

AN ABSTRACT OF THE THESIS OF

Rhea Stadick for the degree of Honors Baccalaureate of Science in Computer Science

presented on June 06, 2005. Title: A Java Implementation of the Elliptic Curve Digital

Signature Algorithm Using NIST Curves Over GF(p).

Abstract approved:

__

 Çetin K. Koç

 The Elliptic Curve Digital Signature Algorithm (ECDSA) is a public key

cryptosystem used for creation and verification of digital signatures in electronic

documents. In this thesis, we created a Java applet that provides the functionality of the

ECDSA using all of the NIST elliptic curves over GF(p). This applet was embedded into

a website and tailored for public use across an online network. We show that Java can

provide an effective platform for the ECDSA in combination with imported packages and

classes. The implementation details of our ECDSA applet are discussed, followed by an

analysis of the code functions.

A Java Implementation of the Elliptic Curve Digital Signature Algorithm Using NIST

Curves Over GF(p)

by

Rhea Stadick

A THESIS

submitted to

Oregon State University

University Honors College

In partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science (Honors Scholar)

Presented June 06, 2005
Commencement June 2006

Honors Baccalaureate of Science in Computer Science thesis of Rhea Stadick presented

on June 06, 2005.

APPROVED:

__

Mentor, representing Electrical Engineering and Computer Science

__

Committee Member, representing Mathematics

__

Committee Member, representing Electrical Engineering and Computer Science

__

Chair, Department of Electrical Engineering and Computer Science

__

Dean, University Honors College

I understand that my thesis will become part of the permanent collection of Oregon State

University, University Honors College. My signature below authorizes release of my

project to any reader upon request.

__

Rhea Stadick, Author

ACKNOWLEDGEMENTS

I would like to give special thanks to Dr. Koç for his guidance and sponsorship. I would

also like to thank Dr. Schmidt and Colin Van Dyke for taking the time to participate in

my honors thesis committee.

I also thank Avantika Mathur for her support, patience, and friendship during the course

of this project.

Rhea Stadick

Corvallis, OR

TABLE OF CONTENTS

Page

1. INTRODUCTION .. 1
2. INTRODUCTION TO CRYPTOGRAPHY ... 3

2.1. SYMMETRIC CRYPTOSYSTEMS ... 3
2.2. ASYMMETRIC CRYPTOSYSTEMS .. 4
2.3. PUBLIC KEY CRYPTOGRAPHY ... 4

2.3.1. Discrete Logarithm Problem .. 5
2.3.2. Elliptic Curve Discrete Logarithm Problem ... 6

2.4. ELLIPTIC CURVE CRYPTOGRAPHY .. 7
2.4.1. Utilization of Elliptic Curve Cryptography ... 7
2.4.2. Elliptic Curves Over Finite Fields .. 7
2.4.3. Field Overview of GF(2k) .. 8
2.4.4. Field Overview of GF(p) ... 9
2.4.5. Arithmetic Operations on Elliptic Curves over GF(p) ... 9

2.4.5.1. Addition of Distinct Points .. 10
2.4.5.2. Doubling of a Point .. 10
2.4.5.3. Scalar Multiplication of Points ... 11

2.5. DIGITAL SIGNATURES ... 11
2.5.1. Functionality and Intent of the Digital Signature Algorithm .. 12
2.5.2. Signature Generation Using DSA... 12
2.5.3. Signature Verification Using DSA ... 13

2.6. ECDSA ... 14
2.6.1. Security of ECDSA .. 14
2.6.2. Key Pair Generation Using ECDSA .. 15
2.6.3. Signature Generation Using ECDSA ... 15
2.6.4. Signature Verification Using ECDSA .. 16

3. JAVA APPLET IMPLEMENTATION OF ECDSA .. 17
3.1. JAVA OVERVIEW .. 17
3.2. ECDSA APPLET USAGE .. 19

3.2.1 Elliptic Curve Selection ... 21
3.2.2 Applet Key Generation ... 21
3.2.3 Applet Signature Generation .. 22
3.2.4 Applet Signature Verification ... 22
3.2.5 Java Classes Used .. 22

3.3. IMPEMENTATION DETAILS ... 23
3.3.1. Packages Used .. 24
3.3.2. Global Curve Values ... 26
3.3.3. Applet User Interface and Components .. 26
3.3.4. ItemListeners and ActionListeners .. 27

3.3.4.1. The actionPerformed() Method ... 27
3.3.5. Verify, Sign, and Arithmetic Method Summaries .. 30
3.3.6. Additional Elliptic Curve Classes .. 33

3.3.6.1. ECPoint Class .. 33

TABLE OF CONTENTS (Continued)

3.3.6.2. EllipticCurve Class ... 35

3.3.7 Class Function Flow ... 35
3.4. ANALYSIS AND IMPROVEMENTS ... 38

3.4.1. Timing of Functions .. 38
3.4.2. Runtime Analysis ... 40
3.4.3. Suggested Improvements .. 40

4. CONCLUSION... 41
5. BIBLIOGRAPHY... 43
APPENDICES ... 44

LIST OF TABLES

Table Page

Table 1: ECDSA Imported Packages .. 25

Table 2: Summary of handling applet events ... 29

Table 3: ECDSA method summaries .. 32

Table 4: ECPoint class constructor summary ... 34

Table 5: ECPoint class method summaries ... 34

Table 6: EllipticCurve class constructor summary ... 35

Table 7: EllipticCurve class method summaries ... 35

Table 8: Average function runtimes by key size .. 39

LIST OF FIGURES

Figure Page

Figure 1: Applet interface ... 20

Figure 2: Flow of function usage .. 37

Figure 3: Depiction of ECDSA method runtimes as a function of the key size 39

LIST OF APPENDICES

Appendix Page

A. Timing results of function analysis .. 45

B. NIST curve values over GF(p) ... 46

C. ECDSA applet source code .. 48

A Java Implementation of the Elliptic Curve Digital Signature Algorithm Using
NIST Curves Over GF(p)

1. INTRODUCTION

Digital transactions have become commonplace, and in some cases inextricably linked to

modern life. This technological dependency requires that information be unaltered and

confidential. Before the age of web environments, large distributed networks, and the

proliferation of electronic data, cryptosystems required only symmetric algorithms.

Individuals could maintain the privacy of information with one secret key. With the

advent of the Internet era, many obstacles to trust and security appeared. Information

security concerns were introduced such as proving the identity of an individual,

identifying unwanted modification of data, and securing information without complex

key exchanges. The invention of asymmetric algorithms in the mid-1970’s provided the

answers to these issues.

Public key cryptosystems based on asymmetric design are widely used today and

many employ the intractability of the discrete logarithm problem. Other public key

cryptosystems are based on the computational complexity of the elliptic curve discrete

logarithm problem. These cryptosystems are known as elliptic curve cryptography

(ECC) which utilizes elliptic curves defined over prime and binary finite fields GF(p) and

GF(2k), respectively.

Despite its recent emergence, elliptic curve cryptography is being studied as a viable

replacement for well-known and implemented public key cryptosystems. The hard

2

problem that ECC is based on gives it a greater strength-per-key-bit making it ideal for

resource-constrained systems. The Elliptic Curve Digital Signature Algorithm (ECDSA),

the elliptic curve analogue of the Digital Signature Algorithm (DSA), is a popular

example of this. ECDSA combines the additional information security services of non-

repudiation, authenticity, and integrity that digital signatures offer, with greater

protection for a given key size compared with DSA.

This thesis focuses on the implementation of ECDSA in a publicly available format.

In order to satisfy this ease of use criterion, we chose to create a Java applet where

anyone can perform the three components of ECDSA – key generation, signature

generation, and signature verification. We chose to work over all prime curves that are

recommended by the National Institute of Science and Technology (NIST). This

provides users with the ability to select their preferred level of security when digitally

signing a message.

3

2. INTRODUCTION TO CRYPTOGRAPHY

Cryptography has been an important tool in securing information transactions for

thousands of years. It was originally intended to disguise messages so that adversaries

could not acquire or alter sensitive information. Cryptography involves encryption,

which is the conversion of plaintext to an unreadable format known as ciphertext. If the

encryption is secure, only an entity with the secret key can decrypt the ciphertext and

convert it back to plaintext. Since its origination, cryptography has been divided to

include two types of cryptosystems: symmetric and asymmetric. These terms define

whether the cryptosystem uses a single key or a pair of keys for encryption and

decryption. Cryptography has also been expanded to provide the following information

security requirements:

1. Non-repudiation: Preventing an entity from denying previous

commitments or actions.

2. Integrity: Ensuring no unauthorized alteration of data.

3. Authentication: Verifying an entity’s identity

4. Confidentiality: Protecting the data from all but the intended receiver.

2.1. SYMMETRIC CRYPTOSYSTEMS

Symmetric algorithms share the same key for encryption and decryption. Keeping this

single key private is essential to the security of the algorithms. These traditional

cryptosystems suffer from many disadvantages including key exchange and key

4

management (when large groups must manage many pairs of keys). Despite this security

risk, they do offer the advantages of having a small key length and consuming a low

amount of computing power. Examples of well-known symmetric algorithms include the

Data Encryption Algorithm (DEA) defined by the Data Encryption Standard (DES), and

Triple-DES.

2.2. ASYMMETRIC CRYPTOSYSTEMS

Asymmetric cryptosystems are better suited for real-world environments where the

secure transfer of the secret key is not essential to the security of the system. These

algorithms use a pair of keys – one private key typically used for decryption and one

public key typically used for encryption. This allows for anyone who knows an entity’s

public key to send them an encrypted message with assurance that only that entity can

decrypt it with their secret private key. The security and utility of public key

cryptosystems is aided by their asymmetric design. Well-known asymmetric algorithms

include DSA, RSA, and ELGAMAL.

2.3. PUBLIC KEY CRYPTOGRAPHY

The proposal of public key cryptosystems in 1976 by Whitfield Diffie and Martin

Hellman introduced a revolutionary way to address modern security issues such as key

management, authentication, non-repudiation, and signatures in a digital environment.

5

All cryptosystems are secure only if the difficulty of the mathematical problem

that they are based on is determined to be hard. Public key cryptosystems are based on

the intractability of one of three problems. These problems and the cryptosystems based

on them are:

1. The Integer Factorization Problem; RSA

2. The Discrete Logarithm Problem; DSA, Diffie-Hellman, ElGamal

3. The Elliptic Curve Discrete Logarithm Problem; ECDSA, ECDH

The discrete logarithm problem (DLP) and the elliptic curve discrete logarithm problem

(ECDLP) are discussed in the following sections.

2.3.1. Discrete Logarithm Problem

In 1985, Taher ElGalmal first proposed the use of the DLP for public-key cryptosystems

and digital signature schemes. The discrete logarithm problem, like the factoring

problem, is said to be difficult in addition to being the hard direction of a one-way

function [9]. It involves the mathematical structure of groups, of which the simplest

definition is a nonempty set S together with a binary operation *. Let g be an element of

group G. If the order n of element g is also the order of the group G, then g is referred to

as a generator of G. This means that repeated exponentiation of g (g*g*g) will yield all

elements of G. Cryptography commonly uses the group Zp*, a finite and multiplicative

group of integers modulo a prime number p. The discrete logarithm problem is

characterized by these elements under the following condition:

6

1. Given a generator g of the multiplicative group Zp*, a prime integer p, and

another element h ∈ Zp*, find the unique integer j in the interval [0, p-1]

such that h ≡ gj (mod p).

The inverse operation of exponentiation on gj mod p can be computed efficiently, but it is

not practical to calculate gj mod p for large values. This is why the DLP is a one-way

function and considered a hard problem.

2.3.2. Elliptic Curve Discrete Logarithm Problem

Based on the infeasibility of computing discrete logs on elliptic curves over finite fields,

the Elliptic Curve Discrete Logarithm Problem is the security behind elliptic curve

cryptography. Cryptosystems based on the computational complexity of this

mathematical problem include ECDSA, ECElGamal, and Elliptic Curve Diffie-Hellman

(ECDH). ECDLP is similar to the aforementioned Discrete Logarithm Problem and can

be thought of as an analogue to DLP. In the ECDLP, however, the subgroup Zp* is

replaced by the group of points on an elliptic curve over a finite field. In addition, unlike

the DLP and the integer factorization problem, no subexponential-time algorithm is

known for the ECDLP. ECDLP is considered to be significantly harder than the DLP,

thus giving elliptic curve cryptosystems a greater strength-per-key-bit than their non-

analogue discrete logarithm counterparts.

7

2.4. ELLIPTIC CURVE CRYPTOGRAPHY

Although elliptic curves have been studied for over 150 years, they weren’t applied to

cryptography until very recently. In 1985, Neal Koblitz and Victor Miller independently

proposed the use of elliptic curve points over a finite field for cryptosystems. Since then,

several standards have accepted the use of elliptic curve cryptosystems. Interest in

elliptic curve cryptography is due to the determination that is based on a harder

mathematical problem than other cryptosystems. Because of this, ECC can offer certain

advantages over non-elliptic curve schemes. For effective use in cryptosystems, elliptic

curves are defined over finite fields that require unique arithmetic operations.

2.4.1. Utilization of Elliptic Curve Cryptography

Elliptic curve cryptography’s strengths make it most suitable for resource-constrained

systems. ECC provides greater security for a given key size and can be efficiently and

compactly implemented. These attributes make it well suited for systems with

constraints on processor speed, security, heat production, power consumption, bandwidth,

and memory. Cell phones, PDAs, wireless devices, laptops, and smartcards are

applications that benefit from elliptic curve cryptosystems.

2.4.2. Elliptic Curves Over Finite Fields

Elliptic curve cryptography uses elliptic curves to find points on an ellipse. These points

are used for keys within a discrete range. This means that all numbers must be finite and

8

positive integers from 0 to a specified number used. The field constraints of elliptic

curves used in cryptosystems prevent problems such as infinitely repeating fractions and

round-off errors.

Of the different fields that elliptic curves reside in, GF(p) prime fields and GF(2k) binary

polynomial fields are most effective for cryptographic implementations. Of the two,

GF(2 k) is more popular due to available space and time-efficient implementations of

elliptic curve arithmetic in GF(2k).

2.4.3. Field Overview of GF(2k)

The characteristic two finite field, F(2k), referred to as a binary field, contains 2k elements

for the degree k of the field. Bit strings of length k make up the elements of the field. All

arithmetic in F(2k) is done in terms of operations on the bits. A basis, either polynomial

or normal, is chosen to interpret the bit strings. The correct arithmetic operations are then

chosen depending on which basis is used.

The elliptic curve group over GF(2k) consists of the point at infinity ∞, and all

points (x,y), where x,y ∈ F(2 k), that satisfy the following equation of the form

y2 + xy = x3 + ax2 + b,

9

where b ≠ 0 and a,b ∈ F(2k).

2.4.4. Field Overview of GF(p)

The finite field F(p), referred to as a prime field, consists of integers in the interval [1,p-

1] where p is a prime number. The arithmetic of this field is modulo p so that any

calculation results will fall into the finite space defined. An elliptic curve over Galois

field GF(p) is defined by the following equation:

y2 = x3 + ax + b

In order to form a group on the elliptic curve consisting of integers, x3 + ax + b can

contain no repeated factors. This can be guaranteed by ensuring that 4a3 + 27b2 (mod p)

≠ 0. All points (x,y) that satisfy the equation y2 = x3 + ax + b where x,y ∈ GF(p) ,

together with an extra point ∞, create a group on the curve.

2.4.5. Arithmetic Operations on Elliptic Curves over GF(p)

Inversion on the field, denoted as a-1, is performed modulo p such that (a-1*a) mod p = 1.

Addition of points within an elliptic curve group will give another point on the curve, and

all multiples of points within the group are also contained on the elliptic curve. There are

three rules that addition of points within an elliptic curve group adhere to:

1. ∞ + ∞ = ∞

10

2. (x,y) + ∞ = (x,y)

3. (x,y) + (x, -y) = ∞

Aside from these rules, addition, doubling, and scalar multiplication of points on elliptic

curves over GF(p) are calculated by the following formulas.

2.4.5.1. Addition of Distinct Points

Let two points on the curve P = (x1, y1) and Q = (x2, y2) and their sum are R = (x3, y3). P

and Q are distinct if P and –Q are not the same (x1 ≠ x2). The addition of the points, P + Q

= R is defined as:

 (x1, y1) + (x2, y2) = (x3, y3)

 λ = (y2 - y1)(x1 - x1)-1

 x3 = λ2 – x1 – x2

 y3 = λ(x1- x3) – y1

2.4.5.2. Doubling of a Point

Let point P = (x1,x2) exist on the curve where x1 ≠ 0. The doubling of the point, 2P = R is

defined as:

 (x1, y1) + (x1, y1) = (x3, y3)

 λ = (3x12 + a)(2y1)-1

 x3 = λ2 – 2x1

11

 y3 = λ(x1- x3) – y1

2.4.5.3. Scalar Multiplication of Points

Let P be a point and d be a bit string representation of an integer. In order to compute

point Q = dP, addition chains are used. A common addition chain is the binary method,

which uses addition and doubling of points. The binary method for scalar multiplication

of a point, dP = Q, follows this algorithm (depicted in pseudocode);

if dn-1 = 1, then Q := P else Q: = ∞

for i = n-2 to 0

Q := Q + Q

if di = 1 then Q:= Q + P

return Q

2.5. DIGITAL SIGNATURES

Digital Signatures are used as a common and effective tool in information security. They

can be thought of as a digital counterpart to handwritten signatures, but they offer much

more as an encryption technique. The use of digital signatures can offer a high degree of

protection for many digital transactions and documents. A digital signature satisfies the

information security requirements of non-repudiation, integrity, and authentication.

12

2.5.1. Functionality and Intent of the Digital Signature Algorithm

The Digital Signature Standard (DSS) as defined by NIST (FIPS 186) in 1994, specifies

DSA as an accepted algorithm to generate and verify digital signatures. DSA is an

asymmetric encryption standard whose basic components are key generation, signature

generation, and signature verification.

According to the DSS, the purpose of the Digital Signature Algorithm is to

provide the capability of generating and verifying signatures to the extent that the identity

of the signatory and the integrity of the data can be verified.

2.5.2. Signature Generation Using DSA

During the first stage of signature generation, the data message is condensed into what is

called a message digest using a secure one-way hash function specified by the Secure

Hash Standard (SHS), FIPS 180. This hash algorithm provides another layer of security

because it is not possible to reverse the hash and determine its contents. The integrity of

the data is also maintained because a hacker cannot alter the message even by a single

character without invalidating the signature.

The DSA sign operation is then performed on the resulting message digest H(M)

using the signatory’s private key a and the established public key (p, q, α, y). This

returns a secure digital signature that can be used to authenticate and ensure integrity of

the message. Following are examples of signature generation by sender A and signature

verification by receiver B of a message.

13

DSA signature generation

Sender A computes the signature of message M:

1. Select random integer k where 1 ≤ k ≤ q-1

2. Compute r = (αk mod p) mod q

3. Compute k-1 mod q.

4. Compute s = k-1{H(M) + ar} mod q

5. If s = 0, return to step 1

6. The signature for message M consists of the computed integers (r,s)

2.5.3. Signature Verification Using DSA

During verification, the original message is received and then, applying the same secure

hash function used during signing, the message digest is obtained. The public key,

message digest and the provided digital signature are then used with the DSA verify

operation to determine authenticity of the signature.

DSA signature verification

Receiver B performs the following steps to verify the A’s signature on message

M.

1. Obtain the public key (p, q, α, y) of sender A.

2. Verify that 0 < r < q and 0 < s < q, otherwise reject the signature

3. Compute w = s-1 mod q and H(M)

4. Compute u1 = wH(M) mod q and u2 = rw mod q

14

5. Compute v = (αu1yu2 mod p) mod q

6. The signature of A for message M is verified by receiver B if v = r.

2.6. ECDSA

The elliptic curve digital signature algorithm is the elliptic curve analogue of DSA and

serves the same purposes of key generation, signature generation, and signature

verification. ECDSA was first proposed in 1992 by Scott Vanstone in response to

NIST’s proposal of DSS. It was later accepted in 1998 as an ISO standard (ISO 14888-

3), as an ANSI standard (ANSI X9.62) in 1999, and as an IEEE standard (IEEE 1363-

2000) and as a NIST standard (FIPS 186-2) in 2000.

2.6.1. Security of ECDSA

The generation of the public key in ECDSA involves computing the point, Q, where Q =

dP. In order to crack the elliptic curve key, adversary Eve would have to discover the

secret key d. Given that the order of the curve E is a prime number n, then computing d

given dP and P would take roughly 2n/2 operations [1]. For example, if the key length n

is 192 bits (the smallest key size that NIST recommends for curves defined over GF(p)),

then Eve will be required to compute about 296 operations. If Eve had a super computer

and could perform one billion operations per second, it would take her around two and a

half trillion years to find the secret key. This is the elliptic curve discrete logarithm

problem behind ECDSA.

15

2.6.2. Key Pair Generation Using ECDSA

Let A be the signatory for a message M. Entity A performs the following steps to

generate a public and private key:

1. Select an elliptic curve E defined over a finite field Fp such that the

number of points in E(Fp) is divisible by a large prime n.

2. Select a base point, P, of order n such that P ∈ E(Fp)

3. Select a unique and unpredictable integer, d, in the interval [1, n-1]

4. Compute Q = dP

5. Sender A’s private key is d

6. Sender A’s public key is the combination (E, P, n, Q)

2.6.3. Signature Generation Using ECDSA

Using A’s private key, A generates the signature for message M using the following

steps:

1. Select a unique and unpredictable integer k in the interval [1,n-1]

2. Compute kP = (x1,y1), where x1 is an integer

3. Compute r = x1 mod n; If r = 0, then go to step 1

4. Compute h = H(M), where H is the Secure Hash Algorithm (SHA-1)

5. Compute s = k-1{h + dr} mod n; If s = 0, then go to step1

6. The signature of A for message M is the integer pair (r,s)

16

2.6.4. Signature Verification Using ECDSA

The receiver B can verify the authenticity of A’s signature (r,s) for message M by

performing the following:

1. Obtain signatory A’s public key (E, P, n, Q)

2. Verify that values r and s are in the interval [1,n-1]

3. Compute w = s-1 mod p

4. Compute h = H(M), where H is the same secure hash algorithm used

by A

5. Compute u1 = hw mod n

6. Compute u2 = rw mod n

7. Compute u1P + u2Q = (x0,y0)

8. Compute v = x0 mod n

9. The signature for message M is verified only if v = r

17

3. JAVA APPLET IMPLEMENTATION OF ECDSA

Taking advantage of the platform-independence and web integration that Java applets

offer, we created a publicly accessible website where anyone can perform the functions

of the Elliptic Curve Digital Signature Algorithm. In this way, ECDSA is shown to be

easily implemented in a context where it is most useful – in a network environment.

3.1. JAVA OVERVIEW

The Java platform and programming language was first announced only a decade ago in

1995 by Sun Microsystems. Java helped realize the impact of the network age by

providing a platform-independent way to integrate programming and the web. Applets,

which can easily be embedded into websites, are a key link in this integration. With the

growth of the Internet, Java has become the language of choice in web application

development and enterprise solutions that require component communication over

distributed systems.

Networking and e-commerce provide a fast and global medium in which

communications and transactions can take place rapidly and efficiently. Unfortunately,

the public nature of networks has made them highly susceptible to cyber attacks and

fraud. The importance of maintaining uncompromised sites on the Internet has become a

major issue for individuals, government agencies, and commercial organizations. These

entities have much more to lose if their sites are compromised due to their dependency on

the web, and there is no shortage of adversarial attacks on them. Many public key

18

cryptosystems have found a natural niche by filling these network security voids, and

have since become essential to data protection in e-commerce and communications.

While Java has always been designed with security in mind, the release of Java

Development Kit (JDK) 1.4 now integrates cryptographic functionality into its core

package. This release introduces the Java Cryptography Extension (JCE), a set of

packages that provide a framework and implementations for encryption (asymmetric,

symmetric, block and stream ciphers), key generation and agreement, and Message

Authentication Code (MAC) algorithms. This functionality is provided on top of

implementations and interfaces for digital signatures and message digests that already

exist in the Java 2 platform. Various algorithms are supported such as DES, AES, and

the Diffie-Hellman key agreement. In addition, JDK 1.4 also provides Java

Authentication and Authorization Services (JAAS), and Java Secure Socket Extension

(JSSE). In version 1.5, elliptic curves and elliptic point classes help support elliptic curve

cryptosystems. While these solutions exist outside of Java, they are not offered in a

compact, fully integrated, and portable package that the newest versions of JDK offer.

The JCE has also been designed to remove the math and complexity from the

cryptographic algorithms to allow for a faster and more accurate distributed system

development time.

The Internet has a long way to go in solving its security problems. The use of

cryptography in conjunction with a low-cost, portable, network-friendly, and platform-

independent language such as Java can be a valuable solution to many of these security

issues.

19

3.2. ECDSA APPLET USAGE

The purpose of using a Java applet is to provide a familiar and easily accessible medium

for users to sign and verify messages using the elliptic curve digital signature algorithm.

By using a Java applet, our implementation can be embedded into a website and made

available for all public use. The ECDSA applet contains three parts: key generation,

signature generation and signature verification. Let two entities, Alice and Bob, be users

of our applet. The user interface is show below, followed by an outline of typical usage of

the applet.

20

Figure 1: Applet interface

21

3.2.1 Elliptic Curve Selection

The first step in using the applet is to specify the elliptic curve that all ECDSA arithmetic

will be performed over. The ECDSA applet allows selection of five different curves

defined over GF(p). The user has the option of selecting one of the following NIST

curves via a dropdown list: P-192, P-224, P-256, P-384, and P-512. The names of these

curves reference the bit length of the keys and are listed by increasing strength. NIST

curves are used because they are recommended as a secure standard under FIPS 186-2.

3.2.2 Applet Key Generation

After selecting an elliptic curve defined over a given field, the ECDSA applet provides

the ability to generate a private and public key. First, the user must enter their email

address. What the user enters will be their unique identifier. Their public key will be

publicly available on the site and listed under this identifier. In addition, their private key

will be saved in a file named after their ID. For example, let Alice enter her email

address as Alice@ecdsa. Alice uses the applet to generate a private key. Her private key

will be saved on her local file system under the name Alice@ecdsa.privateKey. Alice

then generates her public key. Her public key will be saved on a server repository. This

allows the applet to store her public key and make it available for all users. In order to

retrieve Alice’s public key, a user must know Alice’s email address. They can then select

this address in the Signature Verification portion of the applet when it is necessary to

verify Alice’s signature for a given message.

22

3.2.3 Applet Signature Generation

After the user has created both a private key and public key they can generate a signature

for any message that is stored on their local file system. The user must upload their

private key and message to be signed. The applet then generates a signature for the

uploaded message. The signature is saved on the user’s local file system under their

specified email address name. If Alice has performed these steps, she can send Bob her

message with her signature to ensure authenticity.

3.2.4 Applet Signature Verification

If Bob knows Alice’s email address, then he can verify her signature on a given message

m. First, Bob uploads message m to the applet. Knowing Alice’s email address, he can

select it from the list of user’s public keys stored on the server repository. He then

uploads Alice’s signature for message m. The applet determines if the signature is valid

given Alice’s public key. A message is displayed that the signature is valid or invalid.

3.2.5 Java Classes Used

For accuracy purposes, existing Java classes were used whenever possible to perform

computations of the large integers. The mathematical operations involved in point

arithmetic were manually coded because there are no available Java methods to perform

these computations. The algorithms used during implementation for point addition,

doubling of a point, and scalar multiplication are discussed in section 2.4.5.

23

For the characteristic mathematical operations of the primary field, the Java

BigInteger class was used. The BigInteger class contains functions for modular

inversion, addition, multiplication, and modular arithmetic of large integers. In addition,

the BigInteger method SecureRandom was utilized in order to securely generate the large

random numbers necessary for key generation and signature generation.

To create the secure hash of a message, we used the Java Security class, and

specifically the MessageDigest functions. Although SHA-1 is the only hash function

defined for use with ECDSA by NIST, we elected to use SHA-512 in our

implementation. During the course of programming the applet, SHA-1 was believed to

be broken. Due to the newly introduced security risk of this hash algorithm and the

announcement by NIST to phase out SHA-1 in favor of larger and stronger hash

functions (SHA-224, SHA-256, SHA-384, and SHA-512), we felt that SHA-512 should

be used [7]. This does not compromise the security of the ECDSA implementation.

3.3. IMPEMENTATION DETAILS

The ECDSA Applet is composed of one main class: the ECDSA class. This class

implements the applet and performs all of the arithmetic computations and ECDSA

functionality that the user requests when signing a message on the applet or verifying a

signature. The user can select from a list of curves with various key sizes to sign their

message. The source code for the ECDSA applet can be found in Appendix C.

Following is a summary of the functions and packages used to implement the ECDSA

class.

24

3.3.1. Packages Used

The table that follows is the list of packages and the specific classes imported and used in

the ECDSA class, followed by a short description of their purpose.

25

Imported Packages

java.applet
Necessary to create the applet and
allow the applet to communicate with
the website.

java.awt
Contains classes necessary for
creating the user interface and
components.

java.awt.event Provides functionality to handle
usage of the applet by users.

java.math.BigInteger
Contains classes that allow for
arithmetic computations of very large
numbers.

java.io
Allows for input and output from the
applet to the user’s file system or
host server.

java.io.DataInputStream Provides ability to write data to file
on the host server in stream form.

java.io.IOException Necessary to catch in case of I/O
error.

java.util.StringTokenizer Used to parse through strings.

java.io.UnsupportedEncodingException Must be thrown when creating the
message digest.

java.net Used when communicating with host
server via a URL.

import java.security

Contains security classes in the Java
framework. Used in creating the
message digest and secure random
numbers.

import javax.swing Provides a user-friendly way to
access and browse local file system.

Table 1: ECDSA Imported Packages

26

3.3.2. Global Curve Values

The parameters for the NIST elliptic curves over GF(p) can be found in Appendix B.

These parameters include the order r, base point coordinates (x,y) (where x,y ∈ GF(p) and

the point is of order r), the n-bit prime modulus p, the coefficient b, and the coefficient a

(which always has a value of –3 for efficiency purposes). All of these parameters satisfy

the equation y2 = x3 + ax + b. These parameters were hard-coded into the applet. They

were then put into an array so that when the user selected a particular curve from the

drop-down list in the applet, all of selected curve’s parameters can be easily referenced.

3.3.3. Applet User Interface and Components

All of the applet components are first instantiated. The applet is then initialized in the

init() method. The init() method initializes all of the components by calling

initComponents(). The sizes and locations of all the applet components are set in this

method and then added to the applet. The initComponents() method also calls the

displayPublicKeys() method which reads the ID names (email addresses) of all of the

public keys that have been created in the applet. These IDs are stored in a file on the

server that hosts the applet. They are then displayed in the signature verification section

of the applet under available public keys. The last thing that the initComponents()

method does is to add an ActionListener to each button in the applet and to the public key

list. It also adds an ItemListener to the drop down list of NIST curves to use.

27

3.3.4. ItemListeners and ActionListeners

The ItemListen and ActionListen classes implement the ItemListener and ActionListener

classes, respectively. These two classes handle all events in the applet that deal with

components. All button presses and list selections are handled differently and the

listeners that were added to each component will call these classes to properly deal with

an event when it happens.

When a user selects a curve to use in signature generation or verification, the

ItemListen class will receive the selected index in the drop down list. This translates to

the array index where the curve parameters of the selected curve are stored. A new

elliptic curve is created using the EllipticCurve class with these curve parameters taken

from the arrays. The ActionListen class handles all other component events and is much

longer. It has only one method – actionPerformed() – that specifies different actions for

all events.

3.3.4.1. The actionPerformed() Method

The following is a breakdown of how the actionPerformed() method handles each event.

28

Generate and Save Private Key button

pressed

A random big integer is generated that

will serve as the private key for the

user. The Java SecureRandom class is

used to create the key. Modulo of the

order is performed on the private key.

A popup window in the applet appears

for the user so that they can select the

location on their file system where the

private key will be stored. The private

key is saved under user’s email

address (ID). The users ID, curve

selection, date, and private key will be

stored in this file.

Generate and Save Public Key button

pressed

The public key is created using the

multPoint() method with the user’s

private key and base point as

parameters. A php file that is stored

on the host server is then called. This

script will add to two files on the

server – one that will save the list of

public key IDS and another that will

save the IDs along with the public key

values associated with that user.

Upload Private Key browse button

pressed

User uploads their private key by

searching through local file system.

Upload Message browse button

pressed

User uploads their message to be

signed by searching through local file

system.

Generate Signature button pressed The applet calls the sign() method and

generates a signature for the uploaded

29

message. The user selects the location

to save their signature file. The applet

creates a file (named with the user’s

email address) and the ID, curve

selection, date, and signature is stored

in the file.

Upload Message for Verification

button pressed

User uploads their message that was

signed by searching through local file

system.

Upload Signature for Verification

button pressed

User uploads their signature to be

verified by searching through local file

system.

Verify Signature button pressed The verify() method is called to verify

the uploaded signature using the

selected public key. A message is

displayed stating whether the

signature is valid or invalid.

Table 2: Summary of handling applet events

30

3.3.5. Verify, Sign, and Arithmetic Method Summaries

The cryptographic section of the ECDSA class is found in the verify(), sign(), and

arithmetic methods. This is the summary of the major methods used to perform the

ECDSA computations. The inputs, outputs, and provided functionality of each method

are explained in the following table.

31

Method Summary
BigInteger[] sign()

 Follows the ECDSA algorithm for signature generation. The

user’s uploaded message file and private key are used to create the

signature. A message digest is created using the sha512() method.

For point multiplication, the multiPoint() method is used. All

other arithmetic is performed using Java methods provided by the

BigInteger class (modular arithmetic, subtraction, multiplication,

modular inversion).

The returned BigInteger array contains the signature [r,s]

String verify()

Follows the ECDSA algorithm for signature verification. This

method calls the getPubKey() method which reads from a file

located on the host server that contains all of the public keys. This

method will find the selected public key and return the values.

Point arithmetic performed using the multipoint() and addPoints()

methods. All other arithmetic is done using the Java BigInteger

class methods.

The returned String indicates whether the signature is valid or

invalid.

ECPoint

addPoints(ECPoint p1, ECPoint p2)

 Addition or doubling of points p1 and p2 is performed

following the algorithms lined out in sections 2.4.5.1 and 2.4.5.2.

All arithmetic uses the Java BigInteger class methods.

The returned ECPoint is the sum of p1 and p2.

32

ECPoint multPoint(BigInteger s, ECPoint p)

Follows the binary method for scalar multiplication of appoint

outlined in section 2.4.5.3. The addPoints() method is used for the

necessary point addition.

The returned ECPoint is the sum of p added s times.

BigInteger sha512(File file)

Uses the Secure Hash Algorithm 512 to generate a message digest

of a given message contained in file. This method uses the Java

MessageDigest class to create the hash.

The returned BigInteger contains the message digest value.

Table 3: ECDSA method summaries

33

3.3.6. Additional Elliptic Curve Classes

Two elliptic curve classes were created within the main ECDSA class. They are the

ECPoint class and the EllipticCurve class. These classes provide the ability to create an

elliptic curve point and elliptic curve, respectively, as well as the ability to easily access

these values. It should be noted that the functionality of both of these classes are available

in Java SDK 2 version 1.5. Our system was constrained to use of Java v.1.4.2, but we

modeled our classes after the Java 1.5 class to have the same names, method names, and

close to the same arguments so that they can fairly easily be swapped.

3.3.6.1. ECPoint Class

Our ECPoint class has the same methods as the Java class but the constructor is slightly

different. A third value was added to indicate if the point was at infinity. The equals()

method also compares the point to another ECPoint instead of an object (as in the Java

version). The following details the ECPoint methods.

34

Constructor Summary
ECPoint(BigInteger x, BigInteger y)

 Creates an ECPoint from the specified affine x-coordinate x and affine y-

coordinate y.

Table 4: ECPoint class constructor summary

Method Summary
boolean equals(ECPoint pt)

 Compares this elliptic curve point for equality with the

specified point.

BigInteger getAffineX()

 Returns the affine x-coordinate x.

BigInteger getAffineY()

 Returns the affine y-coordinate y.

Table 5: ECPoint class method summaries

35

3.3.6.2. EllipticCurve Class

Our EllipticCurve class differs from the Java one in that the constructor doesn’t take a

third field argument. Below is the EllipticCurve class methods summary.

Constructor Summary
EllipticCurve(BigInteger a, BigInteger b)

 Creates an elliptic curve with the coefficients a and b.

Table 6: EllipticCurve class constructor summary

Method Summary
 BigInteger getA()

 Returns the first coefficient a of the elliptic curve.

 BigInteger getB()

 Returns the second coefficient b of the elliptic curve.

Table 7: EllipticCurve class method summaries

3.3.7 Class Function Flow

The main functions of the ECDSA class are the signature generation and verification

methods. These two methods call on the same functions that were created to perform

secure hashing of a message, point multiplication, and point addition. All other methods

36

that the sign() and verify() class utilize for computation are Java provided. The

following flowchart represents the interactions between all of these functions.

37

Figure 2: Flow of function usage

38

3.4. ANALYSIS AND IMPROVEMENTS

Each of the functions in the ECDSA class was analyzed for its timing performance

compared with the key size being used for signature generation and verification.

Although this applet was not optimized for efficiency, identification of the slow functions

and their time complexities can aid further investigation into faster implementations of

ECDSA in Java.

3.4.1. Timing of Functions

Five timing trials were conducted for the sign(), verify(), multPoint(), and addPoints()

functions over each curve (of various key lengths) using a 32 KB message. The exact

values obtained for the trials can be found in Appendix A. It was found that the

addPoints() method was too fast to be timed in milliseconds and so was considered

negligible in the overall efficiency of the class. The sign(), verify(), and multipoint()

functions were identified as the core features that can be optimized. Following is the

table of the average runtimes of each of the three functions and the graph representation

of these runtimes as a function of the key size.

39

Key Size sign() verify() multPoint()

521(bits) 308 (ms) 2653(ms) 637(ms)

384 225 1412 293

256 100 697 109

224 87 591 85

192 75 478 63

Table 8: Average function runtimes by key size

Function Timings

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

Key Size (bits)

Ti
m

e
(m

ill
is

ec
on

ds
)

Signature Generation
Signature Verification
Point Multiplication

Figure 3: Depiction of ECDSA method runtimes as a function of the key size

40

3.4.2. Runtime Analysis

Based on the average runtime for each key size, the time complexity run time for the

signature generation, verification, and point multiplication is the same – O(n2). The

reason for such a high time order in the sign() and verify() methods is due to the

multPoint() function that they both use.

3.4.3. Suggested Improvements

Most of the arithmetic operations in the ECDSA applet are performed using Java

BigInteger functions and are as efficient as they can be when run on a Java platform.

Therefore, the remaining arithmetic operations of either the addPoints() or the

multPoint() functions must be the bottlenecks. The addPoints() function was found to

have a very fast runtime compared to multPoint(), although multPoint() performs

several point addition calculations. While a more precise timing system might fight that

the addPoints() method does in fact have a relevant runtime, optimization of the

multPoint() algorithm would have the largest impact. A more efficient point

multiplication algorithm would also reduce the runtime of both the sign() and verify()

methods by the same rate since they both depend on the multPoint() function and have

the same time order.

41

4. CONCLUSION

Digital signatures provide cryptographic services that have become a necessity in data

and network security. They offer non-repudiation, confidentiality, authentication, and

integrity in a format that easily extends to the digital age. As systems become faster and

smaller, they will need to maintain their security while using minimal resources. The

elliptic curve digital signature algorithm provides the same functionality and security as

the standard digital signature algorithm, but delivers it in a smaller key size. This makes

it ideal for resource-constrained systems and network technology.

 The Java language offers a platform to deliver the functionality of ECDSA in a

web-based context. Leveraging off of this ability to provide a high level of security for

data transfer in a public interface, we created a Java applet that implements ECDSA.

This applet was embedded in a webpage so that it could be easily accessed by anyone on

the Internet.

 The ECDSA applet was created with the idea of being highly functional to a

distributed community. User Alice can access the public site, generate a key, sign a

document, and post her public key for user Bob to employ when verifying Alice’s

signature. Efficient implementation of the ECDSA on the Java platform was not

considered as a part of this exercise. Java provided methods were used whenever

possible to aid implementation and speed, but the algorithms in our functions were not

optimized. Analysis of the function runtimes found that the time order of the three main

functions that provided the ECDSA services were high. Two of these functions relied on

42

the third function, which performed point multiplication. This lends to the conclusion

that optimization of this base function would improve the entire system. Further research

can be done to determine a faster implementation of ECDSA in a Java environment.

43

5. BIBLIOGRAPHY

[1] Engelfriet, Arnoud. Elliptic Curve Cryptography. 1 Jan. 2004. 4 Apr. 2004. Ius
Mentis. <http://www.iusmentis.com/technology/encryption/elliptic-curves/>

[2] Gutschmidt, Thomas. “An Overview of Cryptography in Java, Part 2: Provider

History.” JuniperWeb. 4 April 2005. <http://www.developer.com/java/ent/
article.php/641531>

[3] Helton, Rich, and Johennie Helton. Java Security Solutions. Indianapolis: Wiley

Publishing. 2002.

[4] Johnson, Don B., Alfred J. Menezes, Scott Vanstone. The Elliptic Curve Digital

Signature Algorithm (ECDSA). Canada: Certicom. 2001. Available at
<http://www.comms.scitech.susx.ac.uk/fft/crypto/ecdsa.pdf>

[5] Koc, Cetin Kaya. Elliptic Curve Cryptosystems. Posted Notes. Oregon State

University. 2005. Available at <http://islab.oregonstate.edu/koc/ece575/notes/
ec1.pdf>

[6] Mohapatra, Pradosh Kumar. “Public Key Cryptography.” ACM Crossroads Sep.

2000. 10 Apr. 2005. < http://www.acm.org/crossroads/xrds7-1/crypto.html>

[7] NIST. NIST Brief Comments on Recent Cryptanalytic Attacks on SHA-1. 22 Feb.

2005. Computer Security Division. 27 Feb. 2005.

[8] Qiu, Qizhi and Qianxing Xiong. Research on Elliptic Curve Cryptography. The 8th

International Conference on Computer Supported Cooperative Work in Design.
Cincinnati. 2004.

[9] RSA Laboratories. Frequently Asked Questions About Today’s Cryptography. 1998.

4 Apr. 2005. Bedford: RSA Laboratories. < http://www.rsasecurity.com/rsalabs/
node.asp?id=2152>

[10] Sanchez-Vila, C, R. Sanchez-Reillo, M. de Miguel de Santos. Elliptic Curve

Cryptography on Constraint Environments. The 38th Annual 2004 International
Carnahan Conference. Spain: Security Technology. 2004.

[11] SkillSoft. Cryptography Protocols and Algorithms. Nashua: SkillSoft Press. 2003

[12] United States. National Institute of Standards and Technology. Digital Signature

Standard (DSS). Federal Processing Standards Publication 186. Washington:
FIPS. 1994.

44

APPENDICES

45

Appendix A: Timing results of function analysis

Note: All time is displayed in milliseconds

Appendix A. Table 1. Results of time analysis using various curves

Curve Method Test1 Test2 Test3 Test4 Test5 Average
P-521 Sign 375 375 360 359 375 308

Verify 2625 2672 2672 2641 2656 2653
multPoints 640 657 641 625 625 637
addPoints 0 0 0 0 0 0
SHA 15 15 32 31 31 25

Curve Method Test1 Test2 Test3 Test4 Test5 Average
P-384 Sign 203 203 313 203 203 225

Verify 1390 1422 1422 1422 1406 1412.4
multPoints 281 296 296 297 297 293.4
addPoints 0 0 0 0 0 0
SHA 31 31 31 31 31 31

Curve Method Test1 Test2 Test3 Test4 Test5 Average
P-256 Sign 110 110 94 94 94 100.4

Verify 687 687 687 719 704 696.8
multPoints 110 109 110 109 109 109.4
addPoints 0 0 0 0 0 0
SHA 31 15 16 31 15 21.6

Curve Method Test1 Test2 Test3 Test4 Test5 Average
P-224 Sign 78 78 94 94 93 87.4

Verify 578 594 593 594 594 590.6
multPoints 94 78 79 78 94 84.6
addPoints 0 0 0 0 0 0
SHA 15 15 31 32 31 24.8

Curve Method Test1 Test2 Test3 Test4 Test5 Average
P-192 Sign 78 79 63 78 78 75.2

Verify 469 484 469 484 485 478.2
multPoints 63 62 63 62 63 62.6
addPoints 0 0 0 0 0 0
SHA 15 32 16 31 31 25

46

Appendix B: NIST curve values over GF(p)

Values for the prime modulus p and order r are given in decimal form. Coefficient b and

base point coordinate values G x and G y are given in hexadecimal form.

Curve P-192

p = 6277101735386680763835789423207666416083908700390324961279
r = 6277101735386680763835789423176059013767194773182842284081
b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
G x = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012
G y = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

Curve P-224

p = 26959946667150639794667015087019630673557916260026308143510066298881
r = 26959946667150639794667015087019625940457807714424391721682722368061
b = b4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4
G x = b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21
G y = bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34

Curve P-256

p = 115792089210356248762697446949407573530086143415290314195\
533631308867097853951
r = 1157920892103562487626974469494075735299969552241357603424\
22259061068512044369
b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b
G x = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296
G y = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5

Curve P-384

p = 3940200619639447921227904010014361380507973927046544666794\
8293404245721771496870329047266088258938001861606973112319
r = 394020061963944792122790401001436138050797392704654466679\
46905279627659399113263569398956308152294913554433653942643
b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f
 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

47

G x = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0 82542a38
5502f25d bf55296c 3a545e38 72760ab7
G y = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113
b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

Curve P-521

p = 686479766013060971498190079908139321726943530014330540939\
4463459185543183397656052122559640661454554977296311391\
480858037121987999716643812574028291115057151
r = 686479766013060971498190079908139321726943530014330540939\
4463459185543183397655394245057746333217197532963996371\
363321113864768612440380340372808892707005449
b = 051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b 99b315f3 b8b48991 8ef109e1
56193951 ec7e937b 1652c0bd 3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00
G x = c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 053fb521 f828af60
6b4d3dba a14b5e77 efe75928 fe1dc127 a2ffa8de 3348b3c1 856a429b f97e7e31
c2e5bd66
G y = 118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 579b4468 17afbd17
273e662c 97ee7299 5ef42640 c550b901 3fad0761 353c7086 a272c240 88be9476
9fd16650

48

Appendix C: ECDSA applet source code

/** ***************
 * ECDSA.java
 *
 * Author: Rhea Stadick
 * Date: May 30, 2005
 ******************/

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
import java.math.BigInteger;
import java.security.*;
import java.io.UnsupportedEncodingException;
import javax.swing.*;

import java.io.*;
import java.util.StringTokenizer;

import java.io.DataInputStream;

import java.io.IOException;
import java.net.*;

public class ECDSA extends Applet{
/***
 *
 * These are the hard-coded parameters of all of the NIST recommended curves for GF(P).
***/
 /**** P-192 ****/
 String p192X = "188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012";
 String p192Y = "07192b95ffc8da78631011ed6b24cdd573f977a11e794811";
 String p192B = "64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1";
 String p192P = "6277101735386680763835789423207666416083908700390324961279";
 String p192Order = "6277101735386680763835789423176059013767194773182842284081";

 /**** P-224 ****/
 String p224X = "b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21";
 String p224Y = "bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34";
 String p224B = "b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4";
 String p224P = "26959946667150639794667015087019630673557916260026308143510066298881";
 String p224Order =
"26959946667150639794667015087019625940457807714424391721682722368061";

 /**** P-256 ****/
 String p256X = "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296";
 String p256Y = "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5";
 String p256B = "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b";
 String p256P =
"115792089210356248762697446949407573530086143415290314195533631308867097853951";

49

 String p256Order =
"115792089210356248762697446949407573529996955224135760342422259061068512044369";

 /**** P-384 ****/
 String p384X = "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e0" +
 "82542a385502f25dbf55296c3a545e3872760ab7";
 String p384Y = "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113" +
 "b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f";
 String p384B = "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f" +
 "5013875ac656398d8a2ed19d2a85c8edd3ec2aef";
 String p384P = "3940200619639447921227904010014361380507973927046544666794829340" +
 "4245721771496870329047266088258938001861606973112319";
 String p384Order = "394020061963944792122790401001436138050797392704654466679469" +
 "05279627659399113263569398956308152294913554433653942643";

 /**** P-521 ****/
 String p521X = "c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521"+
 "f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66";
 String p521Y ="11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b4468"+
"17afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650";
 String p521P =
"6864797660130609714981900799081393217269435300143305409394463459185543183" +
"397656052122559640661454554977296311391480858037121987999716643812574028291115057151";
 String p521B = "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3"+
 "b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00";
 String p521Order =
"6864797660130609714981900799081393217269435300143305409394463459185543183" +
"397655394245057746333217197532963996371363321113864768612440380340372808892707005449";

 /* GLOBAL VARIABLES */
 public BigInteger[] xArray = {new BigInteger(p521X,16),new BigInteger(p384X,16),new
BigInteger(p256X,16), new BigInteger(p224X,16),new BigInteger(p192X,16)};
 public BigInteger[] yArray = {new BigInteger(p521Y,16),new BigInteger(p384Y,16),new
BigInteger(p256Y,16), new BigInteger(p224Y,16),new BigInteger(p192Y,16)};
 public BigInteger[] bArray = {new BigInteger(p521B,16),new BigInteger(p384B,16),new
BigInteger(p256B,16), new BigInteger(p224B,16),new BigInteger(p192B,16)};
 public BigInteger[] pArray = {new BigInteger(p521P),new BigInteger(p384P),new
BigInteger(p256P),new BigInteger(p224P),new BigInteger(p192P)};
 public BigInteger[] orderArray = {new BigInteger(p521Order),new BigInteger(p384Order),new
BigInteger(p256Order),new BigInteger(p224Order),new BigInteger(p192Order)};
 public ECPoint[] baseArray = {new ECPoint(xArray[0],yArray[0]),new
ECPoint(xArray[1],yArray[1]),new ECPoint(xArray[2],yArray[2]),
 new ECPoint(xArray[3],yArray[3]),new ECPoint(xArray[4],yArray[4])};

 public EllipticCurve curve = new EllipticCurve(new BigInteger("-3").mod(pArray[0]),bArray[0]);
 public int arrayIndex;
 public BigInteger zero = BigInteger.ZERO;
 public File signMsgFile = null;
 public File verMsgFile = null;
 public File verPubKeyFile = null;
 public File verSigFile = null;
 public ECPoint pubKey;
 public BigInteger[] rs = new BigInteger[2]; // holds signature
 public BigInteger privateKey;
 public File privKeyFile = null;

50

 /* SIGNATURE UI COMPONENTS */
 Label curveLb = new Label("Select Curve");
 Choice curveList = new Choice();
 Label keysLb = new Label("Generate Keys");
 Label emailLb = new Label("E-mail Address");
 TextField emailTxt = new TextField();
 Label signLb = new Label("Generate Signature");
 Button privKeyBtn = new Button("Generate & Save Private Key");
 Button pubKeyBtn = new Button("Generate & Save Public Key");
 Label pkFileLb = new Label("Upload Private Key File");
 TextField pkFileTxt = new TextField();
 Button pkBrowseBtn = new Button("Browse...");
 Label msgFileLb = new Label("Upload Message File");
 TextField msgFileTxt = new TextField();
 Button msgBrowseBtn = new Button("Browse...");
 Button signBtn = new Button("Generate & Save Signature");

 /* VERIFY UI COMPONENTS */
 Label verLb = new Label("Verify Signature");
 Choice verCurveList = new Choice();
 Label verCurveLb = new Label("Select Curve");
 Label msgLb = new Label("Message File");
 TextField verFileTxt = new TextField();
 Button verBrowseBtn = new Button("Browse");

 List pubKeyLst = new List();

 Label verPubKeyLb = new Label("Public Key File");
 TextField verPubKeyTxt = new TextField();
 Button verPubFileBtn = new Button("Browse");
 Label sigLb = new Label("Signature File");
 TextField verSigFileTxt = new TextField();
 Button verSigBtn = new Button("Browse");
 Button verBtn = new Button("Verify Signature");

 boolean isStandalone = false;

 /*
 * Initialize Applet
 */
 public void init() {
 setBackground(Color.WHITE);
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch(Exception e) { };
 try {
 initComponents();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 /*

51

 * Initialize Components
 */
 public void initComponents() throws Exception {
 setLayout(null);
 setLocation(new Point(0, 0));
 setSize(new Dimension(950, 500));

 curveLb.setLocation(new Point(300, 10));
 curveLb.setFont(new Font("" + Font.ROMAN_BASELINE, Font.BOLD, 12));
 curveLb.setSize(new Dimension(100,30));
 curveLb.setVisible(true);

 curveList.setLocation(new Point(400, 15));
 curveList.setSize(new Dimension(250, 30));
 curveList.addItem("Curve: NIST P-521");
 curveList.addItem("Curve: NIST P-384");
 curveList.addItem("Curve: NIST P-256");
 curveList.addItem("Curve: NIST P-224");
 curveList.addItem("Curve: NIST P-192");
 curveList.setVisible(true);

 /*** Set Size and Location of Signature Components ***/
 keysLb.setLocation(new Point(10, 60));
 keysLb.setFont(new Font("" + Font.ROMAN_BASELINE, Font.BOLD, 12));
 keysLb.setSize(new Dimension(300,30));
 keysLb.setVisible(true);

 emailLb.setLocation(new Point(10, 100));
 emailLb.setSize(new Dimension(100,30));
 emailLb.setVisible(true);

 emailTxt.setLocation(new Point(110, 100));
 emailTxt.setSize(new Dimension(340, 30));
 emailTxt.setVisible(true);

 privKeyBtn.setLocation(new Point(10, 150));
 privKeyBtn.setSize(new Dimension(200, 30));
 privKeyBtn.setVisible(true);

 pubKeyBtn.setLocation(new Point(250, 150));
 pubKeyBtn.setSize(new Dimension(200, 30));
 pubKeyBtn.setVisible(true);

 signLb.setLocation(new Point(10, 215));
 signLb.setFont(new Font("" + Font.ROMAN_BASELINE, Font.BOLD, 12));
 signLb.setSize(new Dimension(300,30));
 signLb.setVisible(true);

 pkFileLb.setLocation(new Point(10, 250));
 pkFileLb.setSize(new Dimension(300,30));
 pkFileLb.setVisible(true);

 pkFileTxt.setLocation(new Point(10, 290));
 pkFileTxt.setSize(new Dimension(300, 30));
 pkFileTxt.setVisible(true);

52

 pkBrowseBtn.setLocation(new Point(350, 290));
 pkBrowseBtn.setSize(new Dimension(100, 30));
 pkBrowseBtn.setVisible(true);

 msgFileLb.setLocation(new Point(10, 340));
 msgFileLb.setSize(new Dimension(300,30));
 msgFileLb.setVisible(true);

 msgFileTxt.setLocation(new Point(10, 380));
 msgFileTxt.setSize(new Dimension(300, 30));
 msgFileTxt.setVisible(true);

 msgBrowseBtn.setLocation(new Point(350, 380));
 msgBrowseBtn.setSize(new Dimension(100, 30));
 msgBrowseBtn.setVisible(true);

 signBtn.setLocation(new Point(10, 430));
 signBtn.setSize(new Dimension(440, 50));
 signBtn.setVisible(true);

 /*** Set Size and Location of Verify Components ***/
 verLb.setLocation(new Point(500, 60));
 verLb.setFont(new Font("" + Font.ROMAN_BASELINE, Font.BOLD, 12));
 verLb.setSize(new Dimension(300,30));
 verLb.setVisible(true);

 msgLb.setLocation(new Point(500, 100));
 msgLb.setSize(new Dimension(100,30));
 msgLb.setVisible(true);

 verFileTxt.setLocation(new Point(500, 140));
 verFileTxt.setSize(new Dimension(300, 30));
 verFileTxt.setVisible(true);

 verBrowseBtn.setLocation(new Point(840, 140));
 verBrowseBtn.setSize(new Dimension(100, 30));
 verBrowseBtn.setVisible(true);

 verPubKeyLb.setLocation(new Point(500, 190));
 verPubKeyLb.setSize(new Dimension(300,30));
 verPubKeyLb.setVisible(true);

 pubKeyLst.setLocation(new Point(500, 230));
 pubKeyLst.setSize(new Dimension(440, 90));
 pubKeyLst.setVisible(true);

 displayPublicKeys(); // display all saved Public Keys

 sigLb.setLocation(new Point(500, 340));
 sigLb.setSize(new Dimension(300,30));
 sigLb.setVisible(true);

 verSigFileTxt.setLocation(new Point(500, 380));
 verSigFileTxt.setSize(new Dimension(300, 30));
 verSigFileTxt.setVisible(true);

53

 verSigBtn.setLocation(new Point(840, 380));
 verSigBtn.setSize(new Dimension(100, 30));
 verSigBtn.setVisible(true);

 verBtn.setLocation(new Point(500, 430));
 verBtn.setSize(new Dimension(440, 50));
 verBtn.setVisible(true);

 add(curveLb);
 add(curveList);

 /*** Add Signature Components ***/
 add(keysLb);
 add(emailLb);
 add(emailTxt);
 add(privKeyBtn);
 add(pubKeyBtn);
 add(signLb);
 add(pkFileLb);
 add(pkFileTxt);
 add(pkBrowseBtn);
 add(msgFileLb);
 add(msgFileTxt);
 add(msgBrowseBtn);
 add(signBtn);

 /*** Add Verification Components ***/
 add(verLb);
 add(msgLb);
 add(verFileTxt);
 add(verBrowseBtn);
 add(pubKeyLst);
 add(verPubKeyLb);
 add(sigLb);
 add(verSigFileTxt);
 add(verSigBtn);
 add(verBtn);

 /*** Add an action listner to all Applet components ***/
 ActionListener listener = new ActionListen();
 ItemListener ilistener = new ItemListen();
 curveList.addItemListener(ilistener);
 privKeyBtn.addActionListener(listener);
 pubKeyBtn.addActionListener(listener);
 pkBrowseBtn.addActionListener(listener);
 msgBrowseBtn.addActionListener(listener);
 signBtn.addActionListener(listener);
 verBrowseBtn.addActionListener(listener);
 pubKeyLst.addActionListener(listener);
 verPubFileBtn.addActionListener(listener);
 verSigBtn.addActionListener(listener);
 verBtn.addActionListener(listener);

 }

54

 class ItemListen implements ItemListener{
 public void itemStateChanged(ItemEvent e){
 arrayIndex = curveList.getSelectedIndex();

curve = new EllipticCurve(new BigInteger("-3").mod(pArray[arrayIndex]),bArray[arrayIndex]);
 }
 }

 class ActionListen implements ActionListener{
 JFrame popupFrame = new JFrame();
 JOptionPane popup = new JOptionPane();
 public void actionPerformed(ActionEvent event){
 try{
 if(event.getSource() == privKeyBtn){
 SecureRandom sr = new SecureRandom();
 privateKey = new BigInteger(512,sr);
 privateKey =

privateKey.mod((orderArray[arrayIndex].subtract(new BigInteger("1"))));
 File pkFile = null;

 JFileChooser chooser = new JFileChooser();
 if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION)
 {
 String fPath = ""+chooser.getCurrentDirectory();
 fPath = fPath+ "\\" + emailTxt.getText()+".privKey";
 pkFile = new File(fPath);
 //pkFile = chooser.getSelectedFile();
 }

 PrintWriter pw = new PrintWriter(new

FileOutputStream(pkFile));
 pw.println("ID:");
 pw.println(emailTxt.getText());
 pw.println("" + curveList.getItem(arrayIndex));
 pw.println("Private Key:");
 pw.println("" + privateKey.toString(16));
 pw.close();
 }
 if(event.getSource() == pubKeyBtn){
 pubKey = multPoint(privateKey, baseArray[arrayIndex]);
 try{
 String x = pubKey.getAffineX().toString();
 String id = emailTxt.getText();
 String y = pubKey.getAffineY().toString();
 String data = id + pubKey.getAffineX() + pubKey.getAffineY();
 URL url = new URL("http","web.engr.orst.edu",
 "/~stadick/pubKeyAccess.php?id="+id+"&x="+x+"&y="+y);
 URLConnection con = url.openConnection();

 con.setDoOutput(true);
 con.setDoInput(true);
 con.setUseCaches(false);
 con.setRequestProperty("Content-type", "text/plain");
 con.setRequestProperty("Content-length", data.length()+"");

55

 PrintStream out = new PrintStream(con.getOutputStream());
 out.print(data);
 System.out.println(con.getContent());
 System.out.println(con.getURL());
 out.flush();
 out.close();

 pubKeyLst.add(id);
 }
 catch(MalformedURLException e){
 System.out.println("Malformed URL Exception");
 }
 catch(IOException e){
 System.out.println("IO Exception: " + e.toString());
 }
 JOptionPane.showMessageDialog(popupFrame,
"Your Public Key has been stored and can be refrenced by your email address and curve selection.");

 }
 if(event.getSource() == pkBrowseBtn)
 {
 JFileChooser chooser = new JFileChooser();
 if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION)
 {
 privKeyFile = chooser.getSelectedFile();
 }
 pkFileTxt.setText(privKeyFile.getAbsolutePath());

 BufferedReader buffer =

new BufferedReader(new FileReader(privKeyFile));
 String temp = buffer.readLine();
 temp = buffer.readLine();
 temp = buffer.readLine();
 temp = buffer.readLine();
 privateKey = new BigInteger(buffer.readLine(), 16);
 buffer.close();
 }

 if(event.getSource() == msgBrowseBtn)
 {
 JFileChooser chooser = new JFileChooser();
 if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION)
 {
 signMsgFile = chooser.getSelectedFile();
 }
 msgFileTxt.setText(signMsgFile.getAbsolutePath());
 }
 if(event.getSource() == signBtn)
 {

String signPath =
signMsgFile.getAbsolutePath().replaceAll(signMsgFile.getName(), "");

 String msgFileName = signMsgFile.getName();
 StringTokenizer st = new StringTokenizer(msgFileName, ".");
 signPath = signPath + st.nextToken()+".sign";

56

 File signFile = new File(signPath);
 rs = sign();

 BufferedReader buffer =

new BufferedReader(new FileReader(privKeyFile));
 String temp = buffer.readLine();
 String id = buffer.readLine();
 buffer.close();

 PrintWriter pw = new PrintWriter(new

FileOutputStream(signFile));
 pw.println("ID:");
 pw.println(id);
 pw.println(""+curveList.getItem(arrayIndex));
 pw.println("Signature for file " + msgFileName + " (r,s):");
 pw.println(rs[0].toString(16));
 pw.println(rs[1].toString(16));
 pw.close();
 JOptionPane.showMessageDialog(popupFrame,

"Signature saved to: " + signFile);

 }
 if((event.getSource() == verBrowseBtn)||

(event.getSource() == verSigBtn)
){

 JFileChooser chooser = new JFileChooser();
 if(chooser.showOpenDialog(null) ==

JFileChooser.APPROVE_OPTION)
 {
 if(event.getSource() == verBrowseBtn){
 verMsgFile = chooser.getSelectedFile();
 verFileTxt.setText(verMsgFile.getAbsolutePath());
 }
 else if (event.getSource() == verSigBtn){
 verSigFile = chooser.getSelectedFile();
 verSigFileTxt.setText(verSigFile.getAbsolutePath());
 }
 }
 }
 if(event.getSource()== verBtn){
 verPubKeyFile = new File("publicKeys\\" +

pubKeyLst.getSelectedItem() + ".pubKey");
 System.out.println("verPubKeyFile selected: " +

verPubKeyFile.getAbsolutePath());
 String ver = verify();
 JOptionPane.showMessageDialog(popupFrame, ver);
 }
 }
 catch(IOException e2){
 System.out.println(e2);
 JOptionPane.showMessageDialog(popupFrame, e2);
 }
 catch(NoSuchAlgorithmException e2){
 System.out.println(e2);
 JOptionPane.showMessageDialog(popupFrame, e2);

57

 }
 }
 }

 public void displayPublicKeys() {
 try{
 URL url = new URL("http","web.engr.orst.edu", "/~stadick/pubKeyIDs.txt");
 URLConnection con = url.openConnection();

 con.setDoInput(true);
 con.setUseCaches(false);
 con.setRequestProperty("Content-type", "text/plain");
 DataInputStream in = new DataInputStream(con.getInputStream());
 String id;
 while ((id = in.readLine()) != null) {
 pubKeyLst.add(id);
 }
 in.close();
 }
 catch(MalformedURLException e){
 System.out.println("Malformed URL Exception");
 }
 catch(IOException e){
 System.out.println("IO Exception: " + e.toString());
 }
 }

 public ECPoint getPubKey() throws MalformedURLException,IOException {
 BigInteger x = BigInteger.ZERO;
 BigInteger y = BigInteger.ZERO;
 URL url = new URL("http","web.engr.orst.edu", "/~stadick/pubKeyList.txt");
 URLConnection con = url.openConnection();

 con.setDoInput(true);
 con.setUseCaches(false);
 con.setRequestProperty("Content-type", "text/plain");
 DataInputStream in = new DataInputStream(con.getInputStream());
 String id;
 int count = 0;
 while ((id = in.readLine()) != null) {
 if((count%3 == 0) && id.equals(pubKeyLst.getSelectedItem())){
 x = new BigInteger(in.readLine());
 y = new BigInteger(in.readLine());
 break;
 }
 }
 in.close();

 ECPoint q = new ECPoint(x,y);
 return q;
 }

 BigInteger[] sign() throws
UnsupportedEncodingException,NoSuchAlgorithmException,IOException{
 BigInteger kinv, r, s, k;
 BufferedReader buffer = new BufferedReader(new FileReader(privKeyFile));

58

 String temp = buffer.readLine();
 temp = buffer.readLine();
 temp = buffer.readLine();
 temp = buffer.readLine();
 privateKey = (new BigInteger(buffer.readLine(),16));
 buffer.close();

 //pubKey = multPoint(privateKey, baseArray[arrayIndex]);
 SecureRandom sr = new SecureRandom();
 k = new BigInteger(512, sr);
 k = k.mod(orderArray[arrayIndex].subtract(new BigInteger("1")));
 while((k.compareTo(java.math.BigInteger.ZERO) == 0) ||
!(k.gcd(orderArray[arrayIndex]).compareTo(java.math.BigInteger.ONE) == 0)){
 k = new BigInteger(512,sr);
 k = k.mod(orderArray[arrayIndex].subtract(new BigInteger("1")));
 }
 ECPoint p = multPoint(k, baseArray[arrayIndex]);
 if(p.getAffineX().equals(zero)){
 return sign();
 }

 BigInteger h = sha512(signMsgFile);

 r = p.getAffineX();
 kinv = k.modInverse(orderArray[arrayIndex]);
 s = (kinv.multiply((h.add((privateKey.multiply(r)))))).mod(orderArray[arrayIndex]);
 if(s.compareTo(java.math.BigInteger.ZERO) == 0)
 return sign();

 rs[0] = r;
 rs[1] = s;

 return rs;
 }

 String verify() throws
UnsupportedEncodingException,NoSuchAlgorithmException,IOException{
 BigInteger w, u1, u2,v;
 BigInteger rs[] = new BigInteger[2];
 ECPoint q = new ECPoint(zero, zero);
 ECPoint pt;

 BufferedReader buffer = new BufferedReader(new FileReader(verSigFile));

 String temp = buffer.readLine();
 temp = buffer.readLine();
 temp = buffer.readLine();
 temp = buffer.readLine();
 rs[0] = new BigInteger(buffer.readLine(), 16);
 rs[1] = new BigInteger(buffer.readLine(),16);
 buffer.close();

 q = getPubKey();

59

 if(rs[0].compareTo(orderArray[arrayIndex])==1 || rs[0].compareTo(BigInteger.ONE)==-
1 || rs[1].compareTo(orderArray[arrayIndex])==1 || rs[1].compareTo(BigInteger.ONE)==-1){
 return "***SIGNATURE WAS NOT IN VALID RANGE***";
 }

 w = rs[1].modInverse(orderArray[arrayIndex]);
 BigInteger h = sha512(verMsgFile);

 u1 = h.multiply(w);
 u2 = rs[0].multiply(w);

 ECPoint u1P = multPoint(u1, baseArray[arrayIndex]);
 ECPoint u2Q = multPoint(u2, q);
 pt = addPoints(multPoint(u1,baseArray[arrayIndex]), multPoint(u2, q));

 v = pt.getAffineX();
 v = v.mod(orderArray[arrayIndex]);

 if(v.compareTo(rs[0])==0){
 return "Valid Signature";
 }
 else{
 return "Invalid Signature";
 }
 }

 /*** Point Addition ***/
 ECPoint addPoints(ECPoint p1, ECPoint p2){
 BigInteger bigX;
 ECPoint p3 = new ECPoint(zero, zero);
 BigInteger slope,x,y, temp;
 if(p1.getAffineY().equals(zero) || p2.getAffineY().equals(zero) || (p1.infinity && p2.infinity) ||
(p1.getAffineX().equals(p2.getAffineX()) && p1.getAffineY().equals(p2.getAffineY().negate()))){
 p3.infinity = true;
 }
 else{ // IF POINTS ARE EQUAL

if((p1.getAffineX().equals(p2.getAffineX())) &&
(p1.getAffineY().equals(p2.getAffineY()))){

 temp = new BigInteger(""+3);
 slope =
((temp.multiply(p1.getAffineX().pow(2))).add(curve.getA())).multiply((p1.getAffineY().add(p1.getAffinY(
))).modInverse(pArray[arrayIndex]));
 x =
(slope.multiply(slope)).subtract(p1.getAffineX().add(p1.getAffineX())); //(slope*slope) - (2*p1.x);
 x = x.mod(pArray[arrayIndex]);
 y =
(slope.multiply(p1.getAffineX().subtract(x))).subtract(p1.getAffineY());
 }else{ // POINTS ARE NOT EQUAL
 if(p1.infinity){
 x = p2.getAffineX();
 y = p2.getAffineY();
 }
 else if(p2.infinity){
 x = p1.getAffineX();
 y = p1.getAffineY();

60

 }
 else{
 temp =

(p2.getAffineX().subtract(p1.getAffineX())).modInverse(pArray[arrayIndex]);
 slope =
(p2.getAffineY().subtract(p1.getAffineY())).multiply(temp); //(p2.y - p1.y)/(p2.x - p1.x);
 x =
((slope.multiply(slope)).subtract(p1.getAffineX())).subtract(p2.getAffineX());
//(slope*slope) - p1.x - p2.x;
 y =
(slope.multiply(p1.getAffineX().subtract(x))).subtract(p1.getAffineY());
 //slope*(p1.x - x) - p1.y;
 }
 x = x.mod(pArray[arrayIndex]);
 }
 y = y.mod(pArray[arrayIndex]);

 p3 = new ECPoint(x,y);
 }
 return p3;
 }

 /*** Scalar Multiplication of Points ***/
 ECPoint multPoint(BigInteger s, ECPoint p){
 String binS = s.toString(2);
 ECPoint q = new ECPoint(zero,zero);
 q.infinity = true;

 if(binS.substring(0,1).equals("1")){
 q = p;
 }
 for(int i = 1; i< binS.length(); i++){
 q = addPoints(q,q);
 if(binS.substring(i, i+1).equals("1")){
 q = addPoints(q,p);
 }
 }
 return(q);

 }

 public BigInteger sha512(File file) throws
UnsupportedEncodingException,NoSuchAlgorithmException,IOException{
 FileInputStream fileStrm = new FileInputStream(file);
 byte[] byteMsg =new byte[(int)file.length()];

 fileStrm.read(byteMsg);
 MessageDigest sha = MessageDigest.getInstance("SHA-512");
 sha.update(byteMsg);
 byte[] hash = sha.digest();
 BigInteger h = new BigInteger(hash);
 return h;
 }

 private class ECPoint{
 BigInteger x;

61

 BigInteger y;
 boolean infinity;

 public ECPoint(BigInteger xPos, BigInteger yPos){
 x = xPos;
 y = yPos;
 infinity = false;
 }

 public boolean equals(ECPoint pt){
 if(this.x.equals(pt.getAffineX()) && this.y.equals(pt.getAffineY())){
 return true;
 }else
 return false;
 }

 public BigInteger getAffineX(){
 return this.x;
 }

 public BigInteger getAffineY(){
 return this.y;
 }
 }

 private class EllipticCurve{
 BigInteger a;
 BigInteger b;
 public EllipticCurve(BigInteger aVal, BigInteger bVal){
 a = aVal;
 b = bVal;
 }

 public BigInteger getA(){
 return this.a;
 }

 public BigInteger getB(){
 return this.b;
 }
 }
}

62

	1. INTRODUCTION
	2. INTRODUCTION TO CRYPTOGRAPHY
	2.1. SYMMETRIC CRYPTOSYSTEMS
	2.2. ASYMMETRIC CRYPTOSYSTEMS
	2.3. PUBLIC KEY CRYPTOGRAPHY
	2.3.1. Discrete Logarithm Problem
	2.3.2. Elliptic Curve Discrete Logarithm Problem

	2.4. ELLIPTIC CURVE CRYPTOGRAPHY
	2.4.1. Utilization of Elliptic Curve Cryptography
	2.4.2. Elliptic Curves Over Finite Fields
	2.4.3. Field Overview of GF(2k)
	2.4.4. Field Overview of GF(p)
	2.4.5. Arithmetic Operations on Elliptic Curves over GF(p)
	2.4.5.1. Addition of Distinct Points
	2.4.5.2. Doubling of a Point
	2.4.5.3. Scalar Multiplication of Points

	2.5. DIGITAL SIGNATURES
	2.5.1. Functionality and Intent of the Digital Signature Algorithm
	2.5.2. Signature Generation Using DSA
	2.5.3. Signature Verification Using DSA

	2.6. ECDSA
	2.6.1. Security of ECDSA
	2.6.2. Key Pair Generation Using ECDSA
	2.6.3. Signature Generation Using ECDSA
	2.6.4. Signature Verification Using ECDSA

	3. JAVA APPLET IMPLEMENTATION OF ECDSA
	3.1. JAVA OVERVIEW
	3.2. ECDSA APPLET USAGE
	3.2.1 Elliptic Curve Selection
	3.2.2 Applet Key Generation
	3.2.3 Applet Signature Generation
	3.2.4 Applet Signature Verification
	3.2.5 Java Classes Used

	3.3. IMPEMENTATION DETAILS
	3.3.1. Packages Used
	3.3.2. Global Curve Values
	3.3.3. Applet User Interface and Components
	3.3.4. ItemListeners and ActionListeners
	3.3.4.1. The actionPerformed() Method

	3.3.5. Verify, Sign, and Arithmetic Method Summaries
	3.3.6. Additional Elliptic Curve Classes
	3.3.6.1. ECPoint Class
	3.3.6.2. EllipticCurve Class

	3.3.7 Class Function Flow

	3.4. ANALYSIS AND IMPROVEMENTS
	3.4.1. Timing of Functions
	3.4.2. Runtime Analysis
	3.4.3. Suggested Improvements

	4. CONCLUSION
	5. BIBLIOGRAPHY
	APPENDICES
	Appendix A: Timing results of function analysis
	Appendix B: NIST curve values over GF(p)
	Appendix C: ECDSA applet source code

