
AN ABSTRACT OF THE THESIS OF

RajenJayantilal_Enan for the degree of

Master of Science in Compg=_Science presented on

Igly 20_1984_,

Title: An InterfAgg Facility For The Database Manage-

ment 2ystem ALLEGRO

Redacted for privacy
Abstract approved:

Earl F. Ecklund,17i7

Allegro is a database management system being

built at Oregon State University to provide a vehicle

for ongoing research in information systems architec-

ture. The initial Allegro system is a single user

environment incorporating a limited network model da-

tabase management system based on the proposals made

by various CODASYL committees.

This thesis describes the establishment of an

interface facility for Allegro. The implementation

of a CODASYL-like data manipulation language embedded

in a C program is discussed. A grammar for the

language is proposed, and it is shown that a parser

can be easily built for this language.

The advantages of mechanisms to preserve the in-

tegrity of the database and to make the database more

secure are discussed. The various facilities to do

this that are available on UNIX are mentioned, and

the actual security features implemented in Allegro

are presented.

The enhancements made to Allegro lay the ground-

work for expansion of the system into a multi-user,

multi-database environment. A brief description of

how this may be done is given.

An Interface Facility for The Database Management
System ALLEGRO

by

Rajen Jayantilal Shah

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed July 20, 1984

Commencement June 1985

APPROVED:

Redacted for privacy

Assistant Professor of Computer Science in charge of major

Redacted for privacy

Head of Department of Computer Science

Dean of Gra

Redacted for privacy

School

Date thesis presented: auly_a_x_1984

Typed by Raj en Shah for himself.

ACKNOWLEDGEMENTS

I wish to dedicate this Thesis to my parents,

Dr. Jayantilal N. Shah and Mrs. Sushila J. Shah, in

appreciation of all the suppport that they have given

me throughout my education.

Many thanks are also due to Dr. Earl Ecklund, my

major professor, for his help and guidance through

the course of this work.

1

TABLE OF CONTENTS

Chapter One - Introduction 1

1.1 The Network Model 2

1.2 Data Manipulation in a Network Model

DBMS 2

1.3 Data Manipulation Languages 4

1.4 Database Security 7

1.5 Scope of this Thesis 9

Chapter Two - System Operation 11

2.1 ALLEGRO Architecture 11

2.2 Processing A User Program 13

Chapter Three - The Data Manipulation Language 16

3.1 Introduction 16

3.2 The Operations 18

3.3 Parsing 21

3.4 Implementation of the CODASYL DML

Operations in Allegro 26

Chapter Four - Memory Management 29

4.1 Introduction 29

4.2 UNIX Implementation 30

4.2.1 File Protection 30

ii

4.2.2 Main Memory Management 32

4.3 Original Implementation In Allegro 34

4.4 Process Creation and File Execution in UNIX 37

4.4.1 Process Creation 37

4.4.2 File Execution 37

4.5 Implementation in Allegro 38

4.6 The Communications Protocols 40

Chapter Five Allegro For Instructional Purposes 48

5.1 Introduction 48

5.2 Original Idea 48

5.3 Proposed Method for Student Routines 51

Chapter Six - Conclusion 54

6.1 The Interface Facility 55

6.2 The Security Aspects 57

Bibliography 60

Appendix A Variations of DML Commands 64

Appendix B - DML Grammar 67

Appendix C Sample Programs Using DML Commands 69

LIST OF FIGURES

iii

1.1 Examples of Effects of DML Commands on

the Currency Indicators 4

1.2 The Data Seen by an Application Program 7

2.1 Steps in Processing a User Program 14

3.1 Parse Tree for a Typical DML Statement 23

3.2 Example of Shift-Reduce Parsing 25

3.3 Example Macro Definition and Expansion 28

4.1 File Protection Bits in UNIX 31

4.2 Information Exchange for GET(author) 39

4.3 Process Control Data Structure To Represent

Two Processes User Program and SUPERDBCS 44

4.4 Block Diagram Representing the Data Structure

In Figure 4.3 45

4.5 Algorithm for SUPERDBCS 46

5.1 Block Diagram of Proposed Method 51

6.1 Multi-User Environment for Allegro 58

AN INTERFACE FACILITY FOR THE DATABASE

MANAGEMENT SYSTEM ALLEGRO

CHAPTER 1

INTRODUCTION

A Database Management System (DBMS) is a system

that enables a user to look at information stored in a

database in a variety of ways, depending on the applica-

tion and the user. It provides an abstract way of look-

ing at the data, as opposed to the way the data is stored

by the computer. The DBMS provides facilities, in the

form of software, to allow the user to access and modify

the data in the database.

At present, there are three widely used DBMS models,

namely the network model, the relational model, and the

hierarchical model. The development and standardization

of the network model has been largely due to the proposals

initially put forward in the late 1960's by the Data Base

Task Group, a sub - committee of the Conference on Data Sys-

tems Languages (CODASYL) Programming Language

Committee. Several additional proposals have been put out

by the CODASYL committee since then [5][6)f7).

2

1.1. Tht NatN2LX Mizdal

Databases can be thought of as entities (distinguish-

able objects in the database) and the relationships

between these entities. The network model is built

around records of various types which are grouped together

with a structure known as a set. The set represents a

one-to-many relationship between entities. The entities

themselves are represented by records of various types.

We draw a directed graph, called a network, to represent

record types and their links to other records.

Every set has an owner and one or more members. It

is a requirement that the owner and member types be dis-

tinct, since many of the operations on these assume that

the owner can be distinguished from the members.

1.2. Data manipulation in A Network aoLle1 DBMS

The network model is different from other models, e.g

the relational model, in the way data manipulation is

performed. A prerequisite to understanding the CODASYL

Data Manipulation Language (DML) is the understanding of

the concept of currency. This concept is a generaliza-

tion of the notion of a current position within a

file. The basic idea is that, for each program operating

under its control (referred to as a "run-unit"), the DBMS

maintains a table of "currency indicators" which define

3

the context for that program. The currency indicators for

a given run-unit generally identify the record occurrence

most recently accessed by the run-unit for each of the

following

(i) Any type of record The most recently

accessed record occurrence, no matter what its type

is, is referred to as the "current of run-unit".

This is the most important currency of all.

(ii) Each type of set - The most recently accessed

record occurrence that is either an owner or a member

of a set S is referred to as the "current record of

set S". A current of set is kept for every set in

the database.

(iii) Each type of record The most recently

accessed record occurrence of a record type R is

referred to as the "current record of type R". A

current of record type indicator is kept for every

record type in the database.

Figure 1.1 shows examples of DML commands and their

effects on currency indicators.

4

FIND locates an existing record occurrence and estab-
lishes it as the current of run-unit, also up-
dating the current of the set-type and record-
type as appropriate.

GET retrieves the current of run-unit, or the current
of the record type named.

STORE creates a new record occurrence and establishes
it as the current of run-unit, also updating the
other currency indicators as appropriate.

Figure 1.1 Examples of Effects of DML Commands on the
Currency Indicators.

There are two types of operations that can be per-

formed on .a network database :

(i) Selections on logical record types

e.g. selecting a record with field author = ULLMAN.

(ii) Following the links in one direction or the

other. This process is referred to as

nAMigLliag_Mithin_the database [4].

.a. DAIA Manipulation Languages

In order to be able to define operations on the data-

base, it is convenient to have a standard notation that ia

mnemonj.c with the operations being performed, and which is

abstract enough to be used easily without the user having

5

to know too much about the underlying system.

It is usually necessary for an applications program

to do more than just manipulate the database; it needs to

also perform tasks such as read from or print at the ter-

minal, make decisions, and perform arithmetic. It is

therefore quite common to write the applications program

in a conventional programming language, such as COBOL or C

(usually referred to as a host language). The commands

of the DML are invoked by the program in one of two ways:

(i) By the host language calls to procedures pro-

vided by the DBMS. In this arrangement, the called

procedures invoke the lower levels of the DBMS (the

database and file managers). The parameter struc-

tures passed to the procedures when they are called

must be known.

(ii) The commands are statements in a language that

is an extension of the host language. Possibly,

there is a preprocessor that handles the data manipu-

lation statements, or a compiler may handle both host

and data manipulation language statements. The

statements of the data manipulation language will be

converted into calls to the procedures provided by

the DBMS. The program can then be compiled

normally. In this arrangement, the parameter struc-

tures need not be known to the user.

6

It can be seen that approaches (i) and (ii) are very

similar. However, it is easier to use approach (ii)

because it is not required to have the knowledge of the

parameter structures nor is it required to have the

knowledge of the correct sequence of procedure calls to

invoke the commands of the data manipulation language.

An alternative to the embedded DML commands is to

have a fully interactive facility where each command is

entered from the terminal, and executed by the system.

In the embedded approach, the operations are per-

formed one at a time using the constructs available in the

host language to perform things like looping and condition

testing (selection). The environment of the program can

be used to store information like the currency pointers

and intermediate values read from the database. We can

thus move easily from the owner record through a set, exa-

mining each record in the set, by using a loop in the host

language and retrieving only one record at any one

time. In the interactive approach, this is much more

difficult. This means that the whole set or storage block

is retrieved at once and then examined for the appropriate

record.

This thesis is concerned with the DML that is embed-

ded in C, which is the host language. Figure 1.2 shows

7

the view of the data as seen by the applications program

[22]. The solid lines represent transfer and manipulation

of data, and dashed lines represent causation.

1.A. Database SecuLity

In any DBMS, the subject of database security, the

protection of the database against unauthorized access and

use, is very important. It is necessary to protect

data areas for
variables declared
by the application
program

effects of data
manipulation
language
calls

ordinary
references to
variables

/application
program

function
calls

view of the
,database

data manipulation
language functions

Figure 1.2 The Data Seen by an Application Program.
(Motivated by Figure 1.5 of Principles of Database

Systems by Ullman [22]).

8

against both undesired modification of the data and unau-

thorized reading of the data. The reasons for doing so

are many and varied. Some of these include political and

legal questions security of the installation , and

preservation of the consistency and the integrity of the

database [9][10].

A common approach to database security is to include

into the DML the definitions of the privileges each user

has for accessing the database. If the DML is embedded

in a host language, it is possible to use the accessing

and protection facilities provided by the operating system

in order to set up some security procedures.

A second area, that of database integrity, can be

made secure by allowing updates to be made only by using a

previously defined sequence of routines provided by the

DBMS. In this way, changes can be made in a consistent

way.

Allegro is a database management system being

developed at Oregon State University to provide a vehicle

for ongoing research in information system architecture.

Chapter 4 discusses the security aspects in Allegro, and

their implementation.

9

1.5. BsD,pg- DI

First, the thesis describes the various components of

Allegro, and how they fit into the overall system archi-

tecture. Also described are the modifications that have

been made to the original architecture as it had been

defined by Uy [23] and enhanced by Sullivan [20].

Next, it establishes a grammar for the DML which

incorporates the following CODASYL DML operations : OPEN,

CLOSE, FIND, GET, STORE, ERASE, CONNECT, and DISCONNECT.

These operations form a minimal subset to perform all the

necessary operations on the database. Also included are

the variations for each operation that are proposed in [5]

regarding the different currency indicators. A proof is

given that this grammar can be parsed, and a parser is

specified.

Third, the thesis describes the separation of the

DBMS routines and the database from the user work area

(the area used by the user program that is directly

accessible to the user). This aids in protecting the

database against manipulation by any routines other than

those supplied by the DBMS. This will ensure that the

database remains consistent, and will enable the system to

have control over any modifications made to the data-

base. It will also provide a facility for the system to

10

be extended to a multi-user environment in the future.

ii

CHAPTER 2

SYSTEM OPERATION

2.1. Allegro Architecture

The components of the Allegro architecture that are

responsible for the overall working of the system are :

- the user program.

the SUPERDBCS.

the DDL and DSDL.

program preprocessor.

object schema definition.

the DBCS.

- student routines.

- system buffers.

- the database.

SUPERDBCS work area.

user work area.

1) The user program requests services from the

system. This program is written in C, enhanced with

CODASYL DML commands embedded into it. The DML enables

the program to send requests to SUPERDBCS to access the

database, to navigate within the database, and to cause

data transfer between the database and the SUPERDBCS work

12

area, or between the SUPERDBCS work area and the user work

area. Note that the user does not directly access the

database.

2) The SUPERDBCS answers requests made by the user pro-

gram to access or perform operations on the database. It

keeps control over the system buffers, makes updates when

necessary, and directly accesses the database files and

the SUPERDBCS work area. The currency indicators are thus

maintained by the SUPERDBCS.

3) The preprocessor converts the user program with the

embedded DML commands into code that communicates with

SUPERDBCS. The protocol for the communications is prede-

fined, and both sender and receiver have this coded into

them. The type of function to be performed will be com-

municated via a function code.

4) A special requirement for the system is to execute

student routines in parallel with corresponding system

routines in order to check the correctness of the student

routines in performing the same operations as the system

routines. They are written by students in a database

class, and their results are compared by the system

against the values returned by the corresponding system

routine. The students can then be notified of the errors,

and any changes to the database caused by these incorrect

13

routines can be suppressed by the system.

5) The system buffers hold the database records in

use. These buffers serve as an indirect medium for data

transfer between the database and the user work area, via

the SUPERDBCS work area. There is no way for the user

program to directly access the system buffers.

6) The database itself is also a component of the system

and, like the system buffers, is only accessible to the

user program via SUPERDBCS.

7) The SUPERDBCS work area contains space for the follow-

ing kinds of data

- variables defined in SUPERDBCS.

- currency pointers.

- templates for the various record types. (A tem-

plate for a record type consists of space for each

field of the record type).

8) The user work area contains space for the variables

defined in the user program.

2.2. Processing P. User Program

Presented here is a sequence of steps required to

process a user application program before it can be exe-

cuted. Figure 2.1 shows the process diagrammatically.

14

<User Program
and DML

Preprocessor'

<Source`
Code

DDL andN
DSDL

DDL and DSDL
Compilation

<SUPERDBCS\
Code

Preprocessor

i

Object Schema UWA Source Code and
on File Structure Procedure Calls

Library

V
Compiling and
Link Editing

<Load Module>

User Program

Execution

<User Work
Area (UWA)

Compiling and
Link Editing

<Load Module

Communication
Medium

SU PERDBCS

Execution

DBCS and
DML Library
Routines

<Database>
Files

Figure 2.1 Steps in Processing a User Program.

Student
Routines

System
Buffers

SU PERDBCS
work area

15

1) The user program is compiled as follows:

a) The program is pre-processed, and the DML state-

ments are converted into the relevant code that will

communicate with SUPERDBCS, and also code that will

set up the structures to send to SUPERDBCS.

b) The code is then compiled, by the C compiler,

into an executable module.

2) The user program module is executed creating two

processes one to execute the user program and the other

to execute the code for the SUPERDBCS load module that had

been previously compiled. The communications medium is

also set up at this time.

The SUPERDBCS refers to the object schema definitions

that must have been compiled earlier and stored on file.

During the execution phase, a database may be created, or

the contents of a database may be updated or accessed. In

every case, the object schema serves as a format template

through which data are read or written.

The student routines will perform operations such as

reading from the database, and updating system buffers

the same things as done by the system routines.

16

CHAPTER 3

THE DATA MANIPULATION LANGUAGE

ail. Introduction

The main facilities of a Database Management System

are provided by the Data Definition Language (the DDL)

and the Data Manipulation Language (the DML). The DDL

is used to define the conceptual scheme of the database,

i.e. the physical organization. of the database. It is

important in that it provides a formal notation for doing

this. The DML is used to write applications programs

that manipulate the conceptual database scheme. In

Chapter 1, we briefly went over the types of operations

that might be performed on the network database model,

namely selection on logical record types and navigation

within the database.

The development of the network model and the database

systems that use it has been largely influenced by a

series of proposals made by the various committees of the

Conference of Data Systems Languages (CODASYL). The ori-

ginal proposals were made in 1971, with significant

updates proposed in a report released in 1978. The

CODASYL has proposed a DDL for networks [7] , a Data Sys-

tems Definition Language (DSDL) [8] for defining views

17

of a conceptual scheme, and a DML [5] that can be used to

write applications programs that manipulate the conceptual

scheme or view. The CODASYL DML commands would be embed-

ded in programs written in a high level language, and

would enhance the properties of the programming

language. The DML commands would allow the user to navi-

gate within the database, with the programming language

providing the necessary control constructs. DML commands

provide several advantages :

They provide an abstraction that deals with records

and their relationships. That is, it is not neces-

sary to know about the structure and implementation

of the underlying system in order to use the DBMS

effectively, i.e. performing queries and other opera-

tions on the database.

- It is not necessary to know the details of setting

up parameters that are to be passed to the routines

that actually perform the actions.

The relative conceptual simplicity of these commands means

that no great knowledge of how the underlying system works

is required.

It is necessary to design a suitable data manipula-

tion language that will enable the user to perform all the

necessary operations on the database. In order for the

language to be particularly useful, it is essential to

18

choose a syntax that is easy to use, and a grammar that

uses mnemonic symbols. Also, from the point of view of

the processing time and complexity, it must be possible to

parse the sentences in the grammar easily.

1.2. Ths Qperations

The following commands have been implemented :

OPEN Sets up the object schema of the database for

reference by the database control system (DBCS), and

opens the database file for access by the DBCS. It is

necessary to specify the type of usage that is required of

the database, i.e. read only or read-write, and whether

that program is required to create the database or not.

CLOSE The database file is closed.

a2 Copies whole or part of a record from the system

work area to a corresponding structure in the user work

area via the SUPERDBCS work area. If no record name is

specified, then the record obtained is the current of

run-unit, otherwise it is the current of the record type

named. If the first field name is not specified, the

whole record will be copied, otherwise only the fields

named will be copied.

LIED Used to select a record in the database. Its only

function is to set the appropriate currency indicators to

19

the record that satisfies the selection expression.

There are six selection expressions defined in the CODASYL

Journal of Development of 1981 [5], but this thesis covers

only the ones implemented by Uy [23], namely formats one,

three, and five.

a) A format one selection expression is to locate a

record in the file by using a key value calculated

using a hashing function.

b) Format three expressions are to find the first or

last records in the set, the next or prior record

relative to the current of the set, or to locate the

record at the nth position relative to the first or

last record in the set.

c) A format five expression is used to find the

owner of the set specified.

STORE Causes a record in the user work area to be copied

to the SUPERDBCS work area and finally to the system work

area and stored into the database. The record name must

be specified. The record stored will be connected accord-

ing to its insertion mode.

RASE Deletes a record from the database. If no record

name is specified, then the current of run-unit is

deleted, otherwise the current of the record named is

deleted. It is also possible to specify whether all the

set members that the record owns are to be erased from the

20

database or not.

CONNECT - Sets up the membership of a record to one or

more sets. If no record is named, then the current of

run-unit is specified. The connection is done to the set

specified, if any, otherwise it is done to all the sets to

which the record type is defined as member.

DISCONNECT Reverses the effect of a connect, i.e. it

'unlinks' a record from one or more sets. The same

options apply as in CONNECT - to specify current of run-

unit, specific sets, etc.

This is the minimum set of operations that is neces-

sary to allow us to perform all the data

manipulations. The CODASYL proposal includes variations

for each command to take into account the concept of

currency pointers, with the associated variations in the

syntax of the command. So, for instance, there are two

versions of GET :

(i) Specifying the current of record type named.

(ii) Not specifying any record type in which case

the current-of-run is assumed.

Appendix A shows all the possible combinations of the DML

commands, with their interpretations.

21

1.2. Parsing

A parser for a grammar G is defined as "a program

that takes as input a string w and produces as output

either a parse tree for w, if w is a sentence of G, or an

error message indicating that w is not a sentence of G"

[1]. A parser works with a lexical analyzer to translate

the input string into a parse tree. The function of the

lexical analyzer is to read the input string, one charac-

ter at a time, and to translate it into a sequence of

primitive units called tokens. Examples of tokens are

keywords, identifiers, and operators. The parser can then

apply the rules of the grammar on the stream of tokens,

generating the parse tree if the sentence is valid.

Parsing can be divided into two broad areas :

Ipp _awn parsing - works from the root of the tree

down to the leaf nodes. It attempts to construct a

parse tree for the input starting from the root and

creating the nodes of the parse tree in preorder.

Bottom ilp 9A/sing works from the leaf nodes up to

the root of the tree. This technique is more favor-

able for syntax checking.

Several parsing techniques have been developed over the

years :

Operator Precedence - essentially used for arithmetic

expressions.

22

Recursive Descent - uses a collection of mutually

recursive routines to perform syntax analysis.

LL - a table-based variant of recursive descent.

LR scan the input from left to right - also table

based.

This thesis concentrated on using an LR parser to

demonstrate that it is possible to parse any sentence gen-

erated using the grammar defined for the DML commands. It

was also necessary to define a workable grammar for the

DML so that it could be tested. (A grammar is a set of

rules that defines the syntax of a language. The grammar

forms the basis for all sentences generated in the

language and can be used to test whether a given sentence

could have been derived from the grammar or not.)

Figure 3.1 shows an example of building up a parse tree

for a typical DML statement in order to check its

syntax. The method used is bottom-up parsing. Assume

that IDlist, ParamList, and Sentence are the left-hand

sides of productions in the grammar, and are defined as in

the figure. Also assume that the lexical analyzer will

recognise the various tokens e.g. KeyWord, ID, etc., and

will pass the stream of tokens to the parser. Note that

only the syntax of the sentence is checked.

The decision to use an LR parser instead of other kinds of

23

CONNECT (author , authset , book_authset)

I I I I I I I

)Key (ID ID ID
Word \\/./

IDlist

Sentence

IDlist

Sentence ----> KeyWord ParamList
IDlist ----> ID , ID or IDlist , ID

or ID
ParamList ---> (IDlist)

Figure 3.1 Parse Tree for a Typical DML Statement.

parsers was made because [1]:

- LR parsing can detect syntax errors as soon as possi-

ble.

- LR parsers are more general than traditional methods

such as recursive descent and operator precedence, but can

be implemented just as efficiently.

- An LR parser can be constructed to recognize virtually

any language constructs for which context-free grammars

can be written.

(The decision to use an LR parser meant that the grammar

devised had to be a context-free grammar).

24

Because it is very time consuming to write an LR

parser by hand, specialized tools are available to gen-

erate the parser. By providing a context-free grammar as

input to one of these generators, it is possible to obtain

a parser for that grammar. An LR parser consists of two

parts, namely a parsing table and a routine to drive the

parser. Only the parsing table varies with the grammar.

It is therefore essential to be able to produce a parsing

table for any language that is going to use the parser.

LR parsers use a technique called shift-reduce pars-

ing, which is a type of bottom up parsing method. This

technique attempts to reduce an input string to the start

symbol of the grammar. At each step, a string that

matches the right hand side of a production in the grammar

is replaced by the left hand side. A shift-reduce parser

can take one of four actions:

- shift the next input symbol is pushed on top of

the stack.

reduce - replacing the right hand side of a pro-

duction by the left hand side, if the right

hand side is on the stack.

- accept successful completion of parsing.

- error - syntax error in input string.

Figure 3.2 shows an example of shift-reduce parsing.

25

Consider the following context-free grammar :

S--4S;S

S --4(S)
S +ident

Consider the parsing sequence for the input string :

identl,ident2;ident3

Stack Input

1) identl,ident2;ident3
2) identi ,ident2;ident3
3) ,ident2;ident3
4) S, ident2;ident3
5) S,ident2 ; ident3
6) S,S ;ident3
7) ;ident3
8) S; ident3
9) S;ident3
10) S;S
11)

Actign

shift
reduce by S-4.ident
shift
shift
reduce by S ident
reduce by S-4S, S
shift
shift
reduce by S-4ident
reduce by S-4S; S
accept

Figure 3.2 Example of Shift-Reduce Parsing

In this method, a stack is used, since the right hand

side of a production will always appear on the top of the

stack. The stack, besides having the grammar symbols, has

a state with every symbol. The symbol describes what is

underneath it in the stack, and is used to make the

shift-reduce decisions. The parsing table has in it a

26

parsing action and a goto function. The goto function

takes a state and a grammar symbol and produces a

state. The next move of the parser is determined by look-

ing at the next input token and the current state on top

of the stack.

Appendix B shows a context-free grammar for the DML

commands implemented. A parse table has been generated

by YACC on UNIX* for this grammar [11][15]. This parse

table will not be used as this grammar can be parsed by

the M4 macro processor. The parse table confirms that a

more sophisticated parser could be written for the gram-

mar, if the need arose, and that it is possible to write

an LR parser for this grammar.

3..4. ImplemgnletiQn of the LIODAEIL DEL Qpg_catiQn in

The DML commands embedded in a C program would need

to be passed through a preprocessor which would translate

the commands into statements in C. The resultant program

can then be compiled using the standard C compiler. The

user program thus goes through four stages before it is

ready to be executed :

* UNIX is a Trademark of Bell Labs.

27

1) The syntax for the commands is checked to ensure

that it conforms to the established grammar.

2) The semantics of the commands are checked. In

particular, the parameters passed to the various com-

mands are tested to ensure that they are of the valid

types for the particular commands.

3) The commands are expanded into equivalent C

statements.

4) The whole program is compiled.

The thesis was not concerned with (1) or (2) - they are

currently being worked on as part of another project.

The expansion of the DML commands will be done by

defining macros, one for each DML statement. The expan-

sions (stage 3) will be performed using the M4 macro pro-

cessor [13] available on UNIX. It essentially allows

macros to be defined with zero or more arguments. The

definition of the macro is represented by a string of

characters, in this case representing one or more C

statements. The macro processor replaces every occurrence

of the macro names in the original program with the string

specified in their definitions, also placing the arguments

in the specified positions.

Figure 3.3 gives an example of a macro definition, and

expansion of the statement

STORE(book,bookrec).

28

Appendix C shows two sample programs to test the DBMS

using the embedded DML commands [23].

Macro Definition

define (STORE,
'strncpy(store_pm->recname,$2,32);
store_pm->uwarec = $1;
if (1<2)

{
int code, size;
code = 15;
write(pipedes[1],&code,4);
write(pipedes[1],store_pm->recname,33);
size = sizeof($1);
write(pipedes[1],&size,4);
write(pipedes[1],&$1,size);
read(pipedesc[0],&status,4);

} I

Expansion of STORE(book,bookrec)

strncpy(store_pm->recname,bookrec,32);
store_pm->uwarec = book;
if (1<2)

{
int code, size;
code = 15;
write(pipedes[1],&code,4);
write(pipedes[1],store_pm->recname,33);
size = sizeof(book);
write(pipedes[1],&size,4);
write(pipedes[1],&book,size);
read(pipedesc[0],&status,4);

Figure 3.3 Example Macro Definition and Expansion.

CHAPTER 4

MEMORY MANAGEMENT

1.1. Introduction

29

Memory management in Allegro involves the management

of both primary memory and secondary memory. From a sys-

tems point of view, it is necessary to manage the primary

memory so as to enable efficient usage of available

resources. It is also very important so as to ensure the

integrity of the area used by a process - the area must be

protected from the effects of other processes running at

the same time, unless permission to do so has been given

by the process that 'owns' that area in memory. It may be

all right to allow processes to read from an area, but it

may be necessary to restrict which processes can write

into the area.

The literature discusses several techniques for the

management of primary memory, the main idea being to have

some way of keeping track of the addresses that the pro-

cess can access; together with this is the need to keep

track of whether the area in memory is read-only or read-

write for that process (i.e. is the process allowed to

make changes to that area or not). An interrupt is sent

to the process if the wrong action is performed, or if the

30

limits are exceeded. Common techniques are Base Limit

Registers, Page Mapping, Lock/Key [16],[19].

In a similar way, for secondary storage management,

several techniques have been implemented and/or discussed

in the literature. These include access control through

the use of permission bits for each file, the use of pass-

words to access or modify files, and encryption tech-

niques.

4.2. UNIX Implementation

4.2.1. :ii Protection

The UNIX access control system is quite simple, but has

some unusual features. Each user of the system is

assigned a unique user identification number (user

ID). When a file is created, it is marked with the ID of

the owner. Each user is also assigned to be a member of

at least one group. Also associated with each file is a

set of eleven protection bits. Nine of these bits are

set up in such a way that there are three sets (of three

bits each) that specify independently the read, write and

execute permissions for the owner of the file, for the

other members of the owner's group, and for all remaining

users. (See Figure 4.1). Only the owner of a file is

allowed to change the permission bits on that file (this

is excluding the 'super-user' who has special

31

IG lu I r lw lx 1r lw lx lr 114 lx1

owner group others

Figure 4.1 File Protection Bits in UNIX

privileges).

The tenth and eleventh bits perform a special and

elegant function. If the tenth bit is set for a file,

then the system will temporarily change the identification

of the current user process to that of the owner of the

file whenever the file is executed as a program. (This

bit is called the "set-uid" bit). This change is only

effective during the execution of the program that calls

it. The set-uid feature thus provides for privileged pro-

grams that may use files inaccessible to other users

[12]. For example, there may be a game program that

updates a score file that should never be read nor changed

except by the program itself. If the set-uid bit is set

for the program, it may access the file although this

access might be forbidden to other programs invoked by the

given program's user. This mechanism is used to allow

32

users to execute the carefully written commands that call

privileged system entries. The eleventh bit (called the

'set-gid' bit) works in a similar way, except that it

applies to the group-id of the user rather than the user-

id.

4.2.2. Main Memory ManagemInt

In the UNIX system, a user executes programs in an

environment called a user process. The user process may

execute from a read-only text segment, which is shared by

all processes executing the same code. *A user process has

some strictly private read-write data contained in a data

segment. The user data segment contains all the area that

is addressable by the user programs (i.e. the user address

space).

The system maintains two resident tables [17] :

(i) aocess Table - each entry in this table keeps track

of three different areas in main store :

a) System Data Segment

b) User Data Segment

c) Text Table Entry

(ii) ext labia An entry in this table holds a pointer

to the User Text Segment on secondary storage or, if that

segment has been loaded into primary memory, it holds the

location of the segment in primary memory.

33

The System DatA aegment contains information that the

system needs about the process, (e.g. saved central pro-

cessor registers, accounting information, and a stack for

the system phase of the process), and only the system can

read or write into it.

The User Data Segment contains some strictly private

read-write data, and so is read and write protected from

all users except the owner process. The owner process can

only address areas within the bounds of this segment, with

the system returning a segmentation fault if these bounds

are exceeded. The segment has two growing boundaries :

(i) A stack area it is increased automatically by

the system as a result of memory faults.

(ii) An area that either grows or shrinks due to

explicit commands from the user process (e.g. free,

alloc) - usually referred to as a heap.

The User Text segment is a read-only segment, and can

therefore be used by several processes simultaneously, a

reference count being kept of the number of processes

using it. When this reference count drops to zero, the

area in memory is freed and made available for use by

another process.

From the above discussion, it can be seen that, apart

from system processes, only the user process can address

34

any location within its user data segment. This ensures

that, because each process has its own user data segment,

there is protection from other processes.

It can also be seen that a user process can only

access a file on secondary storage if the relevant permis-

sion bits are set.

The text segment will contain the code for execution

of the process. It may contain references to routines

stored in libraries that have been linked to the current

process by the link editor. Thus, the process can only

use the routines whose links are present in its text seg-

ment.

1.2. OzizinAl Implementation Q. Allegro

In order to write programs to access the database,

the user must be a member of the group 'dbms'. Read and

write permission bits are set for the database files for

this group. Also for use by the group are several rou-

tines that perform the low-level operations on the

database. It is combinations of these operations that

perform the higher-level Data Manipulation Language opera-

tions such as GET and FIND. It is therefore necessary for

the program that is going to work on the database to have

links to these routines, so that the process text table

will have those routines in it, allowing the process to

35

use them.

In order to use the system, the user had to use a

routine called DBCS (Database Control System) and to pass

the appropriate parameters to this routine. The parame-

ters passed depended on the action required of DBCS. One

of the parameters passed to DBCS would be a structure

(record) of the correct type for the action, with various

fields initialized to certain values. (These values were

discussed in Chapter 3).

The user thus had to know what form these structures

took and how they were to be initialized to have DBCS per-

form the required action. The user also had to know how

to make the call to DBCS, passing the arguments [23].

Setting up the fields of the structures that are

passed as arguments can get a little cumbersome, and was

considered an unnecessary burden on the user. It was

therefore decided to incorporate the higher-level con-

structs that were discussed in Chapter 3. These con-

structs essentially perform all the setting up of the

structures and the correct passing of parameters to the

DBCS routine. This process is made transparent to the

user. The operations involve setting up the parameters

to pass to the routines, and making the correct calls to

DBCS to carry out the higher-level instruction.

36

After the higher level DML facilities were set up,

the user program was still directly making calls to

DBCS. This meant that DBCS, together with the routines

that it called, was linked to the user program an

undesirable state of affairs. The user process thus would

have, in its text segment, links to all these routines,

and would be able to make calls to these lower routines,

bypassing DBCS. This meant that the user process could do

pretty much anything to the database. There was, there-

fore, a possibility of losing the database integrity,

either by a user acting maliciously or by user error. The

data area of DBCS was also directly accessible, through

the global variables, and could be modified directly.

It was therefore necessary to separate the routines,

and the DBCS data area from that of the user in order to

have some control on the accesses and modifications on the

database. (This essentially involves separating the

database and the control system from the user data

area).

37

4.4. Process Creati= and fila Executi2,n in UNIX

4.4.1. Process CreatiO2

New processes can be created by using the system

primitive 'fork'. When a fork is executed, the process

splits into two independently executing processes. The

newly created process (the child) is a copy of the origi-

nal process (the parent). The two processes do not share

any primary memory (unless the parent was executing from a

read-only text segment), and copies.of all writable data

segments are made for the child. Files that were open

before the fork are shared by both processes. Processes

may communicate using pipes, which may be set up by using

the 'pipe' system primitive before the process is forked

[17] [21].

4.4.2. fila Execution

A process may execute a file (with execution permis-

sion bits set) without returning by using a version of the

system primitive 'exec' (e.g. exec1P, execvp) . In this

case, when an exec is executed, the current text and data

segments of the process are overlaid by the new text and

data segments specified in the file. The program is then

run, and the process exited on completion of the program

[17] [21].

38

1.a. Implementation in Lileq/o

Using the fork, pipe and exec primitives, it is pos-

sible to achieve the goals discussed previously. The way

this is done is as follows

a) Have a file with a program called SUPERDBCS (super

database control system) that knows about all the low-

level database control primitives. This program will com-

municate with the user process and will make all the calls

to the routines. The file will be exec'ed by a process

that has been forked from the user process, so it is not

necessary for the user process to have links with any of

the routines.

b) In order to keep the SUPERDBCS out of the user text

segment, it is necessary to have the user process create

another process by way of a fork, and to have the child

exec the SUPERDBCS file.

c) SUPERDBCS uses the set-uid feature to temporarily

change the ID of the user to 'netdbms'.

d) The user process can communicate with the exec'ed

SUPERDBCS process and can make it call all the appropriate

routines to manipulate the database. Since communication

goes both ways, a protocol is set up between the applica-

tions program and SUPERDBCS. The data that is necessary

to set up the structures to be passed to the routines will

flow from the user process to SUPERDBCS, while the values

39

returned from the database, and status information, will

flow in the other direction.

Figure 4.2 shows a typical exchange of information for the

GET command

GET(author).

code (=8)

NULL
(no record name)

size of (author)

>

author

NULL
(get all fields)

>

K

author
(with data)

status of
transaction

(author is defined in the program as a structure that
will hold the author record read from the database.)

Figure 4.2 Information Exchange For GET(author).

40

1.5. The Communicationa 2rotocola

The information that passes between the user program

and SUPERDBCS for each DML command is as follows :

For any command that the program wants executed, the first

thing that is sent down the pipe to SUPERDBCS is the code

that is associated with that operation. The SUPERDBCS

decodes this and can then anticipate the rest of the

information that is going to be sent down the pipe.

CONNECT

The code for connect is 2. This is followed by the

record name to be connected, and then by up to three set-

names into which the record is to be connected. This

series of setnames is terminated by NULL. If the first

setname sent is NULL, then the record is to be connected

to all the sets in which its record type is defined as

member. No further setnames are sent after a NULL.

DISCONNECT

The code is 3. This is followed by the same sequence as

CONNECT.

ERASE

- The function code is 4. A code is sent next, which

specifies whether the name of the record to be erased is

to follow or the record to be erased is the current of

run-unit. The next thing to be sent is boolean value

which, if true, specifies that the record together with

41

the sets and members it owns will be erased from the data-

base.

The code for find is 5. This is followed by a code

to say whether the next thing sent is a record name or

not. This sequence is then followed by another code that

does a similar thing with the setname. Next comes the

type of format (1 or 3) . If the format is 1, then the

next thing sent is the size of the structure that will be

sent next, followed by the structure, followed by a 'chip'

(i.e. 'a' for any, 'd' for duplicate). If, however, the

format is 3, then the next thing to be sent is the struc-

ture containing information for that version of FIND.

- The code for a get is 8. The next thing sent is a code

to say whether a record name follows or not. If the code

is not NULL then the record name follows. This is then

followed by the size of the structure to follow, (where

the record to be obtained from the database is to be

placed). The record is followed by up to three field

names, which state that the GET has only to bring back

those fields of the record, instead of the whole

record. The last fieldname is followed by NULL. If the

whole record is to be obtained, then the first field name

sent is NULL.

STORE

The code sent is 15. This is followed by the name of

42

the record to be stored, the size of the record, and the

contents of the record.

212.En

The code for this operation is 51. The information sent

is the name of the schema to be opened, the name of the

file containing the database, the type of usage

(e.g. read-only), and whether this database is to be

created by the program or not. The first two are charac-

ter strings, and the last two are boolean values.

CLOSE

- The code for a close is 52. At present, a CLOSE does

not require any information since only one database can be

open at any one time. But, in the future, when it will be

possible to access several databases all at once, the

names of the schema and database files may be passed to

SUPERDBCS.

In all the above cases, the SUPERDBCS returns the

status of the operation performed - i.e. whether the

request was successful or not. In the case of GET, it also

returns the data that it read from the database, the size

of which was earlier sent to it by the user program. The

boolean values sent are either 0 or 1, and the sizes are

all in bytes.

It was decided to restrict the number of set names in

CONNECT and DISCONNECT to three because that is the number

43

of sets in the current system. This number can easily be

adjusted according to the requirements of the system.

There is, however, a restriction due to the M4 macro pro-

cessor it can handle a maximum of nine parameters passed

to macros. A similar argument applies to the field names

in the GET command; here, again, there are at most four

fields in any of the records types that are in the data-

base.

The currency pointers and the database control system

parameters are thus kept in the data segment belonging to

the SUPERDBCS process this effectively takes the entire

database and database control system routines out of the

user area. Figure 4.3 shows the process control data

structure retained by the UNIX system during the execution

of a typical user program. Figure 4.4 shows a block

diagram representing the data structure in Figure 4.3. It

also shows the pipes used for communication.

Since the user must not be burdened by the details of

what goes on below the interface level (that is, the Data

Manipulation Language commands embedded in a C program),

it is necessary for the database management system to take

care of all the details. The first operation that must be

performed on the database before it can be accessed is an

OPEN, which opens the object schema and database files.

It is therefore possible to incorporate the above set-up

44

Process
Table
Entries

SUPERDBCJ
Address
Space

Text
Table
Entries

Process
Table

Text
Table

>SUPERDBCS
, Text
Segment

System
Data
Segment

SUPERDBCS
Data
Segment

ti
User
Data
Segment

System
Data
Segment

User
Text
Segment

Figure 4.3 Process Control Data Structure To Represent The
Two Processes The User Application Program and SUPERDBCS.

45

User
Program

Fork (by OPEN statement)

Parent
Process

Child
Process

USER
Process

SUPERDBCS

Communication
Via Pipes

Figure 4.4 Block Diagram Representing the Data Structure
In Figure 4.3.

procedures within the OPEN execution process. Once the

OPEN is performed, the system is ready for the rest of the

data manipulation commands.

In a similar way, the CLOSE is the last operation on

the database, so this can be used to terminate all the

processes that had been created, besides closing all the

files.

Figure 4.5 shows the algorithm that describes the actions

performed by SUPERDBCS.

There are thus two protection mechanisms for the

46

Begin SUPERDBCS Process

Set UID to 'netdbms'

Set up Pipes for Communication
(i.e. close unused read and write ends)

WHILE no CLOSE command is executed DO

Read Pipe for Operation Code from User Program

If Read Error then Exit

If Writer Process Terminated then Exit

Else

Case (Op Code) of
2 : Process(CONNECT)
3 : Process(DISCONNECT)
4 : Process(ERASE)
5 : Process(FIND)
8 : Process(GET)
15 : Process(STORE)
51 : Process(OPEN)
52 : Process(CLOSE)

Otherwise : Process(ERROR)

ENDWHILE

Terminate SUPERDBCS Process

Process(OPERATION) will involve communicating with the
user program, setting up parameters, and making procedure
calls to operate on the database.

Figure 4.5 Algorithm for SUPERDBCS

database. One, is that only an authorized user (one in

the right group) can do any manipulation of the database

files. Two, the manipulation can only be done in a sys-

47

tematic way that will not destroy the consistency and

integrity of the database. Since the routines that per-

form the manipulation, together with the database, are

outside the user area, the only manipulation that can be

done is by using the routines in a predefined order, one

that cannot be changed by unauthorized people.

.. 1W-LIA.S.VICQ

(1) It was thought to be essential to have as low an

overhead on the student as possible in terms of get-

ting the system started and executing the student

48

CHAPTER 5

ALLEGRO FOR INSTRUCTIONAL PURPOSES

22.1sodugliQn

A special function of Allegro is to be able to sup-

port student routines. These are routines that are

expected to fulfill the same functional specifications as

the Allegro routines, and will be written by students in

the database classes. The student routines are to be run

in parallel with the corresponding system routines, and

their correctness will be verified by comparing their

results. The parallel execution could be implemented by

having the system fork another routine, and then running

the two routines in the different processes. The system

would have the capability of checking the results, and of

notifying the student of any errors that occurred. It

would also suppress any changes to the database that were

caused by these errors.

5.2. Oriainal Idea

There were three main requirements for the system that

would be used to test the student routines :

(1) It was thought to be essential to have as low an

overhead on the student as possible in terms of get-

ting the system started and executing the student

49

routines. This goal could be achieved if the system

did not have to be recompiled for every student rou-

tine i.e. if the system could load the appropriate

student routine dynamically, depending on the request

from the student.

(2) Another characteristic of the system that was

thought to be necessary was the ability to handle

requests to test any routine, i.e. have a general

purpose system, instead of a special one for each

type of routine to be tested.

(3) In order to verify the actions performed by the

student routines, it would be necessary to examine

their effects on the global variables and on the

currency indicators. The way to do this would be to

have the students use the same global variable names

as those in the system.

It was decided to attempt the approach of dynamically

loading the student routine into the system, and then exe-

cuting it. Goal (1) would be achieved since the student

would only have to compile the routine(s) to be tested,

and to have their object codes available to Allegro.

Goal (2) would be achieved as well, since the system could

load any routine that the student had compiled for test-

ing.

50

On UNIX, the object files have a defined layout. At

the top of the file is some header information which

specifies, among other things, the sizes of the symbol

table, the string table, the data area and the text

area. By using these values, it is possible to modify

the addresses referenced by the symbols (variables) refer-

ring to the global variables by writing the appropriate

value into the symbol table entry for that variable.

Goal (3) can thus be achieved.

The method attempted involved allocating some memory,

equal to the size of the object code for the routine to be

tested. This would be done by using the UNIX system call

version of alloc() . The object file would then be read

into this area. The symbol table could then be set up to

have the same addresses as the already existing global

variables. It was thought that the routine could then be

executed by jumping to the starting address of this allo-

cated area.

It turned out that this method was impractical. The

UNIX system keeps separate data and instruction segments

for each process (as was seen in Chapter 4), so only code

kept in the text segment can be executed. The text area

of a process is read-only to any user process, and only

the UNIX system routines can write into it.

51

There is a system call in UNIX (called ptrace), used

by the debuggers adb and sdb, that could be used to exe-

cute an object file loaded into the data segment. How-

ever, the method of using ptrace is rather obscure. The

plan for dynamic loading was thus abandoned.

a.a. Proposed Metlap_d ID/ Student Boutings

Abandoning the idea of dynamic loading means that

goal(1) may not be achieved. The method proposed is as

follows :

(i) Have the student compile the routine to be

tested, and link it with the remaining routines to

make up a complete database control system (the 'Stu-

Applications

Program

SUPERDBCS1

Fork

System

Routines r1/4--
Student

Routines

Figure 5.1 Block Diagram of Proposed Method

52

dentDBCS') this would be more or less like the

current SUPERDBCS.

(ii) Modify the routines that read from and write to

the database so that they also keep a log of read and

write requests made. This log can be kept on disk

for later use. Also, with each entry in the log can

be kept the values of the currency indicators at that

time.

(iii) The reads would be able to read from the data-

base, but the writes would not update the database.

(iv) The SUPERDBCS would be modified to run two

processes, one of them being the original SUPERDBCS

and the other being the StudentDBCS. Any communica-

tion from the program to SUPERDBCS would be communi-

cated to both processes. The two processes would

keep their input/output logs on different files on

disk.

(v) Have a routine that can check the two files of

logs on disk, and verify the correctness of the stu-

dent routine(s). It would also need to inform the

student as to where the errors occurred, and allow

the student to examine the values of the currency

indicators during the execution.

Figure 5.1 shows a block diagram to represent this

method.

53

This method will involve some modifications to the

Allegro routines, and will also increase the overhead on

the student. An alternative method might be to write

another loader for UNIX that will allow dynamic loading of

programs or routines.

54

CHAPTER 6

CONCLUSION

This thesis has presented the incorporation of an

interface facility that will allow significant additions

to Allegro. It will also enable a wider range of people

to use the system. The reasoning behind the actual

choice of interface has also been given.

The thesis also presented the incorporation of some

security into the system, which is a requirement for any

useful database management system. The various facili-

ties available under UNIX on the VAX 11/750* were dis-

cussed, and how these were used in the actual implementa-

tion of Allegro were described.

Also discussed was the incorporation into Allegro of

a facility to test student routines. Some investigative

work was done to determine the most practical way of

achieving this, given the restrictions imposed by the UNIX

system. It is expected that these restrictions will be

overcome.

VAX 11/750 is a Trademark of Digital Equipment Corpora-
ti on

55

Thg Interlace Facility

This facility is actually one level of abstraction

above the database control level, and broadens the set of

users who can use the system. It is important to the

long-term plans for Allegro as a multi-model database

management system, and as a pedagogical tool. Users are

not required to have full knowledge of parameter struc-

tures and procedure calls to carry out operations on the

database. It provides a facility for students to gain

experience in using an embedded query language. For the

future, it provides a means for incorporating an interac-

tive query language into the system, further expanding the

number of people able to use the system.

A side effect of the incorporation of an extra layer

is the increase in overhead to carry out any processing.

An applications program has to be passed through a pre-

processing stage before it can be compiled for execu-

tion. But, overall, there has been a significant

improvement in the time taken to compile an applications

program. This is because the program does not have all

the system routines directly linked to it, so the time to

compile and link the program is a lot shorter. The sys-

tems routines are compiled and linked only anc.e; after

that, the file is exec'ec by SUPERDBCS. How this is done

was discussed in Chapter 4.

56

As the level of abstraction increases, it is possible

to make changes to the lower levels without affecting the

view that the user has of the system. This feature will

be useful when Allegro is expanded into a multi-model

environment with the incorporation of the relational data

model. At the outermost level, the system could still

function as a network model for those who wanted to view

it as such, or it could be viewed as a purely relational

system, or it could be treated as a combination of the

two. This will, of course, involve quite a lot of work

at the various levels of the system.

This thesis presented the implementation of only a

subset of the DML commands proposed by CODASYL. However,

the addition of the remaining commands can be done using

the existing facilities, once the lower level procedures

have been added to the system. (The only constraint is

that the system can only be operated in a UNIX environment

running C). An attempt was made to keep the syntax and

the choice of key words consistent with the CODASYL propo-

sals, but some modifications had to be made to adapt to

the requirements of the M4 macro processor.

There is a further limitation, that of the maximum

number of arguments that can be passed to a DML command,

that was introduced by the M4 macro processor, (as was

seen in Chapter 4). This limitation can be overcome by

57

either modifying the grammar for the DML, or by using a

more flexible macro processor. The former method would

increase the complexity of the DML by introducing extra

brackets and other punctuation into the commands. This

may very well defeat the purpose of the abstraction by

making it difficult to use the commands due to the

increased possibility of making typing errors when they

are used.

5,2. Mg- 5&curity Aspects

This area is an important feature in any database

management system, and becomes more important when the

system is available for use by casual users. It is

planned to make Allegro into a multi-user system, and the

enhancements described in this thesis lay the base for

achieving this goal.

It will be necessary to build another layer above the

existing one, and have each user program have its own copy

of SUPERDBCS. It will also be necessary to incorporate

some sort of concurrency control into the system in order

to preserve the integrity of the database. This will

have to be put into the system, since UNIX is weak in this

aspect.

There will be a 'Transaction Manager' that will be in

charge of coordinating all the requests made by the

58

User
Prog 1

User
Prog 2

User
Prog 3

(User
Prog n

Transaction

Monitor

1

SUPER
DBCS 1

SUPER
DBCS 2

< >
SUPER
DBCS 3

SUPER
DBCS n

Figure 6.1 Multi-User Environment for Allegro

various programs. It will communicate with the applica-

tions programs and the SUPERDBCS's. This way, it will

keep track of which program is looking at what data, and

can resolve conflicts and carry out concurrency control.

The transaction manager will also be responsible for

creating new processes to start off a new SUPERDBCS for

each user program..

Figure 6.1 shows a block diagram for a possible implemen-

tation of a multi-user environment.

It is possible to incorporate more stringent security

measures, e.g. password checking, into the system. This

thesis described only the ones that were implemented -

these used the features directly available on UNIX. At

59

present, it is thought that these measures are sufficient

for the applications that are to be performed on

Allegro.

60

BIBLIOGRAPHY

[1] Aho, A.V., Ullman, J.D., "Principles of Compiler

Design", Addison-Wesley, Reading, Mass. (1977) .

[2] Astraham, M.M., et al., "System R : A Realtional

Approach to Data Base Management", ACM Transactions

on Database Systems, June 1976, pp97-137.

[3] Astrahan, M.M., et al., "A History of Evaluation of

System R", Communications of ACM, Oct. 1981,

pp632-646.

[4] Bachman, C.W., "The Programmer as Navigator", Communi-

cations of the ACM, November 1973, Vol 16, pp 653-

658.

[5] CODASYL, "CODASYL COBOL Committee Journal of Develop-

ment", Ottawa, Canada : Canadian Government Pub-

lishing Centre, Supply & Services Canada (1981).

[6] CODASYL, "CODASYL Data Base Task Group Report", New

York, Association for Computing Machinery, April

1971.

61

[7] CODASYL, "Data Description Language Committee Journal

of Development", Ottawa : Canadian Government Pub-

lishing Centre, Supply & Services Canada, January

1981.

[8] Date, C.J., "An Introduction to Database Systems",

Third Edition, Addison-Wesley, 1982.

[9] Denning, D., "Cryptography and Data Security",

Addison-Wesley, 1982.

[10] Fernandez, E.B., Summers, R.C., Wood, C., "Database

Security and Integrity" Addison Wesley, November

1980.

[11] Johnson, S.C., "Yacc : Yet Another Compiler Com-

piler", Bell Laboratories, Murray Hill, N.J., July

1978.

[12] Kernighan, B.W., Pike, R., "The UNIX Programming

Environment", Prentice Hall, Engelwood Cliffs,

N.J., 1983.

[13] Kernighan, B.W., Ritchie, D.M., "The M4 Macro Proces-

sor", Bell Laboratories, Murray Hill, N.J., July

1977.

[14] Kernighan, B.W., Ritchie, D.M., "The C Programming

Language", Prentice-Hall, Engelwood Cliffs, N.J.,

62

1978.

[15] Lesk, M.E., "Lex - A Lexical Analyzer Generator",

Computer Science Technical Report No. 39, Bell

Laboratories, Murray Hill, N.J., October 1975.

[16] Madnick, S.E., Donovan, J.J., "Operating Systems",

McGraw Hill, 1974.

[17] Ritchie, D.M., Thompson, K., "The UNIX Time-Sharing

System", Bell Systems Technical Journal, July-

August 1978, Vol. 57, pp1905-1930.

[18] Ritchie, D.M., "On The Security of UNIX", Bell

Laboratories, Murray Hill, N.J., 1978.

[19] Shaw, A.C., "The Logical Design of Operating Sys-

tems", Prentice-Hall, Engelwood Cliffs, N.J., 1974.

[20] Sullivan, David, "Enhancements To Allegro, A Database

Management System", Research Paper, Oregon State

University, May 1984.

[21] Thompson, K., "UNIX Implementation", Bell Systems

Technical Journal, July-August 1976, Vol 57,

pp1931-1946.

[22] Ullman, J.D., "Principles of Database Systems", Rock-

ville, Maryland, Computer Science Press, Inc.,

1980.

63

[23] Uy, Myra Lane, "A Network Data Base Management Sys-

tem", Master's Thesis, Oregon State University,

Corvallis, Oregon, 1983.

624

APPENDIX A

Variations of DML Commands

Combinations of the DML Commands and their Interpretations

CONNECT

CONNECT() Connects the current of run-unit
to all sets in which it is
defined as member.

CONNECT(recname)
CONNECT (recname, ALL)
CONNECT (recname, NULL)

CONNECT(recname,setname)

Connect the current of record
named to all sets in which that
record type is defined as member.

Connects the currrent of record
named to the set.

CONNECT(,setname) Connects the current of run-unit
CONNECT(NULL,setname) to the set named.
(Note: it is possible to list more than one setname in the
above two cases)

DISCONNECT

DISCONNECT() Disconnects the current of run-
unit from all sets in which it
is defined as member.

DISCONNECT (recname) Disconnect the current of record
DISCONNECT(recname,ALL) named from all sets in which that
DISCONNECT(recname,NULL) record type is defined as member.

DISCONNECT(recname,setname) Disconnects the currrent of
record named from the set.

DISCONNECT(,setname) Disconnects the current of run-
DISCONNECT(NULL,setname) unit from the set named.
(Note: It is possible to list more than one setname in
above two cases)

ERASE()
ERASE (,NULL)

ERASE(ALL)
ERASE(ALL,NULL)

LIOR&

65

Erases the current of run-unit
from the database.

Erase the current of run-unit plus
all the sets and members belonging
to the current of run-unit.

STORE(recstruct,recname) Stores the struct pointed to by
recstruct using the insertion
mode specified for rectype.

GET

GET(recstruct)
GET(recstruct,NULL)

Gets the current of run-unit and
puts it into the location pointed
to by recstruct.

GET(recstruct,recname) Gets the current of record type
named and puts it into recstruct.

GET(recstructfldnames) Get only the named fields,
GET(recstruct,NULL,flds) instead of the whole records.
GET(recstruct,recname,flds)
(Note: 'flds' refers to a list of fieldnames, separated
by commas).

EIN

FIND(CALC,recstruct,recname,a) Find any record of type
recname using the calc-key
in recstruct.

FIND(CALC,recstruct,recname,d) Find duplicate records of
type recname using the calc-
key in recstruct.

FIND(POSITION,setname,num) Find the record in the named
set at the position specified
by 'num'.

FIND(NEXT,setname)
FIND(FIRST,setname)
FIND(LAST,setname)
FIND(PRIOR,setname)
FIND(OWNER,setname)

OPEN

66

Find, respectively, the next, first,
last, prior and owner records in the
set named. The position is relative
to the current of the set named.

OPEN(schema,file,usage,first) Open the schema and database
files named, with the usage
specified (0 for read-only,
1 for read-write) and whether
this is the first time the
file is being opened (i.e.
whether it needs to be
created or not).

LQ
CLOSE(schema, file)

CLOSE()

Closes the named schema and
database files.

Currently, this can be used
to mean the same thing as :

CLOSE(schema,file).

67

APPENDIX B

DML Grammar

%{

%start query

%token OPEN CLOSE FIND GET STORE CONNECT DISCONNECT
%token ERASE FIRST LAST PRIOR
%token NEXT OWNER POS CALC INT ID NULL ALL

%%

query open
close
get
find
store
connect
disconnect
erase

open OPEN'('ID','ID','val','val')' ;

close CLOSE'('ID','ID')'

store STORE'('ID','ID')'

get GET'('ID','recname fldnames')'

connect : CONNECT'(' recname set ')'

disconnect : DISCONNECT'(' recname set ')' ;

erase ERASE'(' all ',' recname ')'

find FIND '(' codel ') '

FIND '(' code2 ') '

FIND I(' code3 ') '

codel NEXT ',' ID
FIRST ',' ID
LAST ',' ID
PRIOR ',' ID
OWNER ',' ID

code2

code3

dup

all

POS ',' ID ',' val

CALL ID 1,' ID ',' dup

I a
'd'

/*empty*/
NULL
ALL

recname : /*empty*/
NULL
ID

rfld /*empty*/
lfld rfld

fldnames : rfld

lfld

val

set

1,1 ID

ID
INT

/*empty*/
I

',' ALL
I 1,1 NULL
I ' ' ID,

68

69

APPENDIX C

Sample Programs Using DML Commands

Program 1

#include "descriptors"
#include <stdio.h>
struct pm2
{
char recname[32];
struct nm *setname;

} *connect_pm,*disconnect_pm;
struct pm4
{

char *recname;
int all;

} *erase_ pm;
struct pm15
{

char recname[32];
char *uwarec;

} *store_pm;
struct
{

char title[80];
char ISBN[16];
int n_pages;
short year;

} book;
struct
{

char name[24];
char affiliation[40];

} author;
struct nm

char string[32];
struct nm *next;

};
struct fml
{

char dup;
char *uwarec;

} *formatl;

struct fm3
{

char mode;
int num;

} *format3;
struct pm5
{

char *recname;
char *setname;
int format;
struct fml *forml;
struct fm3 *form3;

} *find_pm;
struct pm8
{

char *recname;
char *uwarec;
struct nm *fldname;

*get_pm;
struct pm51
{

char schemaname[32];
char *filename;
int usage;
int first;

} *open_pm;
char schename[]="BOOK_AUTHOR n.

char bookname[]="BOOK
char authname[]="AUTHOR n.

char bookset[] ="WRITTEN_BY n.

char authset[] ="HAS_WRITTEN n.

main()
/*
* This is an interactive program, allowing user *
* to access information from the data base.

*/

{

char reply;
long status;
int choice;
/* */

OPEN(schename,bookauthor,0,0);
printf("This program provides two types of");
printf(" information:\n");
reply = 'y';
while (reply == 'y')
{

printf("1-information about a book\n");
printf("2-information about an author\n");
printf("Which of the two do you choose? ") ;
printf("(1 or 2) ") ;

70

scanf("%d", &choice);
if (choice == 1)

processbook();
else if (choice == 2)

processauthor();
else
{

printf("You have just entered an invalid");
printf (" response\n");

}
printf("Would you like to continue? ") ;
scanf("%s", &reply);
while((reply != 'y') && (reply != 'n'))
{

printf("Invalid reply, enter again.");
printf(" (y/n) ") ;

scanf("%s", &reply) ;
}

}

/* main */
/*
processbook ()
{

int i;
long status;

printf("Please enter title of the book -\n");
getchar();
for (i=0;(book.title[i]=getchar())!='\n';i++)

while (i < 80)
book.title[i++] = ";

/* findcalc */
FIND(CALC,book,bookname,'a');
if(status != 0)

printf("record not found\n");
else

{
/* get */
GET(book,bookname);
printf("title: ") ;

for (i = 0; i < 80; i++)
putchar(book.title[i]);

printf("\n");
printf(nISBN: 9);
for (i = 0; i < 16; i++)

putchar(book.ISEN[i]);
printf("\n");
printf("# pages: %d\n",book.n_pages);
printf("year published: %d\n", book.year);
printf("author(s):\n");

*/

71

72

/* findfirst */
FIND(FIRST,bookset);
while (status == 0) /* not owner yet */
{

/* findowner */
FIND(OWNER,authset);
/* get */
GET(author,authname);
for (i = 0; i < 24; i++)

putchar(author.name[i]);
printf("\n");
/* findnext */
FIND(NEXT,bookset);

}

}

/* processbook */
processauthor()
{

int i;
long status;

printf("Please enter name of author -\n");
getchar();
for(i=0;(author.name[i]=getchar())1=1\n';i++)

while (i < 24)
author.name[i++] = ";

/* findcalc */
FIND(CALC,author,authname,'a');
if(status != 0)

printf("record not found \n");
else

/* get */
GET(author);
printf("author's name: ");
for (i = 0; i < 24; i++)

putchar(author.name[i]);
printf("\n");
printf("affiliation: ");
for (i = 0; i < 40; i++)

putchar(author.affiliation[i]);
printf (" \n ") ;

printf("books authored or co-authored:\n");
/* findfirst */
FIND(FIRST,authset);
while (status == 0) /* not owner yet */
{

/* findowner */
FIND(OWNER,bookset);

73

/* get */
GET(bookrbookname);
for (i = 0; i < 80; i++)

putchar(book.title[i]);
printf("\n");
/* findnext */
FIND(NEXT,authset) ;

}

}

} /* processauthor */

Program 2

#include "descriptors"
#include <stdio.h>
struct
{

char title[80];
char ISBN[16] ;
int n_pages;
short year;

} book;
struct
{

char name[24];
char affiliation[40];

} author;
struct
{

char status;
} book_auth;
struct nm
{

char string[32];
struct nm *next;

1;
struct fml
{

char dup;
char *uwarec;

} *formatl;
struct fm3
{

char mode;
int num;

} *format3;
struct pm2
{

char recname[32];
struct nm *setname;

} *connect_pm,*disconnect_pm;
struct pm4
{

char *recname;
int all;

} *erase_pm;
struct pm5
{

char *recname;
char *setname;
int format;
struct fml *forml;

74

75

struct fm3 *form3;
} *find_pm;
struct pm8
{

char *recname;
char *uwarec;
struct nm *fldname;

} *get_pm;
struct pm15
{

char recname[32];
char *uwarec;

} *store_pm;
struct pm51
{

char schemaname[32];
char *filename;
int usage;
int first;

} *open_pm;
char schename[]="BOOK_AUTHOR
char bookname[]="BOOK
char authname[]="AUTHOR
char b_a_name[]="BOOK_AUTH
char bookset[] ="WRITTEN_BY
char authset[] ="HAS_WRITTEN

main()

it

it

n.

/*
* This program updates the data base by letting *

* the user specify the record types to be added *

*

*

or deleted, and then by performing the
request.

update *

*/

{

char reply;
char choice;
int i;
long status;

printf("This is an update run.\n");
reply = 'y';
/* open data base */
OPEN(schename,bookauthor,2,0);
while (reply == 'y')
{

printf("Would you like to add or delete
a record?");

printf(" (a/d) - ") ;
scanf("%s", &choice);
if (choice == 'a')

76

addrec();
else if (choice == 'd')

delrec();
else

printf("Invalid response\n");
printf("continue? (y/n) - ");
scanf("%s", &reply) ;
while((reply != 'y') && (reply != 'n'))
{

printf("Invalid reply, try again? ");
scanf("%s", &reply);

}

} /* while the user continues */
} /* main */
addrec()
{

int type;
int i;
long status;
static char name[24];
char reply;

printf("Which record do you wish to add?\n");
printf("1-book\n2-author\n3-book_auth\n");
scanf("%d", &type);
getchar();
if (type == 1)
{

/* add book record */
printf("Please enter the title \n");
for(i=0;(book.title[i]=getchar())!= '\n';

i++)

while (i < 80)
book.title[i++] = ";

printf("Please enter ISBN\n");
for(i=0;(book.ISBN[i]=getchar()).!= '\n';

i++)

while (i < 16)
book.ISBN[i++] ";

printf("Enter the no. of pages...\n");
scanf("%d", &book.n_pages);
printf("and the year published...\n");
scanf("%d", &book.year);
printf("If satisfied, press ");
printf("'c' to continue\n");
printf("or 's' to skip\n");
scanf("%s", &reply) ;
if (reply == 'c')
{

77

/* storecalc */
STORE(book,bookname);
}

}

else if (type == 2)
{

/* add author record */
printf("Enter the name of the author\n");
for(i=0;((author.name[i]=getchar())!='\n')

&& (i < 24); i++)

while (i < 24)
author.name[i++] ';

printf("Please enter the author's
affiliation\n");

for (i = 0;
((author.affiliation[i]=getchar())!='\n')

&& (i < 40); i++)

while (i < 40)
author.affiliation[i++] = '

1

printf("If satisfied,");
printf(" press 'c' to continue,\n");
printf("else press 's' to skip\n");
scanf("%s", &reply) ;
if (reply == 'c')
{

/* storecalc */
STORE(author,authname);
}

}

else if (type == 3)

/* add book_auth record */
printf("Enter the title of the book\n");
for(i=0;((book.title[i]=getchar())!=1\n')

&& (i < 80) ; i++)

while (i < 80)
book.title[i++] ";

printf("Enter the author's name\n");
for(i=0;((author.name[i]=getchar())1=1\n')

&& (i < 24); i++)

while (i < 24)
author.name[i++] ';

printf("Please enter author status -\n");
scanf("%s", &book_auth.status);
printf("If satisfied, ") ;

printf("press 'c' to continue\n");
printf("or 's' to skip\n");

78

scanf("%s", &reply) ;
if (reply == 'c')
{

/* findcalc - book */
FIND(CALC,book,bookname,'a');
if (status == 0)
{

/* store intersection record */
STORE(book_auth,b_a_name);
/* findcalc - author */
FIND(CALC,author,authname,'a');
if (status == 0)

/* connect to author */
CONNECT(b_a_name,authset);
}

else
printf ("author name not found\n");

}
else

printf("book title not found\n");
} /* if user wishes to continue */

else
printf("Invalid response\n") ;

} /* addrec */
delrec()
{

int i;
int type;
long status;
static char name[24];
char reply;

printf ("Which record do you wish to
delete?\n");

printf("1-book\n2-author0-book_auth0);
scanf ("%d", &type);
getchar();
if (type == 1)
{

/* delete book record */
printf("Enter title of the book\n");
for(i=0;(book.titlejii=getchar())1=1\n';

i++)

while (i < 80)
book.titlefi++] ";

printf("If data entered ok, ") ;

printf("press 'c' to continue\n");
printf("else press 's' to skip\n");

79

scanf("%s", &reply) ;
if (reply == 'c')
{

FIND(CALC,book,bookname,'a');
if (status == 0)
{

ERASE(ALL,bookname);
}

else
printf("book title not found\n");

}
}

else if (type == 2)
{

/* delete author record */
printf("Please enter author's name\n");
for(i=0;((author.name[i]=getchar())!='\n')

&& (i < 24); i++)

while (i < 24)
author.name[i++] = ";

printf("To continue, press 'c'\n");
printf("otherwise, press 's' to skip\n");
scanf("%s", &reply);
if (reply == 'c')
{

FIND(CALC,author,authname,'a');
if (status == 0)
{

ERASE(ALL,authname);
}

else
printf("author's name not found\n");

}
}

else if (type == 3)
{

/* delete book_auth record */
printf ("Enter title of book that owns

this record\n");
for(i=0;((book.title[i]=getchar())1='\n')

&& (i < 80); i++)

while (i < 80)
book.title[i++] ";

printf("Enter name of author who owns
this record\n");

for(i=0;((name[i]=getchar())1='\n')
&& (i < 24); i++)

while (i < 24)

80

name[i++] 1;

printf("If data entered ok, ") ;

printf("press 'c' to continue\n");
printf ("otherwise, press 's' to skip\n");
scanf("%s", &reply);
if (reply == 'c')
{

FIND(CALC,book,bookname,'a');
if (status == 0)
{

/* findfirst in book_auth */
FIND(FIRST,bookset,b_a_name);
/* findowner */
FIND(OWNER,authset);
/* get */
GET(author,authname);
while((strncmp(name,author.name,24)!=0)

&& (status == 0))
{

/* findnext */
FIND(NEXT,bookset);
if (status == 0)
{

FIND(OWNER,authset);
/* get */
GET(author,authname);

}

if(strncmp(name,author.name,24)==0)
{

ERASE(ALL,b_a_name);
}
else
printf("author record not found\n");

}
} /* reply == 'c' */

}

else
printf("Invalid response\n");

/* deirec */

