

and oracle) test zero dice. The two selective test approaches (Gibbs-trained and EM-

trained) test a fraction of the dice, 5.85% for the Gibbs-trained, 6.65% for the EM-

trained. 

The number of dice packaged according to the various approaches is shown in 

figure 39. The exhaustive-test approach and the oracle-based approach both perform 

perfect packaging. These approaches package all 102288 good dice or 81.57% of the 

total. The no-test approach packages all 125400 dice. The two selective test 
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approaches package almost all of the dice. The Gibbs-trained model packaged 121911 

dice, or 97.21% of the total. The EM-trained model packaged 121560 dice, or 96.94% 

of the total. 

Figure 39: Model Comparisons: Number Packages 

To summarize the model comparisons, with the exception of the Oracle model, 

the EM-trained model produced the most profit over the testing scenario. The Gibbs-

trained model produced slightly less. The No-Test policy produced slightly less profit 

than the Gibbs model. All approaches produced more profit than the current exhaustive 

test approach. Comparing the EM-trained model and the Gibbs-trained model the EM-

trained model tested slightly more (8210 vs. 7313) and packaged slightly less (121560 

vs. 121911), but in general the performance of these two approaches is very similar. 

Both the EM-trained model and the Gibbs-trained model produced over 96% of the 

profit realized by the Oracle model. The No-Test policy also produced profits in this 

range, so a reasonable question is what advantage the selective test approaches have 

over the No-Test policy. The answer to this question is that on wafers with high yield 

there may be little benefit, and in fact the optimal policy for high-yield wafers is 

probably to package all dice without performing any die-level functional tests. The 

problem with this approach is that process problems will not be detected until package 
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test results become available. This is an especially serious concern, since often the 

packaging process occurs at a location far from the wafer fabrication plant. For 

example, it is common practice to send wafers that are fabricated in the United States to 

Asia for packaging. In these cases the delay in feedback and the costs of shipping and 

handling make the Test-None policy risky. One of the benefits of the selective test 

approach is that for good wafers it can produce profits comparable to those produced 

with a Test-None policy, but it can also detect abnormal wafer and process problems 

while the wafers are still at the wafer fabrication plant. This ability to adjust testing 

behavior to wafer characteristics is explored in more detail in section 5.4. 

Finally, another benefit of the selective test approach over the exhaustive test 

approach is that since the system tests only a fraction of the dice, the resources that are 

allocated to the exhaustive testing policy can be reallocated. This means that fewer 

testers are required as well as the necessary support for these machines. Alternatively, 

in cases where functional testing is the process bottleneck, a decrease in number of dice 

tested per wafer means that more wafers can be tested, thus wafer starts, throughput, 

and profits per unit time can be increased. Thus there are two deficiencies in the profit 

model utilized in this study (and in typical industry planning): (1) the model doesn't 

account for the effects of testing load on wafer starts and throughput, and (2) the model 

doesn't place any value on the diagnostic value of test results. If these factors are 

considered, then the selective test approach is even more attractive. 

5.2 Evaluation of the Myopic VOI Stopping Rule 

The selective test approach relies on myopic value of information (VOI) 

computation to decide when to terminate testing. In order to determine how well this 

heuristic performs in testing, experiments were performed in which myopic VOI 

stopping was compared to the optimal stopping point. To determine the optimal 

stopping point, the selective test policy was modified to continue testing past the past 

the point of non-positive VOI until all dice were tested. Thus the optimal stopping 
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point is determined by looking back over the history of testing decisions to the point at 

which profit would have been maximized had the system stopped at that point. Profit 

includes the costs for functional tests up to that point and the rewards obtained by 

making package decisions at that point. Under this new policy only the stopping 

decision was modified, the best test decision and the inking (packaging) decisions were 

the same. 

For these tests a single stochastic model with four wafer classes was trained via 

the EM algorithm on 600 wafers. The learned model was embedded within the 

selective test structure and the testing performance was measured on a distinct set of 

600 wafers. The results from these tests are summarized in table 8. The results from 

the exhaustive test policy are provided for comparison. 

Profit Number Number 
Tests Packages 

Exhaustive Test 1184550 125400 102288 
VOI Selective Test 1229531 8210 121560 
Optimal Stopping 1231970 11206 119264 

Table 8: Optimal Stopping: Results 

The first result to consider is the net profit realized by the various approaches. This 

information is presented in figure 40. 
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Figure 40: Optimal Stopping Tests: Profits 

Notice that the Optimal Stopping policy produces only slightly more profit than 

the myopic VOI approach. In fact, the myopic VOI approach realizes over 99% of the 

profit achieved by Optimal Stopping 
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Figure 41: Optimal Stopping Tests: Number Tests and Packages 
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The next result to consider is the number of tests and the number of packages 

from each of the policies. These results are presented in figure 41. The Optimal 

Stopping approach performs more functional tests (11206 vs. 8210) and produces 

slightly fewer packages (119264 vs. 121560) than the myopic VOI approach. 

To summarize the optimal stopping experiments, myopic VOI Stopping tests 

less than Optimal Stopping (performing only about 73% as many tests) and packages 

more (about 2% more packages). These extra packages are false positives. So the 

Optimal Stopping approach spends a bit more on functional testing in order to reduce 

the number of bad dice packaged. But these tests are not uniformly distributed across 

the wafers. Even though the overall number of tests performed by the myopic VOI 

Stopping approach is less than the number of tests performed by the Optimal Stopping 

approach, the number of wafers on which Optimal Stopping performed more testing 

than myopic VOI is only 262 out of 600 (44%). So on the majority of wafers, myopic 

VOI Stopping tested more than Optimal Stopping. Thus simply testing beyond the 

point of non-positive VOI will not improve performance. Optimal stopping is better at 

recognizing good wafers early, and in deciding how to test bad wafers to a degree 

needed to make good package decisions. Despite the differences, myopic VOI Stopping 

performs very well and realizes over 99% of the profit achieved by Optimal Stopping. 

5.3 Training Policies 

Up to this point the training set has been fixed at 50 lots (600 wafers). While 

this is not an unreasonable number from a process perspective, it is interesting to ask 

whether the same performance can be obtained with a smaller training set. It is also of 

interest to see how performance is affected by training sets that are much smaller than 

50 lots. 

To investigate this behavior a single stochastic model with four wafer classes 

was trained with the EM algorithm on training sets of various sizes, from 10 to 500 
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wafers. The resulting models were then embedded in the selective test structure and 

performance was measured on simulated testing of 600 wafers. Each experiment was 

performed twice with distinct training sets to increase the generality of the results. This 

provided two measures for each sample size, and these results were averaged together to 

yield a single measure. Table 9 presents the learning results for both the training and 

the testing sets in terms of negative log likelihood. 

Size Training Testing 
10 96.89 151.02 
20 106.88 147.29 
40 114.53 144.51 
60 123.18 142.69 
80 128.16 141.10 

100 128.76 140.42 
200 125.67 139.63 
300 132.29 137.78 
400 135.12 136.58 
500 133.14 136.46 

Table 9: Training Policies: Learning Results in log likelihoods 
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Figure 42: Training Policies: Learning Curves 
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The relationship between training sample size and negative log likelihood for 

the training and testing sets is presented in figure 42. The results show that there is 

considerable overfitting for the small sample sizes. In these cases the training set 

measure is very low, but the test set measure is high. As the training sample size is 

increased, the test negative log likelihood decreases and the training negative log 

likelihood increases, indicating a better fit of the testing data and a worse fit on the 
training data. With a training set size of about 300, the likelihood measures converge to 

where the ratio of training set likelihood to test set likelihood is greater than .95. The 

profits that are realized by testing 600 wafers with the learned models are presented in 

table 10. 

Size 

10 
20 
40 
60 
80 

100 
200 
300 
400 
500 

Profit 
1221635 
1225978 
1226158 
1226536 
1226607 
1226856 
1226994 
1227141 
1227449 
1227412 

Table 10: Training Policies: Profits Results 
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Figure 43: Training Policies: Profits 

Figure 43 depicts the relationship between training sample size and net profits. 

This shows a direct relationship between the amount of training data and the profit: 

more data means more profit. This relationship can also be observed in figure 44, 

which plots profits vs. test set negative log likelihood. 
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Figure 44: Training Policies: Profit vs. Test Negative Log Likelihood 
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To summarize the results of varying the training sample size, profits can be 
realized with a small training set and additional training examples increase profits. It is 
interesting to note that once the training set is larger than 80 wafers then the profit from 
the selective test policy exceeds that achieved by the test-none policy. Since training 
with the EM algorithm is relatively fast, these results suggest that for this task, a 
training sample of 300 wafers is reasonable. 

5.4 Detection of Process Problems 

An interesting question for any testing policy is how it responds to abnormal 
wafers. Although the selective test approach was targeted towards a stable mature 
product, process problems are not uncommon and abnormal wafer test results are often 
the first symptoms of such problems. In the presence of process problems, it is 

questionable whether the correct test behavior is to continue selective testing. Within 
the context of mature product testing, perhaps the most reasonable response to an 
abnormal wafer is to exhaustively test the wafer and to raise an alert to process 
operators. If this is the case, then the important question for the selective test approach 
is not how much profit it can make, but how well it can recognize abnormal wafers. 

To explore this behavior, six wafers are considered in detail. The first two 
wafers are typical 'good' wafers with yields over 80%. The next two wafers exhibit 
extremely low yield, less than 10% each. These wafers are considered 'bad' wafers. 
The final two wafers exhibit yields in between at 66% and 65%. These wafers are 
considered 'mediocre' wafers. The last wafer exhibits significant spatial clustering as 
measured by the T-statistic (described in chapter 2). A single stochastic model with 
four wafer classes was trained with the EM algorithm on the test results from 600 
wafers. This model was then embedded in the selective test structure and testing of the 
six wafers described above was performed. The results from these tests are presented in 
table 11. 
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Current VOI  
Wafer #Goods Yield # Tests # Packages Profit Profit  

178 0.85 9 205 2068.25 2158.25 

2 180 0.86 9 206 2093.25 2185.50 

3 17 0.08 202 25 55.75 43.75 

1 

4 2 0.01 202 10 -131.75 -143.75 

5 138 0.66 57 182 1568.25 1583.25 

6 118 0.56 13 202 1318.25 1277.00 

Table 11: Detecting Process Problems: Wafer Summary 

In table 11, current profit is the profit realized under the exhaustive test policy. 

VOI profit is the profit realized under the VOI selective policy. 

To better document the testing behavior, wafer test maps are presented for each 

wafer. These maps show the actual good dice, the dice that were tested according to the 

selective test policy, and the dice that were packaged according to this policy. In each 

map green (light) encodes true, so green represents good dice, tested dice, and packaged 

dice. Red (dark) encodes bad dice, untested dice, and unpackaged dice. 
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Good Wafers: yield > .85 

Good Dice Tested Dice Packaged Dice 
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Figure 45: Detecting Process Problems: Wafer 1 
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Figure 46: Detecting Process Problems: Wafer 2 

Summary of good wafer tests: For the typical 'good' wafer, the system performs 

minimal testing. In these cases it tested only around the outside edges where bad dice 

are most likely. The system then decides to package almost all of the dice on the 

wafers. This testing and packaging behavior produces a net profit over the exhaustive 

test policy and the test-none policy. 
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Bad Wafers: yield < .10 
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2 

4 

6 

4 

8 

10 

12 

16 

18 

2 0 6 8 10 12 14 16 1 

2 

4 

6 

1i 
8 

10 

12 

16 

le 
2 4 S 8 10 

II 
12 14 16 18 

2 

4 

6 

8 

to 

12 

14 

16 

18 

2 4 6 8 10 12 14 16 18 

Figure 45: Detecting Process Problems: Wafer 3 
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Figure 46: Detecting Process Problems: Wafer 4 

Summary of bad wafer tests: For bad wafers, the system typically tests most dice on the 

wafers. It then packages only a few dice. If actually implemented in a production 

environment, these wafers would most likely be held for analysis rather than sent to 

package. The important point is that the system was able to recognize the bad wafers 

and then decided to test to confirm that they were bad. The testing and packaging 

decisions for bad wafers are distinctly different than those performed on good wafers. 
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Mediocre Wafers: .50 < yield < .70 

Good Dice Tested Dice Packaged Dice 
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Figure 47: Detecting Process Problems: Wafer 5 
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Figure 48: Detecting Process Problems: Wafer 6 

Summary of mediocre wafer tests: the system performs more testing than on the good 

wafers and less than on the bad wafers. So, the degree of testing is sensitive to the 

yield. For wafer 5 the system did a reasonable job with the test and package decisions 

and produced a net profit over the exhaustive test policy. On wafer 6, the system was 

overly optimistic in its assessment. This is most likely due to the fact that the failures 

on wafer 6 exhibited an unusual pattern of spatial clustering. Note that wafer 6 was 
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determined to have significant spatial clustering according to the T-statistic, and the few 
wafers in the training set exhibited this behavior (see T-statistic summary in chapter 2). 
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Figure 51: Detecting Process Problems: Yields and Tests 

Figure 51 depicts the yield and test relationship on the six wafers. Note that 

yield in this figure refers to the count of true good dice on the wafers. For wafers with 
high yield values, the system performs few tests. For wafers with low yield values, the 

system performs extensive testing. For wafers with yields between the high and low 

values, the system performs a number of tests between that which was performed for 
the high-yield and low-yield wafers. 
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Figure 52: Detecting Process Problems: Number Tests and Packages 

Figure 52 depicts the relationship between test and package decisions. In 

general the number of tests performed and the number of dice packaged are inversely 

related: the system tests more on wafers with lower yield and subsequently packages 

fewer dice. This relationship between wafer yield and test and package decisions holds 

for the larger wafer test set. Figure 53 is a scatterplot of yield (number of good dice) vs. 

the number of tests performed by system on the test set of 600 wafers. 
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Figure 53: Detecting Process Problems: Yield vs. Number Tests 

This behavior in which only bad wafers are tested extensively means that for 

mature and stable products only a relatively few wafers are tested extensively. Figure 

54 presents a histogram of the number of wafers and their level of testing. From this 

graph it can be seen that the majority of wafers (353) received between 11 and 20 tests, 

and only 33 wafers received more than 21 tests. 
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Figure 54: Detecting Process Problems: Number Tests Histogram 
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To summarize the tests to determine the response to process problems, the 

selective test approach is responsive to abnormal wafers. In general, there is a direct 

relationship between the wafer yield and the number of functional test that are 

performed. The higher the yield, the fewer tests. This means that for a stable and 

mature product the system will test only a small fraction of the total dice. However, the 

system is sensitive to abnormal yields, which are indicative of process problems. On 

such wafers, the system tends to test more thoroughly. For wafers with extremely low 

yield, the system responds by testing almost all dice. This means that a minimal 

amount of resources are expended on good wafers, yet bad wafers are detected. This 

also suggests that the output from the selective test approach could be employed in the 

SPC methods that routinely monitor for process problems. A straightforward extension 

to the current SPC system would be to replace actual test measures with predicted 

measures. So, for example, rather than setting control limits around the actual 

functional test results, the control limits could be set around the predicted, i.e., predicted 

by the model, functional test results. Thus, the selective test approach provides dual 

benefits. First, it greatly reduces the requirement for testing resources. Second, it 

satisfies the requirement for prompt detection of process problems. 

5.5 Robustness to Changes in Utility Parameters 

One benefit of constructing a test and package policy based on expected utility 

is that changes in utility parameters should result in rational changes in performance 

without explicit re-engineering the learned models or control structures. The learned 

models capture the expected distribution of good and bad dice, and the control 

structures combine this information with utility parameter values to make test and 

package decisions. Changes in utility parameters result in policy and performance 

changes through their effects on expected utility. In theory, as utility parameters 

change, these values are simply passed to the system which automatically adjusts its test 

and package policy to maximize overall expected utility. To explore this behavior in 

the wafer test problem, changes to two of the utility parameters were considered: 
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1. Changes to the cost of performing a single functional test 

2. Changes to the cost of packaging a single die 

For each of these parameters, a series of tests were performed in which the 

parameter of interest was swept through a range of values and performance on a testing 

scenario was measured. For these tests, a single stochastic model with four wafer 

classes was trained via EM on 600 wafers. The learned model was then combined with 

the utility model and simulated testing was performed on 48 wafers. Performance was 

measured in terms of the number of functional tests performed, the number of dice 

packaged, the number of false positives, and the number of true negatives. 

5.5.1 Changes to Package Cost 

In the first set of tests, the cost to package a single die was manipulated. Let 

c represent the normal package cost. Then consider the effects of cutting the package 

cost in half (.5 cp) and of doubling the package cost (2 cp). The results are summarized 

in table 12. 

Package Number Number Number False Number True  
Cost Tests Packages Positives Negatives  

. 5 cp 240 9854 1568 178 

c 796 9672 1386 360 
P 

2 cp 2484 9312 1026 720 

Table 12: Robustness Tests: Changes to Package Cost: Results 
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The first result to note is that as the package cost is increased the system 
increases the number of functional tests that are performed. This relationship can be 
observed in figure 55. 
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Figure 55: Robustness Tests: Changes to Package Cost: Number Tests 

As the number of tests increases, the number of packages decreases. The 

explanation for this behavior is that the increased testing discovered additional bad dice 

that were then rejected rather than packaged. This can be seen in figure 56, which 

depicts the relationship between package cost and the number of packages, and in figure 

57 which depicts the relationship between package cost and the number oftrue 
negatives. 
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Figure 56: Robustness Tests: Changes to Package Cost: Number Packages 
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Figure 57: Robustness Tests: Changes to Package Cost: Number True Negatives 

The explanation that increasing package cost results in an increase in the number 

of tests and a decrease in the number of packages due to the discovery of more bad dice 

is further confirmed by the measure of false positives (i.e., the number of bad dice 

packaged). The relationship between package cost and the number of false positives is 

presented in figure 58. 
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Figure 58: Robustness Tests: Changes to Package Cost: Number False Positives 

To summarize the effects of varying the package cost, when it is relatively 

inexpensive to package dice then the system packages more and tests less. As the 

package cost increases, false positives become more expensive, so more tests are 

performed to reduce this risk. Thus, with respect to changes in package cost, the system 

performs rationally by adjusting its testing and package decisions to maximize expected 

profits. 

5.5.2 Changes to Functional Test Cost 

A second set of tests was performed in which the functional test cost was 

manipulated. Let ci represent the current cost of a single functional test. Then 

consider the effects of setting the functional test cost at .1 cf., .67 cf , cf , 1.33 cf , 

.167 cf , 2 cf , and 10 cf . The results are summarized in table 13. 
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Test Cost Number Number Number Number 
Tests Packages False True 

Positives Negatives 

.1C 10032 8286 0 1746 

.67C 1509 9485 1199 547 

C 796 9672 1386 360 

1.33C 321 9835 1549 197 

1.67C 240 9854 1568 178 

2.0C 169 9912 1626 120 

10C 0 10032 1746 0 

Table 13: Robustness Tests: Changes to Functional Test Cost: Results 

The first result to consider is that the number of functional tests is directly 

related to the functional test cost: the cheaper the single test cost, the more tests are 

performed. At .1 cf tests are so inexpensive that the system performs exhaustive 

testing. At 10cf tests are so expensive that no functional tests are performed. Figure 

59 summarizes this relationship between functional test cost, the number of tests 

performed, and the number of dice packaged. 
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Figure 59: Robustness Tests: Changes to Functional Test Cost: Tests and Packages 
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The next result to consider is that the number of true negatives (bad dice that are 

rejected) decreases as the functional test cost is increased. This reflects the fact that 

with a higher test cost, fewer dice are tested and thus fewer bad dice are discovered. 

This demonstrates the overall optimistic bias that the system has toward dice; in the 

absence of evidence the system is more likely to package a die than to reject it. The 

relationship between functional test cost and the number of true negatives is 

summarized in figure 60. 
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Figure 60: Changes to Functional Test Cost: Number True Negatives 

A final result to consider from these tests is the relationship between functional 

test cost and the number of false positives (package bad die). An increase in the 

functional test cost results in an increase in the number of false positives. This is just 

the complement to the true negative results. As single test cost is increased, fewer tests 

are performed, and thus the system packages more dice, including some that turn out to 

be bad. At .1 cf all dice are tested, and thus there are no false positives. The 

relationship between the functional test cost and the number of false positives is shown 

in figure 61. 
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Figure 61: Changes to Functional Test Cost: Number False Positives 

To summarize the robustness tests, the system behaves rationally by adjusting its 

testing and packaging decisions to reflect changes in cost parameters. When the 

package cost is increased, the system tests more to avoid wasting resources by 

packaging bad dice. On the other hand, when the functional test cost is increased, the 

system tests less and packages more. If the test cost is set sufficiently low, then the 

system tests all dice. If the test cost is set sufficiently high, then the system tests none 

of the dice. In none of the test scenarios was it profitable to miss a good die, so the 

number of true positives was always equal to the total number of good dice, and the 

number of false negatives was always zero. This behavior is the result of two factors. 

First, given the quality of the wafers in the training set, all dice had a reasonable prior 

probability of being good. Second, the value of a good package was sufficient to justify 

packaging all dice based on these prior probabilities. For the tests reported in this 

section, the shifts in testing and packaging behavior involved a tradeoff between false 

positives and true negatives. 
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5.6 Tests with Holdout Data 

In order to test the generality of the results, tests were performed on a separate 

data set consisting of 50 lots (1200 wafers) that had not been examined during any of 

the experiments presented above. For these tests a single stochastic model with four 

wafer classes was trained with the EM algorithm on 25 lots (600 wafers) of test data. A 

second stochastic model with four wafer classes was trained via Gibbs Sampling on the 

same training set. These models were embedded in the selective test structure and 

performance was measured on simulated testing of a separate data set of 25 lots (600 

wafers). The exhaustive test policy was also evaluated on this test data set. The model 

performance is compared in terms of net profit, the number of tests, the number of 

packages, the number of true negatives, and the number of false positives. 

The descriptive statistics for the test data set are presented in table 14. 

Number Dice 125400 
Number Good Dice 101516 
Yield 80.95 

Table 14: Test Data Statistics 

The results from the wafer tests are presented in table 15. 

Number Number 
-log Profit Number Number False True 

likelihood Tests Packages Positives Negatives 

Exhaustive N/A 1174900 125400 101516 0 23884 
Gibbs 138.7088 1218226 4899 122427 20911 2973 
EM 138.3240 1218309 5194 122292 20776 3108 

Test None N/A 1215211 0 125400 23884 0 

Table 15: Holdout Data Tests: Results 
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The results of the tests on the holdout data set are consistent with the results 

from the earlier tests. Both selective test approaches produce a net profit over the 

exhaustive test approach. The EM-trained model performs slightly more testing and 

packages slightly less than the Gibbs-trained model. This results in a small profit over 

the Gibbs-trained model. The number of false positives and true negatives are 

consistent with this interpretation: the EM-trained model is more accurate in its package 

decisions due to its increased testing. The consistency of these results with the earlier 

tests suggests that this approach generalizes beyond the data considered in this study. 

However, since both data sets were generated from the same production line these 

results only suggest broader applicability to other parts. 
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6. CONCLUSIONS  

6.1 Summary 

This dissertation explored the application of concepts from machine learning 

and decision theory to the problem of optimizing IC test. The optimal test problem was 

defined and a solution was developed and evaluated. The solution is a real-time 

selective test policy that determines which dice to test, which dice to package, and when 

to stop testing. The development of this policy involved several tasks. First, the 

selective test policy was formulated as a series of wafer test decisions. These decisions 

correspond to the control points in the testing process. Second, principles from decision 

theory (i.e., expected utility and value of information) and probabilistic reasoning (i.e., 

belief nets, influence diagrams, and inference algorithms) were employed to generate 

tractable decision models for each of the wafer test decisions. A key construct in the 

decision models is a stochastic representation of wafer test results. This takes the form 

of a naïve Bayes belief net that encodes the assumption that wafer test results are 

conditionally independent given an unobservable wafer class variable. Third, 

unsupervised machine learning techniques, specifically, the EM and Gibbs sampling 

algorithms, were adapted to generate the real-valued parameters of the belief net 

models. Since the wafer class variable was unobservable the parameter estimation task 

was formulated as an incomplete data problem and solved with a data-augmentation 

approach. 

Evaluation consisted of empirical tests on historical test data from Hewlett-

Packard Company. There were two sets of evaluation tests. The first set provided 

performance measures for the machine learning algorithms on the parameter estimation 

task. Various models were constructed and trained on the wafer test data. Performance 

was measured in terms ofnegative log likelihood and cross-validation was employed to 

investigate overfitting. 
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The principle results from the learning tests are the following: 

1.	 The learning algorithms work. They were able to extract a signal from the wafer  

test data as measured by negative log likelihood scores. Furthermore, they were  

efficient. Convergence for both algorithms was typically reached in less than 50  

iterations on a training set of 600 examples (approximately 3 minutes of CPU time  

with non-optimized LISP code on a spare workstation).  

2.	 Conditional independence is more accurate than independence, i.e., models that 

contained multiple wafer classes performed distinctly better than single-class 

models. 

3. The EM algorithm results in overfitting to the training data set when the number of 

wafer classes exceeds eight. The Gibbs algorithm also exhibited some overfitting 

for large class dimensions, however the effect was less dramatic. 

4.	 For the Gibbs sampling algorithm, performance can be improved by combining 

multiple models into ensembles. Performance, as measured by negative log 

likelihood, continued to improve as the ensemble size increased, however after 

about ten models the scale of the improvements was small. 

The second set of evaluation tests consisted of wafer test simulations. The 

decision models with the learned parameters were embedded within the selective test 

policy and simulated testing was performed on historical wafer test data. A number of 

experiments were performed to investigate the behavior of the selective test policy. The 

primary results from these experiments are summarized below. 

1.	 The selective test policy produced more net profit than either the exhaustive test 

policy or the no-test policy. The best EM-trained model contained eight wafer 

classes. This model performed slightly better than the model with four classes. 

Since the 4-class model exhibited a lower negative log likelihood score than the 8-
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class model, this result demonstrates that likelihood rankings are not perfect 

indicators of net profit. The results from the Gibbs ensemble tests reinforce this 

observation. A single Gibbs model consistently outperformed the Gibbs ensembles, 

even though the ensembles exhibited better likelihood scores. Taken together these 

results suggest that the likelihood-profit relationship is not simple. A possible 

explanation is that, since the differences in likelihood scores were relatively small, 

the differences in profit are due to the stochastic nature of the task. Evidence of this 

can be observed in the results from the 1-class model. The 1-class model had a 

distinctly poorer negative log likelihood score and performed distinctively poorer on 

the wafer tests. The other models were similar is negative log likelihood scores and 

in net profits. The poorer performance of the Gibbs ensembles appears to be a true 

phenomenon and was observed on numerous tests. One possible explanation for 

this behavior is that the conditional ensemble likelihoods that result from belief 

updating are less accurate than the conditional likelihoods from a single model. 

Thus, although the initial likelihood scores suggest an accurate fit, once some 

observations are processed the resulting conditional likelihoods are less accurate 

than those from a single model. This phenomenon deserves more attention and is a 

recommended topic for future research. 

2.	 For a single EM-trained model the myopic VOI stopping criterion produced near 

optimal performance. This reflects the benign nature of the wafer test environment; 

there are no catastrophic costs associated with a single test. It is always possible to 

test any die; it is always possible to stop at any point; it is never necessary to 

backtrack. Furthermore, all tests have the same cost and all tests provide some 

information. Thus myopic VOI is a reasonable choice of stopping criterion and 

these tests demonstrate how well it performs. The results also demonstrate that 

myopic-VOI stopping was not uniformly early or late. On some wafers myopic 

VOI resulted in too few tests being performed, on other wafers myopic VOI resulted 

in too few tests being performed. Thus no constant adjustment to myopic VOI will 

produce optimal stopping. It would be interesting to compare a 2-step myopic VOI 

policy to the current 1-step myopic VOI policy. However, given the nature of the 
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task and the near-optimal performance of the 1-step myopic VOI, it is doubtful that 

the benefits of a 2-step myopic VOI policy would justify the additional 

computational cost. 

3.	 The training experiments demonstrated that good performance could be achieved 

with a small training set, and larger training sets produce better performance. Given 

the efficiency of the learning algorithms it seems reasonable to employ relatively 

large training sets, on the order of hundreds of wafers. However, the ability to 

produce good testing behavior from small training sets may be of benefit in other 

applications of the selective test policy. For example, rather than training the 

models off -line on historic data sets, in some cases it may be possible to improve 

performance by training in near real-time. In this type of application models can be 

generated on a lot-by-lot basis, or on a batch-by-batch basis. Thus a small sample of 
wafers from a lot (or batch) would be tested exhaustively and the results from these 

tests would then be used to train a model for testing the rest of the lot (or batch). 

This type of on-line training deserves further investigation. 

4. One of the most significant results from the wafer experiments is that the selective 

test approach is responsive to individual wafers. For good wafers the system tests 

only a few of the dice before making package decisions. For bad wafers the system 

tests almost all of the dice. Thus the system is efficient with its testing. Few 

resources are expended on good wafers, yet abnormal wafers are detected and tested 

more thoroughly. The selective test policy produces more profits than either the 

exhaustive test or the no-test policy, and still maintains adequate process 

monitoring. If wafer starts are increased to take advantage of the reduced testing 

then the selective test policy will yield even larger profits. The relationship between 

the rate of wafer starts and the selective testing policy is another topic for future 

research. 

5.	 Experiments with changes to utility model parameters demonstrated the robustness 

of the selective test policy. One of the benefits of the expected utility formulation is 
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that changes to processing costs do not necessitate explicit reengineering of the 

selective test policy. The new parameters are simply fed to the system and it adjusts 

its test and package decisions accordingly. The result is always rational behavior. 

Thus when test costs go down, the system tests more. When test costs go up, the 

system tests less. Similar behavior was observed when changes to the package cost 

were introduced. An increase in the package cost resulted in an increase in 

functional testing to avoid packaging bad dice. A decrease in the package cost 

resulted in a decrease in functional testing, since there was a smaller loss associated 

with packaging a bad die. 

6. The tests on the holdout data set demonstrated the generality of the approach. The 

consistency of these results with the earlier tests suggests that this approach 

generalizes beyond the data considered in this study. However, since both data sets 

were generated from the same production line these results only suggest broader 

applicability to other parts. The application of the selective test approach to other 

types of wafers is a recommended topic for future research. 

Perhaps the most significant result is a demonstrated proof of concept. The 

selective test approach is feasible to implement and produces rational testing behavior. 

In addition, these results show that the selective test approach can produce an expected 

net profit in manufacturing costs as compared to the current testing policy. 

Furthermore, the selective test approach can greatly reduce the amount of testing while 

maintaining an appropriate level of performance monitoring. Although more study is 

necessary before the selective test approach is ready for industrial implementations, this 

research suggests that such applications are possible and it provides a blueprint for their 

development. 
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6.2 Recommendations for Future Research 

There are a number of directions in which this research can be developed. The 

following list summarizes those that appear to be most interesting and significant. 

1.	 Perform further explorations into the relationship between ensemble methods and 

myopic VOI. Search for methods that exploit the good negative log likelihood 

scores of the Gibbs ensemble to improve testing behavior. 

2.	 Investigate alternative model representations. Consider alternatives to the naïve 

Bayes belief net model of wafer test results. Explore more succinct model 

representations, models of re-locatable patterns, and models at higher levels of data 

granularity, e.g., lot-level models. 

3.	 Consider variations on the inference procedures, in particular a multi-step 

lookahead. 

4.	 Incorporate parametric test results into the testing policy. These results often carry 

useful information regarding wafer quality and their incorporation into the test 

decisions could yield performance benefits. 

5. Extend the selective test approach to perform fault detection and diagnosis. 

Incorporate additional actions such as re-testing of dice. Consider additional 

inference tasks such as post-fabrication (off-line) yield analysis. 

6. Enhance the utility model to include the explicit modeling of wafer starts and 

throughput. 

7.	 Generalize the system to other parts and other manufacturing lines. Perform tests 

with data sets and utility models that represent distinctly different wafer types. 
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