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In the thesis, an application of a genetic algorithm (GA) is considered to solve the 

vehicle routing problem (VRP) which involves heterogeneous vehicles to serve 

known customer demands from multiple depots achieving the minimum delivery 

cost, where each customer must be satisfied by one or more visit(s), and each 

vehicle must make at most one visit to any particular customer. Vehicles can be 

unused. The problem involves optimizing the routes for all vehicles which are to 

serve a certain number of customers from multiple depots, allowing multiple visits. 

These conditions are generalized from the classical VRPs, which only involve one 

depot and one visit to each customer.  



 

The VRP is one of combinatorial optimization problems which are difficult to 

obtain an optimal solution through the classical optimization methods owing to the 

high computational complexity. The GA is a randomized global search algorithm 

to solve problems by imitating processes observed during natural evolution. It has 

been a widespread application to various combinatorial optimization problems 

such as traveling salesman problem, scheduling problem and VRP. The 

performance of GA is subject to the process parameters such as population size, 

crossover rate, termination condition, and mutation policy. For the generalized 

VRP under considerations, the influences of the process parameters in the 

proposed GA are examined by Taguchi method which is known as a robust design 

tool for optimizing the process parameters.  

 

The proposed GA is the first effort to solve the generalized VRP, which allows the 

multiple depots, multiple visits and heterogeneous vehicles. A real-life example 

problem of 35 US cities and 3 depots has been proposed to measure the 

performance of the proposed GA. In addition, 4 benchmark problems from the 

prior works only allowing one depot, one visit and homogeneous vehicles has been 

tested. The proposed GA outperforms the prior works by generating the equal to or 

the better solutions than the best known solutions. The computational results 

obtained from the performance comparisons show that the proposed GA is an 

effective and feasible method for solving the VRP with heterogeneous vehicles 

from multiple depots, allowing multiple visits to customers. 
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Chapter 1. Introduction  

 

The vehicle routing problem (VRP) is a problem in which a set of routes for a fleet 

of vehicles based at one or several depot(s) must be determined for a certain 

number of geographically dispersed customers. The objective of the VRP is to 

minimize the total distance traveled by all vehicles, which can be considered as 

delivery costs. Recently, with the increase in fuel prices, the importance of 

minimizing delivery costs has been emphasized as a key factor which can reduce 

the total costs of production and distribution. Thus, the VRP has received an 

enormous amount of attention from industries. 

 

The classical VRP consists of a certain number of customers with known demands 

at predetermined locations, served by a fleet of vehicles with a homogeneous 

capacity from a depot. In the VRP, vehicles dispatched from a single depot must 

deliver the required amounts of the goods to all customers, satisfying all demands 

and finally return to the depot. Ideally, the vehicle routes are designed in such a 

way that each customer is visited only once by exactly one vehicle and the total 

demands of all customers on one particular route must not exceed the capacity of 

the vehicle. In the real world, however, the constraints which include 

homogeneous vehicles, a single depot and one allowed visit to customers are 

unrealistic. Therefore, the objective of the thesis is to develop a GA to find a set of 
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all routes which minimizes the total distance traveled by heterogeneous vehicles 

from multiple depots, allowing multiple visits.  

 

The VRP is one of combinatorial optimization problems belonging to the 

nondeterministic polynomial-time hard (NP-hard) class [Bodin et al, 1983] which 

cannot be solved to optimality within polynomially bounded computational time 

[Falkenauer, 1996]. Many different approaches have been developed to solve the 

NP-hard problems. As one of these approaches, genetic algorithm (GA) is one of 

the widely used computational methods, and has been successfully implemented in 

a wide variety of problem domains due to its robustness and flexibility [Berger and 

Barkaoui, 2003].  

 

The GA is an adaptive heuristic search algorithm inspired by the Theory of Natural 

Selection by Charles Darwin, and has been extensively used to tackle many 

combinatorial problems, including various VRPs. In the GA, a population of 

chromosomes (individuals) or solutions is maintained during the evolution, in 

which selection, crossover, and mutation take place. The quality of each solution is 

evaluated by a fitness function which represents individual’s survivability in the 

wild. This fitness determines the individuals for the crossover or mating, which 

produces offspring in the next generation. The mutation is also used to prevent the 

local convergence by diversifying the search space. The average quality of the 

http://en.wikipedia.org/wiki/Polynomial-time
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population gradually improves as new and better solutions are generated and worse 

solutions are removed.  

 

In the thesis, addressed is the VRP which has heterogeneous vehicles from 

multiple depots, allowing multiple visits to customers. Based on a rigorous review 

of literature, this thesis is the first study to solve the generalized VRP, which 

relaxes the constraints of vehicle’s homogeneity, the number of depots and the 

number of visits. The problem has been approached by developing a mathematical 

model and an efficient implementation of the GA.  

 

1.1 Objective of the thesis  

 

The first objective of the thesis is to generalize the VRPs by removing the 

constraints of the number of vehicles, the number of depots, and the number of 

visits allowed to each customer. The second is to develop and validate a mixed 

integer programming (MIP) model to achieve the optimality. The third is to 

develop and validate a GA to effectively and efficiently solve the medium or large 

VRPs with heterogeneous vehicles from multiple depots, allowing multiple visits.  

The fourth is to apply the Taguchi robust design method to optimize the process 

parameters of the proposed GA.  The fifth is to develop the new mutation policy to 

better diversify the search space of the proposed GA. 
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1.2 The problem statement 

 

In a network, where nodes are customers or depots and the links are the roads, the 

goods are to be delivered to customers by a fleet of heterogeneous vehicles from 

multiple depots. The objective of the VRP under consideration is to find a set of all 

vehicle routes which minimize the total distance traveled with the following 

constraints. The locations of the customers and the depots are known. The 

demands of all customers and the capacities of the heterogeneous vehicles in each 

depot are known. Each vehicle starts from and ends at a depot. Each customer 

cannot be served only once by one vehicle from a depot but also by other vehicles 

until his or her demand is satisfied. A customer can be visited in multiple times, 

but not by a single vehicle, which means a vehicle can visit a customer only once. 

The quantity of the goods delivered to one or more customer(s) by a vehicle must 

not exceed the capacity of the vehicle.  

 

1.3 Organization of the thesis 

 

Chapter 1 introduces the problem and the objective of this research. In Chapter 2, 

the literature review of VRPs, the GA and Taguchi method are presented. Chapter 

3 presents a MIP mathematical model for the VRP with heterogeneous vehicles 

from multiple depots, allowing multiple visits. It also proposes a GA to solve the 

VRPs with medium or large numbers of nodes under consideration. Taguchi 
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method to optimize the process parameters of the proposed GA has been presented. 

In Chapter 4, various computational results are summarized. Finally, conclusions 

and future research are discussed in Chapter 5. 
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Chapter 2. Literature review 

 

2.1  Vehicle routing problem  

 

2.1.1 Description of the classical VRP 

 

The VRP was introduced initially by Dantzig and Ramser [1959], and it has been 

widely studied since. They described a real-world application concerning the 

delivery of gasoline to service stations. In addition, they proposed the first 

mathematical programming formulation and an algorithmic approach for the 

solution of the problem. Fisher [1994] describes the problem as finding the 

efficient use of a fleet of vehicles that must make a number of stops to deliver 

passengers or products. The term “customer” is used to denote the stops to make. 

Every customer has to be assigned to exactly one vehicle in a specific order. That 

is done with respect to the capacity of vehicles in order to minimize the total cost. 

The classical VRP consists of a set of customers with known demands at 

predetermined locations and a set of vehicles with a homogeneous capacity. The 

vehicles are dispatched from and return to a central location referred to as a depot. 

The VRP is to service all customers without overloading the vehicle, while 

minimizing the total distance traveled. Figure 2.1 shows an example of a classical 

VRP with 3 vehicles, 9 customers and a single depot. In Figure 2.1, node 0 in the 
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box denotes the depot, nodes 1 to 9 in the circle are the customers, and the arrows 

represent visiting orders to customers for each vehicle from the depot.  
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Route for 
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Route for 
vehicle 2 

Route for 
vehicle 3 

Figure 2.1  An example of a classical VRP with 3 vehicles, 9 customers, and a 
single depot 

 

 

2.1.2 Classification of VRPs 

 

A particular case of the VRP arising when only one vehicle is available at a depot 

and no additional operational constraints are imposed, i.e., traveling salesman 

problem (TSP), is extensively described by Lawler et al. [1985]. The TSP has one 

vehicle, one depot and multiple customers. The customer demands should be 
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satisfied with one visit by the vehicle. Thus, the TSP is generally considered as a 

special case of the VRP. 

 

Another version of the VRP is capacitated VRP (CVRP). The CVRP has n 

customers and a single depot, which has a number of vehicles, with identical 

delivery capacity, to satisfy customer demands. The vehicles must accomplish the 

delivery with the minimum total travel cost, where the cost is the distance dij from 

node i to j, where i and j = {0, 1,…, n}, where 0 stands for a single depot and n is 

the number of customers. Some studies considered the heterogeneous vehicles in 

order to reduce the delivery cost by dispatching the appropriate vehicles to the 

routes. The applications of the CVRP can be found in Ball et al. [1995], Fisher 

[1995], Desrosiers et al.[1995], Osman [1993b], Laporte [1992], Golden and 

Addad [1995] and Toth and Vigo [2002].  

 

The vast majority of papers have been published on a classical single-depot 

capacitated VRP (SDCVRP) [Laporte et al., 1984; Laporte, 1992; Toth and Vigo, 

2002] and only a few papers were found dealing with problems known as multiple-

depot capacitated VRP (MDCVRP) [Chao et al., 1993; Renaud et al., 1996; Toth 

and Vigo, 2002]. The MDCVRP is an extension of the classical VRP with vehicles 

starting from different depots. The constraints of the MDCVRP are similar to the 

ones of the VRP, except the requirement which each vehicle starts from and 

finishes the delivery at the same depot. In the case of multiple depots, if the 



 
9

customers are clustered around the depots, then the problem can be modeled as a 

set of independent SDCVRPs. However, if the customers and the depots are 

intermingled, the MDCVRP should be solved. While a large number of papers 

have been published on the classical SDCVRP, there have been a few dealing with 

the MDCVRP, where each vehicle starts and finishes its route at the same depot. 

The applications of the MDCVRP can be found in Laporte et al. [1984], Tillman 

and Hering [1971], Chao et al. [1993], and Renaud et al. [1996], all using 

adaptations of classical SDCVRP procedures. 

 

Most prior research on the VRP has considered vehicles with homogeneous or 

heterogeneous capacities and one or more depot(s) while only allowing a visit to 

each customer. Having more than one allowed visit to a customer has not been 

widely considered in the literature. However, if multiple visits are allowed in the 

VRP, it is intuitive that they may reduce the number of vehicles used to satisfy the 

customer demands. Let assume that there are five customers, each of who has the 

demand as much as a little more than half of homogeneous vehicle’s capacity. To 

satisfy all demands by only one visit to each customer, 5 vehicles are necessary. 

Only three vehicles might be needed to solve the problem. Shin and Kang [1991] 

introduced and solved the VRP allowing multiple visits to a customer using a 

heuristic method.  

 

2.1.3 Solution methods for VRPs 
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The VRP requires the determination of the optimal set of routes to be completed 

by a fleet of vehicles to serve a given set of customers. The VRP is one of the most 

important and studied combinatorial optimization problems in academia and 

industries. The classical VRP introduced in Subsection 2.1.2 is relatively simple. 

In real life, the VRP can have many more complications, such as asymmetric 

distances, multiple depots, heterogeneous vehicles and time-windows of each 

customer. These possible complications make the problem more difficult to solve.  

 

The VRP is a NP-hard problem [Bodin et al., 1983]. NP-hard problems are 

difficult to solve, and no optimal algorithm which is able to solve the problem in 

polynomial time has been found [Falkenauer, 1996]. Finding an optimal solution 

to a NP-hard problem is usually very time consuming or even impossible. Due to 

this nature of the problem, it is not realistic to use optimal solution methods to 

solve large problems. For small problems with only a few customers, the branch-

and-bound method has been used [Pereira et al., 2002]. Most approaches for large 

problems are based on heuristics which are approximation algorithms that aim at 

finding good feasible solutions quickly [Laporte et al., 2000].  

 

Many models and algorithms were proposed to obtain the optimal or approximate 

solution of the different versions of the VRP. A thorough classification was given 

in Desrochers et al. [1990]. Laporte and Novert [1987] presented an extensive 
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survey that was entirely devoted to exact methods for VRPs. Other surveys were 

reported by Christofides et al. [1979], Magnanti [1981],  Bodin et al. [1983], 

Christofides [1985], Laporte [1992], Fisher [1995], Toth and Vigo [1998], and 

Golden et al. [1998]. They could be divided into two main classes: classical 

heuristics mostly from between 1960 and 1990, and metaheuristics from 1990 

[Laporte et al., 2000].  

 

The classical heuristics can be divided into three groups: construction methods, 

two-phase methods, and improvement methods [Laporte and Semet, 1999]. 

Construction methods gradually build a feasible solution by selecting arcs based 

on minimizing cost. The two-phase method divides the problem into two stages: 

clustering customers into feasible routes disregarding their order, and constructing 

routes. One of two-phase methods is the sweep algorithm in Laporte et al. [2000]. 

Improvement methods start with a feasible solution and try to improve it by 

exchanging arcs or nodes within or between the routes. The local search 

algorithms developed by Aarts and Lenstra [1996] belong to the improvement 

heuristics. The advantage of the classical heuristics is that they have a polynomial 

running time [Laporte et al., 2000]. When using them, one is better able to provide 

good solutions within a reasonable amount of time [Cordeau et al., 2002]. On the 

other hand, they only perform a limited search in the solution space. Therefore, 

they have a risk of resulting in a local optimum. 
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During the past few decades, there have been many attempts to solve VRPs 

quickly and effectively by using metaheuristics such as tabu search (TS), 

simulated annealing (SA), and GA [Laporte et al., 2000]. The TS and the SA move 

from one solution to another in the neighborhood until a stopping criterion is 

satisfied. Many different TS heuristics have been proposed with unequal success. 

Rochat and Taillard [1995] used the TS heuristic to solve some benchmark VRPs. 

Osman [1993a] obtained similar results using the SA. The GA maintains a 

population of good solutions that are recombined to produce new solutions. A 

considerable research on the GA has been done to solve VRP with time windows 

(VRPTW) [Berger and Barkaoui, 2003], where each customer has a time window 

for which the vehicle has to arrive. Berger and Barkaoui presented a new hybrid 

GA (HGA) to solve the CVRP. The HGA uses two populations of solutions that 

periodically exchange some chromosomes which are the feasible solutions to the 

CVRP. The algorithm has shown to be competitive in comparison to the best TS 

heuristics. However, Renaud et al. [1996] reported that such heuristics require 

substantial computing times and several parameter settings.  

 

2.2 Genetic algorithm  

 

2.2.1 The background 
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The Theory of Natural Selection was proposed by Charles Darwin in 1859. The 

theory states that individuals with certain favorable characteristics are more likely 

to survive and consequently pass their characteristics on to their offspring. 

Individuals with less favorable characteristics will gradually disappear from the 

population. In nature, the genetic inheritance is stored in chromosomes made of 

genes. The characteristics of every organism are controlled by the genes which are 

passed on to the offspring when the organisms reproduce. Occasionally a mutation 

causes changes in the chromosomes. Due to natural selection, the population will 

gradually improve on average as the number of individuals having the favorable 

characteristics increases. 

 

The GA is a randomized global search algorithm that solves problems by imitating 

genetic processes observed during natural evolution. The “survival of the fittest” 

nature of this algorithm lends itself favorably to being extremely robust in its 

search for optimality [Gen and Cheng, 2000]. Fundamentally, the GA evolves a 

population of bit strings, or chromosomes, where each chromosome encodes a 

solution to a particular problem. This evolution takes place through the application 

of genetic operators which mimic phenomena such as reproduction and mutation 

observed in nature. The characteristics of the GA that are different from other 

heuristics, are as follows [Gen and Cheng, 2000]: 

 



 
14

• The GA works with coding of the solutions instead of the solutions 

themselves. Therefore, a well-designed coding or efficient representation 

of the solutions in the form of a chromosome is required. 

• The GA searches from a group of solutions, different from other 

metaheuristics like the SA and the TS which start with a single solution 

and move to another solution by some transition. Therefore, the GA does 

a multi-directional search in the solution space, reducing the probability 

of finishing in a local optimum. 

• The GA only requires objective function value which measures the fitness 

of chromosomes while many other algorithms require the continuity or 

differentiability. Many real-life examples contain discontinuous search 

space. 

• The GA is nondeterministic, i.e., it is stochastic in natural decisions, 

which make the GA more robust. 

• The GA is a heuristic because it does not know when it has found an 

optimal solution. 

 

Generally, the GA has five basic components as summarized below [Gen and 

Cheng, 2000; Rawlins, 1991].  

 

• A genetic representation of solutions to the problem 

• A way to create an initial population of solutions 
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• An evaluation function rating solutions in terms of their fitness 

• Genetic operators that alter the genetic composition of offspring during 

reproduction 

• Values for parameters of the GA 

 

2.2.2 The procedure 

 

The procedure of the traditional GA may be described as follows. The GA starts 

from some randomly generated initial population which is a set of solutions. Davis 

[1987] suggests that for research purposes, a good deal can be learned by 

initializing a population randomly. Moving from a randomly-created population to 

a well-adapted population is a good test of the algorithm. By doing this, important 

features of the final solution will have been produced by the search and 

recombination mechanism of the algorithm, rather than the initialization process. 

To generate and to search for an optimal solution, a function which evaluates the 

survivability of solutions is required in the initialization process. This is also called 

the fitness function, because it ranks each feasible solution in accordance to its 

fitness value. The fitness function is the most critical part of the GA, as it is the 

one which decides how much time it takes to find the optimal solution.  

 

The second step, a reproductive process allows parent solutions to be randomly 

selected from the population. Typically, a lower selection pressure is indicated at 
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the start of a search in favor of wide exploration of search space, while a higher 

selection pressure is recommended at the end to narrow the search space [Gen and 

Cheng, 2000]. Offspring solutions are made by the reproductive processes using a 

crossover operator. The offspring solutions are produced which inherit some of the 

characteristics from each parent. Then, a random mutation could be applied to the 

offspring with a certain probability. Gen and Cheng [2000] proved that the 

mutation operator can sometimes play a more crucial role than crossover. 

Therefore, the crossover and mutation operators need to well-designed in 

accordance with the problem on hand.  

 

Finally, generation replacement takes place in the third step. The evaluation of the 

solutions can be related to the objective function value. In the VRPs, the total 

distance traveled and the level of any constraint violation can be fitness functions. 

Analogous to biological processes, offspring with relatively good fitness levels are 

more likely to survive and reproduce with the expectation that fitness levels 

throughout the population will improve as they evolve. More details can be found 

in Reeves [1993].  

 

2.2.3 Representation of a solution 

 

The preliminary component involves choosing the right coding schema for the 

representation of solutions to the problem. Diverse encoding methods have been 
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suggested for different problems to provide efficient implementation of GAs. 

Depending on symbol used for the bits of the chromosome, the encoding methods 

can be classified into: 

 

• Binary encoding 

 • Real number encoding 

 • Integer of literal permutation encoding 

 • Data structure encoding 

 

Binary encoding is the most common encoding method because it is easy to create 

and manipulate. A wide range of problems can use binary encoding, one point 

crossover and mutation without modification [Davis, 1987]. For efficiency, the 

other coding methods which are introduced in the following are more favorable in 

real world. 

 

Real number encoding is appropriate for function optimization problems. It has 

been widely confirmed that the real number encoding performs better than binary 

encoding for optimization problems as Eshelman and Schaffer [1993], 

Michalewicz [1996], and Walters and Smith [1995] reported.  

 

Integer or literal permutation encoding is useful for combinatorial optimization 

problems. Since the essence of combinatorial optimization problems is the search 
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for a best permutation or combination of items subject to constraints, literal 

permutation encoding can be good way to be used for this type of problem. For 

more complex real world problems, an appropriate data structure encoding is 

suggested as the bits of a chromosome to capture the nature of the problem [Gen 

and Cheng, 2000]. 

 

According to the computer data structure, the encoding methods can be classified 

into two types: one-dimensional encoding and multidimensional encoding. In most 

practices, one-dimensional encoding has been widely used but some complex 

problems require multidimensional encodings. Cohoon and Paris [1986] used two-

dimensional encoding for the circuit placement problems. Anderson et al. [1991] 

used a two-dimensional grid type of encoding.  

 

2.2.4 Selection 

 

The selection directs the genetic search toward promising regions in the solution 

space. The population diversity and the selective pressure are the two most 

important factors in the genetic search [Michalewicz, 1996].  An increase in the 

selective pressure decreases the population diversity and vice versa. Thus, they 

have a strong inverse relationship. Therefore, it is important to maintain the 

balance when determining a selection method for the GA. 
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Four commonly used selection methods are as follows: 

 

• Roulette wheel selection 

• Tournament selection 

• Elitism 

• Scaling  

 

In roulette wheel selection, probability to be chosen is chromosome’s fitness over 

the total fitness of the population. Each chromosome is assigned a slice of a 

circular roulette wheel, the size of the slice being proportional to the 

chromosome’s fitness. The wheel is spun N times, where N is the number of 

chromosomes in the population. On each spin, the chromosome under the wheel’s 

marker is selected to be in the pool of parents for the crossover.  

 

Tournament selection method randomly chooses a set of chromosomes and picks 

out the best chromosome for reproduction. The number of chromosomes in a 

competition is called the tournament size. A common tournament size is two and 

this is called a binary tournament. A random number r is then generated between 0 

and 1. If r < k, where k is a parameter between 0 and 1, then the fitter of the two 

chromosomes is selected to be a parent. Otherwise the less fit chromosome is 

selected. The two chromosomes are then returned to the original population for the 

next round of selection.  
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Elitism is an addition to other selection methods that forces the GA to retain 

number of good chromosomes in each generation. Without elitism, good 

chromosomes can be lost if they are not selected to reproduce or if they are 

destroyed by crossover or mutation.  

 

Scaling method has been proposed to prevent quick convergence to local optima. 

The scaling method maps raw fitness values of all chromosomes in a population to 

scaled fitness values which are positive real values. The selection process will be 

performed based on scaled fitness values. There are many scaling methods 

proposed in the literature of the GA. Scaling parameters are known problem-

dependent [Gen and Cheng, 2000]. One of the commonly used scaling methods in 

the GA is linear scaling which adjusts the fitness values of all chromosomes such 

that the best chromosome gets a fixed number of expected offspring and thus 

prevents it from reproducing too many [Gen and Cheng, 2000].  

 

2.2.5 Crossover 

 

An important genetic operator is crossover, which simulates a reproduction by 

parents. It works on a pair of solutions and recombines them in a certain way 

generating one or more offspring. The offspring share some of the characteristics 
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from the parents through the crossover. In that way, the good characteristics are 

passed on to the following generations.   

 

Many different crossover operators have been introduced in the literature. The 

functionality of the crossover depends on the representation, and the performance 

depends on how well it is adjusted to the problem. Commonly used crossover 

methods for VRPs are as follows [Gen and Cheng, 2000]: 

 

• Point crossover (One-cut-point, Two-cut-point, Multi-cut-point) 

• Partial-mapped crossover 

• Order crossover 

• Uniform crossover 

• Position-based crossover 

• Order-based crossover 

• Cycle crossover 

 

Among point crossovers, one-cut-point crossover is a simple method which selects 

one cut-point randomly in a chromosome as shown in Figure 2.2. The selected 

point is indicated by an arrow. P1 represents the first parent and P2 represents the 

second parent. In Figure 2.2, chromosomes consist of 9 genes. The one-cut-point 

crossover takes the pre-cut section of the first parent as a proto-child and fills up 
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the offspring by taking in order each legitimate gene from the second parent to 

generate an offspring as shown in Figure 2.2.  

 

P1

P2

Proto-child 

P2

1  2  3  4  5  6  7  8  9

5  4  6  9  2  1  7  8  3 

5  6  9    7  8  

Offspring   5  6  9  7  8

Figure 2.2  The one-cut-point crossover 

 

The more advanced methods over one-cut-point crossover are two-cut-point and 

multi-cut-point crossovers. Two-cut-point crossover is illustrated in Figure 2.3, 

where two points are randomly selected in P1 and genes between two chosen 

points are inherited to the offspring. Then it takes each legitimate gene in the order 

shown up in P2. In multi-cut-point crossover method, the number of the cut-points 

at each step is randomly chosen, and then the cut-points are selected according to 

the chosen number. In Figure 2.4, the chosen number of cuts in 4 and cut sections 

are alternatively selected from P2. Then it takes each legitimate gene in the order 

shown up in P2.  
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P1

P2

Proto-child 

P2

1  2  3  4  5  6  7  8  9

5  4  6  9  2  1  7  8  3 

5  6  9  1  7  8  

Offspring 5   6  9  1  7  8

Figure 2.3  The two-cut-point crossover 

 

 

P1

P2

Proto-child 

P2

1  2  3  4  5  6  7  8  9

5  4  6  9  2  1  7  8  3 

5  6  9  1  

Offspring 5   6  9   1

Figure 2.4  The multi-cut-point crossover 

 

Partial-mapped crossover (PMX) is an extension of two-cut-point crossover to 

binary string representation for the permutation. The PMX uses a special repair 

procedure to resolve the illegitimacy caused by the two-cut-point crossover. The 

essentials of the PMX are a two-point crossover a repair procedure. The steps of 

PMX is detailed in Table 2.1 and illustrated in Figure 2.5. 
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Table 2.1  Steps of the partial-mapped crossover 
 
Step 1. Select two positions along the genes from both parents at random. The 

sub-genes defined by the two positions are called the mapping 

sections. 

Step 2. Copy the mapping section from P1 to proto-child at the same positions.

Step 3. Determine the mapping relationship between two mapping sections. 

Step 4. Map the remaining genes from P2 using the mapping relationships. 

Genes without the mapping relationships is simply copied in the proto-

child. 

 

 

P1

P2

Proto-child 
1  2  3  4  5  6  7  8  9 

5  4  6  9  2  1  8  7  3 

5  4     8  7  3

↔ 6 
↔ 9
↔ 2 
↔ 1 

Offspring 2  9    8  7  1

Figure 2.5  The partial-mapped crossover 

 

Order crossover (OX) could be viewed as a variation of the PMX with a different 

repair procedure as detailed in Table 2.2 and illustrated in Figure 2.6. 
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Table 2.2  Steps of the order crossover 
 
Step 1. Select sub-genes from one parent by choosing two points randomly. 

Step 2.  Produce a proto-child by copying the sub-genes into the corresponding 

positions of each gene. 

Step 3. Delete the corresponding genes from P2. The remaining genes from P2 

contain the genes that the proto-child needs.  

Step 4.  Place the remaining genes into the proto-child from left to right in the 

order of the sequence of genes in P2. 

 

 

P1

P2

Proto-child 

P2

1  2  3  4  5  6  7  8  9 

5  4  6  9  2  1  7  3 8  

          

 9  2  1  7     8  

Offspring 9  2    1  7  8

Figure 2.6  The order crossover 

 

Uniform crossover is accomplished by selecting two parent solutions and 

randomly taking each gene from one parent to form the corresponding position of 

the child, as detailed in Table 2.3 and illustrated in Figure 2.7.  
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Table 2.3  Steps of the uniform crossover 
 
Step 1. Randomly take a gene from parents to form the corresponding gene of 

the offspring. 

Step 2.  Repeat step 2 until the genes of the offspring fill up perfectly.  

 

 

P1

P2

Proto-child 1  2  3  2  1  3  3  2  1

2  2  1  3  3  3  1  1  2 Offspring   3  1  1  

P2 2  2  1  3  3  3  1  1  2

Figure 2.7  The uniform crossover 

 

Position-based crossover is a variation of uniform crossover for permutation 

representation together with a repair procedure, which can also be viewed as a 

variation of the OX, where the genes are copied inconsecutively as detailed in 

Table 2.4 and illustrated in Figure 2.8.  
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Table 2.4  Steps of the position-based crossover 
 
Step 1. Select a set of positions from one parent at random. 

Step 2.  Produce a proto-child by copying the genes on these positions into the 

corresponding positions of each gene. 

Step 3. Delete the corresponding genes from P2. The remaining genes from P2 

contain the genes that the proto-child needs.  

Step 4.  Place the remaining genes into the proto-child from left to right in the 

order of the sequence of genes in P2. 

 

 

P1

P2

Proto-child 

P2

1  2  3  4  5  6  7  8  9

5  4  6  9  2  1  7  8  3 

        

  4              1  7  8  3 

Offspring 4   1  7    8  3  

Figure 2.8  The position-based crossover 

 

Order-based crossover is a slight variation of position-based crossover in which 

the order of genes at the selected position of one parent is imposed on the 

corresponding genes of the other parent as shown in Figure 2.9. 
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P1

P2

Proto-child 

P2

1  2  3  4  5  6  7  8  9

5  4  6  9  2  1  7  8  3
5  4  6  9  2  1  7  8  3 

Offspring  4  1  7  8  3

Figure 2.9  The order-based crossover 

 

Cycle crossover (CX), as in the position-based crossover, takes some genes from 

one parent and selects the remaining genes from the other parent. The difference is 

that the genes from the first parent are not selected randomly, and only those genes 

which create a cycle according to the corresponding positions between parents 

must be selected as detailed in Table 2.5 and illustrated in Figure 2.10.  
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Table 2.5  Steps of the cycle crossover 
 
Step 1. Find the cycle which is defined by the corresponding positions of 

genes between parents. 

Step 2.  Copy the genes in the cycle to offspring with the corresponding 

positions of second parent. 

Step 3. Determine the remaining genes in P2 by deleting those genes which 

are already in the cycle.  

Step 4.  Fulfill the offspring with the remaining genes in P2. 

 
 

 

P1

P2

Proto-child 1  2  3  4  5  6  7  8  9 

5  4  6  9  2  3  7  8  1 Offspring  6    3  7  8  

cycle    1 → 5 → 2 → 4 → 9 → 1 
P2  6          3  7  8  

Figure 2.10  The cycle crossover 

 

2.2.6 Mutation 

 

To explore different solutions and avoid local optima, a mutation procedure needs 

to be implemented. In the GA, mutation plays an important role of either replacing 

the chromosomes lost from the population during the selection process so that they 

can be tried in a new context, or providing the chromosomes that were not present 

in the initial population.  
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Commonly used mutation methods are as follows [Gen and Cheng, 2000]: 

 

• Inversion mutation 

• Insertion mutation 

• Reciprocal exchange mutation 

• Point mutation 

 

Inversion mutation selects two positions within a chromosome at random and then 

inverts the sub-genes between these two positions as illustrated in Figure 2.11.  

 

 

1  2   7  8  9 1  2   7  8  9  

Figure 2.11  The inversion mutation 

 

Insertion mutation selects a gene at random and inserts it in a random position as 

illustrated in Figure 2.12. 

 

 

1  2  3  4  5  6   8  9 1  2   3  4  5  6  8  9  

Figure 2.12  The insertion mutation 
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Reciprocal exchange mutation selects two positions at random and then swaps the 

genes on these positions as illustrated in Figure 2.13.  

 

 

1  2    4  5  6   8  9 1  2   4  5  6    8  9  

Figure 2.13  The reciprocal exchange mutation 

 

Point mutation selects a position at random and changes the gene in the position to 

certain gene as illustrated in Figure 2.14.  

 

 

1  2  2  3  1  4  1  2 1  2  2  3  1  4  1  2  

Figure 2.14  The point mutation 

 

2.2.7 Termination condition 

 

The GA continues to select parents, perform the crossovers, and execute the 

mutations until a termination criterion is met. The most frequently used stopping 

criterion is a maximum number of generations [Gen and Chang, 2000]. Another 

notable termination strategy involves population convergence criteria. The GA 
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forces much of the entire population to converge to a single solution. When the 

sum of the deviations among individuals becomes smaller than a specified 

threshold, the algorithm is terminated. The algorithm can also be terminated due to 

a lack of improvement in the best solution over a specified number of generations.  

 

For each criterion, a threshold needs to be carefully selected. Several strategies can 

be used in conjunction with each other. 

 

2.3 Taguchi method 

 

To fine-tune the performance of algorithms or processes, many parameters must be 

set carefully. The technique of investigating all possible combinations in 

experiment conditions involving multiple factors is known as Design of 

Experiment. The method of experimental designs constitutes the preset values of 

parameters to obtain the optimized output as it allows the designer to determine the 

significant parameters over the others. Taguchi method has been introduced to 

search effectively for the optimal parameters.  

 

Taguchi method for parameter designs is an important tool for robust design. 

Robust design is an engineering methodology for optimizing the product and 

process conditions which are minimally sensitive to the causes of variation, and 

which produce high-quality products with low development and manufacturing 
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costs. The orthogonal array and the signal-to-noise ratio (SNR) are two major tools 

used in the Taguchi method. Additional details can be found in the books 

presented by Taguchi et al. [2000] and Wu [2000]. 

 

Many designed experiments use matrices called orthogonal arrays for determining 

which combinations of factor levels to use for each experimental run. An 

orthogonal array is a fractional factorial matrix, which assures a balanced 

comparison of levels of any factor. It is a matrix of numbers arranged in rows and 

columns where each row represents the level of the factors in each run, and each 

column represents a specific factor that can be changed from each run. The symbol 

of three-level orthogonal arrays is Ln (3k), where n is the number of experimental 

runs, 3 is the number of levels for each factor, and k is the number of factors. The 

letter L comes from Latin, since the orthogonal arrays were associated with Latin 

square designs from the outset.  

 

SNR is the ratio of the signal over the noise, which measures the strength of signal 

with the existence of noises. The higher SNR means that the process or design is 

more robust. There are several SNRs available depending on the type of 

characteristic: nominal-is-best, smaller-the-better or larger-the-better. Further 

details can be found in Taguchi et al. [2000] and Wu [2000]. In the case of 

smaller-the-better characteristic, suppose that we have a set of experiment runs 
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.x,...,x,x n21  Since the value of the SNR is large for favorable situations, the 

following formulation for the smaller-the-better characteristic is used: 

 

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

n

1i

2
ix

n
1log10SNR

. 

 

Since the objective of VRPs is to minimize the total traveled distance, the smaller-

the-better is an appropriate measure in this thesis. The proposed GA with different 

process parameters shows different performances.  
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Chapter 3. Methodology 

 

This chapter describes the methodology followed to develop the proposed GA. In 

Section 3.1, the mathematical model of the problem is developed. Section 3.2 

discusses the motivation to develop a GA and describes the details about the 

components of the proposed GA.  

 

3.1  Mathematical model 

 

The MIP model for the VRP with heterogeneous vehicles from multiple visits, 

allowing multiple depots has been developed and solved by CPLEX version 7.1. 

The modeling for CPLEX has been completed using OPL-Studio version 3.5. 

 

3.1.1 Model assumptions 

 

The VRP can be represented as a network, where nodes are customers or depots 

and the links are the roads. In the network there are N customers with known 

demand Di (i = 1,…, N), and M depots, each of which has Tm (m = N+1,…, N+M) 

vehicles. Each vehicle might have heterogeneous capacities. The complete 

assumptions are detailed in the following. 

 

 • Each vehicle must start and end its route at a depot. 
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 • Demand of each customer must be satisfied by vehicles in an  

               allowed number of visits. 

 • The capacity of each vehicle is known. 

 • The sum of the unloaded amounts at the customers by a vehicle must not  

               exceed the capacity of the vehicle. 

 • The location of all customers and depots are known. 

 • The distances between all pairs of two locations are known. 

 

3.1.2 Notations 

 

SN A set of customer indices 

SM A set of depot indices 

S A set of indices for all customers and depots; S = {SN U SM} 

mTS  A set of all vehicle indices at depot m 

N Number of customers 

M Number of depots 

L Number of customers and depots (L = N+M) 

Tm Number of vehicles at depot m 

Di Demand of customer i (1≤ i ≤ N) 

dij Distance between nodes i and j (1 ≤ i, j ≤ N+M) 

V Number of visits allowed to each customer 
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Ujmt Unloaded amount by vehicle t from depot m at customer j, where 1≤ j ≤ N.  

 (Ujmt = 0 for N+1 ≤ j ≤ N+M, Ujmt = 0 for ) 
mTSt∉

Cmt Capacity of vehicle t from depot m for  
mTSt∈

B A large number 

xijmt        
⎩
⎨
⎧ ∈

.otherwise,0

Stwhere,jtoinodefromtravelsmdepotfromtvehicletheif,1
mT

 

 

3.1.3 MIP model 

 

The VRP with heterogeneous vehicles from multiple visits, allowing multiple 

depots is formulated as a MIP model. Thus the problem can be modeled as: 

 

Minimize    ∑ ∑ ∑ ∑
= = = =

=
L

1i

L

1j

M

1m

T

1t
ijmtij

m

xdZ

 

 

Subject to: 

 

0x ijmt =    if ji ≠ ,  for  (1) 
mTMMM St,Sm,Sj,Si ∈∀∈∀∈∀∈∀

 

∑ ∑
= =

=
L

1i

L

1i
jimtijmt xx  for     (2) 

mTM St,Sm,Sj ∈∀∈∀∈∀
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Vx
mT

1t

M

1m

L

1i
ijmt ≤∑∑∑

= = =

 for NSj∈∀       (3) 

 

∑
=

=
L

1i
iimt 0x   for     (4) 

mTM St,Sm ∈∀∈∀

 

∑
=

≥
L

1i
jmtijmt UxB  for    (5) 

mTMN St,Sm,Sj ∈∀∈∀∈∀

 

jmtijmt Ux ≤   for   (6) 
mTMN St,Sm,Sj,Si ∈∀∈∀∈∀∈∀

 

∑∑
= =

=
mT

1t

M

1m
jjmt DU  for    (7) 

mTMN St,Sm,Sj ∈∀∈∀∈∀

 

∑
=

≤
N

1j
mtjmt CU   for     (8) 

mTM St,Sm ∈∀∈∀

 

1LLxyy ijmtjmtimt −≤+−      

if ji ≠ ,  for  (9) 
mTMNN St,Sm,Sj,Si ∈∀∈∀∈∀∈∀

               

xijmt = {0, 1} for   (10)  
mTM St,Sm,Sj,Si ∈∀∈∀∈∀∈∀
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The objective function of the MIP model is to minimize the total traveled distance 

by all vehicles to satisfy all customers’ demand. Constraint (1) ensures that each 

vehicle t starts from its origin depot m and terminates its route at the same depot. 

In other words, each vehicle cannot visit the depots other than its origin depot. 

Constraint (2) ensures that all vehicles visiting a node must leave that node. At 

each node, the number of visits must be the same as the number of departures for 

each vehicle. It ensures the continuous flow of vehicles in the network. Constraint 

(3) ensures that each customer node can have up to V visits by all vehicles in order 

to satisfy the customer demand. Constraint (4) prevents the looping of any vehicle 

at a node. Constraints (5) and (6) ensure that if vehicle t from depot m travels from 

node i to node j, the vehicle should unload Ujmt at the node j. Constraint (7) 

ensures that the sum of the unloaded amounts at a customer node j should be the 

same as the demand of customer j. Constraint (8) ensures that the total unloaded 

amounts of each vehicle over its route cannot exceed the vehicle capacity. 

Constraint (9) presents the sub-tour elimination constraint typically used in the 

VRPs.  

 

3.2  The proposed GA 

 

The VRP is known as a NP-hard combinatorial problem. It is difficult to solve 

even small problems optimally in a reasonable amount of time. The GA has been 

applied successfully in many combinatorial optimization problems. The GA does 
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not guarantee the optimality because of its stochastic nature, but it finds a good 

near-optimal solution in significantly less time. In the following subsections, the 

proposed GA implemented in this thesis is described in detail.  

 

3.2.1 Representation of feasible solutions 

 

Encoding a solution of the problem into a chromosome has a high impact on the 

GA. Integer encoding has been identified as the most suitable method for the 

problem. The developed representation is a 2-dimentional matrix ((V+1)×N), 

where the columns represent customers, the first row contains randomly-generated 

sequences of visiting order and the other rows contain the vehicles visiting each 

customer. A representation of a chromosome is illustrated in Figure 3.1, where V = 

3 and N = 5.  

 

C1  C2 C3 C4 C5

3 1 4 5 2 

V11 V12 V21 V11 V12

0 V21 V11 0 V31

V12 0 V13 0 0 

 
Figure 3.1  Representation of a chromosome in the VRP, where 5 customers 
and 3 vehicles in depot 1 (V11, V12 and V13), 1 vehicle in depot 2 (V21) and 1 

vehicle in depot 3 (V31), allowing 3 visits to a customer  
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The way to interpret the representation in Figure 3.1 is in the following. There are 

3 vehicles in depot 1 (V11, V12 and V13), 1 vehicle in depot 2 (V21) and 1 vehicle in 

depot 3 (V31). The vehicles visit the five customers, C1, C2, C3, C4 and C5. The V11 

will visit C1, C3 and C4, respectively. The visiting order of the V11 depends on the 

values in cells of the first row. Since the corresponding values for C1, C3 and C4 

are 3, 4 and 5, respectively, the route of V11 is [D1 – C1 – C3 – C4 – D1] where D1 

represent the depot 1. In the same manner, the route of V12 is [D1 – C2 – C5 – C1 – 

D1], the route of V13 is [D1 – C3 – D1], the route of V21 is [D2 – C2 – C3 – D2] and 

the route of V31 is [D3 – C5 – D3] where D2 and D3 represent depots 2 and 3, 

respectively. 

  

3.2.2 Population initialization and  evaluation function 

 

The initial population of the predetermined size is randomly generated. However, a 

way to obtain the good initial population is desired since it impacts on the 

performance of the proposed GA. 

 

The objective of the proposed GA is to minimize the overall distance traveled by 

all vehicles. The fitness, which is the survival chance of a feasible solution 

satisfying all customer demands, is calculated as follows: 
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1 
fitness = 

sum of the total distance traveled by all vehicles 
 

The fitness is an inverse of sum of the total distance traveled by all vehicles. 

 

3.2.3 Selection 

 

In the GA, an appropriate method to select chromosomes for the crossover must be 

employed to give more chance to those chromosomes in a population that are most 

fit. With too much chance, genetic search will terminate prematurely; with too 

little chance, evolutionary progress will be slower than necessary. Typically, a 

lower selection pressure is desirable at the start of the genetic search in favor of a 

wide exploration of the search space, while a higher selection pressure is 

recommended at the end to converge efficiently. The roulette wheel selection 

method and linear scaling method has been used during the selection process in the 

proposed GA. The roulette wheel selection method is known as the best selection 

method [Gen and Cheng, 2000]. Linear scaling method is commonly used in GAs 

as mentioned in Chapter 2. Based on the several runs of the proposed GA, the 

linear scaling function in the proposed GA has been chosen as 1f1.0'f ii +×= , 

where  is the scaled fitness and  is the raw fitness for chromosome .  i'f if i
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3.2.4 Crossover 

 

Through the selection method described in Subsection 3.2.1, two chromosomes 

from the current population are selected for the mating by means of crossover rate 

which is a probability of crossover. If a randomly generated number between 0 and 

1 is smaller than crossover rate, these chromosomes reproduce to form new 

members to be included in the next generation. Otherwise, the crossover does not 

take place. The newly generated members are called offspring. An appropriate 

method to crossover two selected chromosomes to improve the fitness of offspring 

has been developed for the VRP under consideration.  

 

In the previous studies for VRPs, various crossover operators have been used. In 

this thesis, the position-based crossover method is applied to the first row. The 

cells in the first row represent the visiting order of vehicles, thus they cannot have 

the same gene. Uniform crossover, which has been shown to be superior to 

traditional crossover strategies for combinatorial problems [Syswerda, 1989], is 

applied to the other rows for visiting vehicles. These crossovers are described in 

detail in Table 3.1.  
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Table 3.1  Steps of the crossover in the proposed GA 
 
Step 1. Select a set of cells from Parent 1 randomly, which are shaded in Figure 

3.2. 

Step 2. Produce a proto-child by copying the shaded cells from parent 1 into the 

corresponding cells. Delete the corresponding cells from Parent 2 (see 

Figure 3.3).   

Step 3. For the first row, copy the remaining cells from Parent 2 into the empty 

cells of the proto-child from left to right in the order shown up the first 

row of Parent 2. 

Finally, copy the remaining cells from Parent 2 into the empty cells of 

the proto-child at the other rows until all cells of the proto-child fill up 

(see Figure 3.4). 

 

 
 

 Parent 1    Parent 2 

1 4 5 2 3    3 5 4 1 2 

V21 V22 V11 V11 V12
   V11 V22 V12 V11 V13

V12 V13 0 0 V13
   0 V12 0 V22 0 

0 V12 V22 0 V21
   0 V21 V21 0 V11

 
Figure 3.2  Step 1 of the crossover in the proposed GA 
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Proto-child    Parent 2 

 4  2     3 5  1  

V21 V22   V12
     V12 V11  

 V13 0 0     0    0 

0  V22  V21
    V21  0  

 
Figure 3.3  Step 2 of the crossover in the proposed GA 

 

 
Offspring 

3 4 5 2 1 

V21 V22 V12 V11 V12

0 V13 0 0 0 

0 V21 V22 0 V21

 
Figure 3.4  Step 3 of the crossover in the proposed GA 

 

During the crossover procedure, except the first row, some offspring might have 

identical vehicles in the same columns after being generated. However, these 

offspring has been eliminated since they are infeasible solutions. 

 

3.2.5 Mutation 
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Mutation is another important operator in GA implementations and is applied to a 

chromosome with a mutation rate which is a probability of mutation of each 

chromosome in a population. Mutation operator brings random changes onto a 

single chromosome. If a randomly generated number between 0 and 1 is smaller 

than mutation rate, these chromosomes reproduce to form new members to be 

included in the next generation. Otherwise, the mutation does not take place. These 

random changes prevent the premature local convergence.  

 

It is relatively simple to implement a mutation procedure. All chromosomes in the 

population except the good ones (thanks to elitism) are subject to mutation at the 

mutation rate. The elite rate is set to 10%, which is the percentage of good 

solutions immune to the mutation. The mutation rate has been dynamically 

adapted, based on the status of population. It starts with 0.05 and it increases up to 

0.75 by 0.1 whenever no improvement observed in the best chromosome over a 

certain number of generations (50 ~ 100 generations). If the best solution improves, 

the mutation rate drops to the original mutation rate, i.e., 0.05. While most GA 

implementation uses the static mutation rate, the proposed GA introduces the 

dynamic self-adapting mutation rate. It is expected to increase the capability to 

escape from the premature local optima and to search for better solutions from the 

diverse directions. This policy has been proved effective in solving the various 

VRPs. See Section 4.3. The higher mutation rate introduces more changes of 

chromosomes in the population. In this thesis, the inversion mutation is 
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implemented. Table 3.2 explains steps of the mutation. Each step is illustrated in 

Figures 3.5 and 3.6.  

 

  Table 3.2  Steps of the mutation in the proposed GA 
 
Step 1. Select two columns in a chromosome at random as indicated by two 

arrows in Figure 3.5. 

Step 2. Invert the corresponding cells between these two columns except the 

cells on the first row as shaded in Figure 3.6. 

 

 

3 4 5 2 1 

V21 V22 V12 V11 V11

0 V13 0 0 0 

0 V21 V22 0 V21

 
Figure 3.5  Step 1 of the mutation in the proposed GA 

 

 

3 4 5 2 1 

V21 V22 V11 V12 V11

0 V13 0 0 0 

0 V21 0 V22 V21

 
Figure 3.6  Step 2 of the mutation in the proposed GA 



 
48

3.2.6 Termination condition 

 

In this thesis, two strategies have been used as the termination criteria. One is that 

the proposed GA completes a specified maximum number of generations, which is 

5,000 in this implementation. The other is that the proposed GA can also be 

terminated due to no improvement of the best solution over a specified number of 

generations, which is between 50 and 100 while the mutation rate can be varied 

between 0.05 and 0.75. This number of generations is called improvement interval. 

After the proposed GA terminates, the chromosome with the highest fitness is 

interpreted as a best known solution for that execution.  

 

3.2.7 GA process parameters 

 

Many GA process parameters have been defined to effectively solve the VRP by 

using the proposed GA. The values of those process parameters need to be 

carefully selected. Good process parameter setting is important for the GA to 

obtain a good final solution. Usually, it is difficult to determine a good set of 

process parameters because the relationships among them can be rather 

complicated and unclear. The values of the process parameters in the previous 

works were referred initially to set the values for the proposed GA. See Table 3.3. 

The proposed GA has been tested under different values of process parameters to 

solve the VRPs in Sections 4.1 and 4.2. 
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Table 3.3  Values of parameters used for the proposed GA 

Parameter Values 

Population size 100, 150, 200 

Improvement interval 50, 75, 100 

Crossover rate 0.6, 0.7, 0.8 

Mutation rate 0.05 ~ 0.75 

Elitist rate 0.1 
 

Three different population sizes, three different crossover rate, three different 

numbers of generations for dynamic mutation rate have been tested. Assuming that 

the number of generations for dynamic mutation rate is 50, the proposed GA 

terminates when there is no improvement over 400 generations with mutation rate 

changing from 0.05 to 0.75 every 50 generation. Whenever the best solution in a 

population is found, the mutation rate returns to the initial mutation rate, 0.05. 

Elitist rate is used to retain 10% of the best chromosomes at each generation. Such 

chromosomes can not be lost since they survive automatically being immune to 

mutation.  
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Chapter 4. Computational results 

 

In this chapter computational results of the MIP model and the genetic algorithm 

proposed in Chapter 3 are presented. All computational experiments are carried 

out on a Dell PC with 3.4 GHz CPU and 2.0 GB RAM. The MIP model is solved 

with the optimization software, CPLEX version 7.1, which is branch-and-bound 

MIP solver. The program for the proposed GA is implemented in C++ 

programming language using the Microsoft Visual Studio.NET Framework 1.1 

version. 

 

4.1 Effectiveness of the proposed GA 

 

4.1.1 Test problem 

 

Since the VRP with heterogeneous vehicles from multiple depots allowing 

multiple visits has been solved for the first time, the hypothetical problem shown 

in Figure 4.1 has been created to demonstrate the effectiveness of the proposed GA. 

The problem has 6 customers with known demand at the specified locations and 

two depots with 3 and 2 vehicles, respectively, of heterogeneous capacity at the 

specified locations. The coordinates and demand of the customers are shown in 

Table 4.1. Table 4.2 shows the depots’ coordinates and vehicles with their 

capacities.  
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Depot 1 

Depot 2 

C3

C6

C5
C2

C4C1

  V11   V12   V13

  V22  V21

1300 

4800 

3000 

4100 

2300 

1800 

Figure 4.1  Illustration of the hypothetical problem 

 

 Table 4.1  Coordinates and demand of the customers 

Node Coordinates Demand Node Coordinates Demand 

Customer 1 
(C1) 

(9,94) 1300 Customer 4 
(C4) 

(31,144) 4100 

Customer 2 
(C2) 

(19,62) 1800 Customer 5 
(C5) 

(35,65) 3000 

Customer 3 
(C3) 

(26,126) 2300 Customer 6 
(C6) 

(44,88) 4800 
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Table 4.2  Coordinates and vehicles with their capacities in the depots 

 Depot 1 Depot 2 

Coordinates (21, 86) (36, 97) 

Vehicle V11 V12 V13 V21 V22

Vehicle capacity 1500 4800 8000 2200 2500 
 

The customers and the depots with vehicles are illustrated in Figure 4.1. In the 

figure, the circled Ci stands for customer i. The numbers on the shoulder of the 

customers stand for the customers’ demands. Three vehicles V11, V12, and V13 are 

housed in depot 1 and two vehicles V21 and V22 in depot 2.   

 

4.1.2 Comparison of  the results from the MIP model and the proposed GA 

 

The test results from the MIP model presented in Chapter 3 are shown in Table 4.3. 

The numbers in the parenthesis are the unloaded amounts for the customer’s 

demand by the corresponding vehicle in Tables 4.3 and 4.4. With multiple visits to 

a customer the total distances has been reduced as shown in Tables 4.3 and 4.4. 
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Table 4.3  Results from the MIP model 
 

 Allowed visits by each vehicle 

 One Two Three 

Total distance 358.77 300.67 263.68 

V11 D1 → C1 (1300) → D1 Unused Unused 

V12 D1 → C4 (4100) → D1
D1 → C2 (1800) → 

 C5 (3000) → D1

D1 → C2 (1800) → 
 C5 (3000) → D1

V13
D1 → C5 (3000) →  

C6 (4800) → D1

D1 → C6 (2600) →  
C4 (4100) → C1 (1300) → 

D1

D1 → C1 (1300) →  
C3 (2300) → C4 (4100) → 

C6 (300) → D1

V21 D2 → C2 (1800) → D2 D2 → C6 (2200) → D2 D2 → C6 (2200) → D2

Routes 
 

for the  
 

vehicles 

V22 D2 → C3 (2300) → D2 D2 → C3 (2300) → D2 D2 → C6 (2300) → D2

 

The test results from the proposed GA are shown in Table 4.4. It is shown that the 

total distances of the MIP model and the proposed GA are identical, which 

indicates that the proposed GA achieves the optimality for the test problem in 

Subsection 4.1.1. Note that the routes in bold show the different amounts of 

demands satisfied by different vehicles from the MIP model and the proposed GA, 

even if the vehicle routes are identical. These are alternative optimal solutions. The 

CPLEX terminates the branch-and-bounds when it finds the first optimal solution. 
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Table 4.4  Results from the proposed GA 
 

 Allowed visits by each vehicle 

 One Two Three 

Total distance 358.77 300.67 263.68 

V11 D1 → C1 (1300) → D1 Unused Unused 

V12 D1 → C4 (4100) → D1
D1 → C2 (1800) → 

 C5 (3000) → D1

D1 → C2 (1800) → 
 C5 (3000) → D1

V13
D1 → C5 (3000) →  

C6 (4800) → D1

D1 → C6 (2600) →  
C4 (4100) → C1 (1300) → 

D1

D1 → C1 (1300) →  
C3 (2300) → C4 (4100) → 

C6 (100) → D1

V21 D2 → C2 (1800) → D2 D2 → C6 (2200) → D2 D2 → C6 (2200) → D2

Routes 
 

for the  
 

vehicles 

V22 D2 → C3 (2300) → D2 D2 → C3 (2300) → D2 D2 → C6 (2500) → D2

 

From Tables 4.3 and 4.4, the proposed GA is effective in solving the VRP with 

heterogeneous vehicles from multiple depots, allowing multiple visits while the 

MIP model can only solve the small problem. CPLEX cannot solve the problem 

with 7 customers and 2 depots due to the memory limitation. Note that the increase 

in the number of visits leads to the shorter travel distance. In other words, to 

minimize the total distance by all heterogeneous vehicles from multiple depots, 

allowing multiple visits to customers is a good way to reduce the delivery cost in 

the case of the generalized VRPs. The vehicle routes with different allowed visits 

from the MIP model are illustrated in Figures 4.2, 4.3 and 4.4.  
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Depot 1 

Depot 2 

C3

C6

C5

C4
C1

Route for 
vehicle V11

Route for 
vehicle V12

Route for 
vehicle V22

Route for 
vehicle V21

Route for 
vehicle V13

C2

Figure 4.2  Vehicle routes for one allowed visit 

 

 

Depot 1 

C3

C5
C2

C4C1

Route for 
vehicle V12

Route for 
vehicle V13 Route for 

vehicle V21

Route for 
vehicle V22

Depot 2 

C6

Figure 4.3  Vehicle routes for two allowed visits 



 
56

 

Depot 1 

C3

C5
C2

C4C1

Route for 
vehicle V12

Route for 
vehicle V13

Route for 
vehicle V21

Route for 
vehicle V22

Depot 2 

C6

Figure 4.4  Vehicle routes for three allowed visits 

 

In the figures, routes for different vehicles are represented by different arrows. For 

example, vehicles V11, V12, V21 and V22 only visit C1, C4, C2 and C3, respectively, 

shown in Figure 4.2. Vehicle V13 visits C5 and C6 in order.  

 

4.2 Performance comparisons with prior works 

 

In this subsection, the proposed GA has been applied to benchmark VRPs 

available at the VRPLIB repository on the web (http://www.or.deis.unibo.it  

/research_pages/ORinstances/VRPLIB/VRPLIB.html). These problems have been 

widely used as benchmarks and they are derived from Eilon et al. [1971].  
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4.2.1 The benchmark problems 

 

The VRPs examined have only a single depot and a number of vehicles with 

identical capacity. Table 4.5 shows the number of customers, the number of 

vehicles at a single depot, the vehicle capacity and the best known solution in the 

VRPLIB repository. Customers and a single depot are in a network, and all 

distances are calculated using the Euclidean coordinates. 

 

Table 4.5  Best known solutions of the benchmark problems 
 

Problem Customers Vehicles Vehicle capacity Best known solution 
*E-n22-k4 21 4 6000 375 
E-n23-k3 22 3 4500 569 
E-n30-k4 29 3 4500 534 
E-n33-k4 32 4 8000 839 

*E-n22-k4 stands for Elion et al. problem which has 22 nodes (21 customers, 1 depot) and 4 
vehicles at the depot. 
 

 

4.2.2 The results of the VRP examples 

 

Table 4.6 compares the performance of the best solutions obtained by the proposed 

GA in comparison with best known solutions. Note that the improvement is 

calculated as: Improvement = (-1) × [(The best solution from the proposed GA – 

Best known value)/Best known value] × 100. 
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Table 4.6  Results of the benchmark problems from the proposed GA 
 

Problem Best known solution The best solution from 
the proposed GA Improvement 

E-n22-k4 375 375 0 
E-n23-k3 569 569 0 
E-n30-k3 534 534 0 
E-n33-k4 839 837 0.24 

 

From Improvement in Table 4.6, it is known that the proposed GA is effective in 

solving VRPs especially for the problem with a large number of customers. The 

proposed GA achieves or outperforms the best known solutions. For E-n33-k4 

with 32 customers and 4 vehicles, the total traveled distance of the proposed GA is 

0.24% shorter than the best known solution. The proposed GA does solve not only 

the VRP with heterogeneous vehicles from multiple depots, allowing multiple 

visits to customers, but also the classical VRP with a single depot. Route of all 

vehicles in the benchmark problems are reported in Table 4.7 for the archival 

purpose.  
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Table 4.7  Vehicle routes of the benchmark problems from the proposed GA 
 

Problem Vehicle routes 

E-n22-k4 

*D - *C17 (1000) - C20 (1800) - C18 (900) - C15 (900) - C12 (1300) – D 

D - C6 (400) - C1 (1100) - C2 (700) - C5 (2100) - C7 (800) - C9 (500) - D 

D - C10 (600) - C8 (100) - C3 (800) - C4 (1400) - C11 (1200) - C13 (1300) - D 

D - C14 (300) - C21 (700) - C19 (2500) - C16 (2100) - D 

E-n23-k3 

D - C12 (300) - C11 (225) - C6 (175) - C1 (125) - C2 (84) - C3 (60) - C16 (100) -  

C15 (150) - C14 (500) - C17 (250) - C22 (75) - C20 (500) - C19 (600) - C18 (120) - D 

D - C10 (4100) - C13 (250) - D 

D - C7 (350) - C9 (1100) - C8 (150) - C5 (300) - C4 (500) - C21 (175) - D 

E-n30-k3 

D - C19 (400) - C15 (550) - C16 (150) - C13 (150) - C7 (150) - C17 (100) - C9 (300) - 

C14 (150) - C8 (450) - C12 (125) - C11 (950) - C10 (100) - C23 (300) - C18 (150) - D 

D - C21 (1500) - C6 (150) - C24 (500) - C25 (800) - C29 (1000) - C27 (100) -  

C28 (150) - C26 (300) - D 

D - C22 (100) - C2 (3100) - C5 (200) - C1 (300) - C4 (100) - C3 (125) - C20 (300) -D 

E-n33-k4 

D - C13 (250) - C17 (550) - C25 (1400) - C24 (750) - C23 (700) - C20 (400) -  

C22 (1300) - C21 (300) - C19 (200) -C18 (650) - C10 (750) - C3 (400) -D 

D - C2 (400) - C12 (150) - C11 (1500) - C32 (1100) - C8 (900) - C9 (600) - C7 (2000) 

- C6 (80) - C5 (40) - C4 (1200) - D 

D - C30 (2500) - C14 (1600) - C31 (1700) - D 

D - C1 (700) - C15 (450) - C26 (4000) - C27 (600) - C28 (1000) - C16 (700) -  

C29 (500) - D 

*D stands for the depot in the problem. 
*C17 (1000) stands for customer 17 and its demand, 1000. 
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4.3 Optimization of process parameters in the proposed GA using Taguchi 

method 

 

Based on the preliminary tests in Sections 4.1 and 4.2, four process parameters are 

identified as important design factors for the performance of the proposed GA; 

population size, crossover rate, improvement interval, and mutation policy. For 

each process parameter design factor, based on the related research, three possible 

levels of the process parameters are considered: (100, 150, 200) for the population 

size, (0.6, 0.7, 0.8) for the crossover rate, (50, 75, 100) for the improvement 

interval, and (MP 1, MP 2, MP 3) for the mutation policy. In MP 1, mutation rate 

is fixed at 0.05. In MP 2, mutation rate linearly increases of the mutation self-

adapting as described in Subsections 3.2.5, 3.2.6 and 3.2.7. MP 3 uses logarithmic 

increase of the mutation rate. The logarithmic increase of MP 3 instead of linear 

increase in MP 2 (possible mutation rates are 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 

0.65 and 0.75) can be calculated as  

 

An = 0.05 + ln(1+0.15n), 

 

where n= {1, 2, …, 8} (possible mutation rate can be 0.05, 0.19, 0.31, 0.42, 0.52, 

0.61, 0.69 and 0.77). Therefore, the minimum and the maximum of the mutation 

rate in MP 3 are 0.05 and 0.77 which are close to ones of the MP 2. Figure 4.5 

shows mutation rates over 8 improvement intervals for MP 1, MP 2 and MP 3. 
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Figure 4.5 The mutation rates over 8 improvement intervals of MP 1, MP 2 
and MP 3 

 

 

Table 4.8 presents four process parameters with three levels in the proposed GA. 

To conduct the full factorial experiment with all factors, 34 (or 81) experiments are 

necessary to determine the optimal process parameters. However, Taguchi method 

only requires 9 runs to optimize the process parameters when L9 orthogonal array 

is used. The following paragraphs explain how to optimize the process parameters 

for the proposed GA using Taguchi method. 

  

Four factors with three-levels per factor are summarized in Table 4.8. To obtain 

the optimal process parameters, L9 (34) orthogonal array has been chosen. 

 



 
62

Table 4.8  Four factors with three levels per factor 
 

Level 

Process parameter 1 2 3 

A (Population size) 100 150 200 

B (Crossover rate) 0.6 0.7 0.8 

C (Improvement interval) 50 75 100 

D (Mutation policy) *MP 1 MP 2 MP 3 
*MP: Mutation policy. 

 

Each row in Table 4.9 shows 9 experiments with process parameters A, B, C and 

D in the corresponding levels. To account for the characteristics of stochastic 

disturbance in the proposed GA, each experiment has been tested 40 times. The 

noise factors can be considered various sizes and structures of VRPs. Gi is 

calculated as  

Experimented solution – Best known solution 
Gi  = 

Best known solution 
, 

, 

where i = {1, 2, …, 40}. The value of Gi stands for the relative gap between the 

experimented solution and the best known solution. For example, if the 

experimented solution of the total traveled distance in run 1 is 340,  

 

,013.0
375

375340G1 =
−

=  

where the best known solution of E-n22-k4 problem is 375.  
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Table 4.9  SNR values of the L9 experiments 
 

Run A B C D E-n22-k4 E-n23-k3 E-n30-k3 E-n33-k4 SNR 

1 1 1 1 1 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 26.15

2 1 2 2 2 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 27.55

3 1 3 3 3 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 26.54

4 2 1 2 3 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 27.82

5 2 2 3 1 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 29.64

6 2 3 1 2 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 29.65

7 3 1 3 2 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 32.20

8 3 2 1 3 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 30.21

9 3 3 2 1 G1,…,G10 G11,…,G20 G21,…,G30 G31,…,G40 29.58
 

Since the smaller Gi is more desirable, the smaller-the-better SNR calculation has 

been used as 

⎟
⎠

⎞
⎜
⎝

⎛
−= ∑

=

n

1i

2
iG

n
1log10SNR , 

where n = 40. The SNR values of process parameter A are calculated as  

321A SNRSNRSNRSNR
1

++= , 

654A SNRSNRSNRSNR
2

++= , 

987A SNRSNRSNRSNR
3

++= , 

where SNRi represents the SNR value of the ith run and Ai denotes the level i of 

process parameter A.   
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The optimal levels of process parameter A, B, C and D are the level with the 

largest SNR value, and the calculated and are 

shown in Table 4.10. From Table 4.10, the optimal level of process parameter A is 

the third level, the optimal level of process parameter B is the second level, the 

optimal level of process parameter C is the third level, and the optimal level of 

process parameter D is the second level. SNR values at optimal level for each 

process parameters are in bold. According to Table 4.8, the optimal population size 

is 200, the optimal crossover rate is 0.7, the optimal termination condition is 75, 

and the optimal mutation policy is MP 2 for the proposed GA in solving the VRPs. 

From the percentage contribution of each parameter in Table 4.10, process 

parameter A impacts 77% and process parameter D influences 15% on the 

performance of the proposed GA. In other words, the large size of the population 

and the mutation policy of linear increase in mutation rate dominate other process 

parameters on the performance of the proposed GA.  

,SNR
iA ,SNR

iB iCSNR
iDSNR

  

Table 4.10  SNR values of the process parameters 
 

 Process parameter 

Level A B C D 
1 80.24 86.17 86.01 85.37 
2 87.12 87.40 84.94 89.40 
3 91.98 85.77 88.38 84.56 

Percentage 
contribution 77 2 7 15 

Note: Bold typeface represents the optimal values in each column of parameters. 
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The process parameters optimized by the Taguchi method are robust, so the signal 

or performance measure always centralizes to the optimal expected values, and are 

less affected by noise. After the optimal process parameters suggested by the 

Taguchi method were used in the examples of VRPs, the search ability of the 

proposed GA has been improved and the solution of the proposed GA has been 

well achieved. 

 

4.4 A real-life scale VRP  

 

In this section, a real-life scale VRP (RLS_VRP) with heterogeneous vehicles 

from multiple depots, allowing multiple visits is presented and solved by the 

proposed GA using optimized process parameters by Taguchi method in Section 

4.3. The RLS_VRP has 35 US cities (customers), 3 depots and 9 heterogeneous 

vehicles (3 vehicles in each depot). This problem demonstrates a didactic 

illustration of the characteristics and the originality of the proposed GA so that the 

readers catch its distinctive flavor and understand its potential. Furthermore, the 

distances among all cities are the real driving distances on road in stead of the 

Euclidean metric. 

 

4.4.1 Problem description 
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38 nodes of RLS_VRP are illustrated in Figure 4.6. In Figure 4.6, the circled cities 

are 35 retailer cities and the boxed ones are 3 warehouse cities; Denver, Chicago 

and Atlanta. The all distances among the cities are referred from 

http://www.convertit.com/Go/ConvertIt/Calculators/Geography/Driving_Distance

_Calc.ASP, which shows approximation of driving distances. There are three 

vehicles in each warehouse city. The capacities of vehicles in each warehouse city 

are given in Table 4.11. The demands of the retailer cities are given in Table 4.12.  

 

 

: Retailer city 
: Warehouse city 

Figure 4.6  The problem of 35 US cities and 3 depots 
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Table 4.11  Vehicle capacities in each warehouse city 
 

Vehicle 
Warehouse city 

Identification Capacity 
V11 1200 
V12 1800 Denver 
V13 2500 
V21 1200 
V22 1800 Chicago 
V23 2500 
V31 1200 
V32 1800 Atlanta 
V33 2500 

 

Table 4.12  Demands of the retailer cities 
 

No. City Demand No. City Demand 
1 Boise 140 19 Milwaukee 550 
2 Boston 100 20 Minneapolis 720 
3 Charlotte 180 21 Nashville 780 
4 Columbia 620 22 New Orleans 240 
5 Columbus 900 23 New York 150 
6 Dallas 310 24 Oklahoma City 180 
7 Des Moines 990 25 Philadelphia 650 
8 Detroit 110 26 Phoenix 240 
9 Hartford 140 27 Portland, OR 310 
10 Houston 190 28 Reno 450 
11 Indianapolis 980 29 St. Louis 350 
12 Jacksonville 210 30 Salt Lake City 160 
13 Kansas City 250 31 San Antonio 170 
14 Las Vegas 310 32 San Diego 120 
15 Los Angeles 310 33 San Francisco 200 
16 Memphis 880 34 Seattle 240 
17 Louisville 170 35 Washington, D. C. 310 
18 Miami 650    
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4.4.2 The results of the implementation 

 

The results of the proposed GA for RLS_VRP with one and two allowed visits are 

shown in Table 4.13. Note that routes with two allowed visits are better than ones 

with one visit. The vehicle routes with two allowed visits are given in Table 4.14. 

Two visits to customer 11 in bold by vehicles V22 and V33 reduce the total traveled 

distance in the result. All other customer’s demand are satisfied only with one visit 

in Table 4.14. 

 

Table 4.13  Results of one allowed visit and two allowed visits from the 
proposed GA 
 

Allowed visits  
One Two 

Total distance 17950 miles 17710 miles 
 

Table 4.14  Vehicle routes with two allowed visits 
 

Warehouse city  Vehicle routes 

Denver 
V11:  *D - *14 - 15 - 32 - 26 - D 
V12:  D - 20 - 7 - D  
V13:  D - 28 - 33 - 27 - 34 - 1 - 30 - D 

Chicago 
V21:  D - 19 - D 
V22:  D - 22 - 10 - 31 - 6 - 24 - 13 -11(420) - D 
V23:  D - 29 - 17 - 21 - 16 - 8 - D 

Atlanta 
V31:  D - 4 - D 
V32:  D - 12 - 18 - 35 - 3 - D 
V33:  D - 25 - 9 - 2 - 23 - 5 - 11(560) - D 

*D stands for each warehouse city of the left column in the table. 
*14 stands for the number of the retailer city from Figure 4.12. 
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The variation of the best solution during 1776 generations by the proposed GA is 

shown in Figure 4.7. The graph shows the convergence of the best solution over 

the generation. After 976th generation, the best solution of the problem is finally 

obtained. After additional 800 generation based on mutation policy 2, the proposed 

GA is terminated since is concluded no improvement of the best solution. 
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Figure 4.7 The variation of the best solution 
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Chapter 5. Conclusions and Future research  

 

The objective of this thesis described in Section 1.1 has been successfully achieved.  

A generalized VRP with heterogeneous vehicles from multiple depots, allowing 

multiple visits has been identified by relaxing from the classical VRPs the 

constraints of the number of vehicles, the number of depots, and the number of 

visits allowed to each customer.   

 

The identified VRP has been modeled into a MIP model and tested to solve a small 

problem.  Due to the memory limitation of branch-and-bound algorithm in CPLEX, 

only 6-customer 2-depot problem could be optimally solved.  As the motivation of 

this thesis conjectures, it has been identified that the introduction of multiple visits 

to each customer leads to the reduction of delivery cost. 

 

A GA to effectively and efficiently solve the medium or large VRPs with 

heterogeneous vehicles from multiple depots, allowing multiple visits has been 

developed and validated successfully.  The proposed algorithm has been produced 

the solutions which are equal to or better than the best known solutions for the 

benchmark VRPs.  The proposed algorithm has been executed with the restriction 

of one depot, one allowed visit and heterogeneous vehicles even if it can generate 

better routes. 
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Taguchi robust design method has been introduced and applied in optimizing the 

process parameters of the proposed GA.  Using the optimized parameters, the 

proposed GA shows the robust performance regardless of the size or structure of 

the problems.  The proposed algorithm has effectively solved the test problem with 

35 US cities and 3 depots, allowing the multiple visits and heterogeneous vehicles. 

 

A new mutation policy has been developed to the proposed GA.  The existing GA 

implementations use the fixed mutation rate.  This thesis proposed the idea of self-

adapting mutation rate, which enables dynamic speeds of evolutions in nature.  

The proposed mutation policy has been proved effective from the Taguchi method 

analysis and has generated consistently good solutions. 

 

As for future research, it may be useful to investigate the issue where there is 

restriction on the driving distance of vehicles available at each depot. The problem 

where the customers have different time windows as their requirements for 

delivered goods may also be worth considering. Also, future research will be 

conducted to improve the proposed algorithm. Additional improvements might lie 

in the combination of various selection and population replacement schemes and 

new fitness models. Applications of the approach to related problems will be 

explored as well. 
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