
AN ABSTRACT OF THE THESIS OF

Mingming Cao for the degree of Master of Science in Computer Science

presented on June 27, 2000.

Title: Automatic Test Case Generation for Spreadsheets

Abstract approved:

Gregg Rothermel

Test case generation in software testing is a process of developing a set of
test data that satisfies a particular test adequacy criterion. It is desirable to

automate this process since doing it manually is not only technically difficult

but also tedious and time-consuming. Although there has been considerable

research in automatic test case generation directed at imperative languages, we

find no research exists addressing the problem for spreadsheet languages. This

problem is particularly important for spreadsheet languages, since spreadsheet

languages are widely used by end users and most of them lack testing back-

grounds. To address this need, in this thesis, we present an automatic test

case generation methodology for spreadsheet languages. Based on an analysis

of the differences between imperative languages and spreadsheet languages, we

developed our methodology by properly adapting existing test case generation

techniques for imperative languages. Our methodology is integrated with a

previously developed methodology for testing spreadsheets, and supports incre-

mental automatic test case generation and visual feedback. We have conducted

a family of empirical studies to assess the effectiveness and the efficiency of

Redacted for Privacy

the essential techniques underlying our methodology. The results of our studies

show that the test cases generated by our methodology can exercise a large per-

centage of a spreadsheet under test. The results also provide insights into the

tradeoffs between two test case generation techniques for spreadsheet languages.

Automatic Test Case Generation for Spreadsheets

by

Mingming Cao

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 27, 2000
Commencement June 2001

Master of Science thesis of Mingming Cao presented on June 27, 2000

APPROVED:

Major Professor, representing Computer Science

of the Departmet of Computer Science

Dean of thJd'rluate School

I understand that my thesis will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

thesis to any reader upon request.

Mingming o, Au

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

I would like to thank my major professor Dr. Rothermel for his invaluable

ideas, helpful suggestions and detailed comments. I appreciate the time and
energy he put into this thesis.

My thanks also go to Dr. Burnett for her gracious help, to Dr. Cook for his

precious comments and to Dr. Van Der Mars for being on my committee.

My particular appreciation goes to Karen Rothermel, who gave me valuable

suggestions in statistical analysis, and Andy Ko, who created the large spread-

sheets for the empirical studies. Thanks also to all other members of the Visual

Programming Research group who provided help with my implementation.

TABLE OF CONTENTS
Page

Chapter 1: Introduction

Chapter 2: Background 4

2.1 Spreadsheet languages 4

2.2 WYSIWYT methodology 5
2.2.1 User's view 5
2.2.2 Behind the scenes 8

2.3 ATCG techniques for imperative languages 11

Chapter 3: Automatic Test Case Generation for Spreadsheets 14

3.1 Requirements for an ATCG methodology for spreadsheets . . 14

3.2 Random technique 21

3.3 Goal-oriented technique 23
3.3.1 Generation procedure 24
3.3.2 Taski: obtaining the break point 28
3.3.3 Task2: creating branch functions 29
3.3.4 Task3: searching for the solution 39

3.4 ATCG from the user's view 41

3.5 Evaluating the methodology 43

Chapter 4: Empirical Studies One: Spreadsheet Level 45

4.1 Research questions 46

4.2 Measures 46

4.3 Subjects 47

4.4 Experiment environment 48

4.5 Method 48
4.5.1 Automatic validation 49
4.5.2 Feasible and infeasible du pairs 49

TABLE OF CONTENTS (Continued)
Page

4.5.3 Time limit 50
4.5.4 Initial values 51
4.5.5 Range information 52
4.5.6 Experimental procedure 53

4.6 Experiment 1A: with no explicit range information 55
4.6.1 Experiment design 55
4.6.2 Data and analysis 55

4.7 Experiment 1B: with explicit range information 60
4.7.1 Experiment design 60
4.7.2 Data and analysis 61

4.8 Threats to validity 65
4.8.1 Threats to external validity 65
4.8.2 Threats to internal validity 66
4.8.3 Threats to construct validity 67

4.9 Discussion 68

Chapter 5: Empirical Studies Two: Du Pair Level 72

5.1 Common issues 72
5.1.1 Research questions 72
5.1.2 Measurements 73
5.1.3 Subjects and methods 73

5.2 Experiment 2A: with no explicit range information 74
5.2.1 Experiment design 74
5.2.2 Data and analysis 77

5.3 Experiment 2B: with explicit range information 79
5.3.1 Experiment design 79
5.3.2 Data and analysis 80

5.4 Discussion 83

Chapter 6: Empirical Studies Three: Large Spreadsheets 85

6.1 Subjects 85

TABLE OF CONTENTS (Continued)
Page

6.2 Whole spreadsheet level experiments 86
6.2.1 Experiment 3A: with no explicit range information . 86
6.2.2 Experiment 3B: with explicit range information 89

6.3 Du pair level experiments 91

Chapter 7: Conclusion and Future Work 94

Bibliography 97

LIST OF FIGURES
Figure Page

2.1 Forms/3 GrossPay with testing information displayed (after the
first validation) 6

2.2 Forms/3 GrossPay with testing information displayed (after the
second validation) 8

2.3 Cell Relation Graph for GrossPay 10

3.1 Algorithm for random ATCG technique for a whole spreadsheet 22

3.2 Algorithm for goal-oriented ATCG technique for a du pair . . . 26

3.3 Algorithm for goal-oriented ATCG technique at all three levels . 27

3.4 Algorithm for obtaining the constraint path to a node 30

3.5 Algorithm for obtaining the break point for a desired du pair . . 31

3.6 A simple spreadsheet 38

3.7 Spreadsheet GrossPay. Inputs show a new test case automatically
generated after a user has requested help.............. 43

4.1 Algorithm for experiments at the whole spreadsheet level 54

4.2 Test case generation efficiency and effectiveness at the whole
spreadsheet level with no explicit range information provided.
Graphs show the average cumulative testedness (ranging from
0.0 to 1.0) over 1200 seconds on eight subjects in Experiment 1A. 57

4.3 Test case generation efficiency at the whole spreadsheet level with
no explicit range information provided. Boxplots show the distri-
bution of testedness (ranging from 0.0 to 1.0) at two times. For
each spreadsheet, two box plots are given: the left plot depicting
data for the goal-oriented technique, the right plot depicting data
for the random technique...................... 59

4.4 Test case generation efficiency and effectiveness at the whole
spreadsheet level with explicit range information provided. Graphs
show the average cumulative testedness (ranging from 0.0 to 1.0)
over 1200 seconds on eight subjects in Experiment lB...... 62

LIST OF FIGURES (Continued)
Figure Page

4.5 Test case generation efficiency at the whole spreadsheet level with
explicit range information provided. Boxplots show the distribu-
tion of testedness (ranging from 0.0 to 1.0) at two times. For
each program, two box plots are given: the left plot depicts data
for the goal-oriented technique, the right plot depicts data for the
random technique.......................... 63

5.1 Box plots showing time (seconds) used in random and goal-oriented
generation on subject du pairs in spreadsheets Digits, Grades,
MicroGen and NetPay in Experiment 2A............. 75

5.2 Box plots showing time (seconds) used in random and goal-oriented
generation on subject du pairs in spreadsheets PurchaseBudget,
Solution, NewClock and FitMachine in Experiment 2A...... 76

5.3 Box plots showing time (seconds) used in random and goal-oriented
generation on subject du pairs in spreadsheets Digits, Grades,
MicroGen and NetPay in Experiment 2B.............. 81

5.4 Box plots showing time (seconds) used in random and goal-oriented
generation on subject du pairs in spreadsheets PurchaseBudget,
Solution, NewClock and FitMachine in Experiment 2B...... 82

6.1 Test case generation efficiency on large spreadsheets at the whole
spreadsheet level with no explicit range information provided.
Graphs show the average cumulative testedness (ranging from
0.0 to 1.0) over 1200 seconds on eight subjects.......... 87

6.2 Test case generation effectiveness on large spreadsheets at the
whole spreadsheet level with no explicit range information pro-
vided. Boxplots show the distribution of testedness (ranging from
0.0 to 1.0) at two times. For each spreadsheet, two box plots are
given: the left plot depicting data for the goal-oriented technique,
the right plot depicting data for the random technique...... 88

6.3 Test case generation efficiency on large spreadsheets at the whole
spreadsheet level with explicit range information provided. Graphs
show the average cumulative testedness (ranging from 0.0 to 1.0)
over 1200 seconds on eight subjects 90

LIST OF FIGURES (Continued)
Figure Page

6.4 Test case generation effectiveness on large spreadsheets at the
whole spreadsheet level with explicit range information provided.
Boxplots show the distribution of testedness (ranging from 0.0 to
1.0) at two times. For each program, two box plots are given:
the left plot depicts data for the goal-oriented technique, the
right plot depicts data for the random technique......... 90

6.5 Box plots show time (seconds) used in random and goal-oriented
test case generation for subject du pairs selected from large spread-
sheets, with no explicit range information............. 92

6.6 Box plots show time (seconds) used in random and goal-oriented
test case generation for subject du pairs selected from large spread-
sheets, with explicit range information............... 93

LIST OF TABLES
Table Page

3.1 Rules for creating branch functions for predicate expressions con-
taining only relational operators 33

3.2 Rules for creating branch functions for predicate expressions con-
taining boolean operators 34

4.1 Data about experimental subjects 48

4.2 Paired t-test for Experiment 1A 61

4.3 Paired t-test for Experiment lB 64

4.4 Percentage increase in testedness achieved by the two techniques
with explicit ranges, as compared to testedness achieved without
explicit ranges............................ 69

5.1 Data about effectiveness of the two ATCG techniques at the du
pair level with no explicit range information........... 78

5.2 Data about effectiveness of the two ATCG techniques at the du
pair level with explicit range information 80

6.1 Data about large experimental subjects 86

6.2 Paired t-test for Experiment 3A 89

6.3 Paired t-test for Experiment 3B 91

AUTOMATIC TEST CASE GENERATION FOR
SPREADSHEETS

Chapter 1

INTRODUCTION

Of all the programming languages being used today, spreadsheet languages

may be the languages most frequently used by end users. Spreadsheet programs

are created by end users to perform a wide variety of tasks, for example, for

computing personal taxes, student's grades and employee's salaries. Other re-

search programs from the spreadsheet language paradigm are also designed for a

variety of purposes, such as visual matrix manipulation [28], providing steerable

simulation environments for scientists [6] and specifying GUI [18].

There is a growing awareness that, despite the perceived simplicity of spread-

sheet languages, spreadsheet programs frequently contain faults [4, 20, 21]. Re-

cent studies report that 44% of a set of "finished" spreadsheets still contained

faults [4]. One possible factor in this problem is that end users may be overconfi-

dent about their spreadsheets. Another possible factor is the absence of help for

testing spreadsheets, especially help for end users without testing backgrounds.

The awareness of this inadequacy motivated the designation of a testing

methodology for spreadsheet languages (WYSIWYT) [26]. The WYSIWYT

(What You See Is What You Test) methodology allows spreadsheet program-

mers to incrementally try test data, and provides visual feedback about that

2

test data. The visual feedback can guide the programmers in testing their

spreadsheets more adequately and more efficiently. Empirical studies show that

the methodology can increase end users' testing effectiveness and reduce their

overconfidence [27].

This methodology, however, relies solely on the intuitions of spreadsheet

programmers to identify test cases to thoroughly test their spreadsheets. The

process of identifying test cases is laborious and time-consuming, and its success

depends on the experience of the programmer. This problem is more serious

for end users of spreadsheet languages since most of them are not experienced

programmers and lack background in testing. If the test case generation process

for spreadsheets could be automated, the whole spreadsheet testing process

could be easier for spreadsheet users. Examining existing work on automatic test

case generation, however, we find that most research in this field is directed at

imperative languages [2, 3, 8, 9, 11, 13, 14, 15, 16, 17, 19, 22], and no discussion

exists addressing automatic test case generation for spreadsheet languages.

To address this lack, in this thesis, we present an automatic test case gen-

eration methodology for spreadsheet languages. Based on an analysis of the

differences between imperative languages and spreadsheet languages, we devel-

oped our methodology by adapting existing techniques for imperative languages.

Our methodology is integrated with the WYSIWYT methodology to support

incremental automatic test case generation and visual feedback.

The materials presented in this thesis are organized as follows. Chapter 2

provides the necessary background information about spreadsheets and reviews

the literature on automatic test case generation techniques for imperative lan-

guages. In Chapter 3, we discuss the requirements for an automatic test case

generation methodology for spreadsheet languages, then present our method-

3

ology based on that discussion. Chapters 4, 5 and 6 present three empirical

studies performed to investigate the effectiveness and efficiency of our method-

ology. Finally, we conclude and discuss future work in Chapter 7.

ru

Chapter 2

BACKGROUND

In this chapter, we present background material about spreadsheet languages

and the WYSIWYT testing methodology for spreadsheet languages. We then

review automatic test case generation (ATCG) techniques for imperative lan-

guages.

2.1 Spreadsheet languages

Spreadsheet languages support a declarative approach to programming [1]. A

spreadsheet can be viewed as a collection of cells. Users create a spreadsheet by

creating cells and defining formulas for those cells. A cell's value is calculated

through its formula, which may reference values of other cells. Once a cell's

formula is determined, the underlying evaluation engine automatically calcu-

lates that cell's value, and follows data dependencies to calculate the values of

affected cells. The updated results are shown immediately.

Previous work showed that significant differences exist between spreadsheet

languages and traditional imperative languages [25]. There are three major

differences. First, evaluation of spreadsheets is driven by data dependencies be-

tween cells, and spreadsheets contain only local explicit control flow within each

cell. Second, spreadsheets are developed incrementally with immediate visual

feedback. Third, imperative languages are mostly used by professional program-

5

mers, while spreadsheet languages are used not only by programmers, but more

importantly, they are widely used by end users who have no formal software

engineering background. These three differences must guide the development of

testing and debugging methodologies for spreadsheets.

2.2 WYSIWYT methodology

Attending to these differences between imperative languages and spreadsheet

languages, previous research has developed an incremental visual testing method-

ology "What You See Is What You Test" (WYSIWYT), for testing spreadsheets

[24, 26]. The testing process is an incremental process: users incrementally

change input cells' values, the underlying engine automatically evaluates cells,

and users validate the results displayed in affected output cells. As a user

incrementally develops a spreadsheet, he or she also tests that spreadsheet in-

crementally. A prototype of this testing methodology has been integrated into

the spreadsheet language Forms/3 [5], as Figure 2.1 shows. The examples in this

document are presented in Forms/3. We overview the WYSIWYT methodology

here. More detailed information about it can be found in [24, 25, 26].

2.2.1 User's view

In the WYSIWYT implementation, several types of testing information are pro-

vided. First, the color of a cell indicates the extent to which the cell has been

tested. Red means untested, blue means fully tested, and shades of purple mean

partially tested. Cells start with red borders, and their borders become more

blue as those cells are tested more thoroughly. Second, a testedness indicator

displays the testedness of the whole spreadsheet under test. Third, each cell

rO0sPay -

CL)TRD)
8 8 8 1 1_ __ ___I _

1O T Thu Fri

101
__________ 38 IPuyflt

I.J I

flid * (W± (Tht Fr*))11

Fa H.lp /
c.11 ____ -- /

380 '
Peat.

I

TpOI vi.. GroePay
thX,t,1Ho*r P8,r.r)4

Help i t
I

.ir.'()40 PeyRut.) * I)T*ueUlour, - 40) (I 5 PuyRat.))

Hid. Teat
Deta

FIGURE 2.1: Forms/3 GrossPay with testing information displayed (after the
first validation)

contains a checkbox, and user actions change the checkbox status. Three types

of checkbox status are possible: empty, question mark, or check mark. Both

an empty check box and a question mark indicate that the cell has not been

validated under the current inputs. However, the question mark indicates that

validating the cell would test something that had not been previously validated,

whereas the empty checkbox indicates that validating the cell would not validate

anything that had not been previously validated. The check mark occurs in a

cell with a question mark after the user validates it, representing a validation

based on the current inputs. Fourth, the interactions between cells caused by

cell references can be visually viewed by the user by displaying datafiow arrows

between cells or subexpressions in cell formulas. These arrows illustrate infor-

mation about testedness at a finer granularity. Following the same color scheme

as for the cell borders, red arrows indicate that the corresponding interactions

7

have not been tested, blue arrows indicate that the corresponding interactions

have been tested and purple arrows indicate that the corresponding interactions

have been partially tested.

Initially, all output cells start with red borders (untested). Whenever the

user notices that the value of a cell under test is correct, she validates it by

clicking the checkbox in its right corner. As a result, the underlying engine

propagates the implication of the successful test to cells that contribute to it,

and reflects this progress in "testedness" by changes of the sort described above.

As an example, consider Figure 2.1, which displays a spreadsheet GrossPay

and its testing information. GrossPay calculates the weekly gross pay for a

person. The weekday working hours and the pay rate per hour are given in

the input cells Mon through Fri and PayRate, the output cell TotaiHours

calculates the total working hours per week and the output cell GrossPay

calculates the gross pay per week. Suppose the user notices that the value of

cell TotaiHours is correct and validates it. Figure 2.1 shows the feedback after

the first validation. The border of cell TotaiHours is blue (in this figure it is

black), indicating that the cell is fully tested. The border of cell GrossPay
remains red (in this figure it is grey), indicating that the cell is not tested

yet. And the testedness indicator indicates 41% parts of this spreadsheet have

tested. Suppose the user then determines that the value of cell GrossPay is

also correct and validates that cell. The effect of the second validation is shown

in Figure 2.2. The border color of cell GrossPay is changed to purple (deep

grey in this figure) and some of the arrows between TotaiHours and GrossPay

become blue. The testedness indicator illustrates that 66% of this spreadsheet

is tested. To test more adequately, the user must now enter a different test case.

ro
[ø

________ IIiiIITi JII1IIIIIIJTh

8 8
I

I

1 1

R8(OLO TIt84
I

rue
I __ __

Thu Fri

PuyRate
38 V

a1e \\ Tuta1Hr (Tue + (IIi + (Thu * Fr+)

/ / /
380

J:\ / /

Cros*Pay ¶iiHI
el,e140 PayRete) + (Tot+fllour, - 40) * (I S PayRete)

Foxmll.ip
I

Cut Cell

PasteTi
ES1P rt
Rids Test
Cute

FIGURE 2.2: Forms/3 GrossPay with testing information displayed (after the
second validation)

2.2.2 Behind the scenes

Although the users of the WYSIWYT methodology are not aware of it, they
are actually using a definition-use test adequacy (du adequacy) criterion, which

is adapted from the output-influencing-all-du-pairs dataflow adequacy criterion

defined for imperative programs [10]. A test adequacy criterion help testers

select test data and measure whether a program has been tested "enough".

Testing a spreadsheet under the du adequacy criterion focuses on the definition-

use pairs (du pairs) in the spreadsheet, and the testedness is calculated by the

number of du pairs that have been tested divided by the total number of du

pairs in the spreadsheet [26]. A definition-use pair connects an expression in a

cell formula that defines a cell's value with expressions in other cells that use the

defined cell. There are two types of du pairs: definition-c-use pairs, in which the

use expression is a computation expression and the use of the definition is for

computation purposes, and definition-p-use pairs, in which the use expression

is a predicate expression and the use of the definition is for conditional control

purposes.

The du adequacy criterion is defined based on an abstract model of spread-

sheets, instead of on the code itself [25]. The abstract model is called a cell

relation graph (CRG), and depicts the control flow within a spreadsheet's for-

mulas and the data dependencies between its cells. A cell's control flow is

represented by a cell formula graph (CFG), which is similar to the control flow

graph used to represent procedures in imperative programs. Each cell formula

graph is a directed graph, in which each node represents an expression in a cell

formula and each edge represents the flow of control between expressions. There

are three types of nodes contained in a CFG: unique entry and exit nodes, repre-

senting initiation and termination of the evaluation of the formula respectively;

definition nodes, representing simple expressions in cell formulas that define the

value of a cell; and predicate nodes, representing predicate expressions in cell

formulas. Two edges are outgoing from a predicate node: one represents the

true branch of the predicate expression, and another represents the false branch.

Figure 2.3 shows the cell formula graphs for spreadsheet GrossPay. In this

figure, a cell is represented by a dashed rectangle with a corresponding CFG

displayed in it. Circle nodes represent either entry nodes or exit nodes, rectangle

nodes represent predicate nodes and oval nodes represent definition nodes. The

dashed arrows between cells illustrate the data dependencies between them.

The CRG is used to define applicable node and edge adequacy criteria for

spreadsheets. A node n is exercised by a test case t when the corresponding

expression is evaluated under t; a du pair is exercised by t when both its def-

inition node and use node are exercised by t. A test suite is du adequate for

10

ttH:ta
Tue ' Thur - - Fri

PayRaie ta!Hos

23: if (TotaiHours <= 40)

T F

24: TotalHours * PayRate

26:X

25: ((* PayRate) + ((TotaiHours -40) * (1.5 * PayRate))

GrossPay

FIGURE 2.3: Cell Relation Graph for GrossPay

a spreadsheet if each definition node and use node pair in the spreadsheet is

exercised by at least one test case in that test suite.

However, it is not always possible to exercise all du pairs. Those du pairs

that can not be exercised by any inputs are called infeasible du pairs. Some

11

infeasible du pairs are caused by contradictory conditions. Infeasible du pairs

frequently occur in practice. However, identifying infeasible du pairs is impos-

sible in general [12, 29].

Du pairs in a spreadsheet are visually represented by the arrows between

definition expressions and use expressions. The color scheme on the arrows
lets a user pay attention to the untested arrows (du pairs); this helps the user

identify "useful" test cases to exercise the untested du pairs [23].

2.3 ATCG techniques for imperative languages

There has been much discussion in the literature about techniques for automatic

test case generation for imperative languages. Depending on what aspect of
these techniques is to be addressed, there are different ways to classify these

techniques [30]. An ATCG technique could be categorized according to the test
adequacy criterion it uses, for example, statement coverage or branch coverage.

ATCG techniques could also be classified according to the goal of the technique.

For example, some techniques generate test cases to exercise particular paths,
and are called path-oriented techniques. Other techniques assume a goal of
exercising a particular statement regardless of path, and are called goal-oriented.

Another important criterion involves how to generate test cases. There are
three types of ATCG techniques according to this criterion: random test case

generation techniques [3], static test case generation techniques [7, 8, 9, 13, 19]

and dynamic test case generation techniques [11, 14, 15, 16, 17]. Briefly, random

techniques generate test cases by randomly selecting input values, static tech-

niques generate test cases by symbolically (statically) executing

12

the program under test, and dynamic techniques generate test cases through

dynamic execution of the program under test.

Static and dynamic approaches are the most widespread approaches that

have been proposed. They are both based on the code of a program, instead

of its specification. Much research work has been done in these two areas,

indicating that they are fundamentally different.

Static approaches generate test cases through symbolic walking of a program

and creation of a set of constraints required to meet an adequacy criterion.

More precisely, such techniques select a path to meet the adequacy requirement

first, then find the constraints, in terms of input variables, required to execute

that path by symbolically executing the programs, and finally attempt to solve

these constraints and obtain a solution. The values that are located in that

solution are the test case generated to meet that test adequacy requirement. One

advantage of static methods is that infeasible du pairs can often be identified

through the use of a constraint solver. However, static methods require high

memory to store the expressions encountered during symbolic execution, and

require a powerful constraint solver to solve complex equalities and inequalities.

In addition, static methods have other problems in dealing with arrays, aliases,

loops and complex expressions.

In contrast, dynamic approaches actually execute programs, and take advan-

tage of information obtained during execution to guide the search for a test case

that meets the requirement. Dynamic methods reduce the problem of test case

generation to a sequence of subgoals, using function minimization to solve these

subgoals. Execution-oriented methods [17] and goal-oriented methods [15] are

two typical dynamic methods. Both are based on program execution, dynamic

data flow analysis, and function minimization methods; however, the execution-

13

oriented methods focus on an execution path while the goal-oriented methods

focus on the final goal and ignore the path. Compared to static methods, dy-

namic methods can take advantage of the actual variable values obtained during

execution to try to solve problems with arrays, aliases, loops and complex ex-

pressions. In addition, dynamic methods require smaller memory and do not

require a complex inequalities and equalities solver for constraints. However,

dynamic methods are not good at identifying infeasible du pairs.

14

Chapter 3

AUTOMATIC TEST CASE GENERATION FOR
SPREADSHEETS

Developing test cases is a tedious and time-consuming process in software

testing. This can be especially true for end users testing spreadsheets, since

end users typically have no testing background. Automatic test case generation

(ATCG) techniques assist users in finding test cases; however, existing ATCG

techniques are all designed for imperative languages. To address this problem,

in this chapter, we present an ATCG methodology developed for spreadsheets.

3.1 Requirements for an ATCG methodology for spreadsheets

As for imperative languages, ATCG methodologies for spreadsheet languages

must accept a program (spreadsheet) and a test adequacy criterion as input,

and then automatically output test cases that meet the criterion. However,

there are other considerations for ATCG for spreadsheets that are different from

those for imperative languages. In previous chapters, we described the main

differences between spreadsheet languages and traditional imperative languages,

as well as the WYSIWYT testing methodology for spreadsheet languages. To

be integrated with the WYSIWYT testing environment and accommodate these

differences, an ATCG methodology for spreadsheets should satisfy the following

requirements:

15

Code-based ATCG. Since many spreadsheet end users are not experi-

enced programmers, few of them are likely to create specifications for their

spreadsheets. Thus, the ATCG methodology for spreadsheets should focus

on code-based test case generation techniques.

Use a data dependency test adequacy criterion. Evaluation of spreadsheets

is driven by data dependencies between cells. As a result, spreadsheets

contain no single explicit global control flow graph, although they contain

local explicit control flow within each cell. This suggests that an ATCG

methodology must be compatible with the data dependency driven eval-

uation model and not rely upon any particular evaluation order. To be

integrated with the WYSIWYT methodology, the ATCG methodology for

spreadsheets is required to use du adequacy as its test adequacy criteria.

Incrementally generate test cases and provide visual feedback. Spreadsheet

languages let users program incrementally. This feature suggests that

ATCG methodologies should support incremental test case generation.

Upon the end user's request, an ATCG technique should generate one test

case that can increase the cumulative testedness. Following completion of

this task, the system should let the user continue their activities, which

may include requesting additional test generation help.

In addition, spreadsheet programming environments are also character-

ized by visual feedback. Thus, ATCG methodologies should also provide

visual feedback. For instance, if a user requests help in finding a test case

for a spreadsheet, the ATCG subsystem should generate a test case as

requested, and gives visual feedback by updating the input cells' values

and indicating where validation may be helpful.

16

Moreover, since spreadsheet programming environments consist of a visual

interface subsytem and a underlying evaluation engine subsystem, ATCG

methodologies for visual programming languages should also be divided

into two subsystems: the visual interface part, which accept users' re-

quests and gives visual feedback, and the underlying ATCG technique

subsystem, which generates test cases upon request. Users should com-

municate with the visual interface part and should not need to understand

the underlying ATCG techniques. This would allow ATCG methodolo-

gies to provide multiple ATCG techniques and combine them as necessary

without involving the users in the mechanism that combines them.

Generate test cases at the whole spreadsheet level. This is the basic func-

tionality that an ATCG methodology should provide for spreadsheet test-

ing. When requested by the user, the ATCG should assist users in finding

a test case, which executes an untested part of the spreadsheet.

Generate test cases at the cell level. ATCG methodologies should also

assist users in generating a test case for a particular cell in a spreadsheet.

This situation may occur when a user finds some cell not well tested and

does not wish to manually identify test cases that improve the tested-

ness of that cell. By selecting the cell of interest, users can ask for help

from the ATCG subsystem. To satisfy a user's specific requirement, an

ATCG subsystem can focus on the specified cell and attempt to find a

test case that exercises an untested du pair whose coverage will increase

the testedness of that cell.

17

Generate test cases at the du pair level. Since the underlying adequacy

criterion used in our ATCG methodology is definition-use adequacy, the

final goal of testing a spreadsheet is to find test cases that exercise all

the du pairs in the spreadsheet. During the testing process, one or more

du pairs may particularly interest users. ATCG methodologies should

provide the functionality to generate a test case at the du pair level. The

WYSIWYT methodology supports selecting du pairs by letting users click

arrows between the source of a du pair and the destination of that du

pair. When users select one or more arrows, our ATCG methodology

must attempt to generate test cases to cover the associated du pairs.

Provide additional test cases on request. The WYSIWYT methodology is

an incremental testing methodology. The whole testing process is com-

posed of iteratively finding a test case and validating output cells. When

users are not able to judge whether the outputs associated with a test case

are correct, they may need additional test cases to support their decision.

In that case, ATCG should attempt to find a test case that differs from

the current one but exercises the same part of the spreadsheet that the

users are interested in.

The requirements we have just discussed are particular requirements for

spreadsheet ATCG methodologies. However, there are some features of spread-

sheet languages that may make the design of ATCG techniques easier than for

imperative languages:

Incremental evaluation. In essence, the evaluation strategies used in

spreadsheet languages are either eager or lazy. Eager evaluation is driven

by formula changes: whenever a cell's formula is changed, the change is

I,J

propagated to every cell that is affected by this change. Only the af-

fected cells are recalculated and other cells that are not affected retain

their values. Lazy evaluation is driven by output requests: whenever a

cell c is required to calculate its value, it is computed and so is every cell

that cell c needs. Lazy evaluation computes fewer cells than eager evalu-

ation does. Both evaluation strategies incrementally execute part of the

program. Compared to the complete evaluation strategy used in many

imperative languages, this incremental evaluation feature of spreadsheets

may improve the efficiency of ATCG techniques that require the dynamic

execution of programs.

Absence of redefinitions. In spreadsheet languages, cells act as variables,

and the value for cell c can be defined only in its formula. Exercising a def-

inition node and a use node in a du-pair during one execution guarantees

the coverage of that du pair. However, this is not the case in traditional

imperative programs, because a variable in an imperative program could

be re-defined during its lifetime. Even when both the definition node and

the use node in an imperative program are exercised during one execu-

tion, the du pair connecting them cannot be guaranteed to be exercised,

since the variable involved in the du pair may be re-defined by another

statement located on the execution path between the definition node and

the use node. To determine whether a du pair is exercised, in addition to

checking the definition node and the use node of that du pair, the ATCG

techniques for imperative languages must check the nodes on the execu-

tion path between those nodes. This procedure is simplified in ATCG for

spreadsheets due to the absence of redefinitions.

19

Our goal was to develop an ATCG methodology for spreadsheet languages

that meets the general requirements for spreadsheet languages, and takes ad-

vantages of the features listed above. The key to developing the overall ATCG

methodology for spreadsheets is the underlying ATCG technique. Given the

large body of research on ATCG techniques for imperative programs, however,

a natural first step was to see whether such a technique could be obtained by

adapting an appropriate existing technique. The question is, among the three

types of ATCG techniques for imperative languages described in Chapter 2,

which might be most appropriate?

As we described in Chapter 2, depending on the requirement for a test case,

static ATCG techniques build a set of constraints to meet that requirement

through symbolic execution. Dynamic ATCG techniques take advantage of the

actual execution, searching for a test case under the guide of a local optimization

method. Examining these two types of ATCG techniques, we find that static

ATCG techniques, although not requiring actual spreadsheet execution, would

require a constraint solver which could solve complex equalities and inequalities

in terms of the input variables. Also, although static ATCG techniques may be

better than other techniques at identifying infeasible du pairs, they have higher

storage requirements because they must store the expressions calculated during

the symbolic execution.

Consideration of these advantages and disadvantages favors dynamic tech-

niques. Considering specific dynamic techniques, the goal-oriented technique is

of particular interest for several reasons:

We can view the testing process in the WYSIWYT testing methodology

as a process of meeting a sequence of subgoals, each involving exercising

a particular unvalidated du pair. Each subgoal can be achieved by ex-

20

ercising the definition node of the du pair and the use node of that du

pair, regardless of paths between them. The goal-oriented technique fits

naturally with this view.

The goal-oriented technique is a dynamic technique, requiring actual ex-

ecution of the program under test. In addition, to search for a test case,

it requires re-executing of the program to evaluate the branch function

once new test data is tried. Thus, evaluating the branch becomes the

most time-consuming part of the test case generation. This could cause

an efficiency problem especially when the program under test is large and

there are many input variables. This problem is reduced in spreadsheet

languages that support the "incremental evaluation" feature whenever

an input cell's value is changed, the engine could evaluate only the cells

that are concerned. In this way, the amount of evaluation is kept at a
minimum.

Another requirement of the goal-oriented technique is instrumentation

to monitor execution traces. This becomes easy to satisfy within the
WYSIWYT testing methodology, because it is already taken care of when

the WYSIWYT methodology fulfills its validation functionality.

Korel mentions that searching only on input cells that affect the branch

function could speed up the search procedure in the goal-oriented tech-

nique [17]. Since the WYSIWYT system provides backward and forward

data dependence analysis, identifying the input cells that affect the branch

function is easy.

21

It seems that applying the goal-oriented ATCG techniques to spreadsheets

with the WYSIWYT testing methodology requires less effort than doing so in

imperative languages, and will be less expensive than applying static ATCG

techniques. These reasons persuaded us to use the goal-oriented technique. We

will discuss our adaptation of this technique to spreadsheets in Section 3.3.

Although both static and dynamic ATCG techniques could generate test

cases for a test adequacy criterion, the generation processes are complex. A

simple alternative is a random ATCG technique. A typical random technique

randomly selects values for inputs. Compared to other techniques, the random

technique has not been considered "intelligent" enough to use on imperative

programs when the goal is to satisfy a test adequacy criterion. However, random

generation has some advantages: it requires much less effort to implement and

has less calculation overhead than static or dynamic techniques. Also, it seems

possible that the difficulties of randomly generating inputs to obtain specific

coverage may be fewer for spreadsheets than for imperative programs. Thus,

we designed an ATCG technique that generates test cases randomly but under

the guidance of a test adequacy criterion. We will discuss this technique in

detail in Section 3.2.

3.2 Random technique

The random ATCG technique we developed for spreadsheets is similar to the

procedure used in random testing. However, our apprOach adds considerations

of test adequacy to this random generation. In other words, our random tech-

nique attempts to generate test cases to satisfy the du adequacy criterion. We

describe the algorithm for random test case generation in Figure 3.1. In this

22

algorithm, a set of input values V is randomly selected initially, then they are

assigned to the input cells set I in spreadsheet S to force S to execute automat-

ically. After that, the algorithm determines all the du pairs exercised by this

execution. If there is one or more du pair in a candidate du pairs list (a list of du

pairs that are not yet validated) that are exercised by these values, these values

are together considered a test case and the algorithm terminates. Otherwise the

algorithm tries other random values and repeats this process until a test case is

found or time is exceeded.

Algorithm RandomGen
Input: Subject spreadsheet S with input cells I = {i1,i2,. .. ,i,}, and ranges R =

{ri,r2,.. .,rk}

Output: Test case T
1.begin

2. collect all unvalidated du pairs in S into candidate du pairs list dulist

3. while not time out

4. randomly generate input values V = {vi, v2,. . . , vk } within the provided ranges R
5. assign each v to its corresponding input cell ij

6. re-evaluate cells that are sinks of one or more du pairs in dulist

7. if there are some unvalidated du pairs in dulist exercised by inputs V
8. return V

9. endif
10. endwhile
11. return NIL / no test case found*/

12. end

FIGURE 3.1: Algorithm for random ATCG technique for a whole spreadsheet

23

The algorithm in Figure 3.1 depicts the random test generation procedure at

the whole spreadsheet level. Algorithms for generating test cases at the cell level

and at the du pair level are similar to the one at the whole spreadsheet level.

The difference lies only in the candidate du pairs list: at the whole spreadsheet

level, the candidate du pairs list contains all the unvalidated du pairs in the

spreadsheet under test; at the cell level, only the unvalidated du pairs whose

uses are contained in the selected cells are included in the candidate du pairs

list; at the du pair level, only the required du pairs are considered.

To avoid the screen flush caused by updating dependencies associated with

an unsuccessful try, the random generation is designed to be an "invisible"

calculation procedure to the end user. Before the random ATCG has found a

test case, all cells keep their original values. Only after a test case is generated

will the end user see the updated value of the input cells changed and all the

cells affected by this test case updated. If the technique fails to find a test case

and terminates, all the values remain the same as when the generation started.

3.3 Goal-oriented technique

The goal-oriented technique, as a dynamic ATCG technique, actually executes

the program under test. It transforms the goal of reaching a particular node into

a sequence of subgoals, which aim to reach a particular branch node necessary to

reach the final goal. Based on dynamic execution, it uses function minimization

techniques and data flow analysis to search for input values that satisfy each

subgoal.

This section presents our adaptation of the goal-oriented technique for spread-

sheets. In the following subsections, we first describe the whole procedure and

24

tasks involved in the goal-oriented technique, then discuss in detail about how

we design our goal-oriented technique for spreadsheets to fulfill those tasks.

3.3.1 Generation procedure

Since the nature of the goal-oriented technique is to generate a test case for a

particular goal, we discuss our goal-oriented technique at the du pair level first.

The goal of test case generation under the WYSIWYT methodology can be

seen as one of exercising two nodes, the definition node of a particular du pair

and the use node of that du pair. The whole generation procedure in the goal-

oriented technique for a particular du pair is similar to the one for imperative

programs. We begin by outlining the procedure, then provide details:

1. Identify the two subgoals the definition node and the use node of a
particular du pair and the constraint path the sequence of nodes

that must be exercised to achieve the goal. 1

2. Starting from the current inputs, request the spreadsheet evaluation en-

gine to evaluate the cell that contains the use node and collect the execu-

tion traces for the definition cell and the use cell.

3. Compare the constraint path with the current execution traces. If an

unexpected node occurs in the execution traces, determine the desired

branch associated with that unexpected node from the execution sequence,

and associate it with a real-valued function, called a branch function,

1 The "constraint path" is not the same set of constraints used in static ATCG techniques,
which is a set of inequalities and equalities written in terms of input cells.

25

and the node at which the branch starts, called a break node for this

generation. The break node, the branch out of this break node that we

want to cover, and the branch function associated with the desired branch,

are encapsulated in an abstract object called a break point.

4. With the branch function of the desired branch, use a function minimiza-

tion algorithm to attempt to locate input values that would cause the

execution flow to follow the previous constraints and exercise the desired

branch.

5. Repeat steps 2 to 4 iteratively, solving subgoals one by one until there is

no unexpected node appearing in the execution traces, which means the

definition node and the use node have been exercised.

If the above process terminates with output prior to time-out, the input values

give the test case generated to exercise the desired du pair.

We describe the generation algorithm in Figure 3.2. In this algorithm, several

procedures are called: getConstraintPath returns the constraint CF that must

be satisfied to reach a given node; getBreakPoint returns the first break point

B Point according to the constraint CP and the execution trace exeTr ace;

coverBreakPoint attempts to change input values to force the execution flow

to exercise the desired branch. These procedures will be discussed in detail in

the following subsections. More precisely, this algorithm starts by obtaining

the constraint path that must be traversed to exercise the given du pair; then

analyzes the execution trace and the constraint path, acquiring the first break

point if there are any; after that, it calls coverBreakPoint to solve this break

point. The last two steps are executed alternately in this algorithm until the

desired du pair is exercised.

26

Algorithm GoalGenAPair

Input: A du pair P
Output: Test case T
1 .begin

2. CF get ConstraintPath (P.definitionNode) + get ConstraintPath (P.useNode)
3. exeTrace = get Trace (P.definitio'nCell) + get Trace (P.useCell)
4. while not time out

5. if P is exercised

6. return current input values

7. else

8. BPoint getBreakPoint (exeTrace, CP)
9. coverBreakPoint (BPoirit)
10. if inputs to cover the desired branch are not found
11. return NIL / no test case is generated */
12. endif
13. endif
14. endwhile
15. return NIL / no test case is generated *1

16. end

FIGURE 3.2: Algorithm for goal-oriented ATCG technique for a du pair

Exercising any one of the unvalidated du pairs in a spreadsheet or a selected

cell could be considered the goal of test case generation at the whole spreadsheet

level or at the cell level. Thus, as in the random technique, the generation

procedures in the goal-oriented technique at different levels differ only in terms of

a "candidate du pairs list". To generate a test case, the goal-oriented technique

starts from the first du pair p of the candidate du pairs list duList. It will

return a test case if during the course of searching test case for du pair p it

27

covers p or other pairs in duList. If it fails to find a test case, it will put p on

the end of duList and select the next du pair as a subgoal. We generalize the

goal-oriented generation procedure to the three levels in Figure 3.3.

Algorithm GoalGen

Input: A testable object TO

Output: Test case T
1 .begin

2. collect all unvalidated du pairs into candidate du pairs list duList

3. while not time out

4. remove du pair P from the head of duList

5. TC = GoalGenAPair (P)
7. if success

8. return TC

9. else append P to the end of dttList

9. endif
10. endwhile
11. return NIL / no test case is generated*/

12. end

FIGURE 3.3: Algorithm for goal-oriented ATCG technique at all three levels

Overall, the kernel of the generation procedure in the goal-oriented technique

for a du pair is the three subprocedures: obtaining the break point on the

execution trace, creating a branch function for that break point, and searching

input values under the guidance of the branch function to exercise the desired

branch. We will discuss in detail how these three subprocedures function in

our technique in the next subsections. We present the material in the context

of the Forms/3 environment and the WYSIWYT methodology; however, the

technique could be implemented for other spreadsheet languages by appropriate

substitutions.

3.3.2 Taskl: obtaining the break point

A break point is an abstract object that maintains the information associated

with a branch during goal-oriented generation. It contains the break node, a de-

sired branch starting from that break node, and the branch function associated

with the desired branch. This subsection describes how our technique detects

the break node and determines the desired branch.

To detect the break point, constraint path information and execution trace

information are necessary. The execution trace information for a cell is available

under the WYSIWYT methodology, since each cell has a tracer to monitor its

execution flow. The whole execution trace concerned with a du pair is built by

concatenating the execution trace for the definition cell and the execution trace

for the use cell.

To obtain the constraint path associated with a particular du pair, we also

utilize some functionality provided in the WYSIWYT methodology. As we

described in Chapter 2, each cell has a cell formula graph (CFG). Starting from

the first node in a CFG, we can reach all the other nodes in that CFG. Thus,

in our goal-oriented ATCG technique, to obtain the constraint path for the

definition node, we find the CFG that the definition node belongs to, start from

the first node in that CFG, and recursively enumerate the path from there to

the definition node. In the constraint path for the definition, the definition node

is also included, together with the predecessor of that node, for the purpose of

29

identifying which branch is desired. In the same way as with the definition
node, we also obtain the constraint path for the use node in the du pair. In this

way, we construct the constraint path for the entire selected du pair. Figure 3.4

depicts the algorithm for finding the constraint path for a node.

Having the constraint path and the execution trace for a du pair, we obtain
the first break node and desired branch by pattern search. The algorithm used

to detect a break point is shown in Figure 3.5.

After obtaining the break node and the desired branch, we build the branch

function associated with it. We will discuss how to build a branch function
next.

3.3.3 Task2: creating branch functions

The branch function plays an important role in the search to find a solution
for a subgoal, i.e. exercising the desired branch. It is a real-valued function

that is created by transforming the desired branch's predicate expression into an

arithmetic expression. Based on different operators in predicate expressions and

desired branches, there are different ways to build a branch function. However,

to fulfill its role in the searching procedure and be sufficiently general, the branch

function designed for a particular type of predicate expression should have the
following properties:

Property 1: As a guide in the searching procedure, changes in the values of

the branch function should reflect changes in closeness to the goal. For
example, if the current input values are closer to the solution of the goal

than the previous ones, the current value of the branch function should

be greater than the value associated with the previous input values.

30

Algorithm getConstraintPath

Input: the goal CFG node gnode

Output: a list of CFG nodes CF
1 .begin

2. obtain the parent CFG of gnode, and the first node fnode belonging to that CFG
3. CP = ennmeratePath (f node, gnode)

4. return CP

5.end

Procedure enumeratePath

Input: the current node being enumerated, cnode, the goal CFG node, gnode

Output: a list of CFG nodes CF
1 .begin

2. let CF be empty

3. if cnode equals gnode

4. insert cnode onto the head of CF

5. else if cnode is a predicate node

6. CF = enurnerateFath (cnode.truebranchnode, gnode)

7. if CP is not empty
8. insert cnode.truebranchnode onto the head of CF

9. else
10. CP = enuineratePath (cnode.falsebranchnode, gnode)

11. if CP is not empty
12. insert cnode.falsebranchnode onto the head of CP

13. endif
14. else if
15. else if
16. return CF
17. end

FIGURE 3.4: Algorithm for obtaining the constraint path to a node

31

Algorithm getBreakPoint

Input: A execution path exePath, the constraint path CF
Output: A break point object BPoint
1.begin

2. let BPoint be NIL, let N be NIL

3. find the first node N that is in CP but not in exePath

4. if such an N exists

5. let BNode be the node just before N in CF

6. let DBranch be the branch connecting BNode and N

7. BPoint.breakNode = BNode, BPoint.desiredBranch = DBrarich
8. BPoint.branchFuric = getBranchFunc (BNode, DBranch)
9. endif
10. return BPoint /*returns NIL if no break point*/

11. end

FIGURE 3.5: Algorithm for obtaining the break point for a desired du pair

Property 2: The rule used to judge whether a branch function is improved

should be consistent across all branch functions, and the rules used to

determine whether a desired branch is exercised should be similar to one

another. For example, if rule one is "if the value of the branch function is

increased, then we are closer to the subgoal" and rule two is "if the value

is negative, then the desired branch is not exercised", then when new test

data causes the value of the branch function to change from -5 to -2, this

indicates that the desired branch is not exercised by this new test data

but it is closer to the subgoal.

Considering the two properties listed above, we first identify the general

criteria applicable to all branch functions:

32

1. Criterion 1: if the value of the branch function is negative, the desired

branch is not exercised;

2. Criterion 2: if it is positive (or equal to 0 in some cases), the desired

branch is exercised;

3. Criterion 3: if the value of the branch function is increased, but still

negative, the search that caused this change is considered a successful

search.

These criteria are similar to those used by the goal-oriented method presented in

[15, 17] except that in that work the roles of negative and positive are reversed.

Based on these criteria, we can design a branch function for each operator

and branch combination. The branch predicate expressions defined in Forms/3

are of the following form:

ElopE2

where E1 and E2 could be arithmetic expressions or predicate expressions, and

op is one of the relational operators >, , <, <,= , or the boolean operators

and, or, not defined in Forms/3. The desired branch could only be Trne Branch

or False Branch; since switch statements are simply sugar for nested "if"s,

supporting them would not require substantive change to the ATCG techniques.

It is relatively easy to create branch functions for predicate expressions con-

taming only relational operators. Based on the three criteria, we designed these

branch functions in a manner similar to that used by Korel for imperative

programs [17]. The branch functions for predicate expressions containing only

relational operators are shown in Table 3.1, where E1 and E2 are arithmetic
expressions.

33

Predicate

Expressions

True

Branch

False

Branch

satisfaction

condition

E1>E2 F=E1E2 F=E2E1 F>O
E1E2 F=E1E2 F=E2E1 F>O
E1<E2 F=E2E1 F=E1E2 F>O
E1<E2 F=E2E1 F=E1E2 F>O
E1 = E2 F = abs(Ei E2) F = abs(Ei E2) F = 0 (true)

F > 0 (false)

TABLE 3.1: Rules for creating branch functions for predicate expressions con-
taining only relational operators

To illustrate, suppose the break node is a predicate node in cell c and the

predicate expression is "if(a > b)". Assume the desired branch is the True

Branch. Looking in Table 3.1, we obtain the branch function f(a> b, true)

a b. Suppose cell a's value is 3 and cell b's value remains 5, then the value

of this branch function is -2. If cell a's value is changed to 7 and cell b's value

is 5, then the value of this branch function is increased to 2, which meets the

satisfaction condition and indicates that the desired branch is exercised.

Next we discuss how to create branch functions for more complex predi-

cate expressions including relational operators and boolean operators. Korel

addresses only the relational operator branch functions in [15, 17], and does not

discuss how to deal with the boolean operators. Since the boolean operators

occur frequently in spreadsheets, we address this absence in our goal-oriented

technique.

Designing branch functions for predicate expressions containing boolean op-

erators is not as straightforward as for those containing only relational operators.

34

Predicate True False
Expressions Branch Branch
E1 and E2 if (f(Ei,true) <0) and (f(E2,true) < 0) if (f(Ei,false) < 0) and (f(Ei,false) <0)

then F = f(Ei,true) + f(E2,true) then F f(Ei,false) + f(E2,false)
else F = rnin{f(Ei true), f(E2, true)} else F = max{f(Ei,false), f(E2, alse))

or E2 if (f(Ei ,true) < 0) and (f(E2,true) < 0) if (f(E1 ,false) < 0) and (f(Ei,false) < 0)

then F = f(Ei,true) + f(E2,true) then F = f(Ei,false) + f(E2,false)
else F = max{f(Ei,true),f(E2,true)} else F = rnin{f(Ei,false),f(E2,alse)}

not E1 F = f(Ei,true) F = f(Ei,false)

TABLE 3.2: Rules for creating branch functions for predicate expressions con-
taining boolean operators

However, no matter how complex a predicate expression is, the branch function

associated with it must have the two properties listed above. In addition, since

the values of the subexpressions being operated on by the boolean operators af-

fect the value of the whole expression, instead of creating a totally new branch

function for expressions containing boolean operators, we build branch functions

based on the branch functions for the subexpressions.

The rules for creating branch functions for the three kind of boolean opera-

tors and, or, and not upon two desired branches TrueBranch and FalseBranch

are described in Table 3.2. In this table, E1 and E2 could be any predicate ex-

pressions (including an expression containing boolean operators); f is a function

which accepts an expression and the desired branch as input and then outputs

the branch function for the desired branch of the given expression. For example,

f (E1, true) represents the branch function for the true branch of E1.

Among the three boolean operators, designing the branch function for the

not operator is easiest. According to not's logical meaning, we simply build

35

the branch function for the desired branch by adding a negative sign before

the branch function for the subexpression with the same desired branch. More

precisely, if the goal is to exercise the true branch of predicate not E1, then

the branch function is the negative branch function of the true branch of E1;

similarly, if the goal is to exercise the false branch, then the branch function

is the negative branch function of the false branch of E1. Thus, whenever the

subexpression is true (the value of its true branch function is greater than 0),

then the value of the true branch function for the whole expression is less than
0, which means the true branch of the expression with the not operator is not

exercised. For example, if the predicate expression is "not (a > b)" and the
goal is to exercise the true branch, the branch function F for this goal is f(not

(a > b), true) = f(a > b, true) = (a b). Assuming cell a's value is 7 and

cell b's value is 5, then the value of the branch function for the true branch of
expression "not (a > b)" is -2.

The rules for and and or operators are more complex than those for the not

operator. Since there are two subexpressions with these operators, based on the

logical meaning of those operators, we reduce the goal of a desired branch into

one or both of the subgoals. For example, to exercise the false branch of an

and expression, we could exercise either the false branch of the sub expression

on the left side, or the false branch of the sub expression on the right side. In

some cases, the goal will be achieved only if both subgoals are achieved, while

in other cases, achieving either one of the subgoals will achieve the final goal.

In addition, the subgoals might not be achieved at the same time. Based on the

three criteria, we design branch functions for these operators according to the
following rules:

36

If neither of the two subgoals is satisfied, then any effort toward either

one is considered positive, whether or not both subgoals are required to

be met. So in this case the branch function is represented as the sum of

the two sub-branch functions. For example, if the two subexpressions are

false and the expression contains an and operator and we want to exercise

the true branch, then the true branch function is the sum of the two true

sub-branch functions. Any improvement in either of the true sub-branch

functions will increase the value of the whole branch function.

Obviously, if both the subgoals are achieved, the goal is achieved. In this

case, the branch function could be either of the sub-branch functions, since

both of them are non-negative. We use the one with the smaller branch
function value.

If one of the two subgoals is achieved while the other is not, then the final

goal may or may not be achieved, depending on the number of subgoals re-

quired. In the case where only one subgoal is required, the branch function

is the branch function of the subgoal that is achieved. In other words, the

branch function is the sub-branch function with the non-negative value,

thus the branch function for the final goal is also positive. For exam-

ple, when we want to exercise the true branch of the or expression, and

only the first subexpression is true, then the branch function is the sub-

branch function of that subexpression. In the case where two subgoals

are required to achieve the final goal, the branch function for the final

goal takes the sub branch function that is not achieved (the one with the

smaller branch function value). The reason for this is that we want to

focus on the subgoal that is required but not achieved yet, so increasing

37

the value of the branch function for the subgoal already met will not be
achieving the final goal.

The general rule is, if the final goal is not achieved, then we focus on the

subgoal that has not been achieved yet.

Now we use an example to illustrate how we use the rules in Table 3.1 and

Table 3.2 to create branch functions. Figure 3.6 shows part of a spreadsheet,

including cells a and b which are input cells, and cell c which is an output
cell. Currently cell a's value is 7 and cell b's value is 15. Suppose in the

process of exercising a particular du pair, we break at the predicate in cell

c and we want to exercise the true branch of that predicate. The predicate

of cell c is "(a < 5)and(not(b > 3))". Since this predicate is an and type
predicate, we first calculate the values of the two sub branch functions based on

the rules given in Tables 3.1 and Table 3.2: v1 = f(a < 5, true) = 5 a = 2,
v1 = f(not (b > 3),true) = f(b > 3,true) = 3 b = 12. According
to the rule in Table 3.2 and the values of v1 and v2, we obtain the branch
function F = f(a > 5,true) + f(not(b < 3),true) = 5 a + ((b 3)).

The value of this branch function associated with the current input value is
(-2) + (-12) = 14, which indicates the goal is not achieved and the distance

between the current input values and the solution is -14. Assume cell b's value

is changed to 0 and cell a is kept at 7. To obtain the branch function, we

recalculate the values of the two sub branch functions based on the current
input values. Now the value of the second sub branch function is +3 and the
value of the first sub branch function is still -2, which indicates the current
branch function F = inin{f(a <5, true), I (not(b> 3))} = 5 a, and the value

is 2. We can see that we still have not achieved the goal (since the branch
function is still negative) but we are closer to the goal (the value changed from

L1
CELL MATRIX

RADIO OPTION

Hide
I

Foiin Help
I

Cut Cell
I

Paste

T,oral View
Help Me Test

Sh, Test
Data

15

15

a b

C f C (a<5) and (not
then a
else b

FIGURE 3.6: A simple spreadsheet

(b > 3))

'I,]

14 to 2). Next, assume we change cell a's value to 4 and cell b's value
remains 0. Under these input values, the values of both sub branch functions

are positive. So the value of the branch function under these input values is

F = rriin{f(a < 5,true),f(not(b > 3))} = 5a = +1. The positive result
indicates that our goal is achieved.

The rules for creating branch functions for predicates could also apply to

predicates that contain multiple boolean operators. For example, if the form of

the predicate is E1 and E2 and E3, we could first transform this predicate to

the form (E1 and E2) and E3, then apply the rules to it as a simple boolean

type predicate. These rules are suitable for predicates in imperative programs

too. However, our method for creating branch functions has some limitations.

39

For example, we have not yet considered predicates that contain only a single

boolean type variable or a function that returns a boolean type value, such as

Islnteger(i)" where Islnteger is a function that returns a boolean value.

These limits must be addressed in future work.

3.3.4 Task3: searching for the solution

We now describe how we search for the solution of a subgoal under the guidance

of the branch function. The whole search procedure is performed by comparing

the successive values of the branch function. If the branch function is negative

and closer to 0, we consider that we are closer to the solution. Similar to the

search in Korel's goal-oriented method [15], the search procedure in our goal-

oriented technique varies the input cells in turn, aiming to increase the value

of the branch function. In order to speed up the search procedure, we consider

only those input cells that could affect the value of the branch function. We

determine these by doing backward data dependence analysis on data provided

by the WYSIWYT methodology. We alternatively perform a one-dimensional

search on each cell in the set of relevant input cells until the subgoal is achieved

or no progress toward the subgoal can be made searching any input cells. In

the latter case, it means that we have failed to exercise the desired branch.

A one-dimensional search on an input cell starts with an "exploratory search",

then turns into a "pattern search". The exploratory search moves the value of

the given input cell by a small step. Through this small probe, it determines

whether changing the given cell could make any progress toward the subgoal.

If it could not, then the one-dimensional search terminates. If it could, this

suggests a search direction for the pattern search. Assuming the initial probe

shows that changing the given input cell can make progress, the pattern search

continues searching on that cell in the direction suggested by the initial search

using a larger move, monitoring the branch function and the possible constraint

for violation. If the branch function is improved, the pattern search continues

with a doubled move step. This procedure continues until no progress is made

or a constraint is violated. Then the move step is reduced as necessary.

We illustrated how we create branch functions when the input values change

through an example in the previous subsection. Now we will illustrate how we

search for input values under the guidance of the branch function using the same

example. Assume our subgoal is still to exercise the true branch of the predicate

in cell c. The initial values in cell a and cell b are 7 and 15, respectively. The

value of the branch function under the current execution is -14. We begin by

obtaining the input cells which may affect the predicate: in this case, cell a and

cell b. Assume we begin with cell b and keep cell a fixed. An exploratory search

on cell b decreases cell b's value by 1 and improves the branch function by 1

(from -14 to -13). This suggests that searching in the decreasing direction might

improve the branch function. Thus, we perform three continuously successful

searches which decrease cell b by 2, 4, and S respectively, with cell b's value

changed to 0 and the value of the branch function changed to -2. Since all three

previous searches have been successful, we decrease cell b by 16 (to a value of

-16). Since the second subpredicate is already satisfied when b's value is 0 but

the first subpredicate is still not satisfied, any improvement on the sub branch

function does not improve the whole branch function. Since the branch function

is not improved, we reset cell b's value to 0 and try to decrease cell b with a

smaller step. Finally the search on cell b terminates since no further move on

it improves the branch function. Now we turn our attention to cell a and keep

41

b's value at 0. In a similar way, the exploratory search detects that decreasing

cell a's value by 1 improves the branch function to -1. Decreasing by 2, cell a's

value is changed to 4, and the branch function is changed to +1. A solution has

been found and the desired branch is exercised.

The search strategy we used here is directly searching on input cells. Its

effectiveness is affected by the depth of a du pair (the levels of cell reference

between the input cells and a du pair). When a du pair's depth is great, the

small progress made by exploratory search may be absorbed by the intermediate

cells and is not reflected in the value of the branch function of that du pair. In

this case, the exploratory search could not suggest a searching direction for the

pattern search. Therefore, it is possible for the goal-oriented technique to fail

to find a test case to exercise that du pair.

3.4 ATCG from the user's view

We prototyed our ATCG methodology for spreadsheets in Forms/3. The visual

effect of our initial implementation could be illustrated by the example given in

Figure 2.2. Suppose an end user is partially through testing this spreadsheet.

The testedness indicator located on the left side of the control panel shows that

66% of the du pairs in the spreadsheet have been tested. If at that time the end

user wants help finding another test case that increases testedness, she could

ask for help from the underlying ATCG technique by clicking the "HelpMeTest"

button in one of three ways:

1. She could ask for help to generate test case for this spreadsheet by directly

clicking the "HelpMeTest" button. The ATCG technique will attempt to

generate a test case that could increase the testedness of that spreadsheet.

42

2. The colored border of cell "GrossPay" may alert the end user that cell

"GrossPay" is not completely tested, and she may wish to increase the

testedness of cell "GrossPay". She could ask for a test case for cell "Gross-

Pay" by selecting that cell, and then clicking on the "HelpMeTest" button.

In this case, our underlying ATCG technique will work on that selected

cell and attempt to generate a test case that will increase the testedness

of the selected cell.

3. Through the colored arrows, the end user may know which particular

interactions (definition-use pairs) are untested. She could ask for help from

our ATCG methodology by simply selecting the arrow associated with that

untested du pair and clicking the "HelpMeTest" button. Our underlying

ATCG technique will find out which du pair the user is interested in, and

generate a test case that could allow that du pair to be tested.

During the generation procedure, input cells' values are kept unchanged

to the end users' view, until the underlying ATCG technique generates a test

case successfully. Then the system automatically updates the input cells' values,

showing the test case and its effects on the screen. There will be a question mark

in some output cells to prompt the end user to validate the results associated

with the generated test case. If the end user prefers to try a different test

case, our ATCG methodology will help in the same way but will generate a

new test case. Figure 3.7 illustrates the visual feedback given by the ATCG

methodology after it generates a test case as the user requested. The check box

of cell GrossPay changes to contain a question mark, indicating that some du

pairs that have not been tested before are exercised under the current inputs,

and cell GrossPay is one sink cell of those du pairs.

43
CroTsPa I -MI

ca p
12

1
1

RO1O T1 Tue eel Thu jj Fri

Teetel

Hide
I

r Reip

cut Cell

Paate

Ter,erai vieel
Help Me Teet

Hide Teet
Date

FIGURE 3.7: Spreadsheet GrossPay. Inputs show a new test case automatically
generated after a user has requested help.

3.5 Evaluating the methodology

There are many questions to be empirically investigated to determine whether

our methodology works, including the question "can people use it?" But user

studies are complex, and before we consider that question, there are a number
of others to consider. For example, if we cannot generate inputs effectively,

there is no point in conducting any user study. Thus, as our first question we

investigate whether our ATCG techniques can find test cases to execute most
dupairs in spreadsheets.

Since our ATCG methodology could assist end users in generating test cases

at three levels, the whole spreadsheet level, the cell level and the du pair level,

our initial thought was to conduct a family of experiments which investigate our

methodology at those three levels. The experiment at the whole spreadsheet

level is necessary since an end user may solely depend on our ATCG method-

ology to generate test cases to test the whole spreadsheet. However, empirical

studies of our WYSIWYT testing methodology show that it is not too difficult

for testers to find some test cases by themselves initially [27]. Eventually, how-

ever, users find it difficult to find test cases to cover untested du pairs. This

suggests that the request for testing part of the spreadsheet is often important

to meet too. It seems that experiments at the cell level and at the du pair

level could both examine this. Since generation at the du pair level addresses

the generation process for an individual du pair, whereas generation at the cell

level is similar to the generation at the whole spreadsheet level in generating

test cases for a list of untested du pairs, we choose to perform experiments at
the du-pair level and at the spreadsheet level in this study. Future studies can

investigate the methodology at the cell level.

45

Chapter 4

EMPIRICAL STUDIES ONE: SPREADSHEET LEVEL

To empirically examine the effects of employing ATCG techniques at differ-

ent levels in spreadsheet languages, we conducted a family of experiments. Our

experiments focus on the random and the goal-oriented techniques described in

Chapter 3. Since the main goal of ATCG is to help testers generate test cases

for a whole spreadsheet, our first empirical study is designed to evaluate the two

test case generation techniques when they are applied to whole spreadsheets.

An additional consideration is whether the availability of explicit range in-

formation stated bounds on the expected values of input cells affects test

generation techniques. Sometimes end users may have knowledge of the ex-

pected range of values that might be given to input cells, and using this explicit

range information, ATCG techniques may be more effective and efficient. In

some cases, however, especially with end users who have no testing background,

it may be difficult for them to determine what these input ranges should be. In

such cases, users may depend solely on the test case generator without provid-

ing any hints. Thus, our ATCG techniques are designed to work both with and

without explicit range information. To empirically examine effects related to

range information, we implemented two experiments at the whole spreadsheet

level. This chapter presents these experiments.

We begin with a discussion of issues common to both experiments in Sec-

tion 4.1 through Section 4.5. Section 4.6 presents the design and results of an

experiment without explicit range information. In Section 4.7, we describe the

design and the results of experiment with explicit range information. Then, we

discuss the threats to validity for these experiments in Section 4.8. Finally, a

discussion is given in Section 4.9.

4.1 Research questions

At the whole spreadsheet level, we are interested in the following questions:

RQ1: Can we automatically generate test cases that execute a large proportion

of the feasible du pairs in a spreadsheet at the whole spreadsheet level,

either with or without range information?

RQ2: How do the two test case generation techniques we consider compare to

each other in terms of effectiveness and efficiency at the whole spreadsheet

level, with or without range information?

4.2 Measures

To measure a test case generation technique's effectiveness at the whole spread-

sheet level, we measure the quality of the test cases it generates. Since our

underlying testing system uses du-adequacy as a testing criterion, we use the

proportion of feasible du pairs executed by the generated test cases as our mea-

surement of effectiveness. We gather this metric incrementally over the course

of testing: we automatically record the new cumulative testedness whenever a

new test case is generated.

47

Since our test case generation methodology is designed to help end users

automatically generate test cases, efficiency is also an important issue. To

measure a test case generation technique's efficiency at the whole spreadsheet

level, we measure the speed of test case generation: the clock time needed to

generate test cases sufficient to achieve various levels of testedness.

4.3 Subjects

In this study we used eight relatively small but nontrivial spreadsheets as sub-

jects. Most of these spreadsheets had been used previously in another study

of the WYSIWYT methodology [24, 27]. Table 4.1 provides some data about
these subjects. These spreadsheets perform a wide variety of tasks: Digits is a
number to digits splitter, Grades translates quiz scores into letter grades, Fit-

Machine and MicroGen are two simulations, NetPay calculates an employee's

income after deductions, PurchaseBudget determines whether a proposed pur-

chase is within a budget, Solution is a quadratic equation solver, and NewClock

is a graphical desktop clock.

Since our initial implementation of the test case generation techniques de-

scribed in Chapter 3 handles only integer type inputs, all input cells in these

subject spreadsheets are of integer type. Since commercial spreadsheets contain

infeasible du pairs [27], all subject spreadsheets in our experiments also contain

infeasible du pairs. We determined all the infeasible du pairs through careful

inspection.

spreadsheets

No. of

cells

No. of

dii pairs

No. of

feasible du pairs

No. of

expressions

No. of

predicates

Digits 7 89 61 35 14

Grades 13 81 78 42 12

MicroGen 6 31 28 16 5

NetPay 9 24 20 21 6

PurchaseBudget 25 56 50 53 10

Solution 6 28 26 18 6

NewClock 14 57 49 39 10

FitMachine 9 121 101 33 12

TABLE 4.1: Data about experimental subjects

4.4 Experiment environment

We prototyped the two ATCG techniques presented in Chapter 3, the ran-

dom technique and the goal-oriented technique, in Forms/3. We chose Forms/3

because we have access to its implementation, and therefore, we could easily

implement and experiment with ATCG techniques within its environment.

4.5 Method

Examining our research questions requires us to apply our ATCG techniques

to our subject spreadsheets and collect our measures of interest. However, no

end users are involved in this study; rather, our experimentation requires us to

simulate end users by applying our ATCG techniques multiple times to multiple

1!J

spreadsheets, in a controlled fashion. This requires automation; thus we use

automated scripts in our experiments. These scripts repeatedly invoke our test

case generation techniques and gather measurements. The use of these scripts

raises several issues. We describe these issues and how our scripts address those

issues here.

4.5.1 Automatic validation

Validation plays an important role in the WYSIWYT methodology. The whole

testing procedure under WYSIWYT is divided into two steps: first, finding a

test case that executes one or more untested du pairs in the spreadsheet; sec-

ond, validating output cells as prompted to mark executed du pairs as "tested".

Since we are interested only in the test case generation procedure and do not

have users performing validation, our scripts automatically validate all validat-

able output cells whose validation would cause some du pair to be considered

exercised.

More precisely, after any new test case is generated, our scripts check all the

cells affected by the changed input cells. Those cells that are sinks of du pairs

not previously validated, but that are now exercised by the given test case, are

considered to be validatable cells. Our scripts automatically validate all such

validatable cells.

J.5.2 Feasible and infeasible du pairs

For the purpose of measuring effectiveness, we consider only coverage of feasible

du pairs; this lets us make fair comparisons between subject spreadsheets. We

can do this since we already know the infeasible du pairs for all subject spread-

50

sheets through analysis. However, in practice, our ATCG techniques would be

applied to spreadsheets containing both feasible and infeasible du pairs. So

we keep the infeasible du pairs in our subject spreadsheets when we apply the

two ATCG techniques. In this way, we can also initially investigate our ATCG

techniques' effectiveness at identifying infeasible du pairs, through comparing

the du pairs remaining unexercised with the known infeasible du pairs.

4.5.3 Time limit

When used by an end-user, ATCG techniques generate only one test case at a

time. In our study, to force our ATCG techniques to continuously generate test

cases, in addition to applying automatic validation, our scripts continuously ap-

ply the ATCG techniques to the subject spreadsheet after each auto-validation.

To address our first research question, our scripts must provide enough time for

our ATCG techniques to generate test cases. Obviously the techniques would

stop if 100% du-adequacy were achieved; however, since each subject spread-

sheet contains infeasible du pairs, and our generators are not informed as to

which du pairs are executable, this condition will never occur. Moreover, even

for spreadsheets that contain no infeasible du pairs, we do not know whether

the test case generation techniques we consider could generate test cases for all

feasible du pairs. Thus, we use a timer with a time limit sufficient to make our

ATCG techniques reach a likely limit in their generation ability, as well as stop

them in case only infeasible du pairs remain.

In order to investigate what time limit to use in our experiments, we per-

formed several trial runs with very long time limits per script. We found from

the results that for all subject spreadsheets, no additional test cases were found

51

after the scripts had run for 1200 seconds. Of course, in general, it is possible

that with additional time, additional test cases would be discovered. However,

our runs suggest that this is unlikely. In addition, since our ATCG method-

ology is designed for the end users, users may prefer quick feedback to a long

generation process. Moreover, we attempt to balance the need for the longer

time limit per script with the overall time needed for all the empirical studies.

Thus we used 1200 seconds as the time limit in our scripts.

4.5.4 Initial values

Another consideration that might affect the effectiveness and efficiency of ATCG

techniques is the initial values present in spreadsheet cells when testing begins.

The random test case generation technique randomly generates input values

until it finds a "useful" one, while the goal-oriented technique starts from the
current value the input cells have, and searches the input space under the guid-

ance of a branch function until it finds a solution. Thus, the random technique

is independent of initial values whereas they could affect the goal-oriented tech-

nique. It follows that our empirical results on the goal-oriented technique (and

thus our comparisons of the two techniques) may vary under different initial

values. To control for this possibility, we run our experiments 35 times on each

spreadsheet, using different input values for each run. To facilitate our compar-

ison of the ATCG techniques, in each run, both techniques start from the same

set of initial values.

52

4.5.5 Range information

Input range information is another important consideration for ATCG tech-

niques. The random technique requires a range within which to randomly select

an input value, and the goal-oriented technique needs to know the edge of its

search space. Since all input cells in our subject spreadsheets are of integer

type, here we consider only the provision of ranges for integer type inputs. We

discuss two ways to meet this requirement here.

One possible scenario is that the user may depend solely on the test case
generator to generate test cases without providing any hints about input ranges.

In that case, with no explicit range information available, the ATCG techniques

will consider all possible cell values within the default range of the data type.

Our first experiment at the whole spreadsheet level is designed to model this
scenario. On our system, the default range used was -536870912 to +536870911.

We determined that this default range is large enough to provide inputs that

can execute every feasible du pair in each of our subject spreadsheets.

A second possible scenario is that via a user's help or a range informa-
tion analysis tool, the ATCG techniques could obtain more precise knowledge

of range information. With explicit ranges, both techniques will limit their
search space to the specified ranges and generate test cases exactly within these

ranges. This might improve test case generation. To investigate this possibility

and investigate research questions concerned with explicit ranges, we employed

another experiment. In this experiment, the two techniques generate test cases

based on ranges provided per input cell. No tool or user's help are available

in Forms/3 to obtain input ranges at present. Thus, to obtain range informa-

tion for all input cells in our subject spreadsheets, we carefully examined the

spreadsheets, considering their specifications and their formulas. Then we cre-

53

ated an original range for each input cell that seemed appropriate based on this
examination.

The range information we initially created specified only input values ex-

pected in normal cases. This might create a problem. To achieve 100% test

adequacy, test cases should not only exercise expected inputs, but also exercise

inputs that may lead to error cases in the spreadsheet. Users might be par-
ticularly interested in the test cases that detect these error cases to uncover

potential faults. In practice, users might expand ranges to include error values;

alternatively, ATCG tools might expand ranges. To model this, we chose to
include input values outside of expected ranges by expanding our initial ranges

by 25% in both directions. These expanded ranges were the ones we used in
this experiment.

. 5.6 Experimental procedure

As Figure 4.1 shows, for each spreadsheet S, for each of the 35 runs, we did
the following. First we loaded S into Forms/3 (line 4), and then we randomly

selected a set of input values within the target ranges (explicit or default),
applied them to the input cells in S, and then we saved S (lines 5-6). Next

(lines 7-11) for each technique (random and goal-oriented) we loaded S again
with the same initial values1 and repeatedly applied the technique to S until
time out.

1 In this algorithm, to reduce the possibility that our timing measurements would be inappro-
priately influenced by Forms/3 caching, we completely quit Forms/3 and reenter Forms/3
before apply each ATCG technique to a subject spreadsheet.

54

Algorithm FormsATCG
Input: Set of subject spreadsheets SS , set of ATCG techniques TG
Output: Set of result files RF[35][8][2}
I .begin
2. for each spreadsheet S in SS
3. for (run = 1; run < 35 ;run ++)
4. invoke Forms/3 and load S
5. randomly initialize input values within ranges and apply them to input cells in S
6. save spreadsheet S and exit Forms/3
7. for each ATCG techniques T in TG
8. invoke Forms/3 and load S / with input values saved in step 6 /
9. R= ApplyATCGtoForrn(S,T)
10. write Record R to result file RF[run][S]T, then exit Forms/3
11. endfor
12. endfor
13. endfor
14. end

Procedure ApplyATCGtoForms 5, T
Input: Subject spreadsheet 5, ATCG technique T
Output: Record of testedness and time RL
15.begin
16. while not time out
17. apply ATCG technique T on spreadsheet S
18. if new test case TCis generated
19. for each validateable cell C arisen by test case TC
20. Validate(C)
21. record testedness and time in RL
22. endfor
23. endif
24. endwhile
25. return RL
26. end

FIGURE 4.1: Algorithm for experiments at the whole spreadsheet level

55

4.6 Experiment 1A: with no explicit range information

Our first experiment evaluated automatic test case generation techniques on

eight subject spreadsheets without explicit range information.

.4.6.1 Experiment design

The two independent variables manipulated in this experiment are:

The eight subject spreadsheets

. The test case generation techniques: Random and Goal-oriented

We measured 2 dependent variables:

. testedness

Average time needed to reach successive levels of testedness

This experiment was run using an 8 x 2 factorial design with 35 different

initial input configurations per spreadsheet. For each subject spreadsheet F, we

applied each of our two test case generation techniques starting from 35 sets of

initial inputs. On each run, we measured the times at which untested du pairs

were exercised. These measurements provided the values for our dependent

variables. These runs yielded 560 sets of testedness and time values for our

analysis.

4.6.2 Data and analysis

Fig 4.2 depicts the mean cumulative testedness achieved over the 1200 seconds

by the two test case generators in 35 runs. Each plot depicts results for one

56

subject spreadsheet. In the plots, the two lines represent the mean cumulative

testedness achieved over time across the 35 runs. The darker line represents the

random technique and the lighter line represents the goal-oriented technique.

As we can see from the plots, the goal-oriented technique achieved coverage

gradually. The generated test cases eventually executed more than two-thirds

of all feasible du pairs for all subject spreadsheets: final testedness ranged from

0.68 to 1.0. On three of the eight spreadsheets (MicroGen, NetPay and So-

lution), the goal-oriented technique eventually achieved 100% du coverage; on

another three spreadsheets (PurchaseBudget, NewClock, and Fit-Machine), al-

though the goal-oriented technique did not exercise all the du pairs, it achieved

greater than 90% du coverage eventually; on Grades and Digits, the goal-

oriented technique achieved 82% and 68% du coverage, respectively.

The random generation technique typically achieved coverage rapidly at the

beginning, then achieved no additional success over time. The final testedness

reached by the random technique varied from 0.26 to 0.96. For PurchaseBud-

get, the random technique reached almost 100% du coverage; for Grades and

MicroGen, it covered about 70% of the feasible du pairs; for the other four

spreadsheets, it covered less than 60% of the du pairs. Digits was especially

troublesome: only 26% of its feasible du pairs were exercised by the test cases

generated by the random technique.

Comparing the two techniques, we can see that, for most spreadsheets,

the testedness eventually achieved by the goal-oriented technique is noticeably

higher than the testedness achieved by the random technique. In two excep-

tional cases, Grades and PurchaseBudget, the goal-oriented technique achieved

slightly less testedness than the random technique did. On the other hand,

the goal-oriented technique did not always occupy the leading position over

Digits
1.2

.8
U)
C

.6
0,

2 .4

.2

0
0 200 400 600 800 1000 1200

MicroGen
1.2

.8
0) j
)0
U).
C

2 .4
0,
II)

.2

0

0 200 400 600 800 1000 1200

PurchaseBudget

1.21
. I

1 1
. ..,y

.8HZ
U)
C .6:
2 .4

.2

0

0 200 400 600 800 1000 1200

NewClock

1.2-

.8
a)
C
0 6 .

I)) -.

2 .4

0

1.2

.8

.6

.4

.2

0

Grades 57

0 200 400 600 800 1000 1200

NetPay
1.2

1

.8 X

.6

.4

.2

0
0 200 400 600 800 1000 1200

Solution
1.2

1 .-'
.8

.6

1

.2

0
0 200 400 600 800 1000 1200

FitMachine
1.2

.8

.6

.4

.2

0
0 200 400 600 800 1000 1200 0

Random

Goal-oented

200 400 600 800 1000 1200

FIGURE 4.2: Test case generation efficiency and effectiveness at the whole
spreadsheet level with no explicit range information provided. Graphs show the
average cumulative testedness (ranging from 0.0 to 1.0) over 1200 seconds on
eight subjects in Experiment 1A.

the whole generation procedure. On six spreadsheets, the random technique

achieved coverage faster than the goal-oriented technique initially. However,

the random technique did not progress further after a brief period, whereas the

goal-oriented technique, although slower initially, continued to make progress.

For NetPay and Solution, it seems that the random technique lost its ability to

make progress so soon that the goal-oriented technique was always better.

Observing the mean cumulative testedness achieved in Figure 4.2, we can see

that the speeds of generation are different for the two ATCG techniques. In that

figure, the two lines representing the two techniques usually cross at some time.

In some spreadsheets, the thin line (representing the goal-oriented technique)

achieved lower testedness initially than the thick line (representing the random

technique). Later the thin line grows faster than the thick line, achieving the

same mean cumulative testedness at some time and then eventually reaching

higher testedness than the thick line.

Figure 4.2 only depicts the mean cumulative testedness achieved by the two

techniques over the 35 runs. We are also interested in the distribution of the

testedness values achieved by the two techniques at a particular time over the

35 runs, and this requires further analysis. However, comparing the testedness

achieved by the two techniques at every second over the total 1200 seconds is

not necessary. Instead, we choose to compare the results over the 35 runs at

two times. Time T1 is a time before the time when the two techniques achieved

the same testedness (if they did not meet at any time, then the 10 second mark

is selected); time T2 is a time after testedness achieved by the two techniques

has reached its final level. Since for different spreadsheets, the times at which

the two techniques achieved the same mean cumulative testedness are different,

the times T1 and T2 used in our analyses differ across our spreadsheets.

Timel

1.2

.8
0)
a

.6

0
a

.2

0

0
0

0'

0 ®

4

2'0 2 a0 z

Time2
1.2

.8

.6

a
a

.2

0

a
C
2
()

a (ID
8 a
aaa z

u_

a-

I-s-

-L

a- C a2
0

a
, 2

2 az m a a
2 aa

(1) a =a LL

e
0

Goal-oriented

Random

[] Goal-oriented
Random

59

FIGURE 4.3: Test case generation efficiency at the whole spreadsheet level
with no explicit range information provided. Boxplots show the distribution of
testedness (ranging from 0.0 to 1.0) at two times. For each spreadsheet, two
box plots are given: the left plot depicting data for the goal-oriented technique,
the right plot depicting data for the random technique.

Figure 43 shows box plots of the cumulative testedness achieved at times
T1 and time T2 by the two ATCG techniques on the eight spreadsheets. A
box plot is a graphical representation of a data set that visually depicts the

distribution and the direction of skewness. In each box plot, the box indicates

the range in which the middle half of the data falls (interquartile range). The

line with a bold dot denotes the median. The whiskers above and/or below

boxes indicate ranges over which the lower 25% and upper 25% of the data

falls, respectively. All other data points that fall within a distance greater than

1.5 times the interquartile range are considered outliers, represented by small

circles. As the box plots at time T1 show, on six of the eight spreadsheets, the

random technique achieved greater testedness than the goal-oriented technique

did at time T1. The goal-oriented technique only achieved greater testedness at

time T1 on NetPay. On Solution, the techniques achieved the same testedness.

At time T2, the goal-oriented technique achieved noticeably greater testedness

on six spreadsheets. On Grades and PurchaseBudget, the differences are not

so obvious. To formally assess the differences in testedness achieved by the two

techniques over the 35 runs at times T1 and T2, we performed a group of paired

t-tests, in which if the p-value is less than or equal to 0.05 the mean difference

is considered significant. The results displayed in Table 4.2 confirm our box

plot observations. In addition, they show that at time T1, on all subjects, the

testedness achieved by the two techniques were widely different; at time T2,

results were widely different on four subjects.

4.7 Experiment 1B: with explicit range information

To address our research questions concerning the use of range information, we

performed another experiment using such information.

4.7.1 Experiment design

The experiment was identical to the first experiment, using the same subject

spreadsheets and design, except that explicit ranges were used.

61

Time 1 Time 2

spreadsheets Mean Duff. t-Value P-Value Mean Duff. t-Value P-Value

Digits -.109 -78.483 <.0001 .538 13.658 <.0001

Grades -.266 -78.653 <.0001 -.001 -.101 .9200

MicroGen -.282 -13.543 <.0001 .279 72.989 <.0001

NetPay .218 17.712 <.0001 .586 97.600 <.0001

PurchaseBudget -.320 -17.649 <.0001 .006 1.966 .0576

Solution .007 1.000 .3244 .419 136.779 <.0001

NewClock -.119 -30.672 <.0001 .409 144.225 <.0001

FitMachine -.284 -236.863 <.0001 .406 104.650 <.0001

TABLE 4.2: Paired t-test for Experiment 1A

4.7.2 Data and analysis

Similar to Figure 4.2, Figure 4.4 shows the average cumulative testedness achieved

over time by the generated test cases when providing explicit range information

for the input cells, for the two techniques. Since these two techniques made no

additional progress in the later 400 seconds of the 1200 seconds time limit, we

display the generation effectiveness and efficiency over the first 800 seconds.

Examining Figure 4.4, the graphics show that the use of explicit ranges pro-

duced improvements in final testedness in all cases in which improvements were

possible. More than half of the subjects were almost fully tested by the random

technique, and the goal-oriented technique reached greater than 85% testedness

on all spreadsheets. Solution was the only spreadsheet on which the random

technique did not achieve within 15% of the goal-oriented technique: the ran-

dom technique exercised only 63% of its du pairs, whereas the goal-oriented

Digits

1:

J:

Grades

0 100 200 300 400 500 600 700 600 0 100 200 300 400 500 600 700 800
MicroGen NetPay

1.2 I I I

cc .8 :
0,
ci,

I

.2

0

0 100 200 300 400 500 600 700 800

PurchaseBudget
1.2

0, .8
cc
1)

C
D .6
a)

cc)

.4

.2

0

1.2

.8

.6

.4

.2

0

1.2

.8

.6

.4

.2

0

0 100 200 300 400 500 600 700 800
time

Solution

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
NewClock FitMachine

1.2 I I I 1.2

1 1

.8. .8
cc)

a)

lIlIlic 0

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Random

Goal-oriented

62

FIGURE 4.4: Test case generation efficiency and effectiveness at the who'e
spreadsheet level with explicit range information provided. Graphs show the
average cumulative testedness (ranging from 0.0 to 1.0) over 1200 seconds on
eight subjects in Experiment lB.

63

technique achieved noticeably larger testedness (100%). For the other seven

subjects, the final testednesses achieved were not widely different. In addition,

considering overall results, both techniques made progress on the rate of gener-

ation at the beginning: the goal-oriented technique is faster than it was without

range information. However, the random technique still achieved coverage a

little faster initially than the goal-oriented technique on most subjects.

T,mel
1.2

, .8
a)
a)

.6
a)
a).4

.2

0

: a-
2
.9 z

Time2
1.2

.8
a)

.2

0

C
0) .9

0 8
CO a)

z
C-)

a-

Goal-oriented

Random

C
C-)a

Ci-

C a)' C a)a a)
0) c.9

C 2 z
0
8 a9

a)
a)

Cl) a)
za CL

e
0

[] Goal-oriented
Random

FIGURE 4.5: Test case generation efficiency at the whole spreadsheet level
with explicit range information provided. Boxplots show the distribution of
testedness (ranging from 0.0 to 1.0) at two times. For each program, two box
plots are given: the left plot depicts data for the goal-oriented technique, the
right plot depicts data for the random technique.

As in Experiment 1A, we compared the results of the two techniques at two

different times over the 35 runs for the eight spreadsheets. Since the times at

which various levels of testedness are achieved by the two techniques changes

after explicit range information is provided, we use different times T1 and T2

than those used in Experiment 1A. Times T1 and T2 are selected in the same

way as in Experiment 1A. The resulting box plots are displayed in Figure 4.5.

These box plots illustrate that, at time T1, the goal-oriented technique achieved

noticeably lower testedness than the random technique did on six spreadsheets,

however, on NetPay and Solution, the techniques are not widely different. At

time T2, however, the results are distinguishable only on three spreadsheets:

MicroGen, Solution, and FitMachine. Our observation on these box plots are

confirmed by the results of paired t-tests shown in Table 4.3.

Time 1 Time 2

spreadsheets Mean Duff. t-Value]_P-Value Mean Duff. t-Value P-Value

Digits -.229 -16.733 <.0001 .035 -1.519 .1379

Grades -.255 -20.852 <.0001 .007 .660 .5140

MicroGen -.103 -4.293 .0001 .102 9.938 <.0001

-.079 -4.639 <.0001 0.000 0.0000 1.0000

PurchaseBudget -.171 -24.258 <.0001 -.039 -34.000 <.0001

Solution -.046 -2.915 .0062 .357 19.974 <.0001

NewClock -.279 -14.285 <.0001 -.006 -2.533 .0161

Fit-machine -.320 -27.795 <.0001 -.043 -8.978 <.0001

TABLE 4.3: Paired t-test for Experiment lB

65

4.8 Threats to validity

The potential threats to validity for our first studies are as follows.

4.8.1 Threats to external validity

Threats to external validity are conditions that limit the ability to generalize

the results of the studies to a larger population of subjects. We considered
several such threats:

Subject program representativeness. The subject spreadsheets used in

these experiments are of small and medium size and the input cells are

of integer type. Commercial complex spreadsheets with different charac-

teristics may be subject to difference cost-effectiveness trade-offs. These

threats can be addressed only through additional studies using other
spreadsheets. As a first step in this direction, later in this thesis, we

describe results obtained with two larger spreadsheets.

Validation process representativeness. In our experiment, we use a script

to auto-validate all validateable output cells. In reality, a user may val-

idate some of these cells or none of them. Further studies involving end

users are necessary to address this threat.

Range information representativeness. In our experiment at the whole

spreadsheet level with explicit range information, the ranges we created

may not represent the ranges that would be specified in practice by end

users. We attempt to address these threats by carefully examining specifi-

cations and formulas of subject spreadsheets, and including values outside

of expected ranges.

Initial value representativeness. The initial values used in our scripts may

not be representative of the ones used by end users. These threats are

initially addressed through randomly generating values within provided

ranges (or default ranges). This threat could be reduced only by further

studies with end users.

4.8.2 Threats to internal validity

Threats to internal validity are factors that can affect the dependent variables

without the researcher's knowledge. We considered the following threats:

The differences among subject spreadsheets may affect results. Some

spreadsheets use many conditional expressions that contain the "=" op-

erator, these are difficult for the random technique to address within a

large range. Some spreadsheets have several levels of dependency among

cells; these will cause the goal-oriented technique to require more effort

to satisfy breakpoints to reach a definition node or a use node. To limit

these threats, we experimented using a range of spreadsheets that perform

a wide variety of tasks.

Initial input cells' values can affect the success of the goal-oriented tech-

nique. If the goal-oriented technique starts from initial values that are

far away from the solution, it will spend more time to search than if it

starts with values that are close to the solution. We address this threat

by starting to run our ATCG techniques from 35 sets of different initial

values for each subject spreadsheet.

67

Another source of threats involves collecting timings of our implementa-

tions, and comparing two implementations. To control these threats, we:

1) ran our experiments on isolated machines to avoid outside influences 2)

fully exited Forms/3 and lisp between executions to avoid caching 3) were

careful in our implementations to keep as much code in common between

the two tools as possible, varying only the code unique to each technique.

.8.3 Threats to construct validity

Threats to construct validity occur when measurements do not adequately cap-

ture the concepts they are supposed to measure. Two kinds of construct threats

are considered here:

The degree of testedness achieved by generated test cases is not the only

possible measure of the effectiveness of ATCG techniques. If two groups

of test cases achieve the same testedness, the one with smaller size may

be preferable. In addition, a test case's fault detection ability is another

important measure that we did not consider here. Moreover, two test

cases may execute the same number of du pairs, but one may create output

values that are easier for users to validate than another. Additional studies

are necessary to address these threats.

Efficiency is often measured as the effort required to obtain a certain

results. We use the wall clock time required to generate test cases sufficient

to achieve various levels of testedness to measure the generation efficiency

in our study. However, time is not the only possible measure of effort.

Other measures, such as the number of failed test inputs tried before the

ATCG technique finds a test case, or the memory required to store the

data required in calculation, could also measure effort. However, since our

final goal in using ATCG is to help end users, the feedback time seems to

be the most worthwhile measure to address here. Further studies could

investigate other measures.

4.9 Discussion

Overall, our results in this study indicate that the goal-oriented ATCG tech-

nique could execute a large proportion of the feasible du pairs in a spread-

sheet, either with or without explicit range information. Overall the random

ATCG technique, although exercising almost 100% of the feasible du pairs in

one spreadsheet, exercised fewer than 75% of the feasible du pairs in the other

seven spreadsheets when no explicit range was provided. However, when ex-

plicit range information is provided, the random technique exercised about 90%

of the feasible du pairs in general.

Further examination of our results illustrates that there are many factors

that may account for differences in the effectiveness of the two ATCG tech-

niques. One such factor is explicit range. Table 4.4 shows the effects on test-

edness, for the two techniques, of providing explicit range information. The

table lists the increase in testedness when ranges are used. The data in this

table suggests that the influence of explicit ranges is noticeably greater on the

random technique than on the goal-oriented technique. Considering the way in

which the random technique generates test cases, it is not hard to understand

why the explicit ranges are particularly "useful" for its generation: it randomly

selects values from the provided ranges, and the likelihood it can select a useful

test case is enhanced when the provided ranges are smaller. In contrast, since

spreadsheet Goal-oriented Random

Digits 5.2% 202.5%

Grades 43% 42%

MicroGen 0% 26%

NetPay 0% 150%

PurchaseBudget -0.7% 3.9%

Solution 0% 11.4%

NewClock 1.4% 75%

FitMachine 3.2% 92.9%

TABLE 4.4: Percentage increase in testedness achieved by the two techniques
with explicit ranges, as compared to testedness achieved without explicit ranges.

the goal-oriented technique searches for test cases under the guidance of the

branch function, its likelihood of finding a useful test case is not as noticeably

enhanced by explicit ranges.

Another factor that may account for the effectiveness differences is the types

of formulas occurring in the subject spreadsheets. Examining the results and

the subject spreadsheets, we found that the types of expressions used in the

spreadsheets can greatly influence both techniques, but especially so the ran-
dom technique. If the proportion of predicate expressions over all expressions is

higher in a spreadsheet, then it is often more difficult for the random technique

to exercise a large proportion of the feasible du pairs in that spreadsheet. For

instance, the proportion of predicates over all expressions is 33.33% in Solution,

ranking the highest over the eight subject spreadsheets; while it is only 18.87%

in PurchaseBudget, ranking the lowest (see Table 4.1). Examining the results

in Figure 4.2, we see that the random technique achieved distinctly smaller

70

testedness than the goal-oriented technique did on Solution; whereas there is

no difference between the techniques on the final testedness achieved on Pur-

chaseBudget. This also explains the differences in the effectiveness of the two

techniques on Solution when explicit ranges are available.

Considering the efficiency of the two ATCG techniques, the overall results

indicate that in general, the random techniques achieved testedness faster than

the goal-oriented technique did initially, either with or without explicit range in-

formation. However, the difference between the techniques with explicit ranges

is not as wide as without explicit ranges. With explicit ranges, the initial values

that the goal-oriented technique begins to search with are closer to the values

required for a useful the test case, so its search time is reduced. Moreover, the

overall results also illustrate that, for the random technique, speed of genera-

tion slows after a short initial period; whereas for the goal-oriented technique,

although speed of generation is initially slow, it continues to generates test cases

steadily after the initial period.

Again examining Figure 4.4, we can see that the goal-oriented technique

achieved more than 85% du coverage. This indicates that given enough time,

the goal-oriented technique could exercise most of the feasible du pairs in a

spreadsheet when explicit ranges were available. Thus, the du pairs remaining

unexercised by the goal-oriented technique in that case are most likely be the

infeasible du pairs of that spreadsheet if there are any. Based on this indication,

if these results generalize, we could use the goal-oriented technique to approxi-

mately determine the infeasible du pairs, as long as we provide explicit ranges

and enough time. It is more risky to use the random technique to do so, because

in some spreadsheets it achieved lower than 70% du pair coverage.

71

These results support the following conclusions. We could automatically

generate test cases that execute a large proportion of the feasible du pairs in

a spreadsheet at the whole spreadsheet level, either with or without range in-

formation. Considering the effectiveness of generation, given no explicit ranges,

the goal-oriented technique is the obvious choice; but given explicit ranges, the

choice of which ATCG technique to apply is not so obvious. Considering the

efficiency of generation, applying the random technique first for a short time

and then applying the goal-oriented technique (with or without explicit ranges)

could allow us to retain the effectiveness and improve efficiency at the same

time.

72

Chapter 5

EMPIRICAL STUDIES TWO: DU PAIR LEVEL

In Chapter 4 we discussed experiments which evaluated two test case gen-

eration techniques at the whole spreadsheet level. As we discussed in Chapter

3, we are also interested in investigating our ATCG techniques at the du pair

level. This chapter presents another group of experiments that address research

questions at the du pair level. As in Chapter 4, we discuss some common issues

first.

5.1 Common issues

5.1.1 Research questions

At the du pair level, we are interested in the following questions:

RQ3: Can we automatically generate test cases that execute a queried du pair

with or without explicit range information?

RQ4: How do our test case generation techniques compare to each other in

terms of effectiveness and efficiency at the du pair level with or without

explicit range information?

73

5.1.2 Measurements

To measure the effectiveness of a ATCG technique at the du pair level, we used

the proportion of the du pairs that the ATCG technique successfully generates

test cases for over all the du pairs under test in the experiment. This indicates

the likelihood that our ATCG techniques could generate a test case for a par-

ticular du pair. In these two experiments, we chose 300 seconds as a time limit.

If an ATCG technique finds a test case within that time limit for a particular

du pair, we consider it successful, otherwise, we consider it unsuccessful.

To measure the efficiency of a test case generator for a du pair, we use the

time required in the generation procedure for that du pair.

5.1.3 Subjects and methods

To obtain du pairs on which to experiment, we used the same eight spreadsheets

used in experiments 1A and lB. We randomly picked 10 unique feasible du pairs

from each spreadsheet to create our du pair subjects. Analysis of the 80 selected

du pairs showed that 58.75% are p-use du pairs, while 41.25% are definition-c-

use du pairs.

To reduce the influence of initial input values on the results, as in our pre-

vious experiments, our scripts executed our two test case generation techniques

starting from the same random initial input values in each run, for a total of
35 runs for each selected du pair, with 35 different randomly generated initial

values. Another point worth mentioning here is that, since our ATCG tech-

niques continue until they have generated a test case for each subject du pair

or timed out, it is not necessary to perform validations in these experiments.

74

In other respects, the procedures used in our scripts for these experiments are

similar to those used in the experiments at the whole spreadsheet level.

5.2 Experiment 2A: with no explicit range information

5.2.1 Experiment design

This experiment is designed to evaluate the two techniques at the du pair level

with no explicit range information. As in ExperimentlA, we achieved this by

using the smallest integer and the largest integer that the underlying system

allowed as the default range.

The two independent variables manipulated in this experiment are:

The eighty subject du pairs.

. The test case generation techniques: random and goal-oriented.

The dependent variable we measured is the total time required to generate

a test case for a subject du pair. If the ATCG technique failed to generate a

test case within the time limit, we consider the total run time for the ATCG

technique as the measurement.

Similar to ExperimentlA, this experiment was run using an 80 x 2 factorial

design with 35 different initial input configurations per spreadsheet. For each

subject du pair P, we applied two test case generation techniques starting from

35 randomly set initial inputs. This yielded 5600 data items for our analysis.

Digits Random
350
300 -®- -s- -®-- -®- -®- -®- -®-

250
200
150
100 0 0
50 0

0
-50 o CM C) U) CD N- m a,

Er Er Er Er Er Er Er Er Er Er

Grades Random
350
300 -®- -®--®-
250
200
150
100
50

0 -- -s- -*.

-50 o CM C) U) CD N- 0)a a
Er Er Er Er Er Er Er Er Er Er

MicroGen Random
350
300 -®-
250
200
150
100
50 p

0 -4---- -e --
-50

Er Er Er Er Er Er Er Er Er Er

NetPay Random
350
300 -®-- -®-- -'- -'-
250
200
150
100
50

0 -®-
-50 o CM C) U) CO N- 0)o a a a a a a a a a

Er Er Er Er Er Er Er Er Er Er

Digits Goal-oriented
350
300 -&- -Y- -®- --

250

Grades Goal-oriented
350
300 -& -®--®-
250
200
150
100

MicroGen Goal-oriented
350
300
250

I *

NetPay Goal-oriented
350
300 -®- -®-
250
200
150

75

FIGURE 5J: Box plots showing time (seconds) used in random and goal-
oriented generation on subject du pairs in spreadsheets Digits, Grades, Micro-
Gen and NetPay in Experiment 2A.

350
300
250
200
150
100
50

0

350
300
250
200
150
100

50
0

350
300
250
200
150
100

50
0

350
300
250
200
150
100
50

0

PurchaseBudget Random

N 0)

Solution Random

N

NewClock Random

N 0,

FitMachine Random

8 .- () U) (0 N (0 0)a a a a a a a a a
rr rr rr rr rr rr rr rr n rr

PurchaseBudget Goal-oriented
350
300
250
200
150
100
50

0 E:

_cr'

Solution Goal-oriented
350
300
250
200
150
100

50
0-®--®-

-50

NewClock Goal-oriented
350
3Ø-k- -
250
200
150
100

FitMachine Goal-oriented
350

I .D

76

FIGURE 5.2: Box plots showing time (seconds) used in random and goal-
oriented generation on subject du pairs in spreadsheets PurchaseBudget, Solu-
tion, NewClock and FitMachine in Experiment 2A.

77

5.2.2 Data and analysis

Figure 5.1 and 5.2 depict the effectiveness of the two techniques at the du

pair level without explicit range information. Each figure shows four groups

of box plots (each group is for a spreadsheet), including the box plots for the

random technique and the goal-oriented technique in each group. The box plots

illustrate the distribution of times spent on test generation by the two ATCG

techniques for each subject du pair. The times vary from 0 seconds to 300

seconds. Data points at the 300 second mark indicate runs in which the ATCG

technique failed to generate a test case for that du pair within the 300 second

time limit. Data points appearing to be at the 0 second mark indicate runs in

which test generation spent time close to 0 seconds.

For purpose of analysis, we can group results into 3 types, depending on

where the data lies. Examining all the box plots, we see that (1) a technique

can be always successful for a du pair over all 35 runs (no data point in a box

plot for that du pair is located at the 300 second mark); (2) a technique can

usually fail for a du pair over 35 runs (the median line in the box plot for that

du pair is located at the 300 second mark); or (3) a technique can be partially

successful for a du pair (there are some data points in the box plot located at

the 300 second mark, but the median line in that box plot is below the 300

second mark). To differentiate these classes of du pairs we refer to them as sp,

fp and pp, respectively. As the box plots show, for the random techniques, all

du pairs are either sp or fp, whereas for the goal-oriented technique, all three

types of du pairs exist.

The effectiveness data for our ATCG techniques is shown in Table 5.1. In

this table, the number of sp du pairs, the number of fp du pairs, the number

of pp du pairs and the total number of successful runs for both techniques, per

Ifs]

random goal-oriented
spreadsheets sp fp pp successful runs sp fp pp successful runs
Digits 1 9 0 41 4 6 0 140

Grades 6 4 0 210 6 4 0 210

MicroGen 7 3 0 245 9 1 0 326

NetPay 4 6 0 140 7 3 0 245

PurchaseBudget 10 0 0 350 8 2 0 287

Solution 4 6 0 140 9 0 1 344

NewClock 5 5 0 175 5 3 2 245

FitMachine 4 6 0 140 3 5 2 198

Total% 51.3% 48.7% 0% 51.5% 63.8% 30% 6.2% 71.3%

TABLE 5.1: Data about effectiveness of the two ATCG techniques at the du
pair level with no explicit range information.

spreadsheet, are listed. The last row in the table shows the proportion of three

types of du pairs over all subject du pairs and the percentage of successful runs

over the 8 x 10 x 35 = 2800 runs for each technique. As the table indicates, the

random technique resulted in fewer sp du pairs than the goal-oriented technique

for most spreadsheets: over the eight spreadsheets, the proportion of total sp du

pairs over all subject du pairs of the random technique was 51.3%, while it was

63.8% for the goal-oriented technique. Also, there are fewer fp du pairs for the

goal-oriented technique than for the random technique: the proportion of total

fp du pairs over all subject du pairs for the random technique was 48.7%, while

it is only 30% for the goal-oriented technique. In addition, although the goal-

oriented technique obtained no more sp du pairs than the random technique on

FitMachine and NewClock, there are some pp du pairs of the goal-oriented tech-

nique on those spreadsheets. Considering all 39 du pairs that were fp for the

random technique, 14 of these were sp du pairs for the goal-oriented technique

79

and 4 of them were pp du pairs for the goal-oriented technique; considering

all 24 du pairs that were fp for the goal-oriented technique, only 3 of them

were successfully covered by the random technique. Moreover, the percentages

of successful runs for the two techniques indicates that the goal-oriented tech-

nique achieved more successful runs overall than the random technique in this

experiment.

Again observing Figure 5.1 and Figure 5.2, it is interesting that although

the random technique failed to generate test cases for more du pairs than the

goal-oriented technique, the time needed for the random technique to cover a

du pair when it was successful was less than 10 seconds in most cases. On the
other hand, although the goal-oriented technique covered some du pairs that
the random technique could not cover, the time it required was often more than

100 seconds. In addition, comparing the du pairs that are successfully covered

by both two techniques, the random technique always required less time than

the goal-oriented technique. This indicates that the goal-oriented technique is

not as efficient as the random technique at the du pair level in general. This

also explains why the goal-oriented technique is always slower initially than the

random technique at the whole spreadsheet level.

5.3 Experiment 2B: with explicit range information

5.3.1 Experiment design

We performed a second experiment to assess the effect of using explicit range

information at the du pair level. We used the same subjects as in Experiment

2A and the same range information used in experimentiB.

random goal-oriented
spreadsheets sp fp pp successful runs sp fp pp successful runs
Digits 9 1 0 315 4 0 6 281

Grades 8 1 1 312 7 2 1 271

MicroGen 7 2 1 277 9 1 0 325

NetPay 10 0 0 350 3 0 7 288

PurchaseBudget 10 0 0 350 8 1 1 315

Solution 4 6 0 150 10 0 0 350
NewClock 10 0 0 350 7 1 2 325

FitMachine 8 0 2 344 3 0 7 278

Total% 82.5% 12.5% 5% 87.4% 63.8% 6.2% 30% 86.9%

TABLE 5.2: Data about effectiveness of the two ATCG techniques at the du
pair level with explicit range information

5.3.2 Data and analysis

Similar to the corresponding figures in Experiment 2A, Figures 5.3 and 5.4

depict the effect of the two ATCG techniques at the du pair level with explicit

range information. Through observing the box plots we classified the three

types of du pairs as we did in Experiment 2A. Table 5.2 shows the data about
the three types of du pairs for both ATCG techniques.

Examining Table 5.2, we find that both techniques improved their effec-

tiveness with explicit ranges. However, the degrees of improvement are not the
same. The proportion of sp du pairs over all subject du pairs increased to 82.5%

for the random technique, while it remained at 63.8% for the goal-oriented tech-

nique. Also, the proportions of fp du pairs for both ATCG techniques decreased

to 12.5% and 6.2%, respectively. In addition, with explicit ranges, the number

of pp du pairs for the random technique increased a little (from zero to 5%) but

this number increased a lot for the goal-oriented technique (from 6.2% to 30%).

350
300
250
200
150
100
50

0

350
300
250
200
150
100
50

0
-CA

Digits Random

I-

4
0 CSJ C) Co Co N Co 0)0000000000

Grades Random

o C'J C) U Co N Co Co0000000000
MicroGen Random

350
300
250
200
150
100

50
0

-CA

:1
-0- -M- -a- -e- -0- * --

O 0) C) Co Co N Co Co0000000000
NetPay Random

350
300
250
200
150
100
50

0 -e- -0- -e- -&- -e-
-50 O 0) Co CO N- Co 0)0000000000I I I I I I I I

350
300
250
200
150
100
50

0
- Cl.)

Digits Goal-oriented

UIL
Grades Goal-oriented

350
300
250
200
150
100

5
-®-4 ++ -QC--- -e-

-50

MicroGen Goal-oriented
350
300
250
200
150
100

50
0

- CO

NetPay Goal-oriented
350

200
150
100
50

-50
100

FIGURE 5.3: Box plots showing time (seconds) used in random and goal-
oriented generation on subject du pairs in spreadsheets Digits, Grades, Micro-
Gen and NetPay in Experiment 2B.

PuchaseBudget Random
350
300
250
200
150
100

50
0 -e- -L -e- - -.

o CU C) U) (0 N- U) 0)a a a a a a a a a a
a: a: a: a: a: a: a: a:

Solution Random
350
300 ' -* -®-
250
200

o
150

8
100 0

50 H

0 -s-

-50 o .- ('1 C) U) (0 N- U) 0)a a a a a a a a a a
a: a: a: a: a: a: a: a: a: a:

NewClock Random
350
300
250
200
150
100

5 4 0
-50 O CU C) U) (0 N- U) 0)a a a a a a a a a a

a: a: cc a: a: a: a: a: a: a:

FitMachine Random
350
300 0

250
200

0150 o o
100

.:

PurchaseBudget Goal-oriented
350
300
250
200
150
100

50
0

-cn

Solution Goal-oriented
350
300
250
200
150
100

50
0

-cr(

NewClock Goal-oriented
350
300
250
200
150
100

50
0

-crc

FitMachine Goal-oriented
350
300

250
200
150
100
50

0 -e---
-50

FIGURE 5.4: Box plots showing time (seconds) used in random and goal-
oriented generation on subject du pairs in spreadsheets PurchaseBudget, Solu-
tion, NewClock and FitMachine in Experiment 2B.

Although the number of sp du pairs for the goal-oriented technique is less

than that for the random technique, only 6.2% of the du pairs were fp du pairs

for the goal-oriented technique. Observing the box plots for the 24 pp du pairs

for the goal-oriented technique, we find that the median for most of those du

pairs was less than 10. This indicates that these 24 du pairs were more of-

ten than not successfully exercised by the goal-oriented technique. This also

indicates that although the goal-oriented technique did not make progress on

the proportion of its sp du pairs, it did make progress on effectiveness overall.

Adding the total number of sp du pairs and pp du pairs for the goal-oriented

technique produces a higher percentage than for the random technique. More-

over, the total number of successful runs for both techniques are close. Thus,

overall, it is difficult to tell which of the two ATCG techniques is more likely to

exercise an arbitrary du pair when explicit ranges are available.

Considering speed of generation, the goal-oriented technique made notice-

able progress with explicit range information. The overall goal-oriented gen-

eration time was less than 50 seconds when the goal-oriented technique was

successful on a particular du pair. However, the speed of random generation

was still higher than that of goal-oriented generation in most cases.

5.4 Discussion

It is worth noting that the goal-oriented technique failed to cover 21% of the

du pairs at the du pair level while it exercised most du pairs at the whole

spreadsheet level, when explicit ranges are provided. One possible explanation

for this is that the goal-oriented technique deals with only an isolated du pair at

the du pair level, while at the spreadsheet level it deals with a group of related

du pairs. As we discussed in Section 3.3.4, directly generating a test case for a

du pair deep in a chain of dependencies can be relatively difficult. At the whole

spreadsheet level, since any one of the unvalidated du pairs in a spreadsheet is

considered as a subgoal in the goal-oriented generation, the "easier" du pairs

are likely to be exercised first. Exercising those du pairs will also cause some of

the "deep" du pairs to be exercised at the same time, or make some other deep

du pairs easier to exercise.

Overall, it is possible to conclude that, when generating test cases for specific

du pairs, and when no explicit ranges are provided, the goal-oriented technique

has a greater chance of exercising an arbitrary du pair than the random tech-

nique, as long as enough time is provided. When explicit range information is

available, the choice is not so obvious.

Chapter 6

EMPIRICAL STUDIES THREE: LARGE SPREADSHEETS

As we discussed in Chapter 4, the subject spreadsheets used in our initial

experiments are of small and medium size. Larger, more complex spreadsheets

may be subject to different cost-effectiveness trade-offs. To address this threat,

in this study, we repeat the same experiments reported in the preceding chap-

ters, except that in this study the subject spreadsheets are large spreadsheets.

6.1 Subjects

For this study, two large spreadsheets were created by an experienced Forms/3

user. Some data about the two large spreadsheets is shown in Table 6.1. The

smaller of the two spreadsheets, RandomJury, determines statistically whether

a panel of jury members was selected randomly. Another spreadsheet, MBTI,

implements a version of the Myers-Briggs Type Indicator (a personality test).

Given integer answers to twenty questions, this spreadsheet tallies the scores and

reports personality types. Examining the formulas of the two large spreadsheets,

although RandomJury has fewer du pairs, its cell reference level is deeper than

that of MBTI. However, the proportion of predicates over all expressions in

MBTI is higher than that in RandomJury.

No. of No. of No. of No. of No. of

spreadsheets cells du pairs feasible du pairs expressions predicates

RandomJury 29 266 188 93 32

MBTI 48 784 780 248 100

TABLE 6.1: Data about large experimental subjects

6.2 Whole spreadsheet level experiments

As in study one, we performed two experiments to investigate the effectiveness

and efficiency of our two ATCG techniques on larger spreadsheets, at the whole

spreadsheet level. The first experiment is performed without explicit range

information and the second one is performed with explicit range information.

Since both spreadsheets are large spreadsheets, we performed several trial runs

for each large spreadsheet to obtain the proper time limits. Results suggested

that 5000 seconds was sufficient for RandomJury and 10000 seconds was suffi-

cient for MBTI. Remember that these times are limits on the experiments, not

the times we would expect a user to wait.

6.2.1 Experiment 3A: with no explicit range information

The design of this experiment is the same as that of Experiment 1A. Figure

6.1 illustrates the average cumulative testedness of the two large spreadsheets

achieved over time when no explicit ranges are provided.

The random technique exercised a large percentage of du pairs in Ran-

domJury and the goal-oriented technique exercised most du pairs in MBTI.

1.2

' .8

I

RandomJury
1.2

.8

.6

.4

.2

0
0 1000 2000 3000 4000 5000

time

MBTI

0 2000 4000 6000 8000 10000
time

Random

Goal-oriented

FIGURE 6.1: Test case generation efficiency on large spreadsheets at the whole
spreadsheet level with no explicit range information provided. Graphs show the
average cumulative testedness (ranging from 0.0 to 1.0) over 1200 seconds on
eight subjects.

However, the random technique only achieved 0.2564 testedness on MBTI and

the goal-oriented technique achieved only 0.63 testedness on RandomJury. Ex-

amination of the formulas of MBTI shows that MBTI contains many complex

predicates with "equal" operators. This supports our conjecture that the for-

mulas in spreadsheets could affect the effectiveness of the random technique.

In addition, the deep cell references in RandomJury also may explain why the

goal-oriented technique achieved lower testedness on RandomJury, supporting

our conjecture about the depth of du pairs affecting the effectiveness of the goal-

oriented technique. However, the overall results indicate that the goal-oriented

technique is more capable than the random technique of exercising a large part

of the du pairs in a spreadsheet when no explicit ranges are provided.

Considering the speed of test generation, on RandomJury, the goal-oriented

technique achieved testedness slower than the random technique did initially.

On MBTI, the random technique did not make any progress after the first 10

1.2

, .8
0,

!
:

.2

0

Timel

0

1.2

.8

.6

.4

.2

n

Time2

RandomJury MBTI RandomJury

Goal-oriented

Random

-.
MBTI

FIGURE 6.2: Test case generation effectiveness on large spreadsheets at the
whole spreadsheet level with no explicit range information provided. Boxplots
show the distribution of testedness (ranging from 0.0 to 1.0) at two times. For
each spreadsheet, two box plots are given: the left plot depicting data for the
goal-oriented technique, the right plot depicting data for the random technique.

seconds. While the goal-oriented technique was slow initially, it continued to

generate test cases, speeding up in the later period of generation and ending at

almost 100% du pair coverage. This observation again confirms that the random

technique may be faster than the goal-oriented initially, but later it slows down

while the goal-oriented technique continues to make progress.

As in our first experiment, we selected two times for each spreadsheet to

investigate the distribution of the testedness over the 35 runs and compare
the success of generation in the initial period and later during the generation

period. The box plots are shown in Figure 6.2. We also performed paired t-tests

to confirm the differences in testedness observed for the two techniques at two

different times. The data shown in this table confirms our observations about

Figures 6.1 and 6.2. Overall, the results indicate that the effectiveness and

the efficiency of both ATCG techniques without explicit range information are

Time 1 Time 2

spreadsheets Mean Duff. t-Value P-Value Mean Duff. t-Value P-Value

RandomJury -.322 {i.687J <.0001_[_.097 J.000i
MBTI -.009

[

8.795 <.0001 -.708 117.513 <.000i

TABLE 6.2: Paired t-test for Experiment 3A

consistent with our conclusion made in the corresponding experiment in study

one on small spreadsheets.

6..2 Experiment 3B: with explicit range information

We designed this experiment to be similar to Experiment lB. We obtained ex-

plicit range information for our large spreadsheets in the same manner described

that study. Figure 6.3 shows the results of this experiment. Similar to Figure

6.1, Figure 6.3 illustrates the average cumulative testedness when providing

explicit range information for the input cells.

Examining Figures 6.1 and 6.3, we see that the use of explicit ranges no-

ticeably affected the effectiveness of the random technique in terms of final

testedness on MBTI (increasing from .2564 to 0.9958), and noticeably affected

the initial effectiveness of the goal-oriented technique on MBTI. However, these

influences are not obvious on RandomJury. Overall, both techniques exercised

more than two thirds of the du pairs in the two large spreadsheets, and the

goal-oriented technique was not as efficient as the random technique initially.

Figure 6.4 and Table 6.3 support our observations in terms of efficiency. Over-

all the results affirm our previous conclusion about effectiveness and efficiency

RandomJury
1.2

Co
U,

.8
0
ci)
c,, .6
ci)

.4

.2

n

1.2

.8

.6

.4

.2

0

MBTI

0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000

time - time
fldFiUUILI

Goal-onented

II

FIGURE 6.3: Test case generation efficiency on large spreadsheets at the whole
spreadsheet level with explicit range information provided. Graphs show the
average cumulative testedness (ranging from 0.0 to 1.0) over 1200 seconds on
eight subjects.

Timel
1.2

U .8
U)
ci,
C

.6
(0
ci)

.2

0

1.2

.8

.6

.4

.2

(I

Time2

0

RandomJury MBTI RandomJury

Goal-oriented

Rand,

MBTI

FIGURE 6.4: Test case generation effectiveness on large spreadsheets at the
whole spreadsheet level with explicit range information provided. Boxplots show
the distribution of testedness (ranging from 0.0 to 1.0) at two times. For each
program, two box plots are given: the left plot depicts data for the goal-oriented
technique, the right plot depicts data for the random technique.

when explicit ranges are provided for both techniques on small spreadsheets.

91

Time 1 Time 2

spreadsheets Mean Duff. t-Value P-Value Mean Duff._}_t-Value P-Value

RandomJury -.306 415 <.0001 .098 -8.275 <.0001

MBTI -.233 -51.396 <.0001 -.005 6.063 <.0001

TABLE 6.3: Paired t-test for Experiment 3B

6.3 Du pair level experiments

The two experiments described next are designed to examine the effectiveness

and efficiency of our two ATCG techniques for du pairs selected from large

spreadsheets. We randomly selected 10 du pairs from each large spreadsheet.

The first experiment is designed in the same way as Experiment 2A, with no

explicit ranges, and the second experiment is designed in the same way as Ex-

periment 2B, with explicit ranges.

Figures 6.5 and 6.6 illustrate the results of the experiments without and with

explicit range information respectively. The box plots in the two figures show

that there was no obvious difference between the effectiveness of both techniques

at the du pair level on large spreadsheets. The results with explicit ranges are

consistent with those in the experiment with explicit ranges in Chapter 5. How-

ever, without explicit ranges, the goal-oriented technique did not obtain better

effectiveness than the random technique as in the corresponding experiment in

Chapter 5. We suggest the following possible reasons: 1) there are about 1000

du pairs in these two large spreadsheets, the 20 subject du pairs used in this

study may not be representative; 2) Since the large spreadsheets have deep cell

350
300
250
200
150
100

50
0

-cA

350
300
250
200
150

100

50
0

-Sn

RandomJury Random

0

0
0
0

o - csJ ', n O F-

MB11 Random

landomJury Goal-oriented
350
300 -F-

250
200
150
100

50
0

-50

MBTI Goal-oriented
350 1300ifl '_ S

250
200
150

100

OQOOOQQ

92

FIGURE 6.5: Box plots show time (seconds) used in random and goal-oriented
test case generation for subject du pairs selected from large spreadsheets, with
no explicit range information.

references and more complex formulas, the depths of du pairs selected from

them are likely be greater, on average, than in the previous study. This might

affect the goal-oriented technique more than the random technique. Additional

studies could address these threats by using more du pairs selected from more

large spreadsheets as subjects, and improving the goal-oriented technique to

deal with du pairs involving deep level cell references.

350
300
250
200
150
100

50
0

-50

350
300
250
200
150
100
50

0

-50

RandomJury Random

4* 350
300
250
200
150
100

50
0

-50

MBTI Random
350

8

RandomJury Goal-oriented

0

p o

MBTI Goal-oriented

0

-®-

93

FIGURE 6.6: Box plots show time (seconds) used in random and goal-oriented
test case generation for subject du pairs selected from large spreadsheets, with
explicit range information.

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis, we have presented an automatic test case generation method-

ology for spreadsheet languages. Our methodology uses an incremental gener-

ation strategy, and is driven by the end user's request. It could help end users

generate test case at three levels: the whole spreadsheet level, the cell level and

the du pair level. In addition, our methodology is integrated with the highly

interactive spreadsheet programming environment, presenting test data visu-

ally. The underlying ATCG technique for spreadsheets has been developed by

properly adapting an appropriate existing technique for imperative programs.

The details of the underlying ATCG techniques do not need to be known by

the end users. We prototyped our ATCG techniques in the research spreadsheet

language Forms/3.

To assess our methodology, we performed several empirical studies to in-

vestigate the effectiveness and efficiency of the two ATCG techniques at the

whole spreadsheet level, at the du pair level, and for large spreadsheets, re-

spectively. Our result indicate that, at both the whole spreadsheet level and

the du pair level, the goal-oriented technique is more effective than the random

technique in general when no explicit ranges are provided, whereas the differ-

ences are not obvious when explicit ranges are used. The results also indicate

that the random technique is more efficient than the goal-oriented technique.

95

Overall, using range information could improve the effectiveness of the random

technique and improve the efficiency of the goal-oriented technique.

The initial results obtained in these empirical studies suggest the following

future work:

As our initial results indicate, when no explicit ranges are provided, the

goal-oriented technique has greater effectiveness and the random technique

has a greater efficiency in general. Considering these results, a proper

combination of these two techniques might obtain both effectiveness and

efficiency.

As we discussed earlier, there are several threats to external validity that

affect our ability to generalize results. These threats could be addressed

only through additional studies that use other spreadsheets, and use user-

provided range information and initial values.

We are planning to improve the goal-oriented technique in order to en-

hance its searching ability on du pairs that are deep in dependence chains.

As described in [11], a chaining approach, which utilizes the data depen-

dence analysis to assist the search process, can improve the effectiveness

of the goal-oriented technique. We will integrate this chaining approach

into our methodology.

As our initial results in Experiment lB suggest, using the goal-oriented

technique can approximately determine the infeasible du pairs in a spread-

sheet when explicit ranges are provided. Additional studies of this effect

on more subject spreadsheets are necessary.

Our empirical studies have focused on test case generation at the whole

spreadsheet level and the du pair level. We plan to conduct additional

studies at the cell level.

Since our final goal is to help end users generate test cases in spreadsheet

testing, end-user studies are necessary, in order to assess whether users

can effectively employ our ATCG methodology.

We hope that through the work reported in this thesis, and the future work

listed above, we can provide an automatic test case methodology for spreadsheet

languages, which will help end users test their spreadsheets more effectively and

more efficiently.

97

BIBLIOGRAPHY

1] A. Ambler, M. Burnett, and B. Zimmerman. Operational versus defini-
tional: A perspective on programming paradigms. Computer, 25(9):28-43,
September 1992.

[2] A. Bertolino and M. Marre. Automatic generation of path covers based
on the control flow analysis of computer programs. IEEE Transactions on
Software Engineering, 20(12):885-898, December 1994.

[3] D. Bird and C. Munoz. Automatic generation of random self-checking test
cases. IBM system, 22(3):229-245, 1983.

[4] P. Brown and J. Gould. Experimental study of people creating spread-
sheets. ACM Transactions on Office Information System, 5(3):258-272,
July 1987.

[5] M. Burnett and H. Gottfried. Graphical definitions: Expanding spread-
sheet languages through direct manipulation and gestures. A CM Transac-
tions on Computer-Human Interaction, pages 1-33, March 1998.

[6] M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and X. Yang. Toward
visual programming languages for steering in scientific visualization: a tax-
onomy. IEEE Computing Science and Engineering, 1(4), 1994.

[7] L.A. Clarke. A system to generate test data and symbollically execute pro-
grams. IEEE Transactions on Software Engineering, (3):215-222, Septem-
ber 1976.

[8] R. DeMillo and A.J. Offutt. Constraint-based automatic test data genera-
tion. IEEE Transactions on Software Engineering, 17(9):900-910, Septem-
ber 1991.

[9] R. DeMillo and A.J. Offutt. Experimental results from an automatic test
case generator. ACM Transactions on Software Engineering and Method-
ology, 2(2):109-127, April 1993.

[10] E. Duesterwald, R. Gupta, and M. L. Soffa. Rigorous data flow testing
through output influences. In the Proceeding of the nd Irvine Software
Symposium, March 1992.

[11] R. Ferguson and B. Korel. The chaining approach for software test data
generation. ACM Transactions on Software Engineering and Methodology,
5(1):63-86, January 1996.

[12] P. Franki and E. Weyuker. An applicable family of data flow criteria. IEEE
Transactions on Software Engineering, 14(10):1483-1498, October 1988.

[13] A. Gotlieb, B. Botella, and M. Reuher. Automatic test data generation
using constraint solving techniques. In ACM International Symposium on
Software Testing and Analysis, pages 53-62, 1998.

[14] B.F. Jones, H.H. Sthamer, and D.E. Eyres. Automatic structural testing
using genetic algorithms. Software Engineering Journal, pages 299-306,
September 1996.

[15] B. Korel. A dynamic approach of automated test data generation. In the
Proceeding of the Conference on Software Maintenance.

[16] B. Korel. Automated test data generation for programs with procedures.
In the Proceeding of the International Symposium on Software Testing and
Analysis.

[17] B. Korel. Automated software test data generation. IEEE Transactions on
Software Engineering, 16(8):870-897, August 1990.

[18] B. Myers. Graphical techniques in a spreadsheet for specifying user inter-
faces. In ACM CHI '91, pages 243-249, April 1991.

[19] A.J. Offutt. An integrated automatic test data generation system. Journal
of Systems and Integration, 1(3):391-409, November 1991.

[20] R. Panko. What we know about spreadsheet errors. Journal of End User
Computing, pages 15-21, Spring 1998.

[21] R. Panko and R. Halverson. Spreadsheets on trial: A survey of research
on spreadsheet risks. In the Proceedings of the 29th Hawaii International
Conference on System Sciences, January 1996.

[22] 5. Rapps and E. J. Weyuker. Selecting software test data using data flow
information. IEEE Transactions on Software Engineering, 11(4): 367-375,
April 1985.

[23] J. Reichwein, G. Rothermel, and M. Burnett. Slicing spreadsheets: An
integrated methodology for spreadsheet testing and debugging. In The
2nd Conference on Domain Specific Languages (DSL '99), pages 25-38,
October 1999.

[24] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and Andrei Sheretov. A
methodology for testing spreadsheets. Technical Report TR: 99-60-02, Ore-
gon State University, January 1999.

[25] G. Rothermel, L. Li, and M. Burnett. Testing strategies for form-based
visual programs. In The 8th International Symposium on Software Rellia-
bility Engineering, pages 96-107, November 1997.

[26] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What you see is what you
test: A methodology for testing form-based visual programs. In The 20th
International Conference on Software Engineering, pages 198-207, April
1998.

[27] K.J. Rothermel, C.R. Cook, M.M. Burnett, J Schonfeld, T.R.G. Green,
and G. Rothermel. WYSIWYT testing in the spreadsheet paradigm: An
empirical evaluation. In the 22nd International Conference on Software
Engineering, June 2000 (to appear).

[28] G. Viehstaedt and A. Ambler. Visual representation and manipulation
of matrices. Journal of Visual Languages and Computing, 3(3):273-298,
September 1992.

[29] E. J. Weyuker. More experience with dataflow testing. IEEE Transactions
on Software Engineering, 19(9), September 1993.

[30] Edin Zulic. Test input generation. Technical report, Oregon State Univer-
sity, December 1998.

