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A DISTRIBUTION-FREE APPROACH FOR GROUPED SURVIVAL DATA:
ANALYSIS AND CALCULATION OF EFFICIENCY

I. INTRODUCTION

A survival experiment is one in which the experimental information

consists of observable response times such as time-to-death or time-to-

failure. Survival experiments are usually carried out with a sample of

n experimental units in such a way that n independent response times may

be observed. In addition, some concomitant measurements, which the ex

perimenter believes may be pertinent to survival time, are observed for

each experimental unit. This additional information may be circumstan-

tial depending on the various properties of the individual units, or it

may consist of treatments which can be applied to units in a planned

method, designed to study certain factors of interest. The primary sta-

tistical problem is to determine which factors of this concomitant

information have important effects on survival time and to estimate

these effects and the survival distributions that accrue from them.

One of the major fields of application for survival experiments is

medical science. Gross and Clark (1975) give many such applications and

examples. A common problem is to compare competing medical treatments

for a disease. An experiment is designed so that concomitant information

consists of an indication of which treatment a patient receives plus

whatever additional factors are deemed important to survival. Then sur-

vival time, or time until some important response, is observed for each

patient. The statistical problem is to detect differences in survival

time caused by the competing treatments while adjusting for the other



factors. Also survival analysis is used in animal experiments, indus-

trial life testing, and actuarial science.

A major complication for survival analysis is the problem of cen-

sored data. It is not always possible to observe the response time of

each individual unit in an experiment. In most experiments this arises

simply from the practical necessity of ending the experiment at some

point in time at which some units may not yet have responded. Thus the

information about a unit which survived the experiment is only that its

response time was greater than the duration of the experiment. Also it

may happen in certain types of experiments that the ability to monitor

some units is lost during the experiment, so that in these cases the

information available is only that the survival time is greater than the

last point at which that unit was observed to be surviving. It is a

major requirement, then, that a good method of statistical analysis for

survival data be able to incorporate censored data in a simple,straight-

forward manner.

Of the more common parametric regression models employed in sur-

vival analysis are the exponential and Weibull models. Exponential

regression models have been studied by Feig1 and Zelen (1965), Zippin

and Armitage (1966), Glasser (1967), and Prentice (1973). A larger

class of models containing the exponential models are the Weibull re-

gression models as given in the work of Peto and Zee (1973) and Prentice

and Shillington (1975). These models have the advantages of providing

computationally simple analysis and easily allowing for censored data;

however, they restrict attention to a somewhat narrow class of distribu-

tions with monotone hazard functions. These models are often inadequate

for explaining data derived from biological settings in which the hazard



functions depend on many factors and may increase or decrease on differ-

ent time intervals. A possible approach to this problem is to use more

general parametric models such as that proposed by Farewell and Prentice

(1977), but these large parametric models are usually difficult to inter-

pret and cumbersome to analyze.

Due to the difficulty in modeling survival time, nonparametric

methods have been used extensively. The product limit estimator of

Kaplan and Meier (1958) has often been used to estimate a survival curve.

For comparing two survival distributions with censored data Gehan (1965)

developed a generalized Wilcoxon test, and later Breslow (1970) extended

this to a generalized Kruskal-Wallis test for censored k-sample problems.

Mantel (1966) gave another rank statistic for comparing two survival dis-

tributions, while Peto and Peto (1972) and Peto (19724) derive more

general results by considering locally most powerful rank tests for

Lehmann alternatives. These nonparametric methods are easy to apply and

to interpret, but are limited to analysis of rather simple, single-factor

experiments.

Cox (1972) developed a semi-nonparametric approach which general-

ized both the Weibull regression models and the nonparametric Lehmann

alternatives. The form of an underlying hazard function was left unspec-

ified with the covariables employed to have multiplicative effects on the

underlying hazard. By reasoning conditionally on observed failure times

Cox obtained a likelihood expression which did not depend on the underly-

ing hazard. In a follow-up paper Cox (1975) termed this a "partial like-

lihood" and showed that for purposes of inference about regression

parameters it could be treated as though it were a true likelihood func-

tion. The result of this was that one could use the partial likelihood



for inference about the effects of covariables on survival time without

worrying about modeling the underlying hazard function. Furthermore,

the statistical analysis was simple to apply, while the Cox models were

rich enough to fit many different survival distributions and allowed for

the use of flexible regression structures to analyze experiments with

many covariables.

The motivation for the analysis to be developed here comes from

consideration of data from experiments with laboratory animals. These

experiments are conducted to determine the effects of toxicants and

other stresses on the survival times of the animals. Focus will be

directed to two special characteristics of these laboratory experiments

throughout this study.

First, due to the controlled, laboratory conditions available in

such experiments, it is possible to get replications of matched experi

mental units with exactly the same associated concomitant information.

The treatments or associated information can ordinarily be chosen before-

hand, so that the experiment may be designed to contain factorial combin-

ations of the desired treatments. For example, if the joint effects of

zinc and copper toxicants on survival rates of fish is under study, then

factorial combinations of low, medium, and high concentrations of each

toxicant might be of interest. Tanks could be prepared to give all the

possible combinations of the two toxicants at these various concentration

levels, and fish randomized to the tanks to give replications of each

treatment combination.

The second distinctive trait of these laboratory experiments is

that the exact failure time for each animal is generally not available.

The failure times are grouped into convenient time periods, so that a



record is made only of the number of animals in each treatment combina-

tion which failed during each time period. In the example above the

experiment might be run for ten days, with an observer counting the

number of deaths in each tank at the end of each day.

Typically such toxicology data are not fit well by standard para-

metric regression models and often appear to involve mixtures of two or

more distributions. Mixture models have been studied by Boag (1949),

Berkson and Gage (1952), and Chen et al. (1977), but nonparametric

methods seem more appropriate when the survival distributions are not

well understood. The Cox model would appear to be flexible enough to

fit most practical data sets of this sort; however, for grouped data

Cox's conditional analysis does not provide a tractable partial likeli-

hood. Peto (1972b) and Breslow (1972, 1974, 1975) suggest approximations

for obtaining a likelihood function, but for heavily grouped data these

methods are known to yield inconsistent estimators of the regression

parameters.

For grouped data, such as will be considered here, Cox suggested a

conditional logistic regression model which reduces to his continuous

model as the grouping becomes finer and finer. Thompson (1977) has em-

ployed this model; however, there does not seem to be a convenient way

to obtain a likelihood expression free of the underlying hazard, so that

the analysis is burdened by computations involving nuisance parameters.

Another approach for handling grouped data utilized by Prentice and

Gloeckler (1978) reasons directly from the Cox continuous model, but

again the analysis requires heavy computations with nuisance parameters.

The methods to be developed in this work are based on an approxi-

mation which allows for the formation of a maximum relative likelihood



function using Cox's model applied to grouped data. This likelihood is

similar in form to the Cox partial likelihood and yields consistent

estimators of the regression parameters. It presents an extremely flexi-

ble tool for data analysis, while allowing for a wide range of models to

be fit and for standard likelihood inference procedures to be followed.

In addition, the approximation provides a convenient vehicle for

examining the efficiency of the Cox semi-nonparametric method with other

parametric procedures. The specification of nuisance parameters associ-

ated with the underlying hazard in the grouped data problems is a dis-

tinct advantage to efficiency studies made in the continuous data setting.

The parametric models may be viewed as imposing certain smooth structures

on the nuisance parameters, and the efficiency can be investigated

directly by considering these restrictions. It is felt that the effi-

ciency results for grouped data to be presented here provide an intuitive

grasp of the nature of the Cox model.



II. ANALYSIS

II.1. The Cox Model

Consider a continuous failure time random variable T taking values

on (0,m). A realization of T may be thought of as the time-to-failure

or time-to-response of an experimental unit. Let F(t) denote the cumu-

lative distribution function of T, and assume -1t F(t) = f(t) exists
d

almost everywhere on (0,m). It will be convenient to define P(t)= 1 -

F(t) to be the survival function of T.

An important tool for survival analysis is the hazard function

given by

A(t) = lim
AtAt÷o

Pr{t< T< t+ Atl T> t}

or A(t) = f(t)/F(t), which exists a.s. Informally, one can think of

A(t) as the instantaneous probability of failure at t, given survival up

to t. The hazard function is defined in terms of the survival function,

but we can also obtain the survival function from the hazard function,

since we can write

-d log F (t)

dt
= A(t).

Then, integrating both sides,

log i(t) = -4; X(u)du

or

F(t) = exp[-J0
rt

A(u)du] .

So either the survival function or the hazard function may be specified



to characterize the distribution of a continuous failure time random

variable.

Suppose a collection {Ti:i = 1, . . , m} of continuous failure

time random variables, corresponding to m different treatments of a sur-

vival experiment, is considered. To explain treatment effects with a

distribution free analysis, D. R. Cox (1972) proposed the regression

model

A(t)=A0(t)expWx.(t ) 1 ,

where A (t) is the hazard function for T., A (t) is an arbitrary, un-
o

known hazard function, f3 is a p-dimensional vector of parameters, and

x.(t) is a p-dimensional vector of covariables, possibly dependent on

time, which describes treatment i. This models the treatments to have

multiplicative effects on an underlying hazard X
o
(t) which is allowed to

be any continuous time hazard function. The model is nonparametric or

distribution-free in the sense that the underlying hazard is unrestricted;

however, the treatment effect is expressed by a parametric regression

expression.

If x. is not allowed to be time dependent, then the Cox model is

the proportional hazards model where the treatment effect is to multiply

the underlying hazard by the constant exp(fPxi). However, allowing the

covariables to be time dependent produces much richer classes of models

with the possibility that the multiplicative treatment effects may in-

crease or decrease with time. In many applications, especially those

related to biological phenomena, the treatment effects do appear to

depend quite heavily on time. By careful choice of time dependent



variables, it is often possible to obtain a good fit for a survival data

set with the Cox model.

Besides the intuitive appeal of the multiplicative treatment

effects in this model, Cox has given a very neat analysis for continuous-

time data which avoids parameterizing Ao(t) and allows standard likeli-

hood procedures to be carried out for estimation and hypothesis tests of

(3. For the grouped data problems to be considered in this work the

essential Cox model is retained, and an analysis is developed which

leaves A
o
(t) free while allowing for direct inference about the regres-

sion parameters.

11.2. The Grouped Data Model

The survival experiments of concern here consist of m different

treatmentswithn.' ,i = 1, . . . , m, individuals assigned to each treat-

ment. The treatments are to be thought of in a broad sense, encompass-

ing any information that the experimenter can use to distinguish

experimental units, although typically the treatment structure will be

a factorial design for studying certain effects of interest. For each

individual a measurement is made of either response time or censoring

time, that is, the time survived until removal from the experiment. It

is assumed that the experiment is conducted in such a way so that the

survival times of all individuals are independent. Also survival times

for individuals with the same treatment will be assumed identically dis-

tributed. Additionally, no relation between response time and censoring

time is supposed. Thus for censored observations only the information

that the response time must be greater than the censoring time is used.
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The focus here is on experiments in which survival time is grouped

into a finite number of time periods. Let the time axis be partitioned

by positive real numbers al, . . . , ak, and define a
o

= 0. The experi-

ment is conducted for k time periods with time period j, j = 1, . . . , k,

represented by the time interval (aj_1, aj). At the end of each time

period observations are taken on each experimental unit to determine if

that unit failed, survived, or was censored during that time period.

Again let T. denote the response-time random variable for an indi-

vidual with treatment i. There are three types of events which may be

observed for an individual with treatment i: (1) response during some

.th .th
3 period, (2) censorship during some 3 period, or (3) survival of

the experiment. These events may be described respectively as (1)

a. < T. 5a., (2) T. > a. ,, and (3) T. >a . Thus if the probability
3-J. i j i 3-1 k

distribution of T. is known, then the probabilities of the possible
1

observed events may be calculated directly.

It will be convenient to define parameters which essentially de-

scribe the discrete time hazard functions for the m treatments. Let

p
= Pr{a < T. 5.a IT. >a },

ij j-1 1 j j-1

for i = 1, . . . , m and j = 1, . . . , k. Then p.. is the conditional
13

probability of failing in period j given survival of j-1 periods under

treatment i. Likewise define

g.. = 1 -
P

Pr{T. > a. IT. >a. },
13 13 1 3-1

so
qi

.

j
3
th

is the conditional probability of surviving the period given

survival of j-1 periods under treatment i. The probabilities for the

possible observed events for the individuals may be expressed as follows.
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(1) Response in period j:

j -1

Pr{a. <<T. = (
3-1 1- 3

2.,=1

(2) Censorship in period j:

j -1

Pr{T.> a. } = II
3-1

i=1

(3) Survival of the experiment:

k
Pr{T.

1
>ak

13
} = H q...

j=1

Since the survival times of all individuals are independent, the

likelihood function is obtained by the product of the probabilities of

all observed individual events. To write the likelihood simply, let r
ij

be the number in treatment i which respond during period j, and let sij

be the number in treatment i which survive period j. If an individual

is censored during period j, it will not be considered to have responded

in or survived period j. Note from expressions (1), (2), and (3) above

that for an individual with treatment i, if it survives period j it con-

tributes the factor q..
13

to the likelihood, while if it responds during

period j it contributes the factor p... Thus the likelihood may be
ij

obtained by counting the numbers responding and surviving at each time

period. We then have

m k r.
j

s.

(2.1) 1,(p) = H p
j

q
ij

ij
i=1 j=1

p.

where p is the km-dimensional vector of the pij.
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A successful-analysis of this grouped data problem involves a

modeling of the P.j to take advantage of information about the treat-

ments. The model employed here follows a suggestion of Kalbfleisch and

Prentice (1973). The continuous Cox model (1.1) is assumed, and then

froththisamodelingfortheconditionalgroupeddataparameters q. is
ij

obtained. Additionally it is assumed that the covariable x
i
(t) is con-

stantoneachintervalhevaluecfx.(t) on (aj'...1, a.]

will be written x... Then applying the Cox model
13

q
Pr{T. > IT. > a. }

13 1 3 1 3-1

F. (a,)
1 J

P(a3. )

1 -1

exp[-fj A.(t)dt]
o 1

exp[-faj-1 A.(t)dt]

:---exPl-fai"t)exPU37)"t)]dt}a. o
3-1

(2.2) = exp { -X. exp(Vx..)},
13

where A. = faj A (t)dt.
3 a

j-1
o

This produces a model for the qij with k parameters A = (A1, .

A.k)1 associated with the underlying hazard function and p parameters

= . , f310)1 associated with the treatment effects. The problem

is then reduced from one with km unknown parameters q.. to one with the
13

k+p parameters of the model. As in the continuous model the underlying

hazard is still unrestricted, since the are free to take on any posi-Aj

tive values that the integrals of Ao(t) might be. The model is then
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partially nonparametric, since the underlying hazard is left completely

free, but the choice of the x.. will restrict the model to a certain set
1J

of parametric alternatives from the arbitrary X0(t). However,by liberal

use of the time dependent covariables, classes of alternatives can be

made large enough to encompass most practical problems.

Using (2.2) and the equation developed for the likelihood in (2.1),

the likelihood function for the model can be written as

m k r.

L(8,X) cc 11 11-exp[-X.exp(8x..))} j exp[-X.exp(131x. )1} lj
i =l j =1

3 ij

Writing £(8,A) = log L(8,X) and dropping constants,

m k
(2.3) R.(8,X)=XDr.log[1-exp{-A .exp (8'x R.expVk.

i =lj =1

{r..
i3 13 3 13

This is essentially the log likelihood function used by Prentice

and Gloeckler (1978). Their approach was to use maximum likelihood

methods on (2.3), proceeding to estimate both 8 and A by iterative

methods. For problems in which k is large and the interest is on 8,

working with (2.3) directly involves difficult computations to estimate

the nuisance parameters A in conjunction with the parameters of interest

8. To circumvent this problem the following sections show how certain

good approximations to (2.3) may be made which allow the construction of

a likelihood expression which depends only on 8. Then, much in the

spirit of the Cox partial likelihood, analysis about 8 can proceed free

of the nuisance parameters A.
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11.3. The Approximate Likelihood

To develop a workable approximation to (2.3) the following assump-

tions are added to the grouped data problem presented in the previous

section. (i) Assume A.(t) to be constant on each time period, in par-
'

ticular let A
o
(t) = h. and A. (t) = h. expO, x..), for a. < t< a..

3 13

(ii) Assume that for observed failures the exact failure times are

known. If R. is the set of all individuals with treatment i which1J

failed during time period j, then let t..9 be the exact failure time for
13,

an individual 57, ER
ij

. (iii) Assume exact censoring times are at the a..

Assumption (i) is very weak; in fact, the model for the grouped

data parameters qij adding (i) only does not differ from (2.2). Assump-

tion (ii), at first glance, appears to violate the whole structure of

the grouped data problem. However, what is intended is to select pseudo-

failure times t
ijk

in such a way as to be consistent with the observed

grouped data. The pseudo-failure times will then provide a vehicle for

obtaining a good approximate likelihood for the actual grouped data

problem.

Again let the integrated hazard parameters be defined as

A. = faj A (t)dt = (a. - a. )h..
a
j-1

o 3 J-1 3

Also write c
ijk

= (tijt aj-1)/(aj aj-1) for the proportion of the

th
3intervalsurvivedbyindividualkofRij Using (i) and (ii) the

following expressions are obtained for the conditional probabilities of

survival and failure.

Pr(T. >a
j
IT. > a

j-1
)= exp[-Aj exp(W

j
x. )J,
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f (t-1 T. >a. )ccA.exP(Wx..)exp[-c.. A.exp(Wx..)]
i

T.IT> a, 1J i 3-1 J 13k 3 1J
1 3-1

The likelihood function is then formed as the product of the condi-

tional probabilities of the observed survivals and failures.

m k
L (X,)= II II ( II IX.exp(Vx..) exp[ -c.. X.exp(Vx..)]}
c J 1J 1J J 13

1
i=1 j=1 kelt.3.

s.,

(exic4.-X exp(V1X...3 )1} 1j] -

Writing c
ij

= ( y c
ijk

)/r
i

, this becomes
kcRii

j

m k

= 11 .[.(X.exp(V1x.
3

)} exP{-c. .A.exp x..)}0 13 13 3
i=1 j=1

S.

"[ex,14-X.exp(Vx..)11 1J].
13

The log likelihood is then

m k

(3.1)
c
(X,8)= / / fr..logX. +

i=1 j=1
13 3 13 13

- (s.
j
+ c..r..)X.exp(51x..)}.

i 13 13 3 13

This likelihood expression is similar in form to those used by

Breslow (1974) and Holford (1977). Note that to form this log likeli-

hood it is not necessary to select pseudo-failure times for each indivi-

dual, but only to select a pseudo-value for each c
ij

. Since c
ij

is the

th.
average proportion of the 3 interval survived by those failing in

interval j under treatment i, it is natural to consider the conditional

expectation
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T. a.

E{ a1
3-1

Ia. < T . < a . 1.
aj a 3-1 3

Using assumption (i) with the Cox model, the conditional density

of Y.. = (T. - a )/(a - a ) given a <T. <a., i.e., 0 < Y. <1, is
1 j-1 j j-1 j-1 j

found to be the truncated exponential density

ijexp(-4)iiy)

fY. (Y) = 1J exp(-4ij)
ij

0 < y < 1, with
13

= X.exp(Vx..).
3 13

It follows then that

E(Y.,) =
1 (P'i7ax1)(-(1)i7Y)

0 1 - exp(-4)..)
dy

13

1
exp(-cPij)

13
. 1 - exp(-4)ij)

Recall from (2.2) that q1) .. = so
lj

Ti - a.
3-1 1 qij

(3.2) Ef a < T . < a 1 log
ia. - a. 3-1

3-1 qj 1 q..

Using expression (3.2) for the values of c ij would be an ideal

choice; however, since the q,. are unknown parameters, this is not possi-
13

i
ble. When the qre large, Holford (1976) suggests using c ij =

1
for

j
are

all i and j. This can be gotten by noting the limiting value for (3.2)

1
as q.. i1 is , or recognizing that the failure time given failure in

3

th
interval
.

the 3 is well approximated by a uniform distribution when q..
13

is large. In general, though, expression (3.2) is less than 2, so that
2

theuseofc..13 =1 everywhere will slightly bias estimators based on
2

(3.1). For this approximation to work well the experimenter would be
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required to choose intervals which keep all
(113
large, but this cannot

always be foreseen or controlled.

Advantage can be made of the ni replications available for each

treatment in such experiments. A naive estimator of without consid-
qij

ering modeling can be formed by

s,
13

qij r.. + s..
13 13

the proportion of survivors of the total number at risk throughout the

interval. Then the c.. may be estimated by
13

(3.3) cij
1

log 413,

If r
ij

= 0, then C
ij

= .5 is used, and if s = 0, then
ij

= 0 is used,
ij

as these are the limiting values of c for q. 1 and q 0, respec-
ij ij ij

tively.

Asymptotic considerations make c
ij

an especially appealing choice

for c... As long as the censoring mechanism is not too severe and large
13

sample size embodies each n. being large, then the c
ij

will converge to
1

c
ij

as sample size gets large. It is proposed, then, that the true log

likelihood expression of (2.3) be replaced by the log likelihood of (3.1)

with the c
ij

approximated by the c
ij

of (3.3). The approximate log like-

lihood may then be written as

m k

(3.4) k-(13,X) = y y {r.. log A. + r., Ix.,

i=1 j=1 13 3 13 13

(s.. + C..r..)A.ex (Vx..)}.
13 13 13 3 13
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The key to analysis with (3.4) is the formation of a maximum rela-

tive likelihood function 2*(8) = max 2^(8,X) which effectively removes
X c

the nuisance parameters associated with the underlying hazard. For

fixed 8 let X(0) be the value of X that maximizes 9,,,,(a,x). The advan-

tage of using 2, instead of the true 2 is that X(8) can be solved

explicitly in terms of 8 and the data. Solving for the maximizing value

gives

(3.5) )(8) = r /{ (s.. + ..r.exp(8'x..)
7 .3 i=1 " 13

where r . = / r P.,*(e)) can then be written as
.3 ij

i=1

(3.6) 2* (8) = 2^(8, (0) )

k m

= ItY rii
j=1 i=1

jixij -r -.log[ / (s + c. .r. )exp(13°xi)]}+C,i
i=1

j 13

k

with C = (r log r -r ). For purposes of inference about the re-

j=1 .J
.3 3

gression parameters 8, 2*(8) may be used exactly as if it were a log

likelihood function for 8.

The maximum likelihood estimates 8 and A, i.e., the values that

maximize 2,(8,X), may be obtained simply by maximizing 2*(8). If

maximizes 2*(8), then 8 and A.((3) will maximize 2,(8,X). This follows by

noting

max 2 *(8) = max{max
f3

2^(0,2)1 = max 2,(8,X).

(3,

x c c

Furthermore, if 8, is restricted to some subspace o
C R and A left free,

the restricted maximum likelihood estimates 8
0

and X
o
can still be found

with 2*(8). Again if 8
o

is the value that maximizes 2*(13) for a 6E2
o
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A A

then 3
o

and X(3
o
) are the values that maximize k^((3,X) for f3 Ec Maxi-

mizing 2,*(3), with or without restrictions, by the Newton-Raphson algo-

rithm presents no difficulties, since the dimension of 13 is usually

small. Typically great savings in calculations are made by using kic(13)

instead of k(S,X), as the dimension of X is likely to be large for a

well designed experiment.

Large sample, asymptotic analysis may be carried out following

the lines of Cox and Hinkley (1974, Chapter 9). To apply this theory

the asymptotic normality of the maximum likelihood estimators needs to

be established. Assuming exact failure times, 2 ,(3,X) is the log like-

lihood function and is formed with independent observations coming from

the m different populations corresponding to the m treatments. Bradley

and Gart (1962) have extended the asymptotic theory of maximum likeli-

hood estimators to such cases. These authors require the following con-

ditions to establish asymptotic normality:

(i) existence of partial derivatives of k((3,X) up through 3rd

order;

(ii) interchange of the order of differentiation and integration;

(iii) positive definite matrix of expectations of second partial

derivatives of £(,X);

(iv) N-*-010, so that n.
1
= p.1N, where 0<p i< 1 for i = 1, . . . , m,

and X p
i

= 1.
i=1

For reasonable censoring mechanisms these conditions apply here, and

6 = N has approximately a multivariate normal distribution with mean

equal to the true value of 8 = [ ] and variance matrix approximated by

-1
(,,X), where i(A,X) is the observed Fisher information, i.e., the

matrix of second partials of 2 -(13,X) evaluated at and X.
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k*((3) can be conveniently employed in the likelihood ratio test.

Let fi = ((31. (32r , e andand suppose we consider an hypothesis

test of the form Ho:e Qo vs H t3 , where Sto .D:13 = = En,
o 1 1' ' r r

r .5.p. Then the test can be based on the statistic

W = 2{sup - sup k,(13,,X)1

Sri c 13EQo

= 2isup 2,*(R) sup k*(W
(3. 13E%

= 2 {k* (R) 2,*6 ) },

where (3 and 3
o
are the unrestricted and restricted maximum likelihood

estimators, respectively. Using the asymptotic normality of the maximum

likelihood estimators and applying an argument such as given in Cox and

Hinkley (1974, pp. 322-323), the limiting distribution of W is chi-square

with r degrees of freedom. The distribution is central chi-square when

H
o

is true.

In comparing various regression models, one can form an analysis

of deviation table analogous to an analysis of variance table, except

twice the deviation in i* is used in place of reduction sums of squares.

Also a goodness-of-fit test of a given regression model can be con-

structed using the approximate likelihood expressions. Suppose a "satu-

rate(rmodelisfitwitlathe
qi
.completely unrestricted, or equivalently,
j

the cp
ij

unrestricted. Then (3.4) can be rewritten as

m k
2,..(4)).=YDrilog +

j ij
i=1 j=1

This expressioll + c..r..). So
1J 1J 13 13
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20(q)) - 2.1,(R)1 has an approximate central chi-square distribution

with mk-p-k degrees of freedom when the regression model is adequate.

Once an appropriate regression model has been chosen, confidence

regions for the parameters may be found neatly by taking advantage of

k*(3). Let

(13,X)=

1

2
k^(13,A) @

2
2,-(13,X)

DfnA
Di3

2

D
2
k-(R,X) a

2
i-(3,X)

DAn n2

An estimate of the variance matrix for 13 and X is given by i
-1

(R,X).

Adopt the following notation:

2
a k*(13)

i*(R) =
2 '

Df3

a03)and (S(13) = jt

aR

Richards (1961) has established the following facts:

and

66) =

i*(R) = ii3x(R,5)

Also note that for a partitioned, invertible, symmetric matrix of the

form [Ac., with D = A CB-1C', that
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A C

C' B

-1
D-1

-1
-D CB'

-B
-1

C D
-1

B-1+ B
- 1C'

D
- 1CB -1

'

This fact, coupled with Richards' results, enables us to write

I (f3i(f3,x) =
(h{i*6)}-1

fil,6)}-18'(R)

1
X) + 6 (hfi*CfW-1(si (S)

The variance matrix for and 5 is then expressible in terms of

- -
{i*(13)}

-1
, 6(), and i

XX

1
(R,X). All of these matrices are easy to com-

pute. The first two come directly from the simple expressions for kle(f3)

and A(S), whereas i
XX

(13,X) can be readily computed, since i
XX

(,X) is a

diagonal matrix. Confidence intervals for (3 and X may then be con-

structedstructed using the asymptotic normality of and X.

Finally, to estimate the survival curve for a given treatment com-

bination one can use the relation

F. (a.; @) =
J

Q =1

=11exlpf-AexIDOix.0
.1k

Q =1

= exp { - X X
ke
xp(R'x

it
)1.

Q =1

Then the maximum likelihood estimator for F
i
(a

j
;0) is

T"(a.;6) = exp{ j exp(li'x )}.
3

Q =1
ik

To obtain confidence, intervals for f(a.0) it is perhaps best to

follow a suggestion of Prentice and Gloeckler (1978) and work with



23

Y(6) = log{ -log T( a ;6)1. The transformation to Y is preferable to

T(a.;6) for normal approximations, since it removes the range restric-

tions. The distribution of Y(8) may be approximated by a normal distri-

bution with mean Y(0) and variance given by a
2

= [g(0)]1 [i
-1

(0)][g(0)],

where g(0) = Y(0)/DO. Then an approximate (1-a) level confidence

interval for Y(0) is given by

(Y(0) - z
a
a, Y(6) + z

a
a),

where z
a

is the value such that a standard normal variate falls within

-z
a

and z
a
with probability 1-a. Transforming the confidence interval

to one for F(a.;0) gives

o)
(a.
,(a.exp(zu -

, [F(a.0)] exP(-za(1 ))
3

as a 1-a level confidence interval for F(a ;0). Confidence bands for
J

the survival curve may be constructed by considering the confidence

intervals of F(a.;0) for each j.
J

11.4. A Toxicology Example

An experiment was carried out by Garton (1975) to study the effects

of either one week or two weeks acclimation time on the survival rate of

fish subjected to zinc toxicants. Three levels of zinc concentration

were used, and a 2x 3 factorial experiment was run on the two acclimation

periods with the zinc concentrations. There were 50 fish randomized to

each of the six treatment combinations with mortality observed on a daily

basis for ten days. Time here was measured from the introduction of the

zinc toxicants after the desired acclimation period had been established.

Table 1 gives the observed daily mortalities.
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Table 1. Daily mortality (from groups of fifty
fish per treatment combination)

Acclimation Time:

Zinc Concentration:

Day/Mortality

One Week Two Weeks

Low Med. High Low Med. High

1 0 0 0 0 0 0

2 3 3 2 0 1 3

3 12 17 22 13 21 24

4 11 16 15 8 8 10

5 3 5 7 0 5 4

6 0 1 1 0 0 1

7 0 0 2 0 0 0

8 0 1 0 0 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0 0

Days 1, 2 and 8, 9, 10 were each combined giving k = 7 time peri-

ods. It was decided initially to consider a regression on six covari-

ables. Letting A represent acclimation, C represent linear log

concentration of zinc, and T represent linear time, C, C x T, A, A x T,

A x C, and C x T
2
were selected as covariables. The variable A was

coded 0 for one week acclimation and 1 for two weeks acclimation. The

three zinc concentrations were in ratio 67:100:128. The variable C was

coded by 0.2047, 0.6052, 0.8520, which were 4 less than the logarithms

of the above ratio figures. The variable T was coded as -3,-2,-1,0, 1,

2,3. Thus for the six treatment combinations and seven time periods the

model was

q.,
13 13

= exp(51x..)
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i = 1, . . . , 6, j = 1, . . . , 7, where [x..ij ]'= (C, Cx T, A, A x T, A x C,

CxT2
). For example, for the treatment combination of two weeks acclima-

tion with medium zinc concentration, say i = 5, and for the sixth time

period (the seventh day) the model gave

q
56

= exp{-X
6

exp[(.6052)8
1
+ (.6052 x 2)82 + (1)8

3

+ (1 x 2)8
4
+ (1 x .6052)8

5
+ (.6052 x 4)8

6
)1.

Using analysis based on k*(8), the following analysis of deviation

table was obtained.

Table 2. Analysis of deviation

Source d.f. X
2
=

C 1 37.42

C x T 1 9.32

A effects 3 15.69

A 1 4.68

A X T 1 10.27

A x C 1 .74

C x T2 1 2.97

Lack of fit 29 22.51

The x
2
statistics were obtained by successively adding parameters

to the model. For example, the x
2
statistic 9.32 opposite Cx T in the

table was the test for 8
2
= 0 with 8

1
in the model, i.e.,

9.32 = 2[k*(81 ,8
2
,0,0,0,0) k*(8,0,0,0,0,0)],

where 8 and were the restricted MLE's for 8 =8 =8 =8 =0 and 8
2 3 4 5 6 1

was the restricted MLE for 8 2-8
3-

8
4-

8
5
- 8

6
-0. The lack of fit
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statistic was obtained by fitting a saturated model as given in section

11.3. The statistic was x
2

= 2[2,.((p) - fd,*(f3)] with rnk-p- k= 29 degrees

of freedom.

Examination of Table 2 reveals that the data can be fit very nicely

by just the four variables C, Cx T, A, and Ax T. The lack of fit statis-

tic corresponding to this model is x2 = .74 + 2.97 + 22.51 = 26.22 on 31

degrees of freedom. i*(3) was maximized with respect to this model to

^
obtain estimates of and (i*W)]

-I
used for estimates of standard

errors. Once S was estimated, estimates of A were obtained by using ex-

pression (3.5) for Tables 3 and 4 give the estimates of (3 and A.

Table 3. Estimates of 13,

Term A Standard Error

C 3.01 .53

C X T .98 .30

A -.98 .26

A x T -.48 .15

Table 4. Estimates of A

Al = .030

A
2
= .264

A3 = .192

A4 = .076

A5 = .008

6
= .004

A7 = .001
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Table 4 illustrates the humped shape of the underlying hazard func-

tion for this problem. Analysis with constant hazard or monotone hazard

models would not be appropriate here. Survival functions for the treat-

ments were then estimated using the relation

i'(a.;13) = exp {- y aQ exp(Rix )1.

k=1
ik

Figure 1 gives a graph of all six survival curves as estimated by the

above relation.

The effect of the zinc concentration was the strongest factor in

explaining the data. This effect does get stronger with time, so that

the C and CxT variables were both needed to fit the data well. There

was also a marked effect due to acclimation time, even though during the

first three days there was practically no difference in survival rates

between one-week and two-week acclimations. The one -week groups survived

at slightly higher rates in the early time periods, but this difference

was attributable to sampling error. After three days the fish acclimated

for two weeks did remarkably better than those with one week of acclima-

tion time, the difference becoming greater with time. It was imperative

to have the time dependent variable Ax T to explain this effect of

acclimation adequately. It appears that the benefits of an extended

acclimation period do not come into play until the fish have been sub-

jected to the toxicant for a lengthy period of at least three days.
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2 weeks, low

I week, low

2 weeks, medium

I week, medium

4 5 6

t (days)

Figure 1. Estimated survival curves
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11.5. An Alternative Approach to the Approximation

[

[3

Recall the following notation. Let 6 = , and let £(0) denote

the true likelihood of (2.3), while £
c
(0) denotes the approximate like-

lihood given in (3.1) with some fixed choice of c, the vector of all c13 ...

Letting epii = Ai exp(5'xii), it is seen that the approximate likelihood

may be obtained from (2.3) by replacing the term log[l exp(-(P..)] by

the approximation 100.1. c..4.. for each i and j. Good approximations
3 13 13

for various neighborhoods of 0.. may be made by taking the value of c..
13 13

between 0 and .5. Values of c.. close to .5 work well for neighborhoods
13

of 0
ij

near 0, whereas smaller values of c
ij

are appropriate for neigh-

borhoods of large (I)
ij

. The approach taken in this section is to deter-

mine ways of choosing the c
ij

so that £
c
(0) will be a good approximation

of £(6).

To concentrate on the error of approximation write A
c
(6) = £(0) -

m k
(0), where A

c
(0) = y r, .A .(cp ) is the total error, and

c i=1 j=1 13 i3

A
ij

(4)

ij
) = log[l - exp(-0

ij
)] - [log0

ij
ciij.0 ] is the error for each

3

individual contribution of a failure during the period j with treatment

i. For likelihood inference interest is focused on the position of the

maximum and the shape of the likelihood function. If i (0) is to be a

good approximation to £(0) for statistical purposes, it is then most

desirable that first and second partial derivatives of £(0) and £ (0)

be close in neighborhoods of interest. This can be achieved if A
c
(0)

can be made nearly constant in appropriate neighborhoods of O. However,

this condition is rather strong and can only be well approximated when

each 6.. is small and each c.. is chosen near .5.
13 1J
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Consider, then, the weaker restriction of selecting c so that the

maximum likelihood estimate using Q (0), say 8, is close to 8, the maxi-

mum likelihood estimate using 9,(8). Both likelihood functions are well-

behaved and the maximizing values may be found by setting partial deriva-

tives equal to O. Taking derivatives it follows that

AC(8) 1(0) (0)*

. -

Note that if A
c
(8)=0, then since £(8) = 0 it follows that R. (e) = 0,

A A

and thus 8 = 8. So if A
c
(8) can be made approximately 0 near 0, then

8 will be close to e.

For a fixed value 8
o
,c can be selected so that A

c
(8
o

) = O. Let 4

be the mk dimensional vector of the 4)... Note
1J

arc 4)(0) M.
11

(4)

11
) ( )-I

ae tae
r
11 34)

. . ,r
mk

11 mk

Then selecting each cij so that M. (4)?.)/4. = 0 will make (A
o
)/90

ij 13 ij

= O. This gives

so choosing

(5.1)

DA.. (e.) exp(- ?.)
13 3.3 4)13 1

c
ij

= 0,
34)ii

1 exp(-e ) eij ij

C.. =
13

1 exp(-4 ?,)
13

exp( -4)7j)

makes A
c

(0
o

) = O.

1

This suggests a way to select the c
ij

to obtain good estimates of

0. Obtain a preliminary estimate of 8, say 8
o

, then choose each c.. by
1J
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.

equation (5.1). If 0 0 T- 0, then 0 = 0, so that for 8 reasonably near 00,

0 can be expected to be a good estimate of 0.

Writing (47i = exp(-(1)
ij

), the problem can be recast in terms of

selectingprelirainarYestimateSofclii/so

0

qij 1
c =

0
1

q
log ..

ij qi3

Asimpleprocedureistouse=.=s ./(r + s
iqij qij i3

s. /(r..
j

leads to selecting

1 qij
13

c.. =
log . 1 q.1.

313

. This then

which is exactly formula (3.3) for choosing c
ij

. So the use of c
ij

can

be justified on the grounds of attempting to select c so that to) and

c
(0) will give approximately the same maximum likelihood estimates.

It should be pointed out that 0, the maximum likelihood estimate

using 1(0) may be obtained by an iterative procedure employing a sequence

{1 1(8), 1 2(0) , . . . } of approximate likelihoods. A procedure can be

followed which is a direct application of the EM Algorithm as given by

Dempster, Laird, and Rubin (1977). The likelihood 1(0) can be viewed as

an incomplete data likelihood where exact failure times are unknown,

whereas 1c(0) is a complete data likelihood gotten from exact time data.

The EM Algorithm proceeds as follows:

(1) A preliminary estimate 01 is made to start the iteration.

(2) Expectation step: using 0
n
and the observed incomplete data

find the expected failure times, i.e., find cn by
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exID(-e.)n ij 1
c.. =
13

1 exp(-$ii)
iii

(3) Maximization step: find 8
n+1

that maximizes Z
n
(8), the com-

plete data likelihood.

(4) Iterate until On 0.

Dempster et al. have proved the convergence of 0n to 0 under rather

general conditions. Using this procedure one could obtain by iteration

t

co

(0) such that k
cn

(0)
o
(0), and the maximum likelihood estimate

using Z 0(8) would be 8. Besides having the true maximum likelihood

estimates, one would also have the advantages for analysis provided by

X(13) and Z*(R) with k
Co

(0).

Generally, though, it is felt that this iteration procedure does

not gain enough over the previously suggested k.(0) to justify the added

computational work. Also for testing hypotheses which require different

restrictions on 8, k 0(8) will not give the true restricted maximum like-

lihood estimates. However, if one wishes to work directly with Z(0)

following Prentice and Gloeckler (1978), this iterative scheme does pro-

vide an alternative to the usual Newton-Raphson method for obtaining 0

and appears to be simpler in many cases.

11.6. Further Examination of the Approximation

An appealing property for the proposed approximation (3.4) is the

consistency of the estimator 8 found by maximizing Z.(0). Previous

approximate methods suggested by Cox (1972), Peto (1972b), Breslow (1974),

and Holford (1976) fail to give consistent estimators of the parameters.
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This has been one of the strongest criticisms leveled against these

approximate methods, e.g., Prentice and Gloeckler (1978).

The definition of consistency used here is a generalization of

Fisher consistency as given by Rao (1973, p. 345), adapted to this set-

ting in which some of the observations are censored and the data come

from m different distributions. For the problem at hand estimators 3

and X will be called consistent for 3 and X, if whenever the observed

conditional frequencies qij = s
i3 i
./(rj + s

ij
) are equal to the true

conditionalprobabilitiesqij = exp exp( °x..)} for all i and j,

then 3 = 3 and A = X. Intuitively the idea is that the estimators are

consistent if observing data that exactly fit the theoretical model

leads to estimates which are exactly the true parameter values. As with

Fisher consistency, strong and weak convergence are implied by this de-

finition when suitable regularity conditions are met. The grouped data

setting requires a restriction on censoring to get strong or weak consis-

tency. In order that
3

q,.
13

q1.., one must assume censoring takes place

at the endpoints of the time periods. This assumption is needed by

Prentice and Gloeckler (1978) to show consistency for the true MLE's.

A A

It is claimed, then, that the estimators 3 and X, found by maximiz-

ing for all i
ij

and j. Note that

, 1 qij
s
ij

+ c..r., = s
1
. j + .( ) r.

13
1J

, ij

logclij1- q'ij

1
s
ij

) r= s. + (AX.exp(31x..) r
ij

ij13
= lj eXP (131 X1]



Now evaluating 2,*(13) at the true value of P. we obtain

k m
Q* (R) = y X

34

r..[x.

r X (s .+r..C. )exp(Vx..)[x..0j
i=1

ij 13 ij 17 13

13 13
j=1 i=1

L (sij ..-vc..r..)exp(31x..)
13 13 13

i=1

= 0.

r..[x..]

r
3

X (r../X.)[x.
i=1 13 3 13

13 1j

(r..13/A.)
i=1

13 13
i=1

13 13

Since 13 is the unique value that solves k*(R) = 0, it follows that

Finally, note that

= r ./ y (s..
. 13

ci.rij)exp(R` xij)
1=1

= r ./ X.3
1=1

= A.,
3

so A = A, also.

r..
13

A.exp(Vx..)
exp(fP )xij

For large sample problems the consistency of 0 assures us that 0

will be a reasonable estimator. Generally 6 is found to be very close

to 0, with significant differences occurring only when a chosen model

does not fit the data well. One may well ask, then, what has become of
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the error introduced by approximating 2(0) by z(e) if the estimator e

is so close to 0?

The approximation as viewed in section 5 was designed to control

.

c
(8), making 2.(0) = km in the region of interest. However, no

attempt was made to get 2(8) and 2,(8) to agree, and it is here that the

approximation has some effect on the analysis. From the perspective of

section 3, 2.(8) was obtained by assuming the added information of exact

failure times and piecewise constant hazard functions. One would expect

that I.,(8) = E[-2.,(0)], the Fisher information obtained from the approxi-

mation, would be greater, i.e., would have larger components, than 1(0) =

E[-2(0)], the Fisher information obtained from the true likelihood. This

indeed is the case, but the gain in information is usually slight.

To investigate this further, the following notation will be used.

0 = 0(0) is written to emphasize that is obtained as a function of 0

by the relation 4.. = AjexpWx..). Also 2(0) and 2,-(0) represent the
13

functions of 0 such that 2[0(8)] = 2(8) and 2[0(8)] = 2(0), i.e.,

and

m k
2(0) = X X [r1 _log{l - exp(-0..)} s.. ..],

13 13 13
i=1 j=1

m k

2.(4) = X y [r..log (s.. + C.1.r..)0..1.
13 3 13 13

i=1 j=1 13

Applying the chain rule for partial differentiation, the following

expressions are obtained.

a
2
0
ij

(8)

ae

300) a
2
2(4) 40)

+V.(0) =
30 30

ijDO
2

38
2



Q, (e) =
C

(1)(e)

ae

D4)(0)

38
+

36

Now taking expectation with respect to the true grouped data model,

and noting for all i and j E[32.(0)/30ii] = 0, we obtain

1(0) = E[ -2 (0)]

- - -

300) -3
2kW act, (0)

30 ae
3(!)

2

Similarly, taking expectation with respect to the approximating continu-

ous model and noting again that for all i and j EPtc(4)/34)ii] = 0, we

have

I^(0) = Et -4.(e)]

4(e )

30
E

-32k.(q))

34)
2

34)(0)

38

It is seen from these expressions that the error introduced by

using I(0) instead of 1(0) comes from the difference in [-D
2
2.(0)/a0

and [-3
2
9.(4))/3(1)

2
]. The former is a diagonal matrix with entries

r
ij

exp(-4)
ij

)/[1 - exp(-0
ij

)]
2
, whereas the latter is a diagonal matrix

with entries r
i

./4)
ij

. Comparing a particular entry of I(0) to the corre-

sponding entry of I(13) amounts to comparing a certain linear combination

of the terms exp(-4
ij

)/[1 exp(-4)
ij

)1
2
with the same linear combination

of ther terms l/4ij .

The error introduced by the approximation is perhaps best charac-

terized as the ratio
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2
(1/(P..)

ij

Pij= texp(- )/[1 - . ) 1 ]

2
}

which gives the proportional information gained in cell i,j by using the

approximation. To get a notion of how the approximate information com-

pares to the true information, consider the following table (Table 5).

Table 5. Proportional gain of information

qii 4)ij Pij

.9 .105 1.001

.8 .223 1.004

.7 .357 1.011

.6 .511 1.022

.5 .693 1.041

.4 .916 1.072

.3 1.204 1.127

Consider the situation where
qij

=q is the same for all i and j.

Then p.. is the same value, say p, for each cell, and it is seen that
ij

L(0) = pI(e). Thus asymptotic chi-squared statistics for testing 13 = 0

using 28(0) will be too big by approximately a factor of p, and confi-

dence regions based on 2..(6) will be too small by approximately a factor

of 1/i5. Generally, though, examination of the table reveals that p is

near 1 for most reasonable values of q that one could expect to find in

a well designed experiment. For example, with q = .5, chi-square test

statistics will be inflated by only a factor of 1.041, whereas confi-

dence regions would be about .980 of their true size. This example

would represent a poorly designed experiment, since most of the
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experimental units would fail in the early time periods, and later time

periods would provide little additional information.

Of course, rarely would an experiment have all the q..
ij

equal.

see the effect of the approximation on the analysis one must look closely

at the linear combinations that make up each entry of I.(8). Generally,

a toxicology experiment results in only a few low q..
ij

with the vast

majority of the q.. at high values. The larger error introduced by the
ij

few low values is usually damped out by the more numerous smaller errors

involved in the linear combinations making up the entries in I.(8).

Typically the error involved in the asymptotic theory for convergence to

normality is greater than the error of approximation. Thus it is felt

that the analysis presented here provides, for most practical grouped

survival data problems, methods extremely close to the usual maximum

likelihood analysis with the true likelihood, but carries the advantages

of eliminating the nuisance parameters A with k*(0).
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III. EFFICIENCY

III.1. General Approach

The nature of a nonparametric analysis is that it can be applied

to a wide class of problems without making restrictive assumptions about

the form of the distributions involved. However, to achieve this gener-

ality, nonparametric testing procedures must have rather moderate power

properties for all distributions, and so for particular parametric alter-

natives will be less efficient than a corresponding parametric procedure.

The usefulness of a nonparametric analysis may be evaluated by comparing

its efficiency to parametric methods for parametric alternatives which

one can expect to encounter in practice. If a nonparametric procedure

for a problem has high efficiency against parametric alternatives which

are often employed for the same problem, then the added scope of applica-

tion for the nonparametric analysis seems desirable in comparison with

small loss of efficiency for the cases where the parametric models hold

true.

In this light the efficiency of the Cox analysis, with its nonpara-

metric X
o
(t), against exponential and Weibull models, where X

o
(t) is

given a parametric form, is an important problem. Preliminary investi-

gation of this problem by Kalbfleisch (1974) and Kalbfleisch and

McIntosh (1977) indicates that the Cox analysis has very high efficiency

for these parametric models. This is further verified by a simulation

study of Lee, Desu, and Gehan (1975). If this is so, then the Cox analy-

sis is to be preferred over a parametric analysis, since the Cox model
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will fit a much wider class of distributions while still giving efficient

analysis for exponential and Weibull alternatives.

Theoretical investigations concerning the efficiency of the Cox

analysis for continuous-time data by Efron (1977) and Oakes (1977) have

been highly technical and are difficult to fathom. The efficiency

studies in continuous-time settings are made extremely difficult by the

indefinite quality of the totally unparameterized Ao(t) in the Cox model.

However, this difficulty is completely circumvented by considering the

efficiency problem in the grouped data or discrete-time model. The

distribution-free analysis here does allow for a general parameteriza-

tion each time period. Exponen-

tial and Weibull models simply amount to placing smoothing restrictions

on A
o
(t), so that the efficiency of the distribution-free analysis com-

pared to these parametric models can be investigated directly through

certain restrictions on the A.. But before addressing these grouped
7

data efficiency problems, a measure of efficiency will be required.

Let us consider an estimation problem for a real-valued parameter

Suppose that T
n
is an estimator for 6 such that the distribution ofA.

2
T
n

is asymptotically N[0, aT(6)/nT], i.e., 147 (T
n

8)/a (0) converges
T

in distribution to a standard normal random variable as the sample size

n
T

÷ co. Also let S
n
be another estimator

tion is asymptotically N[8, a
s

2
(8)/n

s
] for

for 6, such that its distribu-

sample size n
s*

Assume that

using S
n

instead of T
na

2
(6) <a (8). Then the asymptotic efficiency of

T S

to estimate 8 is defined to be

e(0,S,T)

aS2
(0)

(12 (A)
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More explanation of this may be found in Kendall and Stuart (1973, Sec-

tion 17.28) and in Bickel and Doksum (1977, Section 4.4.C). One inter-

pretation is that it is the asymptotic ratio nT/ns of sample sizes

required to give fi
n

and S
n

equal variances. Note that since the vari-

ances are allowed to depend on 6, that the efficiency depends on the

value of O.

It is also felt that e(6,S,T) may be used to define efficiency in

an hypothesis testing context. Consider testing Ho:0=0 versus Ha:6 >0

by basing the test on either T
n

or S
n

. The following heuristic argument

is given to motivate the use of e(8,S,T) as a measure of efficiency here.

When Ho is true, T
n
has an approximate N[0,aT(0)/nT] distribution

while S
n
has an approximate N[0, a

2
(0)/n I distribution. To construct

size a tests the null hypothesis would be rejected for Tn > zotaT (0)/ nTI--

or for S
n
>z

a S S
(0)/ where z

a
is the value such that for a standard4-1

'

normal random variable Z, P(Z > z
a

) = a. Now consider a fixed value 8 > 0,

and let us calculate the approximate power, say a, of the two tests for

this alternative 6 value. For T,

= PIT> z
aa T(0)/InTh

P

= p

j---tzaaT(0)

T(T 0) nil'

0)-

a
T
(A) a

T
(6)

Z >

z
a
a
T
(0T) ri-- 0

aT(A)
T(6

)

Suppose we fix a and ask what value of nT will give an approximate

power of a for a size a test? Let z
a
be the value such that P(Z > z

a
)= a,

then set
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z
a
a
T

(0) ,/ii" 6

a
T

(8) a (0)

Solving for nT, we obtain

n
T
(a,a,8) =

-2
zaaT (0) a

T
(0)

a
T

(0 )
82

as the sample size required to give an approximate power of a for an

alternative e with a size a test. Similarly for tests based on S,

- -2 2
z
a
a
s
(0) a2(0)

n
s
(B,a,0) =

a
s
(0)

8
2

is the sample size required to give an approximate power of a for an

alternative 8 with a size a test.

The efficiency of using S instead of T can now be defined as the

ratio of sample sizes needed to obtain the power a with the given value

8 for size a tests, i.e.,

T
(a,a,6)

e(a,a,6,S,T) =
s
(6,a,6)

To remove the dependence on 0 and a let a4-1. This seems reasonable

since high power is desirable and often possible in large sample prob-

lems. So define the asymptotic efficiency as

e(6,S,T) = lim e(a,a,O,S,T)
0+1

n (a,a,0)lim T

13+1 n (a,a,6)
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T
(6)

a
s
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ye)

a
s
(0) zl

e
2

zaaS (0)

2 a
2
(0)

02

2 a2(0)
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So e(O,S,T) also has an interpretation in hypothesis testing as

the limit of the ratio of sample sizes required for equal power as the

power increases to 1. As defined the asymptotic efficiency depends on

the value of 6 and will generally vary as 0 varies. Often for hypo-

thesis testing problems, asymptotic relative efficiency is defined by

letting 0+0, thus removing the dependence on 0, e.g., Kendall and

Stuart (1973, Section 25.5). This reduces the whole measure of effi-

ciency to a single number appropriate for local alternatives; however,

it seems to be too great a reduction in many cases where alternatives

quite different from 0 are of interest. Allowing asymptotic efficiency

to depend on the alternative values of 0 does not seem to cause much

difficulty in interpretation and gives more scope for the application

of the measure. For the purposes of the work presented here, asymptotic

efficiency is then defined by (1.1). One may take either an estimation

point of view or an hypothesis testing perspective with this definition.

Returning to the grouped data efficiency problem, two assumptions

will be made about the experiment in order to simplify efficiency calcu-

lations. First it is assumed that the sample sizes ni allocated to each

treatment combination are the same, say n. This requirement somewhat

simplifies asymptotic results, and since many survival experiments are
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carried out with equal sample sizes, it seems to be a practical restric-

tion. Second it is assumed that there is no internal censoring, that

is, no censoring within the duration of the experiment. Censoring by

the termination of the experiment after k time periods will still be

considered. Without this restriction one must specify the exact censor-

ing mechanism in order to carry out efficiency calculations. Since it

has been assumed throughout this work that nothing is known about cen-

soring, it seems best to simply look at the case of no internal censor-

ing. Also many practical experiments, such as the previous toxicology

example, involve no internal censoring. Furthermore, most survival

experiments have only low numbers of internally censored observations,

so that the efficiency results obtained under the assumption of no such

censoring will closely approximate the exact efficiency calculations for

these experiments.

Consider now an inference problem for grouped data in which a Cox

model is employed with parameters ii= (8k, . . ,f3p)' and a= (al, . ak)1 I

where ai
3

=logA.for j = 1,. ., k. In what follows the parameter a will

be considered instead of A due to the simplicity of the formulas obtained.

The model is then written as
qij

=. exp{-exp(a, + )}, for covariables

13

Concentrating on inference about a particular component of say

1
, large sample inference is based on A

1
, the maximum likelihood esti-

mator, which is asymptotically normal with mean 81, and variance

8
1
8
1
(8,a), the upper left entry of the inverse of the information matrix

I((3,a). Letting n = (2, . . Sp, al, . , the approximate Var(A )

may be obtained as
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I (f3,a) = [I (5,a) - (0,a) I
nn

( ,a) I

1

(13,a)]
-1

.

1

For efficiency calculations it is convenient to work with I(5,a) =

1
I(5,a), so we may write

Var(5
. 1

(5,a)]
-1

1
) =

n nn '
I
na

1

-Isla
1

Suppose we have in mind using a parametric form of Xo
(t) instead

of leaving it unconstrained. This will amount to some smoothing restric-

tion on the A., or equivalently, smoothing the . For instance, if anAj aj

exponential modeling is used, A
o
(t) is constant and so the aj would all

be restricted to be equal when the time periods are equally spaced. Con-

sider smoothing restrictions on the a. given by the general form a = Ay,

where A is a k x a real-valued matrix and y is an a-dimensional vector of

parameters with a < k. The same regression expression will be used; how-

ever, the underlying hazard has been restricted. Letting Aj be row j of

Ti,themdelcannowbelgrittenas
j

5' xi )).
i 3

Large sample inference about. 51 for this parametric model would be

based on the maximum likelihood estimator 5
1

. Its distribution would be

P.

1
f3

1
approximately normal with mean 5

1
and variance I (5,y). Again writing

(5,y) = I (3,y) and E = (i32, . . . , sp, Y1, . . . , ya)' , the asymptotic

variance of 5
1
may be expressed as

- - --1
var (s1) = n [113

s (s,y) IS (s,Y) I 0,Y) i
EC Ef3

-1

1 1 1

To measure the efficiency of using the unconstrained Cox model in-

stead of the parametric model with a = Ay, when in fact the parametric

model holds, the efficiency concept of the ratio of asymptotic variances
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given in (1.1) may be used. The asymptotic efficiency is then expressed

as

(1.2) e(5,Y,5
1
,5

1
)-

1 1
(0,0) -7

n
(5,a) T1111 (5,a) i

115
1 1

(5,a)

1
(31f31

(5,Y)
=-1-7

13

(fi,i) 1 W,Y)
1

1U3
1

(5,Y)

with the numerator evaluated at a = Ay, since it is assumed the para-

metric model holds. For a given choice of 5 and y, (1.2) may be used to

calculate the efficiency, provided the Fisher information matrices for

the two models can be evaluated.

111.2. Some Simplifications

When there is no internal censoring, the data can be reduced to

just the r
ij

, since the s
ij

can be determined from the r
ij

and n. In

fact, the data may now be viewed as a realization of an experiment with

m independent multinomial distributions, one for each treatment combina-

tion. There are k+ 1 cells in each multinomial corresponding to the k

time periods plus an extra cell for survival past the termination of the

experiment.Letrdenotethelmdimensionalvectoroftherii.To em-

ploy the efficiency expression of (1.2) it will be necessary to evaluate

I(5,a) = lE[4(r;(3,a)] within this multinomial setting.

Suppose the experimental units are arbitrarily partitioned into n

groups indexed by h = 1, . . ., n, so that for each group there are m

experimental units with one unit assigned to each treatment combination.

Let r
i

be an indicator of whether the individual of group h assigned
jh

to treatment i failed during time period j, and let rh be the km dimen-

sional vector of r
i

The following relationships hold:
jh.
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n

r.. = X r., ,

13 h=1 1311

n

i(r;$,a) = / k(rh;(3,0l

h=1

n

i(r;(3,a) = y k(rh;,a).
h=1

Because the rh are independent and identically distributed, i(f3,a) =

E[-i(rh;P,,a)]. Furthermore, the Strong Law of Large Numbers can be

applied, so that

r
--n1k(r;f3,a) = --n

1
L X(r

h'
h=1

a.s.

---->E[-k(rh0,a)]

= T(a,a),

where convergence is in the sense that each entry of the matrix con-

verges almost surely. Thus 1(13,a) can be determined as the stochastic

limit of
1
-rk(r;f3,a) as n±co.

Throughout this efficiency study the approximate likelihood func-

tion will be used in place of the true likelihood function, so t(f3,a)

will simply denote the approximate likelihood, i.e.,

m k

= {r. + Ix.
1
. j +

ij
r
ij

)exp(a. + r3 'x.
1J J 13

i=1 j=1
ij 3

The second derivatives of the likelihood may be expressed as follows.

V
(3

0,0L =- = (s.. c..r..)exp(a.+Vx..)[x..] [x . r ,
43 ij ij ij ij ij ij

i=1 j=1
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The terms

(f3,a) = y exp(a.+13'x.
1ja. 13 13 13 13

3 i=1

(a.a) = X (s exp
a a ij 13 13

(a3
13

3 3 i=1

a.a
(f3,a) = 0, for j h.

3 h

(s. exP(a. )
log q.

1j i3 13
xij sij

13 13 13

appear consistently in these expressions. In order to obtain the sto-

chastic
i3

chastic limit of -
1--k(f3,a)

the limit of
n
1(s

ij
c+ .r

ij qij
) log will

be found.

a.s.
Note that s

i3
./(r

i
+ s

ij
) >

qij, i i
so that 1/log[s ./(r +s.

j
)]

j 3 j l

a.s.>1/log
qij . Let n

ij
be the unconditional probability of response in

.h
the 3 period under treatment i , i.e., n .

ik i
= ( IT q

k<j
j

. )p . Then r ./n
i3

a.s. ,.

n
ij

. Also recall c
ij

= -1/log[s ./(r + s
ij

)] s ./r . Combin-
i3 ij i3 ij

ing these facts we have

(s. + ) log
1j 13 1j qij

n

-s,,
13 1

n log[s../(r,
j 13
+s..)]

13 I

S.

r
ij

r
ij

log q13 ..
n

1
.

log[s../(ri +s
log

qij
13 j ij

a.s.f 1
.. log q..

Jog q13..)
13 13

13
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The following results are obtained from the above limit expres-

(2.l.ii)

m k
. r1

2, (13,a)
a.s>

L y ¶.,[x..][x..], = 1
0.0

0,a .
n 13 13 13

i=1 j=1

n 0a

a.s.
n..[x..] = a.(01a),
13 13

i=1 3

.

(2.l.iii) -
1

k
a.a.

(0,a)
a.s> E

13
=

a a
0,,,,

..
3 J i=1 J 3

(2.l.iv) - 1
a a

ai,a) = 0 =
a.a

(0,a), for j h.n.
3 h 3 h

Thus, in terms of the n..13 , i4,(4 has a very simple representation.

It is possible to exploit the relationship between efficient scores

and the information matrix to obtain I(0,y) in terms of I(0,a). Define

-
S = (S . . S , S , . . .,S a)1 = n 22,(r;0,a)/3 (0,a) as the p+k

(3

,

1

SS

1 k

dimensional vector of partial derivatives of 2.,(r;0,a)/471- with respect to

the parameters and a. It is a standard result that under regularity

conditions, such as those imposed by the multinomial problem at hand,

that E(S) = 0 and Var(S) = 1(0,a). Also the Central Limit Theorem can

be applied, so that as n+co S converges in distribution to a multivari-

ate normal distribution.

Now imposing the relationship a = a(y) = Ay and defining S =

n(r;0,a(y))Py, we have S = Da(1)/@Yl[ak(r;0,a)/a] or s = A'S
a

.

The following facts are immediate.

1
YY

(0,y) = Var(S ) = Var(A'S
a

)

= A'Var(S
a
)A = A'1

aa
(0,a)A,
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115(8,y) = Cov(S,y,Sa ) = Cov(A'Sa,

= A'Cov(S
a
,S ) = A'T (a,a),

(a,y) = Var(S
B

) = (am.

The above expressions hold for i(,a) evaluated at a = Ay. Thus i(,y)

may be obtained from T(,a) and A.

Let I
p-1

be the (p-1)x(p-1) identity matrix, and let

B
I
p -1

0

0 A

Returning to the efficiency formula of (1.2), write n = BE and from the

above facts it follows that

and

IEE(13,y) = B'i
nn

(a,a)B,

(13,Y) =
7115

(a,a)-
131 1

(1.2) may then be rewritten as

i
a
1
8
1 1
(arc%) -7

8
(8,a) Inn 0,a) I

na
(8,a)

(2.2) e(8,Y,81,81)
IS (a,a)- I (a,a)B[Bli

nn
(,a)1311B'i (a,a)IS

8 n nR
1

This formula combined with the simple representation of i(f3,a) given in

(2.1) allows for the ready computation of the efficiency of the nonpara-

metric procedure against a parametric procedure with a = Ay.

It should be noted that the use of the approximate likelihood is

not crucial to the application of formula (2.2). It is possible to

carry out the efficiency calculations with the true likelihood; however,
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the expression for I(a,a) is more complicated than the simple result of

(2.1). It has previously been shown that the approximation is very good,

especially for large values of the q.
j

, so using the approximation in

the efficiency calculations should not cause much error. Furthermore,

the error in approximation will cause the information expressions of the

numerator and the denominator of (2.2) to both be slightly large, and

hence the error will have very little effect on the ratio.

The efficient scores may also be used to give a simple view of the

efficiency expression (1.2). Assuming S has a multivariate normal dis-

tribution, it follows that

and

Var(S
a

IS
n

) = Var(S ) - Cov(S ,S
n

1

n
) Var (S ) Cov(S ,S

a
(31

= (a ,a

1

-I - -1
(a,a) I (a,a) (13,ctInn

1

Var(S
a

Is ) = Var(S C ,S ) V (S ) Cov(S ,Ss
a

) ov(S
f3

Var
1

E E
1 1 1 1

= T o.,y) i (a,y) iEE (s,y) i ((3,y).
(3

1 1
(3

1 1

So we may think of (2.2) as

Var(S8 IS n)
n

e(f3,y, ,13
1

)

Var(S IS )

1

The efficiency is then a comparison of the variance of S when condi-
a
1

tioning on S with the variance of S if the conditioning is only on
13

1

S .
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111.3. The Two-Sample Problem

The simplest and most basic survival problem is the comparison of

two different samples. The efficiency of the distribution-free approach

compared to smooth modeling of the hazard functions will first be con-

sidered in this context. It is assumed that n of 2n experimental units

are randomiZed to treatment 1, while the remaining n units are assigned

to treatment 2. The number of failures are to be recorded for k time

periods for each sample. Time periods will be considered as equally

spaced. This is by no means a vital assumption for carrying out the

efficiency calculations, but it does simplify things and is a situation

often encountered in actual experiments.

To distinguish the samples a simple indicator covariable will be

used, i.e., x
lj

= 0 and x
2j

= 1 for all j. So the model gives q
lj

=

exp(-exp a,) and q
2j

a= expf-exp( +al. Other parameterizations can be

used, but one must take care in comparing the results of differently

parameterized models. Generally, if parameter values are chosen for two

different models so that they both predict the same values for all q.,,

then the efficiency results will be the same at those particular points

in the parameter spaces. It is also possible to use time dependent co-

variables to give richer models for the two-sample problem; however,

efficiency interpretations for multi-dimensional a are more difficult.

Consider now the simplest possible smoothing restriction on the

underlying hazard function, that it is a constant function Ao(t) =

This amounts to assuming that the two survival distributions follow

exponential distributions. With the assumption of equally spaced time

periods it is seen that
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= log f 3 X (t)dt = log{c(a. - a. = Y
o 3 3-1

for each j. Then a is restricted by the relation a = Ay, where A is the

kx 1 matrix with each entry equal to 1. To study the efficiency of using

the nonparametric analysis for inference about e instead of the appropri-

ate parametric analysis when the underlying hazard is constant, expres-

sion (2.2) may be applied.

Formulas (2.1) give particularly simple results for the two-sample

problem.

(3.1.i) i
ae

(a,a) = n2j ' 2- ,
j=1

(3.1.ii)

2

(3.l.iii) 1 (a,a) = n... = IT ,

3
a. i .j

j i=1

(3.l.iv) Ia
a

(e,a) = 0, for j
.

3 h

Using these formulas and setting B=A the asymptotic efficiency expres-

sion of (2.2) becomes

(3.2)

e(0,Y,A,) =
IRR

(a,a) Iaa (a,a) 1aa1(a,) I
03

(a,a)

(13,a) -
aa

(13,a) A[At Iaa (,a)A.]1 Alas (13,a)

7r - err

2
.)

2- 2j -3
j=1

2
/11' )

2-

kk

(7r
r . /7r

)

j=1
1j 23 3

Tr1. Tr 2
/IT )
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2 k

where 71- = y y 7
ij

.

i=1 j=1
Recall that the 7

ij
must be computed from the model for particular

choices of 0 and y. Letting q
1
= exp{-exp y} and q

2
= exp{ -exp(y+W

q
1

exp
we can write 7

lj 1
= q

j-1 (1-q
1

) and 7
2j

= q2
-1

(1 q
2

) . Table 5

gives an indication of the efficiency for various choices of the para-

meters. For ease of interpretation in the discrete setting the table is

given in terms of q
1
and exp S instead of y and 0. Only values of

exp > 1 need be considered, since the distribution with the smaller

hazard may be selected as distribution 1. Ten time periods were used

as this seemed typical of many practical experiments.

Table 6. Asymptotic efficiency for the two-sample
problem with constant hazard

.95

.90

q
1

.85

.80

.75

exp
1 1.3 1.6 2 5

1 1.000 .998 .995 .981 .934

1 .998 .993 .980 .933 .787

1 .996 .984 .960 .876 .720

1 .993 .975 .940 .839 .685

1 .989 .948 .925 .819 .671

The efficiency for the distribution-free model is seen to be re-

markably good. It has the pleasing property of being completely effi-

cient for exp 0 = 1, i.e., S = 0, and only slowly losing efficiency as

exp S increases. In practice one would not be too concerned about

efficiency for testing H :0=0 when 8 is large, since it would require

only small sample size to distinguish the two distributions no matter

which procedure was used. Values of exp 0> 3 represent rather enormous
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effects in survival testing. For example, with q1 = .90 and exp R = 3,

then q2 = .729, and after ten time periods there are about 65 percent

failures from distribution 1 compared to about 96 percent failures from

distribution 2. Also values of q1< .75 are not of great interest, since

these represent poorly designed experiments in which practically all the

failures take place in the first few time periods, and later observa-

tions are essentially wasted. So in the interesting region with (11> .75

and exp 13 < 3, the efficiency is seen to be always greater than .819 and

for many cases to be very near 1.

There is an intriguing relationship between (3.2) and correlation

in a 2x j contingency table. Suppose one restricts attention to only

the units which failed, in other words, condition on the event of failure

during the experiment. Then the conditional probability of failure dur-

ing period j under treatment i given failure in some cell is 4) =Tr. /ff
ij 1

2 k
Let 4)

°

= X
ij

, j = (1)

lj
+ 4)

2j
, and note y y =. A 2x j table

()ij
1.

j=1 i=1 j=1
may be formed with these conditional probabilities.

X11 (1)12 (Plk

(1)21 (1)22 (1)2k

(1)1 (/)2 (1)k

4)2

1

A measure of association for such tables is the Pearson coefficient

of mean square contingency given by Bishop, Fienberg, and Holland (1975,

p. 385) as

2
k 2

= X Y
J=1 i=1

-2

(4)ij (1)i. (1).j)

4).1 4)j
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This is a generalization of the squared correlation in 2x 2 tables and

related to the Pearson Chi-Square statistic for testing independence in

2x j tables. Expression (3.2) for the two-sample efficiency against

constant hazard may be rewritten in terms of the $,, as

e(f3IY,A,) = y

j=1

$lj $2j

4.j $1.1. $2-

e(f3,y,13,) and $
2
are related by the following identity.

k 2

(I)

2
4-e(13,Y,(3,8)= X X

j=1 i=1

k
y

j=1

k

j=1

kk

L
j=1

j=1

k

j=1

k
y

j=

($
ij 1.

$
.3

2-

$. $3 j=

$
lj

$
2j

$ $ $
.j

(0 -$
1.

$
.3

.)

2
($
2j

-$
2.

$
.3
)
2

$1j $2j

$1.
$ j $2 $j $ .j$ 1

.$
2.

2($2.4'13 _ 24'
2.( 13A 1.A .3

+ $2.
2 2 2

$ "1- $ $1. j 1.2j
2

2$
1.

$23
$
2.

$
.3

+
22 .4) j

$
1 j 2j)

A .4), (I?,
z3

$ $
2

$
2

.4-$ $
2

.$
.j
+

2. .3 2. 13 1. 23 2j

$ 4) $.3 1. 2.

- $1$2$2j +$2$13 (4)j--4'23)+4)1423(4).3 lj)

+$lj 2j

-3 1. 2-

$ $ $
2

.-1-4) $ . $ j$i
1. 2. 3 2. 13 .3

+A
lj

A
2j

(1-A
2.

-A
1.

)

Clj (I)2j

(-0 .).3
J = 1. j=1 2
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= -1 + 1 + 1

= 1.

This establishes that e( 13,y,13,8) = 1 - 02. Thus it is seen that

the efficiency is high when the 2x j table exhibits independence. For a

given failure if its treatment assignment and time period of failure are

considered to be random, then they must be relatively uncorrelated for

the efficiency to be high. One may think of this as saying that know-

ledge about a unit failing in a given time period should not add much

information for determining to which treatment it was assigned. This,

of course, corresponds to the efficiency problem under study: whether

the added knowledge of constant underlying hazard function will influ-

ence the information available for determining treatment effect. The

distribution-free analysis will not hurt as long as failure time is not

highly correlated with treatment over the duration of the experiment.

It must be kept in mind that the possible values of the cp
ij

are

restricted by the modeling with (3 and y. The only cases in which the

table can be independent with 0
2
= 0 is for 13 = 0, which makes each row

of the 2x j table identical. Furthermore, the modeling forces each row

2
to be decreasing in j with (P>cp, for j <h. This tends to keep low

ij ih

for reasonable treatment differences, and so the efficiency is usually

high. Only for gigantic treatment effects will the table ever exhibit

enough correlation to give even moderate values of 2.

Focus will now be directed to smoothing the underlying hazard by

linear restrictions of the form = yl + y2cj, where the c, are fixeda.
3

real numbers. If the c, are increasing in j, then these linear restric-

tions will restrict the underlying hazard to a class of monotone hazard
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functions. So this sort of modeling is appropriate to allow the hazard

functions to increase or decrease smoothly. Letting y = (yl,y2)' and

A =
[1 1 . . . 1

the smoothing restriction is a = Ay. The two-
ci c2 . . . ck

samplemodelheremalrbewritterlasqi.j = exp {- exp(y1 + y
2
c
j
)} and

q
2j

= exp{-exp(y
1
+ y

2
c
j
+ a)}. This model is of a form that allows

(2.2) to be used to evaluate the efficiency of the distribution-free

approach for inference about a when the model holds. Formulas (3.1)

stialaPplYforcalculatingl(a,a),butthenijmust be calculated from

the smooth model; hence the 7
ij

depend only on the choice of f3 and y.

The asymptotic efficiency is then given by

(3.3)

7
813

(a,a)- Ida (a,a) 7aa-1(13,a) 7
af3

(a,a)

e(13,Y,,a)=
i
as

(a,a)-i
aa

(fi,a) MAIT
a&

(a,a)A1 -1 A'T
af3

( ,a)

Ck
. .- (723/

2 3=1

qT

2
7
2

W - 7 UV 7 U2

2
7 W V

2

k k k
where U = y C.7 ., 7 c.= C. W =

2
7 .

j=1
3 23

j=1 3 j=1 3

A two parameter family of smooth hazard functions often used for

continuous data problems is the Weibull family. This can be used to

model the underlying hazard function of the Cox continuous model as

o(t) = a b
a
to -1, a > 0, b> 0. Unfortunately, for the grouped data prob-

lem this model does not translate to a linear restriction on the a;

however, certain approximations can be made which will allow the effi-

ciency expression of (3.3) to be used.
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Again assume that the time periods are equally spaced, and for

simplicity let time be scaled so that the end points of the time periods

are integers, hence a = j. If the underlying hazard function has

Weibull form, then

fi

-1
a. = log J. A (t)dt3o

= log fi a ba to-1 dt
j-1

= log fba[ja (j - 1)a] }

1
log {a ba (j --2°)

a-1

. 1
= log (a ba) + (a - 1) log (j -2-)

The approximation is made by replacing Ao(t) by a step function with the

value on each time period held constant to the value of
o
(t) evaluated

at the midpoint of the interval. Setting yl = log (aba), y2 = a- l, and

. 1
c. = log (j 4;0 the approximate linear restriction can be written as

aj = yl + y2cj .

To get some idea of how efficient the continuous Cox model analysis

is against Weibull alternatives, expression (3.3) will be applied to the

group data setting assuming aj = yl + y2cj . Actually this discrete data

model is of considerable interest in its own right as linear models in

log-time are appealing. Electing to use ten time periods, the scale

parameter b is of most interest for small values, since large b implies

practically all failures will occur in the early time periods. Table 7

shows the results for various selections of a, b, and exp B.
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Table 7. Asymptotic efficiency for the two-sample
problem with Weibull hazard

exp
2 3 5

a

.5

b = 1 1

2

1 .999 .998 .974

1 .999 .996 .981

1 .999 .999 .997

.5

b= .2 1

2

1

1

.999

.992

.970

.998

.980

.938

.995

.978

.895

.5

b= .1 1

2

1

1

1

.999

.997

.995

.998

.988

.978

.995

.964

.925

The efficiency for the distribution-free analysis is even better

against this grouped data Weibull model than against the constant hazard

model. One might predict this by considering the hierarchy of models in

which the one-dimensional constant hazard models are contained in the

two-dimensional Weibull models which in turn are contained in the k-

dimensional distribution-free models. The Weibull models are a step

closer to the distribution-free models than are the constant hazard

models. This relationship will be further exploited by the geometrical

interpretation given in the next section. The added scope of the

distribution-free model makes it the much preferred way to test for

treatment effects. Of course, if one wishes to estimate the underlying

hazard function and suspects that it is monotone, then Weibull modeling

may be beneficial to that end. But for purposes of inference about 8
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there is almost nothing to be gained by using the Weibull analysis in-

stead of the distribution-free approach.

111.4. The Geometry of the Two-Sample Problem

The two-sample efficiency problem can be neatly characterized by

considering a normed vector space associated with the efficient score

vector S = (Sri, Sa , . .,Sa )'. Since asymptotic efficiency is under
1

study, S will be taken to have a multivariate normal distribution with

mean 0 and variance-covariance matrix given by E = I(8,a). Recall

2. X2121 22 Tr23 Tr2k

1'21
Tr 1 0 0 0

Tf

22
0

.2
0 0

E_
Tr
23

0 0

7f

2k
0 0

.k

and note that E is a positive definite matrix. Consider the normed vec-

for space R
k+1

endowed with the inner product given by (x,y) =

Cov (x `S, y 'S) = x 'Ey for x,y e R
k+1.

The norm of x E R.k+1 is then defined

by the relation II I I= (x,x), so that Ilx112 = x'Ex = Var(x'S). Each

x R
k+1

may be associated with the linear combination x'S of score sta-

tistics, and 'Ix!! is the standard deviation of x'S. For example, asso-

ciate b = (1,0, 0,. . 0)' with Sc since b'S = SS and 11x11 = Var(S
a
).

Let W be a full rank (k+ 1) xh matrix, then the range of W, writ-

ten R(W), is a subspace of R
k+1

. The orthogonal projection operator on
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R(W) is given by P = W(WIEW)
-1WE. It can be shown that P

2

W
= P

W
and

P'EP
W

= EPW see Rao (1973, pp. 46-48). Furthermore, for any xeR
k+1

s

x = PWx + (x - Pwx) with (Pmx, x-P
W
x) = 0 and 11x1 1 2 = IIPWx11

2

Ilx-Pwx112 . x, then, can be written as a sum of two vectors, one in

R(W) and the other in the space orthogonal to R(W). There is a direct

connection between conditional variances of the score statistics and

these orthogonal projection operators. Let x'S be a linear combination

of the scores and W'S he a vector of some other linear combinations of

the scores. Then

Var(x'S1W'S) = Var(x'S)-Cov(x'S,W'S)Var
-1

(W'S)Cov(W'S,x'S)

= x' Ex x'EW(W'EW)
-1
W'Ex

= x'Ex x'EPwx

= xtEx- x'PE
W

P
W

= I k112- lip,x112

= Ilx-P x11
2

Var(x'SIW'S) is seen to be the squared norm of the part of x orthogonal

to R(W).

From the results of section 2,

Var(S
13.

IS
a

)

= Var(S IS )

y

where Sy = A'S
a

for a model a = A'y. Let C = I, I
k
being the k-[0 1,

dimensional identity matrix, and let D = CA]. Then R(D) C R(C),

S
a
= C'S, and S = D'S. It follows that

e(a,y,A,T3) Var(b'Slc's)
Var(b'S D'S)
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Figure 2 helps to visualize this geometric interpretation of the

asymptotic efficiency. The picture is a three-dimensional analogue of

the k+ 1 dimensional problem and is distorted so that orthogonality

appears as the usual right angles familiar to intuition.

b

Figure 2. The two-sample geometric picture

The norm of a vector may be interpreted as the length of a vector in

this space, so the asymptotic efficiency amounts to comparing the lengths

2 2
di= I lb- Pr) II and d2 = I lb - Pcbl I by eOrY,A,II)=d

1
/d Considering the
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distance d3= I IPcb-PDbl I and noting di
2
+ d3

2
=d22 , the efficiency may be

=d/(d+d2..
given as ea3,y,U)

2 2

1 1 3
) The efficiency depends on how close

PCb is to R(D) as measured by d
3

in comparison with di. Comparing d
3

with d1 by the ratio r=d
2

l/d

2

'

the efficiency may be written as
3

d
2

1
=

d1 d
2

1 3

1

d
2

1

1 + r

The high efficiency of the distribution-free analysis may be ex-

plained by considering why PCb is usually close to R(D) when D is formed

from a smooth model a = Ay. Calculating PCb gives

PCb = C(C'EC)-1C'Eb

w
21 1'22

7
2k \I

7
.1

71.

.2 .1(

Since R(D) = E[A] and PCb are both contained in the k-dimensional sub-

space R(C) formed by restricting all first coordinates to 0, the effi-

ciency problem amounts to measuring how close the k-dimensional vector

,7T21 X22 7r2kN'
c = k-77.7 , , . . ., Tv is to R(A). The k+ 1-dimensional space

endows this k-dimensional subspace with an inner product given by (x,y)

= x°E
aa
y, where x,yeR

k
and
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O Tr
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0 0

O 0
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d
3'

the measure of how close c is to R(A), may be calculated within this

k-dimensional normed vector space by

2
d3 = Ilc PAcI12

k
( 3-

3j=1 .j 7r.i

-
where PAc = A( A'E

aa
A) A'E c = (p

1
, p

2
, . . .,p

k
)°. This corresponds to

a weighted least squares problem by the well-known fact that

d
3

2
= min

xeR(A)

(IT 2j x.)2
it

1,
.

ir .3

where x = (xl, x2, . . ., xk)'. So the measure of closeness d3
2

is just

the minimal weighted least squares value for the regression of c onto

R(A), the weights being given by the proportion of units failing in each

time period.

The complete asymptotic efficiency at 0 = 0 for the constant

hazard and Weibull models is now easily explained. For all j, zr =
lj 2j

1 1 1
1 ,

when 0 = 0, and hence n2j/ff.i = 7i, so c = (.7i,-;-p . . . ,-i) . ceR(A)

whenever A contains the subspace spanned by (1, 1, . . ., 1)', thus d3
2
= 0

2
for a = 0, and e(0,y,f3,a) = d

1
/(d

1
+ d

3
) = 1. For smooth modeling of
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the hazard function by a = A'y, one would certainly want to include the

possibility of constant hazard with aj = y for all j, so reasonable

smoothing models will always have (1,1, . . 1)' cR(A). The efficiency

for 13 values near 0 is then expected to be high, but the results of the

previous section indicate that the efficiency remains high for even

moderately high 13 values which one would expect to encounter in real

1
problems. Further investigation of the nature of the vector c =

/ Tr2
,

1
Tr22 7r2kr'

.,Ti.:5-j) will help to see why this is so.

The following inequality will be required. Let a, b, x be real

numbers such that 0< a,b <1 and x> 1, then

71..2

(4.1)
1 - bx

<
-ax) al-x

1 - b 1 a

That this is true can be seen by considering the two differentiable

functions f(x) = (1- bx)/1 - b and g(x) = (1-a)
x
a
1-x

/(1 a) defined on

[1,c0). Note f(1) = g(1), so considering the derivatives, if f(x) < g(x)

can be established for all x> 1, this will imply f(x) < g(x) . The deriv-

atives are given by f(x)=-b
x

log b/(1-b) and g(x)= -a
1 x

log a/(1- a) .

Note that for all a c (0,1) that 1-a< -log a, or -log a/(1 - a) > 1. Also

for all b c (0,1), (1 b) /b > -log b; so -b log b/(1-b) < 1. Hence f(1) =

-b log b/ (1 b) < 1 < -log a/ (1 a) = g (1) . Furthermore , f (x) =

-bx (log b)2/(1-,b) < 0, and g(x) = alx(log a)2/(1- a) > 0, so since

f (1) < g (1), it follows that f (x) < g (x) for all x > 1. Thus inequality

(4.1) holds.

Using inequality (4.1) it can be shown that the entries of c are

monotone decreasing for any choice of a. More specifically, for j =1,

. . k - 1 and h= j + 1 it is claimed that Tr
2j

/Tr
*j 2h

> Tr /Trh . Applying



(4.1) with a = . lb = q
lh

and x = exp 6

exp 6 exp 6 1- exp

1 (11h
(1 - q

lj
) q

lj

1
lh

1 q
lj

exp 6 ex
Recall

1
= q,. and q

2h
= q

lh

p 6,
so

or

(4.2)

1 - q2h (1 - q2j)
qlj

(1 cllj) q2j

q
2j

(1 - q
2h

)
g1j

(1 - qi
h

)

1 q
2j

1 -
(11j

Using (4.2) the claim is established, since

[ j-1

q2k (1 q2j)

7r2j -
k=1

Tr .
j-1

H q
lk

(1 q
lj

) + H q (1 - q
23

.)

k=1 k=1

j-1

tH1

q
2k

)(1- )

(12j(=

q (1-q
2j h
1-q2j
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(j-1
q )(1-q

k=H1 13

q1
(1-q

lh
)-

1-q

j

n q2k)(1-q2h
z=1

H

1

q
2k

)(1-q
2j

)

=

Ti
H q )(1-q )4- II q -q

2h
)

(k=1
lk lh

k=1
2k

11.2

h=
7
.h

-q2j(1 -(12h

1-
q2j
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The fact that the entries of c are decreasing helps to explain why

the efficiency is usually high for smooth modeling of the form a = Ay.

A good smooth model will employ a matrix A which will allow for the

possibility of a decreasing hazard function with a 1>a 2> . . .> a le so

R(A) will contain a fairly rich set of decreasing vectors. Then the

decreasing vector c is apt to be near R(A), i.e., R(A) will provide a

good fit for the vector c as measured by the weighted least squares re-

gression. The entries of c decrease rather smoothly for moderate values

of 8 and reasonably large values of the q.., so a smooth A will usually
ij

fit c well. When 8 gets really large, 1121/1I
1
is near 1, while all the

*

other entries of c are near 0. In this case c is somewhat unsmooth, so

that A may not fit c too well, and the efficiency is usually not high.

Of course, it is possible to select a matrix A so that the asymp-

totic efficiency is not high even for local alternatives to 8 = 0, but

this forces the model a = Ay to give very jagged hazard functions. How-

ever, no matter what A is chosen, the efficiency will never be lower

1 2 1
than

2-a
8 = O. This is seen by noting d

1
= --7

2*
when 8 = 0, and that

2

2
the maximum value d2 ever be is ir

2
. It is clear now why one should

expect the distribution-free approach to have greater efficiency for a

richer model such as the Weibull family than for the constant hazard

model. The richer model will span a higher dimensional subspace with

R(A), and this will generally fit c more closely and give smaller values

of d
2
3- The geometric interpretation of the asymptotic efficiency brings

out the facts that the distribution-free analysis is especially geared

to do well for local alternatives to 8 = 0 and for modeling that in-

cludes constant and smoothly decreasing hazard functions. These two



69

properties are very compelling arguments for the application of the

distribution-free analysis instead of a parametric analysis when infer-

ence about (3 is of prime concern.

111.5. Other Efficiency Problems

This efficiency investigation has concentrated on the two-sample

problem to this point. The two-sample problem brings out the basic prop-

erties of the efficiency of the distribution-free approach, and investi-

gation of the efficiency in other factorial designs essentially involves

extensions of these ideas. The tools developed in sections 1 and 2 allow

the direct calculation of efficiency for other designs. Formulas (2.1)

may be used to set up the information matrix 1(S,a), then for inference

about a particular component of (3, when a = Ay, efficiency calculation is

straightforward using expression (2.2). Further investigation may be

carried out by considering the normed vector space associated with the

score statistics as was done for the two-sample problem.

Attention will now be directed to a simple 2x 2 factorial design.

This problem will give some idea of how efficient the distribution-free

approach is when there are nuisance parameters in the (3. vector. Suppose

there are two factors A and B to consider, and four treatments are run

for the factorial design of presence and absence of each factor. In-

stead of indexing the treatments by single integers i, the more descrip-

tive double subscript ab will be used, so that factor A is absent for

a = 1 and present for a = 2, while factor B is absent for b = 1 and

present for b = 2. A distribution-free model for this experiment is

giverlbYclabrexp{-exp(c,c.-1xab
)}, where 13 =

2
I, x

11
=

0
],

LL
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x
12 1

f

L°1P x
21

=
O

and x
22 1

= [1]. Assume that inference is primarily
L

focused on factor A, so that 8
1
is of interest, while $

2
,a

1
,a

2
, . .,a

k

are considered nuisance parameters.

Again let

and write

and

J -1

abj
=( gab ( qabj ) ,

.4,=1

2 kc

71- abj'
b=1 j=1

2 k
Tr = Tr .,
b° ab3

a=1 j=1

2 2

= .
a 3

,

a=1 b=1

2 2 k
Tr X G Trabj.

a=1 b=1 j=1

The information matrix 1(8,a) may be obtained from formulas (2.1). The

entries are given by

(3131
(,a) = 11" ,

1
2..

IS
1
02

(8,a) =
22.'

2 2
(8,a) =

iaa(8,a) = ,

l j
71.2.j

i
f3 a.

(8,a) = 7T
.2j

,

2 3



and

I (a,a) =
.ct

..3

I (a,a) = 0 for j # h.
ct.a

h
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Suppose the underlying hazard function is constant, so that a = Ay

where A = [1, 1, . . 1]° and ye R. For given values of Bl, B2, and y

expression (2.2) may be applied to calculate the efficiency for using

the distribution-free approach for inference about $1 instead of the

appropriate parametric analysis. This asymptotic efficiency may be

alternatively expressed as

e(R,y,s ) =
1 Var(S IS ,S Y)

al 52 I

Var(S IS ,S a)
0
1

a
2

a

In this case the efficiency

e(B,y,r31,y

may be calculated

ff

132j)

by

_ 2

li 71-11j1r22j-7r1211121
Tr

_j=1 i

(Tr

j1
3

(ff.1j7.2j)

j =1
7
..j

11.7r22.-
71.12'11'21. \2

721 7 "J

7... Tr.l.
7.2.

Let qll exp(-exp y), then assuming constant hazard the model

exp B2, ,....exp $1,

may be expressed as cil and
-11j q11, c112j q11 s1-21j 'ill

a
22j '

a
11

4-
= for all j. Table 8 shows the efficiencies obtained'expaii

(32)

for an experiment with ten time periods for cill .9 and various selec-

tions of exp B1 and exp 82.
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Table 8. Asymptotic efficiency for a 2x 2 factorial
experiment (ten time periods, q11 .9)

1

exp f31

2 3

exp i32

1

2

3

5

1

1

1

1

.980 .933 .787

.964 .892 .752

.955 .882 .751

.953 .886 .772

The results are very similar to the two-sample problem; in fact,

when f3
2
= 0 (exp S2 = 1), the numbers are the same as those obtained in

Table 6 for ql = .9. Apparently, the efficiency against the constant

hazard model is somewhat less for values of 62> 0 than for 62 = 0, al-

though the differences are slight. The distribution-free approach gives

complete asymptotic efficiency at 61.0, no matter what 82 might be, and

only slowly loses efficiency as al increases. The efficiency must im-

prove for richer modeling of the underlying hazard function, so again

the distribution-free approach is highly efficient for smooth parametric

alternatives.

One of the strong points for Cox models is the use of time depen-

dent covariables. This provides the flexibility to fit most practical

data sets and to analyze time dependent treatment effects. To allow for

a rich set of alternatives a model with a time dependent covariable x..

will usually be employed in conjunction with a covariable, say zi, which

is not time dependent. For example, in a two-sample problem ,

qij

exp {-exp(a.+ z.13
1 2

)1,
1

= 0, z
2
= 1, x

lj
= 0 for all j, and x

2j
=j,

3 i 13

is a flexible way to model the difference of treatment 2 from treatment
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1. An important question here is whether the distribution-free approach

remains highly efficient against smooth modeling of the underlying

hazard function when time dependent covariables are used. In this set-

ting both P.
1

and 13
2
are of interest, and it is not appropriate to con-

sider inference about one while treating the other as a nuisance

parameter. A new measure of efficiency is required which will handle

more than one parameter of interest. That problem is outside the scope

of this thesis; however, a related model with only the time dependent

covariable may be considered to get a notion of how time dependent co-

variables affect the efficiency.

Consider, then, the two-sample problem modeled by qij = exp{ -exp

x..fi)}, where x
lj

= 0 for all j, and x
2j

is. some smooth function
ij

of j. This model is not as useful as the previous one, but its effi-

ciency can be analyzed by the methods developed here. Now focus on the

smoothing of the underlying hazard by a = Ay to address the efficiency

of using the distribution-free inference for 13 in this context. The

information matrix here may be expressed as

1( x2.ff X x2222 x202k
j=1 23 2j

2 121

X2121
11,1 0 0

E =
x221.22

7 .2
0

X2klT2k
0 0
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Taking the geometric approach to efficiency, let us see how the

vector b = (1, 0, . . 0)', (associated with S
0
= b' S) projected onto

[1(associated with S
a I k

= iS) will line up with RCAS (associated
Ik

with S
y

= [
A

S) . Letting D =
o1 then
Ik

P
D
b = D(D'ED)

-1
D'Eb

= (0, X 7 /n x 7 /n . x n /n p.
21 21 .1' 22 22 .2'

.

' 2k 2k .k

When 0 = 0, it is seen that 1r
23

./71-

1
= for all j, and so PDb =

2

2
(0, x21, x22, . .,x2k)'. Here at last is a case in which the effi-

ciency will not be 1 at 0 = 0 when the underlying hazard function is

constant, since for A = [1, 1, . . ., 1]', PD1DR [1°2i . However, if (x21,

x
22

, . . .,x
2k

)' cE(A), the efficiency will be 1 at a . 0. A little

reflection reveals that an intelligent modeling for a = Ay should have

(x21, x22, " x2k)i
in R(A). Using the constant underlying hazard

forces one into imbalanced modeling of the two treatment hazard func-

tions, since treatment 1 will necessarily have constant hazard, while

for any nonzero $ treatment 2 must be nonconstant. This type of dis-

crimination does not seem reasonable, for why should the shape of the

two hazards be distinctly different? If one wishes to allow each hazard

function the same possibilities within the modeling, then (x21, x22,. .,

x
2k

)' must be in R(A). So for balanced modeling the efficiency at 0 = 0

will be 1.

The results for this simple problem seem to indicate that the effi-

ciency of the distribution-free approach with time dependent covariables

will generally be very good against smooth, balanced parametric models.

There are certainly many other practical designs of interest than just

the ones considered in this work. However, the two-sample problem with
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constant covariable, the two-sample problem with time dependent covari-

able, and the 2x 2 factorial with nuisance 132 seem to be basic types of

designs, while most other designs can be regarded as extensions of these.

The fact that the efficiency was very high in each of these three cases

rather strongly suggests that for most practical designs of interest the

distribution-free approach will be highly efficient against reasonable

smooth parametric modeling.
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IV. SUMMARY

The methods presented have been developed for analyzing factorial

survival experiments in which the survival times are grouped by time

periods. A grouped data version of the Cox regression model has been

applied for the purpose of inference about treatment effects on survival

time. The model is distribution-free in the sense that an underlying

hazard function is left completely unrestricted; however, parametric

regression expressions are used to explain treatment effects. These re-

gression forms are very flexible, allowing the use of time dependent co-

variables to analyze effects which vary with time.

Large sample inference for the regression parameters a has been

made practical by eliminating the nuisance parameters A with an approxi-

mation. The true likelihood function is replaced by a good approxima-

tion, so that a maximum relative likelihood function £2*(0), depending

only on B, may be explicitly obtained. Large sample likelihood inference

for B may then be carried out by treating t*((3) as a likelihood function

for R. This allows one to quickly analyze various regressions models to

find one that adequately fits and explains the data. After 0 has been

estimated one can then easily estimate the nuisance parameters and the

survival curves for each treatment. A toxicology experiment has been

presented to illustrate the practicality of applying this distribution-

free analysis.

Examination of the approximation reveals that it has been devised

to give estimates very close to the true maximum likelihood estimates.

The estimators obtained from the approximate likelihood are shown to be

consistent, so they can be expected to work well for large sample
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problems. There is a small gain in information caused by making the

approximation. This will make estimates of Var(A) and Var(5) slightly

lower than they should really be; however, the hazard rates must be very

high on the time periods for this approximation error to have an appre-

ciable effect on the analysis. Proper experimental design to take more

observations during time spans where many failures occur will alleviate

this problem.

For most real data sets one would expect the hazard function to be

relatively smooth. An important question arises in conjunction with the

distribution-free underlying hazard function of the Cox model. Does

leaving the underlying hazard unrestricted cause a loss in efficiency

for inference about 13 compared to procedures based on smooth parametric

modeling of the hazard functions? The grouped data setting provides a

direct way to address this question by considering smoothing restric-

tions on the parameters a associated with the underlying hazard function.

Exploitation of the connection between linear constraints a = Ay and the

efficient score statistics makes it possible to express the asymptotic

efficiency in terms of the known matrix A and the easily calculated in-

formation matrix obtained from the distribution-free model.

The two-sample problem was considered in depth, revealing that the

asymptotic efficiency is 1 at a = 0 for any model which includes the con-

stant hazard functions'. Furthermore, the efficiency only slowly de-

creases as 13 moves away from 0, so that for interesting values of f3 the

efficiency is always high. The geometric interpretation provides an

intuitive way to view the efficiency problem and points out that the

distribution-free analysis can be expected to do very well against
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smooth models allowing the possibility of decreasing hazard functions.

The distribution-free approaches for the 2x 2 factorial problem and the

two-sample problem with a time dependent covariable were also seen to be

very efficient against smooth modeling. The results obtained indicate

that the distribution-free approach is highly efficient for smooth under-

lying hazard functions, and the added scope of application for the

distribution-free analysis seems well worth the minor loss in efficiency

when smooth modeling is appropriate.
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