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Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse
microbes; as major agents of microbial mortality, viruses are likely to influence microbial
processes in these ecosystems. However, little is known about marine viruses in these
rapidly changing ecosystems. Here we examined spatial and short-term temporal variability
in marine viral abundance (VA) and viral lytic activity across various reef habitats surrounding
Moorea Island (French Polynesia) in the South Pacific. Water samples were collected
along four regional cross-reef transects and during a time-series in Opunohu Bay. Results
revealed highVA (range: 5.6 × 106–3.6 × 107 viruses ml−1) and lytic viral production (range:
1.5 × 109–9.2 × 1010 viruses l−1 d−1). Flow cytometry revealed that viral assemblages
were composed of three subsets that each displayed distinct spatiotemporal relationships
with nutrient concentrations and autotrophic and heterotrophic microbial abundances.The
results highlight dynamic shifts in viral community structure and imply that each of these
three subsets is ecologically important and likely to infect distinct microbial hosts in reef
waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible
for the removal of ca. 24–367% of bacterial standing stock d−1 and the release of ca. 1.0–
62 g of organic carbon l−1 1μ d− in reef waters. Overall, this work demonstrates the highly
dynamic distribution of viruses and their critical roles in controlling microbial mortality and
nutrient cycling in coral reef water ecosystems.

Keywords: marine viruses, viral lysis, carbon cycling, coral reefs, South Pacific, microbial mortality, viral abundance,

spatial and temporal variability

INTRODUCTION
Viruses are increasingly recognized as the most abundant and
dynamic biological entities in marine ecosystems (e.g., reviewed
in Fuhrman, 1999; Wommack and Colwell, 2000; Weinbauer,
2004; Suttle, 2007). Viral-mediated cell lysis can cause significant
mortality of heterotrophic bacteria, cyanobacteria and eukary-
otic phytoplankton (Wilhelm and Suttle, 1999; Brussaard, 2004b).
Models and empirical studies have estimated that 20–50% of
marine microbial communities are infected by viruses each day
(e.g., reviewed in Fuhrman, 1999; Wilhelm and Suttle, 1999; Suttle,
2005, 2007). The release of organic cellular content and nutri-
ents upon viral lysis can stimulate autotrophic and heterotrophic
microbial activity (Gobler et al., 1997; Middelboe and Lyck, 2002;
Weinbauer et al., 2011; Shelford et al., 2012) and increase diver-
sity (Weinbauer and Rassoulzadegan, 2004; Motegi et al., 2013),
with major effects on global biogeochemical cycles and flow
of energy in the oceans (Fuhrman, 1999; Wilhelm and Suttle,
1999; Suttle, 2007). Despite their critical impact in the oceans,
there is still a lack of data on the spatial and temporal dynam-
ics of viruses and their ecological influence in marine microbial
communities.

Tropical coral reefs are highly productive and diverse ecosys-
tems yet thrive under oligotrophic conditions. Accumulating
evidence also suggests that reef waters harbor abundant and active
microbial communities (Moriarty et al., 1985; Gast et al., 1998;

Charpy et al., 2012 and references therein) that can respond rapidly
to changes in environmental conditions (Haas et al., 2011, 2013;
Nelson et al., 2011; Mccliment et al., 2012). In this setting of nutri-
ent poor conditions and high microbial abundance, viruses may
play a particularly important ecological role in shaping microbial
communities, with potential impacts on carbon cycling and energy
transfer to higher trophic levels.

The spatial and temporal patterns of viral abundance (VA)
and production have been relatively well studied in various
marine environments over the past decades, but only a few
studies have focused on marine viruses in tropical and sub-
tropical reef waters (Paul et al., 1993; Seymour et al., 2005;
Patten et al., 2006; Bouvy et al., 2012). These few studies
have suggested that viruses are as highly dynamic and abun-
dant as reported in higher latitude marine environments (e.g.,
reviewed in Vega Thurber and Correa, 2011). To our knowl-
edge, the only study that has investigated lytic viral activity in
coral reef waters estimated that lytic viruses were not a sig-
nificant source of mortality for bacteria in atoll reef waters
(Bouvy et al., 2012), in contrast to general findings from
other marine ecosystems. More work is needed to fully elu-
cidate the potential ecological roles of viruses in coral reef
waters.

Here, we investigated viral abundance, subset composition as
detected through flow cytometry (FC), and production in the
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south Pacific island of Moorea, French Polynesia. Particularly,
we evaluated whether VA, structure, and lytic activity changed
across distinct reef habitats and time. Furthermore, we used mul-
tivariate analysis to assess potential ecological factors controlling
distribution patterns of VA and lytic activity; specifically, we asked
whether patterns were driven by changes in trophic status of the
ecosystem and/or by environmental conditions. Finally, we aimed
to assess how virus-mediated mortality of heterotrophic bacteria
can influence dissolved organic carbon (DOC) availability in olig-
otrophic reef habitats. Collectively, this novel dataset allowed us
to determine whether viruses are dynamic and important players
in tropical planktonic reef ecosystems.

MATERIALS AND METHODS
STUDY AREA
This study was conducted at Moorea Island, in French Polynesia,
in the South Pacific Ocean (Figure 1), during the dry season in
August 2013. Moorea is a high basaltic island surrounded by bar-
rier reefs that extend between 500 and 1500 m offshore, creating
semi-enclosed back reef lagoons (e.g., reviewed in Leichter et al.,
2013; Figure 1). For consistency herein, the semi-enclosed lagoons
of individual reef platforms will be referred to as “lagoon”. Eleven
passes connect the lagoons to the open ocean, with some continu-
ing near-shore as narrow deep channels (10–20 m width, 10–30 m
depth). The typical reef zonation includes a fringing reef (FGR)
nearest to shore (10–100 m width, <1 m depth), a shallow lagoon

(100–1000 m width, 1–6 m depth) interrupted with the occasional
along-shore channel, a back reef (100–200 m width, 1–3 m depth),
a reef crest (10–50 m width, <1 m depth) and an oceanward fore
reef on a high downslope (50–200 m width, 2–60 m depth). On
the north shore, the lagoon is connected to two narrow, 3 km long
straight water bays [Opunohu Bay (OB) and Cook’s Bay, <90 m
deep]. Both bays are influenced by small river discharges that peak
during rainfall; OB is also influenced by runoff from a nearby
agricultural area that includes farming of prawns (Wolanski and
Delesalle, 1995; Hench et al., 2008).

SEAWATER SAMPLING
Two types of sampling were conducted to examine spatiotemporal
variability in biotic (e.g., viruses, heterotrophic, and autotrophic
microbes) and abiotic (e.g., nutrients, longitude, latitude) vari-
ables. For the spatial study, samples were collected separately
along four cross-reef transects located in four different geographic
regions (i.e., north, east, west, and south) surrounding Moorea.
For each transect, seawater was collected at four different reef habi-
tats starting offshore and moving toward inshore: reef crest (CR),
back reef (BR), lagoon (LAG), and FGR (Figure 1). An additional
site located in the fore reef (FOR) was also collected for the north
transect (Figure 1). FOR sites from other transects could not be
sampled due to logistical constraints. For the short-term temporal
study, a site located in OB, was sampled every 2–3 days from 8 to
27 August 2013.

FIGURE 1 | Map of the study area. Spatial samples were collected
along four regional reef transects (east, west, south, and north; yellow
lines). Each transect crossed distinct reef habitats: fringing reef (FGR),
lagoon (LAG), back reef (BR), crest (CR), and fore reef (FOR); yellow

dots. Note the FOR was sampled only on the north transect. Temporal
samples were collected every 2–3 days for 21 days in a site in the
Opunohu Bay (pink dot). Aerial views of the north and south transects
are shown.
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FIGURE 2 | Examples of typical flow cytograms of (A) viruses,

(B) heterotrophic bacteria, and (C) phytoplankton. Three viral subsets,
with low, medium, and high nucleic acid fluorescence (V1, V2 and V3,
respectively), two heterotrophic bacterial subsets with high and low nucleic
acid fluorescence (HNA and LNA, respectively) and four phytoplankton
subsets (Prochl, Prochlorococcus; Syn, Synechococcus; APP, autotrophic
picoplankton; ANP, autotrophic nanoplankton) were distinguished using
flow cytometry.

Seawater samples (0.5 l) for nutrient concentration, micro-
bial and viral abundances (see below) were collected for all sites
using high-density polyethylene bottles at ca. 0.5 m below the
surface. Additional seawater samples (4 l) were collected for
viral production (VP) assays (see below) using 4-l low-density
polyethylene collapsible Cubitainers®. All bottles and cubitain-
ers were acid washed (∼10% HCl), rinsed with MilliQ® water
and then rinsed several times with in situ seawater before collec-
tion. All samples were transported back to the onshore laboratory
and processed in under 2 h following collection. Samples were
consistently collected between 9:00 and 12:00 h to avoid diel
variation.

Table 1 | Equations used in estimating viral production (VP), viral

turnover (VT), viral-mediated mortality of bacteria (VMB), amount of

organic carbon released upon viral lysis (OCr) and percent of bacterial

standing stock removed due to viral lysis (BSSr).

Variables Equations

VP (viruses L−1 d−1) [VAtf – VAto/tf]x (BAa/BAto)

VT (d−1) VP/VA

VMB (bacteria L−1 d−1) VP/BS

OCr (μg C L−1 d−1) VMB × 20 fg C cell−1

BSSr (% d−1) 100 × (VMB/BAa)

VA, viral abundance; to, initial time point of incubation; tf, final time point of
incubation; BA, bacterial abundance; BAa, ambient bacterial abundance; BS, burst
size.

PREPARATION OF SAMPLES FOR FLOW CYTOMETRY
Duplicate aliquots (1.8 ml) of each sample were dispensed into
2 ml-cryotubes containing gluteraldehyde (0.5% final concentra-
tion, electron microscopy grade, Sigma-Aldrich). Samples were
fixed at 4◦C for 30 min then immediately frozen at −80◦C, before
being analyzed using FC within 4–6 weeks (see below). Samples
were shipped frozen on dry-ice back to Oregon State University
(OSU). Due to logistic constraints, the samples could not be flash-
frozen in liquid nitrogen before being stored at −80◦C. This is
known to account for some virus losses, however they are reported
to be minimal (<10%; Brussaard, 2004a). We therefore expect that
virus loss in our samples was minimal, and that our data represent
conservative estimates of VA. FC analysis of viruses, heterotrophic
bacteria and phytoplankton were performed on a Becton Dick-
inson (BD) FACSCalibur flow cytometer (15 mW argon laser
exciting at 488 nm, BD, San Jose, CA, USA), as described below.

ENUMERATION OF VIRUSES AND HETEROTROPHIC BACTERIA
Viruses and heterotrophic bacteria were enumerated separately
according to standard protocols outlined in Payet and Suttle (2008)
and Brussaard et al. (2010), respectively. Viruses and heterotrophic
bacteria were discriminated by their signals in a bivariate scatter
plot of side scatter (SSC) vs. green fluorescence (FL1, 530/30 nm),
using FL1 as the threshold trigger. At least three viral subgroups
were discriminated based on their relative SYBR green I fluo-
rescence (V1, V2, and V3, respectively; Figure 2A). The total
VA (VA) presented in this study is the sum of V1, V2, and V3.
FC allowed separation and enumeration of a high nucleic acid
(HNA) containing bacteria and a low nucleic acid (LNA) contain-
ing bacteria on the basis of their SSC vs. FL1 signals (Figure 2B;
Gasol et al., 1999; Lebaron et al., 2001). Total heterotrophic bacte-
rial abundance (BA) was calculated as the sum of HNA and LNA
cells.

ENUMERATION OF PHYTOPLANKTON
Phytoplankton were enumerated using FC, following standard
procedures (Olson et al., 1993; Marie et al., 2001). Just before
the analysis, a mixture of yellow–green fluorescent 0.92 and
3 μm beads were added to the samples (ca. 105 beads ml−1

final concentration) for internal standard. The threshold trigger
was set to FL3. Phytoplankton populations were differentiated
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based on SSC, chlorophyll fluorescence (FL3) and phycoerithrin
fluorescence (FL2, 585/42 nm) signals. In this study, FC dif-
ferentiated autotrophic pico- (<2 μm) and nanoplankton (2–
20 μm); hereafter referred to as autotrophic picoplankton and
autotrophic nanoplankton (APP and ANP, respectively), as well
as the picocyanobacteria Synechococcus and Prochlorococcus (here-
after referred to as Syn and Prochl, respectively; Figure 2C). Total
phytoplankton abundance (PA) was calculated as the sum of APP,
ANP, Syn, and Prochl.

MEASUREMENTS OF AMBIENT SEAWATER ABIOTIC VARIABLES
Samples (90 ml) were filtered through combusted GF/C fil-
ters (Whatman GF/C, 25 mm diameter, 0.45 μm pore size)
for nutrient analyses. Filters were held using acid-cleaned poly-
carbonate filter holders. Filter holders were attached directly
to the outlet of acid-cleaned 60 cc syringes. For each sample,

seawater filtrates were collected into duplicate acid-cleaned 30 ml
HDPE bottles and stored upright at −80◦C until analysis at
OSU within 2 months. Concentrations of dissolved inorganic
nitrate plus nitrite (N+N), ammonium (NH4), and soluble
reactive phosphorus (SRP) were measured using a hybrid air-
segmented flow system consisting of a Technicon AutoAnalyzer
II (SEAL Analytical Ltd., Milwaukee, WI, USA) and an Alp-
kem Rapid Flow Analyzer (Alpkem Series 300, Corp., Clackamas,
OR, USA) following standard colorimetric protocols adapted
from Gordon et al. (1993). In this study, we define dissolved
inorganic nitrogen (DIN) as the sum of N+N and NH4 concen-
trations.

MEASUREMENTS OF LYTIC VIRAL PRODUCTION AND ACTIVITY
Lytic VP assays were carried out using the 4 l seawater sam-
ples collected (see above) from the FRG, BR, and CR within

FIGURE 3 | Spatial distribution of heterotrophic bacteria along

four regional transects (east, west, south, and north)

surrounding Moorea. (A–D) Bacterial abundance (BA), (E–H) high
nucleic acid (HNA) bacterial abundance and (I–L) low nucleic acid
(LNA) bacterial abundance. Each transect crossed distinct reef

habitats: the fringing reef (FRG), lagoon (LAG), back reef (BR),
crest (CR), and fore reef (FOR). Note the FOR was sampled only
on the north transect. Black dots indicate the relative position of
the samples collected. Contour plots indicate the mean values of
duplicate samples.
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FIGURE 4 | Spatial distribution of heterotrophic bacteria across the

fringing reef (FRG), lagoon (LAG), back reef (BR), crest (CR), and fore

reef (FOR) habitats. (A) Heterotrophic bacterial abundance (BA), (B) high
nucleic acid (HNA) bacterial abundance and (C) low nucleic acid (LNA)
bacterial abundance. Note the FOR was sampled only once on the north
transect. Boxplots represent 50th (median), 75th and 25th percentiles.
Circles represent mean values of duplicate samples collected for each
transect.

each transect, as well as in the OB for all the sampling dates.
We used the viral-reduction approach of Winget et al. (2005)
adapted from Wilhelm et al. (2002). Briefly, 900 ml of seawater
was filtered through 20 μm mesh-size Nitex® screen to remove
large particles. Filtered sample was then reduced to ca. 100 ml
using a 0.22 μm pore-size polysulfone (PES) membrane tangen-
tial flow filter (TFF, GE Healthcare, Life Sciences). This process
reduces particles <0.22 μm in diameter (i.e., most viruses infect-
ing prokaryotes) while retaining particles ranging in size between
0.22 and 20 μm (i.e., pro- and eukaryotic microbes). The result-
ing retentate was subsequently washed with 900 ml of ultrafiltered
(UF) seawater (<100 kDa cutoff, PES membrane TFF, GE Health-
care, Life Sciences) made from the same original seawater to
further reduce viral-size particles. When ca. 100 ml of retentate

FIGURE 5 | Short-term temporal distribution of autotrophic and

heterotrophic microbes in the Oponuhu Bay. (A) Heterotrophic bacterial
abundance (BA), high nucleic acid (HNA) bacterial abundance and low
nucleic acid (LNA) bacterial abundance. (B) Phytoplankton abundance (PA),
Prochlorococcus (Prochl ), and Synechococcus (Syn) abundances.
(C) Autotrophic pico- and nanoplankton (APP and ANP, respectively)
abundances.

remained the sample was brought back to its original volume to
produce a virus-reduced sample (i.e., 900 ml). All the TFF car-
tridges and tubing were cleaned with NaOH 0.1N and thoroughly
rinsed with MilliQ® water and UF seawater before use. On average,
the viral-reduction approach removed 65 ± 5% (range: 22–92%)
of in situ VA and 57 ± 9% (range: 16–81%) of in situ BA, respec-
tively. The same flow rates and processing times were used in all
experiments.
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FIGURE 6 | Spatial distribution of autotrophic microbes along four regional transects (east, west, south, and north) surrounding Moorea.

(A–D) Phytoplankton abundance (PA), (E–H) Prochlorococcus (Prochl ), (I–L) Synecochococcus (Syn), (M–P) autotrophic picoplankton (APP), and (Q–T)

autotrophic nanoplankton (ANP) abundances. See Figure 3 for legend.

The resulting virus-reduced sample was dispensed into trip-
licate sterile 50 ml conical tubes (BD Flacon) before incubation
at in situ temperature (26 ± 1◦C) for 12–18 h in a temperature-
controlled room in the dark. Samples (1 ml) for determination
of VA and BA were collected every 3–4 h. For each individual
incubation, VP was estimated from the slope of a least-square lin-
ear regression fitted to VA increases over time after correcting for
in situ BA losses during the filtration, as described in Wilhelm et al.
(2002).

Viral turnover rates (VT, d−1), viral-induced mortality of bac-
teria (VMB, bacteria l−1 d−1), percentage of bacterial standing
stock removed (%BSSr, d−1) and extracellular dissolved organic
carbon released (OCr, μg C l−1 d−1) were calculated as in Wil-
helm et al. (2002) and Payet and Suttle (2013; Table 1). We used a
burst size (BS) of 30 viruses per lytic event, which was close to the
average BS estimates of 28 reported in South Pacific tropical waters
(Bouvy et al., 2012) and of 24 reported for marine environments
(Parada et al., 2006). A cellular carbon quota of 20 fg C per marine
bacterium was used to convert BA into organic carbon units (Lee
and Fuhrman, 1987).

DATA ANALYSIS AND STATISTICS
Differences among mean biotic/abiotic variables during time-
series and across reef-transects were tested by Kruskal–Wallis
(KW) analysis of variance on ranks, as the data did not meet the
assumptions of normal distribution and homoscedasticity needed
for analysis of variance tests (Zar, 1999). When KW tests were sig-
nificant, the Dunn’s post hoc test was performed to evaluate within
group differences.

The distance-based linear model (DistLM) analysis (Legendre
and Anderson, 1999; Anderson, 2004) was carried out to examine
which biotic or abiotic variables were potential predictors of spa-
tiotemporal variations in the viral variables (i.e., VA, V1, V2, V3,
and VP). For this analysis, Bray–Curtis dissimilarity matrices of
log-transformed data for a selected viral variable were fitted against
the abiotic (see below) and biotic (i.e., log-transformed BA, HNA,
LNA, PA, Prochl, Syn, ANP, and APP) variables. A forward selection
procedure based on Akaike’s Information Criterion with a second-
order bias correction for small sample size (AICc) measures of fit
was used to determine which explanatory variables could best pre-
dict selected viral variables (see Burnham and Anderson, 2004).
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FIGURE 7 | Spatial distribution of phytoplankton across the fringing reef

(FRG), lagoon (LAG), back reef (BR), crest (CR), and fore reef (FOR)

habitats. (A) Phytoplankton abundance (PA), (B) Prochlorococcus (Prochl )

abundance, (C) Synechococcus (Syn) abundance, (D) autotrophic
picoplankton (APP) abundance, and (E) autotrophic nanoplankton (ANP)
abundance. See Figure 4 for legend.

Highly correlated explanatory variables (r > 0.9) were omitted
for the DistLM procedure. P-values were obtained using 999
random permutations of the data. For the spatial dataset, the abi-
otic variables included nutrient concentrations (log-transformed
DIN and SRP) and coordinates (latitude and longitude). For the
temporal dataset, the abiotic variables included log-transformed
nutrients and time (number of days after first sampling). All
the abiotic variables were normalized prior to DistLM proce-
dure. Statistical analyses were performed using RStudio Version
0.97.551 (http://www.rstudio.org/; Racine, 2012) and PRIMER
6 with the PERMANOVA+ add-on (PRIMER-E, Plymouth, UK;
Clarke and Gorley, 2006; Anderson et al., 2008). Means ± stan-
dard deviations (SD) are reported in the text for specific data
sets.

RESULTS AND DISCUSSION
This study examined spatial and short-term temporal variabil-
ity of VA and lytic activity in relation to changes in microbial
population abundances and environmental conditions, for the
first time, in coral reefs surrounding Moorea Island, in the
South Pacific Ocean. The results show high spatial heterogene-
ity and relatively low temporal changes in VA and lytic activity,
concomitant with shifts in microbial host population dynam-
ics. Overall, our data suggest that viral-induced lysis can exert

strong controlling influences on heterotrophic BA, with impli-
cations for nutrient and carbon fluxes in these oligotrophic
ecosystems.

ENVIRONMENTAL CONDITIONS
Relatively low mean nutrient concentrations measured at all sites
confirmed the oligotrophic nature of this reef ecosystem, with SRP
and DIN averaging 0.35 ± 0.08 μM and 0.49 ± 0.24 μM, respec-
tively (data not shown). Although no significant differences in
nutrient concentrations were detected among reef habitats, DIN
concentrations were higher in the FRG (0.48 ± 0.14 μM) rela-
tive to the LAG (0.40 ± 0.13 μM) and BR (0.38 ± 0.09 μM), CR
(0.34 ± 0.09 μM), and FOR (0.41 ± 0.10 μM; KW, p > 0.05). In
the OB, DIN concentrations (0.93 ± 0.15 μM) were ∼1.9-fold
higher, but not significantly different, than in the FRG (KW,
p > 0.05). During the time-series, DIN concentrations remained
relatively stable in the OB with low date-to-date variations (range:
0.7- to 1.2-fold). No significant differences were detected between
sampling dates (KW, p > 0.05).

HETEROTROPHIC BACTERIA DISPLAY SPATIAL VARIABILITY AND
SHORT-TERM TEMPORAL STABILITY
Bacterial abundance averaged 2.7 × 105 ± 1.5 × 105 cells ml−1 and
did not vary significantly among the four transects (KW, p > 0.05;
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FIGURE 8 | Spatial distribution of viruses along four regional transects (east, west, south, and north) surrounding Moorea. (A–D) viral abundance (VA),
(E–H) low nucleic acid viral subset abundance (V1), (I–L) medium nucleic acid viral subset abundance (V2), and (M–P) high nucleic acid viral subset abundance
(V3). See Figure 3 for legend.

Figures 3A–D). However, consistent spatial trends emerged within
transects, according to reef habitat (Figure 4A). On average, BA
decreased 1.5-fold from the FOR toward the CR and a ∼2-fold
from the CR toward the BR and LAG. Similar decreasing trends in
BA from the FOR toward the BR were reported during a long-term
study in Moorea (Nelson et al., 2011). The authors hypothesized
that low wave-driven circulation and long water turnover time in
the BR could increase encounter rates between bacteria and het-
erotrophic benthic organisms, resulting in low abundances. BA
increased ∼3-fold in the FRG relative to the BR and LAG (KW
with Dunn’s test, p < 0.05; Figure 4A). Given that DIN concen-
trations were ∼1.2-fold higher in the FRG relative to the LAG and
BR, it is likely that some micro-gradients in nutrient availability
may have occurred in the FRG. For instance, small inputs from ter-
restrial runoff may have increased nutrient availability, which in
turn stimulated heterotrophic BA. For example, Weinbauer et al.
(2010a) reported increases of heterotrophic BA in response to
small increases in nutrient availability due to terrestrial runoffs
in another reef ecosystem. It is also likely that organic matter
releases from benthic organisms may have caused micro-gradients
in nutrient and carbon availability that stimulated ambient het-
erotrophic bacteria in the FRG. This is consistent with previous
findings (Kline et al., 2006; Haas and Wild, 2010; Haas et al., 2011)
that coral and macroalgal exudates of organic matter can enhance

heterotrophic microbial abundance and activity, with implications
for community structure (Haas et al., 2011, 2013; Nelson et al.,
2013).

Consistent with BA, LNA and HNA containing cells followed
decreasing trends along transects (Figures 3E–L and 4B,C) and
averaged 1.9 × 105 ± 1.4 × 105 and 9.2 × 104 ± 4.2 × 104 cells
ml−1, respectively. HNA cells were more abundant than LNA cells
(t-test on ranks, p < 0.01) and contributed 65 ± 9% of total BA
along all transects. The proportion of HNA cells was higher in the
FRG relative to the LAG and BR (KW with Dunn’s test, p < 0.05),
contributing up to 81% of total BA. In contrast, the proportion of
LNA cells increased oceanward (KW, p >0.05) and contributed up
to 44% of total BA in the FOR. Seymour et al. (2005) reported simi-
lar increased proportions of HNA cells in proximity to corals. HNA
cells are reported to be large contributors to heterotrophic micro-
bial activities, particularly in nutrient-replete conditions (Gasol
et al., 1999; Lebaron et al., 2001; Servais et al., 2003). Therefore
these results may indicate increased heterotrophic microbial activ-
ity in the FRG. However, recent surveys also have shown LNA
cells, which are members of the abundant alphaproteobacterial
clade SAR11, can be highly active, particularly in nutrient-depleted
conditions (Zubkov et al., 2001; Jochem et al., 2004; Longnecker
et al., 2005; Mary et al., 2008; Hill et al., 2010; Gomez-Pereira et al.,
2013).
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FIGURE 9 | Spatial distribution of viruses across the fringing reef (FRG), lagoon (LAG), back reef (BR), crest (CR), and fore reef (FOR) habitats. (A) Viral
abundance (VA), (B) low nucleic acid viral subset abundance (V1), (C) medium nucleic acid viral subset abundance (V2), and (D) high nucleic acid viral subset
abundance (V3). See Figure 4 for legend.

In the OB, BA averaged 5.6 × 105 ± 0.9 × 105 cells ml−1

and was significantly higher than sites along the transects (KW,
p < 0.05; Figure 5A). HNA cells outnumbered LNA cells in the OB,
representing 67 ± 8% of the total BA. This higher heterotrophic
microbial abundance, and presumably activity, parallel the general
pattern observed in the adjacent Cook’s Bay (Nelson et al., 2011),
that has relatively similar hydrological settings. In the OB, there
were notable increases in suspended organic matter in the water
column, as evidenced by reduced visibility (<5 m). Near-bottom
currents that continuously re-suspend silty bottom of the bay,
concomitant with small terrigenous inputs from a river near the
tip of the bay, may explain such increases in suspended particles,
as was reported previously in the OB and Cook’s Bay (Wolanski
and Delesalle, 1995; Hench et al., 2008; Nelson et al., 2011). Thus,
potential nutrient supply in the form of suspended organic matter
may have been important in sustaining high heterotrophic micro-
bial abundance in the OB. The time-series in the OB revealed
small temporal oscillations in BA with low date-to-date changes
(range: 0.7- to 1.5-fold) and relatively stable proportions of HNA
cells (KW, p > 0.05; Figure 5A), suggesting relative homogene-
ity in the abundance structure of the heterotrophic microbial
communities.

AUTOTROPHIC MICROBES DISPLAY SPATIAL VARIABILITY AND
SHORT-TERM TEMPORAL STABILITY
For the transects PA averaged 3.6 × 104 ± 3.0 × 104 cells ml−1

and displayed consistent spatial trends (Figures 6A–D). Although
PA gradually decreased ∼5-fold from the FOR toward the FRG
(Figure 7A), no significant differences were detected among reef

habitats (KW, p > 0.05). Similar to BA, there were dynamic
spatial shifts in the phytoplankton community, with Prochl cells
(3.4 × 104 ± 2.9 × 104 cells ml−1) dominating total PA relative to
Syn (2.6 × 103 ± 2.6 × 103 cells ml−1), APP (1.1 × 103 ± 0.9 × 103

cells ml−1) and nanoplankton (ANP; 142 ± 108 cells ml−1) cells.
All phytoplankton subsets except ANP cells followed decreasing
trends from the FOR toward the CR and BR (Figures 6E–T),
likely due to increased encounter rates with benthic filter feed-
ers, as mentioned above. In the FRG, the dominant Prochl subset
continuously decreased while the abundance of Syn, ANP, and
APP cells markedly increased (Figures 7B–E). Organic matter
and nutrient supply from benthic exudates may have stimulated
microalgae with higher nutrient requirements in the FRG. How-
ever it is noteworthy that Prochl, which are known to cope better
than Syn and eukaryotic phytoplankton in nutrient-depleted sea-
water (e.g., reviewed in Scanlan et al., 2009), were still prevailing in
the FRG. This suggests that the nutrient supply was not sufficient
to shift the phytoplankton community from Prochl-dominated
toward Syn-dominated communities, as has been reported in
other coastal tropical reef waters (e.g., reviewed in Charpy et al.,
2012).

Similar to BA, higher overall mean PA was measured in the OB
(2.2 × 105 ± 1.1 × 105 cells ml−1; KW, p < 0.05). In contrast to the
transects, Syn was the most abundant phytoplankton, followed by
Prochl (58 ± 4% and 39 ± 5%, respectively; Figures 5B,C). This
shift in autotrophic microbial community structure and abun-
dance supports the hypothesis that suspended organic matter
and associated nutrients may have stimulated autotrophic cells
with high nutrient demand. During the time-series in the OB,
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PA displayed similar temporal oscillations to BA with relatively
low date-to-date changes (range: 0.4- to 2.5-fold; Figure 5B;
KW, p > 0.05). Phytoplankton subsets also remained rela-
tively unchanged (KW, p > 0.05), indicating a relatively stable
autotrophic microbial community.

VIRUSES DISPLAY SPATIAL VARIABILITY AND SHORT-TERM TEMPORAL
STABILITY DRIVEN BY BIOTIC AND ABIOTIC FACTORS
Along cross-reef transects, VA averaged 1.2 × 107 ± 0.5 × 107

viruses ml−1 and was within ranges previously reported for coral
reef waters (Paul et al., 1993; Seymour et al., 2005; Patten et al.,
2006; Bouvy et al., 2012). Viral abundance followed similar spa-
tial trends within the four transects (Figures 8A–D), with lowest
values in the BR and LAG (Figure 9A). On average, VA was ∼2.2-

to 2.4-fold higher in the FRG and CR, relative to the BR and LAG
(Figure 9A). DistLM for VA vs. biotic (i.e., BA and PA) and abi-
otic (i.e., DIN, SRP, longitude and latitude) variables indicated
that these variables contributed to 24 and 38% of spatial vari-
ability in VA, respectively (Table 2). Among biotic variables, BA
was the best predictor of VA, while SRP and DIN were the best
abiotic predictors (Table 2). Interestingly, these results suggest
that microbial host abundance only partially explained spatial VA
distribution along transects, and that other unmeasured ecolog-
ical processes may have influenced the distribution of VA. For
example, small-scale changes in hydrological conditions may have
influenced host distribution and metabolic activities, with impli-
cations for host-virus dynamics and subsequent spatial patterns of
VAs. Alternatively, increases in VT time relative to host microbial

Table 2 | Results of separate distance-based linear model (DistLM), with forward procedure, fitting viral abundance (VA), low nucleic acid viral

V1 subset abundance, medium nucleic acid viral V2 subset abundance, high nucleic acid viral V3 subset abundance and viral production (VP)

against biotic and abiotic variables.

Response variables Factors Predictors Pseudo-F p Proportional Cumulative

Spatial

VA Biotic BA 4.82 0.04 0.24 0.24

Abiotic SRP 9.15 0.01 0.38 0.38

DIN 3.74 0.06 0.13 0.51

V1 Biotic Prochl 3.36 0.06 0.18 0.18

LNA 4.65 0.04 0.21 0.39

Abiotic SRP 7.35 0.01 0.33 0.33

DIN 3.76 0.06 0.14 0.47

V2 Biotic HNA 5.59 0.03 0.27 0.27

Abiotic SRP 7.87 0.02 0.34 0.34

V3 Biotic APP 8.69 0.02 0.38 0.38

Abiotic SRP 2.19 0.17 0.13 0.13

VP Biotic BA 3.81 0.06 0.28 0.28

Abiotic SRP 2.19 0.17 0.18 0.18

Temporal

VA Biotic PA 3.63 0.08 0.32 0.32

Abiotic SRP 6.43 0.04 0.45 0.45

V1 Biotic Syn 2.30 0.09 0.21 0.21

Abiotic DIP 5.03 0.06 0.39 0.39

V2 Biotic LNA 4.30 0.07 0.35 0.35

Abiotic SRP 8.18 0.03 0.51 0.51

V3 Biotic APP 3.04 0.10 0.22 0.22

Syn 4.01 0.05 0.29 0.50

Abiotic SRP 6.18 0.04 0.44 0.44

VP Biotic PA 3.54 0.09 0.28 0.28

Abiotic SRP 8.85 0.02 0.50 0.50

DIN 10.41 0.01 0.28 0.78

The analyses were conducted separately for biotic and abiotic variables as well as for samples collected along four cross-reef transects and during the time-series in
the Oponuhu Bay. Pseudo-F and p-values were obtained by permutations (n = 999). P-values at a significance level of 0.05 are in bold. Proportional and cumulative
percentages of variance are also reported. BA, bacterial abundance; LNA, low nucleic acid bacteria; HNA, high nucleic acid bacteria; SRP, soluble reactive phosphorus;
DIN, dissolved inorganic nitrogen; PA, phytoplankton abundance; APP, autotrophic picoplankton; Syn, Synechococcus; Prochl, Prochlorococcus.
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FIGURE 10 | Spatial distribution of viral lytic variables across the fringing

reef (FRG), lagoon (LAG), back reef (BR), crest (CR), and fore reef (FOR)

habitats. (A) Viral production (VP), (B) viral turnover (VT), (C) viral-mediated

mortality of bacteria (VMB), (D) amount of organic carbon released upon viral
lysis (OCr), and (E) proportion of bacterial standing stock removed due to viral
lysis (BSSr). See Figure 4 for legend.

abundance may have dampened the relationship between viruses
and host microbes.

Higher VA was measured in the OB relative to other reef sites,
with an overall mean value of 1.9 × 107 ± 0.9 × 107 viruses ml−1.
During the time-series, VA displayed relatively similar temporal
oscillations to BA and PA, with relatively low date-to-date changes
(range: 0.3- to 2.4-fold; Figure 10A; KW, p > 0.05). DistLM for
temporal VA vs. biotic (i.e., BA and PA) and abiotic (i.e., SRP,
DIN and time) variables indicated that these variables explained
32 and 45% of temporal variability, with PA and SRP as their
main predictors (Table 2). As outlined in the above section, the
relatively weak relationships among VA, the measured biotic and
abiotic variables suggest that other unmeasured variable(s) may
be partially responsible for the observed temporal variability in
virus–host dynamics, with implications for temporal distributions
of VA.

SPATIOTEMPORAL DISTRIBUTION OF VIRAL SUBSETS INDICATES
DYNAMIC VIRAL ASSEMBLAGES
Based on their fluorescence properties, FC analysis revealed at least
three viral subsets (i.e., V1, V2, and V3), with V1 and V2 contribut-
ing to most of the VA (70 and 25%, respectively). This is consistent
with subsets reported in other marine ecosystems (Baudoux et al.,
2007; Evans et al., 2009; Brussaard et al., 2010; Mojica et al., 2014),
however it should be noted that in some environments, only V1

and V2 are readily detected (Patten et al., 2006; Seymour et al.,
2006; Payet and Suttle, 2008).

Along transects, V1 and V3 displayed relatively high spatial
variability (Figures 8E–H, M–P), with significant increases in V1
in the FRG relative to the LAG and significant increases in V3
in the CR relative to the BR (KW with Dunn’s test, p < 0.05;
Figures 9B,D). V2 displayed relatively low spatial variability along
transects (Figures 8I–L), with no significant differences detected
among reef sites (KW, p > 0.05; Figure 9C).

Distance-based linear model for spatial V1, V2, and V3 abun-
dances indicated significant relationships with biotic (i.e., HNA,
LNA, Syn, Prochl, APP, and ANP) and abiotic (i.e., DIN, SRP
and coordinates) variables (Table 2). Biotic and abiotic variables
explained 39 and 47% of spatial variability in V1, respectively, with
both LNA and Prochl, and both SRP and DIN as the best predictors
(Table 2). Previous studies have reported that LNA cells contain
a larger proportion of small bacteria from the alphaproteobac-
terial clade SAR11; these SAR11 bacteria typically co-occur with
Prochl in nutrient-depleted waters (Hill et al., 2010; Gomez-Pereira
et al., 2013). Therefore it may be that spatial patterns in V1 abun-
dances were more associated with changes in these autotrophic
and heterotrophic bacterial subsets across the reef. Biotic and abi-
otic variables explained 27 and 34% of spatial variability in V2,
with HNA and SRP as the best predictors (Table 2). This suggests
that viruses in the V2 subset were associated with heterotrophic
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FIGURE 11 | Short-term temporal distribution of viruses in the

Opunohu Bay. (A) Viral abundance (VA), low nucleic acid viral subset
abundance (V1), medium nucleic acid viral subset abundance (V2) and high
nucleic acid viral subset abundance (V3), (B) viral production (VP),
viral-mediated mortality of bacteria (VMB) and proportion of bacterial
standing stock removed due to viral lysis (BSSr), and (C) amount of organic
carbon released upon viral lysis (OCr) and viral turnover (VT) in the Oponuhu
Bay. Error bars represent standard deviations.

microbes, with presumably high metabolic activity as outlined
above. Biotic and abiotic variables explained 50 and 44% of the
temporal variability in V3, respectively, with Syn, APP, and SRP
as the best predictors (Table 2). This indicates that V3 is com-
prised of viruses that are associated with autotrophic microbial
host cells.

Similar to temporal patterns in microbial community structure,
proportions of V1, V2, and V3 remained relatively stable during
the time-series in the OB, with only small date-to-date changes

(Figure 10A). This suggests that viral community structure was
relatively homogeneous over time. DistLM for temporal V1, V2,
and V3 abundances revealed significant relationships with biotic
and abiotic variables in the OB (Table 2). Similar to temporal
variations in overall VA, associations between viral subsets and
biotic/abiotic variables tended to be stronger than those observed
for transects. For V1, biotic and abiotic variables explained 21
and 39% of temporal variability, respectively, with Syn cells and
SRP as the main predictors (Table 2). For V2, biotic and abiotic
variables explained 35 and 51% of temporal variability, with LNA
cells and SRP as the main predictors (Table 2). For V3, biotic
and abiotic variables explained 50 and 44% of temporal variabil-
ity in V3 abundances, respectively, with Syn, APP and SRP as the
best predictors (Table 2). Different best predictors in the OB indi-
cate that V1, V2, and V3 subsets may be influenced by different
ecological factors than those within transects. However, V3 subset
had similar predictors in both the OB and transects, suggesting
these viruses are associated with changes in autotrophic microbial
communities.

SPATIOTEMPORAL DISTRIBUTION OF LYTIC ACTIVITY SUGGESTS
VIRUSES IMPACT MICROBIAL MORTALITY AND CARBON CYCLING
Along transects, estimates of lytic VP and VT averaged
7.3 × 109 ± 4.2 × 109 viruses l−1 d−1 and 0.6 ± 0.3 d−1, respec-
tively (Figures 11A,B), and were within ranges previously reported
for other marine ecosystems (Wilhelm et al., 2002; Poorvin et al.,
2004; Winget et al., 2005; Weinbauer et al., 2009; Payet and Sut-
tle, 2013). In general, VP and VT followed similar spatial trends
along transects (Figures 11A,B), with highest and lowest values in
the FRG and BR, respectively. Biotic (i.e., PA and BA) and abiotic
(i.e., SRP, DIN and coordinates) variables explained 28 and 19%
of spatial variability in VP, respectively, with LNA cells and SRP
as the main predictors (Table 2). This implies phage infection of
smaller bacteria may have been important, and is consistent with
recent evidence showing phages are associated with highly abun-
dant and small bacteria in the SAR11 and SAR116 clades in the
oceans (Kang et al., 2013; Zhao et al., 2013).

Consistent with VP, VMB, BSSr and OCr displayed similar spa-
tial trends across reef habitats (Figures 10C–E). On average, VMB
removed 2.5 × 108 ± 1.4 × 108 bacteria l−1 d−1 (range: 5.1 × 107–
5.2 × 108 bacteria l−1 d−1), which accounted for an estimated BSSr
of 72 ± 31% d−1 (range: 24–133% d−1) and OCr of 4.9 ± 2.7 μg C
l−1 d−1 (range: 1.0–10.4 μg C l−1 d−1) along cross-reef transects.

Assuming mean ambient DOC concentrations of 68 μM as pre-
viously measured in this reef ecosystem (e.g., Nelson et al., 2011),
viral lysis may contribute to ca. 2–15% of the pool of DOC in these
reef waters. This implies that viral lytic activities may be impor-
tant in fueling labile organic carbon and associated nutrient supply
to other non-infected microbes in these oligotrophic reef waters.
This is especially true for the BR, which is known to be a particu-
larly carbon depleted habitat (Nelson et al., 2011). Therefore, slow
release of organic matter upon viral lysis maybe providing essen-
tial carbon and nutrient supply for microorganisms in the BR and
sustain the low levels of heterotrophic and autotrophic microbes
observed in this study.

For the time-series in the OB, VP, and VT estimates mirrored
temporal patterns in VA and averaged 4.1 × 1010 ± 3.1 × 1010
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viruses l−1 d−1 and 2.8 ± 2.4 d−1, respectively (Figures 11B,C).
VP and VT displayed small temporal oscillations, with no signifi-
cant differences detected between sampling dates (KW, p > 0.05).
Temporal changes in biotic (i.e., PA and BA) and abiotic (i.e.,
SRP, DIN and time) variables explained 82 and 15% of variability
VP, respectively, with APP, Syn, and SRP as the main predictors
(Table 2). These results indicate that viral lytic production was
strongly associated with changes in primary producers in the OB.

Consistent with VA and VP, higher estimates for VMB,
BSSr, and OCr were detected in the OB compared to tran-
sects (Figures 11B,C). On average, VMB was responsible for
the removal of 1.4 × 109 ± 1.0 × 109 bacteria l−1 d−1. This
corresponds to an estimated BSSr of 152 ± 108% d−1 (range:
42–367% d−1) and OCr of 27.8 ± 19.6 μg C l−1 d−1 (range:
6.9–61.2 μg C l−1 d−1) in the OB. VMB, BSSr, and OCr followed
similar temporal trends throughout the time-series, with relatively
low date-to-date changes (Figures 11B,C). Similar to patterns in
BA, PA and VA, these results suggest that viral lytic activity was
relatively stable over time in the OB.

Again, assuming a mean DOC concentration of 68 μM (e.g.,
Nelson et al., 2011), these cellular lysis products were responsible
for between 10 and 90% of ambient DOC levels in the OB. Thus,
viral infection of heterotrophic bacteria may be an important
source of DOC and associated nutrients for other non-infected
microbes in the OB.

METHODOLOGICAL CONSIDERATIONS
These results should be interpreted in the context of several
limitations. We used FC to identify viral subsets, according
to an established protocol that has been used in other studies
(Brussaard et al., 2010). Although significant trends among viral
subsets and biotic communities were detected, their identities
still remain unclear. Recently, Martínez-Martínez et al. (2014)
genetically characterized three viral subsets with relatively simi-
lar FC signatures to those reported in this study. While increased
proportions of viruses infecting eukaryotic phytoplankton were
detected from the V1 and V3 subset (Martínez-Martínez et al.,
2014), these subsets still contained significant proportions of
phages, highlighting the poor resolution of FC in distinguish-
ing particular viruses associated with certain host cells. Thus,
it is possible that this low resolution may have masked poten-
tial correlations among viruses and their hosts, explaining rel-
atively weak relationships among viruses, biotic and abiotic
variables. However, FC has become a standard methodology for
studying of virus–host interactions, but can be extended and
complemented by other microscopic techniques and molecular
approaches.

During the viral-reduction approach, filtration steps required
for reducing virus–host contact rates may have altered nutri-
ent availability and microbial processes, potentially influencing
results. In addition, estimates of BS and cellular carbon quota
used to infer viral-induced mortality and carbon cycling are
likely to fluctuate across gradients of microbial productivity.
Despite these caveats, the viral-reduction approach has been suc-
cessfully applied in various aquatic environments and has been
shown to be a robust and straightforward approach for estimat-
ing viral lytic activity (Weinbauer et al., 2010b and references

therein). The repeatable temporal patterns measured during
our 3 week time-series study suggest that this viral-reduction
approach can be applied to investigate lytic viral activity in
response to variability in host abundance and environmental
conditions.

Further work is needed to improve detection of viruses infect-
ing microbial hosts in natural assemblages. In particular, the
development of high-throughput methods to routinely detect
virally infected microbial hosts from environmental samples, in
conjunction with developments of specific molecular probes to
target potential host–virus systems will provide novel insights on
viral dynamics and their impacts in the oceans. Recently, the appli-
cation of a new culture-dependent and independent approaches
has allowed direct detection of viruses infecting microbial host
isolates and offered new exciting perspectives for enabling simul-
taneous detection of host–virus interactions (Deng et al., 2012;
Allers et al., 2013). However, the applicability to study a broader
range of natural samples has still to be shown.

SUMMARY
This study is the first to report the abundance, distribution and
ecological impact of viruses in the coral reef waters of Moorea
Island. Our data revealed distinct short-term spatiotemporal
changes in VA and activity and demonstrated that these changes
were linked to microbial host abundances and environmental
variables. This work also confirmed general findings from other
studies which have suggested that small shifts in host abundance
and activity may be important in driving VA and lytic activity in
marine systems (Fuhrman, 1999; Weinbauer, 2004; Seymour et al.,
2005; Suttle, 2007; Brussaard et al., 2008; Clasen et al., 2008; Payet
and Suttle, 2008; Rowe et al., 2008; Evans et al., 2009; Winget et al.,
2011; Winter et al., 2012; Payet and Suttle, 2013).

Analysis of short-term temporal patterns in VA and lytic pro-
duction in OB indicated persistent VA and infection. These
findings confirm recent time-series studies that have also observed
steady-state temporal dynamics of lytic viral activity (Winget and
Wommack, 2009; Winget et al., 2011).

Highest VA and lytic activity as well as highest microbial host
abundances were reported in FGRs as well as in OB, likely due to
microgradients in nutrient availability.

Viral lysis was estimated to kill a significant fraction of het-
erotrophic microbes (%BSSr: 24–367%) daily. These mortality
estimates are substantially higher than those estimated by Bouvy
et al. (2012) in another reef ecosystem in French Polynesia, but
were in agreement with other studies in other marine ecosys-
tems (Wilhelm et al., 2002; Winget et al., 2005, 2011; Evans et al.,
2009; Winget and Wommack, 2009; Evans and Brussaard, 2012;
Payet and Suttle, 2013). Given that Bouvy et al. (2012) used fre-
quency of visibly infected cells to infer mortality estimates through
transmission electronic microscopy, it may be that this approach
underestimated lytic viral impacts, as it heavily relies on specific
conversion factors and potentially lacks of resolution due to sample
preparations (e.g., see Weinbauer et al., 2002).

Notably, our data demonstrate that viral lysis substantially con-
tributes to the overall pool of DOC (OCr: 1.0–62 μg C l−1 d−1)
available to other microbes in these oligotrophic coral reef waters.
Our estimates of OCr due to viral lysis were ca. 1- to 90-fold
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higher than previous reports in oligotrophic polar waters (Evans
and Brussaard, 2012; Payet and Suttle, 2013), but within the range
of other studies in marine environments (Wilhelm et al., 2002;
Winget et al., 2005, 2011).

In conclusion, this study demonstrates that viruses have a
key role in both top down and bottom up control of microbial
communities in coral reef seawater.
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