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We have expanded on the results of an earlier paper [J. Chern. Phys. 72, 221 (1980)] which deals with a 
method for determining the response of a static, partially ordered ensemble of molecules to various types of 
electromagnetic probes. In this paper we consider types of spectroscopy whose response depends on the 
location of two vectors in an axis system fixed with respect to the molecule. Examples of such spectroscopies 
discussed in detail include fluorescence polarization, photoselection linear dichroism, Raman spectroscopy, 
and two-photon absorption. We outline the kinds of structural information available from polarization 
experiments on partially ordered ensembles. 

I. INTRODUCTION 

Spectroscopic studies on oriented systems provide 
important sources of structural information in chemical 
and biological systems. The problem that we undertake 
is how to extract structural information from an ob­
served response in a partially ordered ensemble. In 
many cases, the molecules that comprise the ensemble 
are spectroscopically identical and noninteracting. The 
observed response is, therefore, a superposition of the 
responses for the individual molecules. The superpo­
sition can be calculated by averaging a response func­
tion over an orientational distribution function. In this 
paper, we will be concerned with only the static regions 
in which the molecular motion is negligible. The ori­
entational averaging will then be done using a distribu­
tion function that is independent of time. 

In an earlier paper1 (hereafter referred to as paper I) 
we developed much of the theory involved in calculating 
spectroscopic properties of partially ordered ensembles, 
and we applied the theory to one-vector problems. One­
vector problems are spectroscopic calculations in which 
the response function depends on the orientation of only 
one vector in the molecular axis system -i. e., one that 
is fixed with respect to the molecule. An example of a 
one-vector problem is electron paramagnetic resonance 
(EPR), where the signal depends only on the orientation 
of the Zeeman field in the molecular axis system. In 
one-vector problems, the observed response can be 
written as 

T = fa' de f' d¢D(e, ¢, to)I(e, ¢)ded¢ , 

where [(8, ¢) is the response when the vector of interest 
has spherical angles e and ¢ in the molecular axis sys­
tem, D(e, ¢, to) is the one-vector density of states func­
tion which gives the probability that the vector of inter­
est has spherical angles e and ¢ in the molecular axis 
system, and to is a set of parameters that describe the 
partial ordering. The chief advantage afforded by the 
use of Eq. (1) in paper I lies in a formalism, developed 
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earlier,2 for calculating one -vector density of states 
functions from arbitrary mOdels of partially ordered 
ensembles. Paper I and Ref. 2 describe the details of 
how to calculate one-vector density of states functions. 
Frank et at. 3 and Nairn et al. 4 have applied the one­
vector density of states formalism to obtain structural 
information in photosynthetic systems from EPR3 and lin­
ear dichroism4 experiments. 

The response functions for many spectroscopic prop­
erties are not adequately described by the location of 
one vector in the molecular axis system, but depend on 
the location of two vectors in the molecular axis system. 
Examples of such spectroscopies are fluorescence polar­
ization, photoselection linear dichroism, Raman spec­
troscopy, and two-photon absorption. Although the den­
sity of states approach was first used for one-vector 
problems, it can be extended to include two-vector prob­
lems; this extension is advantageous because it retains 
many favorable aspects of the one-vector density of 
states techniques. 1-4 

We begin with two unit vectors i\ and V2 in the labora­
tory axis system which are perpendicular to each other 
and which define directions of interest. For example, 
in a fluorescence polarization experiment, V1 could be 
the polarization direction of the exciting light and V2 
could be the polarization direction of the detected fluo­
rescence. We now introduce the two-vector density of 
states function p(e, ¢, w, to) which gives the probability 
that the location of V2 in the molecular axis system 
(Note: The molecular axis system is equivalent to the 
intermediate axis system of Paper I) is defined by w 

when the spherical angles of V1 in the molecular axis 
system are e and cP (see Fig. 1.) The observed re­
sponse will then be 

(2) I= f' dw f' d¢ f de [(e, cP, w)p(e, cP, w, to) , 

where [(e, ¢, w) is the response when V1 and V2 are de­
fined bye, cP, and w in the molecular axis system. As 
will be shown in Sec. II, p(e, cP, w, to) can be derived in 
a manner that is analogous to the derivation of D(e, cP, to) 
in Ref. 2. 

Evaluation of p(e, cP, w, to) and use of Eq. (2) is suf-
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FIG. 1. Definition of the angles 6, cp, and w in the molecular 
axis system. 6 and cp are the tradiational spherical angles for 
the vector vI; 6 is the polar angle and cp is the azimuthal angle. 
w is the angle between v~ ahd an arbitrary (but fixed) vector d 
in the plane perpendicular to v I . 

ficient for analyzing any two-vector problems We will 
consider several examples having the same type of re­
sponse function, 

(3) 

where T is a constant tensor in the molecular axis sys­
tem. We define L. as the average of a response func­
tion such as given in Eq. (3). Structural information is 
obtained by comparing l;. to ~I' where ~I is the average 
of the response function 

(4) 

Because Eq. (4) is independent of w, calculation of r:. is 
a one-vector problem, and it is evaluated using Eq. (1). 
Spectroscopies having these response functions include 
fluorescence polarization, photoselection linear di­
chrOism, Raman spectroscopy, and two-photon absorption 

II. EVALUATION OF p(w,e,et>,.6.) 

We follow the same procedure used in Ref. 2, where 
we began with a set of n rotations Rl (al) ••• Rn(an) and 
n weighting functions gl(a l)'" gn(an) that generate the 
partially ordered ensemble. The partially ordered en­
semble can be thought of as a set of cubes in which the 
unit vectors in the molecular axis system (X', y', z' ) 
lie along the joined edges of the cube. To generate an 
ensemble by a set of rotations, we begin by placing a 
cube at the origin of the laboratory axis system (with 
x',j', and £' coincident with the laboratory axis system 
unit vectors x, y, and z)' When this cube is rotated by 

n rotations [Rl(al)'" Rn(an)] in the laboratory frame, 
it will become.a member of the ensemble. Further, 
more, the probability that the angular variables are a 10 

a2, ••• , an is proportional to the product of the weighting 
functions. 

The average intensity for a two-vector problem can be 
written directly as an integral of the variables a10 ••• , 

an 

(5) 

where N is a normalization constant, I[v~(a1o ••• , an), 
v~(a1o ••• , an)] is the two-vector response function, and 
v~ and v~ are the two vectors of interest in the molecular 
axis system. From Ref. 2, the two vectors are 

~~ = Rl(a l)'" Rn(an)~l , (6) 

v~ = Rl (Il!l)" • Rn(an)v2 , (7) 

where ~l and V2 are the two vectors in the laboratory 
axis system. 

The two-vector density of states function P(9, et>, w, .6.) 
describes the probability as a function of .6. that v~ has 
spherical angles 9 and et>, and v~ is described by the 
angle w defined in Fig. 1; in other words, the probabil­
ity that 

. (coset> Sin9) 
v~ = sinet> sin9 

cos9 

(8) 

and 

(

cosrp cos9 COSW + sinrp Sinw) 

v~ = sincp cos8 COSW - coset> sinw . 

- sin9cosw 

(9) 

To evaluate P(9, rp, w, .6.), we perform the transformation 

(a1o ••• , an)-(rp, V10 Vn-3, 9,w) (10) 

under the cons[raims 

v{x = sin9 cosrp, v{y = sin9 sinrp, v{. = cos9 , 

v~ =cosrp cos9 cosw +sinrp sinw, (11) 

V~y = sinrp cos9 cosw - coscj) sinw, v~. = - sin9 cosw , 

where V10 ••• , V n-3 are dummy variables that will be in­
tegrated out in the final result. 

The n-dimensional coordinate transformation is done 
following the approach of Ref. 2. The details are pre­
sented in the Appendix and the result for the two-vector 
density of states function is 

(12) 
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where i2, i3, andi4 are defined in the Appendix. This 
equation is an extension of Eq. (31) in Ref. 2 for the one 
vector density of states function. We note that if 
gl(al ) = 1, we have an axially symmetric distribution; 
i.e., p(O, cp, w, A) is independent of cp. If we have a 
randomly oriented system, it can be shown that 
p(O, cp, w, A) =constxsinO. 

When the partially ordered ensemble can be generated 
with three rotations, there is no need for the dummy 
variables Vl, ••• , V n-3 in Eq. (A3) of the Appendix, and 
hence Eq. (12) will not involve any integration. In such 
a case, Eq. (12) can be shown to simplify to 

p(O, cp, w, A) = sinO G[al (0, cp, w), a2(O, w), a3(O, w)], (13) 

where G(al1 a2, ( 3) is the product of the weighting func­
tions for the three rotations. The two-vector density 
of states is thus determined by finding the functional 
form of al(O, cp, w), a2(O, w), and a3(O, w). These func­
tional forms for all possible three -rotation schemes and 
combinations of Vl and V2 are listed in Table 1. We do 
not include al(O, cp, w), and therefore Table I is restricted 
to axially symmetric two-vector densities of states. 

III. AN EXAMPLE-FLUORESCENCE POLARIZATION 

To illustrate the density of states approach to analysis 
of two-vector problems, we will work through a hypo­
thetical example. The example is a fluorescence po-
1arization study of a fluorophore attached to a macro­
molecular structure which can be oriented in a stretched 
film. This example is shown in Fig. 2 with the labora­
tory z axis as the stretch direction. 

z 

Zl 

~-+---+-+--x 

y 

FILM 

FIG. 2. Orientation of macromolecular structure in a stretched 
film. xy z define the laboratory axis system, Zl defines the 
symmetry axis of the macromolecular structure, and a2 is the 
angle between Zl and the stretch direction, z. 

The first step for analysis is to construct a model for 
the partially ordered ensemble. That is, we seek a set 
of n rotations [R l (al) ••• Rn(an )] and weighting function 
G(al , a2, ••• , an) that will generate the ensemble (see 
Sec. II). If we take the z axis of the molecular axis 
system to be the axis of symmetry for the macromo­
lecular structure, the partially ordered ensemble can 
be generated by the following three rotations: (1) A 
free rotation of al about the laboratory z axis; (2) a 
weighted rotation of a2 about the laboratory y axis (this 
rotation is weighted by the probability that the sym­
metry axis tilts by a2 from the stretch direction); and 
(3) a free rotation of a3 about the laboratory z axis. 

TABLE I. The functional forms of a2 (B, w) and a3 (II, w) in Eq. (13). When 6 ± appears in an equation for 
a2 (II, w) or a3 (II, w), both terms must be included; i. e., P (B, w) ~ sinll {G [a2 (II, w), a; (B, w)] + G [!l!2 (II, w), 

!l!s (B, w)J). 

RS" v! V2 a2(II,w) a3 (O,W)b 

ZYZ (cos1/!, sin1/!, 0) (0, 0, 1) cos-! (sinO cosw) 1/! - cos-! (± cosO/sin(2) 

ZYZ (cos1/!, 0, sin1/!) (0, I, 0) cos-! (cos II sin1/! ± cos1/! sinB sinw) sin-! (sinll cosw/sin(2) 

ZYZ (0, cos1/!, sin1/!) (I, 0, 0) cos-! (cosOsin1/! ± cos1/! sinll sinw) cos-! (sinO cosw/sin!l!2) 

ZYZ (0, 0, 1) (cos1/!, sin1/!, 0) B 1/!±w 

ZYZ (0, I, 0) (cos1/!, 0, sin1/!) cos-! [sinOsin(1/!± w)] sin-! (cosll/sina2) 

ZYZ (1, 0, 0) (0, cos1/!, sin1/!) cos-! [sin II sin(1/!± w)] cos-! (cosO/sina2) 

ZXy (cos1/!, sin1/!, 0) (0, 0, 1) sin-! (cosO sin1/!± cos1/! sinll sinw) cos-! (sinO cosw/ cos(2) 

ZXy (cos1/!, 0, sin1/!) (0, I, 0) sin-! (sinO cosw) 1/! - sin-! (± cosO/cos(2) 

ZXy (0, cosl/!, sin1/!) (I, 0, 0) sin-! (cos II cosl/! ± sinl/! sin6 sinw) sin-! (sinll cosw/cos(2) 

ZXy (0, 0, 1) (cos1/!, sinl/!, 0) sin-! [sinO sin(l/!± w)] cos-! (cosll/cosa2) 

ZXy (0, I, 0) (cos1/!, 0, sinl/!) '!!..-6 
2 

'!!.. -l/!±w 
2 

ZXY (1, 0, 0) (0, cos1/!, sinl/!) sin-! [sin6cos(l/!± w)] sin-! (cosB/cosl3) 

aRotation scheme or the order and axes of three rotations required to generate the ensemble. 
bUse these formulas if the denominators are not equal to zero. 
cUse these formulas if the denominators in the previous column equal zero. 

a3 (O,w)C 

Od 

7T 
z-w 

w 

1/!±w 

Od 

Od 

w 

Od 

7T 
Z-w 

Od 

'!!..-1/!±w 
2 

Od 

dIn these cases, any value of a3 can be used because for any physically realizable model G (a2' (3) will be inde­
pendent of a3 when the denominators in the previous column equal zero. 
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For the weighting function of the second rotation, we 
choose a Gaussian distribution 

(14) 

where I:t. is related to the width of the Gaussian. We 
note that because the first rotation is a free rotation, 
the density of states functions will all be axially sym­
metric. We will restrict our consideration in the rest 
of this paper to the axially symmetric case. This re­
striction is not so limiting as it might seem, because the 
density of states is axially symmetric in some systems 
even when the distribution function in the laboratory ref­
erence frame is not axially symmetric. 4 

To calculate the density of states function, we need to 
know the two vectors V1 and V2 in the laboratory axis 
system. Fluorescence polarization experiments are 
typically done with the configuration shown in Fig. 3. 
A sample is excited with light polarized in the z direc­
tion and propagating along the y axis and fluores­
cence is detected along the x axiS; the fluorescence 
intensities F" and F. y are measured with an analyzing 
polarizer oriented either along the z axis or the y axis, 
respectively. We take V1 to be the polarization direction 
of the exciting light and V2 to be the polarization direc­
tion of the detected fluorescence. Thus for F .. and F ~, 
V1 is along the laboratory z axis while V2 is along either 
the laboratory z or y axis. It is also possible to excite 
with a different polarization, such as along the labora­
tory x axis (see Fig. 4), and correspondingly measure 
Fu and F:r;y. (Here V1 =x and V2 =z or 9.) In a randomly 
distributed sample, Fn and F:r;y do not provide any new 
information because F ~ =F:r;y =Fn. In an ordered sam­
pIe, however, the z direction and the x direction will 
not be equivalent (unless the y axis is an axis of sym­
metry in the laboratory axis system); F~, Fu , and F:r;y 
will all be different and, in prinCiple, will provide new 
information. 

Having established a rotation scheme and decided on 
V1 and V2, we can now calculate the density of states 
function. We will need one density of states function for 
each quantity; i. e., one density of states function for 
each of Fe., F.y, Fu , F:r;y. We begin with F ... Because 

sample 

\ 

y 

detect 

~ Fzz.l zz 

~ Fzy.lzy 

FIG. 3. Experimental set-up for a polarization experiment 
with exciting light polarized along the ill axis. The axis sys­
tem shown is the laboratory axis system. 

z 

~ Fxz.l xz 

detect 

x 

~ Fxy.lxy 

y/, 
excite 

FIG. 4. Experimental set-up for a polarization experiment 
with exciting light polarized along the x axis. The axis sys­
tem shown is the laboratory axis system. 

V1 =1)2, we need only a one-vector density of states func­
tion. The reader is referred to paper I for a detailed 
explanation of how to calculate one-vector density of 
states functions. We call this denSity of states function 
Da(B, I:t.). F.y, Fn , and F:r;y all need two-vector density 
of states functions. Because our hypothetical system 
can be generated with three rotations, the appropriate 
two-vector denSity of states functions are easily formed 
by proper use of Eq. (13) and Table I. We call these 
denSity of states functions P ~(B, w, I:t.), P:r;.(B, w, I:t.), and 
P:r;y(B, W, I:t.). A plot of Pu(B, w, I:t.) for I:t. =0.5 is shown in 
Fig. 5. 

The next step is to find the response function for 
fluorescence polarization. In the dipole apprOXimation, 
the response function in a static noninteracting ensemble 
of molecules is 

(15) 

where ii1 = (xt.Yt. Zl) is a unit vector along the absorption 
dipole moment, il2=(x2,Y2,Z2) is a unit vector along the 

P" (8,w,6) 

6 ~ 0.5 radians 

ir/2 
8 

FIG. 5. Plot of two-vector density of states P"" (/I, w, I:t.) for I:t. 
=0.5 rad. 
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emission dipole moment, v~ is the polarization direc­
tion of the exciting light, v~ is the polarization direction 
of the detected fluorescence, and K2 is a constant. 
Equation (15) is identical to Eq. (3) [or Eq. (4) when 
I'l l = V2] when T is given by the dyad 

T=K~2:~1=K(::)(X1Y1Zl)=(:::: ~::: ::::). 

Z2 X1 ZZ Y1ZZ Zl Z 2 

(16) 

I 

where 

(0/ 2 

(3=)0 sin4eD .. (e, .:1) de , 

and D(e, .:1) is normalized such that 

(r/z 
J
o 

D •• (e, .:1) de = 1 . 

To calculate F •• , we substitute Eq. (4) with v~ given 
by Eq. (8) into Eq. (1) using D .. (e,.:1). For the moment 
we will retain the general tensor elements of T (i. e., 
Tn, Tx;y, etc.) rather than the specific tensor elements 
of Eq. (16). The partial ordering in our example is in­
duced by exerting a mechanical stretch on the film. Be­
cause the sign of the direction of this force is arbitrary, 
D •• (e,.:1) is symmetric about 7T/2; that is, D .. (e,.:1) 
=D .. (7T -e,.:1). utilizing this symmetry property, ex­
panding Eq. (1) and evaluating the integral over cf> results 
in 

(17) 

(18) 

(19) 

(20) 

After incorporation of the elements of T from Eq. (16) into Eq. (17), we arrive at 

F •• = ~ [8z1 z~ +4a(zI +z~ -10ZI z~ +4Z1Z2 COs€) +(3(- 5ZI - 5z~ +35ziz~ - 20Z1Z2 coso 2 cos2 o 1)] , (21) 

where € is the angle between ~1 and ~2' F~, Fx;y, and Fu are calculated by inserting Eq. (3) with v~ and v~ given 
by Eqs. (8) and (9), respectively, into Eq. (2) using the appropriate density of states function. Expanding Eq. (2) 
and evaluating the integral over cf> yields 

11. =FIj =H4(T~. +T;.) + aIJ[4(T~y +T;' - T~. - T;.) - (T"y + T yx:)2 + (Tn - T w)2] +YiJ[4(Tn - T .. )2 +4(T w - T .,,)Z 

(22) 

where 

(23) 

(24) 

Pi/e, w,~) is normalized such that 

f
r/Z (r/Z 

o deJ
o 

dwPIJ(e,w,.:1}=l, (25) 

i =x or z, andj =y or z. Here a. y is given by Eq. (18) but a XY and au are given by 

(26) 

where Dxx(e,.:1) is the one-vector density of states function for a vector along the laboratory x axis. Inserting the 
tensor elements of Eq. (16) into Eq. (22) we obtain 

(27) 
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Fluorescence polarization data are generally in the 
form of ratios, to eliminate the experimental constant K. 
From the four quantities F .. , F.y , Y"y we can construct 
three ratios. For example, 

and P2 and P a are derived from PI by replacing F ~ by 
F Y. and F"y, respectively. In an ordered sample, one 
can measure Ph P2 , and Pa. In a random sample PI 
= P2 = P a = P, but it is worth measuring P, because it 
provides an independent measurement of the param­
eter t: (see below). We therefore find four measurable 
quantities Ph P2 , and P a from an ordered sample and 
P from a random sample as data to determine the four 
parameters Z1. 22, t:, and t:.. in Eqs. (21) and (27). In 
our hypothetical example, we will use the following data: 
P=0.14±0.02, P 1 =0.50±0.04, P 2 =-0.52±0.04, and 
Pa= -0.26±0.04. 

In a random sample (a = t, (3=ts, y=t, ~= Is), Eqs. 
(21) and (27) reduce to 

p=3cos2 t:-1 
coszt: +3 . 

From the data, we find t:=45.0o±1.5°. 

(28) 

In the ordered sample, we use Eqs. (18), (19), (23), 
(24), and (26) to calculate a, {3, a". = a"y, y~, y"y, y"., 
~"y, ~.y, ~U" for several values of t:..; in our example, we 
calculated these values for t:.. between 0 and 1 rad at 
increments of 0.05 rad. A Simple computer program is 
then written to enumerate through all possible values of 
Z1 and Z2 (Z1 and Z2 are between 0 and 1). For each set 
of Zl and Z2, the ratios Ph P2, P a are calculated for each 
value of t:.. considered. Any set of Z10 Z2, and t:.. where 
Ph P2 , and P 3 all fall within experimental error of mea­
sured ratios is an acceptable solution. The set of all 
solutions for Z10 22, and t:.. will define these values com­
plete with uncertainties. Carrying out this procedure 
for our hypothetical data results in 

Z1 =0.22±0.08 , 

Z2 =0. 70± O. 03 , 

t:..=0.35±0.10. 

(29) 

(30) 

(31) 

It is important to emphasize that we have measured t:.. 
in this example. That is, we did not need to know the 
distribution function to carry out the above analYSis; 
we needed only a model which enabled us to parametrize 
the distribution function with t:... 

IV. OTHER TYPES OF TWO-VECTOR 
SPECTROSCOPI ES 

A. Photoselection linear dichroism 

In a photoslection linear dichroism experiment, one 
excites a sample with polarized light and probes an in­
duced absorption change with light polarized either 
parallel or perpendicular to the exciting light.5 The re­
sponse function is 

(32) 

where 0.1 is the absorption dipole moment that is being 

excited by light polarized along v~ and ~2 is the absorp­
tion dipole moment that is being probed by light polar­
ized along v~. Because Eq. (32) is identical with the re­
sponse function for fluorescence polarization, the analy­
sis of photoselection linear dichroism data is identical 
to that of fluorescence polarization data. 

B. Raman spectroscopy 

Polarization experiments in Raman spectroscopy are 
done by exciting along the y axis with light polarized 
along the z or x axes and detecting scattered intensity 
along the x axis with an analyzing polarizer oriented 
along the z or y axeso Analogously to fluorescence po­
larization experiments, one can measure four quantities 
I •• , I.y, Iou, and I"y (see Figs. 3 and 4). Depolarization 
ratios for a Raman band are derivable from these four 
quantities 0 

The intensity scattered in the x direction is given by6 

1- (w _WO)4 J, (4' T 4')2 
- C 4 0 V2 0 , V1 , (33) 

where wand Wo are the scattered and incident frequen­
cies, c is the speed of light, 10 is the incident intensity, 
v~ and v~ are the polarization directions for the incident 
and scattered light, and T is the scattering tensor. The 
elements of the scattering tensor for a transition from 
vibronic state m to vibronic state n are 

where i andj can be x, y, or z; 27Tn is Planck's con­
stant and the sum is over vibronic states of the mole­
cule. Here, (Ml ),." (MJ)mT' etc., refer to the compo­
nents of the transition moments between vibronic levels 
and wTm and w'" are frequencies obtained from the energy 
differences of the vibronic states. 7 The four quantities 
I .. , I.y, Iou, and I"y can be found (with Tl/s as param­
eters) by use of Eqs. (17) or (22). For example, 1 .. =1., 
when D(e, A) is the one -vector density of states for a 
unit vector along the z axis, Iou = ~ when D(B, A) is the 
one -vector density of states for a unit vector along the 
x axis and p(e, w, t:..) is the two-vector density of states 
for a unit vector along the x axis and a unit vector 
along the z axis, and Similarly for I~ and Ixy. In this 
section, we will consider only symmetric scattering ten­
sors; it is then possible to find an axis system, the 
principal axis system, where iJ"", is diagonal with diag­
onal elements a", a y, and a.. Now, Eqs. (17) and (22) 
were derived by orientation averaging in a molecular 
axis system which in general is not the same as the 
principal axis systemo This approach is necessary be­
cause, even though the denSity of states is axially sym­
metric in some molecular axis system, it may not be 
axially symmetric in the principal axis system. 2 We 
can find I in the molecular axis system by 

(

a" 

T = R(e,~, \II) : 

o 

(35) 

o 
or 
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(36) 

where k=x, y, andz, andR(e,~,'It) is the Euler rota­
tion matrix with Euler angles e, ~, and 'It.8 Because both 
the principal axis system and the molecular axis sys­
tem are fixed with respect to the molecule, e, <Ii, and 'It 
are constants that are the same for every member of 
the ensemble. We now see that there are six param­
eters inherent in a Raman experiment; those six are the 
three principal components of the scattering tensor and 
the three Euler angles that relate the principal axis sys­
tem to the molecular axis system. 

In a partially ordered sample, one can measure the 
four quantities Ie., I.y, Iu , and I"y, from which can be 
constructed three depolarization ratios. These three 
ratios are all that is available to extract the six struc­
tural parameters mentioned above. Although the ratio 
of parameters to data points is unfavorable, in some 
cases a few of the parameters may be known. For exam­
ple, if the three Euler angles are known from other ex­
periments, one would have three measured quantities to 
determine the three prinCipal components of the scatter­
ing tensor and vice versa. 

In a .:andom sample I •• = 1" in Eq. (17) and Icy = Iu 
=I"y=hinEq. (22), witha=~, (3=!s, y=L and~=ts. 
Because I.y = Iu = I"y there is only one possible depolar­
ization ratio. The depolarization ratio is frequently re­
ported as 

(37) 

which, from Eqs. (17) and (22) for symmetric tensors is 
equal to 

p_ 6[.B'l+3(T~y+T~.+T;.)] 
- 45A2+7[B2+3(TZ + TZ +T2 )j' xy X6 Y6 

(38) 

where 

A = HT"" + Tyy + Tc.) (39) 

and 

B=H(T""-Tyy)2+(Tyy-T,.)2+(T,,,,-Tuf]. (40) 

A is equal to t times the trace of T; because the trace 
is invariant to rotation, A is also equal to Ha" + a y + a.). 
This quantity is known as the spherical part of the po­
larizability.6 In a similar fashion, the quantity C- = B2 
+3(T~y + T~. + Ti.) can be shown to be also invariant to 
rotations. In the principal axis system C- = 1/2[(ay - a.? 
+ (ay - a.)2 + (a. - a x)2]; this quantity is known as the 
anisotropy of the polarizability. 6 Equation (38) reduces 
to the classical result for the depolarization ratio 

(41) 

Most Raman depolarization measurements have been 
done on random samples, but for two reasons it is worth 
undertaking depolarization measurements on ordered 
samples: (1) It is not possible to obtain structural in­
formation (e. g., the Euler angles in Eqs. (35) and (36)) 
through measurements on a random sample; (2) if the 
Euler angles in Eqs. (35) and (36) are known, depolar-

ization measurements on a random sample yield only 
one ratio involving ax, ay, and a., while depolarization 
measurements on an ordered sample yields three ratios. 

C. Two-photon absorption 

Simultaneous absorption of two different photons is 
governed by the formula9 

I(w, e, cp)=81T3a2wIW2r(WI +W2)(V2· Smn • V1 )2 , (42) 

where a is the fine structure constant, WI and W2 are 
the frequencies of the two photons whose polarizations 
are VI and V2, r(w) is the absorption line shape function 
for the molecule, and Smn is the two -photon absorption 
tensor. The elements of Smn are 

(S/J)mn=L:(mlrjlk)(klr,ln) +(~lr,lk)<klrjln») • (43) 
k wm -WI wm -W2 

Here, F£wkm is the energy difference between the 1m) and 
Ik) states, and (m Irj Ik) is the ith coordinate of the 
transition moment. 

McClain and Harris9 have reviewed the theory of two­
photon absorption in random systems. The parameters 
that enter are the elements of the absorption tensor. 
They used group theoretical arguments to list the irre­
ducible tensor patterns of many types of molecules; 
these tensors contain from one to nine different elements. 
In a partially ordered sample, the elements of the irre­
ducible absorption tensor will still be parameters, and 
three new parameters will be the three Euler angles 
that relate the molecular axis system to the principal 
axis system of the irredUCible absorption tensor. Con­
ceptually, the type of information available in a two­
photon absorption experiment is similar to that available 
in a Raman experiment. 

v. DISCUSSION 

The chief result of this paper is the derivation of 
p(e, cp, w, 6.) in Eq. (12). This result is an extension 
of the density of states theory introduced in Ref. 2. The 
two-vector density of states theory retains most of the 
advantages of the one -vector density of states theory, 
and these advantages are discussed at length in paper I. 
Here, we will outline the major benefits afforded by 
adopting our approach to analyzing the results of spec­
troscopies governed by the response functions in Eqs. 
(3) and (4). 

Previous approaches to orientation averaging have in­
troduced a distribution function p'(e', cp', l/J') which gives 
the probability that a member of the ensemble is related 
to the laboratory axis system by the Euler angles e " 
</> " and l/J'. This distribution function is then expanded 
in terms of the Wigner rotation matrix elements9

,10 

p'(e',</>',l/J')= L: P'mnD:,.,(e',</>',l/J') , 
Imn 

(44) 

where P'mn are the lmnth moments of the distribution 
function defined by 

P'mn = 28l ~ 1 (2< II i 2

< D:"'(e', cp', l/J')p'(e', </>', l/J') 
1T Jo -1 0 

X dcp' dcose' dl/J' • (45) 
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When Eq. (44) is substituted into orientational averaging 
formulas with the response functions in Eqs. (3) and (4), 
the results are expressions that depend only on the 1 = 2, 
and 1 =4 moments, and the structural parameters in­
herent in the type of spectroscopy analyzed (e. g., for 
fluorescence polarization, the expressions depend on 
the 1 = 2 and 1 =4 moments, Zh Z2, and E). 

There are two basic problems with the Wigner ex­
pansion approach. 

(1) If one knows the spectroscopically inherent struc­
tural parameters, it is possible to probe the distribution 
function with an experiment on a partially ordered sam­
ple. In the Wigner expansion approach, this experiment 
can yield only the l = 2 and l =4 moments, and these mo­
ments may be of little value in describing the distribution 
function, especially if the expansion in Eq. (44) is slowly 
convergent. The best one can do is to construct a model 
for the system, calculate p'(e', cf/, 1/1'), and see if cal­
culated moments from Eq. (45) agree with the measured 
moments. However, no general method for constructing 
p'(e', cp', 1/1') from a model that involves a rotation scheme 
of four or more rotations has been described. 

(2) If one wishes to measure the spectroscopically 
inherent structural parameters, it is necessary to know 
the 1 = 2 and 1 = 4 moments, or at least to be able to 
place limits on the moments. Because P'mn are merely 
mathematical projections of the unknown distribution 
function on the Wigner rotation matrix elements, there 
is no justification for placing limits on the moments. 

The density of states approach overcomes these prob­
lems. One way to think of the difference between our 
approach and the Wigner expansion approach is that we 
represent the distribution function in terms of the order 
parameter ~ instead of the P 'mn moments. The major 
benefits afforded by adopting our approach are as follows: 

(1) If one uses known spectroscopically inherent struc­
tural parameters to probe the distribution function, one 
may obtain~. The ~ parameter in conjunction with the 
rotation scheme and weighting functions gives a complete 
definition of the distribution function. In fact, one could 
find all the P 'mn moments from ~ by an equation 

P'mn = f f f n:",,(e', cp', 1/I')F(e', cp', 1/1', ~)de' dcp' dl/l', (46) 

I 

APPENDIX 

where F(e', cp', I/I',~) is a distribution function which 
could be derived from p(e, cp, I/I,~) by converting from 
the molecular axis system to the laboratory axis system. 
Furthermore, each ~ is related to some physical prop­
erty of the ensemble and, as such, is a quantity of 
interest. 1 

(2) If one wishes to measure the spectroscopically in­
herent structural parameters, it is necessary to know; 
the magnitude of~. It is easier to estimate the mag­
nitude of ~ then to estimate the magnitude of the moments, 
because ~ may often be restricted from physical con­
siderations. 

(3) p(e, cp, w,~) is evaluated from a model for the sys­
tem which is defined by the rotations Rt(at)" • Rn(an) 
and the weighting .functions gl(a t )'" gn(an ). As such, 
it is straightforward to interpret data in light of a spe­
cific model. 

(4) The fact that we average orientations in a moleo­
ular axis system, instead of a laboratory axis system, 
sometimes makes our approach more efficient. For 
example, Ref. 4 gives an example of a system where 
the distribution function is axially symmetric in the mo­
lecular axis system but not in the laboratory axis system. 

Most experimental work involving two-vector problems 
has been done on random systems. Work on partially 
ordered systems has either resorted to the cumbersome 
expansion methodll

-
13 or been analyzed only qualitative­

ly.14 As a result, experimental studies of two-vector 
spectroscopies on partially ordered systems is probably 
an underexplored area. It can serve as a valuable probe 
to structural features such as the orientation of transi­
tion moments in the molecular axis system and the prin­
cipal axis system. In clOSing, we note that two-vector 
spectroscopies having response functions other than 
Eqs. (3) and (4) can still be analyzed by our approach, 
with Eq. (2) serving as a starting point for such ananalysis. 
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Application of the n-dimensional change of variable theorem to Eq. (5) yields 

(A1) 

where (aah ••• , an/acp,lI11 ••• , IIn-s, e, w) is the Jacobian of the coordinate transformation. By inspection we set 

p(e, cp, w,~) = ~ I ... I IT gj[aj(cp, 1110 ••• , IIn-3, e, w)] I acp aalt· •• , a. e I dll h ••• dlln-S • (A2) 
"1 "n-3 '1111 ,Vh ••• , Vn-S, ,w 

Following the approach of Ref. 2, we pick the laboratory z axis to be the axis of the first rotation [Rt(al)], and 
we use the following transformation 
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OIn- 1 = f2(1l1o •••• Iln-3, e, w) , 

OIn = f3(Il1. ••• , Iln-3, e, w) , 

where OIn-l and OIn are defined by solving the two equations 

(A3) 

cose = V~.(0I2' .•• , Cin ) , (A4) 

- sine COsw = V~.(0I2' .•. , OIn ) , (A5) 

for OIn and OIn- 1 and setting 012, ••• , 0in-2 equal to 1l1o ••• , Il n-3' 

As shown in Ref. 2, under the above transformation, 

011 = - ¢ + f4 (Il 10 ••• , Iln- 3 , e, w) , (A6) 

801
1 =-1 

8¢ , (A7) 

and 

801j =0 1 
8¢ ,i*. (AS) 

From Eqs. (A6), (A7), and (AS), the Jacobian simplifies to 

I c'J I = I 801n- 1 8Cin _ 801n-l 8Cin I 
8e 8w 8w 8e 

(A9) 

By differentiating both sides of Eqs. (A4) and (A5) with respect to both e and w, we get four equations in the four 
unknowns 801n_l/8e, 801n /8w, 801n_1/aw, 801n /8e. Solving these equations for the Jacobian yields 

1c'J 1= (AIO) 

I 
8v~.(0I2' .•• , OIn ) 8v~.(0I2' "', OIn) _ 8v~.(0I2' ..• , OIn ) 8v~.(0I2' "', OIn ) I ' 

801n-1 801n 801n 801n-l 

with 012, "', Oin replaced by their transformed variables 1l1o ••• , Iln-3, f2(1l1o ••• , Iln- 3 , e, w), andf3(1l1o ••• , Iln-3. e, w). 
Substitution into Eq. (A2) yields 

p(e ) = sin
2
e sinw f f [( )] [( )] , ¢, w, ~ N • • • gl - ¢ + f4 /.110 ••• , Iln-3, 8 ,w gon-l f2 1l1o ••• , Iln-3, 8, W 

"I "n-3 
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