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CONDITIONAL PROBABILITY ALONG A PATH

EXPLANATION OF THE PROBLEM

The problem is to find the density function of a random variable

along a known path within a known bivariate density function. We

know the density f(xl, x2;0) of a two-dimensional random variable

(x
1,

x2), where both components, x
1

and x2, are statistically

independent random variables. The assumption of independence al-

lows us to write the simplest case of the bivariate density function,

where the joint density is just the product of the two marginal densi-

ties for x1 and x2. Symbolically, f(x1, x2) = f(x1)f(x2). Thus

we can simplify the illustrations which follow, though independence of

xl and x2 does not seem to be a necessary condition for the pro-

cess to work. 0 denotes the parameter and may be multi-

dimensional to accomodate densities with more than one parameter.

We also have a path in the x1x2-plane denoted by 4(x
1,

x2) a

af any general nature--conic section, polynomial, etc. --along which

we want to find the density function of another variable, which assumes

values on the path as it is described under the bivariate density

f. We describe the distance along the path by the random variable

z, a function of x
1

and x2, starting from some prescribed

point of origin on The maximum value of z will depend on the

domain of definition of f; that is, upon the limitations of x
1

and



2

x2 prescribed by the given bivariate density, and by our arbitrary

restriction to consider the density and the path only in the first quad-

rant for the sake of simplicity. Thus, z is sometimes finite and

sometimes infinite.

Our final object is to determine g(z la), the conditional prob-

ability density function as a function of distance travelled from a point

of origin along a specified path. g(z I a) may or may not involve 0,

the parameter of the given bivariate density function f.

We arrive at the notation g(z I a) by noticing that g(z I a) is

the density function giving the probability of being z distance from

the point of origin given that we satisfy the condition suggested by a;

that is, that we are on the path
(1)(3(1' x2) a. Thus, we have a type

of conditional density function for z, given that z lies on (I)

under the bivariate density f, and we say g(z I a) is the condition-

al density of z given that we are on a.

The usual interpretation of conditional probability involving a

bivariate density function gives the density function of one of the var-

iables while the other is held constant. For example, if we are given

f(xi, x2), a bivariate density, we may have the density of x1 where

x2 is a constant value over the whole domain of xl. Now we want

to extend the concept to let us vary both x
1

and x2 in some spe-

cific manner, namely in such a manner that x
1

and x2 are re-

lated to each other by the equation 4 )(x1, x2) = a. Now our example



3

becomes the density of z, the distance from some point of origin,

when xl and x2 are combined in the manner of 4. The usual

concept of a conditional density is a special case of the extended con-

cept, where cl) is a straight line parallel to either the x
1- or

x 2-axis. We are therefore generalizing the usual concept to allow

both x
1

and x2 to vary, and further, to vary in a nonlinear re-

lationship.

using

The idea for expressing the conditional probability in the form

)(x1, x2)
as a general curve rather than merely a line paral-

lel to either the x
1-

or x 2-axis came about as a result of a study

of the sufficient statistic x. Consider a population with density

f(x;i1) from which we draw a sample of n = 2, consisting of x'

A 1
and x". Let us estimate the mean by p = T = (xt-Fx,1). In study-

ing the subject of estimators, we learn that 1

A
1 will be a sufficient

statistic if the conditional distribution of xt and x", given isis

a certain value, does not depend on }I. This means that the joint

(bivariate) density of the sample may be put in the form

f(xt;p..)f(x";p.) = g

where the function g does not involve

The factor g(xt, x" can be considered a bivariate condition-

al density function of the two variables xt and x", given that we
A 1

have the relationship p. = x = .(xt+x"); that is, given that xt and
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are linearly related in such a way that each may vary while their

sum remains constant. Thus we have an example which we can put

into a more general notation, and from the more general description

consisting of conditional probability along a general curve, we will

deduce additional examples corresponding to the original one using

x. We will try different combinations of common bivariate densities

with specific curves for (1)(x
1,

x2) = a. In the original example con-

cerning 1

A
1, we see that, letting 11-- It mean "corresponds to, "

A
XI x

1 '
x" x2' p. a, where the symbol Ap, is an abbreviation for

the fact that xl + X" = 2, just as a is an abbreviation for

cl)(xl x2)
The notation g(xt , x11 I/11) means the conditional prob-

ability in terms of xt and x" given that A 1
= (xf +x"); later we

will write the two variables in terms of one, z, being the distance

travelled along the curve, and express the conditional probability in

terms of z.
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PROCEDURE

We begin with any bivariate density function f(xi, x2;0) and its

domain of definition 0 < x, < c,, 0 < x2 < c2, where c
1

and c2

may be finite or not. From this density we want to write a condition-

al density function involving x
1

and x2 indirectly, given that x
1

and x2 vary according to the equation cl)(xi, x2) = a. The condi-

tional density will be a function of z and a, which are in turn

functions of x
1

and x2.

Geometrically, our problem is to find the equation of the curve

described by the upward projection of the curve (x1' x2) a
onto

the surface defined by f(xi, x2;0). This intersection will be a curve

directed through 3-dimensional space, and not in general lying in just

one plane.

In usual conditional problems the projection of the planar curve

onto the surface consisting of the density function would define a curve

lying at a constant distance from a vertical plane through either the

x
1-

or x 2-axis. But in the new problem, the curve which we obtain

as the projection of 4)(x x2) a
upward onto f(xi, x2;0) is not

generally parallel to either of the two coordinate planes. This differ-

ence, which is clarified by the following pair of illustrations, is evi-

dence of the extension of the usual concept to a more general one.

Here both x
1

and x2 are free to vary in the plane so long as the
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cj) relationship between them is equal to the constant a.

The following drawings compare the new and the usual types of
1conditional probability density function, using f( , x .0)= and

1 2'
02

the conditions 0 < x
1

< 0, 0 < x
2

< 0.

New problem

f(ci, x2;0) z g(x21x1r)vp

Usual problem
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2
We use (1)(x

1,
x2) = x

1

2 + x2 = a for the new problem and x
1

= x 11

for the usual problem. This example, involving the uniform distribu-

tion and the circle centered about the origin, is fully described later

on.

In order to arrive at g(z I a), we go through a succession of

steps where we transform the variables (xI, x2) into (z, a) by

means of the relationship cl)(x1, x2) = a, so that we can transform

f(xi, x2;0) into a bivariate density using z and a and perhaps

0; this we call g(z, a;0). We then find the marginal density of a

and divide the joint density function of z and a by it to obtain the

conditional density of z given a.

In order to apply the process, we break it down into four main

steps. In the first step we make the transformation of variables of

the bivariate density from x
1

and x2 to z and a, where we

treat the constant a as a variable, due to its parametric nature in

designating a particular function 4 )(x1, xa)-
So that we will know the

nature of z, we sketch cl)(x1, x2) = a, define a convenient point of

origin for z on the curve, and describe the direction in which z

is measured along the path cl). We will use this illustration of j
later to help us find the limits of integration during the computation

of the marginal density of a.

Next we need to express x
1

and x2 in terms of z and a.

This step can be accomplished by solving a pair of equations for xl
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and x2 in terms of z and a. We already have one equation of

the pair needed, 4(x1, x2) = a. For the other equation we must pro-

duce an equation z = z(x1, x2) relating z and x
1

or x2, or

both, which we can solve for either x1 or x2. It is not always

possible to obtain z = z(x1, x2), and even if z(x1, x2) can be

found, not always possible to solve for xl or x2. However, nu-

merical methods could be used in applied problems using specific con-

stants, so that the integration and algebraic difficulties could be by-

passed.

In simple cases z = z(x
1,

x2) can be found by inspection, us-

ing trigonometric definitions and formulas. In general, z(x
1,

x2)

cannot be found by inspection but must be expressed as an arc length

by the formula derived in calculus:

t dx 2 2z = 1+( dxl .

x11 U1C. 1

Provided that the derivative can be found and then the integral evalu-

ated, provisions which are by no means guaranteed for arbitrary

oxi, x2), we will have an expression z(x
1,

x2) for z. Again,

we are not assured of being able to solve z = z(x1, x2) for either

x
1

or x2, and the procedure stops if we cannot. But if we can,

we will have an equation in z and a, which we use with

01)(x
1,

x2) = a to find expressions for xl and x2. Symbolically,



9

from a = cl)(x1, x2) and z = z(x
1,

x2) we arrive at x
1

= x1 (z, a),

X2 = x 2(z, a) by solving two simultaneous equations in two unknowns,

the unknowns being xl and x2.

Now that we have expressions for x
1

and x2 in terms of

z and a, we can proceed to the second step, which consists of

transforming the bivariate density f(xi, x2;0) into a density involv-

ing z and a and perhaps 0 again, which we call g(z, a; 0).

The transformation is accomplished by substituting the expressions

xi (z, a) and x2(z, a) for x1 and x2, respectively, into

f(xl, x2;0) and multiplying f[x1 (z, a), x
2(z,

a)] by the Jacobian con-

sisting of the absolute value of the determinant of all four combina-

tions of partial derivatives of x1 (z, a) and x 2(z, a) with respect

to z and a. Here as before, a is considered a variable, though

strictly speaking it is a parameter to be determined by any specific

example. The transformation is written as follows:

g(z, a) = f[xi=x1(z, a), x2=x2(z, a)]

8x
1
(z, a) 8x

1
(z, a)

az aa

8x 2(z, a) 8x2 (z, a)

az aa

The equation above will express the original bivariate density function

in terms of z and a instead of x
1

and x2. Thus we have

made the step of writing the density in terms of our curve 4(x1,x2) = a,
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which may be nonlinear, instead of the usual rectangular coordinates

x
1

and x2.

We now progress to the third step, the computation of the mar-

ginal density function g 2(a). The notation signifies that we have the

marginal density of the second variable a, and that we call the

function g2. The probability function from which we derive g2(a)

is g(z, a). We determine g 2(a) by the usual process of evaluating

the integral of g(z, a) with respect to z, the limits being chosen

to go from the minimum value of z to the maximum value of z.

In several of the examples, the integration must be done for two

or more cases, due to the different algebraic values of minimum and

maximum z depending on the location of ci)(x
1,

x2) = a relative to

the region defined by f(xl, x2). In other words, z is sometimes

represented by one function of x1 and x2 for a certain a and

a different function of x
1

and x2 for a different a. This corn-

plication arises, for example, when varying a moves the starting

point of z from one axis to the other, or, in general, from one

boundary of the region defined by f(x1, x2;0) to another boundary of

the region having a different algebraic representation. Also, the end-

ing point (maximum) of z may shift when a changes relative to

the parameter 0, as in the example using the uniform density and

the circular path: we have different cases depending on whether the

radius t5- is less than or greater than 0. If it is necessary to



11

use several cases in the integration, we will arrive at as many ex-

pressions for g 2(a) as we have cases, though they may not all be

distinct.

The step in the procedure which follows finding g2(a) is to

find the conditional probability of z, given a, called g(z I a), by

dividing g(z, a) by g2(a). Since we may have several expressions

for g2(a), we will have as many expressions for g(z la), and

which expression for g(z I a) is to be considered depends on the val-

ue of a in any specific problem.

We interpret the notation g(z la) as the probability of having

a particular value for z, given that we are on the path 4(x
1
,x 2) = a.

Thus we have our desired function, giving the probability density func-

tion of z as it is defined along the path c1:1(x
1,

x2) = a.
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DISCUSSION

The examples where (I)(x
1,

x2) = a is a straight line parallel

to either axis give us the common cases of conditional probability,

the traditional approach of textbooks. Let us illustrate the four step

procedure by using such a path and showing that the new procedure,

when applied to the path, gives as a final result for g(z la), the us-

ual conditional probability density function.

We use 4(x1' x2) xl a
and the general bivariate density

f(xl, x2;0). Step 1 consists of changing variables from (xi, x2) to

(z, a), solving for x
1

and x2 in terms of (z, a). We have

l (x1, x2) = x1 = a as one equation, and we simply define z = x2.

The point of origin is x
1

= a, x2 = 0. The following illustration

uses the bivariate normal density, but the restriction to the normal is

not necessary in the theory.

x
1

= x1 (z, a) = a

x2 = x
2
(z a) = z

f(xl, x2;0)

Now we go to step 2 and transform the bivariate density from a

function of (x
1,

x2) to one of (z, a).



J =

g(z, a) = f[x
1
(z, a), x2(z, a)] J = f(a, z)J .

ax1 (z, a) ax1 (z, a)

az as

ax 2(z, a) ax 2(z, a)

az as

Therefore g(z, a) = f(a, z).

aa aa
az as

az az
az aa

0 1

1 0

13

= I_11 = 1 .

In step 3 we compute the marginal density function of a, g 2(a):

2
k

2

g2(a) = J g(z, a)dz = J f(a, z)dz .

1
k1

We note that the k's may be finite or not, and that g2(a) must be

finite in order that the following step will have meaning.

In step 4 we write the conditional density as the quotient of the

previously evaluated expressions, according to the definition of con-

ditional probability as the quotient whose numerator is the bivariate

density function and denominator is the marginal density of the vari-

able held constant in the conditional density function. Thus

g(z a) - gg (z' a)
2(a)

and by substitution and subsequent use of the definition of conditional

density,



g(zia) kf(a"z)
2

f(a, z)dz
kl

= f(z I a) .

14

We conclude that the conditional density function of z given that we

are on the line cl)(xi, x2) = a = x
1

is f(z I a); that is, it is the orig-

inal f density with z substituted for x2, and a for xi.

The four step process has thus been illustrated for the ordinary

case of one variable held constant, the other free to vary throughout

the domain of definition of f(x
1,

x2;0). However, when both vari-

ables are allowed to vary simultaneously, according to the specified

relationship cl:)(xi, x2) = a, the results are not so transparent as

they are in the preceding example, and the four step process gives

us a means of finding the required conditional density.

We have discussed the case for three dimensions, where

(1)(xi, x2) = a is no more than two-dimensional and f(xl, x2;0) is

three-dimensional. Let us increase the number of dimensions of f

to n. Then we are dealing with the joint probability density function

f(xl,x2,... ,xn;0) and the curve 4)(xi, x2, , xn) = a, both defined

on the same n-dimensional space. Can we apply the previously dis-

cussed process to this n-dimensional case, and if so, what does the

result mean?

In the usual bivariate case with two independent random vari-

ables, the conditional probability density function gives us the
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probability of one variable, knowing the other is a constant. In the

new problem, we again have the conditional density function giving the

probability of one variable, z, knowing that the other, a, is a

constant. But here z is a function of x
1

and x2, and a is

always a constant.

In the case involving n variables, we are looking for a func-

tion to give us the probability associated with those n variables,

knowing that they are related according to the function

(I)(x
1
,x

2
, . . , x

n
) = a. We define the variable z similarly as in the

bivariate case to be the distance along the curve (I) through n-

dimensional space, starting at some point of origin. The distance

can be expressed, theoretically at least, by the formula for arc length

in n variables, after introducing the parameter t and expressing

each x, in terms of t. Then

z = z(x
1,

x
2

, . . . , x n) = z[ x1(t), x2(t), . , xn(t)]

-J
i=1

dxi(t) 2 1/ 2

dt
dt .

We define the curve 4 by n parametric equations, each

involving the parameter a, which we again treat as a variable. We

assign a subscript to each a, so that we have the necessary number

of variables. Then 4 is defined by
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x
1

= x
1
(t) = al

x2 = x
2

(t) = a2

x = x (t) = a .
n n n

We use the expression for z together with n-1 of the

parametric equations defining 4 for the substitution:

f(x
1,

x2, ,xn
;0)---g(z, al, , an-1;0).

The n-th equation is used in elimination of t. The Tacobian is an

nxn determinant, constructed analogously to the three-dimensional

case.

The marginal density becomes the joint density

g n- 1(a 1,
a
2,

, an- 1) =
S 2 g(z, al, a2, , an- 1;0)dz ,

1

where k
1

and k
2

are again the minimum and maximum values

of z. The resulting conditional density is the quotient

g(ziai,a2, , an) = g (a , a " a )n-1 1 2 n_ 1

g(z, al, a2, , a

No examples will be worked out for the n-dimensional case.
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EXAMPLES

The four step process for finding the conditional probability of

z will now be illustrated by means of several examples. Some of

these examples can be worked through to completion to give g(z I a),

while some cannot for various reasons. However, the obstacles that

prevent finding the final expression for g(z la) are such that a nu-

merical solution could probably be found in any practical problem,

where constants or their approximations could be used.

The examples which follow consist of the combinations of five

possibilities for 4)(x x2) = a taken with three possibilities for

f(xi, x2;0). All of the 15 combinations are not feasible, but it is of

some interest to note why the process breaks down in the particular

instances where it does. The process of changing variables for any

given 4 need be done only once for each 4, so the results of

xi = xi (z, a) and x2 = x2(z, a) are used in examples for any f.

Likewise, the evaluation of the Jacobian is specific only to the partic-

ular 4, and its value can be used in all the examples involving the

same Sb

The examples chosen for c are two straight lines with slopes

of 45° and -45° , respectively; a circle; a parabola; and a curve re-

sembling a parabola defined in terms of a parameter. The examples

for f are the bivariate uniform density, bivariate exponential



density, and bivariate normal density, where the two variables x
1

and x2

18

are assumed to be independent, so that the densities can be

written as the product of the marginal densities of x1 and of x2.

This restriction to independence is made only to simplify computation.

The following table gives the functions and indicates which examples

were successful in producing an expression for &la) and which

were unsuccessful. The reasons for the unsuccessful ones will be

given in the discussion of each example.

Table of Examples

No. Path

1 x
1

+ x2 = a

2 x2 - xi = a

3 xl
2

+ x2
2

= a

4 xi2 - x2 = a

5 x1 = 1/ 3t3 + a

x2 = 1/ 2t2

Probability density function
Uniform Exponential Normal

S S

S S S

S U S

U U U

S U U

The bivariate probability density functions are expressed as follows:

Uniform: f(x ,x ) = 1 for 0 < x
1

< 0
1 2

02 0 < x2 <

= 0 for x
1,

x2 otherwise



Exponential:

Normal:

Outline of Procedure

19

2
8(x1 +x2)

f (x , x2) = 0 e for 0 < x
1

< 00

0 < x
2

< 00

= 0 for xl , x
2

otherwise

1 2 2

2
(x

1
+x2 )

f(x
1,

x 2) =
1

2

28 where 02 is
&me

is the variance, for 0 < x
1

< 00

0 < x < 00

= 0 for x
1,

x2 otherwise

The following scheme was used in the examples to arrive at

g(z I a):

1. (x1' x2) (z' a)*

Given a = 4:$ (xi , x2).

Find z = z(x1, x2) by inspection or by

Z = t dx2 2

x axl

Solve a = c(x1, x2) for x
1

= x 1(z, a)

z = z(xi, x2) x2 = x 2(z, a).

2. f(x1, x2;0) g(z, a;0).

g(z, a;8) = f[xi (z, a), x2(z, a)] J, where



J =

ax
1

(z,(z a)

az

ax2(z, a)

az

k
2

3. Find g2(a) = J g(z, aMdz.
kl

4. g(z I a) g(z, a;e)

g2(a)

Example 1- - Uniform

1. (xi, x2) (z, a).

X1 1
cos 45° = -z 2

therefore

20

axl (z, a)

as

ax
2
(z a)

as

for 0

0

< x1 <
1

< x2 <

c)(x1, x2) = x1 + x2 = a= 1
02

= 0 for xi, 3(2 otherwise

and x2 = a - x
1

= a -
Nr2

2. f(xi, x2;0) g(z, a; 0).

z z 1g(z, a;0) = f( a- = J
tg 2

o
2



J=

a z
T(Nri)

a z()aa ,rz

a z , a z,
ka- ka- )

az N/ 2 as 4-2

g(z, a;0) - 1

k
2

1
k

2
3. g2(a) = g(z, a;0)dz

NIT
dz - z

k
1

Nrf 0
2

k1

1

NT-2

1

0

1

1

NrZ

21

From the diagram of step 1, we see that the minimum value of z

is 0 and the maximum value of z is Nia2+a2 = Nri a.

Thus k1 = 0, k2 = 47 a.

t\r- a ag2(a) = - 0 =
NiT0 02

2

g(z, a;0) 1 02 1
4. g(zia) - -

g 2(a) r\rf 02
a NiTa.

We again have a uniform density for z.

Example 2- - Uniform

1

f(x1' x2) 02
for 0 < x

1
< 0 ()(x1, x2) = x

2
x

1
= a

0 < x
2

< 0

= 0 for x
1,

x2 otherwise



1. (xi, x2) (z, a).

cos 45° = 1
=

1

z NIT

X =
1 47

zand x =a+xl=a+ FT

2. f(x1, x2;0) g(z,a;0).

g(z, a;0) = f(
Nr2

a- z )J J
' 2

0

J=

1g(z, a;0) - ,--
e2N2

k
2

3. g 2(a) = J g(z, a;0)dz =

1

x2

a

1
0

1
dz -[ z 2

NiT 0-
2

N/2 0 kI

x
1

22

We see that a must be less than 0, since if a = 0 we

would have g2(a) = 0, and g(z I a) would be undefined; similar-

ly, if a > 0, a would be out of the domain of definition of f.

The minimum value of z is obviously zero. To find k2, the

maximum value of z, we use the Phythagorean theorem, where



x
xl =0 -a

x2 = 0 - a

2 a

23

xl
z(max) = #12(0-a)2 = (0-a)

a

Nr2- (0-a) rN/ 2 (0-a) 0-a 0-a 0

density for g(z la),

g (a
2

) -
NI-2 02

g(z, a.;0)

0 Nri 02 02

1 0
2

1
4.

g(z I a) g2 (a) 02 0-a NTT (0-a)

As in the previous example, we have a uniform

but it happens to involve the parameter 0, where the previous

density did not.

Example 3- -Uniform

f(xi, x2)
1

02
for 0 < x, < 0 (1)(Xi, x2) = x12 + x2 = a

0 < x <
2

= 0 for xl , x
2

otherwise

1. (x
1,

x2) --. (z, a).

z = if Lp is in radians

x
=

5-. co s-1 1
Nrg.

xl = Nra-: cos

Since 2 2

xl + x2 a,
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2
z 2 1/2 2 z 1/2

=x2 = a-x1 [a-(4T. cos -Na) = [a-a cos ,
NJ

= Nra(1-cost )1/
2

=
Na sin z

2. f(xl, x2;0) g(xi, x2;0).

. z 1
g(z, s(z,a;0) = f(1.5. cos a in t\i, 2

)J = J
Nrat

0

J=

J =

a ,. r- z a ,.
kNi a cos ) tw a cos )az a a

a , r(N/ a sin r ) a (Nri: sin )az a a a

z z

N
z 1 -1/2

qa 2a
- sin sin +

2
-a cos

z z z 1 -1/2 z
cos -2a cos +

2
-a sin

Nrg. 2a 41. Nra.

= 1 la-1/
21

= la-1/ 2

2 2

1Then g(z, a;0) -
2Na 0

2

k2 k
2

2
g

2\a-. 0- q:[2 02/ k
3. g (a) = (z, a;8 dz = dz -1

kl
1

In order to evaluate the limits on the integral, we must divide the

problem into two cases, according to the value of a relative to 0.



Case I: 0 < Ni3.< 0

The minimum value of z is zero,
Tr4T.the maximum is -1 (27,47.) = .

4

Tvra7.

Then g2(a) - z, 2
2Nia - 0

2

1 r ITT. n
r- 2 I 2 I 22Na 0 40

Case II: 0 < NTT < 4-20

25

We must find an expression for the length of z from the x1-axis

up to the line x1 = 0 in order to write the lower limit of the in-

tegral for g2(a).

When j is measured in radians,

the arc length of (1)(x1, x2) = a

from the x
i
-axis to k,

i
is

- 0
14-7 lli = Na cos

1
.

k2 is located on the line x2 = 0.

The arc length of cl) from the

x 1-axis to x2 = 0 is

1
= "Jr sin

Nra-

x
1



g2(a) =
2

2N/a. 0

26

-1 0
c 0 s

1

2

i- ra sin1 -1 0-Ira cos ]
Na2Na

,
0

1 -1 0 -1 0

202[
sin - cos

Nri]

4. g(zIa) g(z,a;0)
g2(a)

Case I: g(z
1a) - 402 2

2 Tr Trt\fa
2N5-. 0

Case II: g(z I a) =
1 202

NT. 02 sin-1 0 - cos-1 0

1

0 - 0
Nri(sin 1

41:
1- cos )

Nra.

In both cases we get a uniform density as a result of using the cir-

cle with the bivariate uniform density. In Case I the density is de-

termined by choice of a only. However, in Case II the density

of z will have to change with a change in 0, given the same

radius since the total length of z increases as 0 in-

creases, for any a. (See illustration under Case I. )

To get a uniform density for g(z I a) is consistent with our

intuitive expectation, since, considering the geometric interpretation
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of g(z la) as the projection of c0(x1, x2) upwards onto f(xi, x2;0),

we might expect to get another uniform density as the intersection

of and f.

Example 4- - Uniform

f(xi, x2) =
12

0 < x
1

< x2) = x12 - x2 = a
02 0 < x <2

= 0 for x
1,

x2 otherwise

1. 1(x1, x2) .

First we find z = z(xi, x2),

where we already have

a = 4(xj. , x2).

t dx 2 2
z = Nil+ ) clxi .

x 1

To find
dx2

dx
1

Case I Case II

we use the relationship cl)(x
1,

x2) = a:

2
x

1
x2 = a

clx dx c

2x
1

- = , so = 2x
1

.
dx

1 2
kJ

1
dxl clxlx2

1
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t
14

1
N/
/
1+4xz = 1 +4x

2

7dx = [12 + log (2x
1+

Nil +4x 12
1 xl.

1 1
=

2
[ til+4t2 + log (2t+1/1+4t 2 2)] - F1+4(x ' )2+ log (2x

1
1+til+4(x

1
1)2)

t is a dummy variable, which will be replaced later by x1, and

x
1
' is a constant, the value of x

1
at the origin of z. We see

that there will be two cases to consider in finding x .1

l

Case I: -0 < a < 0

Here since the origin of z is the x2-axis.

z = 21 1+4t
2 1 r

+ log (2t+J1+4t 2
2

) ] - L 1+ log 1]

=
2

1 j 2
[ 1+4t + log (2t+N,11+4t 2 ,

Case II: 0 < a < 02

Here x1' is the value of x
1

at x2 = 0,

x ' = a-Nrn = NTT.
1 2

z = [,11+4t2 + log (2t+N/1+4t - 1 [M4a +log (247.41-F4a. )]
2 2

Ordinarily we would solve the above equations for t in terms

of z, but it is not possible algebraically. However, any problem
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with specific, real values could be solved, and the subsequent steps

of the process carried through. The difficulty arises as a result

of the complicated nature of the parabola when we try to express it

in terms of one variable, z.

Since we cannot even complete step 1 of the process for finding

g(z I a), we will abandon the parabola as a possibility for

4)(x1' x2) a

and normal.

with the last two density functions, the exponential

Example 5--Uniform

1f(x ,x ) = -- for 0 < x
1

< 0
1 2 2

0

= 0 for x
1,

x2 otherwise

1. (xi, x2) (z, a).

4 )(xl, x2) = O[xi (t), x2(t)]

where

xl = x1(t) = 1.t3

x2 = x2(t) = 2 t2

First we find the arc length z as a function of the parameter t.

Then, using the relations defining
)(3c1, x2),

to get z and a in terms of x
1

and x2.

we eliminate t



ti dx (t) dx (t)
2 2

S6z = dt
1

)2 + ( dt
) dt

to

dx (t) (-1 t3+a) = t 2

dt dt 3

dx2(t) d 1 2

dt
=

dt
(2 t ) = t

30

The limits consist of the value of t at the origin of the arc length

z, called to, and the dummy variable tt, which will be re-

placed by the parameter t used in defining

t0 is, we sketch cl)(xi, x2).

Table of values

t x x

0

1

2

3

-1

a

1 + a3
8 + a

9 + a

--1 + a
3

0

21

2

9
2

12

xl (t) t3 +a

x2(t) = jit2

To know what

It is clear that negative values of t produce a branch of (1)(x
1

,x 2)

which is identical to that for positive values of t but which is re-

flected in the x 2-axis. We will disregard the branch for negative

t. The branch we will consider is a family of lines, depending on

a for placement on the x1 -axis. We see that as t increases,
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so do both xi and x2, but that xl increases faster than

x2 since it increases as the cube of t, where x2 increases

as the square of t. In fact the slope

dx2
dx2 dt t2 1

dx
1

dx
1 t 3 t

dt

tells us that the curve is infinitely large on the x 1-intercept then

levels out to become very small as t is large. Now we can

draw cl)(xi., x2) for various values of a.

x

We define z to originate on the x 1-axis for 0 < a < 0, and

define it to originate on the x2-axis for -
1 (20) 3/2 < a < 0.

Thus it always originates at the left side of the domain of definition

of f. It continues along 4 as t increases to the boundary

of the domain of f. However, in order to evaluate the integral

for arc length, we consider the arc length as starting always on the

xraxis and ending at an arbitrary point of 4, and call this
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revised arc length z'. zt is z for a > 0, and for a < 0

z' will be decreased later by the length of cl) between the x1-

axis and the x 2-axis to give the

domain of definition of f.

To continue the evaluation of z', we need t0,
0

which is defined only in the

the value of

t at (1)(x1, 0). From the original equation for x2 we have

x2 = 1
t

2
= 0, so that t

0
= 0. Substitution of the derivatives in-

to the formula gives

z' = Ni(t 2 )
2 +(t)2dt = J tqt2+ 1 dt

0 0

1 1 2 2 3/ 21
= SI Nit 2+1 (2tdt) = 7 + )

o

1 2 3/ 2 1 2 3/ 2 1=3[(t +1) -(1)]=--s(t +1) -

We can eliminate the parameter by using the original relationship

t2t = 2x
2

to get

1 3z = (2x2+ 1) / 2
-

Also going back to the original statement of cl) gives

1 1
a = x1

3
- 1t3 = x1 - i[(2x 2)1/

2] 3 = x1 -1- (2x2)3/
2.

We now have the pair of simultaneous equations
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Evaluation of J:

a
az Yz' a) =

a tal-[(3z+1)2/ 3_1]3/ 2}

a
azx 2

(z a

= 1 {1[(3z+1) 2/ 3 -1] 1/ 2[-2 (3z+1) -1/ 3 (3)]}
3 2

= [(3z+1)213-1]112(3z+1) 113

{-21 [(3z+1)2/ 3-1]}

1
= (3z+i)-1

= (3z+1)
-1/ 3

3(3)]

a x
1
(z, a)

a a La+r (3z+1) 2/ 3_1:3/ 2}

= 1

a
as

1 2/ 3x
2 a

a
a(z, a) = {

2
[(3z+1) -1]}

Therefore

=

J =

0

[ (3z+1 ) 2/ 3 - 1 ]1/ 2(3z +1) -1/ 3 1

(3z+1) -1/ 3
0

= (3z+1)-113

g(z, 1a; e) -
0 (3z+1 )1/

3

34



g2(a)
g (z,a;0)dz =

1
(3z +1)

2/ 31 2
202 k

1

35

Reference to the illustration of 4 will enable us to break up the

problem of finding the limits on the integral into the necessary

number of cases.

At first glance it appears we have three cases: the x 1-intercept

a either less than zero, zero, or greater than zero. But there is

a complication resulting from the character of 4, whose slope

near the

from the

x 1-intercept is very much greater than its slope far

x 1-intercept. Thus, if we have a small (to be defined

later) value of 0, 4 will leave the domain of definition of f

through the line x2 = 0, while if 0 is larger, 4 will inter-

cect the boundary line xi = A, given the same a for both.

Therefore, we need to define the separate regions of a in terms.

of 0 rather than in simple terms of positive, negative, zero.

We have the three different regions illustrated:

fir".
III II

I

x
1
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We note from the original equations that the x
1
-intercept is

a, so we need to find the x
1
-intercept of (1) for each boundary

line of the three regions.

Case I: 0 > a > O._

Region I is defined as the region where z originates on the

x 1-axis and terminates on x
1

= 0. z varies in length from zero

to the arc length of 4 where (1) crosses x
1

= 0. Thus k = 0,

kz is the arc length of (I) from (1)(0, 0) to 4 )(0, x2).

To find the arc length described above, we find the t cor-

responding to x
1

= 0, then use the expression for z found

previously in step 1, and eliminate the parameter t.

= + a = 0

t 3 = 3(0-a)

t = [3(0-a)]1/ 3

1 2 2/3 3/2 1

3
z = (t +1)3/3/2

- = 1 +1} -

so that k2 = 1 {[3(0-a)] 2/ 3+113/ 2
-

2 3 3

Substitution of k
1

and k
2

into the integrated expression for

g2(a) gives
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g 2(a) =
1

(3k
2
+1)

2/3 -(3k
1
+1)2/3]

20
2[

1 2-1+1)2/3-(3.0+1)2/
[({{3(0-a)}2/3+1)3/

2
20

=
1 2/3+1-11

2[[3(0-a)]
20

- 1 [3(0-a)] 2/3
.

20

Case II: 0 > a > 0 - 13(20)3/2 .
3

Region II is defined as the region where ct) enters the domain

of definition of f on the left along the x 2-axis and leaves on the

right along the line x
1

= 0.

To explain the quantities used to define Region II, we note

from the illustration that the x
1
-intercept, which is equal to a,

must be less than zero for z to originate on the x2 -axis.

The lower limit of a is found by getting the a correspond-

ing to x
1

= x2 = 0.

1x
1

=
3

t
3 + a = 0

1 2x2 = t=0=

t = ± (20)1/2

a = 0 - It3 = 0 ± 1 (20)3/2 .
3 3
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Since we have already established a < 0, we discard
1 3/2 1 3/2

+ (20) and have a = e - 3 (20) .

We now return to finding the limits on the integral g 2(a).

The upper limit k
2

is the same expression as k
2

of Case I,

since we want to find the length of 4 up to the boundary line

xl
e.

xl 0

The lower limit k
1

is found by evaluating z at

by means of the arc length formula already obtained.

First we find the t corresponding to x
1

= 0.

x
1

=
1 t 3 + a = 0

t3 = -3a

t = (-3a) 1/3

1 2 3 2 _lr 1-3a)2/3+113/2 1z =7(t +1)
3 3` 3

=
1

[ (3a)2/3 +1]3/2 -
33

3/2 1 1 2/3 3/2 1Thus k = Z/3
1 3

+1] and k2 = -([3(0-a)] +1} -

Substitution into the integrated expression for g2(a) gives

g2(a) =
1

[ (3k
2
+1)2/3-(3k1+1)2/3]

202

1 r , 2/3
[113(0-a)1 2/3 +1 }3/2 -1+1)2/3 -([ (3a)2/3+1]

3/2-1+1)2/3

20
2
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1 ,=[[3(0-a)] 2/3+14(3a) 2/3
+1

202

1

20
2

3(0-a)]2/3-(3a)2/1

1
Case III: - 1 (20)3/2 > a - - 3(20) 3/2

3

Region III is defined as the region where 4 enters the do-

main of definition of f on the left along the x2 - axis and leaves

along the line x2 = 0.

To find the a corresponding to the upper limit on Region III,

we need the value of a when x
1

= 0, x2 = 0. We solve the fol-

lowing two equations for a:

x
1

=
1 3 + a = 0

x2 = t2 = 0

t = (20)1/2

a = - 1 t 3 = - 1 [±(20) 1/2
J3 =

1 (20)3/2
3 3

Since we have the restriction a < 0, we discard the positive

a and have a = - 1 (20)3/2.
3

This value of a is the least value

that a can have and still give a curve 4(x1, x2) = a which goes

through the domain of definition of f.

We now proceed to find k1 and k2. Since Region III begins
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on the x 2-axis as does Region II, we use the same value for k
1,

so that

1 2/3 3/2
-

1

3
k = [ (3a) +1]

1 3

_1k
2

is found by the arc length formula
3

1 (t2+ )3 / 2
3 '

where the parameter is the t corresponding to ct)(xl, 0).

1 2
x2 = =

t 2 = 20

1 3z =
3
(20+1) /2 1 - k2-

Now we use k
1

and k
2

to evaluate g2(a).

g2(a) - 1-2 [ (3k
2

+1)
2/3

-(3k 1+1)2/3]
20

1 ,(20+1) 3/2 -1+1) 2/3 -([(3a) 2/3
+1]

3/2
-1+1)2/3]

20
2

, ,- 1[20+1-L(3a) 2/3 +1_]
20

2

-
1220-

4. g(z I a) g(z, a;0)
g2(a)
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Case I:

g(zia) = 1 202

0 (3z+1) 1/3 [3(0-a)] 2/3

= 2[3(0-a)]2/3(3z+1)1/3.

Case II:

g(zia) =
1

1/ 3
20 [ [3(0-a)]

2/ 3-(3a)2/ 3]-1

0 (3z+1)

= 2{[3(0-a)]2/3-(3a)2/3} -1 (3z+1) -1/3.

Case III:

g(zia) =
1

1/3 202[20- (3a) 2/ 3]-1

0 (3z+1)

= 2[20-(3a)2/3] -1 (3z+1) -1/3.

We conclude that the three expressions for g(z (a) differ only by

constant factors, which are functions of both 0 and a.

Example 1- -Exponential

f(xl, x2)
-(xl+x2)

= 0 for

1. (xi, x2) (z, a).

for 0 < x
1

< 00 cl)(x
1,

x2) = x
1

+ x2 = a

0 < x2 <

x1, x2
otherwise



We use the results from Example 1--Uniform as follows:

2. f(x
1,

x
2
;0)--,- g(z, a;0).

zg(z, a;0) = f( , a-

zxi _

x
2

= a -

= exp - +a- 4-i-)}J = e-aJ.

We have found the value of the Jacobian in Example 1--Uni-

form, so we have

J and

1 -ag(z, a; 0) = e .

k
2

k
2 1 e-a3. g (a) = g(z, a;0)dz = d =

1 e-a[z]k2
2 4'2

1
k

1
1

As in Examplel- -Uniform, we eval-

uate z along cl) from 0 to its

maximum in the first quadrant, which

we find to be is by the Pythagorean

Theorem.

42
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g
2
(a) e - a[r2 a-0]

-E

= ae-a.

g(z,a;0)
1 e-a 14. g(zia)

g2
(a)

ae-a

1

Nr2 a

Thus, we have a uniform density when we consider the expo-

nential bivariate density function along the line given by 4. We

can see that this is plausible from the illustration of f and 4:

Example 2--Exponential

f(xl, x2;0) = e
- (xl-Fx2)

for 0 < x
1

< co 4)(x
1,

x2) = x2- xl =a

0 < x2 < co

= 0 for x
1,

x2 otherwise
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1. (xi, x2) (z, a).

We use the results from Example 2-- Uniform as follows:

z
x 1

=
NJ7

x
2

= a +
Ni7

2. f(xl, x2;0) g(z, a;0).

Z Z Z Zg(z, a;0) = f( a+ )J = exp - 1.+a+ = exp - tad-t.7
p4-2- ' Nr2- Nr7

Using the value for J found in Example 2--Uniform gives

1 -(a+NiT z)g(z, a;0) = e
NI 2

ek
2 rk

3. g2(a) g(z, a; 0)dz = J
2

1 e -(a+Nr7 z)dz

1 -a 1 e-a[_ 1 -t./2- z,k2
= e

2
e t\fT zdz = Nae Jk

k
1

1

g 2(a) = 12e-a[e-14-2-zik 2

1

To find k
1

and k
2

it is helpful to have the illustration of

f and 4.
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&la)

We see that z goes from k
1

= 0 to k
2

= co.

g
2
(a) - 1 e-a[e-4-2- oo

2 0

= - 1 e-a z
-e0 ]

Z- 00

-a
=

21

e-a[ 0-1] =

4: g(z I a) g(z, a;0) 1 (a.+Nff z) 2ea
g 2(a)

e-a- 142 z+a

r- -NfT z

Our final result is again an exponential density function.



Example 3--Exponential

-(x
1
+x2)

2
f(xl, x2;8) = e for 0 < x

1
< co 4)(x1, x2) = x1 + x2 = a

0 < x2 < co

= 0 for X
1,

X2 otherwise

1. (x1 , x2) (z, a).

We use the results from step 1 of Example 3--Uniform, where

z
x

1
Nr.. cos

x2 = Nil sin .
2 Na-.

2. f(xl, x2;0) - g(z, a;0).

g(z, a;0) = f(ra cos - , NI7. sin 2- )J
Nia7

= exp -{Nra cos z }J
1\5: Nra"

Use of the Jacobian found in Example 3--Uniform gives

g(z, a; 0) = [exp-{t.r. cos + sin 2---}] [l- 1/ 2]
(\FE Nrat 2

1 z
_ 2Nriexp-{q7.(cos NIT

+ sin )}
NIT

k2

3. g (a) = g(z, a;(3)dz - 1 S
k2

exp-{(cos z sin
2N/T.

1 1

dz

46
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The integrand is not integrable by the usual formulas. It

might be integrable by other methods; for instance, the exponential

function could be expressed as a Maclaurin series. However,

problems of convergence of the series are likely to arise. Numer-

ical methods, where specific values are known for the z vari-

able, can be resorted to in a given problem to arrive at an approx-

imation for g 2(a).

Example 5--Exponential

f(ci, x2)

Then g(z la) can be found as before.

-(xi+x2)
e for 0 < x

1
< co 4(x1, x2) = 4[x1 (t), x2(t)]

0 < x2 < oo where

= 0 for x
1
,x

2
otherwise

1. (x
1
,x

2
) (z, a).

From Example 5--Uniform we have

x
1

= xl(t) = 1 3 + a

x2 = x
2

(t) = 3t2

1x
1

= a +-
3

[(3z+1) 2/3 -1]3/2

x2 =3[(3z+1) 2/3-1].

2. f(xi, x2;0) g(z,a;e).
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g(z, a;0) = f{a+-1 [(3z+1) 2/3-1]3/2
'

1 [(3z+1) 2/3 -1] }J

1= exp - {a+-1[(3z+1)
2/3

- 1]
3/2

+ 2 [(3z+1)
2/3

- }J
3

We use the Jacobian found in Example 5--Uniform.

1g(z, a;0) = (3z+1) -1/3 exp - {a+-3-[(3z+1) 2/3 -1]3/2+1 [(3z+1) 2/3 -1]}.

k2

3. g 2(a) = J g(z, a;0)dz.
k

1

g2(a) obviously cannot be found by usual methods.

Example 1- -Normal

f(xi, x2,e)

1 2 2
X1 +X2

1 20

871-0

for 0 < x
1

< oo

0 x
2

< oo

= 0 for xl, x2 otherwise

`1)(x1' x2) x1 + x2 =

1. (x1, x2) (z, a).

We use the results from Example 1--Uniform.

zx
2

= a -
NTT
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2. f(xi, x2;0) --g(z, a;8).

g(z, a;0) = , a- ,,f-_,7.)J

1 f 1 r, z , 2 , zexp Lk ) + -=) 1,1

8
TrO2

202 Nr7 2

2 2
1 1exp a

2-e.riaz+-DJ
2 Z 2

8Tr0
2

20

1 1 2 2exp {--[z +a -Nriad}J
871-02 202

The Jacobian was found in Example 1--Uniform to be 1

42'

c 1g(z, a;0) = 1 exp t- -7Lz 2+a 2-N2 azil
8 NrEne 20

k
2

k
2

1 1 r 2 2 r--3. g (a) = g(z, a;0)dz - exp {--Lz +a -N2 azj}dz.
kl TrO

2
k

1
20

The integrand cannot be integrated by usual means.

Example 2--Normal
1

- (x
2 +x

2
)

1 202
1 2

f (x , x2;0) - e for 0 < x
1

< 00
8Tr0

2

= 0 for xl, x2 otherwise

4(x 1,
x2) = x2 - x

1
= a

0 < x
2

< oo
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1. (x1' x2) (z' a)*

We use the results from Example 2--Uniform.

x =
1 Ni 2

x
2

= a +

2. f(xi, x2;0) g(z, a;0).

g(z, a;0) = t( , a+ )J - 1

2
exp A -1

2

r
)

2
+

,
a+

z
JJ

8Tr0
IV 420

1 1 2 2
_ exp {- [z +a +NriazDJ

8 TrO
2

202

The Jacobian was found in Example 2--Uniform to be 1

42

g(z, a',0) - 1 exp 1[z 2+a 2+42 az] }
8 W-2- Tr0

2
202

k
2

k
r3. g 2(a) =

1

g(z, aMdz - 1 exp {--vz 2+a 2
N 2

r--- az] }dz.
8 NTZ Tr0

2
k

1

1

20

We can complete the square in the exponent as follows.
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1
2

k
2 a2

1
g2(a) - exp 1-

202
[(z 2+a-2 + az)+Ddz

2
8,4-2 TrO2 k

1

1 a 22exp {-
8 NiT7r0

k
2 2

exp {- 12 [z2+,42 az +2 ] }dz
k

1
20- 2

k
2

1 exp {- a exp {--1[(z+ a ) 2] }dz
84-2- Tre

2 402 k, 202
Nr.2

2 2
The integrand is of the form e

-audu, where

1a -
Nr2

au = z +
t 1

The limits k
1

and k are found by the following illustration

to be 0 and co, respectively,

1 f x2' 0)
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We can find the definite integral ..S.'me
-a2u2du in a table of inte-

0

grals to have the value NiTT

'
if a > 0. Thus we have

2a

Sm r 1 r, a ,2,,, (4.7rexp L lz+ jaz 147 0 -
202

flz 2
0

g2(a) -[ 1 a2 4-1-T
exp {- 2} [ -7]

8\f/Tr02 40

1 a2
16Nirr 0

exp
e". 402 1.

4. g(zia) g(z,a;0)
g2(a)

2

g(zia) =
1 exp {_ 1[z 2

+ a
2+Nri az] }4,7-rr 0 exp {

847 irEl 202 402

147 1 r 2 a2- rexp --7Lz +--2-+ f az] }
20

4,4-fr exp {- [z, a 12,
3'2 7-7Z-I

20

The final density is therefore an exponential function.

Example 3--Normal

1 2
(x1 +x 2

)

1 20- 2 1 2

f (x1 ,x
2
;0) - for 0 < x

1
< co

071'02

= 0 for x
1
,x

2
otherwise

2 2= x
1

+ x2 = a

0 x2 < oo



1, (x
1,

x 2) --- (z, a)

We use the results from Example 3- -Uniform:

x
1

= 1.5. cos

z
x2 = Nra: sin

2. f(xl, x2;0) g(z, a; 0).

g(z, a;0) = f(Nra-. cos
'

N/;. sin )J
Nfa

1 exp
2

(t\,. cos 2-- ) 2+ (t\i-.
8Tr02 20

sin 1 )2} }J
Nra

1 1 2 z 2 z
2

exp [a(co s N:-+ sin )]
8-rr0 202

1 exp {-
8.702 20

From Example 3--Uniform J -
2\ra-.

1

1 ag(z, a;0) = exp {--2}
16TrO NTT 20

L.

3. g2(a) = J g(z, a;0)dz

1

k
2

1 a
12

= y exp {- }clz

16Tr01\k 161.0
12

exp
202

1

exp {-
ka 2Az]k

202 1

53
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As in Example 3--Uniform, z transcribes the part of the

circle represented by cl) which lies in the first quadrant. Thus

k
1

= 0, k
2 4

= (21r4;.) - 11.Nrat

1 a N5... 1exp {- }[
Tr -0] - }g 2(a) -

1671.0
2

20 32 0
2 2 2

exp
28

4. g(zIa) g(z,a;0)
g2(a)

g(zia) = 12
exp a2 }80

2 aexp {-7}
16Tro N 20

1 a a 1

2n
expexP '7 202+ 202i -2TrNrg.

Thus g(z la) is a uniform density function dependent only on the

value of NraT, the radius of cl).

Example 5--Normal

1 2 2-
(x1

)

1 202
1 2

f (x ,x
2 2

;0) - . e for 0 < x
1

< oo

8Tr0

= 0 for xl ,x
2

otherwise

= (1:1[x1 (t), x2(t)] where x1

1. (xi, x2) -0. (z, a).

0 < x
2

< oo

1= x
1

(t) =
3
t 3 + a

1x = x (t) = t 2

2 2 2
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From Example 5--Uniform

x = a +1[ (3z+1)
2/3 -1] 3/2

1 3

x
2 2

=
1

[ (3z+1)
2/3-1].

2. f(xi, x2;0) g(z, a;0)

g(z, a;0) = f(a+3[(3z+1 2[(3z+1)2/3-1] )J

1 1 1 2/3 3/2 2 1 +2/3- ) 4-(4(3z1)'
2

-1]) 2}J
8702

exp {- (a+[(3z+1)
202

3

In Example 5--Uniform J was found to be (3z+1)
-1/3.

1g(z, a;0) = 1 (3z+1) -1/3 exp 1 (a+[(3z+1) 2/3 -1]3/2)2

8Tr0
2

202
3

k
2

3. g 2(a) = J g(z, aMdz.
k

1

k
2

1 (3z+1)-1/3 exp
k

1
8Tr0

2

+ (1 [(3z+1) 2/3 -1]) 2}
.

1 (a+-1 [(3z+1) 2/3 -1]3/2)2

202
3

+ (1 [(3z+1)
2/3-1]

)
2}dz.

Due to the lack of proper differential, the integral of g(z, a;0)

cannot be found by the usual theoretical means.
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