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ABSTRACT 
Probability density functions (normal, lognormal, and 

three-parameter Weibull) were used to characterize 
strength data for three different types of metal-plate-
connected wood truss joints (web at the bottom chord, 
tension splice, and heel). Modulus of elasticity (MOE) of 
the lumber used to fabricate the joints was also 
characterized. A probability-plot technique, in conjunction 
with Kolmogorov-Smimov and chi-square statistics, was 
used to determine which distribution best fit the data. 
Lumber MOE was best described by a lognormal 
distribution. No single distributional form fit the strength 
data for all three joint types with equal accuracy. Lumber 
MOE and joint strength were unrelated. Strength data for 
the web at the bottom chord and heel joints were best 
described by normal distributions; however, none of the 
distributions considered fit the data for the tension splice 
joints. The probability-plot technique provided a better 
visual inspection of fit than did a density function 
superimposed over a histogram. Fitted distributions are 
easy to work with and can be used in reliability analyses to 
simulate strength values of joints. The results presented 
here are for particular joint types and plates and should not 
be extrapolated to other truss joints. 
KEYWORDS. Truss joints. Modulus of elasticity. Probability 
density function. Reliability analysis. Timber engineering. 
Wood engineering. Wood-connection strength. 

INTRODUCTION 

Wood has long been recognized as a material with 
significant variability in its structural properties 
(e.g., strength and stiffness), which can be 

characterized as random variables. In recent years, lumber 
material properties (modulus of elasticity, bending 
strength, compressive strength, and tensile strength) have 
been characterized by probability distributions 
(Galligan et al., 1986). Accurate probabilistic models for 
joint strength also are needed to accurately predict 
moments, axial forces, and shear forces for reliability 
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analyses of trusses. Indeed, it would be difficult to improve 
or even assess the safety and reliability of a structure 
without viable information (failure modes; strength and 
stiffness) on structural connections. 

The necessary information for the application of 
reliability-based design (RBD) to wood structures is 
currently being developed. In a recent study, Galligan et al. 
(1986) collected data on material properties of lumber from 
worldwide literature and statistically analyzed these data 
using two approaches. In the first approach, the data were 
fit by simple linear regression of strength on modulus of 
elasticity (MOE). In the second approach, they were 
characterized by probability distributions. The authors 
concluded that no single distributional form fits all 
mechanical properties with equal accuracy but that the 
three-parameter Weibull distribution dominates. Moreover, 
strength distributions were often positively skewed. 

Little information is available on probabilistic models 
for strength and stiffness of truss joints (Gupta, 1990). 
McLain (1986) has emphasized the need to develop 
probability distributions for strength of joints, pointing out 
that resistance of the whole joint is generally less variable 
than that of the joined members. He also stated that if 
moisture content is uniform, specific gravity low, 
installation practice constant, and the test procedure 
uniform, then strength distributions of joints would be 
symmetric with a coefficient of variation (CV) less than 
15%. Otherwise, the distribution would be skewed and the 
CV would increase. 

This article presents a portion of the results from 
ongoing research on probabilistic design of a roof system 
comprised of metal-plate-connected wood trusses. The first 
part of the research dealt with the experimental 
investigation of the strength and stiffness of three metal-
plate-connected wood truss joint types (Gupta and 
Gebremedhin, 1990). The second part, which is described 
in this article, focused on the development of probabilistic 
models for characterizing the strength of those three joint 
types. Specifically, the research described here 
characterized both the strength of the three types of metal-
plate-connected wood truss joints and the MOE of the 
lumber used to fabricate the joints by one of three 
probability density functions-normal, lognormal, or three-
parameter Weibull. 

The long-term goal of this research is to predict the 
reliability of a roof truss system under various loads. 
Before that can happen, however, the reliability of a single 
truss, and therefore the reliability of its members and 
connections, must be determined. 
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MATERIALS AND METHODS 
Truss joints were designed for a fink truss. The 38-x89-

mm (2-x4-in.) Southern Pine No. 2 KD 15 members were 
connected by 20-gauge punched metal plates supplied by 
Alpine Engineered Products, Inc. Two 76-xl27-mm 
(3-x5-in.) plates were used for each heel and web at the 
bottom chord joints, and two 76-xl02-cm (3-x4-in.) plates 
were used for the tension splice joints. All joints were 
fabricated by commercial truss fabricators. For a complete 
description of the joint fabrication, testing procedure, data-
acquisition system, determination of ultimate strength 
values, and failure modes, see Gupta and Gebremedhin 
(1990). Before fabricating the joints, 250 pieces of 
Southern Pine lumber used in joint fabrication [all 2.44 m 
(8 ft) long and 10% moisture content] were 
nondestructively tested for MOE by using static flatwise 
bending with a concentrated dead load at mid-span 
(clear span 1.83 m) (Gupta, 1990). 

PROCEDURE FOR CHARACTERIZING 
STRENGTH 

Strength data from 60 specimens of each of three joint 
types found in metal-plate-connected wood trusses were 
used to determine probability distributions for joint 
strength. These joints were: 1) web at the bottom chord 
joint (hereafter referred to as "web joint"); 2) tension splice 
joint (hereafter referred to as "tension joint"); and 3) heel 
joint. In addition, 250 MOE values, from lumber used in 
joint fabrication, were used to develop probability 
distributions for MOE. Least square regression analyses 
were used to determine the relationship between lumber 
MOE and strength. Probability density functions were 
fitted to joint-strength and MOE values to characterize the 
data. 

CHOOSING PROBABILITY DISTRIBUTIONS 

The three probability distributions most widely used to 
model wood strength properties (Galligan et al., 
1986)-normal, two-parameter lognormal, and three-
parameter Weibull-were considered in this study. The 
probability density function, fx(x), of each distribution is 
expressed as follows: 

Normal density function: 

fxW = 
ofhi 

2a2 (1) 

where \i is mean and a is standard deviation. 

Lognormal density function: 

(inx-X,)^ 

yx)- 1 
x|V2Jt" 

2|^ x>0 (2) 

where X is log mean and | is log standard deviation. 

Three-parameter Weibull density function: 

fx(x) = j ( ^ r ' e " ' " ' x > j . (3) 

where 

a = 

X = 

location parameter 
scale parameter 
shape parameter 
random variable (e.g., strength) 

The Statistical Analysis System (SAS, 1991a) software 
package was used to estimate the parameters for the normal 
and lognormal distributions (using the unbiased 
estimators). A computer program developed by Simon and 
Woeste (1980) was used to estimate the parameters for the 
three-parameter Weibull distribution. This program uses 
the method of maximum likelihood for parameter 
estimation. 

DETERMINING THE "BEST'' DISTRIBUTION 
To date, no standard and/or powerful procedure exists 

for determining the distribution with the "best fit". 
Traditionally, the Kolmogorov-Smimov (K-S) and chi-
square goodness-of-fit tests have been used for deciding 
among the normal, lognormal, and Weibull distributions. 
The use of Anderson-Darling and Shapiro-Wilk goodness-
of-fit tests have also been suggested, especially for Weibull 
distribution (Evans et al., 1989). Galligan et al. (1986) used 
a two-step procedure for selecting among these three 
distributions to model lumber strength properties; this 
procedure always selects a distribution for a particular 
strength property. Occasionally, there may not be a 
probability distribution that suitably describes the data, in 
which case a procedure other than that used by Galligan 
et al. (1986) needs to be followed to characterize the data. 

After the parameters for each distribution were 
estimated for each data set as previously described, we 
used the following procedure to select the distribution with 
the best fit: 

• The data and distributions (cumulative frequencies, 
or probabilities, p) were plotted on specified graph 
paper ("probability paper") constructed in association 
with each distribution. The m/(N+l) (the m̂^̂  value 
among the N observations, arranged in increasing 
order) plotting position of each data point was used 
to plot the cumulative probability. 

• The linearity of each probability plot was visually 
inspected to determine how well the data at the lower 
and upper tails of the distribution were characterized 
by that distribution. Emphasis was placed on the 
distribution's fit in the lower tail because the lower 
tail of the strength distribution is particularly 
important in structural reliability analyses. 

• The distribution that best fit the probability plot was 
selected. If none of the distributions fit, the original 
data were considered not characterized by any of the 
three distributions and so these data could be used for 
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Figure 1-Scattergrams relating modulus of elasticity of the lumber 
comprising the joint to the strength of the three types of joints 
studied (p » correlation coefficient). 

random sampling. If more than one distribution could 
possibly characterize the data, the K-S and chi-square 
tests were then used to determine the best-fitting 
distribution. 

Critical values for the normal and lognormal K-S tests 
were obtained from Law and Kelton (1991), whereas for 
the Weibull K-S test, critical values were obtained from 
Evans et al. (1989). The original form of the K-S test is 
valid only if all of the parameters of the hypothesized 
distribution are known; i.e., the parameters of the 
distribution could not have been estimated from the data. 
However, recent research has allowed the K-S test to be 
extended to allow for estimation of the parameters in the 
cases of the normal, lognormal, and Weibull distributions. 
The chi-square test statistics were calculated using the 
SAS CAPABILITY procedure (SAS, 1991b). This 
procedure uses the expected values less than 1 to compute 
chi-square statistics. The critical values for this test were 
taken from Law and Kelton (1991). 
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Figure 2-a) Lognormal probability plot; b) Histogram and lognormal 
density function for modulus of elasticity (MOE) of lumber used to 
fabricate the joints (N=250). 

RESULTS 
MODULUS OF ELASTICITY 

MOE for the 250 lumber specimens ranged from 
4.1 GPa (0.6x106 psi) to 17.5 GPa (2.5x10^ psi), with a 
mean value of 9.7 GPa (1.4x10^ psi) and a CV of 25%. 
Visual inspection of the probability plots revealed that the 
lognormal distribution fit the data better than the normal 
and three-parameter Weibull distributions (fig. 2a). 
Distribution parameter estimates are given in Table 1. Chi-
square test statistics (Table 2) and visual appraisal of the 
fitted density function and its corresponding frequency 
histogram of the actual test data (fig. 2b) supported the 
choice of distribution. The estimated fifth percentile for the 
lognormal distribution was 6.1 GPa (0.9x 10^ psi). 

MODULUS OF ELASTICITY AND STRENGTH OF JOINT 
The MOE of the respective pieces forming the joint was 

assumed to be identical because a single piece of lumber, 
cut in half, was used to fabricate each joint. However, as 
evident from the scattergrams shown in figure 1, lumber 
MOE seems unrelated to strength, possibly because plate 
parameters also affect joint strength. 

T A B L E 1. Distribution parameters for lumber modulus of 
elasticity (MOE) and joint strength 

Property Distribution -Parameters -

MOE (GPa) 

Strength (kN) 

Web joint 

Tension joint 

Heel joint 

Lognormal X-2.24 1-0.25 

Normal p.-16.7 a -2 .9 

Use Original Data for Random Sampling -

Normal | i -22.6 0-1 .4 

VOL. 35(4): JULY-AUGUST 1992 1287 



TABLE 2. Chi-square and Kolmogorov-Smimov (K-S) statistics applied 
to the three distributions considered for lumber modulus of 

elasticity (MOE) and joint strength* 

Property 

MOE 
(Nt - 250) 

Strength 
Web joint 
(N-55) 

Tension join 
(N-52) 

Ffeel joint 
N-56) 

Normal 

17.60 
(14.07,7)1: 

3.30 
(9.49,4) 

19.40 
(9.49,4) 

3.20 
(7.82,3) 

Chi square 

Logn(xinal 

10.96 
(14.07,7) 

7.68 
(9.49,4) 

39.02 
(9.49,4) 

3.88 
(7.82,3) 

WeibuU 

12.59 
(12.59,6) 

3.63 
(7.82,3) 

16.65 
(7.82,3) 

3.42 
(5.99,2) 

Normal 

0.0665 
(0.1190)§ 

0.1105 
(0.1223) 

0.0893 
(0.1180) 

K-S 

Lognormal 

0.0562 
(0.1190) 

0.1540 
(0.1223) 

0.0972 
(0.1180) 

Weibull 

0.0744 
(0.1098) 

0.1063 
(0.1128) 

0.0895 
(0.1089) 

* Level of significance for all tests was 0.05. 
t N • number of observations. 
t Numbers in parentheses under chi-square statistics are critical values and degrees 

of freedom, respectively. 
§ Numbers in parentheses under K-S statistics are critical values. 

WEB JOINT 

Strength values averaged 16.7 kN (CV=17.1%) for the 
web joints. Almost 95% of the web joints failed in tension: 
The tension web pulled out due to tooth bending, and the 
plate remained on the bottom chord and the compression 
web. Other failure modes included plate failure and plate 
peeling. 

Visual inspection of the probability plots revealed that 
the normal and three-parameter Weibull distributions both 
fit the data well enough that K-S and chi-square statistics 
had to be used. K-S statistics for both distributions were 
lower than their corresponding critical values (Table 2). 
Chi-square statistics for both distributions were much 
lower than the corresponding critical values, although 
statistics for the normal distribution were relatively lower 
(Table 2). Thus, the normal distribution was selected. With 
the exception of one data point, all the data in the 
probability plot of figure 3a fell on the straight line. 
Distribution parameter estimates are given in Table 1. 
Superimposing the fitted density function on the histogram 
of the actual data showed that the density function fit the 
data quite well (fig. 3b). 

TENSION JOINT 

Strength values averaged 27.0 kN (CV=17.6%) for the 
tension joints. Of the three joint types, CV was greatest for 
the tension joint, which failed in three different modes: 
tooth bending and plate peeling (63%), tooth bending and 
plate peeling combined with wood failure (31%), and plate 
failure (6%). 

Visual inspection of the probability plots revealed that 
none of the distributions fit the data, although the three-
parameter Weibull was relatively better than the other two 
(fig. 4a); as can be seen in the figure, the data at the lower 
tail fell far from the straight line. The lack of fit of all three 
distributions also was verified by the chi-square test 
(Table 2). Superimposing the fitted density function on the 
histogram of the actual data showed that the density 
function does not characterize the data very well (fig. 4b). 
Because none of the density functions considered were 
acceptable, the test data (Table 3) could be used for 
random sampling in reliability analysis. It is also possible 
to use the test data to specify an empirical distribution from 
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Figure 3-a) Normal probability plot; b) Histogram and normal 
density function for the web joints (N=55). 

which random values can be generated (Law and Kelton, 
1991). 
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Figure 4-a) Three-parameter Weibull probability plot, in which 
p^cumulative probability, MU=mean, and x»any observation; b) 
Histogram and three-parameter Weibull density function, for which 
location»7.49 kN, scale»21.19 kN, and shape»4.89 kN for the tension 
joints (N=52). 
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TABLE 3. Ultimate strength (kN) of tension joints* 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Strength 

29.8 
25.1 
26.8 
29.2 
30.1 
32.5 
29.4 
31.4 
30.1 
27.8 
24.9 
25.3 
30.7 
25.7 
26.6 
31.3 
19.8 
23.7 

No. 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Strength 

22.7 
27.7 
32.1 
27.2 
29.6 
20.2 
34.0 
24.2 
25.7 
24.2 
24.5 
29.1 
28.5 
26.5 
26.1 
30.6 
31.7 

No. 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

Strength 

29.6 
25.1 
23.0 
36.8 
24.4 
15.1 
27.1 
35.5 
29.3 
25.9 
23.9 
28.3 
13.8 
24.5 
31.0 
14.4 
31.7 

Mean » 27.0 kN; coefficient of variation - 17.6%. 

HEEL JOINT 
Strength values averaged 22.7 kN (CV«6.7%) for the 

heel joints. Of the three joint types, CVs were least for the 
heel joint because all those joints failed in a similar 
manner, as a result of tooth bending; they pulled out either 
from the top or bottom chord. 

Visual inspection of the probability plots revealed that 
the normal distribution best characterized the data (fig. 5a); 
the plotted data points nearly all fell on the straight line. 
Distribution parameters are given in Table 1. The 
chi-square statistic for the normal density function was less 
than its corresponding critical value (Table 2); therefore, 
the normal distribution could not be rejected. 
Superimposing the fitted density function on the histogram 
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Figure 5-a) Normal probability plot; b) Histogram and normal 
density function for the heel joints (N=56). 

of the actual data showed that the density function fit the 
data quite well (fig. 5b). 

DISCUSSION 
No single distributional form fit the strength data of the 

three types of joints with equal accuracy. The modeling of 
any random variable (e.g., strength or load) by a 
probability distribution is always associated with some 
uncertainty. There is model uncertainty because 
mathematical modeling can never be exact, statistical 
uncertainty because distribution parameters are estimated 
and the estimates depend on the amount of sample data, 
and physical uncertainty because physical variability of the 
measured quantities (e.g., strength) may be present. Models 
do not represent reality, they only approximate it. 

The choice of a density function is of great importance 
because of sensitivity of data at the tails of the distribution, 
which influences reliability estimates for the structure. For 
example, if strength of the tension joint was modeled by a 
Weibull distribution (see fig. 4a), predictions at the lower 
tail would be poor because this distribution did not fit the 
lower tail very well. The lowest strength value in the actual 
data was 13.70 kN. Its cumulative probability based on the 
ranking described earlier was 0.0189. However, the 
cumulative probability of 13.70 kN based on the Weibull 
distribution is only 0.0028. Thus, the actual probability is 
almost seven times that of the theoretical probability. 
Therefore, the Weibull distribution is a poor representation 
of the strength of the tension joint, especially at the lower 
tail. 

The strength data of the web and heel joints were best 
described by normal distributions. It is sometimes argued 
that the normal distribution should not be used to model a 
resistance variable (e.g., joint strength) because it gives a 
finite probability of negative strength. Usually, this 
probability is extremely small, and in such cases it may be 
possible, when sampling from the normal distribution, to 
discard the negative values. However, doing so may 
change the distribution of the simulated data. Therefore, 
the researcher may want to use the lognormal or Weibull 
distributions. 

The MOE data were best described by a lognormal 
distribution. Several researchers (Simon and Woeste, 1980; 
Galligan et al., 1986) have used a three-parameter Weibull 
distribution to characterize MOE; however, a lognormal 
distribution also has been used (Galligan et al., 1986). 

Visually inspecting the linearity, or lack of linearity, of 
a probability plot is an excellent technique for screening 
density functions, as compared to visually inspecting the fit 
of a density function superimposed on a histogram. Note 
that in the probability plots, the variance of the data points 
at the tails is larger than that at the center of the 
distribution. Thus, the relative fit of the data at the tails is 
often poorer than that at the center even if the correct 
distribution is chosen (Hahn and Shapiro, 1967). 

The lack of wood failure in any of the three joint types 
suggests that joints are indeed the weakest link in a truss 
and could limit truss strength. In the way that a chain is no 
stronger than its weakest link, a wooden truss is no 
stronger than its weakest joint. The variability in joint 
strength was less than expected—less than that in MOE of 
the visually graded lumber forming the joints. Variability 
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due to fabrication was reduced because during joint 
fabrication, the plates on both sides of the lumber were 
centered over the joint and aligned such that one was on 
top of the other. In commercial truss production, however, 
these conditions may not exist; therefore, one would expect 
joint strength in this study to vary less than that in typical 
commercial trusses. 

The fitted distributions arrived at herein may not be the 
"true underlying distributions," but they closely represent 
the sample data. In the third part of this ongoing long-term 
research, we used these distributions to simulate joint 
strength for input to the truss simulation model (Gupta and 
Gebremedhin, 1992). 

CONCLUSIONS 
• Lumber MOE and joint strength apparently are 

unrelated. MOE was best described by a lognormal 
distribution. Strength data for the web and heel joints 
were best described by normal distributions; data for 
the tension joints could not be characterized by any 
of the distributions considered. 

• Visually inspecting probability plots is an excellent 
technique for screening density functions, preferable 
to using K-S and chi-square statistics and the 
conventional approach of superimposing a density 
function on the histogram of the data. 

Although these results should not be extrapolated to 
other truss joints because they depend on joint geometry, 
we found that probability distributions are easy to work 
with mathematically and can easily be used in reliability 
analysis. 
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