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Robots have the potential to protect health care workers, provide patient care,

and ultimately save lives in infectious disease outbreaks. Nevertheless, infectious

disease outbreak scenarios present unique technological and social challenges for

robotics. This work explores what robots can and should do in the fight against

infectious diseases. We present two major contributions, each of which is a start-

ing point for answering these larger questions about robots and infectious disease

outbreaks.

First, a real-time contamination tracking and modeling system for robotic

health care support is demonstrated and evaluated. The system models con-

tamination of the environment and people, directs decontamination efforts of a

simulated scrubber robot, and alerts users when nearing contaminated areas. The

transmission model design choices are discussed, as based on Ebola virus disease,



and the system is evaluated against the spread of a physical substance. This sys-

tem, the first of its kind, would allow medical teams to take appropriate actions

to carefully enter, avoid, or decontaminate contaminated areas, reducing infection

risk for themselves and their patients.

Second, three hypotheses relating to patients’ comfort and trust of a proposed

teleoperated robotic solution are tested. Human participants lay in a simulated

Ebola treatment unit while a human-sized robot performed tasks in the space. The

patient’s visibility of the operator was altered based on two conditions, full visibility

and no visibility. Our findings suggest patients trust the robot teleoperator more

when they can see the teleoperator. This yields guidance for how to design future

robotic treatment units and raises questions for envisioned telepresence medical

systems.
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Chapter 1: Introduction

The 2014 - 2016 Ebola virus disease (EVD) outbreak was unprecedented in its

scale and impact. More than ten thousand died in the West African outbreak [1].

The epidemic ravaged three countries for over a year and sent fear throughout the

world. Governments and organizations spent tremendous time, money, and effort

treating and containing the disease [2]. Health care workers on the ground, both

locals and foreigners, spearheaded the fight at the risk of their own lives.

Due to a variety of factors, health care workers fighting the disease on the

front lines faced disproportionately higher infection rates than the general public.

By May 2015, the infection rates for health care workers compared to the general

population in Guinea, Liberia, and Sierra Leone were 1.45% to 0.02%, 8.07% to

0.11%, and 6.85% to 0.06% respectively [3]. The high mortality rate and viru-

lence of EVD make it a risky disease for health care workers to treat, even in

well-resourced settings. West Africa’s limited medical infrastructure, demanding

climate, and diverse cultures only intensified the challenge and risk [4, 5].

The recent EVD outbreak reminds us of the dangers infectious diseases continue

to present, both to the world at large, and health care workers in particular.

EVD, while a severe and serious disease, is not unique in the disporportionate

danger posed to health care workers. Providing medical care to people with highly

infectious diseases exposes health care workers to a heightened risk for developing



2

an infection themselves, requiring them to take sometimes burdensome precautions

like wearing person protective equipment in hot and humid climates [4, 6].

Robotic health care systems designed for infectious disease outbreaks could

lighten this burden while still ensuring quality patient care. The current toolbox for

fighting infectious disease outbreaks is a big one; it includes high-tech and low-tech

solutions, grass-roots and top-down approaches, individual as well as community-

wide responses. Vaccine development, strategic social advertising campaigns, and

complex macro-level disease modeling are all examples of tools included. Robotics,

though, is largely missing.

This is somewhat surprising considering the benefits robots are poised to offer.

Robots cannot catch infectious diseases, will not contribute to medically-resistant

disease strains, and can be general tools for a variety of diseases. Robots then

are positioned to be powerful tools in future infectious disease responses, just as

they are lauded to be in other domains. Despite the potential foreseeable benefits,

there remain enormous and complex technical, cultural, and social-psychological

challenges to deploy robots in infectious disease outbreaks.

This work showcases potential benefits while exploring and overcoming some of

the difficulties. The meta questions of the work closely align with those originally

posed by the White House Office for Science and Technology Policy in response to

the EVD outbreak [7, 8]. Namely, what can robots do in the fight against infectious

diseases, both in the short- and long-term? To this I include the socially and

culturally sensitive question - what should robots do in the fight against infectious

diseases?
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I present two central pieces, Chapters 3 and 4, which begin to address these

admittedly broad questions. Chapter 3 underlines the increasing technological

feasibility of what robots can do in infectious disease outbreaks. In Chapter 3, I

describe and evaluate a real-time contamination modeling and tracking system for

robotic health care support. The smart treatment unit models contamination and

relays this information to decontamination robots. The treatment unit also warns

people when they near a contaminated area. The system is the first end-to-end

contamination modeling and tracking system for robotic health care support.

Chapter 4 explores the question of what robots should do, from the patient’s

perspective. In Chapter 4, I focus on the human side of the problem to explore the

dynamics between patients, robots, and operators in a teleoperated robot context.

This chapter examines patients’ levels of comfort and trust in such a setting. The

results from the study presented therein suggest that it is better to have a robot’s

operator in the patient’s line of sight. This informs how treatment units utilizing

robots should be designed to cultivate patients’ trust.

Taken together, these two pieces show that robots can be beneficial in infectious

disease outbreaks, that proposed robotic solutions need to at least acknowlege peo-

ple’s understanding, fear, or misgivings, and that this new subdomain of robotics

should be further funded and explored. These points will be further argued in

Chapter 5, which concludes the work. Before going any further though, Chapter

2 gives background and related work relevant to both pieces.
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Chapter 2: Background and Related Work

2.1 Ebola Virus and Infectious Diseases

2.1.1 Overview

EVD was first identified in 1976 [4]. Its characteristic filamentous particles make it

a filovirus and, along with Marburg, is in the family Filoviridae [9]. It is endemic

in regions of central Africa [9]. There are five Ebola virus species. The recent

outbreak was caused by the Zaire strain [10]. Early symptoms include high fever

and body aches. This can then lead to severe vomiting, diarrhea, and nasusea.

Haemorrhagic symptoms, which vary in their severity, occurs at the peak of the

illness in 50-70% of patients [11]. The World Health Organization reports an

incubation period for the virus between 2-21 days. During this time, humans are

asymptomatic [12].

2.1.2 Impacts

EVD is highly infectious and can be highly virulent (with mortality ranging from

20-90%)[13, 14]. EVD, while serious, is not unique in its impacts; infectious dis-

ease outbreaks can take lives, disrupt economies, and set back an entire region’s

development[15, 16, 2].
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The recent EVD outbreak is a good example of the potential destruction caused

by infectious disease. The outbreak, declared in March 2014, took over eleven

thousand lives out of an estimated twenty-eight thousand cases [1]. These outbreak

occured primarily in Guinea, Liberia, and Sierra Leone, countries already beset by

medical fragility [3]. Despite ample fear and political pressure it still took a year to

begin extensive human trials of a promising EVD vaccine [17, 18]. The long-term

complications for EVD survivors is being closely studied. Current findings suggest

suvivors are at increased risk for hearing loss, neurological abnormalities, occular

deficits, sleep disturbance, and other complications [19].

2.1.3 Transmission

Humans and apes are end hosts for EVD [9]. Human-to-human transmission of

EVD is through direct contact of an infected person’s body fluids through broken

skin or mucous membranes [20]. Humans are not contagious until they are symp-

tomatic [12]. One study suggests that the virus can be spread sexually from EVD

survivors months after recovery [21]. The medical community is still uncovering

the natural reservoirs of EVD [20]. Nevertheless, one has to be in close proximity

(<1m) to a disease vector in order to contract the disease under most ordinary

circumstances [12].

The disease transmission model developed for our system, discussed in Section

3.3.3, is an appropriate fit for this type of close-proximity, non-airborne disease

transmission.



6

2.2 Medical and Health Care Robotics

Robots are used in the medical and health care field in a variety of ways. For exam-

ple, there are commercial robots that transport and deliver goods in hospitals[22],

peform surgery [23], calm and comfort patients [24], and connect physicians to

remote patients [25]. Okamura et al. broadly segment the medical robotics field

into these areas: surgical and interventional robotics, robotic replacement of di-

minished/lost function, robot-assisted recovery and rehabilitation, behavioral ther-

apy, personalized care for special-needs populations, and wellness/health promo-

tion [26]. This partitioning, while helpful in its specificity, misses a large part

of what happens in many hospitals and doctors’ offices: general medical diagno-

sis and treatment involving complex patient-doctor interactions. They also miss

the behind-the-scenes organizational and logistical work needed for stable medical

infrastructures.

An ultraviolet disinfection robot is used by some hospitals to prevent hospital

acquired infections. The robot is placed into a room by an operator, set-up via

a touch screen, and then irradiates the room while stationary [27]. However, the

robot can only decontaminate a space that does not have humans present.

The mobile robots described above would benefit from knowing whether they

are in, or nearing, a contaminated area. This information would allow them to

be properly decontaminated before entering a contamination-free zone rather than

spreading the contamination around.

Surprisingly there has been little intersection of the medical robotics literature
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with the disaster robotics literature, aside from looking at how to use robots to

provide limited remote care to patients in disaster search and rescue scenarios [28].

This leads us to believe that the specific benefits and challenges of deploying robots

in situations of infectious disease outbreaks has been overlooked.
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Chapter 3: Contamination Modeling and Tracking

This chapter is from under-review work [29] submitted to The International Confer-

ence On Intelligent Robots and Systems (IROS), 2016. My specific contributions,

as well as those of others, are outlined inSection A.1.

3.1 Introduction

Health care workers are not the only ones at risk in outbreaks. In any health care

setting patients are at an increased risk of acquired infections. These can turn

routine visits and surgeries into life-threatening situations.

Robots and automation can perform meaningful tasks in these biohazardous

areas, protecting both health care providers and patients. However, robots need

actionable information to perform such tasks intelligently. In particular, aware-

ness of the location of contamination would allow them to deliberately avoid these

spaces or target them for decontamination. We develop and evaluate an end-to-

end system for modeling contamination in health care facilities and provide two

demonstrations for how this real-time information can be used to further protect

health care workers: a simulated floor cleaning robot that selectively targets con-

taminated areas and a warning system for nearing health care workers.

Our principal contributions lie in the novelty of the system, the person tracking
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mechanism, and the evaluation methodology. While the system was designed with

the transmission of Ebola in mind, it also has relevance to similarly transmitted

infectious diseases.

3.2 Background and Related Work

This section gives background pertaining disease modeling and tracking. We also

note the non-existence of systems for real-time infectious disease contamination

tracking for robots and health care worker support.

3.2.1 Disease Modeling and Tracking

Disease spread can be modelled at various scales. Epidemiological modeling is

concerned with the macro scale as it attempts to model disease levels in popula-

tions [30]. These models allow organizations to predict future outbreak areas and

make strategic high-level responses [31]. They do not, however, provide relevant

information for the immediate needs of health care workers or robots in health care

spaces.

At the other end of the spectrum, microbiological predictive models attempt

to model the the growth of a culture of bacteria or spread of a virus through an

organism [32]. These aid in understanding the transmission of a disease, but again

do not yield immediate, actionable information for robots or workers in health care

spaces.
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Air sampling systems are used in operating rooms and health care filtration sys-

tems to monitor air quality and evaluate microbial contamination. These systems

cannot identify diseases in real-time and are only capable of detecting airborne

diseases [33]. Some work has been done using computational fluid dynamics to

model the aerosol contamination of surfaces in a hospital room [34]. The work was

performed in simulation and made no attempt to develop an end-to-end real-time

contamination modeling system.

Our system addresses the gap between micro- and macro-scale disease model-

ing. Furthermore, we demonstrate the uses of such a system utilizing a physical

environment with a real robot.

3.3 System Overview

Our contamination modeling system is composed of four main subsystems seen in

Figure 3.1 and described in detail below. The system is built on top of the Robot

Operating System (ROS) using the publish-subscribe communication paradigm

[35]. The hardware costs less than USD $1,000 per room, making it an affordable

option for resource-constrained deployments. The system currently relies on a pre-

specified occupancy map of the environment. The initial location of contamination

is also needed (e.g. area of a patient’s cot).
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Figure 3.1: Contamination modeling system diagram.
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3.3.1 Smart Environment

A smart, sensored environment is the container for the contamination modeling

system as shown in Figure 3.1. The environment must have sensors capable of

tracking the location of people and/or objects. External tracking frees up workers

from having to individually sensor each movable object in the environment. This

freedom is particularly important in resource-constrained environments where ship-

ments may run late and time is limited.

The specific environment used in our system resembles an Ebola treatment unit

built according to information found from Médicins Sans Frontièrs [36]. It is a

scaled-down version of a high risk zone within a larger Ebola treatment center.

It is approximately 4m x 5m x 2.5m and is covered in anti-static, fire retardant,

white plastic with a cement floor. The space contains two single cots and various

medical supplies. The treatment unit serves as both a primary subsystem within

the contamination modeling system and a testbed for system validation.

The treatment unit is equipped with a wall-mounted SICK LMS 291 rangefind-

ing laser. The laser is mounted 1.5m from the ground on a wall of the room. Three

web cameras (2 of which are ultra wide angle) are mounted on the ceiling. The

laser and web cameras are running ROS wrapped drivers and tethered to a desktop

[37, 38].
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3.3.2 Person Tracking

Person tracking is a necessary component in the contamination modeling system

because real-time disease contamination sensors do not exist. To overcome this,

person tracking along with a priori contamination regions are used as a proxy for

a contamination sensor. The sensor information comes from the smart treatment

room as seen in Figure 3.1.

Person tracking is done using a wall-mounted laser rangefinder and custom

ROS nodes. The laser is mounted at chest height and has full visibility of the

room. Before use, we capture a number of scans of the empty treatment unit, to

determine where the static objects are. Since the laser is mounted at chest height,

there are no (significant) objects other than the walls.

To determine the position of people in the Ebola treatment unit, we first filter

the data from the laser rangefinder to remove the static obstacles. The remaining

contact points are then spatially clustered with the DBSCAN algorithm [39]. We

then fit an ellipse to each cluster, on the assumption that humans are approxi-

mately elliptical at chest height.

To fit the ellipse, we follow the approach of Fitzgibbon, Pilu, and Fisher [40],

where the parameters to the implicit form of the general conic equation

ax2 + bxy + cy2 + dx+ ey + f = 0 (3.1)
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are estimated, subject to the constraint

4ac− b2 = 1. (3.2)

The constraint ensures that the resulting parameters specify an ellipse, and not

some other conic section. Once the parameters are estimated, the major and

minor axes of the ellipse are calculated, and checked to ensure that their size is

appropriate for a human.

Since we assume that there will be few people standing in the treatment unit,

we do not explicitly track the ellipses over time with a filter. Instead, we simply

associate ellipses that are close to each other in space and orientation, from the

angle of the major axis, in subsequent detections. This has proven to be robust

in our experiments. A ROS node publishes the position of the detected ellipses,

along with a unique numerical identifier for each one.

3.3.3 Transmission Models

Different diseases have different transmission methods which impact how each

propagates through an environment. The perfect transmission model would have

its predicted contamination location set be equivalent to the real contamination

location set. If this goal proved to be intractable, then it would be better, in a

medical context, to tend to overestimate rather than underestimate contamination.

That is, false positives are better in this case than false negatives.
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All transmission models must account for the fact that contamination can be

spread from people to the environment and from the environment to people. Figure

3.1 highlights how the transmission model is a distinct component in our system.

Our system allows for the input of different transmission models and is thus adapt-

able to use for a variety of diseases.

Our system is currently targeted for the Ebola virus disease. We created a

binary transmission model, a relatively simple 2D transmission model, to approx-

imate the true, complex transmission of Ebola. The binary transmission model

assumes people or an environment’s grid cell are either fully contaminated or not

contaminated at all. If one part of a person is contaminated, the whole person is

considered contaminated. An distance threshold, α, controls the how close objects

have to be spread or catch contamination. A person “spreads” contamination to

every nearby grid cell less than a distance of α away from the center of the ellipse.

Similarly, the environment “spreads” contamination to every person less than a

distance of α away.

The binary nature of the model fits Ebola well since the disease is highly viru-

lent. Since the disease transmission requires close contact, an α distance of 1.5m

is a good conservative estimate for transmission distance.

3.3.4 Contamination Update

Figure 3.1 shows how the contamination update is dependent upon the current

transmission model in use, the current contamination states of the environment
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and people, the location of people, and decontamination efforts. The two-way

propagation of environment-to-person contamination requires that the contami-

nation update occur simultaneously for the environment and people. Thus, the

contamination update block must have access to the master copy of the contam-

ination state of the environment and people. In our system, the contamination

update occurs during a callback method for each person’s location update. The

contamination update must handle spreading and removing contamination.

In our system, environment contamination levels are stored in a 2D occupancy

grid native to the navigation stack in ROS [41]. This data structure allows for easy

integration when directing decontamination robots, as cost-maps utilize the same

data structure. Similarly, built-in display types in Robot Visualization (RVIZ)

provide real-time visual updates of current contamination levels to personnel.

3.3.5 Intelligent Response

The purpose of the system is to protect lives by providing actionable information

to robots and people. Below are two use-cases to this end.

3.3.5.1 Optimized Decontamination Robots

We implemented and deployed a scrubbing robot protocol on a real TurtleBot 2 in

our Ebola treatment unit[42]. The bleach-scrubbing protocol path plans the robot

to the nearest contaminated locations based on the model. The robot continuously
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cleans a given radius of the location where it is located. The cleaning radius of the

robot was modelled as a circular region proportional to the diameter of the robot’s

base.

Future methods could take into account the current contamination levels of

the environment, available robotic resources, and space priorities to perform more

sophisticated path-planning.

3.3.5.2 Automated Warning System

A personnel monitoring node tracks the locations of personnel over time. If the

system detects personnel nearing high-level contamination regions, they are audi-

bly alerted from speakers in the treatment unit. This allows health care personnel

to take extra precautions when entering these areas and allows them to relax when

they are not in this areas. This could be extended to other forms of alert via

vibrating wristbands, smart phone alerts, etc.

3.3.6 User Interface

A view of the RVIZ-based graphical user-interface (GUI) for the contamination

modeling system is shown in Figure 3.2 [43]. The GUI displays the 2D contami-

nation grid overlaid on the environment map and represents the people as labeled

cylinders. GUI mouse tools allow users to demarcate regions as contaminated or

contamination-free. ROS Camera Views show the contamination over the web
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Figure 3.2: RVIZ gaphical user interface of the contamination modeling system.
Two people have been tracked and are represented by the blue cylinders.
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camera images in real time. The GUI can be used by environment managers to

visually monitor spaces, manually direct decontamination robots, and track con-

tamination history over space and time for internal review.

3.4 Experimental Validation

3.4.1 Methodology

It is important to verify that the system accurately predicts what happens in the

real world. Ideally, we would test our system against another real-time sensor or

model for our chosen scale and transmission modality. Since no such things exist,

we instead show that the system provides an accurate superset of a physically

tracked substance, post hoc. This validates that the system does not include false

negatives (i.e. truly contaminated locations that are not marked as such by the

system). This is important in a medical environment as it is better to overestimate,

rather than underestimate, contamination.

To do this, we used an analog for contaminated bodily fluids, performed tasks

in the space, and then compared post hoc image results of the location of the bodily

fluids with the final contamination map of the system.

The bodily fluid analog was a mixture of corn syrup and green fluorescent

powder. This liquid was then spread about the room in different configurations and

densities. These known locations were tagged as contaminated areas by a manager

using the GUI tools. Participants then went into the room and performed various
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tasks for two minutes, such as removing a bucket and checking the simulated

patient’s temperature. During this time, the contamination modeling system was

running, tracking their locations and modeling the contamination spread.

The contamination map was saved once the participants finished with their

tasks and left the room. Next, the lights were turned off and a centrally located

black light was turned on. Still images were captured from each of the three web

cameras in the treatment unit to record the final spread of the fluids. See Figure 3.3

for pre- and post-trial views of the contamination spread in the room.

The images were blurred, thresholded, and masked to provide only the pixels

with green in them. Using the transformation matrix obtained from the cameras

to the treatment unit map, and with the pinhole camera model from ROS image

geometry, each of these green-contamination pixels was transformed to a location

in the world [44]. These physical contamination regions can then be overlaid

onto the treatment map. This allows for a comparison to the system-predicted

contamination regions.

3.4.2 Results

Figure 3.4 is an example screenshot from one of the evaluation trials. An RVIZ

Camera View (on the left) is displayed alongside a high level map view (on the

right). In this particular instance, a person is walking to the other side of the room

after stepping in contamination fluid next to the patient’s bedside. The dark grey

in both images is the predicted contamintion.
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Figure 3.3: Contamination modeling in a simulated Ebola treatment unit. Pre-trial
view (top) and post-trial view with blacklight on (bottom).
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Figure 3.4: Left: RVIZ Camera View during trial run. Right: RVIZ map view of
the treatment unit map overlaid with the modelled contamination in black.

Figure 3.5: Treatment unit maps overlaid with modelled contamination in lighter
grey and tracked substance in green.
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The blue cylinder is a visual representation of the person’s location in the

treatment unit map. The white dots are sets of filtered scans over the previous

half second period. Notice how each of these forms a partial ellipse since the

laser is at chest height. Further note in the left image of Figure 3.4 that the

predicted contamination in dark grey covers all of the post hoc imaged fluid in the

environment. This fits with the goal, as described in Section 3.3.3, to have the

system-predicted contamination be at least a superset of the real contamination.

Figure 3.5 shows the treatment unit maps of four separate example trial runs.

Each map is overlaid with the contamination predicted by the system in lighter

grey. The real fluid contamination is overlaid in green. The real fluid contamina-

tion was imaged from a camera opposite of the entryway. Each map in Figure 3.5

has the green contamination regions inside or on the edge of the virtual contam-

ination model regions. The three rightmost maps in Figure 3.5 have most of the

green contamination spots strictly inside the predicted contamination sets, with

the exception of a few outliers. The leftmost map in Figure 3.5 contains some of

the real fluid spots inside non-system predicted contamination regions.

Both Figure 3.4 and 3.5 have physical contamination regions that are more

sparse than the virtual model. This was consistent across trials and fits with the

goal to tend to overestimate rather than underestimate the true contamination.

Note, there are differences between the multiple camera angle’s post hoc fluid

contamination locations that are not shown. This means that the green contam-

ination regions shown in 3.5 are not necessarily the exact location of the fluid in

the world. These variations are due to compound tranformation errors in the eval-
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uation procedure. First, the transformations of the cameras to the treatment unit

map contain inaccuracies as these camera-to-world transformations were done by

hand. Second, the pinhole camera model used to project rays from each image

pixel into the world makes assumptions that do not fit our wide angle web cam-

eras. Despite these compounding errors, the physical contamination evaluation

procedure provides a realistic comparison.

3.5 Discussion

Our results show that the system modelled contamination provides an approximate

superset of real fluid contaminated regions; most of the real fluid contamination

is within the system tracked contamination. In accordance with our trasmission

model design goals there are more false positives than false negatives. This suggests

that our method of tracking contamination via tracking person location in relation

to a priori contamination is an acceptable analog for a contamination sensor.

Our system demonstrates both the feasibility and usefulness of a contamination

modeling and tracking system for robotic health care support. In its current form,

the system is useful for low-fidelty training excercises with health care workers and

for developing robotic applications that utilize the contamination information.

While the contamination modeling and tracking system in its current form is

helpful, there are still avenues for future work. Most importantly, better trans-

mission models need to be developed and tested before the system can be utilized

in health care settings. The current disease transmission model would only be



25

appropriate for dealing with agents with similar transmission modalities as Ebola

in low fidelity conditions. We noted that the density of the fluid decreased over

time. That is, with each step, the amount of contamination trasmission decreased.

The current transmission model employed could see improvements by moving from

a binary contamination level to a probabilistic contamination level that decreases

over time.

Airborne agents, like influenza, would present many interesting modeling chal-

lenges. Modeling airborne agents would likely require more and varied sensors,

and necesitate modeling and mapping the environment in 3D.

The system also needs to be tested for scaling, both in the number of lasers

used and in the number of rooms monitored. Multiple lasers need to be integrated

and tested so that multiple personnel can be consistently tracked, without risk of

occlusions. This is a conceptually easy next step, but will increase the financial

and computational costs. Similarly, the system needs to be tested in a multi-room

configuration as this is how most treatment units are laid out.

Lastly, more thought needs to be given to how to effectively warn workers when

entering contaminated areas that include patients. Voicing over a loud speaker that

a worker is entering a contaminated or dangerous area could be both jarring and

disrespectful for patients.
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3.6 Conclusion

This work represents a major first step in developing a rapidly deployable, low-cost,

real-time contamination modelling system for health care support. Our contami-

nation modelling system provides important information that can be used to help

and protect both health care workers and patients. We demonstrated that the

information can be used by decontamination robots to clean more intelligently, so

that humans do not have to risk contamination. We also showed how the system

can autonomously alert health care workers when nearing high-risk zones. Lastly,

we evaluated our modeling system by comparing it to a bodily-fluid analog and

provided concrete avenues for future work.
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Chapter 4: Patient Visibility of the Operator: Effects on Comfort

and Trust

This chapter is from previously published work [45]. My specific contributions, as

well as those of others, are detailed in Section A.2.

4.1 Introduction

Health care professionals had to wear high levels of personal protective equipment

(PPE) in order to safeguard against infection [6, 13]. This PPE, when coupled

with the high heat and humidity of the region, meant that health care workers

could only work for 45 to 60 -minute shifts before being at risk for heatstroke [4].

This dramatically decreased the quality of care that they were able to provide and

contributed to the high mortality rate of the outbreak.

We are investigating the use of teleoperated robots in this setting to allow

health care workers to perform some of their duties at a safe distance from infected

patients. However, these robots can be scary things, especially when hovering over

a medical cot with a patient in it. In this paper, we investigate whether being able

to directly observe the human teleoperator makes the patient feel more trusting

and comfortable, when being attended to by a robot.

Specifically, we address the following hypotheses:
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• H1: A patient’s increased visibility of the operator leads to higher levels of

patient trust in the operator.

• H2: A patient’s increased visibility of the operator leads to higher levels of

patient trust in the robot system.

• H3: A patient’s increased visibility of the operator leads to higher levels of

overall patient comfort.

We test these hypotheses under two conditions where the operator was either

visible or not visible to the patient. The patient lay in a simulated Ebola Treatment

Unit (ETU) while a human-sized mobile robot performed various tasks via teleop-

eration. Questionnaires and psychophysiological responses were used to evaluate

the hypotheses.

Our major contribution suggests that greater visibility of the operator gives pa-

tients higher levels of trust in the operator. Our results raise important questions

regarding the current adoption and style of telemedicine systems, as companies cur-

rently sell remote medical telepresence devices [25] and pursue remote telesurgery

platforms [46]. These results also have immediate practical implications for the

design of a teleoperation control unit to be deployed in the field.

While the latest Ebola outbreak was the stimulus for our work, the principles

and practices learned here generalize to other types of infectious disease outbreaks,

especially those requiring workers to wear PPE.
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Figure 4.1: The robot moves an IV fluid pole during a study session.

4.2 Background and Related Work

We give background information and related work pertaining to social health care

robotics as well as the importance and measures of trust and comfort in medicine

and human-robot interaction.

4.2.1 Social Health Care Robotics

There has been research on general nursing robots that involve physical interactions

with patients [47][48]. Despite some advances, most commercial robotic systems

are either 1) stationary manipulator platforms for executing precision tasks or 2)

mobile platforms without manipulators meant to connect people together, move
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goods around, or perform static ultraviolet decontamination. In this work, how-

ever, we are interested in exploring a more general robotic platform that is mobile

and manipulator-capable in a domain that has been largely ignored – responding

to infectious disease outbreaks.

4.2.2 Trust in Medicine

Trust is an important component of medical care, yet it is multifaceted and cultur-

ally dependent. Trust in medical systems can be influenced by a variety of factors

(e.g., payment method) and is linked with a variety of outcomes (e.g., patient

retention and likelihood to seek medical services in the future) [49, 50, 51, 52].

One important factor in our study is the link between trust of physicians and

the willingness of patients to seek future medical treatment. This is especially

important in outbreak conditions. PPE obscured the human appearance enough

that it distanced potential patients from health care providers. Médicins Sans

Frontièrs (MSF) doctors value physician-patient trust so highly that they have

learned to go into new communities, regardless of contamination risk, without

wearing their PPE in order to gain communities’ trust [53].

The Wake Forest Physician Trust Scale (PTS) is one standard measure for

patient-physician trust and has undergone verification and testing[54]. We use the

PTS in our pre-experiment survey.

In our post experiment survey, we examine both the patient’s trust of the robot

system and the operator of the robot using similar language and style to the PTS.
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This is discussed more in Section 4.4.5.1.

4.2.3 Trust in HRI

Trust has been examined in a number of contexts in HRI. For example, Freedy

et al. developed a task-specific, objective measurement of trust for a collabora-

tive human-robot task [55]. Desai et al. found that reliability impacts user trust

in shared-autonomy robots as evidenced by increased switching to manual mode

in driving a robot [56]. Bainbridge et al. examine the trust of a robot versus a

video-displayed agent both by using questionnaires and examining the likelihood

of participants to follow through with certain actions [57]. Similarly Salem et al

examine participants likelihood to trust a “faulty” robot versus a properly func-

tioning robot [58]. All of these studies include quantitative measures for trust

using post-hoc questionnaires.

There is a growing trend to quantitatively evaluate trust by counting the num-

ber of times participants allow a robot to do an action autonomously or, as in [55]

and [58], follow through with a request from the robot. In each of these studies

the participants played a much more active role in interacting with the robot than

a hospitalized patient would. The passive role of the patient in our experimental

setting requires the use of subjective, self-reported data instead of more objective,

observational data.
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4.2.4 Comfort in Medicine

Comfort is seen as “central” to medical practice amongst practitioners[59]. MSF

doctors in the Ebola outbreak went through the trouble of putting a picture of

themselves with their handwritten name next to it on the front of their PPE. This

offset the unease brought on by the obfuscating PPE and made patients feel more

comfortable with doctors[53].

The nursing literature provides a rich set of theory and tradition for measuring

and valuing patient comfort. The literature includes studies that assess comfort

for both patients and caregivers using questionnaires and ethnographic interviews

[60, 61].

The health care and medical literature sometimes defines comfort as the ab-

sence of pain and use measures such as the Visual Analog Scale for Pain [62, 63].

However, this is not relevant to our study because our study did not induce physical

pain.

4.2.5 Comfort in HRI

Comfort has been studied in the context of socially-aware robots that optimize for

people’s comfort when navigating around them [64][65], in human-robot handovers

[66], and in response to robot touch in a nursing context [48]. [64] uses a 5-point

Likert scale questionnaire to evaluate comfortable approach paths, speeds, and

distances by robots. [67] developed a unique hand-held device that allows users

to input current comfort ratings for the duration of the experiment; this method
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has the obvious drawback of requiring the participant to continually assess and

report their comfort level. [65] defined and modelled pedestrians’ walking comfort

as the “subjective impression of one’s easiness of traversing an environment.” They

recorded pedestrians’ traversal using laser range finders and then averaged three

7-point Likert items to calculate comfort.

Robots like the Paro and MEDi (built on the NAO robot) are being trialled in

health care settings to provide comfort to patients [68, 69, 24, 70].

We define comfort as the relative absence of stress and arousal and test this

using questionnaires and physiological methods. Following Chen et al. we use

a Galvanic Skin Response (GSR) system to measure skin conductance which is

linearly correlated with valence and arousal [48]. Our methods are described more

in Subsection 4.4.5.

4.3 Implementation

This section outlines the robot, robotic control, and environment used in the ex-

periment.

4.3.1 Robot Description

For this study, we used a PR2 humanoid robot [71]. The PR2 has two 7 degree-

of-freedom arms. The mobile base allows for semi-holonomic motion. In addition,

the PR2 has a telescoping spine and ranges in height from 1.33-1.64m.
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The PR2 is equipped with a variety of sensors: two laser range-finding sensors

(one on the base and one on the head), an Asus Xtion RGB-D camera mounted

on top of the robot’s head, a wrist camera for each arm, and stereo cameras. Each

of these sensors, except for the stereo cameras, was used to provide situational

awareness to the robot operator.

The robot ran on battery power, but was tethered via Ethernet for data trans-

mission. To simplify networking, a remote desktop was connected via Ethernet to

the service port of the robot.

4.3.2 Robot Control

An operator teleoperated the robot using the ROS PR2 Surrogate package [35, 72].

This allows the teleoperator to control the position of the robot’s arms via Razer

Hydra motion sensing controllers [73].

The operator holds the controllers, moves his/her hands freely, and presses the

enable button when he/she desires the robot’s end effectors to match that of the

operators. An open gripper, close gripper, and killswitch button are mapped to

the controller. The killswitch immediately disengages the robot’s joint actuator

forces.

The operator relied on an RVIZ-based GUI to perform the teleoperation. The

operator’s GUI gives access to a variety of information including a live feed from

the robot’s sensors, the three ETU environment cameras, and a model of the robot

as it appears in the world. The operator relied solely on the vizualization found
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on the monitors to move the robot and complete each task.

The operator was trained by repeatedly completing the tasks in the ETU with-

out any human subjects. The training time took roughly 2 hours. The primary

author of this paper acted as the operator.

4.3.3 Environment

The robot performed tasks in a simulated Ebola treatment unit (ETU) built ac-

cording to information found from MSF [36]. Our scaled-down ETU is resemblant

of a high-risk zone within a larger Ebola treatment center.

The ETU is an enclosed space approximately 4m x 5m x 2.5m. It is covered in

anti-static, fire-retardant white plastic for a ceiling and walls and has a concrete

floor. There is only one entryway measuring approximately 2m H x 1m W. The

space includes: 2 single cots (195cm L x 66cm W x 40.6cm H), an IV pole and bags,

2 bedpans, a medical tray, and sundry first aid supplies. The full-size simulated

patient’s cot is located in the middle of the room, while the human subject’s cot

is next to the walls.

The ETU is equipped with 1 regular webcam and 2 ultra wide angle webcams.

These provide greater situational awareness for the teleoperator and the safety

attendant. The sensors were controlled via ROS drivers on a desktop machine on

the outside of the ETU.
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Figure 4.2: Patient’s perspective of the room, including view of simulated patient
and medical supplies.

4.3.4 Safety

The PR2 robot is equipped with both onboard and wireless emergency stops. A

human safety attendant continually monitored the scene via a remote screen with

live feed from 3 different cameras in case intervention was needed. The robot’s

maximal gripper effort was set to 30N. Participants were given an orange flag with

instructions to raise it in case they desired to stop the experiment.

A thorough explanation of the experiment and the inherent risks was given to

each potential participant before the experiment started. Consent was required,

and each participant was free to stop or leave the experiment at any time, for any

reason. The university’s IRB approved the study.
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4.4 Methods

4.4.1 Experimental Design Overview

To test our 3 hypotheses we conduct a 2 condition, between-subjects experiment

wherein we vary the participant’s visibility of the operator. Participant visibility

of the operator is broken into 2 conditions described below.

The study is broken into 3 stages and takes roughly 35 minutes. The initial

stage consists of informing the participant of the study via a brief overview, ob-

taining written consent to participate, and filling out an initial questionnaire. The

participant is then taken to the simulated ETU and shown how the E-stop works on

the robot. Following that, the participant puts on an exercise heart rate monitor

and the patient gown. This stage takes approximately 10 minutes.

In the second stage the participant is led into the ETU. The GSR is attached to

the participant’s left hand. The subject is then instructed to lay down. Recording

of the psychometric signals begins, as well as video and audio recording if the

subject gives consent. A 2 minute baseline of the signals is collected, with the

operator in the ETU standing beside the robot for roughly 1 minute. The operator

then leaves the ETU and closes the door based on the visibility condition. The

robot is activated and executes 5 tasks in close proximity to the participant via

teleoperation. Execution of the tasks takes approximately 8 minutes.

The participant is then led out of the ETU and instructed to take off the gown.

The post-hoc survey is administered. The participant takes off the exercise heart

rate monitor, is paid $20 for their time, and allowed to ask questions.
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4.4.2 Participant Visibility Conditions

In both conditions, the teleoperator is located outside the ETU approximately 5m

away from the the participant’s cot. The only thing changed between conditions

is the material of the entryway door covering. Participants are randomly assigned

a condition.

In the no visibility condition an opaque sheet of plastic, of the same mate-

rial as the rest of the ETU, is drawn over the entryway to the room. Thus, the

operator is not visible to the participant at all during the robot’s task execution.

In the visibility condition the participant and operator are physically separated

by a sheet of 4mm clear plastic drawn over the entryway to the room, allowing

the participant full visibility of the operator, constrained by the participant’s re-

quirement to stay on the cot. The participant’s view of both conditions is shown

in Figure 4.3 .

4.4.3 Robot Tasks

The robot performed five tasks in the ETU, in close proximity to the participant:

1. Deliver wrapped gauze to the medical tray

2. Pick up a no-touch thermometer and hold it over participants torso

3. Move IV pole closer to the participant’s cot

4. Remove the wash cloth hanging on the wall next to the participant and place
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Figure 4.3: The participants view in the no visibility (top) and visibility (bottom)
conditions.
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it in a bucket

5. Move the bucket from the end of the cot to the other side of the ETU entrance

The primary criteria for task selection is that each had to be feasible and

consistently repeatable. This was a two-fold decision. First, we were interested in

what robotic technology could actually do in the near-future. Second, we wanted

standardize robot performance between participants.

We also wanted realistic tasks that would lighten the workload of the health care

staff. The selected tasks were deemed helpful based on conversations with trained

medical personnel (nurses and doctors), some of whom were principal leaders in

the latest Ebola response [53].

Lastly, we wanted tasks that are generalizable to other tasks in this domain.

The selected tasks involve the robot picking up objects of various sizes, stiffness,

textures and colors that requires the robot to use its full range of height and to

traverse much of the ETU space.

4.4.4 Participant Arrangement

Participants were recruited from the surrounding community and campus. They

were required to proficiently speak and read English and be at least 18 years old.

23 people participated in the study (8 females and 15 males, ages 18 to 55, median

of 24). All but one had at least some college experience. 19 participants gave

consent to allow us to record audio and video.



41

We wanted the participant to feel like he/she was in a medical environment as

much as possible. Not only was our ETU realistically modelled, we also sprayed

a small amount of bleach under the participant’s bed before entering to give the

room a sterilized smell.

In the initial briefing for the experiment, the participant was told that we were

interested “in human-robot interactions” and “how to use robots to help in the

fight against infectious diseases.” We framed the robot to the participant as “a

robot, controlled by a human operator” twice in the study overview and once in the

consent form. With the exception of specifying that the robot would be “moving

the IV pole from one cot to another,” the actions of the robot were not specified in

advance. We characterized the robot’s actions as “general health care tasks in the

ETU.” It was not disclosed to the participants that we were studying their levels

of comfort and trust. The initial briefing and surveys were conducted outside of

the ETU, with partitions blocking the subject’s view of the ETU.

The participant was shown how the emergency stop functions on the robot in

the ETU before putting on a heart rate monitor in another room. Then the partici-

pant put on a standard hospital gown over his/her clothes. He/she was led into the

ETU where the GSR was hooked up. Further questions by the participants were

deferred until the end of the study unless the questions regarded safety practices.



42

4.4.5 Measures

4.4.5.1 Questionnaires

An initial questionnaire was administered to each participant following the consent

process. Basic demographic information was collected, including 4 items relating

to age, gender, level of education and current employment status. Each participant

then took the Negative Attitude Towards Robots (NARS)[74] survey and the PTS.

Following the robot task execution stage, the participants returned to the initial

study area to take a post-experiment survey. The post-experiment survey is broken

into three categories: operator trust, robot trust, and comfort (see Table 4.1). Each

question is on a 5-point Likert scale, with 5 being “Strongly Agree.” The operator

and robot trust questions were designed to follow the language and spirit of the

trust questions found in the PTS and the work by Chen et. al [54, 48]. Means are

calculated per category. Negative questions are inverted to follow the same scale

as the other questions. Analysis of variance and 1-sided t-tests are done to test

the significance of the comparisons.

4.4.5.2 Pyschophysiological Response Measures

We measured participants’ GSR and heart rate during the robot task execution,

but in this paper only report GSR data. Baseline monitoring began two minutes

before the robot started its task execution. The participant lay down on the cot

during baseline monitoring. Monitoring stopped after the robot returned to its
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Operator Trust, Cronbach’s α = 0.68

I trust the operator.
The operator is extremely thorough and careful.
I thought the operator would hit something.
I would allow the operator to lay a sheet over me
using the robot.
The operator was skilled.
The operator ensured my safety while performing
the tasks.

Robot Trust, Cronbach’s α = 0.78

I trust the robot system.
The robot system is extremely thorough and care-
ful.
The robot system frightened me.
I would allow the robot system to lay a sheet over
me.
The robot system accomplished its tasks well.
The robot system made sure I was safe while per-
forming tasks.

Comfort, Cronbach’s α = 0.95

I was comfortable in the room.
I liked being in the room.
I felt scared in the room.
I felt relaxed in the room.
My time was peaceful.

Table 4.1: Survey questions per category.
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starting location and folded its arms.

Following Chen et al. we used Qubit System’s S220 GSR with the C410 LabPro

Interface and C901 Logger Pro software to measure GSR [48, 75]. Since the sensor

is highly sensitive to physical movement, the participant was instructed to lie on

his/her back with his/her instrumented hand on the cot for the entire robot task

execution stage. The GSR outputs 0-5v and was sampled at a rate of 3.3 Hz.

The second minute of recording was used to calculate a baseline for the indi-

vidual participant using Equation 4.1. A baseline is needed since the gain has to

be hand-adjusted in the initial reading period and since the initial reading period

varies per individual.

Baseline(gsrp) =

400∑
t=200

voltt

200
(4.1)

This is used to calculate a proportional GSR value:

PropGSRt(gsrp, baselinep) =
voltt

baselinep
(4.2)

Task-phase proportional means (TPPM) for each participant are calculated

using Equation 4.3. Start and end times for the task-phases were calculated by

taking the mean of hand-coded times from the recorded sessions.

TPPM(gp, bp) =

phaseend∑
t=phasestart

PropGSRt(gp, bp)

phaseend − phasestart
(4.3)
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This is used to calculate the proportional mean during a task-phase for an

entire conditional group using Equation 4.4.

CondTPPM([p], [g], [b]) =

n∑
i=1

PPM(pi, gi, bi)

n
(4.4)

One-sided t-tests are performed on TPPMs between significance to check for

significant differences.

4.5 Results

4.5.1 Questionnaire Results

For the survey responses, n=11 for the no visibility condition and n=12 for the

full visibility condition.

Figure 4.4 is a boxplot for trust in the operator between conditions. A higher

y-value represents a higher level of trust in the human operator. The median and

mean are above the neutral line for operator trust for both conditions. However,

the full visibility condition had a higher mean than the no visibility condition

(M=4.38 vs. M=3.95). Thus, the full visibility group expressed higher levels

of trust in the human operator than the no visibility group. This difference is

significantly explained by the condition (p<0.05, Cohen’s d=0.81) and supports

H1.

Figure 4.5 shows the boxplot for trust in the robot by each condition. Again, a
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Figure 4.4: Boxplot of operator trust means per condition.
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Figure 4.5: Boxplot of the robot trust means per condition.
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Figure 4.6: Boxplot of comfort means per condition.

higher y-value indicates higher levels of trust. The medians are equal whereas the

mean in the full visibility condition is higher than the no visibility condition mean

(M=3.77 vs M=3.56). While interesting, this result is not statistically significant

enough (p>0.1, Cohen’s d=0.30) to support H2.

Figure 4.6 shows the self-reported level of comfort for the each condition. Com-

fort levels determined by the questionnaire show a lower mean and median in the

full visibility group. While in contrast to our initial inclination, these results are

not significant enough to reject H3 (p>0.1, Cohen’s d=0.34).
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Figure 4.7: Mean proportional GSR over time, per condition.

4.5.2 Galvanic Skin Response Results

Three of the participants’ data had to be excluded from analysis because the signal

was saturated immediately following the baseline time period, indicating a poor

gain setting. Thus, for the GSR data, n=9 for the no visibility condition and n=11

for the visibility condition.

Figure 4.7 shows the average proportional GSR reading for both conditions

(note again that minute 2 was used as a baseline and the robot did not start mov-

ing until after minute 2). A higher proportional GSR reading indicates greater

levels of arousal and excitement. The no visibility group had a higher level of

arousal compared to the full visibility group throughout the trial. Both conditions

experienced an increase between minutes 3 and 4, but the rise for the no visibil-
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Figure 4.8: TPPM GSR for each task phase and whole experiment, with standard
error bars.

ity condition was much higher. The full visibility condition’s signal looks much

smoother, indicating fewer changes in arousal across time.

Figure 4.8 shows the proportional task-phase mean GSR values by condition.

The no visibility condition’s mean is higher than the full visibility condition at

each stage and across all time. The difference in the proportional mean across

all time yields a marginal degree of significance (p<0.1). This suggests that the

no visibility condition had higher levels of arousal/valence compared to the full

visibility group during the robot’s task execution, and only marginally supports

H3.

In agreement with our intuition, Figure 4.8 suggests that the “Thermometer”

phase, where the robot held a no touch thermometer over the torso of the par-
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ticipant, is the most arousing/exciting task-phase for both groups, aside from the

baseline reading.

4.6 Discussion

In support of H1, our results suggest that people are less trusting of the the human

operator when the operator is unseen. The reason for this effect is still unknown.

The patients may tend to project more autonomy on the robot when the operator

remains unseen during task execution, and this might lead them to doubt the

operator’s ability to command and control the robot. Contrast this to the full

visibility condition where the patient is continually reminded of the operator’s role

in the control and manipulation of the robot. This might bolster the patient’s trust

of the operator because the patient can constantly link the operator’s capabilities

and power to the robot’s actions.

In this experimental design, the operator was introduced to the patient before

the robot even began to move and had at least 5 minutes of interaction with the

patient during the consent process and safety explanation. The patient even walks

by the operator’s control unit. We hypothesize that the effect size may have been

much greater if the patient did not meet the operator beforehand or see the control

station. A less-rational state due to medication or symptoms may also increase the

effect, causing patients to project more autonomy to the robot, further decreasing

their perceived ability of the operator to control the robot.

From the support of H1 it follows that a patient-centered robotic ETU would



52

feature a mobile teleoperator control unit that could be temporarily stationed

outside of patients’ rooms. This would allow each patient to see the operator while

the operator controls the robot. This would be in contrast to a central teleoperation

control unit which would not allow patients to see the person manipulating the

robot.

The deeper implication of H1 is to question the current and imagined-future

form of telemedicine. Obscuring the operator behind the robot could be discon-

certing and off-putting for many people in regards to their trust of the operator

unless, as with most current robot surgery, the patient is unconscious. A loss of

operator trust could mean a decrease in long-term physician-patient relations and

a lower likelihood to seek future medical care. More work needs to be done to

evaluate how things such as screens, speech communication, or even greater fa-

miliarity with robots can help overcome this specific barrier to operator trust in

telemedicine applications involving physical action around the patient.

Our results do not support H2; nevertheless, it is very interesting to find that

the patient’s trust of the operator varied significantly while the trust in the robot

did not. Participants may have been assessing different attributes of trust when

evaluating the operator versus the robot. The trust attributes assessed for the

operator (e.g., level of control) may have varied greatly between conditions. The

same measured trust attributes might not have varied as much for the robot. This

might help explain why there was not a significant difference in robot trust.

Our results are somewhat mixed in regards to H3. The survey responses do

not support H3, and if anything, point the other way. The GSR data however
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shows that the no visibility condition experienced significantly more arousal across

time compared to the full visibility condition in support of H3. The higher levels of

excitement in the no visibility condition coincide with their lower levels of operator

trust. The lower levels of arousal in the full visibility condition coincide with their

higher levels of operator trust. Our results then fit an inverse pattern between trust

levels (in the operator) and GSR response. This seems to make intuitive sense that,

all else being equal, the more trust a person has in the human operator, the calmer

he/she would be. Thus, the GSR data not only supports H3, it also fits with H1.

Participants may have responded to the comfort questions with more regards

to the physical attributes of the ETU rather than the overall situation of the robot

moving around in the space. This could explain variation in the results.

There appears to be a general downward trend in the GSR results for both

conditions. This may suggest that people adjust to the robot over time. The

downward trend could also be explained by the variation in the tasks. People were

more excited when the robot hovered over them with a no-touch thermometer

than when the robot dropped the towel in the bucket. To better understand the

overall downward trend the GSR baseline should not start until the person’s GSR

voltage stabilizes and tasks should be varied. Also, these results are drawn from

a limited interaction time between the robot and test subject; it is unclear how

longer interaction times, on the order of days or hours, would impact the levels.

There are limitations to the current study. While the support of H1 is statis-

tically significant with a large effect size, the result is limited in statistical power.

Ideally, at least double the number of participants is needed to increase statistical
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power. Lastly, interviews may have aided in the interpretation of the results.

4.7 Conclusion

In this work we explored how patients’ visibility of the teleoperator affects their

own levels of trust in the operator, robot, and their overall comfort. We tested

our three respective hypotheses by having a human-sized robot complete general

health care tasks around participants under two conditions of operator visibility.

The experiment took place in a simulated Ebola treatment unit.

Our major contribution suggests that a patient’s increased visibility of the

operator leads to higher levels of patient trust in the operator. More needs to

be done to assess the reasons for this effect and ways to potentially overcome

this barrier to trust. The mixed results regarding H3 invite more research and

clarification into how visibility impacts patient comfort.

Robotic technology in infectious disease outbreaks is poised to offer tremendous

benefits to health care worker safety but the particular challenges of deploying these

systems around human patients needs to be further explored.



55

Chapter 5: Conclusion

Robots can bring enormous benefits to the fight against infectious disease out-

breaks. In Chapters 3 and 4, I presented three concrete use cases of this, with EVD

as the target disease. Namely, smart robotic treatment centers can track disease

propagation alerting other robots and health care workers of danger. Scrubbing

robots can autonomously and efficiently decontaminate treatment center floors uti-

lizing supplied contamination knowledge. Health care workers can safely provide

basic health care using teleoperated or shared-autonomy robots. These examples

are just the beginning what robots and automation can do in infectious disease

outbreaks.

Along with these demonstrated technical capabilities, Chapter 3 raised ques-

tions regarding best practices for alerting health care workers in the presence of

patients. Chapter 4 explored in detail the effects of operator visibility on patient

comfort and trust. The results of the study suggest that people are more trusting

of the operator when they can see the operator. This suggests that it would be

better to have a robot’s operator be in the line of sight of the patient. This work,

again, is just an example of what robots should, and should not, do in infectious

disease outbreaks.

It is important to remember that, even though EVD was the target disease for

the work, the principles generalize to other similar infectious agents and contexts.
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Though the EVD outbreak was the catalyst for the research, the work should not

stop because the latest outbreak is officially over. This time ‘in-between outbreaks’

should only spur on more creativity to prepare for the next outbreak, whether

EVD or something else. It is the time for organizations to freshly reexamine their

responses to infectious diseases, to refine their methods, and to develop and test

new technologies. It is also the time, especially in light of the above research, for

roboticsts to do their part and to do the same. The above work provides initial

results regarding how robots and automation can and should be used in infectious

disease outbreaks, but more work needs to be done.

First, the robotics community needs to acknowledge and embrace the infec-

tious disease outbreak scenario as a new working domain, or at the very least

subdomain, of disaster robotics and medical robotics. This domain deserves our

attention and effort due to the large potential impact and uniqueness of the do-

main. Disaster robotics, search-and-rescue robotics, and medical robotics research

have not addressed the specific issues that arise in infectious disease outbreak re-

sponse due to different underlying assumptions, even though there is overlap and

intersection with these areas. A taxonomy and characterization of robotic infec-

tious disease outbreak responses needs to be developed. This needs to be done in

comparison with disaster, search-and-rescue, and medical robotics. It is suggested

to define the domains in the areas of purpose, assumed environmental conditions,

resources, duration of interaction, anticipated patient and work cultures, organi-

zational structures, intended users, and technical abilities required.

For example, disaster and search-and-rescue robotics assumes the full spectrum
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of resource availability surrounding the response environment. However, they as-

sume the worst in regards to environmental and structural conditions. Medical

robotics research assumes the best in regards to environmental, structural, and

resource conditions. Infectious disease response robotics, on the other hand, can

occur across the entire spectrum of environmental, structural, and resource condi-

tions.

The treatment duration is also widely different than current search-and-rescue

and disaster robotics anticipate. Their medical focus primarily deals with pin-

pointing the initial location of the patient and providing first response medicine

until extraction. Infectious disease response robotics needs to account for sus-

tained, longer-term patient care, possibily lasting through a quarantine period.

Thus, human-robot interaction studies in this domain should include longer term

interaction studies.

As mentioned, differences also exist in the structural assumptions made by

the various domains. In infectious disease responses, large governmental and non-

governmental organizations may wield considerable say over the layout and struc-

ture of treatment facilities. However, these structures must be rapidly-deployable

anywhere on the globe. Once deployed, they may be surrounded by severe re-

source constraints. Infectious disease robotics therefore makes unique structural

assumptions; the evironment can (and should) be altered to make it more robot-

friendly, allowing robots to effectively perform a larger variety of tasks. This would

increase the robotic technology adoption rate resulting in saved lives. The gen-

eral robotics research goal to enable robots to work well in all environments can
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and should be abandonded in this context. Future research then should examine

possible structural designs that would provide the highest cost-benefit for robotic

abilities. It is further suggested to collaborate with teams that are already working

on next-generation rapidly deployable treatment units as well as design one from

the ground up with robotics and automation in mind.

It is also important to examine uniquenesses within the infectious disease re-

sponse robotics domain, as not all infectious diseases are the same. The benefits of

robots will likely vary based on the microbiological and epidemiological nature of

the target disease. Particular axes of interest include the virulence of the disease,

the transmission mode of the disease, portal of entry/exit, the mortality rate of the

disease, and other options for treating and preventing the disease. Work needs to

be done to pinpoint the diseases that robots would be most beneficial in fighting.

Understading the overlap and uniquenesses of the domain when compared to

others, and the role that specific diseases have on outcomes, should result in the

identification of particularly challenging areas. It should also yield a projected

timeline for when robots can be effectively tested and deployed in real situtations.

This would then guide various research entities to understanding and exploring the

short- and long-term applications as desired.

This domain will push the boundaries of human-robot interaction research. The

questions raised in Chapter 3 and findings from Chapter 4 reinforce the idea that

any proposed robotic solution needs to acknowledge and understand the responses

and attitudes of end-users and projected beneficiaries. Studying these responses

and attitudes is particularly challenging in the context of infectious disease out-
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break response due the variability of cultures and mental states of the people the

robots may interact with. Human-robot interaction will need to focus on a more

differse subject population that it has historically, likely requiring the use of novel

methodology.
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Appendix A: Contributions

Parts of the introduction and background sections come from [76, 77]. The contri-

butions for comprise Chapter 3 and 4 are described in detail below.

A.1 Chapter 3

Chapter 3 is drawn largely from work submitted to the 2016 IROS conference

and is undergoing review [29]. It is work done in collaboration and guidance with

my advisor Dr. William D. Smart. Tiffany Chen and Patrick Hansen are also

coauthors on the paper. Tiffany Chen developed the initial system code, which I

then heavily refactored, debugged, and extended. Dr. William D. Smart developed

the initial ellipse fitting code. Kyle Wizzard helped with the manual labor during

the evaluation procedure.

I designed and set up the test environment and tools, guided and initialized the

ideas, refactored, debugged and extended the initial tracking and contamination

code, implemented the warning system, implemented the scrubbing protocol on the

Turtlebot, developed the evaluation method, performed the evaluation, analyzed

the evaluation results, and wrote the conference paper.
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A.2 Chapter 4

Chapter 4 comes from work published at the 2016 ACM/IEEE Human-Robot

Interaction Conference, which was nominated for a best paper award [45]. It is

work done in collaboration and guidance with my advisor Dr. William D. Smart.

Many people deserve credit for the roles they played in making the work a reality.

Matthew Reuben helped move and reconstruct the treatment unit. William Curran

introduced me to the PR2 and PR2 Surrogate package. Duy Nguyen and Cameron

Bowie manned the emergency stop button in the event that a participant signalled

to stop the experiment or the robot appeared to do something dangerous. My

advisor and lab mates each gave considerable feedback for each iteration of the

paper. A number of people volunteered to pilot the study.

My contributions include formulating the original research question, develop-

ing the experimental design, implementing the study, perfoming the study as the

operator, analysing the data, and writing the conference paper.
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Appendix B: Author’s Note

While the 2014 - 2016 Ebola outbreak began its spread across West Africa, I began

my drive across the continental United States for graduate school. Ebola brought

with it fear, mistrust, and death. Graduate school brought excitement, optimism,

and opportunity. The two events could not be more disparate.

The White House Office of Science and Technology Policy responded to the out-

break, in part, with a challenge to universities and businesses to provide innovative

solutions to help in the Ebola crisis. The group also initiated several workshops

around the country to brainstorm ideas and foster collaboration (Innovation on

the Edge: Accelerating Solutions in the Fight against Ebola).

Our Personal Robotics Group accepted the challenge with sticky notes in hand.

The goal of the workshop was to provide near- and long-term solutions for protect-

ing health care workers and saving lives. We mocked-up a demo video of the PR2

removing bed linens in a couple days using a standard off-the-shelf package and

our PR2 robot. The video was decent enough quality to help win us the award,

but did not provide clear direction for moving forward. Thus, the real work for

this project and myself began.

In laying out a work such as this, one that seeks to convey the benefits of

technology against the realities of disease and death, it is important to acknowledge

my own current standing of ignorance. I have never set foot in West Africa. I
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have not been the victim of a deadly disease. My first-hand knowledge of the

medical field consists of routine visits to well-resourced doctors, a few emergency

room visits, and one extended hospital stay due to a collapsed lung. Thus, to a

large degree, I am out of touch with the realities of the situation. Nevertheless, I

hope to make the case that using robots against infectious diseases is, and should

continue to be a, fruitful endeavor. It’s an endeavor that is not just beneficial for

the priviledged few (an abstract pursuit to help earn folks like me degrees), but

hopefully an enabling and supportive technology for all of humanity.

Interestingly, this is not the first time I have found myself building a ‘career’

in response to a terible situation, though this is a first for how disconnected I feel

from the situation. As a white, well-educated male, I often find myself somewhat

removed from the pain and suffering of those I seek to help. For example, my

color and class put me on different sides of the street and law than those I worked

with in South Carolina. My nationality put in a different dorm than the locals in

Honduras. This time though, my graduate work put me an ocean and continent

across from those who were the intended beneficiaries of my work. Aware of this

reality, my hope is that the distance does not trivialize the work presented. I

believe there is great potential in using robots against infectious diseases in all

parts of the world.




