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The objective of many simulations is to study the

steady-state behavior of a nonterminating system. The

initial conditions of the system are often atypical because

of the complexity of the system. Simulators often start

the simulation with the system empty and idle, and

truncate, or delete, some quantity of the initial

observations to reduce the initialization bias.

This paper studies the application of Schriber's

truncation rule to a queueing model, and the effects of

parameter selection. Schriber's rule requires the

simulator to select the parameters of batch size, number of

batches, and a measure of precision. In addition,



Schriber's rule assumes the output is a time series of

discrete observations. Previous studies of Schriber's rule

have not considered the effect of variation in the time

scale (time between observations).

The performance measures for comparison are the mean

squared error and the half-length of the confidence

interval. The results indicate that the time scale and

batch size are significant parameters, and that the number

of batches has little effect on the output. A change in

the distribution of service time did not alter the results.

In addition, it was determined that multiple replicates

should be used in establishing the truncation point instead

of a single run, and the simulator should carefully

consider the choice of time scale for the output series and

the batch size.
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Truncation Rules in Simulation Analysis: Effect of
Batch Size, Time Scale and Input Distribution on the

Application of Schriber's Rule.

I. Introduction and Background

A simulation is a representation of the operation of a

process or system over time. The behavior of the system as

it changes over time is studied by developing a simulation

study, usually consisting of a simulation model that is

excercised under multiple configurations. The simulation

model usually includes a set of assumptions about the

operation of the system. Once developed and validated, the

study can be used to investigate a variety of changes to

the system, without changing the system itself. In this

way, a simulation study can be used as an analysis tool for

predicting the effects of change to an existing system, and

it can also be used for proposed systems. The data

generated by the simulation model is used to estimate the

performance of the system.

A. Types of Simulation Studies

There are two basic types of simulation studies,

terminating and nonterminating. A terminating, or

transient simulation has a specified duration of time TE,

where E is a specified event or set of events (e.g. a

specified time period has elapsed, or a specified number of

units have exited the system). The simulation begins at
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time 0, under well specified initial conditions, often

empty and idle.

A nonterminating system runs continuously, or for a

very long period of time. A steady-state simulation is a

simulation whose objective is to study long run or steady-

state behavior of a nonterminating system. The steady-

state properties are not influenced by the initial

conditions and there is no natural event E to end the

simulation. In general, a steady-state analysis is done to

determine how a system will respond to a peak load of

infinite duration. In this type of simulation, the

simulator must decide to stop the simulation after some

number of observations have been collected or after some

length of time, TE. The stopping time is thus a design

choice and is not determined by the inherent nature of the

problem.

B. Performance Measures and Their Estimation

1. Point Estimate

One of the objectives of statistics is to make an

inference about a population based on the information

contained in a sample. Since the population can be

characterized by numerical descriptive measures called

parameters, the objective of a statistical investigation

may be to make an inference about one or more of the

parameters. Estimation of the parameter of interest, or
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the target parameter, is one method of inference. A single

number as an estimate of the target parameter, with the

intention that this number be as close to the target

parameter as possible, is called a point estimate.

As described above, the simulation study is used as an

analysis tool. The data generated by the simulation model

is used as a random sample to estimate the population

parameters of interest. Suppose the simulation study is

of a bank, and the parameters of interest are how many

customers are in the bank at time t, and how long each

customer, i, must wait before being helped. The time each

customer must wait, Xi, can be recorded in the form {X1,

X2,...., The average time a customer must wait is an

ordinary mean. When the output data is in this form, call

the parameter of interest 0.

The point estimator of 0 based on the data {X1,...,X,1}

is defined by

8 =1EXi
n i=i

is a sample mean based on a sample of size n.

The average number of customers in the bank at any

given time t, can be recorded in the form {X(t), 0<t<T}.

In this case, it is important to consider the amount of

time that has passed in calculating the average, so this is
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a time-weighted mean. Let 0 be the parameter when the

output data is of this form.

The point estimator of 0 based on the data

{X(t), 0<t<T1, where T is the total time elapsed, is

defined by

'0= 4, foTx(t)dt

0 is a time weighted average of X(t) over [0,T]

The estimation of proportions, such as how much of the

time a teller is busy in the bank example, is a special

case of the estimation of means. The discussion that

follows will focus on the ordinary mean, 0, since the

concepts for time weighted averages and proportions are

similar.

In classical statistics, a point estimator is said to

be an unbiased estimator if the expected value of the point

estimator is the parameter of interest.

E16( =0

In general,

(1.1)
b = E(0) -0

where b is the bias in the point estimator.

If the bias b equals 0, then the point estimator is

unbiased. It is desirable to have point estimators that

are unbiased, or have as small a bias b as possible,

relative to the magnitude of the parameter. In addition,

if two unbiased estimators are compared, the one with the



smaller variance is preferred. In this way, in repeated

sampling, a higher fraction of the values of the estimator

will be "close" to the target parameter 0.

The point estimator most commonly used in simulation

studies is the sample mean, X(n), where n is the sample

size, as an estimate of the population mean, A.

X-%X(n) = 1- xi
n i=i

5

(1.2)

The sample mean, X(n), is an ordinary mean, so it is a

special case of 0, and it is an unbiased estimator of the

population mean. In the example of the bank, a sample

consisting of the amount of time different customers had to

wait could be used to estimate the mean length of time a

customer must wait before being helped.

It is often of interest to estimate the steady-state

characteristics of the system. The steady-state mean is

given by

Tr. liM 1 v.
12-400 n (1.3)

The value of R is independent of the initial

conditions. However, the sample mean as an estimator of

the population mean, A, without any other information, is

insufficient. A method for interval estimation is also

needed.



6

2. Interval Estimation

Interval estimation is where an interval of possible

values intended to enclose the parameter of interest is

specified. In general, the two endpoints of the interval

are estimated. Ideally, the resulting interval should have

two properties; it should contain the target parameter, 0,

and the interval should be relatively narrow. Since the

endpoints of the interval are functions of the sample, they

will vary in a random manner from sample to sample. The

amount of the variability in the sample, then, should be

relatively unbiased to provide a good interval estimate.

The sample variance, S2, is an unbiased estimator for a2,

the population variance when the samples are independent

and identically distributed (i.i.d.).

S2 (n) = E [X-Y(n)]2 (1.4)
n-1

Since the variance of R is given by

Var(X) = a2
n

an unbiased estimator of Var(X) is given by

(1.5)

var p 7 (n) = s2 (1.6)

3. Confidence Intervals

An interval estimate is commonly called a confidence

interval, and the probability that a confidence interval
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will enclose the target parameter, 0, is called a

confidence coefficient. The confidence coefficient gives

the fraction of time, in repeated sampling, that the

interval estimate will contain the target parameter, 0. If

the Xi's are independent and identically distributed normal

random variables, as in classical statistics, then an exact

confidence interval, c.i., of 100(1-a) for A is

17(n) ±t a S2(n)
n-1,1-7 n (1.7)

where tn_1, 1 _a/2 is the upper 1-a/2 critical value for

a t distribution with n-1 degrees of freedom (d.f), and

,/S2 (n) is the standard error of R(n).

The half-length, HL, of the c.i. is used as a measure

of absolute precision, which is dependent on the population

variance of the Xi's, a2.

HL = t \I S2 (n)
n-1,1-T2 (1.8)

The mean-square error is a performance measure that

combines the bias and the variance. Thus, it encompasses

both the accuracy and the precision of the point estimate.

MSE = b2 +Var (5f- (n)) (1.9)
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C. Output Analysis for Steady-state Simulations

1. Autocorrelation

All the equations developed above are useful only if

the observations X1, X2,..., Xn are i.i.d. random

variables. However, this does not seem to be true for

most simulation output (Law and Kelton, 1983). The output

is autocorrelated rather than independent and nonstationary

rather than identically distributed. For example, if the

ith customer arrives and waits a long time, then it is

highly likely that the (i+1)st customer will also wait a

long time. The output data is likely to be nonstationary

because of the difficulty in choosing the initial

conditions of the simulation to be representative of the

"typical" operation of the system, so the distributions of

the output observations change over time.

Suppose the observations X1, X2,..., Xn are from a

covariance stationary process, i.e. the covariance of lag i

is independent of time, with a common finite mean A and

common finite variance a2. The sample mean, R, is still an

unbiased point estimator for this process, but the sample

variance S2, is no longer an unbiased estimator of the

population variance, a2. The variance of the sample mean

is given by (Fishman,1973)



Var(X(n)) =
2i n-1

1+2 V." 1-i
Pi

i=1

The correlation between any two observations at lag i

(i.e. i observations apart) is given by pi. If the

observations are positively correlated, (i.e. pi > 0 for

i=1,2,...,n-1), which is true of the output data of most

queueing simulations (Banks and Carson, 1984), the sample

variance will have a negative bias: E[S2(n)] < a2.

However, the limit of E[S2(n)] as n approaches infinity is

a2. Thus, S2(n) is asymptotically unbiased. The net effect

when pi is positive is an unjustified confidence in the

apparent accuracy of the point estimator, thus the actual

coverage of a desired 90% c.i. could be significantly less

than 90%. This means that if the process is really

covariance stationary, and the i.i.d. method is used to

estimate the variance of the sample mean, there are two

sources of error. The first is the bias in S2(n) as an

estimator of a2 and the second is the effect of neglecting

the correlation term, pi. When the output is not

stationary, even the sample mean, R, is a biased estimator

of the population mean, A.

2. Initialization Bias

As noted above, the initial conditions for the

simulation must be specified. The initial state is often

chosen with little knowledge of the system behavior and
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hence is atypical. Convenient values, such as empty and

idle, are often used. The output of the system is strongly

influenced by these initial conditions. Wilson and

Pritsker (1978b) found that the choice of initial

conditions for a run had a greater influence on the

accuracy of the results than any other factor. This can

cause the collected data to be significantly biased near

the start of each run. The most popular technique for

reducing this bias is to divide each simulation run into

two phases: an initialization phase from time 0, followed

by a data collection phase. This allows the model to

"warm-up", reaching conditions more similar to steady-state

before data collection begins. The data from the

initialization phase is discarded, and this method is

referred to as truncation. The period of time before

steady-state is achieved is called the transient time.

However, with this method it is difficult to identify an

appropriate truncation point.

3. Truncation

Wilson and Pritsker (1978a) identified three

categories for the more common truncation rules: those

based on time series analysis, (notably Fishman); those

derived from queueing theory models, (Blomqvist, Cheng,

Law, and Madansky); and heuristic rules (Conway, Fishman,

Gafarian, Gordon, and Schriber). The rules based on time
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series analysis and queueing theory have limited

applicability, even though they are rigorously correct.

Although many real-world systems can be described by an

autoregressive or queueing theory model, and thus these

methods are applicable, several model parameters must be

estimated to apply the truncation rules. The estimation

process can be time consuming and cumbersome for a complex

model. In addition, as the systems become more complex, a

single queueing theory model or autoregressive model may no

longer fully describe the system. Because of the desire

for simplicity, many heuristic truncation rules have been

developed.

The first study of the performance of several popular

heuristic truncation point selection methods was done by

Gafarian et al (1978). The purpose of a truncation rule was

defined to be the determination of the minimum time, t*,

such that

1-6 <
E[Xt]

< 1+6
Az

for all t > t

where 6 is an assigned tolerance. This is essentially

identifying the point at which the bias has been reduced to

an acceptable level. A set of relative criteria was

developed for comparing five heuristic truncation rules.

The truncation rules were applied to a Markovian model

(M/M/1/00) under various initial conditions. The criteria

included accuracy, precision, generality (apply to both
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autoregressive and queueing theory models), cost (in CPU

time), and simplicity. This set of criteria is useful for

comparing truncation rules, although it is not clear that

the best policy for estimating t* is also the best policy

for estimating the steady-state mean, gx. The heuristic

rules discussed by Gafarian, et al (1978) included rules

developed from queueing models and autoregressive models,

but none met their set of criteria, typically because of

accuracy or cost.

Wilson and Pritsker (1978b) recommended using loss of

confidence (standardized confidence intervals) as a

performance measure for comparisons of different systems.

Two finite-space Markovian models, including a M/M/1/15

queueing model, were used for the analysis. Heuristic

truncation rules were applied to a time series output of

the model representing the length of the queue. The model

was run 1000 times so that the distribution of the

truncation point could be studied, since previous studies

neglected the randomness of the truncation point. The

theoretical bias, variance, and mean square error of the

sample mean over a fixed range of truncation points were

calculated and tabulated. The tabulated values were then

averaged with respect to the empirical truncation point

distribution, from the 1000 replications. Those results

were used to construct confidence intervals for the steady-

state mean, and were standardized for comparison of four
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different heuristic truncation rules. The two systems

studied indicated that the choice of initial conditions

affected the performance of the sample mean as an estimator

of steady-state mean more than the choice of truncation

rules. In these Markovian systems, the steady-state mode

was the best choice for initial conditions. The truncation

rules were also very sensitive to parameter selection.

Schruben (1982) developed a general approach to

testing for initialization bias in the mean of a simulation

output series. The procedure recommends the output be

grouped into small batches (of size 5) before the tests are

applied. The method can be used to detect initialization

bias before or after truncation. The assumption is that

the point estimate will be improved if there is no

initialization bias. However, then a good method would be

to discard all but the last observation to minimize the

bias (for example, if the output data was a time series).

But this increases the variance (since the sample size is

now 1) and hence the size of the confidence interval. It

is interesting to note that although the performance

measure is different, Schruben also recommends using batch

means as a method for smoothing the simulation output.

Kelton and Law (1984) developed a procedure based on

independent and probabalistically identical replications,

deletion of initial data, and a time series regression

technique that may be valid in reducing initialization
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bias. First order autoreggressive models with finite run

lengths were considered. The performance measures were the

mean absolute deviation and confidence interval

performance. The purpose was to find a general method that

would perform adequately for many types of models. Thus,

general trends were identified and observed. Kelton and

Law found that replication and deletion of some initial

amount improved the c.i. performance in many cases, and did

not severely worsen the results of those models not

improved.

Although the effectiveness of truncation rules was

questioned in the studies done by Wilson and Gafarian,

truncation is still one of the most common methods of

reducing initialization (warmup) bias. The performance

measures vary from study to study, but so far all

investigated have been evaluated in terms of models with

theoretical results. The application of heuristic

truncation rules generally require discrete observations

of the system, but the effect of the time between

observations has not been studied.
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II. A Study of the Application of Schriber's Rule

A. Schriber's Heuristic Truncation Rule

Schriber (1974) suggests that the approach to steady-

state conditions may be monitored by partitioning the

observed time series {Xt: 1 < t < n} into batches of some

fixed size b. The behavior of the batch means can be used

to identify stable behavior in the output - thus implying

that steady-state has been achieved. A typical initial

conditions generally produce extreme values in the set of

batch means. As t increases, the batch means become

relatively stable, i.e. become less variable. This

stability indicates that the batch means were observed

outside the transient period. Schriber (1974) uses a

detailed example to illustrate this method, but uses

inspection rather than an algorithm to identify the

appropriate truncation point. Wilson (1977) used a

formulation of Schriber's rule where a batch size b, a

batch count k, and a tolerance e were specified. The

truncation point, d, is set at time n if the k most

recent batches all fall within the tolerance e of each

other. The mathematical expression is:

max{I (b) -Xi(b)1 : 1<j , 1<k} < e (2.1)

where .(b) is the batch mean of the jth batch, and

R1(b) is the batch mean of the lth batch.
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The minimum truncation point, as seen by inspection,

must be at time n = k*b. If at that time, the truncation

rule is satisfied, then d = n.

minimum truncation point: d = k * b (2.2)

Otherwise, the oldest batch {X1,...,X0 is dropped,

and the batch mean for the next batch {X114.1,...,Xn+0 is

calculated. The truncation rule is again applied (equation

2.1). If the truncation rule is still not satisfied, the

oldest batch is dropped and the steps are repeated. If the

rule is satisfied, truncation occurs and d = n. The

truncation point, d, is sensitive to the selection of

parameters k, b and e, as well as the scale of the discrete

observations of the output.

Schriber's rule is conceptually appealing,

particularly because of other work with batch means as a

method to overcome autocorrelation, such as Schruben

(1982), Law (1977), and Law and Carson (1979). Wilson's

study of Schriber's rule (1977) considered a single

selection of k, b, and e but did not consider the effect of

the time scale or a service time distribution other than

exponential.

1. Performance Measures

In order to determine the effects of parameter

selection, time scale and service time distributions, some

performance measures are needed. First of all, the
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goodness of the point estimate must be considered. The

mean squared error (MSE) will be used as a measure of the

accuracy, since it encompasses both the bias and the

variance and the HL will be used as a measure of precision.

Second, the number of initial observations where the system

is empty and idle will be used to describe the effects of

the time scale on the truncation point. Third, the

empirical truncation point distributions will be used for

comparison of parameter sets to determine if there is any

significant difference.

2. Computation of Mean Squared Error

The mean squared error is the sum of the bias squared

and the variance (Equation 1.9, page 7). Thus, for each

design level,

MSER = [ YR /4x ] 2 + Viar (YR) (2.3)

where R is the number of replicates.

This assumes that all the replicates (R = 1000) are

used to calculate a single point estimate. This method

should be used if multiple replicates will be used to

define the truncation point.

If each of the replicates is considered a trial, and

the average MSE is calculated, then the MSE must be

calculated for each trial, then averaged. This method is
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used if the practitioner will base the truncation point on

a single run. The mean Rr and Variance Sr are outputs of

each replicate, r. Then

MSEr = [iz. /Ix] 2 + Sr2 (2.4)

where

Xr = 5Cn-d

or

II

i =
1r E X .n-d j=d+1 -7

(2.5)

where n is the sample size and d is the truncation point.

then

R

MSE = 1 MSEr
R1 1

or

MSE = 1;2 + 12

(2.6)

(2.7)

Since the bias can be either positive or negative, the

bias must be squared, then averaged if equation (2.7) is

used, because

1:7 > (s)2

3. Computation of Confidence Interval Precision

The half-length, HL is used as a measure of confidence

interval precision, which means a small HL is desirable.

The sample size of 1000 replicates is large enough to allow
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the use of the normal approximation Za for ta. Then, for

each design level, equation (1.8) page 7, becomes

HLR = a (s.e.)R (2.8)

where s.e., the standard error, is defined as

(s.e.)R =
Var (2.9)

For each replicate, equation (1.8) page 7, becomes

HLr = (s.eor

where s.e. is

Sr2(s.e.)r =

(2.10)

(2.11)

The average HL, HL is

HL = 1 E HLr (2.12)
r=1

B. Application to a Single-Server Queue

The simulation study was run on a Hewlett-Packard

QS/20, a 386 personal computer. The simulation study was

written in SIMSCRIPT 11.5, release 2.20. The system is

analogous to a bank, which has one teller, and a customer

arrival rate and service time. The arrival rate and

service rate are independent. In addition, when there are

15 customers in the bank, any potential new customers will

leave rather than join the waiting line. The number of

customers in the system (in the bank) was recorded at
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discrete time intervals, as noted above. Subroutines were

written as part of the SIMSCRIPT 11.5 program to apply

Schriber's rule to the output series, and record the output

measures defined above (page 16).

1. Exponential Distribution of Service Time

The first model considered is a M/M/1 queue with a

traffic intensity of .9, which is a simple, nontrivial

queueing system commonly cited in the literature; see

Schruben, Singh and Tierney (1983), Schruben (1982),

Gafarian, et al (1978), and Kelton and Law (1983). A model

with an arrival rate of 4.5/time unit and a service rate of

5.0/time unit with a finite capacity of 15 was used, as

discussed by Wilson (1977) in the evaluation of several

truncation rules. The theoretical steady-state mean for

the number in the system is 5.361 (Wilson, 1978). Since

the steady-state mean is known, the goodness of the point

estimate can easily be evaluated. A modification of the

distribution for the service time will be made so that the

effect of distributions can be considered.

2. Model with Weibull Distribution for Service Time

In addition to the M/M/1/15 model, a similar model

with a Weibull distribution for service time (M/G/1/15) was

used because it allows (with a shape parameter) a skewed

distribution to be considered. A shape parameter of
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alpha = 2 was used, with a scale parameter of beta = .2257.

Thus, the mean service time for both models is 0.2, but the

variance for the exponential is 0.04 while the variance for

the Weibull is 0.0109.

C. Discussion of Parameter Selection

The number in the system is the output measure, and

the observations are recorded at discrete time intervals.

After 50 observations of the number in the system are

recorded, regardless of the time scale, the truncation rule

is applied. The truncation point, the mean and variance of

the truncated sample, and the number of initial

observations with the system empty are recorded. If the

truncation point is not reached before 50, the value of 50

is recorded as the truncation point and the recorded mean

is the batch mean of the last batch.

The formulation of Schriber's rule by Wilson (1977)

was applied to the series output of the two models

described above. The parameters of batch size b, number of

batches k, and the time between observations are varied to

determine the impact on the estimate of the steady-state

mean. a (see equation 2.1, page 15) is fixed at 4.03,

which for the M/M/1/15 model corresponds to confidence

interval of alpha = .25 (Wilson, 1978).

The batch size can affect the minimum truncation point

(see equation 2.2, page 16) as well as the estimate of the
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steady-state mean. The batch size must be large enough so

that serial correlation between batch means is reduced and

the assumption of independence is valid. Thus, a minimum

batch size of 5 was chosen. A large batch size may cause

too much initial data to be discarded, which typically

increases the variance when the sample size is fixed. The

bias is reduced by increasing the truncation point, but at

the expense of the variance.

The number of batches, k, is also a factor. When k is

2, the comparison is strictly between the pair. But if

k > 2, then comparisons are pairwise, which increases the

sensitivity of the truncation rule to gradual increases or

decreases in the output series. However, it also increases

the computational time required, as well as increasing the

minimum truncation point (see equation 2.2, page 16). In

addition, since the maximum deviation (see equation 2.1,

page 15) is not always between adjacent pairs, the output

series may appear to still have initialization bias, and so

additional batches are needlessly truncated. This increase

in the truncation point causes an increase in the variance

of the truncated sample.

The observations of the output, in this case the

number in the system, are recorded at discrete time

intervals. The time scale, T, is a measure of the average

number of arrivals between observations. For a given

arrival rate, the time scale, T, is directly proportional
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to the time between observations. For example, suppose the

arrival rate is 5/unit time. Then if the time between

observations is 1, the time scale, T is 5 (5 arrivals

between observations). If the time between observations

is .5, the time scale, T is 2.5 (2.5 arrivals between

observations). When the time between observations is very

short, multiple initial observations with little or no

activity can occur. The batch means of the first two

batches are compared, and since they are similar, the

system appears to be at steady-state. In reality, few

actual arrivals have occurred, and significant

initialization bias may still exist. Suppose a long time

is allowed between observations; then the simulation run

time is increased and thus unnecessary cost may be added.

1. Experimental Design

The experimental design for the M/M/1/15 queueing

model is a 2 X 2 X 4 design, with parameters b (2 levels),

k (2 levels) and T (4 levels) as shown in table 1. A

thousand replicates were run at each design level.
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Table 1. Parameters and factor levels for the
experimental design.

Parameters Factor Levels

b, batch size
k, number of batches
T, time scale: average

arrivals per observation

5, 10
2, 3

1, 3, 4.5, 6.5

Each design level of 1000 replicates uses the same

sequence of random numbers and corresponding runs start

with the same seed to minimize the variation in the system.

This technique, called common random numbers, or

sychronization, is used to achieve an ideal degree of

blocking for simulation experiments. The inverse transform

method (Law and Kelton, 1982) is used to generate the

samples from the exponential distribution, which requires a

single uniform random number. The Weibull distribution

also requires a single random number to generate a sample

via the inverse transform method, preserving the

sychronization. Separate random number streams are used

for arrivals and service time.
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III. Analysis of Results

The M/M/1/15 model will be discussed first, and the

results will be used for the experimental design for the

M/G/1/15 model. The results of the M/G/1/15 model will

then be discussed, and finally the two models will be

compared.

A. M/M/1/15 Model

A summary of the mean, bias, variance, mean squared

error, standard error (s.e.) and half-length (significance

level of a = .1) are displayed in table 2 based on using

all the replicates for a single point estimate (equations

2.3, page 17, and 2.8, page 19). This is the method of

choice if the simulator will be using multiple replications

to determine the truncation point. The variance, mean

squared error and half-length were minimized with the

parameter set of T = 6.5, k = 2, and b = 5, but the bias

was minimized with the parameter set T = 6.5, k = 2, and

b = 10.

In some cases, the simulator will use a single run to

estimate the steady-state mean; then the average

performance of the truncation rule should be considered.

The average performance for each design level was computed

and summarized in table 3, including the mean, average
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Table 2. Results for each design level for the M/M/1/15
model using the replicates as observations for
a single point estimate. Equations 2.3 and 2.8
are used, with a significance level of .1 for
calculating the half-length.

T,k,b X(n) bias var mse s.e. HL

1,2,5 4.021 -1.340 6.591 8.385 0.081 1.726
1,2,10 4.276 -1.085 8.788 9.965 0.094 1.739
1,3,5 4.154 -1.207 7.862 9.319 0.089 1.734
1,3,10 4.503 -0.858 12.004 12.740 0.110 1.755

3,2,5 5.069 -0.292 5.218 5.304 0.072 1.717
3,2,10 5.202 -0.159 7.327 7.353 0.086 1.731
3,3,5 5.134 -0.228 6.904 6.956 0.083 1.728
3,3,10 5.290 -0.071 10.834 10.839 0.104 1.749

4.5,2,5 5.198 -0.163 3.798 3.824 0.062 1.707
4.5,2,10 5.312 -0.049 5.768 5.770 0.076 1.721
4.5,3,5 5.237 -0.124 5.371 5.387 0.073 1.718
4.5,3,10 5.198 -0.163 7.970 7.997 0.089 1.734

6.5,2,5 5.261 -0.100 2.934 2.944 0.054 1.699
6.5,2,10 5.319 -0.042 4.268 4.270 0.065 1.710
6.5,3,5 5.295 -0.066 4.398 4.403 0.066 1.711
6.5,3,10 5.236 -0.125 6.649 6.664 0.082 1.727



Table 3. Results for each design level for the M/M/1/15
model. Equations 3.1 and 2.12 are used, with a
significance level of .1 for calculating the
half-length.

T,k,b X(n) P 1,2 MSE s.e. HL

1,2,5 4.021 8.385 6.611 2.371 14.996 0.075 1.720
1,2,10 4.276 9.965 5.362 2.123 15.327 0.067 1.712
1,3,5 4.154 9.319 5.930 2.238 15.249 0.071 1.716
1,3,10 4.503 12.740 3.468 1.697 16.208 0.054 1.699

3,2,5 5.069 5.304 12.432 3.383 17.736 0.107 1.752
3,2,10 5.202 7.353 10.859 3.117 18.212 0.099 1.744
3,3,5 5.134 6.956 11.046 3.142 18.002 0.099 1.744
3,3,10 5.290 10.839 7.894 2.601 18.733 0.082 1.727

4.5,2,5 5.198 3.824 14.258 3.667 18.082 0.116 1.761
4.5,2,10 5.312 5.770 12.651 3.401 18.421 0.108 1.753
4.5,3,5 5.237 5.387 12.787 3.418 18.174 0.108 1.753
4.5,3,10 5.198 7.997 9.836 2.938 17.833 0.093 1.738

6.5,2,5 5.261 2.944 15.340 3.838 18.284 0.121 1.766
6.5,2,10 5.319 4.270 14.059 3.633 18.329 0.115 1.760
6.5,3,5 5.295 4.403 13.840 3.593 18.242 0.114 1.759
6.5,3,10 5.236 6.664 11.449 3.214 18.114 0.102 1.747
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bias, average variance, average mse, and average HL. The

MSE was calculated for each replicate, r, using the

theoretical steady-state mean Ax of 5.361. The variance of

the number in the system was recorded for each replication,

and so from equation 2.4, page 18, the MSE for the

truncated sample is

MSEr = [Yr(n-d)-tax]2+Var(Tfr(n-d)) (3.1)

where n = 50 (total observations), d is the number of

observations that were deleted, and r = 1,..1000.

The average MSE and average HL are minimized at T = 1,

k = 2, and b = 5. The average variance is minimized at

T = 1, k = 2, and b = 5 while the average squared bias is

minimized at T = 6.5, k = 2, b = 10. Notice that these

results are dissimilar to table 2, page 26. These are

somewhat unexpected results because in general, with a

fixed sample size, as more observations are discarded the

variance will increase (because the sample size decreases).

Wilson (1977) found that for the M/M/1/15 model, as the

truncation point increases, the bias decreased and the

variance increased. However, his study was based on the

theoretical bias and variance of the model given an

experimental truncation point. This study considers

experimental bias, variance, and truncation point. This

will be discussed further at the end of this section (page

42) .
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1. Initial Observations with the System Empty and
Idle

For each replicate, the number of initial observations

with the system empty and idle was also recorded. Since

the number in the system is observed at discrete time

intervals, if an entity arrives, is served, and exits

between observations, the system is still considered empty

and idle. The observations begin at simulation time 0.00,

so there must always be at least 1 observation with the

system empty and idle; the mode was 1 observation before

the system was busy for all time scales. Figure 1 shows

the first fifteen observations for three different time

scales (with the same random number stream). For this

replicate, when T = 1, there were 6 observations of an

empty system, 2 observations when T = 4.5, and only 1 when

T = 6.5. In this case, the number of initial observations

of an empty system decreases as T increases.

The set of initial observations of an empty system for

a given time scale forms an empirical distribution (see

table 4). These distributions can then be compared

statistically to describe the effects of the time scale.
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Number in the System
Discrete Observations

T = 1

Number Observed

T = 4.5
MEM

T = 6.5

Observation Number

Discrete Intervals

Figure 1. Number in the system.
Discrete observations with
varying time scales with the
same random number stream.

Table 4. Number of initial observations with the
system empty and idle for M/M/1/15
model.

T mean std dev max

1 2.186 1.620 16
3 1.551 0.967 8
4.5 1.414 0.770 6
6.5 1.345 0.661 7

Consider the case where T = 1, (average arrivals

between observations of 1); the mean is 2.186, but at

least once, 16 observations were recorded before the number
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in the system was more than 0. In general, as the time

scale increases, the maximum, mean, and variability all

decrease. A graphical representation of the results is

shown in figure 2. The shift in the mean and the

variability for T = 1 and T = 3 is particularly evident.

4

3

2

0

Number of Initial Observations of Empty System
Exp Arrival, Exp Service

MEAN + is
0

Number of Observations

MEAN
+

MEAN is
0

1.0 3.0 4.5

Average Arrivals per Time Period

6.5

Figure 2. Number of initial observations
with the system empty and
idle. The mean, and mean +/-
1 standard deviation are shown
for different time scales, T.

The number of observations before the system is busy

becomes more consistent from replication to replication as

T increases (the variance is reduced). So, if very few

replications are used to determine the truncation point

using Schriber's rule, a longer time scale (more arrivals

per observation) will be more likely to yield consistent
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results. In practice, Schriber's rule will be applied to a

limited number of output series, so it is important to have

consistent results. Thus, a very short time scale (such

as T = 1) should be avoided.

2. Empirical Truncation Distributions

The empirical distributions for the truncation point,

d, are generated from the independent replications of the

system operation under each parameter set, or design level.

Each run provides a random sample from the theoretical

distribution of the truncation point, d. The empirical

distributions were then compared for the different design

levels to determine if there was any significant

difference. Table 5 summarizes the frequency distributions

for the M/M/1/15 model.

Paired statistical comparisons of the truncation

distributions for T = 4.5 and T = 6.5 indicates that for

two batches of size five, the means are equal with a

significance level of p = 0.66, while for T = 3 and

T = 4.5, the means are equal with a significance of

p = .0034. The mean and standard deviation typically

increase as T, b, or k increase independently.

Representative frequency distributions for the

truncation point, d, are given in figures 3 through 7.

Figure 3 shows the frequency distribution for a typical
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design level, T = 4.5, b = 5, k = 2. Here, the majority of

the replicates, 76.7%, had a truncation point of 10, which

Table 5. Truncation point distributions for the
M/M/1/15 model.

Design Level
T,K,B mean (d) std dev(d) median

1,2,5 10.26 1.239 10
1,2,10 21.55 4.326 20
1,3,5 16.73 4.222 15
1,3,10 34.73 7.745 30

3,2,5 11.23 2.974 10
3,2,10 23.21 6.560 20
3,3,5 20.10 8.532 15
3,3,10 37.84 9.177 30

4.5,2,5 11.65 3.425 10
4.5,2,10 23.63 7.482 20
4.5,3,5 21.22 9.191 15
4.5,3,10 38.78 9.413 30

6.5,2,5 11.72 3.627 10
6.5,2,10 23.55 7.138 20
6.5,3,5 21.95 9.838 15
6.5,3,10 38.75 9.232 40
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Truncation Point
Batch size = 5, Number of Batches = 2
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Figure 3. Frequency distribution of the
truncation point, d, for the
design level T = 4.5, b = 5,
k= 2.

from equation 2.2, page 16, is the minimum truncation point

for this k and b.

A comparison of the empirical truncation distributions

for two design levels, with only the batch size changed is

shown in figure 4. The time scale, T, is constant at

T = 4.5, and the number of batches, k, is constant at k = 2

for both distributions. The mode in each case is the

minimum truncation point (d = k*b). So for a batch size of

5 with 2 batches, the mode is 10 and for a batch size of

10 with 2 batches, the mode is 20. The frequency of

occurance decreases as the truncation point, d, increases.
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Figure 4. A comparison of the frequency
distributions for the trun-
cation point, d, with a
constant time scale of T = 4.5
and number of batches of k = 2
for the M/M/1/15 model.

A typical comparison of the effect of the number of

batches, k, is shown in figure 5. The time scale T is

constant at T = 4.5 and the batch size is constant at

b = 5. In both cases, the most common truncation point is

the minimum truncation point. When k = 3, and the batch

size is 5, the mode is 15; similarly, when k = 2, the mode

is 10. The frequency for both decrease as d increases, but

the frequency decreases more slowly when k = 3, which is

also seen in table 5, page 33; the standard deviation for

T = 4.5, b = 2, k = 2 is 3.425, while the standard

deviation when k = 3 is 9.191. Pairwise comparisons of the

batch means are made when k = 3, which makes the



36

application of Schriber's rule more sensitive to gradual

increases or decreases in the output series. (batch means)

When the series is gradually increasing, a comparison of

two adjacent batch means might yield a difference less than

some 6 while the difference between the first and third

batches is more than E. Thus, if the ouput series is

gradually increasing, the application of Schriber's rule

with k = 2 may indicate steady-state had been achieved

while the application with k = 3 may indicate steady-state

had not been achieved.

Truncation Point
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35

40

45

50
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Time Scale = 4.5 Arrivals/observation

K = 3 K = 2
8 = 5 8 = 5

MEM
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400 600

Frequency

800 1000

Figure 5. A comparison of the
effect of the number
of batches on the
frequency distribution
of the truncation
point, d. The time
scale is constant at
T = 4.5 and the batch
size is constant at
size 5 (b = 5).
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Figure 6 shows a comparison of the frequency

distributions when the batch size is 10. It is clear that

the frequency of d = 50 is significantly higher than the

frequency of d = 40. Recall that if the truncation rule is

not satisfied within the initial 50 observations, a value

of 50 is recorded. Thus, the output series is terminated

even if Schriber's rule is not satisfied and the truncation

point is the last possible value. This is the likely

explanation for the parameter set k = 3 and b = 10.
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Truncation Point
Time Scale = 4.5 Arrivals/observation

K=2 K=3
B =10 8 =10

Truncation Point
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Frequency
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Figure 6. A comparison of the number of
batches on the frequency
distribution of the truncation
point, d. The time scale is
constant at T = 4.5, and the
batch size is constant at
b = 10.

The effect of the changing time scale, T, on the frequency

distribution of the truncation point, d, is shown in figure
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7. The batch size is 5, and there are two batches, k. The

mode is always 10 and the frequency decreases as the

truncation point, d increases. However, as the time scale,

T, increases from T = 1 to T = 6.5, the frequency of the

truncation point d = 10 decreases. With a short time

scale, T, as seen in the previous section, a significant

number of observations with the system empty and idle can

occur; this may incorrectly indicate steady-state has been

achieved. The frequency distributions for the truncation

point when T = 4.5 and T = 6.5 (with two batches of size 5)

are very similar. Recall from the discussion following

table 5, page 33, there was not a statistical difference

between these distributions.

Truncation Point
Batch size = 5, Number of Batches = 2

T=1.0 T = 3.0 T=4.5 T = 6.5
12E22:211 EZZ2Zii =ES 1111111111

Truncation Point14=EEEP=
*GOMM]
nibs

30
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46

50

0 200 400 600
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Figure 7. A comparison of the frequency
distribution of the truncation
point, d, when only the time
scale varies. The batch size
is constant at size 5 and the
number of batches is 2.
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In summary, as T, k, or b increase, independently of

the other variables, the mean and variance of the

truncation distribution increase. The mean was expected to

increase as k and b increased because the minimum

truncation point also increases (equation 2.2, page 16).

3. ANOVA

There were 16 design levels (see table 1, page 24)

with 1000 replicates, hence N is 16,000. The MSE and mean

were the dependent variables which were calculated for each

replicate using equations 2.4 and 2.5, page 18. The ANOVA

showed that for both mean and MSE, the time scale, T was

significant as well as the batch size b. The interaction

of T and b was significant for the mean but not for the

MSE.

Table 6. ANOVA for M/M/1/15 model with mean and
MSE as the dependent variable.

Dependent variable: mean; N:
Source Sum-Squares D.F.

16,000.
Mean-Square F-Ratio P

T 2964.353 3 988.118 148.042 0.000
K 9.330 1 9.330 1.398 0.235
B 58.366 1 58.366 8.744 0.003
T*K 30.909 3 10.303 1.544 0.199
T*B 55.191 3 18.397 2.756 0.040
K*B 1.433 1 1.433 0.215 0.648
T*K*B 10.200 3 3.400 0.509 0.680
error 106686.244 15984 6.675
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Table 6. (Continued)

Dependent variable: MSE; N:
Source Sum-Squares D.F.

16,000
Mean-Square F-Ratio P

T 22470.794 3 7490.265 82.639 0.000
K 85.207 1 85.207 0.940 0.330
B 363.517 1 363.517 4.011 0.043
T*K 468.844 3 156.281 1.724 0.158
T*B 418.638 3 139.546 1.540 0.200
K*B 0.056 1 0.056 0.001 0.929
T*K*B 238.100 3 79.367 0.876 0.455
error 1448766.823 15984 90.639

In an effort to consider the effects if the

theoretical mean is unknown, and hence estimated, the grand

mean, R was used in place of gx in calculations of MSE for

ANOVA. The results were the same (table 7); the time

scale, T, and the batch size were significant and k was

not.

Table 7. ANOVA for M/M/1/15 model with MSE as
the dependent variable.

Dependent Variable: MSE; N:16,000
Source Sum-Squares D.F. Mean-Square F-Ratio P

T 48124.001 3 16041.334 128.516 0.000
K 244.642 1 244.642 1.960 0.158
B 934.691 1 934.691 7.488 0.006
T*K 928.477 3 309.492 2.480 0.058
T*B 1227.250 3 409.083 3.277 0.020
K*B 0.274 1 0.274 0.002 0.915
T*K*B 285.921 3 95.307 0.764 0.517
error 1995118.772 15984 124.820
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The results for the M/M/1/15 model show that the

number of batches was optimal at 2. In fact, when the

number of batches, k, was 3, the results were misleading

and too many initial observations were discarded. In

addition, there was no significant difference (a = .1) in

the results for T = 4.5 and T = 6.5.

4. Results for M/M/1/15 Model

In order to effectively evaluate the results of the

experiment, it must be determined if the practitioner will

be using a single run or multiple replicates to determine

the truncation point. If a single run is to be used, then

it is critical to minimize the variance of the truncation

point, d. This can be done by considering the empirical

distribution of the truncation point and the number of

initial observations of an empty and idle system. In this

case, the parameter set T = 4.5, b = 5, and k = 2 should be

used, even though the average MSE is not minimized. If the

theoretical bias and variance for this model are used in

conjuction with the empirical truncation distribution (as

tabulated and used by Wilson, 1977), the MSE decreases as T

increases. Examination of some of the independent

replicates showed that in some cases, as the truncation

point increased, the bias increased and the variance

decreased. The only cause for this is the particular

sequence of random numbers used for that replicate. The
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variability of the average results is a result of the

independent realizations of the model. Thus, it is

recommended to use multiple replicates to determine the

truncation point, d, so that the probability of extreme

results is minimized. In addition, the replicates used to

define the truncation point should not be used (in general)

to estimate the steady-state mean because of the

correlation in the output series.

For multiple replicates, in particular when all 1000

replicates were used for the point estimates, the MSE and

the HL were minimized with the parameter set T = 6.5,

b = 5, and k = 2. When the empirical truncation

distributions for T = 4.5 and T = 6.5 were compared, the

means for the two distributions were not statistically

significantly different. The number of initial

observations of the system empty and idle indicated that

T = 1 should not be used, while other time scales, T are

acceptable. The ANOVA indicated that T and b and their

interaction was significant, while k was not significant.

Since the variance of the empirical truncation

distributions was adversely affected by k, it was

determined that k = 2 should be used. Thus, the

recommendation for this model is to use multiple replicates

with a parameter set of T = 4.5, b = 5, and k = 2.
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B. M/G/1/15 Model

The parameter set for the M/G/1/15 model was

simplified based on the results for the M/M/1/15 model.

Two levels were still used for the batch size, b, but the

time scale, T, was reduced to three levels and the number

of batches, k, was not varied. The experimental design is

summarized in table 8.

Table 8. Parameters and factor levels for
experimental design.

Parameters Factor Levels

b, batch size
T, time scale: average

arrivals between observations

5, 10
1, 3, 4.5

The results (mean, bias, variance, MSE, and half-

length) for the M/G/1/15 model using all the replicates for

a single point estimate (equations 2.3, page 17, and 2.8,

page 18) are shown in table 9. The grand mean, X, is used

as an estimate for the steady-state mean.
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Table 9. The results for each design level for
the M/G/1/15 model using the replicates
as observations for a single point
estimate. Uses the grand mean as an
estimate of Ax, and a significance
level of .1 for calculation of HL.

Weibull
T,k,b R(n)

A

b2 var MSE s.e. HL

1,2,5 14.414 0.207 0.722 0.929 0.027 1.672
1,2,10 14.910 0.002 0.143 0.145 0.012 1.657

3,2,5 14.966 0.009 0.007 0.016 0.003 1.648
3,2,10 14.973 0.011 0.007 0.018 0.003 1.648

4.5,2,5 14.974 0.011 0.003 0.015 0.002 1.647
4.5,2,10 14.976 0.011 0.004 0.016 0.002 1.647

The MSE is minimized for T = 4.5, k = 2, b = 5, but

the means are equal between T = 3 and T = 4.5 with a

significance of .1. The HL is minimized for T = 4.5, but

there is no appreciable difference in the HL for T = 3 and

T = 4.5. The mean in all cases is very near 15, which is

the maximum allowable in the system. The results indicate

that the system becomes congested early and does not clear

out. Thus, any of the truncation rules are satisfactory

and in fact the estimates are not severely worsened if no

truncation occurred.

The average results are also important because the

performance of a single application of Schriber's rule may

be used by the simulator in estimating the steady-state
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mean. These results, using the grand mean, R as an

estimate of the steady-state mean and computed with

equations 3.1, page 28, and 2.12, page 19, are summarized

in table 10.

Table 10. The average results for each design
level for the M/G/1/15 model are
displayed in this table. The grand
mean is used as an estimate of Ax.

Weibull
T,k,b 2 g- s.e.MSE HL

1,2,5 3.011 1.144 3.733 0.036 1.681
1,2,10 0.251 0.157 0.394 0.005 1.650

3,2,5 0.086 0.133 0.093 0.004 1.649
3,2,10 0.061 0.089 0.068 0.003 1.648

4.5,2,5 0.064 0.112 0.067 0.004 1.649
4.5,2,10 0.060 0.095 0.065 0.003 1.648

The average MSE and average variance are minimized at

T = 4.5 with a batch size of 10. The average HL is highest

for T = 1 with a batch size of 5; the HL for all other

parameter sets is essentially the same. In this case, the

average variance, average MSE, and average HL are all worst

for T = 1, b = 5; all other applications of the truncation

rule are satisfactory.



46

1. Initial Observations with the System Empty and
Idle

The frequency distributions for the number of initial

observations with the system empty and idle are compared in

Table 11. The maximum, mean, and standard deviation are

considerably larger when T = 1, (average arrivals between

observations of 1); the variance for T = 1 is more than

five times larger than the variance for T = 3. Paired t

tests show the distributions do not have equal means

(p = .000 for T = 3 and T = 4.5).

Table 11. Number of initial observations with the
system empty and idle for M/G/1/15 model.

T mean std dev max

1 2.105 1.402 14
3 1.238 0.542 5
4.5 1.115 0.349 3

A graphical representation of the results is shown in

figure 8. The downward shift in the mean and the decrease

in the variability between T = 1 and T = 3 is evident.
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Figure 8. Number of initial observations
with the system empty and
idle. The mean, and mean +/-
1 standard deviation are shown
for different time scales.

2. Empirical Truncation Distributions

Table 12 summarizes the frequency distributions for

the truncation point, d, for the M/G/1/15 model. Paired t

tests for equal means for these distributions with a

significance of .1 showed that the distributions do not

have equal means.

When the batch size was 10, the mean truncation point

decreased as T increased, which was expected, but the

variance was minimized when T = 3. When T = 3, the mean

truncation point was 28.26, which is very near a possible

truncation point of 30. For T = 4.5, the truncation point,

d, decreased to 23.85, but the nearest truncation points
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Table 12. Truncation point distributions for the
M/G/1/15 model.

T,k,b mean(d) std dev (d) median

1,2,5 14.85 4.503 15
1,2,10 31.55 4.391 30

3,2,5 15.26 1.353 15
3,2,10 28.26 3.868 30

4.5,2,5 14.96 0.669 15
4.5,2,10 23.85 4.926 20

(since b = 10) for this application of Schriber's rule are

20 or 30. Thus, the variance is clearly increased for

T = 4.5. When the batch size is 5, the mean truncation

point is maximized when T = 3, but the variance decreases

as T increases. The mean truncation point for both T = 3

and T = 4.5 is very near 15, a possible truncation point.

This system is highly congested, and stablizes after the

system is full. Thus, either enough time or enough

entities must be processed to stabilize. Consequently, the

truncation point is near 15, and as T increases, more

independent replications have a truncation point of 15.

Thus, the variance is minimized when T = 4.5 and b = 5.

From the preceding section, the highest average variance

and average MSE occurred for T = 1, b = 5, which also has

the highest variance for the truncation point distribution.
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A graphical comparison of the effect of T when the

batch size is constant at b = 5 (and k = 2) is shown in

figure 9.
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Figure 9. A comparison of the frequency
distributions with a batch
size of 5 and the time scale
varies for the M/G/1/15 model.

The shapes of the frequency distributions are quite

different as the time scale changes. The mode is at the

minimum truncation point only for T = 1. The mode for both

T = 3 and T = 4.5 is at 15; both also have a low variance

(see Table 12, page 48).

3. ANOVA

The ANOVA (table 13) using the Weibull

distribution for the length of service indicated that T and

b are significant for both the dependent variables MSE and
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mean calculated with equations 2.4 and 2.5, page 18. There

were 6 design levels with 1000 independent observations

each, so N = 6000. The MSE was calculated using the grand
=

mean, X as an estimate of the steady-state mean.

Table 13. ANOVA for M/G/1/15 model.

Dependent variable: mean; N = 6000.
Source Sum-Squares D.F. Mean-Square F-Ratio P

T 128.382 2 64.191 434.532 0.000
B 42.467 1 42.467 287.474 0.000
T*B 80.626 2 40.313 272.894 0.000
error 885.462 5994 0.148

Dependent variable: MSE; N = 6000.
Source Sum-Squares D.F. Mean-Square F-Ratio P

T 5281.305 2 2640.652 280.792 0.000
B 1888.351 1 1888.351 200.796 0.000
T*B 3684.443 2 1842.222 195.891 0.000
error 56369.442 5994 9.404

4. Results for M/G/1/15

This model, because there are fewer very short service

times, is highly congested. Hence, the steady-state number

in the system is very near the upper limit allowed in the

system (15). In this model, the results when all the

replicates are used for a single point estimate (Table 9,

page 44) and the average results (Table 10, page 45), are

similar. The results for the number of intitial
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observations of an empty and idle system indicate that

T = 1 should not be used, and that either T = 3 or T = 4.5

is acceptable. The results from the empirical truncation

point distributions show that the variability is increased

when the batches are of size 10. Thus, batches of size 5

should be used. The ANOVA showed that T and b as well as

the interaction between T and b are significant. For this

model, a parameter set of T = 4.5, b = 5, and k = 2 is

recommended. This is consistent with the results for the

M/M/1/15 model in the previous section, page 41.

C. Comparison of Results

When multiple replicates are used, both the M/M/1/15

and M/G/1/15 models show that as the time scale, T,

increases, the MSE and the HL decrease and are thus better

point estimates. However, while the M/M/1/15 model also

shows an improved point estimate when the batches are of

size 5 instead of size 10, the M/G/1/15 model shows no

difference.

The number of initial observations with the system

empty and idle were compared for both models. As seen in

figure 10, page 52, each had the maximum number of initial

observations of an idle system for T = 1, and these

decreased as T increased. In general, the M/M/1/15 model

had higher means, variances, and maximums than the M/G/1/15

model. Paired t tests with a significance of .1 for equal
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means between the two models for each time scale were

rejected in every case.

20

15

10

5

0

Number of Initial Observations of Empty System
Maximum Number of Observations

Exp. Weibull

Service ServiceEN=
Number Observed

1.0 3.0

Average Arrivals/Observation
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4.5

Figure 10. Comparison of the
results for the
number of initial
observations with
the system empty and
idle for the
M/M/1/15 and the
M/G/1/15 model
(effect of service
time distribution).

A typical comparison of the truncation distributions

for the M/M/1/15 and M/G/1/15 models are shown in figure

11. The time scale is T = 4.5 average arrivals/obser-

vation, the batch size is 5, and the number of batches, k

is 2. Notice that the M/G/1/15 model does not have a mode

at d = 10; instead it is at d = 15. While the modes are

not similar, the variability of the distributions increase
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when the batch size increases from 5 to 10. The

variability of the truncation distribution decreased as T

increased for the M/G/1/15 model with a batch size of 5,

while for the M/M/1/15 model with batches of size 5, the

variability of the truncation distribution increased as T

increased. This may be because for the M/M/1/15 model, Rd

increases away from a possible truncation point of 10 as T

increases, while for the M/G/1/15 model, Rd remains close

to 15, which is a possible truncation point. In general,

the empirical truncation distributions for the M/G/1/15

model had a much lower variance than for the M/M/1/15

models.

The ANOVA for both models showed that T, b and the

interaction of T and b were significant for the dependent

variables of mean and MSE.



54

10

15

20

25

30

35

40

45

50

0

Truncation Point
Time Scale = 4.5, Batch Size = 5, Number of Batches = 2

Weibull Exp
Service Service

Truncation Point

767

158

200 400

Frequency

600 800 1000

Figure 11. A comparison of the
truncation distributions for
the M/M/1/15 and the
M/G/1/15 model when T = 4.5,
the batches are of size 5,
and the number of batches is
2.
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IV. Conclusions

A. Conclusions and Recommendations

The performance measures were the goodness of the

point estimate and the consistency of the results

considering the randomness of the simulation. Although

previous studies recommended starting the models at steady-

state conditions, the models were started with the system

empty and idle because this is most convenient and will be

likely in practice. The effect of parameter selection for

Schriber's rule was considered for two different models,

the M/M/1/15 model with an arrival rate of 4.5 and service

rate of 5 and the M/G/1/15 model with the same arrival and

service rate. The parameters varied were the time scale,

T, the batch size, b, and the number of batches, k. In

queueing theory, the time scale does not have an effect on

the transient time, but it does have an effect in the

simulation studies.

The ANOVA results indicate that the time scale, T, and

the batch size, b, and their interaction are significant

for the dependent variables of mean and MSE. The

empirical truncation distributions and the number of

initial observations of an empty and idle system were also

affected by the time scale. In general, the time scale

needs to be selected so that enough activity occurs between

observations to give meaningful results. When the time
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scale, T, was 1 (an average of 1 arrival per time period),

the results were very poor. The results for the M/G/1/15

model were adequate for T = 3, but this was not sufficient

for the M/M/1/15 model.

A side issue that emerged during this study was a need

for multiple replicates to determine the truncation point.

The M/M/1/15 model was particularly vulnerable. The

particular sequence of random numbers would cause the

variance to decrease and the bias to increase as the

truncation point increased, which is the converse of the

theoretical results (Wilson, 1977). If for the same model,

Wilson's tabulated theoretical values for bias and variance

are used, the theoretical results are achieved (variance

increases and bias decreases and truncation point

increases). When all the replicates were used for the

point estimate, as in Table 2 (page 23) and Table 9 (page

41), the results were as expected: an increase in variance

and a decrease in bias. The use of multiple replicates was

recommended by Welch (1983) in evaluating the behavior of a

random sequence because the random variable, such as the

truncation point d, has a probability distribution

associated with it.

The practical implications are that a single run

should not be used to determine the truncation point,

particularly when different sequences of random numbers

will be used for the model. In addition, the time scale
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for observations should be carefully considered, in

particular to ensure the time scale is not too short. The

change in distributions did not have significantly negative

results: improper selection of the distributions will

likely affect the congestion of the system and the output

results more than the truncation point.

B. Future Research

Schriber's rule was used to evaluate two specific

queueing theory models, one with a known steady-state mean

number in the system. The number of observations was

limited to 50 (based on Wilson's results), this may not

have been enough observations particularly with batches of

size 10 and 3 batches. Certainly in some cases the

truncation rule was not satisfied and hence assumed to be

50 with the mean assumed to be the mean of the last batch.

One of the conclusions was that multiple replicates

should be used. A topic for future research would be how

many replicates are sufficient, and how this is affected by

the time scale and the truncation rule used.

Schriber's rule is certainly not the only truncation

rule that can be used and its performance should be

compared with other heuristic rules, such as Welch's moving

average rule (Welch, 1983), Kelton and Law's (1984) time

series regression technique, and Schruben's (1982) test for

initialization bias. In particular, now that many
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simulations can be run on personal computers that are

reasonably fast, the obstacle of requiring too much

computational time is becoming less of a factor. In

addition, many simulation languages allow easy manipulation

of the output sequences or allow exporting to spreadsheets

and statistical packages for manipulation. Hence, the

error of discarding too much data is less of a problem than

not discarding enough, assuming that the remaining set is

sufficiently large.

The behavior of this truncation rule, or the effect of

the selection of the time scale and batch size for any

truncation rule, when used for a complex system is a final

area for future research. A complex system may not behave

like a queueing system and may have a shorter or longer

transient time. It is much more difficult to identify the

steady-state conditions for start-up, and so it will likely

start with an initially empty and idle system. Hence, at

least some initial transient will exist.
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