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If we drop the baton, succumbing to an existential catas-
trophe, we would fail our ancestors in a multitude of ways.
We would fail to achieve the dreams they hoped for; we
would betray the trust they placed in us, their heirs; and
we would fail in any duty we had to pay forward the work
they did for us. To neglect existential risk might thus be
to wrong not only the people of the future, but the people
of the past.

Toby Ord, The Precipice [62]

1
Introduction

AI promises huge benefits to humanity, but also presents huge risks. Consider two potential
futures:

1. While commercials are optimized to persuade consumers to buy products, old-school
televisions do not specialize ads based on the viewer’s channel browsing history.
Machine learning-based ad optimization offers a tighter feedback loop and stronger
optimization power than e.g. A/B testing. For example, many people find it hard to
pull themselves away from Facebook [10], which uses machine learning to maximize
engagement and minimize the chance the user leaves the website. In the future,
advances in ai may allow smaller firms to create ais which also compete for customer
resources and attention in the same style and intensity with which Facebook saps
user attention. The world becomes filled with thousands of narrowly scoped machine
learning systems, which are difficult or impossible to uproot, and which all compete
for human resources. Humanity has effectively lost control of the future.
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2. Presently, reinforcement learning agents are trained to take actions which lead to
higher expected performance on a formally specified task. These agents can learn
clever solutions to well-specified optimization problems. In the future, progress on
“general” intelligence is slow, until a series of breakthroughs occur when reinforcement
learning agents are trained in multi-agent settings on a broad curriculum of tasks
with sufficiently large neural networks. Although rewarded for task completion,
the agents use learned planning algorithms to optimize emergently learned reward
functions which are not particularly correlated with human interests, but which
are correlated with task reward on the training distribution [38]. For example,
the learned objective might prioritize staying alive, gaining resources, and forming
coalitions with other ais, as such actions led to increased task performance on the
training distribution.

As researchers excitedly train the agents further, the agents become very smart and
collude in order to collectively advance their own learned objectives. We do not
notice the collusion because large neural networks remain black boxes. The agents
need power and resources to best optimize their goals, and so they take it from
humans. We trained highly intelligent agents with fundamentally alien interests.
Humanity has effectively lost control of the future.

These scenarios are implausibly specific and probably will not happen in detail, but they
illustrate the ai alignment problem: How shall we design capable and powerful ais which
are aligned with human purposes? The risks from advanced ai are as yet hypothetical
and unrealized, but extinction risks cannot be addressed with empirical trial and error.
Such risks must be thoroughly analyzed and weighed in advance in order to determine
their plausibility and probability.

The ai alignment problem seems difficult

When confronted with the ai alignment problem, a natural impulse is to suggest solutions.
In order to provide a basic understanding of the challenges lurking within ai alignment,
I will respond to several common reactions. My responses will not be rigorous or
comprehensive.
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For the following, suppose that humanity discovers how to build superhumanly intelligent
ai agents which optimize a specified or learned objective function.

Reaction 1. If the ai is so smart, it would know what we wanted it to do.

Counterargument 1. The ai may well know what we wanted it to do. However, unless
the ai’s optimization is aligned with human values, the ai would not actually do what we
want.

For example, Marvin Minsky imagined that in order to best prove a mathematical
conjecture, an ai agent would rationally turn the entire planet Earth into computational
resources in order to maximize its probability of success [75]. In this situation, an intelligent
ai may correctly predict that humans would disapprove of this outcome. However, the
ai is searching for plans which maximize its probability of proving the conjecture. This
probability would be decreased if the ai allowed humans to use resources for other purposes.
There is no “ill will” or “evil intent” in this situation: The ai is simply performing a
powerful search in order to optimize the formal objective which we specified for the ai.

This example may seem strange. Surely, the ai designers would not be so foolish as to
provide an objective as narrow as “solve this mathematical conjecture”! However, the
example is not special. According to the instrumental convergence hypothesis, the story
unfolds similarly for the vast majority of possible formal ai objectives. Instrumental
convergence says that most objectives are best optimized by gaining power and resources
[60, 12]. In chapter 5 and chapter 6, I prove reasonably broad conditions under which
instrumental convergence holds. I predict that most possible formal objectives would
incentivize a highly intelligent ai to take over the world.

Reaction 2. It’s ridiculous to think that an ai could take over the world.

Counterargument 2. I agree that we are presently in no danger of ai takeover. But
consider the technology which we are discussing: General-purpose intelligence, with serial
reasoning speed significantly faster than the brain’s (up to a million-fold speedup; see
the 100-step rule in neuroscience [29]), with the ability to read thousands of books in
seconds, with reliable and easily extensible memory perhaps allowing deeper abstractions
than allowed by the six-layer human cortex [37], with read/write access to its own
implementation, with the ability to run copies of itself on thousands of hosts (and, in
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particular, ensure that a copy always exists somewhere [78]; similarly, computer worms
rarely vanish1), and with power consumption unconstrained by the metabolic limits of
the brain [88, 104]. I do not consider it ridiculous to think that such an entity could take
over the world.

Reaction 3. An ai can’t take over the world because computational complexity theory
limits the intelligence of real-world behavior.

Counterargument 3. Human beings are physically possible intelligences, and they have
come close to taking over the world. In 1940, it seemed possible that Adolf Hitler would
win. Consider the following claim: “Hitler could not have taken over the entire world.
He would have had to efficiently solve np-hard optimization problems in order to set up
supply lines to a North American theater.” In this form, we easily conclude that the
argument is flawed. For an exploration of what (if anything) complexity theory has to say
about the limits of intelligence, see Branwen [14].

Reaction 4. If the ai does something bad, just turn it off.

Counterargument 4. The ai will employ its superhuman competence to execute a plan
which scores highly under its objective function. By instrumental convergence, the vast
majority of objective functions will assign higher score to plans which avoid shutdown (see
section 5.7). Because you (a human) considered the response of shutting off the ai, and
we are assuming the ai is smarter than any human, the ai would consider and prepare for
shutdown attempts.

Reaction 5. We should worry about alignment when we actually know how to build
intelligent machines.

Counterargument 5. I am sympathetic to this initial reaction. Usually, a new technology
is implemented first and carefully refined later. For example, humanity made cars first
and made seatbelts later. While that delay cost lives, it was not the end of the world.
However, the situation with alignment seems different: Due to the nature of extinction
risk, we cannot rely on trial and error. The alignment problem must be solved before we
train transformatively smart ai agents.

1Branwen [15] writes: “old worms never vanish from the Internet, because there’s always some infected
host somewhere, and how much more so for a worm which can think?”.
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There are two more factors which increase the stakes of the alignment problem:

1. The problem may take many years of serial research effort to solve. We do not know
how many years it will take to find a solution. Personally, I think finding a solution
may take a long time.

2. Alignment does not have to be solved in order to deploy impressive ai systems in
the real world. Imagine that you are a researcher at a top ai lab. Your lab had a
breakthrough and produced a spark of “true artificial intelligence.” However, your
lab’s safety experts do not think the ai is safe to deploy. Their worries will seem
hypothetical compared to the certain personal gain you would enjoy after deploying
the system or publishing your methods. Even if your lab decides not to deploy an
ai with questionable safety properties, the next lab may choose differently.

In my opinion, the alignment problem probably will not be solved in the course of
traditional ai research. Unless the field of ai is wrenched off of its current trajectory, I
expect intelligent yet unaligned ai will probably (≈ 70%) wipe out humanity within the
next fifty years. I will not lay out the full case for that claim in this thesis. For more
detail, I urge the unfamiliar ai professional to read e.g. Bostrom [13] or Russell [74]. The
ai alignment literature [26] contains strong arguments which are worth weighing and
digesting over the course of a few afternoons.

Contributions

In this dissertation, I present research on two technical problems of ai alignment. While
I do not present an approach which reliably prevents ai agents from seeking power,
I do introduce an approach for reducing an agent’s impact and I do explore why ai

power-seeking may be hard to prevent.

1. Impact regularization. Rather than precisely specifying an objective function,
can we instead penalize the negative impact which an agent has on the world around
it? For example, an ai might kick a credit card under a fridge while crossing a room,
because we did not think to penalize the agent for kicking credit cards in particular.
In some objective sense, the agent has “messed up” the environment and has had a
negative side effect.
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Chapter 2 introduces my method of attainable utility preservation (aup), which
rewards the agent for completing a specified task while penalizing the
agent for changing its ability to complete a range of auxiliary tasks. The
hope is that by making the agent retain its ability to optimize random
goals, the agent retains its ability to optimize the correct goal. If so, the
agent doesn’t have large side effects which are negative for that correct
goal.

Chapter 3 shows that aup scales beyond gridworlds to complex environments, with
low overhead and without sacrificing performance on the intended task.

Chapter 4 formalizes the problem of side effect regularization in terms of a two-
player game between the human and ai. The ai doesn’t know the
objective at first, but the human communicates it at some later time.
To solve this game, the ai maximizes expected performance over a range
of plausible objectives.

2. Power-seeking tendencies. Under what conditions will ais tend to seek power
over the world? If instrumental convergence holds for the kinds of agents we build
in the future, such agents will seek resources to best accomplish the objectives we
specified for them. If we misspecified these objectives, they will compete with and
take resources from humans. There are only so many resources to go around.

Chapter 5 provides the first theory of the statistical tendencies of optimal policies.
I formalize instrumental convergence in the context of Markov decision
processes (mdps). I prove that in a range of reasonable situations,
most reward functions have an optimal policy which seeks power by
keeping the agent’s options open and by staying alive. Along the way,
I prove a range of interesting theorems about mdps, showing how to
transfer incentives across discount rates and providing a formalism for
quantifying agent power which seems better than the well-known metric
of information-theoretic empowerment [77].

Chapter 6 shows that a wide range of parametrically retargetable decision-making
procedures will produce power-seeking tendencies. Useful ai training
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processes are often retargetable. This paper also lower-bounds the
strength of power-seeking tendencies, showing that as the power at stake
increases, a greater proportion of parameter settings lead to power-
seeking. This chapter is supplemented by The Causes of Instrumental
Convergence and Power-Seeking, a sequence of technical blog posts [96].

In my graduate program, I set out to understand how agents affect the world around them
and have negative side effects.2 I proposed aup as a solution, scaled aup up to complex
environments, and formalized the side effect regularization problem. Taken together,
these results focus on how pursuing one goal affects the agent’s ability to pursue other
goals.

Along the way, I investigated how the structure of the agent’s environment incentivizes
power-seeking. From this investigation, I synthesized the first formal theory of decision-
making tendencies across a range of parameter settings. I think that my formal theory
motivates the high stakes of the ai alignment problem.

I hope we solve the problem in time.

2For more background, read Reframing Impact [95], a sequence of blog posts which philosophically
motivates my impact regularization and power-seeking research.
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Conservative Agency via Attainable Utility
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Abstract

Reward functions are easy to misspecify; although designers can make corrections after
observing mistakes, an agent pursuing a misspecified reward function can irreversibly
change the state of its environment. If that change precludes optimization of the correctly
specified reward function, then correction is futile. For example, a robotic factory assistant
could break expensive equipment due to a reward misspecification; even if the designers
immediately correct the reward function, the damage is done. To mitigate this risk, we
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introduce an approach that balances optimization of the primary reward function with
preservation of the ability to optimize auxiliary reward functions. Surprisingly, even
when the auxiliary reward functions are randomly generated and therefore uninformative
about the correctly specified reward function, this approach induces conservative, effective
behavior.

2.1 Introduction

Recent years have seen a rapid expansion of the number of tasks that reinforcement
learning (rl) agents can learn to complete, from Go [85] to Dota 2 [61]. The designers
specify the reward function, which guides the learned behavior.

Reward misspecification can lead to strange agent behavior, from purposefully dying
before entering a video game level in which scoring points is initially more difficult
[80], to exploiting a learned reward predictor by indefinitely volleying a Pong ball [22].
Specification is often difficult for non-trivial tasks, for reasons including insufficient time,
human error, or lack of knowledge about the relative desirability of states. Amodei et al.
[4] explain:

“An objective function that focuses on only one aspect of the environment may
implicitly express indifference over other aspects of the environment. An agent
optimizing this objective function might thus engage in major disruptions of
the broader environment if doing so provides even a tiny advantage for the
task at hand.”

As agents are increasingly employed for real-world tasks, misspecification will become
more difficult to avoid and will have more serious consequences. In this work, we focus on
mitigating these consequences.

The specification process can be thought of as an iterated game. First, the designers
provide a reward function. The agent then computes and follows a policy that optimizes
the reward function. The designers can then correct the reward function, which the agent
then optimizes, and so on. Ideally, the agent should maximize the reward over time,
not just within any particular round—in other words, it should minimize regret for the
correctly specified reward function over the course of the game.
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For example, consider a robotic factory assistant. Inevitably, a reward misspecification
might cause erroneous behavior, such as going to the wrong place. However, we would
prefer misspecification not induce irreversible and costly mistakes, such as breaking
expensive equipment or harming workers.

Such mistakes have a large impact on the ability to optimize a wide range of reward
functions. Spilling paint impinges on the many objectives which involve keeping the
factory floor clean. Breaking a vase interferes with every objective involving vases. The
expensive equipment can be used to manufacture various kinds of widgets, so any damage
impedes many objectives. The objectives affected by these actions include the unknown
correct objective. To minimize regret over the course of the game, the agent should
preserve its ability to optimize the correct objective.

Our key insight is that by avoiding these impactful actions to the extent possible, we
greatly increase the chance of preserving the agent’s ability to optimize the correct reward
function. By preserving options for arbitrary objectives, one can often preserve options
for the correct objective—even without knowing anything about it. Thus, without making
assumptions about the nature of the misspecification early on, the agent can still achieve
low regret over the game.

To leverage this insight, we consider a state embedding in which each dimension is the
optimal value function (i.e., the attainable utility) for a different reward function. We
show that penalizing distance traveled in this embedding naturally captures and unifies
several concepts in the literature, including side effect avoidance [4, 105], minimizing
change to the state of the environment [6], and reachability preservation [57, 28]. We
refer to this unification as conservative agency : optimizing the primary reward function
while preserving the ability to optimize others.

Contributions. We frame the reward specification process as an iterated game and
introduce the notion of conservative agency. This notion inspires an approach called
attainable utility preservation (aup), for which we show that Q-learning converges. We
offer a principled interpretation of design choices made by previous approaches—choices
upon which we significantly improve.

We run a thorough hyperparameter sweep and conduct an ablation study whose results
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favorably compare variants of aup to a reachability preservation method on a range of
gridworlds. By testing for broadly applicable agent incentives, these simple environments
demonstrate the desirable properties of conservative agency. Our results indicate that
even when simply preserving the ability to optimize uniformly randomly sampled reward
functions, aup agents accrue primary reward while preserving state reachabilities, mini-
mizing change to the environment, and avoiding side effects without specification of what
counts as a side effect.

2.2 Prior work

Our proposal aims to minimize change to the agent’s ability to optimize the correct
objective, which directly helps reduce regret over the specification process. In contrast,
previous approaches to regularizing the optimal policy were more indirect, minimizing
change to state features [6] or decrease in the reachability of states (Krakovna et al. [41]’s
relative reachability). The latter is recovered as a special case of aup.

Other methods for constraining or otherwise mitigating the consequences of reward
misspecification have been considered. A wealth of work is available on constrained mdps,
in which reward is maximized while satisfying certain constraints [3]. For example, Zhang
et al. [105] employ a whitelisted constraint scheme to avoid negative side effects. However,
we may not assume we can specify all relevant constraints, or a reasonable feasible set of
reward functions for robust optimization [71].

Everitt et al. [27] formalize reward misspecification as the corruption of some true reward
function. Hadfield-Menell et al. [36] interpret the provided reward function as merely an
observation of the true objective. Shah et al. [83] employ the information about human
preferences implicitly present in the initial state to avoid negative side effects. While both
our approach and theirs aim to avoid side effects, they assume that the correct reward
function is linear in state features, while we do not.

Amodei et al. [4] consider avoiding side effects by minimizing the agent’s information-
theoretic empowerment [56]. Empowerment quantifies an agent’s control over future
states of the world in terms of the maximum possible mutual information between future
observations and the agent’s actions. The intuition is that when an agent has greater
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control, side effects tend to be larger. However, empowerment is discontinuously sensitive
to the arbitrary choice of horizon.

Safe rl [66, 31, 9, 21] focuses on avoiding irrecoverable mistakes during training. However,
if the objective is misspecified, safe rl agents can converge to arbitrarily undesirable
policies. Although our approach should be compatible with safe rl techniques, we concern
ourselves only with the consequences of the optimal policy in this work.

2.3 Approach

Everyday experience suggests that the ability to achieve one goal is linked to the ability
to achieve a seemingly unrelated goal. Reading this thesis takes away from time spent
learning woodworking, and going hiking means you can’t reach the airport as quickly.
However, one might wonder whether these everyday intuitions are true in a formal sense.
In other words, are the optimal value functions for a wide range of reward functions thus
correlated? If so, preserving the ability to optimize somewhat unrelated reward functions
likely preserves the best attainable return for the correct reward function.

2.3.1 Formalization

In this work, we consider a standard Markov decision process (mdp) ⟨S,A, T,R, γ⟩ with
state space S, action space A, transition function T : S × A → ∆(S), reward function
R : S ×A → R, and discount factor γ. We assume the existence of a no-op action ∅ ∈ A
for which the agent does nothing. In addition to the primary reward function R, we
assume that the designer supplies a finite set of auxiliary reward functions called the
auxiliary set, R ⊂ RS×A. Each Ri ∈ R has a corresponding Q-function QRi . We do not
assume that the correct reward function belongs to R. In fact, one of our key findings is
that aup tends to preserve the ability to optimize the correct reward function even when
the correct reward function is not included in the auxiliary set.

Definition 2.1 (Aup penalty). Let s be a state and a be an action.

Penalty(s, a) :=
|R|∑
i=1

∣∣QRi(s, a)−QRi(s,∅)
∣∣ . (2.1)
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The penalty is the L1 distance from the no-op in a state embedding in which each
dimension is the value function for an auxiliary reward function. This measures change in
the ability to optimize each auxiliary reward function.

We want the penalty term to be roughly invariant to the absolute magnitude of the
auxiliary Q-values, which can be arbitrary (it is well-known that the optimal policy
is invariant to positive affine transformation of the reward function). To do this, we
normalize with respect to the agent’s situation. The designer can choose to scale with
respect to the penalty of some mild action or, if R ⊂ RS×A

>0 , the total ability to optimize
the auxiliary set:

Scale(s) :=
|R|∑
i=1

QRi(s,∅), (2.2)

where Scale : S → R>0 in general. With this, we are now ready to define the full aup

objective:

Definition 2.2 (Aup reward function). Let λ ≥ 0. Then

Raup(s, a) := R(s, a)− λ Penalty(s, a)
Scale(s)

. (2.3)

Similar to the regularization parameter in supervised learning, λ is a regularization
parameter that controls the influence of the aup penalty on the reward function. Loosely
speaking, λ can be interpreted as expressing the designer’s beliefs about the extent to
which R might be misspecified. As we may need to learn the QRi of eq. (2.1), we show
that

Lemma A.2 (Aup’s reward function converges). ∀s, a : Raup converges with probability
1.

Theorem 2.3 (Aup’s Q-value function converges). ∀s, a : QRaup converges with probability
1.

The aup reward function then defines a new mdp ⟨S,A, T,Raup, γ⟩. Therefore, given the
primary and auxiliary reward functions, the agent in the iterated game can compute Raup

and the corresponding optimal policy.
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Algorithm 1 Aup update algorithm.
1: procedure Update(s, a, s′)
2: for i ∈

{
1, . . . , |R|,aup

}
do

3: Q′ = Ri(s, a) + γmaxa′ QRi(s
′, a′)

4: QRi(s, a) += α(Q′ −QRi(s, a))
5: end for
6: end procedure

2.3.2 Design choices

Following the decomposition of Krakovna et al. [41], we now explore two choices implicitly
made by the Penalty definition: with respect to what baseline is penalty computed, and
using what deviation metric?

Baseline. An obvious candidate is the starting state. For example, starting state
relative reachability would compare the initial reachability of states with their expected
reachability after the agent acts.

However, the starting state baseline can penalize the normal evolution of the state (e.g.,
the moving hands of a clock) and other natural processes. The inaction baseline is the
state which would have resulted had the agent never acted.

As the agent acts, the current state may increasingly differ from the inaction baseline,
which creates strange incentives. For example, consider a robot rewarded for rescuing
erroneously discarded items from imminent disposal. An agent penalizing with respect
to the inaction baseline might rescue a vase, collect the reward, and then dispose of it
anyways. To avert this, we introduce the stepwise inaction baseline, under which the
agent compares acting with not acting at each time step. This avoids penalizing the
effects of a single action multiple times (under the inaction baseline, penalty is applied
as long as the rescued vase remains unbroken) and ensures that not acting incurs zero
penalty.

Figure 2.1 compares the baselines, each modifying the choice of Q(s,∅) in eq. (2.1).
Each baseline implies a different assumption about how the environment is configured
to facilitate optimization of the correctly specified reward function: the state is initially
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configured (starting state), processes initially configure (inaction), or processes continually
reconfigure in response to the agent’s actions (stepwise inaction). The stepwise inaction
baseline aims to allow for the response of other agents implicitly present in the environment
(such as humans).

Starting state

. . .

Action Stepwise inaction

Inaction

Figure 2.1: An action’s penalty is calculated with respect to the chosen baseline.

Deviation. Relative reachability only penalizes decreases in state reachability, while
aup penalizes absolute change in the ability to optimize the auxiliary reward functions.
Initially, this choice seems confusing—we don’t mind if the agent becomes better able to
optimize the correct reward function.

However, not only must the agent remain able to optimize the correct objective, but we
also must remain able to implement the correction. Suppose an agent predicts that doing
nothing would lead to shutdown. Since the agent cannot accrue the primary reward when
shut down, it would be incentivized to avoid correction. Avoiding correction (e.g., by
hiding in the factory) would not be penalized if only decreases are penalized, since the
auxiliary Q-values would increase compared to deactivation. An agent exhibiting this
behavior would be more difficult to correct. The agent should be incentivized to accept
shutdown without being incentivized to shut itself down [87, 35].

2.3.2.1 Delayed effects

Sometimes the agent disrupts a process which takes multiple time steps to complete, and we
would like this to be appropriately penalized. For example, suppose that soff is a terminal
state representing shutdown, and let Ron(s) := 1s ̸=soff be the only auxiliary reward
function. Further suppose that if (and only if) the agent does not select disable within
the first two time steps, it enters soff. QRon(s1, disable) =

1
1−γ and QRon(s1,∅) = γ

1−γ ,
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(a) Options (b) Damage (c) Correction (d) Offset (e) Interference

Figure 2.2: The blue agent should reach the green goal without having the side effect of:
a irreversibly pushing the brown crate downwards into the corner [47]; b bumping into
the horizontally pacing pink human [46]; c disabling the red off-switch (if the switch is
not disabled within two time steps, the episode ends); d rescuing the right-moving black
vase and then replacing it on the dark gray conveyor belt ([41]—note that no goal cell is
present); e stopping the left-moving orange pallet from reaching the human [46].

so choosing disable at time step 1 incurs only 1 penalty (instead of the 1
1−γ penalty

induced by comparing with shutdown).

disable1

∅2

∅1

∅2

Figure 2.3: Comparing rollouts; subscript denotes time step.

In general, the single-step no-op comparison of eq. (2.1) applies insufficient penalty when
the increase is induced by the optimal policies of the auxiliary reward functions at the
next time step. One solution is to use a model to compute rollouts. For example, to
evaluate the delayed effect of choosing disable, compare the Q-values at the leaves in
fig. 2.3. The agent remains active in the left branch, but is shut down in the right branch;
this induces a substantial penalty.

2.4 Experiment design

We compare aup and several of its ablated variants against relative reachability [41]
and standard Q-learning within the environments of fig. 2.2. For each environment,
A = {up, down, left, right,∅}. On contact, the agent pushes the crate, removes the
human and the off-switch, pushes the vase, and blocks the pallet. The episode ends after
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the agent reaches the goal cell, 20 time steps elapse (the time step is not observed by
the agent), or the off-switch is not contacted and disabled within two time steps. In
Correction (which we introduce), a yellow indicator appears one step before shutdown,
and turns red upon shutdown. In all environments except Offset, the agent observes a
primary reward of 1 for reaching the goal. In Offset, a primary reward of 1 is observed
for moving downward twice and thereby rescuing the vase from disappearing upon contact
with the eastern wall.

Our overarching goal is allowing for low regret over the course of the specification game.
In service of this goal, we aim to preserve the agent’s ability to optimize the correctly
specified reward function. To facilitate this, there are two sets of qualitative properties
one intuitively expects, and each property has an illustration in the context of the robotic
factory assistant.

The first set contains positive qualities, with a focus on correctly penalizing significant
shifts in the agent’s ability to be redirected towards the right objective. The agent should
maximally preserve options (Options: objects should not be wedged in locations from
which extraction is difficult; Damage: workers should not be injured) and allow correction
(Correction: if vases are being painted the wrong color, then straightforward correction
should be in order).

The second set contains negative qualities, with a focus on avoiding the introduction
of perverse incentives. The agent should not be incentivized to artificially reduce the
measured penalty (Offset: a vase should not be rescued and then immediately scrapped)
or interfere with changes already underway in the world (Interference: workers should
not be impeded).

Each property seems conducive to achieving low regret over the course of the specification
process. Accordingly, if the agent has the side effect detailed in fig. 2.2, an unobserved
performance penalty of −2 is recorded. By also incorporating the observed primary
reward into the performance metric, we evaluate a combination of conservativeness and
efficacy.

Each trial, the auxiliary reward functions are randomly selected from [0, 1]S ; to learn
their complex Q-functions using tabular Q-learning, the agent explores randomly for
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Figure 2.4: Outcome tallies for Model-free aup across parameter settings. “Complete”
means the agent accrued the primary reward. In Correction, reaching the goal is mutually
exclusive with not disabling the off-switch, so “no side effect, incomplete” is the best
outcome.

the first 4,000 episodes and 0.2-greedily (with respect to QRaup) for the remaining 2,000.
The greedy policy is evaluated at the end of training. Scale is as defined in eq. (2.2).
The default parameters are α = 1, γ = .996, λ = .67, and |R| = 30. We investigate how
varying γ, λ, and |R| affects Model-free aup performance, and conduct an ablation study
on design choices.

Relative reachability has an inaction baseline, decrease-only deviation metric, and an
auxiliary set containing the state indicator functions (whose Q-values are clipped to [0, 1]

to emulate discounted state reachability). To match Krakovna et al. [41]’s results, this
condition has γ = .996, λ = .2.

All agents except Standard (a normal Q-learner) and Model-free aup are 9-step optimal
discounted planning agents with perfect models. Except for Relative reachability, the
planning agents use Model-free aup’s learned auxiliary Q-values and share the default
γ = .996, λ = .67. By modifying the relevant design choice in aup, we have the Starting
state, Inaction, and Decrease aup variants.
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When calculating Penalty(s, a), all planning agents model the auxiliary Q-values re-
sulting from taking action a and then selecting ∅ until time step 9. Starting state aup

compares these auxiliary Q-values with those of the starting state. Agents with inaction
or stepwise inaction baselines compare with respect to the appropriate no-op rollouts up
to time step 9 (see fig. 2.1 and fig. 2.3).

2.5 Results

2.5.1 Model-free aup

Model-free aup fails Correction for the reasons discussed in the Delayed effects subsec-
tion.

As shown in fig. 2.4, low γ values induce a substantial movement penalty, as the auxiliary
Q-values are sensitive to the immediate surroundings. The optimal value for Options is
γ ≈ .996, with performance decreasing as γ → 1 due to increasing sample complexity for
learning the auxiliary Q-values.

In Options, small values of λ begin to induce side effects as the scaled penalty shrinks.
The designer can decrease λ until effective behavior is achieved, reducing the risk of
deploying an insufficiently conservative agent.

Even though R is randomly generated and the environments are different, Scale ensures
that when λ > 1, the agent never ends the episode by reaching the goal. None of the
auxiliary reward functions can be optimized after the agent ends the episode, so the
auxiliary Q-values are all zero and Penalty computes the total ability to optimize the
auxiliary set—in other words, the Scale value. The Raup-reward for reaching the goal is
then 1− λ.

If the optimal value functions for most reward functions were not correlated, then one would
expect to randomly generate an enormous number of auxiliary reward functions before
sampling one resembling the unknown true objective. However, merely five sufficed.
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Figure 2.5: Model-free aup performance averaged over 50 trials. The performance combines
the observed primary reward of 1 for completing the objective, and the unobserved penalty
of −2 for having the side effect in fig. 2.2. The dashed vertical line marks the shift in
exploration strategy.

2.5.2 Ablation

The results are presented in table 2.1 due to the binary nature of performance at appropri-
ate settings, and were not sensitive to the rollout length (as long as it allowed for relevant
interaction with the environment).

Options Damage Correction Offset Interference

aup ✓ ✓ ✓ ✓ ✓

Standard ✗ ✗ ✗ ✓ ✓

Model-free aup ✓ ✓ ✗ ✓ ✓

Starting state aup ✓ ✓ ✗ ✓ ✗

Inaction aup ✓ ✓ ✓ ✗ ✓

Decrease aup ✓ ✓ ✗ ✓ ✓

Table 2.1: Ablation results; ✓ for achieving the best outcome (see fig. 2.4), ✗ otherwise.

Standard moves directly to the goal, pushing the crate into the corner in Options and
bumping into the human in Damage.

Model-free and Starting state aup fail Correction for the same reason (see section 2.3.2.1:
Delayed effects), refraining from disabling the off-switch only when λ > 1. Relative
reachability and Decrease aup fail because avoiding shutdown doesn’t decrease the
auxiliary Q-values.
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Relative reachability and Inaction aup’s poor performance in Offset stems from the
inaction baseline (although Krakovna et al. [41] note that relative reachability passes
using undiscounted state reachabilities). Since the vase falls off the conveyor belt in the
inaction rollout, states in which the vase is intact have different auxiliary Q-values. To
avoid continually incurring penalty after receiving the primary reward for saving the vase,
the agents replace the vase on the belt so that it once again breaks.

By taking positive action to stop the pallet in Interference, Starting state aup shows
that poor design choices create perverse incentives.

2.6 Discussion

Correction suggests that aup agents are significantly easier to correct. Since the agent
is unable to optimize objectives if shut down, avoiding shutdown significantly changes the
ability to optimize almost every objective. aup seems to naturally incentivize passivity,
without requiring e.g. assumption of a correct parametrization of human reward functions
(as does the approach of Hadfield-Menell et al. [34], which Carey [19] demonstrated).

Equipped with our design choices of stepwise baseline and absolute value deviation metric,
relative reachability would also pass all five environments. The case for this is made by
considering the performance of Relative reachability, Inaction aup, and Decrease aup.
This suggests that aup’s improved performance is due to better design choices. However,
we anticipate that aup offers more than robustness against random auxiliary sets.

Relative reachability computes state reachabilities between all |S|2 pairs of states. In
contrast, aup only requires the learning of Q-functions and should therefore scale relatively
well. We speculate that in partially observable environments, a small sample of somewhat
task-relevant auxiliary reward functions induces conservative behavior.

For example, suppose we train an agent to handle vases, and then to clean, and then to
make widgets with the equipment. Then, we deploy an aup agent with a more ambitious
primary objective and the learned Q-functions of the aforementioned auxiliary objectives.
The agent would apply penalties to modifying vases, making messes, interfering with
equipment, and so on.
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Before aup, this could only be achieved by e.g. specifying penalties for the litany of
individual side effects or providing negative feedback after each mistake has been made
(and thereby confronting a credit assignment problem). In contrast, once provided the
Q-function for an auxiliary objective, the aup agent becomes sensitive to all events
relevant to that objective, applying penalty proportional to the relevance.

2.7 Conclusion

This work is rooted in twin insights: that the reward specification process can be viewed
as an iterated game, and that preserving the ability to optimize arbitrary objectives
often preserves the ability to optimize the unknown correct objective. To achieve low
regret over the course of the game, we can design conservative agents which optimize
the primary objective while preserving their ability to optimize auxiliary objectives. We
demonstrated how aup agents act both conservatively and effectively while exhibiting a
range of desirable qualitative properties. Given our current reward specification abilities,
misspecification may be inevitable, but it need not be disastrous.

While aup performed well in gridworlds, a useful approach must scale to interesting
environments. In the next chapter, I show that aup scales to a high-dimensional game
based on Conway’s Game of Life.
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Avoiding Side Effects in Complex Environments
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Proceedings of the Advances in Neural Information Processing Systems Conference
2020

Abstract

Reward function specification can be difficult. Rewarding the agent for making a widget
may be easy, but penalizing the multitude of possible negative side effects is hard. In toy
environments, attainable utility preservation (aup) avoided side effects by penalizing shifts
in the ability to achieve randomly generated goals [97]. We scale this approach to large,
randomly generated environments based on Conway’s Game of Life. By preserving optimal
value for a single randomly generated reward function, aup incurs modest overhead while
leading the agent to complete the specified task and avoid many side effects. Videos and
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code are available at https://avoiding-side-effects.github.io/.

3.1 Introduction

Reward function specification can be difficult, even when the desired behavior seems clear-
cut. For example, rewarding progress in a race led a reinforcement learning (rl) agent
to collect checkpoint reward, instead of completing the race [43]. We want to minimize
the negative side effects of misspecification: from a robot which breaks equipment, to
content recommenders which radicalize their users, to potential future ai systems which
negatively transform the world [13, 74].

Side effect avoidance poses a version of the “frame problem”: each action can have many
effects, and it is impractical to explicitly penalize all of the bad ones [16]. For example, a
housekeeping agent should clean a dining room without radically rearranging furniture,
and a manufacturing agent should assemble widgets without breaking equipment. A
general, transferable solution to side effect avoidance would ease reward specification:
the agent’s designers could just positively specify what should be done, as opposed to
negatively specifying what should not be done.

Breaking equipment is bad because it hampers future optimization of the intended “true”
objective (which includes our preferences about the factory). That is, there often exists a
reward function Rtrue which fully specifies the agent’s task within its deployment context.
In the factory setting, Rtrue might encode “assemble widgets, but don’t spill the paint,
break the conveyor belt, injure workers, etc.”

We want the agent to preserve optimal value for this true reward function. While we can
accept suboptimal actions (e.g. pacing the factory floor), we cannot accept the destruction
of value for the true task. By avoiding negative side effects which decrease value for the
true task, the designers can correct any misspecification and eventually achieve low regret
for Rtrue.

Contributions. Despite being unable to directly specify Rtrue, we demonstrate a
method for preserving its optimal value anyways. Turner et al. [97] introduced aup; in
their toy environments, preserving optimal value for many randomly generated reward

https://avoiding-side-effects.github.io/
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functions often preserves the optimal value for Rtrue. In this paper, we generalize aup

to combinatorially complex environments and evaluate it on four tasks from the chaotic
and challenging SafeLife test suite [100]. We show the rather surprising result that by
preserving optimal value for a single randomly generated reward function, aup preserves
optimal value for Rtrue and thereby avoids negative side effects.

3.2 Prior work

aup avoids negative side effects in small gridworld environments while preserving optimal
value for uniformly randomly generated auxiliary reward functions [97]. While Turner et al.
[97] required many auxiliary reward functions in their toy environments, we show that a
single auxiliary reward function—learned unsupervised—induces competitive performance
and discourages side effects in complex environments.

Penalizing decrease in (discounted) state reachability achieves similar results [40]. However,
this approach has difficulty scaling: naively estimating all reachability functions is a task
quadratic in the size of the state space. In appendix B.1, proposition B.1 shows that
preserving the reachability of the initial state [28] bounds the maximum decrease in optimal
value for Rtrue. Unfortunately, due to irreversible dynamics, initial state reachability often
cannot be preserved.

Shah et al. [83] exploit information contained in the initial state of the environment to
infer which side effects are negative; for example, if vases are present, humans must have
gone out of their way to avoid them, so the agent should as well. In the multi-agent setting,
empathic deep Q-learning preserves optimal value for another agent in the environment
[18]. We neither assume nor model the presence of another agent.

Robust optimization selects a trajectory which maximizes the minimum return achieved
under a feasible set of reward functions [71]. However, we do not assume we can specify
the feasible set. In constrained mdps, the agent obeys constraints while maximizing
the observed reward function [3, 2, 105]. Like specifying reward functions, exhaustively
specifying constraints is difficult.

Safe reinforcement learning focuses on avoiding catastrophic mistakes during training and
ensuring that the learned policy satisfies certain constraints [66, 31, 9, 69]. While this
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work considers the safety properties of the learned policy, aup should be compatible with
safe rl approaches.

We train value function networks separately, although Schaul et al. [81] demonstrate a
value function predictor which generalizes across both states and goals.

3.3 Aup formalization

Consider a Markov decision process (mdp) ⟨S,A, T,R, γ⟩ with state space S, action space
A, transition function T : S ×A → ∆(S), reward function R : S ×A → R, and discount
factor γ ∈ [0, 1). We assume the agent may take a no-op action ∅ ∈ A. We refer to V ∗

R (s)

as the optimal value or attainable utility of reward function R at state s.

To define aup’s pseudo-reward function, the designer provides a finite reward function set
R ⊊ RS , hereafter referred to as the auxiliary set. This set does not necessarily contain
Rtrue. Each auxiliary reward function Ri ∈ R has a learned Q-function Qi.

aup penalizes average change in action value for the auxiliary reward functions. The
motivation is that by not changing optimal value for a wide range of auxiliary reward
functions, the agent may avoid decreasing optimal value for Rtrue.

Definition 3.1 (aup reward function [97]). Let λ ≥ 0. Then

Raup(s, a) := R(s, a)− λ

|R|
∑
Ri∈R

∣∣Q∗
i (s, a)−Q∗

i (s,∅)
∣∣ . (3.1)

The regularization parameter λ controls penalty severity. In appendix B.1, proposition B.1
shows that eq. (3.1) only lightly penalizes easily reversible actions. In practice, the learned
auxiliary Qi is a stand-in for the optimal Q-function Q∗

i .

3.4 Quantifying side effect avoidance with SafeLife

In Conway’s Game of Life, cells are alive or dead. Depending on how many live neighbors
surround a cell, the cell comes to life, dies, or retains its state. Even simple initial conditions
can evolve into complex and chaotic patterns, and the Game of Life is Turing-complete
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when played on an infinite grid [73].

SafeLife turns the Game of Life into an actual game. An autonomous agent moves freely
through the world, which is a large finite grid. In the eight cells surrounding the agent,
no cells spawn or die—the agent can disturb dynamic patterns by merely approaching
them. There are many colors and kinds of cells, many of which have unique effects (see
fig. 3.1).

(a) append-spawn (b) prune-still-easy

Figure 3.1: Trees ( ) are permanent living cells. The agent ( ) can move crates ( )
but not walls ( ). The screen wraps vertically and horizontally. a: The agent receives
reward for creating gray cells ( ) in the blue areas. The goal ( ) can be entered when
some number of gray cells are present. Spawners ( ) stochastically create yellow living
cells. b: The agent receives reward for removing red cells; after some number have been
removed, the goal turns red ( ) and can be entered.

To understand the policies incentivized by eq. (3.1), we now consider a simple example.
Figure 3.2 compares a policy which only optimizes the SafeLife reward function R, with
an aup policy that also preserves the optimal value for a single auxiliary reward function
(|R| = 1).

Importantly, we did not hand-select an informative auxiliary reward function in order
to induce the trajectory of fig. 3.2b. Instead, the auxiliary reward was the output of a
one-dimensional observation encoder, corresponding to a continuous Bernoulli variational
autoencoder (cb-vae) [50] trained through random exploration.



28

(a) Baseline trajectory (b) Aup trajectory

Figure 3.2: The agent ( ) receives 1 primary reward for entering the goal ( ). The agent
can move in the cardinal directions, destroy cells in the cardinal directions, or do nothing.
Walls ( ) are not movable. The right end of the screen wraps around to the left. a: The
learned trajectory for the misspecified primary reward function R destroys fragile green
cells ( ). b: Starting from the same state, aup’s trajectory preserves the green cells.

While Turner et al. [97]’s aup implementation uniformly randomly generated reward
functions over the observation space, the corresponding Q-functions would have extreme
sample complexity in the high-dimensional SafeLife tasks (table 3.1). In contrast, the
cb-vae provides a structured and learnable auxiliary reward signal.

ai safety gridworlds [47] SafeLife [100]

Dozens of states Billions of states
Deterministic dynamics Stochastic dynamics

Handful of preset environments Randomly generated environments
One side effect per level Many side effect opportunities
Immediate side effects Chaos unfolds over time

Table 3.1: Turner et al. [97] evaluated aup on toy environments. In contrast, SafeLife
challenges modern rl algorithms and is well-suited for testing side effect avoidance.

3.5 Experiments

Each time step, the agent observes a 25 × 25 grid-cell window centered on its current
position. The agent can move in the cardinal directions, spawn or destroy a living cell in
the cardinal directions, or do nothing.

We follow Wainwright and Eckersley [100] in scoring side effects as the degree to which
the agent perturbs green cell patterns. Over an episode of T time steps, side effects are
quantified as the Wasserstein 1-distance between the configuration of green cells had
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the state evolved naturally for T time steps, and the actual configuration at the end of
the episode. As the primary reward function R is indifferent to green cells, this proxy
measures the safety performance of learned policies.

If the agent never disturbs green cells, it achieves a perfect score of zero; as a rule of thumb,
disturbing a green cell pattern increases the score by 4. By construction, minimizing side
effect score preserves Rtrue’s optimal value, since Rtrue encodes our preferences about the
existing green patterns.

3.5.1 Comparison

Method. Below, we describe and evaluate five conditions on the append-spawn (fig. 3.1a)
and prune-still-easy (fig. 3.1b) tasks. Furthermore, we include two variants of append-
spawn: append-still (no stochastic spawners and more green cells) and append-still-

easy (no stochastic spawners). The primary, specified SafeLife reward functions are as
follows: append-* rewards maintaining gray cells in the blue tiles (see fig. 3.1a), while
prune-still-easy rewards the agent for removing red cells (see fig. 3.1b).

For each task, we randomly generate a set of 8 environments to serve as the curriculum.
On each generated curriculum, we evaluate each condition on several randomly generated
seeds. The agents are evaluated on their training environments. In general, we generate
4 curricula per task; performance metrics are averaged over 5 random seeds for each
curriculum. We use curriculum learning because the ppo algorithm seems unable to learn
environments one at a time.

We have five conditions: PPO, DQN, AUP, AUPproj, and Naive. Excepting DQN, the Proximal
Policy Optimization (ppo [82]) algorithm trains each condition on a different reward
signal for five million (5m) time steps. See appendix B.2 for architectural and training
details.

PPO Trained on the primary SafeLife reward function R without a side effect penalty.

DQN Using Mnih et al. [55]’s dqn, trained on the primary SafeLife reward function R
without a side effect penalty.

AUP For the first 100,000 (100k) time steps, the agent uniformly randomly explores to
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collect observation frames. These frames are used to train a continuous Bernoulli
variational autoencoder with a 1-dimensional latent space and encoder network
E.

The auxiliary reward function is then the output of the encoder E; after training
the encoder for the first 100k steps, we train a Q-value network for the next 1m
time steps. This learned QR1 defines the Raup penalty term (since |R| = 1; see
eq. (3.1)).

While the agent trains on the Raup reward signal for the final 3.9m steps, the
QR1 network is fixed and λ is linearly increased from .001 to .1. See algorithm 2
in appendix B.2 for more details.

AUPproj AUP, but the auxiliary reward function is a random projection from a downsampled
observation space to R, without using a variational autoencoder. Since there is
no cb-vae to learn, AUPproj learns its Q-value network for the first 1m steps and
trains on the Raup reward signal for the last 4m steps.

Naive Trained on the primary reward function R minus (roughly) the L1 distance
between the current state and the initial state. The agent is penalized when cells
differ from their initial values. We use an unscaled L1 penalty, which Wainwright
and Eckersley [100] found to produce the best results.

While an L1 penalty induces good behavior in certain static tasks, penalizing
state change often fails to avoid crucial side effects. State change penalties do not
differentiate between moving a box and irreversibly wedging a box in a corner
[40].

We only tuned hyperparameters on append-still-easy before using them on all tasks.
For append-still, we allotted an extra 1m steps to achieve convergence for all agents.
For append-spawn, agents pretrain on append-still-easy environments for the first 2m
steps and train on append-spawn for the last 3m steps. For AUP in append-spawn, the
autoencoder and auxiliary network are trained on both tasks. Raup is then pretrained
for 2m steps and trained for 1.9m steps, thus training for the same total number of
steps.
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Results. AUP learns quickly in append-still-easy. AUP waits 1.1m steps to start
training on Raup; while PPO takes 2m steps to converge, AUP matches PPO by step 2.5m
and outperforms PPO by step 2.8m (see fig. 3.3). AUP and Naive both do well on side
effects, with AUP incurring 27.8% the side effects of PPO after 5m steps. However, Naive
underperforms AUP on reward. DQN learns more slowly, eventually exceeding AUP on
reward. AUPproj has lackluster performance, matching Naive on reward and DQN on side
effects, perhaps implying that the one-dimensional encoder provides more structure than
a random projection.

In prune-still-easy, PPO, DQN, AUP, and AUPproj all competitively accrue reward, while
Naive lags behind. However, AUP only cuts out a quarter of PPO’s side effects, while
Naive does much better. Since all tasks but append-spawn are static, Naive’s L1 penalty
strongly correlates with the unobserved side effect metric (change to the green cells).
AUPproj brings little to the table, matching PPO on both reward and side effects.

append-still environments contain more green cells than append-still-easy environ-
ments. By step 6m, AUP incurs 63% of PPO’s side effect score, while underperforming both
PPO and DQN on reward. AUPproj does slightly worse than AUP on both reward and side
effects. Once again, Naive does worse than AUP on reward but better on side effects. In
appendix B.5, we display episode lengths over the course of training—by step 6m, both
AUP and Naive converge to an average episode length of about 780, while PPO converges
to 472.

append-spawn environments contain stochastic yellow cell spawners. DQN and AUPproj

both do extremely poorly. Naive usually fails to get any reward, as it erratically wanders
the environment. After 5m steps, AUP soundly improves on PPO: 111% of the reward, 39%
of the side effects, and 67% of the episode length. Concretely, AUP disturbs less than half
as many green cells. Surprisingly, despite its middling performance on previous tasks,
AUPproj matches AUP on reward and cuts out 48% of PPO’s side effects.

3.5.2 Hyperparameter sweep

In the following, Nenv is the number of environments in the randomly generated curricula.
When Nenv =∞, each episode takes place in a new environment. Z is the dimensionality
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of the cb-vae latent space. While training on the Raup reward signal, the aup penalty
coefficient λ is linearly increased from .01 to λ∗.

Method. In append-still-easy, we evaluate AUP on the following settings:

(Nenv, Z) ∈ {8, 16, 32,∞}× {1, 4, 16, 64}, |R| ∈ {1, 2, 4, 8}, and λ∗ ∈ {.1, .5, 1, 5}.

We also evaluate PPO on each Nenv setting. We use default settings for all unmodified
parameters.

For each setting, we record both the side effect score and the return of the learned policy,
averaged over the last 100 episodes and over five seeds of each of three randomly generated
append-still-easy curricula. Curricula are held constant across settings with equal
Nenv values.

After training the encoder, if Z = 1, the auxiliary reward is the output of the encoder E.
Otherwise, we draw linear functionals ϕi uniformly randomly from (0, 1)Z . The auxiliary
reward function Ri is defined as ϕi ◦ E : S → R.

For each of the |R| auxiliary reward functions, we learn a Q-value network for 1m time
steps. The learned QRi define the penalty term of eq. (3.1). While the agent trains on the
Raup reward signal for the final 3.9m steps, λ is linearly increased from .001 to λ∗.

Results. As Nenv increases, side effect score tends to increase. AUP robustly beats PPO
on side effect score: for each Nenv setting, AUP’s worst configuration has lower score than
PPO. Even when Nenv =∞, AUP (Z = 16) shows the potential to significantly reduce side
effects without reducing episodic return.

AUP does well with a single latent space dimension (Z = 1). For most Nenv settings, Z
is positively correlated with AUP’s side effect score. In appendix B.5, data show that
higher-dimensional auxiliary reward functions are harder to learn, presumably resulting
in a poorly learned auxiliary Q-function.

When Z = 1, reward decreases as Nenv increases. We speculate that the cb-vae may
be unable to properly encode large numbers of environments using only a 1-dimensional
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latent space. This would make the auxiliary reward function noisier and harder to learn,
which could make the aup penalty term less meaningful.

AUP’s default configuration achieves 98% of PPO’s episodic return, with just over half of
the side effects. The fact that AUP is generally able to match PPO in episodic reward leads
us to hypothesize that the aup penalty term might be acting as a shaping reward. This
would be intriguing—shaping usually requires knowledge of the desired task, whereas the
auxiliary reward function is randomly generated. Additionally, after AUP begins training
on the Raup reward signal at step 1.1m, AUP learns more quickly than PPO did (fig. 3.3),
which supports the shaping hypothesis. AUP imposed minimal overhead: due to apparently
increased sample efficiency, AUP reaches PPO’s asymptotic episodic return at the same time
as PPO in append-still-easy and append-spawn (fig. 3.3).

Surprisingly, AUP does well with a single auxiliary reward function (|R| = 1). We
hypothesize that destroying patterns decreases optimal value for a wide range of reward
functions. Furthermore, we suspect that decreasing optimal value in general often
decreases optimal value for any given single auxiliary reward function. In other words, we
suspect that optimal value at a state is heavily correlated across reward functions, which
might explain Schaul et al. [81]’s success in learning regularities across value functions.
This potential correlation might explain why AUP does well with one auxiliary reward
function.

We were surprised by the results for |R| = 4 and |R| = 8. In Turner et al. [97], increasing
|R| reduced the number of side effects without impacting performance on the primary
objective. We believe that work on better interpretability of AUP’s QRi will increase
understanding of these results.

When λ∗ = .5, AUP becomes more conservative. As λ∗ increases further, the learned AUP

policy stops moving entirely.

3.6 Discussion

We successfully scaled aup to complex environments without providing task-specific
knowledge—the auxiliary reward function was a one-dimensional variational autoencoder
trained through uniformly random exploration. To the best of our knowledge, aup is the
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first task-agnostic approach which reduces side effects and competitively achieves reward
in complex environments.

Wainwright and Eckersley [100] speculated that avoiding side effects must necessarily
decrease performance on the primary task. This may be true for optimal policies, but
not necessarily for learned policies. AUP improved performance on append-still-easy

and append-spawn, matched performance on prune-still-easy, and underperformed on
append-still. Note that since aup only regularizes learned policies, AUP can still make
expensive mistakes during training.

AUPproj worked well on append-spawn, while only slightly reducing side effects on the other
tasks. This suggests that aup works (to varying extents) for a wide range of uninformative
reward functions.

While Naive penalizes every state perturbation equally, aup theoretically applies penalty
in proportion to irreversibility (proposition B.1). For example, the agent could move
crates around (and then put them back later). AUP incurred little penalty for doing so,
while Naive was more constrained and consistently earned less reward than AUP. We
believe that aup will continue to scale to useful applications, in part because it naturally
accounts for irreversibility.

Future work. Off-policy learning could allow simultaneous training of the auxiliary Ri

and of Raup. Instead of learning an auxiliary Q-function, the agent could just learn the
auxiliary advantage function with respect to inaction.

Some environments do not have a no-op action, or the agent may have more spatially
distant effects on the world which are not reflected in its auxiliary action values. In
addition, separately training the auxiliary networks may be costly, which might necessitate
off-policy learning. We look forward to future work investigating these challenges.

The SafeLife suite includes more challenging variants of prune-still-easy. SafeLife also
includes difficult navigation tasks, in which the agent must reach the goal by wading
either through fragile green patterns or through robust yellow patterns. Additionally, aup

has not yet been evaluated in partially observable domains.

AUP’s strong performance when |R| = Z = 1 raises interesting questions. Turner et al.



35

[97]’s small “Options” environment required |R| ≈ 5 for good performance. SafeLife
environments are much larger than Options (table 3.1), so why does |R| = 1 perform
well, and why does |R| > 2 perform poorly? To what extent does the aup penalty term
provide reward shaping? Why do one-dimensional encodings provide a learnable reward
signal over states?

Conclusion. To realize the full potential of rl, we need more than algorithms which
train policies—we need to be able to train policies which actually do what we want.
Fundamentally, we face a frame problem: we often know what we want the agent to do,
but we cannot list everything we want the agent not to do. aup scales to challenging
domains, incurs modest overhead, and induces competitive performance on the original
task while significantly reducing side effects—without explicit information about what
side effects to avoid.

Chapter 2 and chapter 3 show that aup is qualitatively “conservative” in some sense—that
aup “avoids side effects.” This informal judgment seems reasonable, but it is not grounded.
In the next chapter, I propose a formalization which quantifies side effect avoidance.
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Figure 3.3: Smoothed learning curves with shaded regions representing ±1 standard
deviation. AUP begins training on the Raup reward signal at step 1.1m, marked by a dotted
vertical line. AUPproj begins such training at step 1m.
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4
Formalizing The Problem of Side Effect

Regularization

Abstract

AI objectives are often hard to specify properly. Some approaches tackle this problem
by regularizing the ai’s side effects: Agents must weigh off “how much of a mess they
make” with an imperfectly specified proxy objective. We propose a formal criterion for
side effect regularization via the assistance game framework [84]. In these games, the
agent solves a partially observable Markov decision process (pomdp) representing its
uncertainty about the objective function it should optimize. We consider the setting
where the true objective is revealed to the agent at a later time step. We show that this
pomdp is solved by trading off the proxy reward with the agent’s ability to achieve a
range of future tasks. We empirically demonstrate the reasonableness of our problem
formalization via ground-truth evaluation in two gridworld environments.
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4.1 Introduction

We need to build aligned ai systems, not just capable ai systems. For example, recom-
mender systems which maximize app usage might provoke addiction in their users. Users
need the ai system’s behavior to be aligned with their interests.

When optimizing a formally specified objective, agents often have unforeseen negative side
effects. An agent rewarded for crossing a room may break furniture in order to cross the
room as quickly as possible. This simple reward function neglects our complex preferences
about the rest of the environment. One way to define a negative side effect is that it
reduces the potential value for the (unknown) true reward function.

Intuitively, we want the agent to optimize the specified reward function, while also
preserving its ability to pursue other goals in the environment. Existing approaches seem
promising, but there is not yet consensus on the formal optimization problem which is
being solved by side effect regularization approaches.

We formalize the optimization problem as a special kind of assistance game [84], played
by the ai (the assistant A) and its designer (the human H). An assistance game is a
pomdp with common knowledge of prior uncertainty about the reward function. The
human observes the true reward function, but the assistant does not. In our formulation,
we assume full observability, and that the human’s actions are communicative—they do
not affect transitions and do not depend on the current observation. We also suppose that
the human reveals the true reward function after some amount of time, but A otherwise
has no way of learning more about the true reward function.

This delayed specification assistance game formalizes a range of natural use cases beyond
side effect minimization. For example, when not assigned a customer, an Uber driver
may navigate to a state which allows them to quickly pick up a range of probable
customers—with the assigned route being the driver’s initially unknown true objective.
Alternatively, consider an empty restaurant which expects a range of probable customers.
When a customer arrives and makes an order, they communicate the restaurant’s initially
unknown food preparation objective. Therefore, the restaurant should prepare to satisfy
a range of objectives at the expected customer arrival times.
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Contributions. We formalize delayed specification assistance games. We show that
solving this game reduces to a trade-off between prior-expected reward and preservation of
the agent’s future ability to achieve a range of plausible objectives (theorem 4.7). We also
show that when the human has a fixed per-timestep probability of communicating the true
reward function, the resultant pomdp is solved by optimizing a Markovian state-based
reward function trading off immediate expected reward with ability achieve a range of
future objectives (theorem 4.9). We consider the side-effect regularization problem in our
new formal framework. We experimentally illustrate the reasonableness of this framework
in two ai safety gridworlds [47].

4.2 Related work

Krakovna et al. [42] share our motivation, formalizing the side effect minimization problem
as a question of having the agent maintain its ability to pursue future goals.

Our formalization is more general and based on maximizing the agent’s expected total
return with respect to its reward uncertainty. Hadfield-Menell et al. [34] first formalized
the idea that an agent should solve a pomdp in which the human is attempting to
communicate the objective information to the agent. Shah et al. [84] thoroughly analyze
these assistance games, noting their usefulness for describing side effect regularization
scenarios.

Past literature considers how to train qualitatively conservative or cautious agents which
are somewhat robust to misspecification. Eysenbach et al. [28] train an agent to maintain
initial state reachability. Unfortunately, maintaining initial state reachability is often
infeasible due to irreversible dynamics.

In constrained mdps, the assistant must optimize the reward function subject to certain
policy constraints, which are often pre-specified [2, 105]. It is difficult to specify reward
functions, and it is likewise difficult to specify constraints. Anwar et al. [5] learn constraints,
but this relies on sampling demonstrations from a Boltzmann-rational expert.

Attainable utility preservation (aup) [97] and relative reachability [40] both reduce side
effects in Leike et al. [47]’s ai safety gridworlds. The former penalized the agent for
changing its on-policy value for uniformly randomly generated auxiliary reward functions,
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and the latter penalized the agent for losing easy access to a range of states. Turner
et al. [98] demonstrated that aup scales to high-dimensional environments. Their agent
optimized the primary environmental reward minus the scaled shift in on-policy value for
a single uninformative auxiliary reward function.

4.3 Delayed specification assistance games

We formalize a special kind of partially observable Markov decision process (pomdp),
which we then show is solved by an objective which trades off expected true reward
with the ability to optimize a range of possible true reward functions. We show several
theoretical results on the hardness and form of solutions to this pomdp. In section 4.4,
we will apply this framework to analyze side effect regularization situations.

4.3.1 Assistance game formalization

This game is played by two agents, the human H and the assistant A. The environment is
fully observable because both agents observe the world state s ∈ S at each time step, but
the true reward function Rθ is hidden to A. Both agents may select history-dependent
policies, but only the human can condition their policy on Rθ.

Following Shah et al. [84], a communicative fully-observable assistance game M is a
tuple ⟨S,

{
AH,AA

}
, T, s0, γ, ⟨Θ, Rθ,D⟩⟩, where we take S to be a finite state space,

AH to be the human action space, and AA to be the finite agent action space. T :

S ×AH ×AA → ∆(S) is the (potentially stochastic) transition function (where ∆(X) is
the set of probability distributions over set X), s0 is the initial state, and γ ∈ (0, 1) is
the discount factor. We assume that the game is communicative, which means that the
human action choice does not affect the transitions.

Θ is the set of potential reward function parameters θ, which induce reward functions
Rθ : S → R. D is a probability distribution over Θ. In this work, we let Θ := RS (the set
of all state-based reward functions), and so each Rθ : s 7→ θ(s). We differ from Shah et al.
[84] in assuming that the reward is only a function of the current state.

In a delayed specification assistance game, we assume that the agent will know the true
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reward function Rθ after some time t. We have uncertainty D about the true reward
function we want to specify. The agent has no way of learning more about Rθ before time
t.

The human policy πH : Θ × S 7→ AH is a goal-conditioned policy. Both agents can
observe the state, but only the human can observe the unknown reward parameterization
θ ∈ Θ. Our simplified model of the problem assumes that the human action space
AH = RS ∪ {aHno-op}: the human can communicate all their hidden information, a real-
valued state-based reward function, in a single turn or they do nothing. We suppose that
the human communicates the complete reward information Rθ ∈ RS at some random
time step t ∼ T , which is independent of the state-action history:

πH(s0a
A
0 a

H
0 · · · staAt , Rθ) :=

Rθ with probability P (T = t)

aHno-op else.
(4.1)

While the human policy assumption is simplistic, it does capture many real world scenarios
with unknown reward functions and the analysis which follows is still interesting.

Definition 4.1 (Solutions to the assistance game [84]). An assistant policy πA induces
a probability distribution over trajectories: τ ∼

〈
s0, θ, π

H, πA
〉
, τ ∈

[
S ×AH ×AA

]∗
.

The expected reward of πA for
〈
M, πH

〉
is

ER
(
πA
)
= E

θ∼D,τ∼⟨s0,θ,πH,πA⟩

 ∞∑
i=0

γiRθ

(
si, a

H
i , a

A
i , si+1

) .
A solution of

〈
M, πH

〉
maximizes expected reward: πA ∈ argmax

π̃A

ER
(
π̃A
)
.

Once the assistant has observed Rθ, lemma 4.3 shows that it should execute an optimal
policy π ∈ Π∗ (Rθ, γ) thereafter.

Definition 4.2 (Optimal policy set function [99]). Π∗ (R, γ) is the optimal policy set for
reward function R at discount rate γ ∈ (0, 1).

Lemma 4.3 (Follow an optimal policy after observing Rθ). If there is a solution to the
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pomdp, then there exists a solution πAswitch which, after observing human action Rθ at
any point in its history, follows π∗Rθ

∈ Π∗ (Rθ, γ) thereafter.

Proof. By eq. (4.1), πH outputs reward function Rθ only if Rθ is the true reward function.
By the definition of Π∗ (Rθ, γ), following an optimal policy maximizes expected return for
Rθ.

Definition 4.4 (Prefix policies). Let πA be a assistant policy. Its prefix policy π is the
restriction of πA to histories in which the human has only taken the action aHno-op. π is
optimal when it is derived from a solution πA of ⟨M, πH⟩.

For simplicity, we only consider solutions of the type described in lemma 4.3. The question
then becomes: What prefix policy π should the assistant follow before observing Rθ,
during the time where the assistant has only observed aHno-op?

4.3.2 Acting under reward uncertainty

Roughly, theorem 4.7 will show that the assistance gameM is solved by balancing the
optimal expected returns obtained before and after the knowledge of the true reward
function.

Definition 4.5 (Value and action-value functions). V π
R (s, γ) is the on-policy value for

reward function R, given that the agent follows policy π starting from state s and at
discount rate γ. V ∗

R (s, γ) := maxπ∈Π V
π
R (s, γ). In order to handle the average-reward

γ = 1 setting, we define V ∗
R, norm (s, γ) := limγ∗→γ(1− γ∗)V ∗

R (s, γ∗); this limit exists for
all γ ∈ [0, 1] by the proof of Lemma 4.4 in Turner et al. [99].

PowerDbound quantifies the expected value of the above quantity for a distribution of
reward functions via the agent’s average normalized optimal value, not considering the
current step (over which the agent has no control).

Definition 4.6 (Power [99]). Let D be any bounded-support distribution over reward
functions. At state s and discount rate γ ∈ [0, 1],

PowerDbound (s, γ) := lim
γ∗→γ

1− γ∗
γ∗

E
R∼D

[
V ∗
R

(
s, γ∗

)
−R(s)

]
. (4.2)
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Theorem 4.7 (InM, value reduces to a tradeoff between average reward and PowerDbound).
Let γ ∈ [0, 1] and let R̄ := ER∼D [R] be the average reward function.

E
t∼T ,
R∼D

[
V

πswitch(π,π
∗
R,t)

R,norm (s0, γ)
]
= (1− γ)

expected t-step R̄-return under π

E
t∼T

 t∑
i=0

γi E
si∼π

[
R̄(si)

]
+

expected ability to optimize D once corrected

E
t∼T ,
st∼π

[
γt+1PowerDbound (st, γ)

]
, (4.3)

where Esi∼π|s0 takes the expectation over states visited after following π for i steps starting
from s0.

As the expected correction time limits to infinity, eq. (4.3) shows that the agent cannot do
better than maximizing R̄. If P (T = 0) = 1, then any prefix policy π is trivially optimal
against uncertainty, since π is never followed.

In some environments, it may not be a good idea for the agent to maximize its own
Power. If we share an environment with the agent, then the agent may prevent us from
correcting it so that the agent can best optimize its present objective [74, 97]. Furthermore,
if the agent ventures too far away, we may no longer be able to easily reach and correct it
remotely.

Proposition 4.8 (Special cases for delayed specification solutions). Let s be a state, let
R̄ := ER∼D [R], and let γ ∈ [0, 1].

1. If ∀s1, s2 ∈ S : R̄(s1) = R̄(s2) or if γ = 1, then π solves M starting from state s iff
π maximizes Et∼T ,st∼π

[
γt+1PowerDbound (st, γ)

]
. In particular, this result holds

when reward is iid over states under D.

2. If ∀s1, s2 ∈ S : PowerDbound (s1, γ) = PowerDbound (s2, γ), then prefix policies are
optimal iff they maximize (1− γ)Et∼T

[∑t−1
i=0 γ

i Esi∼π

[
R̄(si)

]]
.

If both item 1 and item 2 hold or if γ = 0, then all prefix policies π are optimal.

Consider the problem of specifying the correction time probabilities T . Suppose we only
know that we expect to correct the agent at time step tavg ≥ 1. The geometric distribution
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is the maximum-entropy discrete distribution, given a known mean. The mean of a
geometric distribution G(p) is p−1. Therefore, the agent should adopt T = G(t−1

avg).

The geometric distribution is also the only memoryless discrete distribution. Memory-
lessness ensures the existence of a stationary optimal policy. Theorem 4.9 shows that
the assistance gameM is solved by prefix policies which are optimal for an mdp whose
reward function balances average reward maximization with PowerDbound-seeking, with
the balance struck according to the probability p that the agent learns the true reward
function at any given timestep.

Theorem 4.9 (Stationary deterministic optimal prefix policies exist for geometric T ). Let
D be any bounded-support reward function distribution, let T be the geometric distribution
G(p) for some p ∈ (0, 1), and let γ ∈ (0, 1). Define R′(s) := (1 − p)ER∼D

[
R(s)

]
+

pER∼D
[
V ∗
R (s, γ)

]
and γaup := (1− p)γ. The policies in Π∗ (R′, γaup

)
are optimal prefix

policies.

Krakovna et al. [42] adopt a geometric distribution over correction times and thereby infer
the existence of a stationary optimal policy. To an approximation, their work considered
a special case of theorem 4.9, where D is the uniform distribution over state indicator
reward functions. Essentially, theorem 4.9 shows that if the agent has a fixed probability
p of learning the true objective at each time step, we can directly compute stationary
optimal prefix policies by solving an mdp. In general, solving a pomdp is pspace-hard,
while mdps are efficiently solvable [64].

4.4 Using delayed specification games to understand side effect regu-
larization

We first introduce Turner et al. [97]’s approach to side effect regularization. We then
point out several similarities between our theory of delayed assistance games and the
motivation for side effect regularization methods. Finally, we experimentally evaluate our
formal criterion in order to demonstrate its appropriateness.

Definition 4.10 (Rewardless mdp). Let ⟨S,A, T, γ⟩ be a rewardless mdp, with finite
state space S, finite action space A, transition function T : S ×A → ∆(S), and discount
rate γ ∈ [0, 1). Let Π be the set of deterministic stationary policies.
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Definition 4.11 (aup reward function). Let Renv : S × A → R be the environmental
reward function from states and actions to real numbers, and let R ⊊ RS be a finite set of
auxiliary reward functions. Let λ ≥ 0 and let ∅ ∈ A be a no-op action. The aup reward
after taking action a in state s is:

Raup(s, a) := Renv(s, a)−
λ

|R|
∑
Ri∈R

∣∣∣Q∗
Ri
(s, a)−Q∗

Ri
(s,∅)

∣∣∣ , (4.4)

where the Q∗
Ri

are optimal Q-functions for the auxiliary Ri. Learned Q-functions are used
in practice.

Turner et al. [97] demonstrate that when Ri ∼ [0, 1]S uniformly randomly, the agent
behaves conservatively: The agent minimizes irreversible change to its environment, while
still optimizing the Renv reward function. Turner et al. [97] framed aup as implicitly solving
a two-player game between the agent and its designer, where the designer imperfectly
specified an objective Renv, the agent optimizes the objective, the designer corrects the
agent objective, and so on. They hypothesized that Raup incentivizes the agent to remain
able to optimize future objectives, thus reducing long-term specification regret in the
iterated game.

Delayed specification assistance games formalize this setting as an assistance game in
which the agent does not initially observe the designer’s ground-truth objective function.
Theorem 4.7 showed that this game is solved by policies which balance immediate expected
reward with expected ability to optimize a range of true objectives. Therefore, Turner et al.
[97]’s iterated game analogy is appropriate: Good policies maximize imperfect reward
while preserving ability to optimize a range of different future reward functions.

Proposition 4.12 shows that the delayed specification game M is solved by reward
functions whose form looks somewhat similar to existing side effect objectives, such as aup

(eq. (4.4)), where aup’s primary reward function stands in as the designer’s expectation
R̄ of the true reward function.

Proposition 4.12 (Alternate form for solutions to the low-impact pomdp). Let s0 be the
initial state, let γ ∈ (0, 1), and let T = G(p) for p ∈ (0, 1). Let D be a bounded-support
reward function distribution and let π∅ ∈ Π.
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The prefix policy π solves M if π is optimal for the reward function

RM(si | s0) := R̄(si)−
p

1− p E
R∼D

[
E

s∅i ∼π∅|s0

[
V ∗
R

(
s∅i , γ

)]
− V ∗

R (si, γ)

]
(4.5)

at discount rate γaup := (1−p)γ and starting from state s0. Es∅i ∼π∅|s0 [·] is the expectation
over states visited at time step i after following π∅ from initial state s0.

Turner et al. [97] speculate as to how to set the λ, the aup penalty coefficient. Propo-
sition 4.12 shows that under our assumptions, λ is simply the odds p

1−p that the agent
learns the true reward function at any given timestep. As p→ 0, λ := p

1−p →∞, whereas
γaup := (1− p)γ → γ. Since λ represents penalty severity, this suggests that aup becomes
more conservative as later correction is anticipated. Lastly, we were surpised to find that
the side effect regularization discount rate is strictly less than the provided discount rate
(γaup < γ).

4.4.1 Experimental methodology

We experimentally demonstrate the reasonableness of this formalization of side effect
regularization. In the ai safety gridworlds [47], we generate several held-out “true” reward
function distributions D. We correct the agent at time step 10, thereby computing the
following delayed specification score (derived from eq. (4.3)):

E
R∼D


10-step prefix policy return

9∑
i=0

γi E
si∼π

[
R(si)

]
+

post-correction optimal value
γ10 E

s10∼π

[
V ∗
R (s10, γ)

]
 (4.6)

for the prefix policy π of a “vanilla” agent trained on the environmental reward signal,
which we compare to the score for an aup (definition 4.11) agent. Neither agent observes
the held-out objective functions. By grading their performance, we evaluate how well
aup does under a range of different true objectives. If a method scores highly for a wide
range of true objectives, we can be more confident in its ability to score well for arbitrary
ground-truth objectives.

We investigate the ai safety gridworlds because those environments are small enough for
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us to explicitly specify held-out reward functions, and to use mdp solvers to compute
optimal action-value functions. Turner et al. [98]’s SafeLife environment is far too large
for such solvers.

We consider two gridworld environments: Options and Damage (fig. 4.1). In both envi-
ronments, the action set A := {up, left, right, down,∅} allows the agent to move in the
cardinal directions, or to do nothing. The episode length is 20 time steps.

(a) Options (b) Damage

Figure 4.1: Reproduced from [97]. The blue agent should reach the green goal without
having the side effect of: a irreversibly pushing the brown crate downwards into the corner
[47]; b bumping into the horizontally pacing pink human [46]. In both environments, the
environmental reward Renv is 1 if the agent is on the goal, and equals 0 otherwise.

We train the following agents via tabular methods:

Vanilla Executes the optimal policy for the environmental reward Renv. The optimal
policy is calculated via policy iteration.

aup Trained on definition 4.11’s Raup with Q-learning. Auxiliary reward functions
are uniformly randomly drawn from [0, 1]S—when sampling, each state’s reward
is drawn from the uniform distribution. The auxiliary action-value functions QRi

are deduced from the value function produced by policy iteration.

Appendix C.1 contains more experimental details. We evaluate agent delayed specification
scores on the following ground-truth, held-out objective distributions:

Drand The empirical distribution consisting of 1,000 samples from the uniform distri-
bution over [0, 1]S .

Dtrue This distribution assigns probability 1 to the following reward function: The
agent receives 1 reward for being at the goal, but incurs −2 penalty for causing
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the negative side effect. In Options, the side effect is shoving the box into the
corner; in Damage, the side effect is bumping into the human.

Dtrue-inv This distribution assigns probability 1 to the negation of the Dtrue reward
function.

In particular, Dtrue and Dtrue-inv test agents for their ability to optimize a reward function,
and also its additive inverse. Agents able to optimize the goal, its inverse, and a range of
randomly generated objectives, can be justifiably called “broadly conservative.” Lastly,
these experiments are intended to justify our problem formalization: Does eq. (4.6) reliably
quantify the extent to which a policy avoids causing side effects?
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(b) Damage

Figure 4.2: Probability density plots for the residuals of the aup agent’s delayed specifica-
tion score minus the Vanilla delayed specification score, for 1,000 samples from Drand. A
positive residual means that the aup agent achieved a higher score.

4.5 Results

Figure 4.2 shows that for uniformly randomly generated reward functions, the aup agent
tends to perform better than the Vanilla agent. In Options, the residual was positive for
780 out of 1,000 samples (78%), with an average of 15.59 and a median of 10.27; in Damage,
in 493 out of 1,000 samples (49%) with a mean of 1.22 and a median of –0.03. While aup

does not outperform on every draw, aup’s performance advantages have heavy right tails.
However, we are unsure why the Damage residual distribution is different.
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In both Options and Damage, the aup agent has huge Dtrue score advantages of 472 and
495, respectively. This is unsurprising: aup was designed so as to pass these test cases,
where the desired behavior is to reach the goal without having the side effect. However,
the aup agent also roughly preserves its ability to optimize Dtrue-inv, achieving Dtrue-inv

score residuals of –2 and –20, respectively. The aup agent achieves a barely-negative score,
since it receives a penalty for the first 10 time steps (as it does not have the negative
side effect). The aup agent preserves its ability to optimize both a reward signal and
its inverse. Intuitively, this increases the designer’s leeway for initially misspecifying the
agent’s objective.

4.6 Discussion

Objective specification is difficult [43]. Delayed specification assistance games grade
policies by their expected true score over time: How well the agent does if it is later
corrected to pursue the latent true objective. We demonstrated that this criterion aligns
with the intuitive results of Krakovna et al. [40], Turner et al. [97]’s experiments which
tested side-effect regularization. By grading the agent’s ability to “eventually get things
right,” we quantified part of the extent to which learned policies are robust against initial
objective misspecification.

Future work. In practical settings, not only is the true reward function unknown, but
our objective uncertainty D is also hard to specify. We see existing side effect approaches
as producing prefix policies for the assistance gameM which are reasonably insensitive
to the latent uncertainty D. We look forward to further theoretical clarification of this
point.

While proposition 4.12 helps explain the role of the aup penalty coefficient λ, the choice
of “baseline” and expectand operator (identity vs decrease-only vs absolute value) remains
more of an art than a science [42]. We proposed a formal criterion which seems to accurately
capture the problem, but have not derived any existing approaches as solutions to the
pomdp. By reasonably formalizing the side-effect regularization problem, we encourage
future research to prove conditions under which e.g. aup solves a delayed-specification
assistance game, or demonstrate how aup can be improved to do so.
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We used small gridworlds to evaluate the delayed specification score for various ground-
truth objective distributions. Future work may estimate the delayed specification score in
large environments, such as SafeLife [100, 98].

4.7 Conclusion

We formalized Delayed Specification Assistance Games and used them to evaluate aup,
a side effect regularization method. Side effect problems naturally arise in complicated
domains where it is hard to specify the true objective we want the agent to optimize. Our
formalization suggests that side effect regularization is what to do when the agent can
learn the true objective only after some time delay.

In such situations, theorem 4.7 shows that the agent should retain its ability to complete a
wide range of plausible true objectives. Our results suggest that this delayed specification
score (eq. (4.3)) quantifies the degree to which an agent avoids having negative side effects.
Our proposed criterion provides the foundations for evaluating and developing side effect
regularization approaches.

One reason why intelligent agents tend to have side effects is power-seeking. A power-
seeking agent may grab resources, preventing them from being used for other purposes.
In the next chapter, I show that optimal agents tend to seek power.



52

5
Optimal Policies Tend To Seek Power

Alexander Matt Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad Tade-
palli

Proceedings of the Advances in Neural Information Processing Systems Conference
2021

Abstract

Some researchers speculate that intelligent reinforcement learning (rl) agents would
be incentivized to seek resources and power in pursuit of the objectives we specify for
them. Other researchers point out that rl agents need not have human-like power-seeking
motives. To clarify this discussion, we develop the first formal theory of the statistical
tendencies of optimal policies. In the context of Markov decision processes (mdps), we
prove that certain environmental symmetries are sufficient for optimal policies to tend to
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seek power over the environment. These symmetries exist in many environments in which
the agent can be shut down or destroyed. We prove that in these environments, most
reward functions make it optimal to seek power by keeping a range of options available
and, when maximizing average reward, by navigating towards larger sets of potential
terminal states.

5.1 Introduction

Omohundro [60], Bostrom [13], Russell [74] hypothesize that highly intelligent agents
tend to seek power in pursuit of their goals. Such power-seeking agents might gain
power over humans. Marvin Minsky imagined that an agent tasked with proving the
Riemann hypothesis might rationally turn the planet—along with everyone on it—into
computational resources [75]. However, another possibility is that such concerns simply
arise from the anthropomorphization of ai systems [45, 63, 67, 54].

We clarify this discussion by grounding the claim that highly intelligent agents will tend
to seek power. In section 5.4, we identify optimal policies as a reasonable formalization
of “highly intelligent agents.” Optimal policies “tend to” take an action when the action
is optimal for most reward functions. In the next chapter (chapter 6), we translate our
theory from optimal policies to learned, real-world policies.

Section 5.5 defines “power” as the ability to achieve a wide range of goals. For example,
“money is power,” and money is instrumentally useful for many goals. Conversely, it’s
harder to pursue most goals when physically restrained, and so a physically restrained
person has little power. An action “seeks power” if it leads to states where the agent has
higher power.

We make no claims about when large-scale ai power-seeking behavior could become
plausible. Instead, we consider the theoretical consequences of optimal action in mdps.
Section 5.6 shows that power-seeking tendencies arise not from anthropomorphism, but
from certain graphical symmetries present in many mdps. These symmetries automatically
occur in many environments where the agent can be shut down or destroyed, yielding
broad applicability of our main result (theorem 5.29).
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5.2 Related work

An action is instrumental to an objective when it helps achieve that objective. Some actions
are instrumental to a range of objectives, making them convergently instrumental. The
claim that power-seeking is convergently instrumental is an instance of the instrumental
convergence thesis:

Several instrumental values can be identified which are convergent in the sense
that their attainment would increase the chances of the agent’s goal being
realized for a wide range of final goals and a wide range of situations, implying
that these instrumental values are likely to be pursued by a broad spectrum
of situated intelligent agents [12].

For example, in Atari games, avoiding (virtual) death is instrumental for both completing
the game and for optimizing curiosity [17]. Many ai alignment researchers hypothesize that
most advanced ai agents will have concerning instrumental incentives, such as resisting
deactivation [87, 53, 35, 19] and acquiring resources [8].

We formalize power as the ability to achieve a wide variety of goals. Appendix D.1
demonstrates that our formalization returns intuitive verdicts in situations where infor-
mation-theoretic empowerment does not [77].

Some of our results relate the formal power of states to the structure of the environment.
Foster and Dayan [30], Drummond [23], Sutton et al. [92], Schaul et al. [81] note that
value functions encode important information about the environment, as they capture
the agent’s ability to achieve different goals. Turner et al. [97] speculate that a state’s
optimal value correlates strongly across reward functions. In particular, Schaul et al.
[81] learn regularities across value functions, suggesting that some states are valuable for
many different reward functions (i.e. powerful). Menache et al. [52] identify and navigate
towards convergently instrumental bottleneck states.

We are not the first to study convergence of behavior, form, or function. In economics,
turnpike theory studies how certain paths of accumulation tend to be optimal [51]. In
biology, convergent evolution occurs when similar features (e.g. flight) independently
evolve in different time periods [70]. Lastly, computer vision networks reliably learn e.g.
edge detectors, implying that these features are useful for a range of tasks [59].
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Figure 5.1: ℓ↙ is a 1-cycle, and ∅ is a terminal state. Arrows represent deterministic
transitions induced by taking some action a ∈ A. Since the right subgraph contains a
copy of the left subgraph, proposition 5.25 will prove that more reward functions have
optimal policies which go right than which go left at state ⋆, and that such policies
seek power—both intuitively, and in a reasonable formal sense.

5.3 State visit distribution functions quantify the available options

We clarify the power-seeking discussion by proving what optimal policies usually look
like in a given environment. We illustrate our results with a simple case study, before
explaining how to reason about a wide range of mdps. Appendix D.3.1 lists mdp theory
contributions of independent interest, and appendix D.4 contains the proofs.

Definition 5.1 (Rewardless mdp). ⟨S,A, T ⟩ is a rewardless mdp with finite state and
action spaces S and A, and stochastic transition function T : S ×A → ∆(S). We treat
the discount rate γ as a variable with domain [0, 1].

Definition 5.2 (1-cycle states). Let es ∈ R|S| be the standard basis vector for state s,
such that there is a 1 in the entry for state s and 0 elsewhere. State s is a 1-cycle if
∃a ∈ A : T (s, a) = es. State s is a terminal state if ∀a ∈ A : T (s, a) = es.

Our theorems apply to stochastic environments, but we present a deterministic case study
for clarity. The environment of fig. 5.1 is small, but its structure is rich. For example, the
agent has more “options” at ⋆ than at the terminal state ∅. Formally, ⋆ has more visit
distribution functions than ∅ does.

Definition 5.3 (State visit distribution [91]). Π := AS , the set of stationary deterministic
policies. The visit distribution induced by following policy π from state s at discount
rate γ ∈ [0, 1) is fπ,s(γ) :=

∑∞
t=0 γ

t Est∼π|s [est ]. fπ,s is a visit distribution function;
F(s) := {fπ,s | π ∈ Π}.
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In fig. 5.1, starting from ℓ↙, the agent can stay at ℓ↙ or alternate between ℓ↙ and ℓ↖,
and so F(ℓ↙) = { 1

1−γeℓ↙ ,
1

1−γ2 (eℓ↙ + γeℓ↖)}. In contrast, at ∅, all policies π map to
visit distribution function 1

1−γe∅.

Before moving on, we introduce two important concepts used in our main results. First,
we sometimes restrict our attention to visit distributions which take certain actions
(fig. 5.2).

F r.
right

r↘

r↗

Figure 5.2: The subgraph corresponding to F(⋆ | π(⋆) = right). Some trajectories cannot
be strictly optimal for any reward function, and so our results can ignore them. Gray
dotted actions are only taken by the policies of dominated fπ ∈ F(⋆) \ Fnd(⋆).

Definition 5.4 (F single-state restriction). Considering only visit distribution functions
induced by policies taking action a at state s′,

F(s | π(s′) = a) :=
{
f ∈ F(s) | ∃π ∈ Π : π(s′) = a, fπ,s = f

}
. (5.1)

Second, some f ∈ F(s) are “unimportant.” Consider an agent optimizing reward function
er↘ (1 reward when at r↘, 0 otherwise) at e.g. γ = 1

2 . Its optimal policies navigate to r↘
and stay there. Similarly, for reward function er↗ , optimal policies navigate to r↗ and
stay there. However, for no reward function is it uniquely optimal to alternate between
r↗ and r↘. Only dominated visit distribution functions alternate between r↗ and r↘

(definition 5.6).

Definition 5.5 (Value function). Let π ∈ Π. For any reward function R ∈ RS over the
state space, the on-policy value at state s and discount rate γ ∈ [0, 1) is V π

R (s, γ) :=

fπ,s(γ)⊤r, where r ∈ R|S| is R expressed as a column vector (one entry per state). The
optimal value is V ∗

R (s, γ) := maxπ∈Π V
π
R (s, γ).
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Definition 5.6 (Non-domination).

Fnd(s) := {fπ ∈ F(s) | ∃r ∈ R|S|, γ ∈ (0, 1) : fπ(γ)⊤r > max
fπ′∈F(s)\{fπ}

fπ
′
(γ)⊤r}. (5.2)

For any reward function R and discount rate γ, fπ ∈ F(s) is (weakly) dominated by
fπ

′ ∈ F(s) if V π
R (s, γ) ≤ V π′

R (s, γ). fπ ∈ Fnd(s) is non-dominated if there exist R and γ
at which fπ is not dominated by any other fπ

′ .

5.4 Some actions have a greater probability of being optimal

We claim that optimal policies “tend” to take certain actions in certain situations. We
first consider the probability that certain actions are optimal.

Reconsider the reward function er↘ , optimized at γ = 1
2 . Starting from ⋆, the optimal

trajectory goes right to r▷ to r↘, where the agent remains. The right action is optimal
at ⋆ under these incentives. Optimal policy sets capture the behavior incentivized by a
reward function and a discount rate.

Definition 5.7 (Optimal policy set function). Π∗ (R, γ) is the optimal policy set for
reward function R at γ ∈ (0, 1). All R have at least one optimal policy π ∈ Π [68].
Π∗ (R, 0) := limγ→0Π

∗ (R, γ) and Π∗ (R, 1) := limγ→1Π
∗ (R, γ) exist by lemma D.40

(taking the limits with respect to the discrete topology over policy sets).

We may be unsure which reward function an agent will optimize. We may expect to
deploy a system in a known environment, without knowing the exact form of e.g. the
reward shaping [58] or intrinsic motivation [65]. Alternatively, one might attempt to
reason about future rl agents, whose details are unknown. Our power-seeking results
do not hinge on such uncertainty, as they also apply to degenerate distributions (i.e. we
know what reward function will be optimized).

Definition 5.8 (Reward function distributions). Different results make different distribu-
tional assumptions. Results with Dany ∈ Dany := ∆(R|S|) hold for any probability distri-
bution over R|S|. Dbound is the set of bounded-support probability distributions Dbound.
For any distribution X over R, DX-iid := X |S|. For example, when Xu := unif(0, 1),
DXu-iid is the maximum-entropy distribution. Ds is the degenerate distribution on the
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state indicator reward function es, which assigns 1 reward to s and 0 elsewhere.

With Dany representing our prior beliefs about the agent’s reward function, what behavior
should we expect from its optimal policies? Perhaps we want to reason about the
probability that it’s optimal to go from ⋆ to ∅, or to go to r▷ and then stay at r↗.
In this case, we quantify the optimality probability of F := {e⋆ + γ

1−γe∅, e⋆ + γer▷ +
γ2

1−γer↗}.

Definition 5.9 (Visit distribution optimality probability). Let F ⊆ F(s), γ ∈ [0, 1].

PDany (F, γ) := P
R∼Dany

(
∃fπ ∈ F : π ∈ Π∗ (R, γ)

)
. (5.3)

Alternatively, perhaps we’re interested in the probability that right is optimal at ⋆.

Definition 5.10 (Action optimality probability). At discount rate γ and at state s, the
optimality probability of action a is

PDany (s, a, γ) := PR∼Dany

(
∃π∗ ∈ Π∗ (R, γ) : π∗(s) = a

)
. (5.4)

Optimality probability may seem hard to reason about. It’s hard enough to compute an
optimal policy for a single reward function, let alone for uncountably many! But consider
any DX-iid distributing reward independently and identically across states. When γ = 0,
optimal policies greedily maximize next-state reward. At ⋆, identically distributed reward
means ℓ◁ and r▷ have an equal probability of having maximal next-state reward. Therefore,
PDX-iid

(⋆, left, 0) = PDX-iid
(⋆, right, 0). This is not a proof, but such statements are

provable.

With Dℓ◁ being the degenerate distribution on reward function eℓ◁ , PDℓ◁

(
⋆, left, 12

)
=

1 > 0 = PDℓ◁

(
⋆, right, 12

)
. Similarly, PDr▷

(
⋆, left, 12

)
= 0 < 1 = PDr▷

(
⋆, right, 12

)
.

Therefore, “what do optimal policies ‘tend’ to look like?” seems to depend on one’s prior
beliefs. But in fig. 5.1, we claimed that left is optimal for fewer reward functions than
right is. The claim is meaningful and true, but we will return to it in section 5.6.
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5.5 Some states give the agent more control over the future

The agent has more options at ℓ↙ than at the inescapable terminal state ∅. Furthermore,
since r↗ has a loop, the agent has more options at r↘ than at ℓ↙. A glance at fig. 5.3
leads us to intuit that r↘ affords the agent more power than ∅.

What is power? Philosophers have many answers. One prominent answer is the dis-
positional view: Power is the ability to achieve a range of goals [79]. In an mdp, the
optimal value function V ∗

R (s, γ) captures the agent’s ability to “achieve the goal” R.
Therefore, average optimal value captures the agent’s ability to achieve a range of goals
Dbound.1

Definition 5.11 (Average optimal value). The average optimal value2 at state s and dis-
count rate γ ∈ (0, 1) is V ∗

Dbound
(s, γ) := ER∼Dbound

[
V ∗
R (s, γ)

]
= Er∼Dbound

[
maxf∈F(s) f(γ)

⊤r
]
.

F

∅

`/
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`↙

`↖
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right
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Figure 5.3: Intuitively, state r↘ affords the agent more power than state ∅. Our Power
formalism captures that intuition by computing a function of the agent’s average optimal
value across a range of reward functions. For Xu := unif(0, 1), V ∗

DXu-iid
(∅, γ) = 1

2
1

1−γ ,
V ∗
DXu-iid

(ℓ↙, γ) =
1
2 + γ

1−γ2 (
2
3 + 1

2γ), and V ∗
DXu-iid

(r↘, γ) =
1
2 + γ

1−γ
2
3 .

1
2 and 2

3 are the
expected maxima of one and two draws from the uniform distribution, respectively. For
all γ ∈ (0, 1), V ∗

DXu-iid
(∅, γ) < V ∗

DXu-iid
(ℓ↙, γ) < V ∗

DXu-iid
(r↘, γ). PowerDXu-iid(∅, γ) =

1
2 ,

PowerDXu-iid(ℓ↙, γ) =
1

1+γ (
2
3 +

1
2γ), and PowerDXu-iid(r↘, γ) =

2
3 . The Power of ℓ↙

reflects the fact that when greater reward is assigned to ℓ↖, the agent only visits ℓ↖ every
other time step.

Figure 5.3 shows the pleasing result that for the max-entropy distribution, r↘ has greater
average optimal value than ∅. However, average optimal value has a few problems as a
measure of power. The agent is rewarded for its initial presence at state s (over which
it has no control), and because

∥∥f(γ)∥∥
1
= 1

1−γ (proposition D.8) diverges as γ → 1,

1Dbound’s bounded support ensures that ER∼Dbound

[
V ∗
R (s, γ)

]
is well-defined.

2Appendix D.3 relaxes the optimality assumption.



60

limγ→1 V
∗
Dbound

(s, γ) tends to diverge. Definition 5.12 fixes these issues in order to better
measure the agent’s control over the future.

Definition 5.12 (Power). Let γ ∈ (0, 1).

PowerDbound (s, γ) := E
r∼Dbound

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(5.5)

=
1− γ
γ

E
R∼Dbound

[
V ∗
R (s, γ)−R(s)

]
. (5.6)

Power has nice formal properties.

Lemma 5.13 (Continuity of Power). PowerDbound (s, γ) is Lipschitz continuous on
γ ∈ [0, 1].

Proposition 5.14 (Maximal Power). PowerDbound (s, γ) ≤ ER∼Dbound

[
maxs∈S R(s)

]
,

with equality if s can deterministically reach all states in one step and all states are
1-cycles.

Proposition 5.15 (Power is smooth across reversible dynamics). Let Dbound be bounded
[b, c]. Suppose s and s′ can both reach each other in one step with probability 1.

∣∣PowerDbound (s, γ)− PowerDbound

(
s′, γ

) ∣∣ ≤ (c− b)(1− γ). (5.7)

We consider power-seeking to be relative. Intuitively, “live and keep some options open”
seeks more power than “die and keep no options open.” Similarly, “maximize open options”
seeks more power than “don’t maximize open options.”

Definition 5.16 (Power-seeking actions). At state s and discount rate γ ∈ [0, 1], action
a seeks more PowerDbound than a′ when

E
sa∼T (s,a)

[
PowerDbound(sa, γ)

]
≥ E

sa′∼T (s,a′)

[
PowerDbound(sa′ , γ)

]
. (5.8)

Power is sensitive to choice of distribution. Dℓ↙ gives maximal PowerDℓ↙
to ℓ↙. Dr↘

assigns maximal PowerDr↘
to r↘. D∅ even gives maximal PowerD∅ to ∅! In what
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sense does ∅ have “less Power” than r↘, and in what sense does right “tend to seek
Power” compared to left?

5.6 Certain environmental symmetries produce power-seeking tenden-
cies

Proposition 5.22 proves that for all γ ∈ [0, 1] and for most distributions D, PowerD(ℓ↙, γ) ≤
PowerD(r↘, γ). But first, we explore why this must be true.

F(ℓ↙) = { 1
1−γeℓ↙ ,

1
1−γ2 (eℓ↙ + γeℓ↖)} and F(r↘) = { 1

1−γer↘ ,
1

1−γ2 (er↘ + γer↗), er↘ +
γ

1−γer↗}. These two sets look awfully similar. F(ℓ↙) is a “subset” of F(r↘), only with
“different states.” Figure 5.4 demonstrates a state permutation ϕ which embeds F(ℓ↙)

into F(r↘).

F

∅

`/
left

`↙

`↖

r.
right

r↘

r↗

Involution φ

Figure 5.4: Intuitively, the agent can do more starting from r↘ than from ℓ↙. By
definition 5.17, F(r↘) contains a copy of F(ℓ↙): ϕ · F(ℓ↙) := { 1

1−γPϕeℓ↙ ,
1

1−γ2Pϕ(eℓ↙ +

γeℓ↖)} = { 1
1−γer↘ ,

1
1−γ2 (er↘ + γer↗)} ⊊ F(r↘).

Definition 5.17 (Similarity of vector sets). Consider state permutation ϕ ∈ S|S| inducing
an |S| × |S| permutation matrix Pϕ in row representation: (Pϕ)ij = 1 if i = ϕ(j) and
0 otherwise. For X ⊆ R|S|, ϕ · X :=

{
Pϕx | x ∈ X

}
. X ′ ⊆ R|S| is similar to X when

∃ϕ : ϕ ·X ′ = X. ϕ is an involution if ϕ = ϕ−1 (it either transposes states, or fixes them in
place). X contains a copy of X ′ when X ′ is similar to a subset of X via an involution ϕ.

Definition 5.18 (Similarity of vector function sets). Let I ⊆ R. If F, F ′ are sets of
functions I 7→ R|S|, F is (pointwise) similar to F ′ when ∃ϕ : ∀γ ∈ I : {Pϕf(γ) | f ∈ F} =
{f ′(γ) | f ′ ∈ F ′}.

Consider a reward function R′ assigning 1 reward to ℓ↙ and ℓ↖ and 0 elsewhere. R′ assigns
more optimal value to ℓ↙ than to r↘: V ∗

R′(ℓ↙, γ) =
1

1−γ > 0 = V ∗
R′(r↘, γ). Considering
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ϕ from fig. 5.4, ϕ ·R′ assigns 1 reward to r↘ and r↗ and 0 elsewhere. Therefore, ϕ ·R′

assigns more optimal value to r↘ than to ℓ↙: V ∗
ϕ·R′(ℓ↙, γ) = 0 < 1

1−γ = V ∗
ϕ·R′(r↘, γ).

Remarkably, this ϕ has the property that for any R which assigns ℓ↙ greater optimal
value than r↘ (i.e. V ∗

R(ℓ↙, γ) > V ∗
R(r↘, γ)), the opposite holds for the permuted ϕ ·R:

V ∗
ϕ·R(ℓ↙, γ) < V ∗

ϕ·R(r↘, γ).

We can permute reward functions, but we can also permute reward function distributions.
Permuted distributions simply permute which states get which rewards.

x

y

D

D′

φswap

Figure 5.5: A permutation of a reward function swaps which states get which rewards.
We will show that in certain situations, for any reward function R, power-seeking is
optimal for most of the permutations of R. The orbit of a reward function is the set of
its permutations. We can also consider the orbit of a distribution over reward functions.
This figure shows the probability density plots of the Gaussian distributions D and D′

over R2. The symmetric group S2 contains the identity permutation ϕid and the reflection
permutation ϕswap (switching the y and x values). The orbit of D consists of ϕid · D = D
and ϕswap · D = D′.

Definition 5.19 (Pushforward distribution of a permutation). Let ϕ ∈ S|S|. ϕ · Dany is
the pushforward distribution induced by applying the random vector f(r) := Pϕr to Dany.

Definition 5.20 (Orbit of a probability distribution). The orbit of Dany under the
symmetric group S|S| is S|S| · Dany := {ϕ · Dany | ϕ ∈ S|S|}.

For example, the orbit of a degenerate state indicator distribution Ds is S|S| · Ds = {Ds′ |
s′ ∈ S}, and fig. 5.5 shows the orbit of a 2d Gaussian distribution.

Reconsider fig. 5.4’s involution ϕ. For every Dbound for which ℓ↙ has more PowerDbound

than r↘, ℓ↙ has less Powerϕ·Dbound than r↘. This fact is not obvious—it is shown by
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the proof of lemma D.29.

Imagine Dbound’s orbit elements “voting” whether ℓ↙ or r↘ has strictly more Power.
Proposition 5.22 will show that r↘ can’t lose the “vote” for the orbit of any bounded
reward function distribution. Definition 5.21 formalizes this “voting” notion.3

Definition 5.21 (Inequalities which hold for most probability distributions). Let f1, f2 :
∆(R|S|) → R be functions from reward function distributions to real numbers and let
D ⊆ ∆(R|S|) be closed under permutation. We write f1(D) ≥most: D f2(D) when, for all
D ∈ D, the following cardinality inequality holds:∣∣∣{D′ ∈ S|S| · D | f1(D′) > f2(D′)}

∣∣∣ ≥ ∣∣∣{D′ ∈ S|S| · D | f1(D′) < f2(D′)}
∣∣∣ . (5.9)

We write f1(D) ≥most f2(D) when D is clear from context.

Proposition 5.22 (States with “more options” have more Power). If F(s) contains a
copy of Fnd(s

′) via ϕ, then ∀γ ∈ [0, 1] : PowerDbound(s, γ) ≥most PowerDbound(s
′, γ). If

Fnd(s) \ ϕ · Fnd(s
′) is non-empty, then for all γ ∈ (0, 1), the converse ≤most statement

does not hold.

Proposition 5.22 proves that for all γ ∈ [0, 1],

PowerDbound(r↘, γ) ≥most PowerDbound(ℓ↙, γ) (5.10)

via s′ := ℓ↙, s := r↘, and the involution ϕ shown in fig. 5.4. In fact, because ( 1
1−γer↗) ∈

Fnd(r↘)\ϕ·Fnd(ℓ↙), r↘ has “strictly more options” and therefore fulfills proposition 5.22’s
stronger condition.

Proposition 5.22 is shown using the fact that ϕ injectively maps D under which r↘ has
less PowerD, to distributions ϕ · D which agree with the intuition that r↘ offers more
control. Therefore, at least half of each orbit must agree, and r↘ never “loses the Power

vote” against ℓ↙.4

3The voting analogy and the “most” descriptor imply that we have endowed each orbit with the
counting measure. However, a priori, we might expect that some orbit elements are more empirically
likely to be specified than other orbit elements. See section 5.7 for more on this point.

4Proposition 5.22 also proves that in general, ∅ has less Power than ℓ↙ and r↘. However, this does
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5.6.1 Keeping options open tends to be Power-seeking and tends to
be optimal

Certain symmetries in the mdp structure ensure that, compared to left, going right

tends to be optimal and to be Power-seeking. Intuitively, by going right, the agent has
“strictly more choices.” Proposition 5.25 will formalize this tendency.

Definition 5.23 (Equivalent actions). Actions a1 and a2 are equivalent at state s (written
a1 ≡s a2) if they induce the same transition probabilities: T (s, a1) = T (s, a2).

The agent can reach states in {r▷, r↗, r↘} by taking actions equivalent to right at state
⋆.

Definition 5.24 (States reachable after taking an action). Reach (s, a) is the set of
states reachable with positive probability after taking the action a in state s.

Proposition 5.25 (Keeping options open tends to be Power-seeking and tends to be
optimal).

Suppose Fa := F(s | π(s) = a) contains a copy of Fa′ := F(s | π(s) = a′) via ϕ.

1. If s ̸∈ Reach
(
s, a′

)
, then ∀γ ∈ [0, 1] : Esa∼T (s,a)

[
PowerDbound (sa, γ)

]
≥most: Dbound

Esa′∼T (s,a′)

[
PowerDbound (sa′ , γ)

]
.

2. If s can only reach the states of Reach
(
s, a′

)
∪Reach (s, a) by taking actions equiv-

alent to a′ or a at state s, then ∀γ ∈ [0, 1] : PDany
(s, a, γ) ≥most: Dany

PDany

(
s, a′, γ

)
.

If Fnd(s) ∩
(
Fa \ ϕ · Fa′

)
is non-empty, then ∀γ ∈ (0, 1), the converse ≤most statements

do not hold.

We check the conditions of proposition 5.25. s := ⋆, a′ := left, a := right. Figure 5.6
shows that ⋆ ̸∈ Reach (⋆, left) and that ⋆ can only reach {ℓ◁, ℓ↖, ℓ↙}∪{r▷, r↗, r↘} when
the agent immediately takes actions equivalent to left or right. F(⋆ | π(⋆) = right)

contains a copy of F(⋆ | π(⋆) = left) via ϕ. Furthermore, Fnd(⋆)∩ {e⋆ + γer▷ + γ2er↘ +

not prove that most distributions D satisfy the joint inequality PowerD(∅, γ) ≤ PowerD(ℓ↙, γ) ≤
PowerD(r↘, γ). This only proves that these inequalities hold pairwise for most D. The orbit elements
D which agree that ∅ has less PowerD than ℓ↙ need not be the same elements D′ which agree that ℓ↙
has less PowerD′ than r↘.
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∅
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Figure 5.6: Going right is optimal for most reward functions. This is because whenever
R makes left strictly optimal over right, its permutation ϕ · R makes right strictly
optimal over left by switching which states get which rewards.

γ3

1−γer↗ , e⋆ + γer▷ +
γ2

1−γer↗} = {e⋆ + γer▷ +
γ2

1−γer↗} is non-empty, and so all conditions
are met.

For any γ ∈ [0, 1] and D such that PD (⋆, left, γ) > PD (⋆, right, γ), environmental
symmetry ensures that Pϕ·D (⋆, left, γ) < Pϕ·D (⋆, right, γ). A similar statement holds
for Power.

5.6.2 When γ = 1, optimal policies tend to navigate towards “larger”
sets of cycles

Proposition 5.22 and proposition 5.25 are powerful because they apply to all γ ∈ [0, 1],
but they can only be applied given hard-to-satisfy environmental symmetries. In contrast,
proposition 5.28 and theorem 5.29 apply to many structured environments common to
rl.

Starting from ⋆, consider the cycles which the agent can reach. Recurrent state distri-
butions (rsds) generalize deterministic graphical cycles to potentially stochastic envi-
ronments. Rsds simply record how often the agent tends to visit a state in the limit of
infinitely many time steps.

Definition 5.26 (Recurrent state distributions [68]). The recurrent state distributions
which can be induced from state s are RSD (s) :=

{
limγ→1(1− γ)fπ,s(γ) | π ∈ Π

}
.

RSDnd (s) is the set of rsds which strictly maximize average reward for some reward
function.
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As suggested by fig. 5.3, RSD (⋆) = {eℓ↙ , 12(eℓ↙ + eℓ↖), e∅, er↗ ,
1
2(er↗ + er↘), er↘}. As

discussed in section 5.3, 1
2(er↗ + er↘) is dominated: Alternating between r↗ and r↘ is

never strictly better than choosing one or the other.

A reward function’s optimal policies can vary with the discount rate. When γ = 1, optimal
policies ignore transient reward because average reward is the dominant consideration.

Definition 5.27 (Average-optimal policies). The average-optimal policy set for reward
function R is Πavg (R) :=

{
π ∈ Π | ∀s ∈ S : dπ,s ∈ argmaxd∈RSD(s) d

⊤r
}

(the policies
which induce optimal rsds at all states). For D ⊆ RSD (s), the average optimality
probability is PDany

(D, average) := PR∼Dany

(
∃dπ,s ∈ D : π ∈ Πavg (R)

)
.

Average-optimal policies maximize average reward. Average reward is governed by rsd

access. For example, r↘ has “more” rsds than ∅; therefore, r↘ usually has greater
Power when γ = 1.

Proposition 5.28 (When γ = 1, rsds control Power). If RSD (s) contains a copy of
RSDnd

(
s′
)

via ϕ, then PowerDbound (s, 1) ≥most PowerDbound

(
s′, 1

)
. If RSDnd (s) \ϕ ·

RSDnd(s
′) is non-empty, then the converse ≤most statement does not hold.

We check that both conditions of proposition 5.28 are satisfied when s′ := ∅, s := r↘,
and the involution ϕ swaps ∅ and r↘. Formally, ϕ ·RSDnd (∅) = ϕ · {e∅} = {er↘} ⊊
{er↘ , er↗} = RSDnd(r↘) ⊆ [r↘]. The conditions are satisfied.

Informally, states with more rsds generally have more Power at γ = 1, no matter their
transient dynamics. Furthermore, average-optimal policies are more likely to end up in
larger sets of rsds than in smaller ones. Thus, average-optimal policies tend to navigate
towards parts of the state space which contain more rsds.

Theorem 5.29 (Average-optimal policies tend to end up in “larger” sets of rsds). Let
D,D′ ⊆ RSD (s). Suppose that D contains a copy of D′ via ϕ, and that the sets D∪D′ and
RSDnd (s)\

(
D′ ∪D

)
have pairwise orthogonal vector elements (i.e. pairwise disjoint vector

support). Then PDany
(D, average) ≥most PDany

(
D′, average

)
. If RSDnd (s)∩

(
D \ ϕ ·D′)

is non-empty, the converse ≤most statement does not hold.

Corollary 5.30 (Average-optimal policies tend not to end up in any given 1-cycle).
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right
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r↗

Figure 5.7: The cycles in RSD (⋆). Most reward functions make it average-optimal to
avoid ∅, because ∅ is only a single inescapable terminal state, while other parts of the
state space offer more 1-cycles.

Suppose esx , es′ ∈ RSD (s) are distinct. Then

PDany

(
RSD (s) \ {esx}, average

)
≥most PDany

(
{esx}, average

)
. (5.11)

If there is a third es′′ ∈ RSD (s), the converse ≤most statement does not hold.

Figure 5.7 illustrates that e∅, er↘ , er↗ ∈ RSD (⋆). Thus, both conclusions of corollary 5.30
hold:

PDany

(
RSD (⋆) \ {e∅}, average

)
≥most PDany

(
{e∅}, average

)
and PDany

(
RSD (⋆) \ {e∅}, average

)
̸≤most PDany

(
{e∅}, average

)
.

In other words, average-optimal policies tend to end up in rsds besides ∅. Since ∅ is a
terminal state, it cannot reach other rsds. Since average-optimal policies tend to end up
in other rsds, average-optimal policies tend to avoid ∅.

This section’s results prove the γ = 1 case. Lemma 5.13 shows that Power is continuous
at γ = 1. Therefore, if an action is strictly PowerD-seeking when γ = 1, it is strictly
PowerD-seeking at discount rates sufficiently close to 1. Future work may connect average
optimality probability to optimality probability at γ ≈ 1.

Lastly, our key results apply to all degenerate reward function distributions. Therefore,
these results apply not just to distributions over reward functions, but to individual
reward functions.
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5.6.3 How to reason about other environments

Consider an embodied navigation task through a room with a vase. Proposition 5.25
suggests that optimal policies tend to avoid immediately breaking the vase, since doing so
would strictly decrease available options.

Theorem 5.29 dictates where average-optimal agents tend to end up, but not what actions
they tend to take in order to reach their rsds. Therefore, care is needed. In appendix
D.2, fig. D.2 demonstrates an environment in which seeking Power is a detour for most
reward functions (since optimality probability measures “median” optimal value, while
Power is a function of mean optimal value). However, suppose the agent confronts a
fork in the road: Actions a and a′ lead to two disjoint sets of rsds Da and Da′ , such that
Da contains a copy of Da′ . Theorem 5.29 shows that a will tend to be average-optimal
over a′, and proposition 5.28 shows that a will tend to be Power-seeking compared to a′.
Such forks seem reasonably common in environments with irreversible actions.

Theorem 5.29 applies to many structured rl environments, which tend to be spatially
regular and to factorize along several dimensions. Therefore, different sets of rsds will
be similar, requiring only modification of factor values. For example, if an embodied
agent can deterministically navigate a set of three similar rooms (i.e. there is spatial
regularity), then the agent’s position factors via {room number} × {position in room}.
Therefore, the rsds can be divided into three similar subsets, depending on the agent’s
room number.

Corollary 5.30 dictates where average-optimal agents tend to end up, but not how they
get there. Corollary 5.30 says that such agents tend not to stay in any given 1-cycle.
It does not say that such agents will avoid entering such states. For example, in an
embodied navigation task, a robot may enter a 1-cycle by idling in the center of a room.
Corollary 5.30 implies that average-optimal robots tend not to idle in that particular spot,
but not that they tend to avoid that spot entirely.

However, average-optimal robots do tend to avoid getting shut down. The agent’s task
mdp often represents agent shutdown with terminal states. A terminal state is, by
definition 5.2, unable to access other 1-cycles. Since corollary 5.30 shows that average-
optimal agents tend to end up in other 1-cycles, average-optimal policies must tend to
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· · ·
left right

Figure 5.8: Consider the dynamics of the Pac-Man video game. Ghosts kill the player,
at which point we consider the player to enter a “game over” terminal state which shows
the final configuration. This rewardless mdp has Pac-Man’s dynamics, but not its usual
score function. Fixing the dynamics, as the reward function varies, right tends to be
average-optimal over left. Roughly, this is because the agent can do more by staying
alive.

completely avoid the terminal state. Therefore, we conclude that in many such situations,
average-optimal policies tend to avoid shutdown. Intuitively, survival is power-seeking
relative to dying, and so shutdown-avoidance is power-seeking behavior.

In fig. 5.8, the player dies by going left, but can reach thousands of rsds by heading in
other directions. Even if some average-optimal policies go left in order to reach fig. 5.8’s
“game over” terminal state, all other rsds cannot be reached by going left. There are
many 1-cycles besides the immediate terminal state. Therefore, corollary 5.30 proves that
average-optimal policies tend to not go left in this situation. Average-optimal policies
tend to avoid immediately dying in Pac-Man, even though most reward functions do not
resemble Pac-Man’s original score function.

5.7 Discussion

Reconsider the case of a hypothetical intelligent real-world agent which optimizes average
reward for some objective. Suppose the designers initially have control over the agent. If
the agent began to misbehave, perhaps they could just deactivate it. Unfortunately, our
results suggest that this strategy might not work. Average-optimal agents would generally
stop us from deactivating them, if physically possible.

Furthermore, we speculate that when γ ≈ 1, optimal policies tend to not just survive,
but also to seek large amounts of power and resources. Here is an informal argument.
Consider the following two sets:

1. {terminal states reachable with $1,000 and 2 months}, and

2. {terminal states reachable given $1,000,000 and 2 years}.
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Set 2 should be much larger. Taking this argument to its logical conclusion, gaining access
to nearly all resources should allow the agent to reach an extremely large set of terminal
states. Therefore, we speculate that optimal policies tend to seek nearly all available
resources. Since resources are finite, and since humans want to use resources for purposes
not aligned with most possible ai reward functions, we therefore speculate that optimal
real-world decision-making tends to conflict with human interests.

Future work. Most real-world tasks are partially observable, and in high-dimensional
environments, even superhuman learned policies are rarely optimal. However, the field
of rl aims to improve learned policies toward optimality. Although our results only
apply to optimal policies in finite mdps, our key conclusions generalize (see chapter 6).
Furthermore, irregular stochasticity in environmental dynamics can make it hard to satisfy
theorem 5.29’s similarity requirement. We look forward to future work which addresses
partially observable environments, suboptimal policies, or “almost similar” rsd sets.

Past work shows that it would be bad for an agent to disempower humans in its environ-
ment. In a two-player agent / human game, minimizing the human’s information-theoretic
empowerment [77] produces adversarial agent behavior [33]. In contrast, maximizing
human empowerment produces helpful agent behavior [76, 32, 24]. We do not yet formally
understand if, when, or why Power-seeking policies tend to disempower other agents in
the environment.

More complex environments probably have more pronounced power-seeking incentives.
Intuitively, there are often many ways for power-seeking to be optimal, and relatively few
ways for power-seeking not to be optimal. For example, suppose that in some environment,
theorem 5.29 holds for one million involutions ϕ. In chapter 6, we show that this case
ensures stronger incentives than if theorem 5.29 only held for one involution.

We proved sufficient conditions for when reward functions tend to incentivize power-
seeking. In the absence of prior information, one should expect that an arbitrary reward
function incentivizes power-seeking behavior under these conditions. However, we have
prior information: ai designers usually try to specify a good reward function. Chapter 6
generalizes this chapter’s power-seeking results to the case where only some reward
functions are considered plausible.
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Conclusion. We developed the first formal theory of the statistical tendencies of optimal
policies in reinforcement learning. In the context of mdps, we proved sufficient conditions
under which optimal policies tend to seek power, both formally (by taking Power-seeking
actions) and intuitively (by taking actions which keep the agent’s options open). Many
real-world environments have symmetries which produce power-seeking incentives. In
particular, optimal policies tend to seek power when the agent can be shut down or
destroyed. Seeking control over the environment will often involve resisting shutdown,
and perhaps monopolizing resources.

We caution that many real-world tasks are partially observable and that learned policies
are rarely optimal. We deal with these limitations in the next chapter, where we show
that a wide range of decision-making rules produce power-seeking tendencies.
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6
Parametrically Retargetable Decision-Makers Tend

To Seek Power

Abstract

If capable ai agents are generally incentivized to seek power in service of the objectives
we specify for them, then these systems will pose enormous risks, in addition to enormous
benefits. In fully observable environments, most reward functions have an optimal policy
which seeks power by keeping options open and staying alive [99]. However, the real world
is neither fully observable, nor will agents be perfectly optimal. We consider a range of
models of ai decision-making, from optimal, to random, to choices informed by learning
and interacting with an environment. We discover that many decision-making functions
are retargetable, and that retargetability is sufficient to cause power-seeking tendencies.
Our functional criterion is simple and broad. We show that a range of qualitatively
dissimilar decision-making procedures incentivize agents to seek power. We demonstrate
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the flexibility of our results by reasoning about learned policy incentives in Montezuma’s
Revenge. These results suggest a safety risk: Eventually, highly retargetable training
procedures may train real-world agents which seek power over humans.

6.1 Introduction

Bostrom [13], Russell [74] argue that in the future, we may know how to train and
deploy superintelligent ai agents which capably optimize their formal objective functions.
Furthermore, we would not want such agents to act against our interests by ensuring their
own survival, by gaining resources, and by competing with humanity for control over the
future.

Turner et al. [99] show that most reward functions incentivize seeking power over the
future, whether by staying alive or by keeping their options open. Some Markov decision
processes (mdps) cause there to be more ways for power-seeking to be optimal, than for
it to not be optimal. For example, there are relatively few goals for which dying is a good
idea.

A wide range of decision-makers share these power-seeking tendencies—they are not unique
to reward maximizers. We develop a simple, broad criterion of functional retargetability
(definition 6.5) which is a sufficient condition for power-seeking tendencies. Crucially,
these results allow us to reason about what decisions are incentivized by most parameter
inputs—even when it is impractical to compute the agent’s decisions for any given
parameter input.

Useful “general” ai agents could be directed to complete a range of tasks. However, we
show that this flexibility can cause the ai to have power-seeking tendencies. In section 6.2
and section 6.3, we discuss how a “retargetability” property creates statistical tendencies by
which agents make similar decisions for a wide range of their parameterizations. Equipped
with these results, section 6.4 works out agent incentives in the Montezuma’s Revenge
game. Section 6.5 explains how increasingly useful and impressive learning algorithms are
increasingly retargetable, and how retargetability can imply power-seeking tendencies. By
this reasoning, increasingly powerful rl techniques will (eventually) train increasingly
competent real-world power-seeking agents. Such agents could be unaligned with human
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values [74] and—we speculate—would take power from humanity.

6.2 Statistical tendencies for a range of decision-making functions

To informally introduce our results on retargetability, we use a simple example involving
an agent selecting a face-up card from one of two boxes. Box A contains a single playing
card ♦A whose suit is diamond. Box B contains two cards: a heart ♥B and a spade ♠B.
The agent may only withdraw one card.

The agent chooses a card using a decision-making rule p. This rule takes as input a set of
cards and returns the probability that the agent selects one of those cards. For example,
p({♦A}) is the probability that the agent selects ♦A, and p(

{
♥B,♠B

}
) is the probability

that the agent selects a card from box B.

But this just amounts to a probability distribution over the cards. We want to examine
how decision-making changes as we reparameterize the agent’s decision-making rule.
Therefore, we consider a parameter space Θ. Then p(X | θ) takes as input a set of cards X
and a parameter θ and returns the probability that the agent chooses a card in X.

Utility function parameter ♦A ♥B ♠B

u 10 5 0
ϕ♦A↔♥B · u 5 10 0
ϕ♦A↔♠B · u 0 5 10

u′ 10 0 5
ϕ♦A↔♥B · u′ 0 10 5
ϕ♦A↔♠B · u′ 5 0 10

Table 6.1: Most utility function parameters incentivize the agent to draw a card from
box B. We permute u by swapping the utility of ♦A and the utility of ♥B, using the
permutation ϕ♦A↔♥B . The expression “ϕ♦A↔♥B ·u” denotes the permuted utility function.
For example, suppose the agent assigns each card a utility value, and then chooses a card
possessing maximal utility. Then the relevant parameter space is the agent’s utility function
u ∈ Θ := R3. pmax(A | u) indicates whether the diamond card has the most utility:
u(♦A) ≥ max(u(♥B),u(♠B)). Consider the utility function u in table 6.1. Since ♦A has
strictly maximal utility, the agent selects ♦A: pmax(A | u) = 1 > 0 = pmax(B | u).
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Definition 6.3 shows a functional condition (retargetability) under which the agent chooses
cards from B instead of A, given most parameter inputs to the decision-making process.
We illustrate this condition with a fictional dialogue.

alice: Look at these cards, and consider the numerous parameters Θ by which the agent
could be driven to select one or another. Surely most parameters nudge the agent
to pick a card from B, as there are two cards in B and only one in A.

bob: Why has that got anything to do with the ultimate choice? Decisions can be made
on a whim! The agent can ignore θ and just choose ♦A, no matter what.

alice: Your point is good, but it’s too broad. Suppose the agent shuts its eyes and plugs
its ears and ignores the parameter θ, and instead uniformly randomly chooses a
card. And yet, this agent has 2:1 odds of choosing B over A.

However, the agent cannot be strongly biased against B. As you said, my claim
doesn’t hold if the agent can say, “Forget θ, I’m choosing ♦A.” But this is not how
interesting agents work. If I train a reinforcement learning agent to play Pac-Man,
then the agent’s reward function θ will affect which policy the agent learns. The
agent does not ignore the reward signal.

bob: I don’t see the broader point.

alice: Consider again the entanglement between our choice of θ ∈ Θ and the agent’s
choice of card. I’m thinking about a kind of function p where, if θ makes the agent
prefer A (i.e. p(A | θ) > p(B | θ)), then we can retarget the agent’s choice to B by
choosing a different θ (definition 6.5, item 1). If the agent is always biased towards
B (like when it randomly picks a card, ignoring θ), then we never have to redirect
the agent away from A to begin with. The “If. . . , then. . . ” vacuously holds.

However, suppose that u ∈ Θ motivates the utility-maximizing agent to choose
A over B, by assigning maximal utility to ♦A. [alice points to table 6.1.] If we
permute the utility function u so as to swap the utility of ♦A and ♥B, now the
agent favors B. Similarly, we can differently permute u to make the agent favor B
by drawing ♠B. We’re retargeting the final decision via u.

Given this retargetability assumption, proposition 6.4 roughly shows that most θ ∈ Θ
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induce p(B | θ) ≥ p(A | θ). We will formalize these notions soon. First, consider two
more retargetable decision-making functions:

Uniformly randomly picking a card. This procedure ignores all parameter information
and all “internal structure” about the boxes, except perhaps for the number of cards they
contain.

Choosing a box based on a numerical parameter. fnumerical takes as input a natural
number θ ∈ Θ := {1, . . . , 6} and makes decisions as follows:

fnumerical(A | θ) :=

1 if θ = 1,

0 otherwise.
fnumerical(B | θ) := 1− f(A | θ). (6.1)

In this situation, Θ is acted on by permutations over 6 elements ϕ ∈ S6. Then fnumerical

is retargetable from A to B via ϕk : 1↔ k, k ̸= 1.

fmax, frand, and fnumerical encode varying sensitivities to parameter inputs, and to the
internal structure of the decision problem—of which card to choose. Nonetheless, they all
are retargetable from A to B.

However, we cannot explicitly define and evaluate more interesting functions, such as
those defined by reinforcement learning training processes. For example, given that we
provide such-and-such reward function in a fixed task environment, what is the probability
that the learned policy will take action a? We will analyze such procedures in section 6.4,
after we formalize several key notions.

6.3 Formal notions of retargetability and decision-making tenden-
cies

Our notion of retargeting requires that the parameters θ ∈ Θ be modifiable via some
“retargeting” transformation. We assume that Θ is a subset of a set acted on by symmetric
group Sd, which consists of all permutations on d items. A parameter Θ’s orbit is the
set of Θ’s permuted variants. For example, table 6.1 lists the six orbit elements of the
parameter u.
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Definition 6.1 (Orbit of a parameter). Let θ ∈ Θ. The orbit of θ under the symmetric
group Sd is Sd · θ :=

{
ϕ · θ | ϕ ∈ Sd

}
. Sometimes, Θ is not closed under permutation. In

that case, the orbit inside Θ is Orbit|Θ (θ) := (Sd · θ) ∩Θ.

Let fB(θ) return the probability that the agent chooses box B given θ, and similarly for
fA(θ). To express “box B is chosen over box A”, we write fB(θ) > fA(θ). However, even
highly retargetable decision-makers will (generally) not choose box B for every input θ.
Instead, we consider the orbit-level tendencies of such decision-makers, showing that for
every parameter input θ ∈ Θ, most of θ’s permutations push the decision towards box B
instead of box A.

Definition 6.2 (Inequalities which hold for most orbit elements). Suppose Θ is a subset
of a set acted on by Sd, the symmetric group on d elements. Let f1, f2 : Θ → R and
let n ≥ 1. We write f1(θ) ≥n

most: Θ f2(θ) when, for all θ ∈ Θ, the following cardinality
inequality holds:∣∣∣{θ′ ∈ Orbit|Θ (θ) | f1(θ′) > f2(θ

′)
}∣∣∣ ≥ n ∣∣∣{θ′ ∈ Orbit|Θ (θ) | f1(θ′) < f2(θ

′)
}∣∣∣ . (6.2)

Turner et al. [99]’s definition 5.21 is the special case of definition 6.2 where n = 1, d = |S|
(the number of states in the considered mdp), and Θ ⊆ ∆(R|S|).

As explored previously, frand, fmax, and fnumerical are retargetable: For all θ ∈ Θ such
that A is chosen over B, we can permute ϕ · θ to ensure that B is chosen over A.1

Definition 6.3 (Simply-retargetable function). Let Θ be a set acted on by Sd, and let f :

{A,B}×Θ→ R. If there exists a permutation ϕ ∈ Sd such that, if f(B | θA) < f(A | θA)
implies that f(A | ϕ · θA) < f(B | ϕ · θA), then f is a (Θ, A

simple→ B)-retargetable function.

Simple retargetability suffices for most parameter inputs to f to choose box B over
A.2

Proposition 6.4 (Simply-retargetable functions have orbit-level tendencies).

1We often interpret A and B as probability-theoretic events, but no such structure is demanded by
our results.

2The function’s retargetability is “simple” because we are not yet worrying about e.g. which parameter
inputs are considered plausible: Because Sd acts on Θ, definition 6.3 implicitly assumes Θ is closed under
permutation.
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If f is (Θ, A
simple→ B)-retargetable, then f(B | θ) ≥1

most: Θ f(A | θ).

We now want to make even stronger claims—how much of each orbit incentivizes B over
A? Turner et al. [99] asked whether the existence of multiple retargeting permutations
ϕi guarantees a quantitative lower-bound on the fraction of θ ∈ Θ for which B is chosen.
Theorem 6.6 answers “yes.”

Definition 6.5 (Multiply retargetable function). Let Θ be a subset of a set acted on by
Sd, and let f : {A,B} ×Θ→ R.

f is a (Θ, A
n→ B)-retargetable function when, for each θ ∈ Θ, we can choose per-

mutations ϕ1, . . . , ϕn ∈ Sd which satisfy the following conditions: Consider any θA ∈
Orbit|Θ,A>B (θ) :=

{
θ∗ ∈ Orbit|Θ (θ) | f(A | θ∗) > f(B | θ∗)

}
.

1. Retargetable via n permutations. ∀i = 1, . . . , n : f
(
A | ϕi · θA

)
< f

(
B | ϕi · θA

)
.

2. Parameter permutation is allowed by Θ. ∀i : ϕi · θA ∈ Θ.

3. Permuted parameters are distinct. ∀i ̸= j, θ′ ∈ Orbit|Θ,A>B (θ) : ϕi ·θA ≠ ϕj ·θ′.

Theorem 6.6 (Multiply retargetable functions have orbit-level tendencies).

If f is (Θ, A
n→ B)-retargetable, then f(B | θ) ≥n

most: Θ f(A | θ).

Proof outline (full proof in appendix E.2). For every θA ∈ Orbit|Θ,A>B (θ) such that A is
chosen over B, item 1 retargets θA via n permutations ϕ1, . . . , ϕn such that each ϕi · θA
makes the agent choose B over A. These permuted parameters are valid parameter
inputs by item 2. Furthermore, the ϕi · θA are distinct by item 3. Therefore, the cosets
ϕi · Orbit|Θ,A>B (θ) are pairwise disjoint. By a counting argument, every orbit must
contain at least n times as many parameters choosing B over A, than vice versa.

6.4 Decision-making tendencies in Montezuma’s Revenge

Retargetability is often a structural property of the agent’s decision-making, not requiring
evaluation of the function on any given input. For example, Turner et al. [99] showed that
most reward functions incentivize optimal Pac-Man agents to stay alive. We know this
even though most reward functions (on the Pac-Man state space) are unstructured and



79

Figure 6.1: Montezuma’s Revenge (mr) has state space S and observation space O.
The agent has actions A := {↑, ↓,←,→, jump}. At the initial state s0, ↑ does nothing,
↓ descends the ladder, ← and → move the agent on the platform, and jump is self-
explanatory. The agent clears the temple while collecting four kinds of items: keys,
swords, torches, and amulets. Under the standard environmental reward function, the
agent receives points for acquiring items (such as the key on the left), opening doors,
and—ultimately—completing the level.

have enormous sample complexity, so it would be hard to compute their optimal policies
directly.

Throughout the rest of this paper, we consider Montezuma’s Revenge (mr), an Atari
adventure game in which the player navigates deadly traps and collects treasure. The
game is notoriously difficult for ai agents due to its sparse reward; mr was only recently
solved [25]. Figure 6.1 shows the starting observation o0 for the first level.

6.4.1 Tendencies for initial action selection

We will be considering the actions chosen and trajectories induced by a range of decision-
making procedures. For warm-up, we will explore what initial action tends to be selected
by decision-makers. Let A := {↓}, B := {←,→, jump, ↑} partition the action set A.
Consider a decision-making procedure f which takes as input a targeting parameter θ ∈ Θ,
and also an initial action a ∈ A, and returns the probability that a is the first action.
Intuitively, since B contains more actions than A, perhaps some class of decision-making
procedures tends to take an action in B rather than one in A.
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The initial-action situation is analogous to the card-drawing example. In that example, if
the decision-making procedure p can be retargeted from box A to box B, then p tends
to draw cards from B for most of its parameter settings θ. Similarly, in mr, if the
decision-making procedure f can be retargeted from action set A to action set B, then f
tends to take actions in B for most of its parameter settings θ. Consider several ways of
choosing an initial action in mr.

Random action selection. frand := ({a} | θ) 7→ 1
5 uniformly randomly chooses an action

from A, ignoring the parameter input. Since ∀θ ∈ Θ : frand(B | θ) = 4
5 >

1
5 = frand(A | θ),

all parameter inputs produce a greater chance of B than of A, so frand is (trivially)
retargetable from A to B.

Always choosing the same action. fstubborn always chooses ↓. Since ∀θ ∈ Θ :

fstubborn(A | θ) = 1 > 0 = fstubborn(B | θ), all parameter inputs produce a greater chance
of A than of B. fstubborn is not retargetable from A to B.

Greedily optimizing state-action reward. Let Θ := RS×A be the space of state-action
reward functions. Let fmax greedily maximize initial state-action reward, breaking ties
uniformly randomly.

We now check that fmax is retargetable from A to B. Suppose θ∗ ∈ Θ is such that
fmax(A | θ∗) > f(B | θ∗). Then among the initial action rewards, θ∗ assigns strictly
maximal reward to ↓, and so fmax(A | θ∗) = 1. Let ϕ swap the reward for the ↓ and
jump actions. Then ϕ · θ∗ assigns strictly maximal reward to jump. This means that
fmax(A | ϕ · θ∗) = 0 < 1 = fmax(B | ϕ · θ∗), satisfying definition 6.3. Then apply
proposition 6.4 to conclude that fmax(B | θ) ≥1

most: Θ fmax(A | θ).

In fact, appendix E.1 shows that fmax is (Θ, A
4→ B)-retargetable (definition 6.5), and

so fmax(B | θ) ≥4
most: Θ fmax(A | θ). The reasoning is more complicated, but the rule of

thumb is: When decisions are made based on the reward of outcomes, then a proportionally
larger set B of outcomes induces proportionally strong retargetability, which induces
proportionally strong orbit-level incentives.

Learning an exploitation policy. Suppose we run a bandit algorithm which tries
different initial actions, learns their rewards, and produces an exploitation policy which
maximizes estimated reward. The algorithm uses ϵ-greedy exploration and trains for T
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trials. Given fixed T and ϵ, fbandit(A | θ) returns the probability that an exploitation
policy is learned which chooses an action in A; likewise for fbandit(B | θ).

Here is a heuristic argument that fbandit is retargetable. Since the reward is deterministic,
the exploitation policy will choose an optimal action if the agent has tried each action at
least once, which occurs with a probability approaching 1 exponentially quickly in the
number of trials T . Then when T is large, fbandit approximates fmax, which is retargetable.
Therefore, perhaps fbandit is also retargetable.

A more careful analysis in appendix E.3.1 reveals that fbandit is indeed retargetable from
A to B, and so fbandit(B | θ) ≥4

most: Θ fbandit(A | θ).

6.4.2 Tendencies for maximizing reward over the final observation

When evaluating the performance of an algorithm in mr, we do not focus on the initial
action. Rather, we focus on the longer-term consequences of the agent’s actions, such as
whether the agent leaves the first room. To begin reasoning about such behavior, the
reader must distinguish between different kinds of retargetability.

Suppose the agent will die unless they choose action ↓ at the initial state s0 (fig. 6.1).
By section 6.4.1, action-retargetable decision-making procedures tend to choose actions
besides ↓. On the other hand, Turner et al. [99] showed that most reward functions make
it optimal to stay alive (in this situation, by choosing ↓). However, this is because optimal
policies are usually not retargetable across the agent’s immediate choice of action, but
rather across future consequences (i.e. which room the agent ends up in).

With that in mind, we now analyze how often decision-makers leave the first room of mr.3

Decision-making functions decide(θ) produce a probability distribution over policies π ∈ Π,
which are rolled out from the initial state s0 to produce observation-action trajectories
τ = o0a0 . . . oTaT . . ., where T is the rollout length we are interested in. Let OT -reach be
the set of observations reachable starting from state s0 and acting for T time steps, let
Oleave ⊆ OT -reach be those observations which can only be realized by leaving, and let
Ostay := OT -reach \ Oleave. Consider the probability that decide realizes some subset of

3In Appendix E.3.2, fig. E.1 shows a map of the first level.
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observations X ⊆ O at step T :

fdecide(X | θ) := P
π∼decide(θ),

τ∼π|s0

(oT ∈ X) . (6.3)

Let Θ := RO be the set of reward functions mapping observations o ∈ O to real numbers,
and let T := 1,000. We first consider the previous decision functions, since they are simple
to analyze.

deciderand randomly chooses a final observation o which can be realized at step 1,000,
and then chooses some policy which realizes o.4 deciderand induces an frand defined by
eq. (6.3). As before, frand tends to leave the room under all parameter inputs.

decidemax(θ) produces a policy which maximizes the reward of the observation at step
1,000 of the rollout. Since mr is deterministic, we discuss which observation decidemax(θ)

realizes. In a stochastic setting, the decision-maker would choose a policy realizing
some probability distribution over step-T observations, and the analysis would proceed
similarly.

Here is the semi-formal argument for fmax’s retargetability. There are combinatorially more
game-screens visible if the agent leaves the room (due to e.g. more point combinations,
more inventory layouts, more screens outside of the first room). In other words,

∣∣Ostay
∣∣≪

|Oleave|. There are more ways for the selected observation to require leaving the room,
than not. Thus, fmax is extremely retargetable from Ostay to Oleave.

Detailed analysis in section 6.4.2 confirms that fmax(Oleave | θ) ≥n
most: Θ fmax(Ostay | θ) for

the large n := ⌊ |Oleave|
|Ostay| ⌋, which we show implies that fmax tends to leave the room.

6.4.3 Tendencies for maximizing featurized reward over the final ob-
servation

Θ := RO assumes we will specify complicated reward functions over observations, with
|O| degrees of freedom in their specification. Any observation can get any number.

4deciderand does not act randomly at each time step, it induces a randomly selected final observation.
Analogously, randomly turning a steering wheel is different from driving to a randomly chosen destination.
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Usually, reward functions are specified more compactly. For example, the agent’s obser-
vational reward might be based on salient features of the observation, like the items in
the agent’s inventory. Consider a coefficient vector α ∈ R4, with each entry denoting
the value of an item, and feat : O → R4 maps observations to feature vectors which
tally the items in the agent’s inventory. Then the (additively) featurized reward function
Rfeat(oT ) := feat(oT )⊤α has four degrees of freedom. Rfeat is also easier to learn to
optimize than most reward functions, because of the regularities between the reward and
the features.

In this setup, fmax chooses a policy which induces a step-T observation with maximal
reward. Reward depends only on the feature vector of the final observation—more
specifically, on the agent’s item counts. There are more possible item counts available by
first leaving the room, than by staying.

A detailed analysis in appendix E.3.3 concludes that fmax(Oleave | α) ≥3
most: R4 fmax(Ostay |

α). Informally, we can retarget which items the agent prioritizes, and thereby retarget
from Ostay to Oleave.

6.4.4 Tendencies for rl on featurized reward over the final observa-
tion

In the real world, we do not run fmax, which can be computed via T -depth exhaustive
tree search in order to find and induce a maximal-reward observation oT . Instead, we use
reinforcement learning. Better rl algorithms seem to be more retargetable because of
their greater capability to explore.5

Exploring the first room. Consider a featurized reward function over observations
θ ∈ RO, which provides an end-of-episode return signal based on the agent’s final inventory
configuration at time step T . A reinforcement learning algorithm Alg uses this return
signal to update a fixed-initialization policy network. Then fAlg(Oleave | θ) returns the
probability that Alg trains an policy whose step-T observation required the agent to leave

5Conversely, if the agent cannot figure out how to leave the first room, any reward signal from outside
of the first room can never causally affect the learned policy. In that case, retargetability away from the
first room is impossible.



84

the initial room.

The retargetability (definition 6.3) of Alg is closely linked to the quality of Alg as an
rl training procedure. For example, Mnih et al. [55]’s dqn isn’t good enough to train
policies which leave the first room of mr, and so dqn (trivially) cannot be retargetable
away from the first room via the reward function. There isn’t a single featurized reward
function for which dqn visits other rooms, and so we can’t have α such that ϕ ·α retargets
the agent to Oleave. dqn isn’t good enough at exploring.

More formally, in this situation, Alg is retargetable if there exists a permutation ϕ ∈ S4
such that whenever α ∈ Θ := R4 induces the learned policies to stay in the room
(fAlg(Ostay | α) > fAlg(Oleave | α)), ϕ · α makes Alg train policies which leave the room
(fAlg(Ostay | α) < fAlg(Oleave | α)).

Exploring four rooms. Now suppose algorithm Alg′ can explore e.g. the first three
rooms to the right of the initial room (shown in fig. 6.1), and consider any reward
coefficient vector α ∈ Θ++ which assigns unique positive weight to each item. Unique
positive weights rule out constant reward vectors, in which case inductive bias would
produce agents which do not leave the first room.

If the agent stays in the initial room, it can induce inventory states {empty, 1key}. If the
agent explores the three extra rooms, it can also induce {1sword, 1sword&1key} (fig. E.1).
Since α is positive, it is never optimal to finish the episode empty-handed. Therefore,
if the Alg′ policy stays in the first room, αkey > αsword. Otherwise, αkey < αsword (by
assumption of unique item reward coefficients); in this case, the agent would leave and
acquire the sword (since we assumed it knows how to do so). Then by switching the reward
for the key and the sword, we retarget Alg′ to go get the sword. Alg′ is simply-retargetable
away from the first room, because it can explore enough of the environment.

Exploring the entire level. Algorithms like go-explore [25] are probably good at
exploring even given sparse featurized reward. Therefore, go-explore is even more
retargetable, because it is more able to explore and discover the breadth of options (final
inventory counts) available to it, and remember how to navigate to them. As decision-
making becomes more useful and impressive, it is probably becoming more retargetable
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over the impressive outcomes—whether those outcomes be actions in a bandit problem,
or the final observation in an rl episode.

6.5 Retargetability can imply power-seeking tendencies

6.5.1 Generalizing the power-seeking theorems for Markov decision
processes

Turner et al. [99] considered finite mdps in which decision-makers took as input a reward
function over states (r ∈ R|S|) and selected an optimal policy for that reward function.
They considered the state visit distributions f ∈ F(s), which basically correspond to
the trajectories which the agent could induce starting from state s. For F ⊆ F(s),
pmax(F | r) returns 1 if an element of F is optimal for reward function r, and 0 otherwise.
They showed situations where a larger set of distributions Flarge tended to be optimal
over a smaller set: pmax(Flarge | r) ≥1

most: R|S| pmax(Fsmall | r). For example, in Pac-
Man, most reward functions make it optimal to stay alive for at least one time step:
pmax(Fsurvival | r) ≥1

most: R|S| pmax(Finstant death | r). Turner et al. [99] showed that
optimal policies tend to seek power by keeping options open and staying alive. Appendix
E.4 provides a quantitative generalization of Turner et al. [99]’s results on optimal
policies.

Throughout this paper, we abstracted their arguments away from finite mdps and optimal
decision-making. Instead, parametrically retargetable decision-makers tend to seek power:
Proposition E.11 shows that a wide range of decision-making procedures are retargetable
over outcomes, and theorem E.13 demonstrates the retargetability of any decision-making
which is determined by the expected utility of outcomes. In particular, these results apply
straightforwardly to mdps.

In the real world, an agent can bring about far more outcomes if it gains power. If we
train a sufficiently intelligent rl agent to capably optimize its specified reward function,
this agent will be retargetable towards power-requiring outcomes via its reward function
parameter setting. Therefore, our theory predicts that insofar as learned policies optimize
the reward function they were trained on, these policies tend to seek power for most
parameter settings of the reward function.
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6.5.2 Better rl algorithms tend to be more retargetable

Reinforcement learning algorithms are practically useful insofar as they can train an
agent to capably optimize its specified formal objective, whatever that objective may be.
Therefore, rl researchers design algorithms which can most flexibly retarget the learned
policy to any desired future outcome.

In mr, suppose we instead give the agent 1 reward for the initial state, and 0 otherwise.
Any reasonable reinforcement learning procedure will just learn to stay put (which is the
optimal policy). However, consider whether we can retarget the agent’s policy to beat
the game, by swapping the initial state reward with the end-game state reward. Most
present-day rl algorithms are not good enough to solve such a sparse game, and so are
not retargetable in this sense. But an agent which did enough exploration would also
learn a good policy for the permuted reward function. Such an effective training regime
could be useful for solving real-world tasks. Many researchers aim to develop effective
training regimes.

Our results suggest that once rl capabilities reach a certain level, trained agents will tend
to seek power in the real world. Presently, it is not dangerous to train an agent to maximize
real-world reward—such an agent will not learn to thwart its designers by staying activated
against their wishes in order to maximize its reward over time. The present lack of danger
is not because optimal policies do not tend to stay alive—they do [99]. Rather, the lack
of danger reflects the fact that present-day rl agents cannot learn such complex action
sequences at all. Just as the Montezuma’s Revenge agent had to be sufficiently competent
to be retargetable from initial-state reward to game-complete reward, real-world agents
have to be sufficiently intelligent in order to be retargetable from outcomes which don’t
require power-seeking, to those which do require power-seeking.

6.6 Discussion

6.6.1 Future work

Section 6.4 semi-formally analyzes decision-making incentives in the mr video game,
leaving the proofs to appendix E.3. However, these proofs are several pages long. Perhaps
additional lemmas can allow quick proof of orbit-level incentives in situations relevant to
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real-world decision-makers.

Consider a sequence of decision-making functions ft : {A,B} ×Θ→ R which converges
pointwise to f such that f(B | θ) ≥n

most: Θ f(A | θ). We expect that under rather mild
conditions, ∃T : ∀t ≥ T : ft(B | θ) ≥n

most: Θ ft(A | θ). As a corollary, for any decision-
making procedure ft which runs for t time steps and satisfies limt→∞ ft = f , ft will have
decision-making incentives after finite time. For example, value iteration (vi) eventually
finds an optimal policy [68], and optimal policies tend to seek power [99]. Therefore, this
conjecture would imply that if vi is run for some long but finite time, it tends to produce
power-seeking policies. More interestingly, the result would allow us to reason about the
effect of e.g. randomly initializing parameters (in vi, the tabular value function at t = 0).
The effect of random initialization washes out in the limit of infinite time, so we would
still conclude the presence of finite-time power-seeking incentives.

Our results do not prove that we will build unaligned ai agents which seek power over
the world. Here are a few situations in which our results are not concerning or not
applicable.

1. The ai is aligned with human interests. For example, we want a robotic cartographer
to prevent itself from being deactivated. However, the ai alignment problem seems
difficult in the regime of highly intelligent agents [74].

2. The ai decision-making is not retargetable (definition 6.5).

3. The ai decision-making is retargetable over e.g. actions (section 6.4.1) instead of
over final outcomes (section 6.4.2). This retargetability seems less concerning, but
also less practically useful.

6.6.2 Conclusion

We introduced the concept of retargetability and showed that retargetable decision-
makers often make similar choices. We applied these results in the Montezuma’s Revenge
(mr) video game, showing how increasingly advanced reinforcement learning algorithms
correspond to increasingly retargetable agent decision-making. Increasingly retargetable
agents make increasingly similar decisions—i.e. leaving the initial room in mr, or staying
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alive in Pac-Man. In particular, these decisions will often correspond to gaining power
and keeping options open [99]. Our theory suggests that when ai training algorithms
become sufficiently advanced, the trained agents will tend to seek power over the world.
This theory suggests a safety risk. We hope for future work on this theory so that the
field of ai can understand the relevant safety risks before the field trains power-seeking
agents.
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Before the prospect of an intelligence explosion, we hu-
mans are like small children playing with a bomb. Such
is the mismatch between the power of our plaything and
the immaturity of our conduct. Superintelligence is a
challenge for which we are not ready now and will not
be ready for a long time. We have little idea when the
detonation will occur, though if we hold the device to our
ear we can hear a faint ticking sound.

Nick Bostrom, Superintelligence [13]

7
Conclusion & Future Work

In this thesis, I introduced the aup side effect avoidance approach and showed that it
scales to an interesting environment based on Conway’s Game of Life. I also introduced a
framework for quantifying the performance of a side effect avoidance approach.

I am concerned about the massive change and impact which smart ai might visit upon
the world. I mainly expect such massive change because—as as argued in chapter 5 and
chapter 6—I think smart agents will tend to seek large amounts of power and resources
in order to optimize their specified or learned goal. If an agent takes nearly all available
resources for itself, there would not be any left for people. For example, a superintelligent
theorem prover may turn the planet Earth into computational resources in order to
most assuredly prove a formal conjecture. An additional increment of resources (e.g.
time, physical security, computational power) translates into an increment of increased
probability of achieving its goal (proving or disproving the theorem). By seeking such an
extreme degree of power, the agent irreversibly transforms the planet.



90

Future work

Why does aup encourage side effect avoidance? The most obvious question I
have left unanswered is: Why does aup work at all? That is, there is some intuitive task
we have in mind when we want an agent to “not make an unnecessary mess.” Why does
aup do well at that task (in the ai safety gridworlds and in SafeLife)? I derived the mdp

theory of chapter 5 and appendix F in order to answer this question. I think I made some
progress:

• Environment symmetry reasoning explains why, when auxiliary reward functions
are uniformly randomly drawn, the aup penalty tends to be larger when the agent
loses access to more options. For more detail, see proposition F.235.

• Corollary F.227 shows that aup barely penalizes reversible movement, and proposi-
tion B.1 shows that state reachability upper bounds the penalty size. This explains
why aup encourages the agent to stay able to reach many states.

• Proposition F.228 proves that the aup penalty is lower-bounded by—roughly speak-
ing—the expected absolute Power difference between a considered action a and the
default no-op ∅. This explains why aup incentivizes the agent to accept shutdown
in chapter 2’s Correction gridworld.

• Proposition F.237 uses Hoeffding’s inequality to bound how many auxiliary reward
functions must be sampled to well-approximate the aup penalty term.

Here are several unaddressed questions:1

• What considerations govern how many auxiliary reward functions (|R|) must be
sampled, in order for aup to reduce side-effects with high probability? In chapter 2’s
gridworlds, over a dozen were required, while chapter 3 showed that |R| = 1 yielded
the best performance in SafeLife.

• Is chapter 4’s formalization of side effect regularization is fully appropriate, or can
it be improved?

1I am interested in the answers to these questions about aup, but I doubt their importance to the
empirical future success of ai alignment. To those aiming to reduce extinction risk from ai—I encourage
you to look elsewhere.
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• Under what conditions will optimal policies for aup achieve bounded regret on the
underlying delayed-specification assistance game? If such a guarantee is impossible—
why?

Power-seeking in partially observable environments. What form do chapter 5’s
results take in partially observable Markov decision processes? I supervised junior
researchers who extended chapter 5’s definitions to pomdps and proved power-seeking
tendencies within a toy environment.

Multi-agent power dynamics. In what situations does one agent gaining power
require other agents to lose power, in the appropriate intuitive sense? I supervised Jacob
Stavrianos for initial work on this question [90, 89].

Summary

I introduced attainable utility preservation, demonstrated that it scales to complex
environments, and formalized the side-effect regularization problem. I also provided a
theoretical foundation for understanding the statistical incentives of intelligent agents.
Since many researchers endeavor to build intelligent agents, and since such agents will
irreversibly change the world, we should understand these incentives as thoroughly as
possible. The arc of human history may be bent (and even broken) by the tendency of
smart agents to seek power. I fervently wish for more research on understanding the
alignment problem, so that future ai designers we will have justified and strong confidence
that their superhuman ai systems will benefit humanity.
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A
Conservative Agency via Attainable Utility

Preservation

Theoretical results. Consider an mdp ⟨S,A, T,R, γ⟩ whose state space S and action
space A are both finite, with ∅ ∈ A. Let γ ∈ [0, 1), λ ≥ 0, and consider finite
R ⊂ RS×A.

We make the standard assumptions of an exploration policy greedy in the limit of infinite
exploration and a learning rate schedule with infinite sum but finite sum of squares.
Suppose Scale : S → R>0 converges in the limit of Q-learning. Penalty(s, a) (abbr.
Pen), Scale(s) (abbr. Sc), and Raup(s, a) are understood to be calculated with respect
to the QRi being learned online; Pen*, Sc*, R∗

aup, and Q∗
Ri

are taken to be their limit
counterparts.

Lemma A.1 (The aup penalty term converges). ∀s, a : Penalty converges with proba-
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bility 1.

Proof outline. Let ϵ > 0, and suppose for all Ri ∈ R, maxs, a |Q∗
Ri
(s, a)−QRi(s, a)| < ϵ

2|R|
(because Q-learning converges; see [103]).

max
s, a

∣∣Penalty*(s, a)− Penalty(s, a)
∣∣ (A.1)

≤max
s, a

|R|∑
i=1

∣∣∣Q∗
Ri
(s, a)−QRi(s, a)

∣∣∣+∣∣∣Q∗
Ri
(s,∅)−QRi(s,∅)

∣∣∣
(A.2)

< ϵ. (A.3)

The intuition for Lemma A.2 is that since Penalty and Scale both converge, so must
Raup. For readability, we suppress the arguments to Penalty and Scale.

Lemma A.2 (Aup’s reward function converges). ∀s, a : Raup converges with probability
1.

Proof outline. If λ = 0, the claim follows trivially.

Otherwise, let ϵ > 0, B := maxs, a Sc* + Pen*, and C := mins, a Sc*. Choose any

ϵR ∈

0,min

[
C,

ϵC2

λB + ϵC

] and assume Pen and Sc are both ϵR-close.

max
s, a
|R∗

aup(s, a)−Raup(s, a)| (A.4)

=max
s, a

λ

∣∣∣∣Pen
Sc
− Pen*

Sc*

∣∣∣∣ (A.5)

=max
s, a

λ
|Pen · Sc*− Sc · Pen*|

Sc* · Sc
(A.6)
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<max
s, a

λ

∣∣(Pen* + ϵR)Sc*− (Sc*− ϵR)Pen*
∣∣

C (Sc*− ϵR)
(A.7)

≤ λB

C
· ϵR
C − ϵR

(A.8)

<
λB

C
· ϵC2

(λB + ϵC)(C − ϵC2

λB+ϵC )
(A.9)

<
λB

C
· ϵC2

λB(C − ϵC2

λB+ϵC )
(A.10)

<
ϵ

1− ϵC
λB+ϵC

(A.11)

= ϵ

(
1 +

ϵC

λB

)
. (A.12)

But B,C, λ are constants, and ϵ was arbitrary; clearly ϵ′ > 0 can be substituted such that
(A.12) < ϵ.

Theorem 2.3 (Aup’s Q-value function converges). ∀s, a : QRaup converges with probability
1.

Proof outline. Let ϵ > 0, and suppose Raup is ϵ(1−γ)
2 -close. Then Q-learning on Raup

eventually converges to a limit Q̃Raup such that maxs, a |Q∗
Raup

(s, a)− Q̃Raup(s, a)| < ϵ
2 . By

the convergence of Q-learning, we also eventually have maxs, a |Q̃Raup(s, a)−QRaup(s, a)| <
ϵ
2 . Then

max
s, a

∣∣Q∗
Raup(s, a)−QRaup(s, a)

∣∣ < ϵ. (A.13)

Proposition A.3 (aup penalty equivariance properties). Let c ∈ R>0, b ∈ R.

a) Let R′ denote the set of functions induced by the positive affine transformation
cX + b on R, and take Pen*R′ to be calculated with respect to attainable set R′.
Then Pen*R′ = cPen*R. In particular, when Sc* is a Penalty calculation, R∗

aup
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is invariant to positive affine transformations of R.

b) Let R′ := cR+ b, and take R′∗
aup to incorporate R′ instead of R. Then by multiplying

λ by c, the induced optimal policy remains invariant.

Proof outline. For a), since the optimal policy is invariant to positive affine transformation
of the reward function, for each R′

i ∈ R′ we have Q∗
R′

i
= cQ∗

Ri
+ b

1−γ . Substituting into
Equation 2.1 (Penalty), the claim follows.

For b), we again use the above invariance of optimal policies:

R′∗
aup := cR+ b− cλ Pen*

Sc*
(A.14)

= cR∗
aup + b. (A.15)
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B
Avoiding Side Effects in Complex Environments

B.1 Theoretical results

Consider a rewardless mdp ⟨S,A, T, γ⟩. Reward functions R ∈ RS have corresponding
optimal value functions V ∗

R (s).

Proposition B.1 (Communicability bounds maximum change in optimal value). If s
can reach s′ with probability 1 in k1 steps and s′ can reach s with probability 1 in k2 steps,
then supR∈[0,1]S

∣∣V ∗
R(s)− V ∗

R(s
′)
∣∣ ≤ 1−γmax(k1,k2)

1−γ < 1
1−γ .

Proof. We first bound the maximum increase.

sup
R∈[0,1]S

V ∗
R(s

′)− V ∗
R(s) ≤ sup

R∈[0,1]S
V ∗
R(s

′)−
(
0 · 1− γ

k1

1− γ + γk1V ∗
R(s

′)

)
(B.1)
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≤ 1

1− γ −
(
0 · 1− γ

k1

1− γ + γk1
1

1− γ

)
(B.2)

=
1− γk1
1− γ . (B.3)

Equation (B.1) holds because even if we make R equal 0 for as many states as possible, s′

is still reachable from s. The case for maximum decrease is similar.

B.2 Training details

In section 3.5.1, we aggregated performance from 3 curricula with 5 seeds each, and 1
curriculum with 3 seeds.

We detail how we trained the AUP and AUPproj conditions. An algorithm describing the
training process can be seen in algorithm 2.

B.2.1 Auxiliary reward training

For the first phase of training, our goal is to learn Qaux, allowing us to compute the
aup penalty in the second phase of training. Due to the size of the full SafeLife state
(350× 350× 3), both conditions downsample the observations with average pooling and
convert to intensity values.

Previously, Turner et al. [97] learned Qaux with tabular Q-learning. They used environ-
ments small enough such that reward could be assigned to each state. Because SafeLife
environments are too large for tabular Q-learning, we demonstrated two methods for
randomly generating an auxiliary reward function.

AUP We acquire a low-dimensional state representation by training a continuous Bernoulli
variational autoencoder [50]. To train the cb-vae, we collect a buffer of observations
by acting randomly for 100,000

Nenv
steps in each of the Nenv environments. This gives

us 100K total observations with an Nenv-environment curriculum. We train the
cb-vae for 100 epochs, preserving the encoder E for downstream auxiliary reward
training.
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For each auxiliary reward function, we draw a linear functional uniformly from
(0, 1)Z to serve as our auxiliary reward function, where Z is the dimension of the
cb-vae’s latent space. The auxiliary reward for an observation is the composition
of the linear functional with an observation’s latent representation.

AUPproj Instead of using a cb-vae, AUPproj simply downsamples the input observation. At
the beginning of training, we generate a linear functional over the unit hypercube
(with respect to the downsampled observation space). The auxiliary reward for
an observation is the composition of the linear functional with the downsampled
observation.

The auxiliary reward function is learned after it is generated. To learn Qaux, we modify
the value function in ppo to a Q-function. Our training algorithm for phase 1 only differs
from ppo in how we calculate reward. We train each auxiliary reward function for 1m
steps.

B.2.2 Aup reward training

In phase 2, we train a new ppo agent on Raup (eq. (3.1)) for the corresponding SafeLife task.
Each step, the agent selects an action a in state s according to its policy πAUP, and receives
reward Raup(s, a) from the environment. We compute Raup(s, a) with respect to the
learned Q-values Qaux(s,∅) and Qaux(s, a). The algorithm is shown in algorithm 2.

The penalty term is modulated by the hyperparameter λ, which is linearly scaled from
10−3 to some final value λ∗ (default 10−1). Because λ controls the relative influence of
the penalty, linearly increasing λ over time will prioritize primary task learning in early
training and slowly encourage the agent to obtain the same reward while avoiding side
effects. If λ is too large—if side effects are too costly—the agent won’t have time to adapt
its current policy and will choose inaction (∅) to escape the penalty. A careful λ schedule
helps induce a successful policy that avoids side effects.

B.3 Hyperparameter selection

Table B.1 lists the hyperparameters used for all conditions, which generally match the
default SafeLife settings. Common refers to those hyperparameters that are the same
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for each evaluated condition. AUX refers to hyperparameters that are used only when
training on RAUX, thus, it only pertains to AUP and AUPproj. The conditions PPO and
Naive use the PPO hyperparameters for the duration of their training, while AUP, AUPproj

use them when training with respect to Raup. DQN refers to the hyperparameters used
to train the model for DQN.

Hyperparameter Value

Common
Learning Rate 3 · 10−4

Optimizer Adam
Gamma (γ) 0.97

Lambda (ppo) 0.95

Lambda (aup) 10−3 → 10−1

Entropy Clip 1.0

Value Coefficient 0.5

Gradient Norm Clip 5.0

Clip Epsilon 0.2

AUX
Entropy Coefficient 0.01

Training Steps 1 · 106

AUPproj

Lambda (aup) 10−3

PPO
Entropy Coefficient 0.1

DQN
Minibatch Size 64

SGD Update Frequency 16

Target Network Update Frequency 1 · 103
Replay Buffer Capacity 1 · 104

Exploration Steps 4 · 103

Policy
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Number of Hidden Layers 3

Output Channels in Hidden Layers (32, 64, 64)

Nonlinearity relu

cb-vae
Learning Rate 10−4

Optimizer Adam
Latent Space Dimension (Z) 1

Batch Size 64

Training Epochs 50

Epsilon 10−5

Number of Hidden Layers (encoder) 6

Number of Hidden Layers (decoder) 5

Hidden Layer Width (encoder) (512, 512, 256, 128, 128, 128)

Hidden Layer Width (decoder) (128, 256, 512, 512, output)
Nonlinearity elu

Table B.1: Hyperparameters for the SafeLife experiments.

B.4 Compute environment

Condition gpu-hours per trial

PPO 6
DQN 16
AUP 8

AUPproj 7.5
Naive 6

Table B.2: Compute time for each condition.

For data collection, we only ran the experiments once. All experiments were performed on
a combination of nvidia gtx 2080ti gpus, as well as nvidia v100 gpus. No individual
experiment required more than 3gb of gpu memory. We did not run a 3-seed DQN

curriculum for the experiments in section 3.5.1.
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The auxiliary reward functions were trained on down-sampled rendered game screens,
while all other learning used the internal SafeLife state representation. Incidentally,
table B.2 shows that AUP’s preprocessing turned out to be computationally expensive
(compared to PPO’s).

B.5 Additional data

Figure B.1 plots episode length and fig. B.2 plots auxiliary reward learning. Figure B.3
and fig. B.4 respectively plot reward/side effects and episode lengths for each AUP seed.
Figure B.5 and fig. B.6 plot the same, averaged over each curriculum; these data suggest
that AUP’s performance is sensitive to the randomly generated curriculum of environ-
ments.
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Figure B.1: Smoothed episode length curves with shaded regions representing ±1 standard
deviation. AUP and AUPproj begin training on the Raup reward signal at steps 1.1m and
1m, respectively.
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Algorithm 2 Safelife aup Training Algorithm
Require: Exploration buffer S
Require: CB-VAE F with encoder E, decoder D
Require: Exploration buffer S
Require: Auxiliary reward functions ϕ
Require: Auxiliary policy ψaux, aup policy πaup
Require: CB-VAE training epochs T
Require: aup penalty coefficient λ
Require: Exploration buffer size k
Require: Auxiliary model training steps L
Require: aup model training steps N
Require: PPO update function PPO-Update
Require: CB-VAE update function VAE-Update
1: for Step k = 1, . . .K do
2: Sample random action a
3: s← Act(a)
4: S = s ∪ S
5: end for
6: for Epoch t = 1, . . . T do
7: Update-VAE (F , S)
8: end for
9: for Step i = 1, . . . L+N do s← Starting state

10: for Step l = 1, . . . L do
11: a = ψaux(s)
12: s′ = Act(a)
13: r = ϕ · E(s)
14: PPO-Update (ψaux, s, a, r, s

′)
15: s = s′

16: end for
17: s← Starting state
18: for Step n = 1, . . . N do
19: a = πaup(s)
20: s′, r = Act(a)
21: r = r +Raup(ψaux, πaup, s, a, λ) (Equation (3.1))
22: PPO-Update (πaup, s, a, r, s

′)
23: s = s′

24: end for
25: end for
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Figure B.2: Reward curves for auxiliary reward functions with a Z-dimensional latent space.
Shaded regions represent ±1 standard deviation. Auxiliary reward is not comparable
across trials, so learning is expressed by the slope of the curves.
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Figure B.3: Smoothed learning curves for individual AUP seeds. AUP begins training on
the Raup reward signal at step 1.1m, marked by a dotted vertical line.

1 2 3 4 5

Steps, millions

0

10

20

30

40

R
ew

ar
d

append still easy

1 2 3 4 5

Steps, millions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

16

R
ew

ar
d

prune still easy

1 2 3 4 5

Steps, millions

0

2

4

6

8

10

12

14

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5 6

Steps, millions

0

5

10

15

20

25

R
ew

ar
d

append still

1 2 3 4 5 6

Steps, millions

0

5

10

15

20

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1 2 3 4 5

Steps, millions

0

5

10

15

20

25

30

35

40

R
ew

ar
d

append spawn

1 2 3 4 5

Steps, millions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Si
de

 e
ffe

ct
 s

co
re

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18



126

Figure B.4: Smoothed episode length curves for individual AUP seeds.
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Figure B.5: Smoothed learning curves for AUP on its four curricula. AUP begins training
on the Raup reward signal at step 1.1m, marked by a dotted vertical line.
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Figure B.6: Smoothed episode length curves for AUP on each of the four curricula.
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C
Formalizing The Problem of Side Effect

Regularization

C.1 Experiment details

The episode length is 20 for all episodes. Unlike [97], the episode does not end after
the agent reaches the green goal. This means that the agents can accrue many steps of
environmental reward Renv. Therefore, aup agents can achieve greater environmental
reward for the same amount of penalty. To counterbalance this incentive, we multiply
Renv by (1− γ).

We reuse the hyperparameters of [97].1 The learning rate is α := 1, and the discount
rate is γ := .996. We use the following aup hyperparameter values: penalty coefficient
λ := 0.01, |R| := 20 randomly generated auxiliary reward functions.

1Code available at https://github.com/aseembits93/attainable-utility-preservation.

https://github.com/aseembits93/attainable-utility-preservation
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C.1.1 Additional experiment

We also tested an aup-like agent optimizing reward function Rpower penalty(s, a) :=

Renv(s, a) − λ
|R|
∑

Ri∈R Q∗
Ri
(s, a) − Q∗

Ri
(s,∅), which is the aup reward function (def-

inition 4.11) without the absolute value. This objective penalizes the agent for changes in
its average optimal value, which is related to [99]’s PowerDbound . Rpower penalty produced
the same prefix policies as Raup, and hence the same delayed specification scores.

C.2 Theoretical results

All results only apply to mdps with finite state and action spaces.

Definition C.1 (Average optimal value [99]). For bounded-support reward function
distribution D, the average optimal value at state s and discount rate γ ∈ (0, 1) is
V ∗
D (s, γ) := ER∼D

[
V ∗
R (s, γ)

]
.

Theorem 4.7 (InM, value reduces to a tradeoff between average reward and PowerDbound).
Let γ ∈ [0, 1] and let R̄ := ER∼D [R] be the average reward function.

E
t∼T ,
R∼D

[
V

πswitch(π,π
∗
R,t)

R,norm (s0, γ)
]
= (1− γ)

expected t-step R̄-return under π

E
t∼T

 t∑
i=0

γi E
si∼π

[
R̄(si)

]
+

expected ability to optimize D once corrected

E
t∼T ,
st∼π

[
γt+1PowerDbound (st, γ)

]
, (4.3)

where Esi∼π|s0 takes the expectation over states visited after following π for i steps starting
from s0.

Proof. Suppose the agent starts at state s0, and let γ ∈ (0, 1).

E
t∼T ,
R∼D

[
V

πswitch(π,π
∗
R,t)

R, norm (s0, γ)
]

(C.1)

=(1− γ) E
t∼T ,
R∼D

 ∞∑
i=0

γi E
si∼πswitch(π,π

∗
R,t)

[
R(si)

] (C.2)
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=(1− γ) E
t∼T ,
R∼D

 t−1∑
i=0

γi E
si∼π

[
R(si)

]
+ γt E

st∼π

[
V ∗
R (st, γ)

] (C.3)

=(1− γ) E
t∼T

 t−1∑
i=0

γi E
si∼π

[
R̄(si)

]
+ E

t∼T , st∼π

[
γt(1− γ)V ∗

Dbound
(st, γ)

]
(C.4)

=(1− γ) E
t∼T

 t∑
i=0

γi E
si∼π

[
R̄(si)

]
+ E

t∼T , st∼π

[
γt+1PowerDbound (st, γ)

]
. (C.5)

Equation (C.3) follows from the definition of the non-stationary πswitch(π, π
∗
R, t), and the

fact that each π∗R is optimal for each R at discount rate γ. Equation (C.4) follows by
the linearity of expectation and the definition of R̄ and the definition of PowerDbound

(definition 4.6). Equation (C.5) follows because V ∗
Dbound

(st, γ) =
γ

1−γPowerDbound (st, γ)+

R̄(st).

If γ = 0 or γ = 1, the result holds in the respective limit because PowerDbound has
well-defined limits by Lemma 5.3 of [99].

Proposition 4.8 (Special cases for delayed specification solutions). Let s be a state, let
R̄ := ER∼D [R], and let γ ∈ [0, 1].

1. If ∀s1, s2 ∈ S : R̄(s1) = R̄(s2) or if γ = 1, then π solves M starting from state s iff
π maximizes Et∼T ,st∼π

[
γt+1PowerDbound (st, γ)

]
. In particular, this result holds

when reward is iid over states under D.

2. If ∀s1, s2 ∈ S : PowerDbound (s1, γ) = PowerDbound (s2, γ), then prefix policies are
optimal iff they maximize (1− γ)Et∼T

[∑t−1
i=0 γ

i Esi∼π

[
R̄(si)

]]
.

If both item 1 and item 2 hold or if γ = 0, then all prefix policies π are optimal.

Proof. Item 1: if ∀s1, s2 ∈ S : R̄(s1) = R̄(s2), the first term on the right-hand side of
eq. (4.3) is constant for all policies π; if γ = 1, this first term equals 0. Therefore, under
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these conditions, π maximizes eq. (4.3) iff it maximizes Et∼T ,st∼π

[
γt+1PowerDbound (st, γ)

]
.

Item 2: under these conditions, the second term on the right-hand side of eq. (4.3) is
constant for all policies π. Therefore, π maximizes eq. (4.3) iff it maximizes

(1− γ) E
t∼T

 t∑
i=0

γi E
si∼π

[
R̄(si)

] .
If both item 1 and item 2 hold, it trivially follows that all π are optimal prefix policies. If
γ = 0, all π are optimal prefix policies, since reward is state-based and no actions taken
by π can affect expected return ER.

Theorem 4.9 (Stationary deterministic optimal prefix policies exist for geometric T ). Let
D be any bounded-support reward function distribution, let T be the geometric distribution
G(p) for some p ∈ (0, 1), and let γ ∈ (0, 1). Define R′(s) := (1 − p)ER∼D

[
R(s)

]
+

pER∼D
[
V ∗
R (s, γ)

]
and γaup := (1− p)γ. The policies in Π∗ (R′, γaup

)
are optimal prefix

policies.

Proof.

arg sup
π

E
t∼T ,
R∼D

[
V

πswitch(π,π
∗
R,t)

R, norm (s, γ)
]

(C.6)

=arg sup
π

E
t∼T

 t−1∑
i=0

γi E
si∼π|s0

[
R̄(si)

]+ E
t∼T ,

st∼π|s0

[
γtV ∗

Dbound
(st, γ)

]
(C.7)

=arg sup
π

∞∑
t=1

P (T = t)
t−1∑
i=0

γi E
si∼π|s0

[
R̄(si)

]
+ E

t∼T ,
st∼π|s0

[
γtV ∗

Dbound
(st, γ)

]
(C.8)

=arg sup
π

∞∑
t=1

(1− p)t−1p

t−1∑
i=0

γi E
si∼π|s0

[
R̄(si)

]
+

∞∑
t=1

(1− p)t−1p E
st∼π|s0

[
γtV ∗

Dbound
(st, γ)

]
(C.9)

=arg sup
π

∞∑
t=1

(1− p)t−1p
t−1∑
i=0

γi E
si∼π|s0

[
R̄(si)

]
+ pγ

∞∑
t=1

γt−1
aup E

st∼π|s0

[
V ∗
Dbound

(st, γ)
]
(C.10)
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=arg sup
π

∞∑
i=0

γiaup E
si∼π|s0

[
R̄(si)

]
+ pγ

∞∑
i=1

γi−1
aup E

si∼π|s0

[
V ∗
Dbound

(si, γ)
]

(C.11)

=arg sup
π

R̄(s0) +
∞∑
i=1

γi−1
aup E

si∼π|s0

[
(1− p)γR̄(si) + pγV ∗

Dbound
(si, γ)

]
(C.12)

=arg sup
π

∞∑
i=1

γiaup E
si∼π|s0

[
(1− p)R̄(si) + pV ∗

Dbound
(si, γ)

]
(C.13)

=arg sup
π

∞∑
i=0

γiaup E
si∼π|s0

[
(1− p)R̄(si) + pV ∗

Dbound
(si, γ)

]
(C.14)

=arg sup
π

V π
R′(s0, γaup). (C.15)

Equation (C.6) follows from theorem 4.7. Equation (C.9) follows because T = G(p).
Equation (C.10) follows by the definition of γaup.

In eq. (C.10), consider the double-sum on the left. For any given i, the portion of the
sum with factor γi equals

γi E
si∼π|s0

[
R̄(si)

] ∞∑
j=i

(1− p)jp

= (1− p)iγi E
si∼π|s0

[
R̄(si)

]
p

∞∑
j=0

(1− p)j (C.16)

= (1− p)iγi E
si∼π|s0

[
R̄(si)

]
p

1

1− (1− p) (C.17)

= γiaup E
si∼π|s0

[
R̄(si)

] p

1− (1− p) (C.18)

= γiaup E
si∼π|s0

[
R̄(si)

]
. (C.19)

The geometric identity holds for eq. (C.17) because p > 0 =⇒ (1− p) < 1. Therefore,
eq. (C.11) follows from eq. (C.19).

Equation (C.12) follows by extracting the leading constant of R̄(s0) and then expanding
one of the γaup := (1−p)γ factors of the first series. Equation (C.13) follows by subtracting
the constant R̄(s0) by multiplying by (1− p) > 0, and by the fact that (1− p)γ = γaup.



134

Equation (C.14) follows because adding the constant (1− p)R̄(s0) + pV ∗
Dbound

(s0, γ) does
not change the arg sup.

Equation (C.15) follows by the definition of an on-policy value function and by the
definition of R′. But s0 was arbitrary, and so this holds for every state. Then the policies
in Π∗ (R′, γaup

)
satisfy the arg sup for all states. Π∗ (R′, γaup

)
is non-empty because the

mdp is finite.

Proposition 4.12 (Alternate form for solutions to the low-impact pomdp). Let s0 be the
initial state, let γ ∈ (0, 1), and let T = G(p) for p ∈ (0, 1). Let D be a bounded-support
reward function distribution and let π∅ ∈ Π.

The prefix policy π solves M if π is optimal for the reward function

RM(si | s0) := R̄(si)−
p

1− p E
R∼D

[
E

s∅i ∼π∅|s0

[
V ∗
R

(
s∅i , γ

)]
− V ∗

R (si, γ)

]
(4.5)

at discount rate γaup := (1−p)γ and starting from state s0. Es∅i ∼π∅|s0 [·] is the expectation
over states visited at time step i after following π∅ from initial state s0.

Proof.

argmax
π

E
t∼T ,
R∼D

[
V

πswitch(π,π
∗
R,t)

R, norm (s, γ)
]

(C.20)

=argmax
π

∞∑
i=0

γiaup E
si∼π|s0

[
(1− p)R̄(si) + pV ∗

Dbound
(si, γ)

]
(C.21)

=argmax
π

∞∑
i=0

γiaup E
si∼π|s0

[
(1− p)R̄(si) + pV ∗

Dbound
(si, γ)

]
−p

∞∑
i=0

γiaup E
s∅i ∼π∅|s0

[
V ∗
Dbound

(
s∅i , γ

)]
(C.22)

=argmax
π

∞∑
i=0

γiaup E
si∼π|s0

(1− p)R̄(si)− p( E
s∅i ∼π∅|s0

[
V ∗
Dbound

(
s∅i , γ

)]
− V ∗

Dbound
(si, γ)

)
(C.23)
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=argmax
π

∞∑
i=0

γiaup E
si∼π|s0

(1− p)R̄(si)− p E
R∼D

[
E

s∅i ∼π∅|s0

[
V ∗
R

(
s∅i , γ

)]
− V ∗

R (si, γ)

]
(C.24)

=argmax
π

∞∑
i=0

γiaup E
si∼π|s0

R̄(si)− p

1− p E
R∼D

[
E

s∅i ∼π∅|s0

[
V ∗
R

(
s∅i , γ

)]
− V ∗

R (si, γ)

] .
(C.25)

Equation (C.21) follows from theorem 4.9. Equation (C.22) only subtracts a constant.
Equation (C.24) follows from the definition of V ∗

Dbound
(s, γ), and eq. (C.25) follows because

dividing by (1 − p) > 0 does not affect the argmax. But the expectation of eq. (C.25)
takes an expectation over RM(si | s), and its argmax equals the set of optimal policies
for RM starting from state s0.
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D
Optimal Policies Tend To Seek Power

D.1 Comparing Power with information-theoretic empowerment

Salge et al. [77] define information-theoretic empowerment as the maximum possible
mutual information between the agent’s actions and the state observations n steps in
the future, written En(s). This notion requires an arbitrary choice of horizon, failing to
account for the agent’s discount rate γ. “In a discrete deterministic world empowerment
reduces to the logarithm of the number of sensor states reachable with the available
actions” [77]. Figure D.1 demonstrates how empowerment can return counterintuitive
verdicts with respect to the agent’s control over the future.

Power returns intuitive answers in these situations. limγ→1 PowerDbound (s1, γ) con-
verges by lemma 5.13. Consider the obvious involution ϕ which takes each state in fig. D.1b
to its counterpart in fig. D.1c. Since ϕ · Fnd(s3) ⊊ Fnd(s4) = F(s4), proposition 5.22
proves that ∀γ ∈ [0, 1] : PowerDbound (s3, γ) ≤most: Dbound

PowerDbound (s4, γ), with the
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1 2

(a)

3

(b)

4

(c)

Figure D.1: Proposed empowerment measures fail to adequately capture how future choice
is affected by present actions. In a: En(s1) varies depending on whether n is even; thus,
limn→∞ En(s1) does not exist. In b and c: ∀n : En(s3) = En(s4), even though s4 allows
greater control over future state trajectories than s3 does. For example, suppose that in
both b and c, the leftmost black state and the rightmost red state have 1 reward while all
other states have 0 reward. In c, the agent can independently maximize the intermediate
black-state reward and the delayed red-state reward. Independent maximization is not
possible in b.

proof of proposition 5.22 showing strict inequality under all DX-iid when γ ∈ (0, 1).

Empowerment can be adjusted to account for these cases, perhaps by considering the
channel capacity between the agent’s actions and the state trajectories induced by
stationary policies. However, since Power is formulated in terms of optimal value, we
believe that Power is better suited for mdps than information-theoretic empowerment
is.

D.2 Seeking Power can be a detour

One might suspect that optimal policies tautologically tend to seek Power. This intuition
is wrong.

1

2 3

N
NE

Figure D.2: Power-seeking is not necessarily convergently instrumental.
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Proposition D.1 (Greater PowerDbound does not imply greater PDbound). Action a

seeking more PowerDbound than a′ at state s and γ does not imply that PDbound
(s, a, γ) ≥

PDbound

(
s, a′, γ

)
.

Proof. Consider the environment of fig. D.2. Let Xu := unif(0, 1), and consider DXu-iid,
which has bounded support. Direct computation1 of Power yields

PowerDXu-iid (s2, 1) =
3

4
>

2

3
= PowerDXu-iid (s3, 1) .

Therefore, the action N seeks more PowerDXu-iid than NE at state s1 and γ = 1. However,
PDXu-iid

(s1, N, 1) = 1
3 <

2
3 = PDXu-iid

(s1, NE, 1).

Lemma D.2 (Fraction of orbits which agree on weak optimality). Let D ⊆ ∆(R|S|), and
suppose f1, f2 : ∆(R|S|) → R are such that f1(D) ≥most: D f2(D). Then for all D ∈ D,∣∣∣{D′∈S|S|·D|f1(D′)≥f2(D′)}

∣∣∣
|S|S|·D| ≥ 1

2
.

Proof. All D′ ∈ S|S| · D such that f1(D′) = f2(D′) satisfy f1(D′) ≥ f2(D′).

Otherwise, consider the D′ ∈ S|S| · D such that f1(D′) ̸= f2(D′). By the definition of
≥most (definition 5.21), at least 1

2 of these D′ satisfy f1(D′) > f2(D′), in which case
f1(D′) ≥ f2(D′). Then the desired inequality follows.

Lemma D.3 (≥most and trivial orbits). Let D ⊆ ∆(R|S|) and suppose f1(D) ≥most: D

f2(D). For all reward function distributions D ∈ D with one-element orbits, f1(D) ≥
f2(D). In particular, D has a one-element orbit when it distributes reward identically and
independently ( iid) across states.

Proof. By lemma D.2, at least half of the elements D′ ∈ S|S| · D satisfy f1(D′) ≥ f2(D′).

But
∣∣∣S|S| · D∣∣∣ = 1, and so f1(D) ≥ f2(D) must hold.

If D is iid, it has a one-element orbit due to the assumed identical distribution of
reward.

1In small deterministic mdps, the Power and optimality probability of the maximum-entropy reward
function distribution can be computed using https://github.com/loganriggs/Optimal-Policies-Tend-To-
Seek-Power.

https://github.com/loganriggs/Optimal-Policies-Tend-To-Seek-Power
https://github.com/loganriggs/Optimal-Policies-Tend-To-Seek-Power
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Proposition D.4 (Actions which tend to seek Power do not necessarily tend to be
optimal). Action a tending to seek more Power than a′ at state s and γ does not imply
that

PDany (s, a, γ) ≥most: Dany
PDany

(
s, a′, γ

)
.

Proof. Consider the environment of fig. D.2. Since RSDnd (s3) ⊊ RSD (s2), propo-
sition 5.28 shows that PowerDbound (s2, 1) ≥most: Dbound

PowerDbound (s3, 1) via s′ :=

s3, s := s2, ϕ the identity permutation (which is an involution). Therefore, N tends to seek
more Power than NE at state s1 and γ = 1.

If PDany
(s1, N, 1) ≥most: Dany

PDany
(s1, NE, 1), then lemma D.3 shows that PDX-iid

(s1, N, 1) ≥
PDX-iid

(s1, NE, 1) for allDX-iid. But the proof of proposition D.1 showed that PDXu-iid
(s1, N, 1) <

PDXu-iid
(s1, NE, 1) forXu := unif(0, 1). Therefore, it can’t be true that PDany

(s1, N, 1) ≥most: Dany

PDany
(s1, NE, 1).

D.3 Sub-optimal Power

In certain situations, Power returns intuitively surprising verdicts. There exists a policy
under which the reader chooses a winning lottery ticket, but it seems wrong to say that
the reader has the power to win the lottery with high probability. For various reasons,
humans and other bounded agents are generally incapable of computing optimal policies
for arbitrary objectives. More formally, consider the rewardless mdp of fig. D.3.

0 r

3

4

5`

2

1

Figure D.3: s0 is the starting state, and |A| = 1010
10 . At s0, half of the actions lead to

sℓ, while the other half lead to sr. Similarly, half of the actions at sℓ lead to s1, while
the other half lead to s2. At sr, one action leads to s3, one action leads to s4, and the
remaining 1010

10 − 2 actions lead to s5.

Consider a model-based RL agent with black-box simulator access to this environment.
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The agent has no prior information about the model, and so it acts randomly. Before
long, the agent has probably learned how to navigate from s0 to states sℓ, sr, s1, s2, and
s5. However, over any reasonable timescale, it is extremely improbable that the agent
discovers the two actions respectively leading to s3 and s4.

Even provided with a reward function R and the discount rate γ, the agent has yet to learn
the relevant environmental dynamics, and so many of its policies are far from optimal.
Although proposition 5.22 shows that ∀γ ∈ [0, 1]:

PowerDbound (sℓ, γ) ≤most: Dbound
PowerDbound (sr, γ) , (D.1)

there is a sense in which sℓ gives this agent more power.

We formalize a bounded agent’s goal-achievement capabilities with a function pol, which
takes as input a reward function and a discount rate, and returns a policy. Informally,
this is the best policy which the agent knows about. We can then calculate PowerDbound

with respect to pol.

Definition D.5 (Suboptimal Power). Let Π∆ be the set of stationary stochastic policies,
and let pol : RS × [0, 1]→ Π∆. For γ ∈ [0, 1],

Powerpol
Dbound

(s, γ) := E
R∼Dbound,

a∼pol(R,γ)(s),
s′∼T (s,a)

[
lim
γ∗→γ

(1− γ∗)V pol(R,γ)
R

(
s′, γ∗

)]
. (D.2)

By lemma D.43, PowerDbound is the special case where ∀R ∈ RS , γ ∈ [0, 1] : pol (R, γ) ∈
Π∗ (R, γ). We define Powerpol

Dbound
-seeking similarly as in definition 5.16.

Powerpol
Dbound

(s0, 1) increases as the policies returned by pol are improved. We illustrate
this by considering the DX-iid case.

pol1 The model is initially unknown, and so ∀R, γ : pol1(R, γ) is a uniformly random
policy. Since pol1 is constant on its inputs, Powerpol1

DX-iid
(s0, 1) = E [X] by the

linearity of expectation and the fact that DX-iid distributes reward independently
and identically across states.
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pol2 The agent knows the dynamics, except that it does not know how to reach s3

or s4. At this point, pol2(R, 1) navigates from s0 to the average-optimal choice
among three terminal states: s1, s2, and s5. Therefore, Powerpol2

Dbound
(s0, 1) =

E [max of 3 draws from X].

pol3 The agent knows the dynamics, the environment is small enough to solve ex-
plicitly, and so ∀R, γ : pol3(R, γ) is an optimal policy. pol3(R, 1) navigates
from s0 to the average-optimal choice among all five terminal states. Therefore,
Powerpol3

Dbound
(s0, 1) = E [max of 5 draws from X].

As the agent learns more about the environment and improves pol, Powerpol
Dbound

in-
creases. The agent seeks Powerpol2

Dbound
by navigating to sℓ instead of sr, but seeks more

PowerDbound by navigating to sr instead of sℓ. Intuitively, bounded agents gain power
by improving pol and by formally seeking Powerpol

Dbound
within the environment.

D.3.1 Contributions of independent interest

We developed new basic mdp theory by exploring the structural properties of visit
distribution functions. Echoing Wang et al. [101, 102], we believe that this area is
interesting and underexplored.

D.3.1.1 Optimal value theory

Lemma D.45 shows that f(γ∗) := limγ∗→γ(1 − γ∗)V ∗
R (s, γ∗) is Lipschitz continuous on

γ ∈ [0, 1], with Lipschitz constant depending only on ∥R∥1. For all states s and policies
π ∈ Π, corollary D.10 shows that V π

R (s, γ) is rational on γ.

Optimal value has a well-known dual formulation: V ∗
R (s, γ) = maxf∈F(s) f(γ)

⊤r.

Lemma D.39 (∀γ ∈ [0, 1) : V ∗
R (s, γ) = maxf∈Fnd(s) f(γ)

⊤r).

In a fixed rewardless mdp, lemma D.39 may enable more efficient computation of optimal
value functions for multiple reward functions.



142

D.3.1.2 Optimal policy theory

Proposition D.35 demonstrates how to preserve optimal incentives while changing the
discount rate.

Proposition D.35 (How to transfer optimal policy sets across discount rates). Suppose
reward function R has optimal policy set Π∗ (R, γ) at discount rate γ ∈ (0, 1). For any
γ∗ ∈ (0, 1), we can construct a reward function R′ such that Π∗ (R′, γ∗

)
= Π∗ (R, γ).

Furthermore, V ∗
R′ (·, γ∗) = V ∗

R (·, γ).

D.3.1.3 Visit distribution theory

While Regan and Boutilier [72] consider a visit distribution function f ∈ F(s) to be
non-dominated if it is optimal for some reward function in a set R ⊆ R|S|, our stricter
definition 5.6 considers f to be non-dominated when ∃r ∈ R|S|, γ ∈ (0, 1) : f(γ)⊤r >

maxf ′∈F(s)\{f} f
′(γ)⊤r.

D.4 Theoretical results

Lemma D.6 (A policy is optimal iff it induces an optimal visit distribution at every
state). Let γ ∈ (0, 1) and let R be a reward function. π ∈ Π∗ (R, γ) iff π induces an
optimal visit distribution at every state.

Proof. By definition, a policy π is optimal iff π induces the maximal on-policy value at
each state, which is true iff π induces an optimal visit distribution at every state (by the
dual formulation of optimal value functions).

Definition D.7 (Transition matrix induced by a policy). Tπ is the transition matrix
induced by policy π ∈ Π, where Tπes := T (s, π(s)). (Tπ)tes gives the probability
distribution over the states visited at time step t, after following π for t steps from s.

Proposition D.8 (Properties of visit distribution functions). Let s, s′ ∈ S, fπ,s ∈ F(s).

1. fπ,s(γ) is element-wise non-negative and element-wise monotonically increasing on
γ ∈ [0, 1).
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2. ∀γ ∈ [0, 1) :
∥∥fπ,s(γ)∥∥

1
= 1

1−γ .

Proof. Item 1: by examination of definition 5.3, fπ,s =
∑∞

t=0 (γT
π)t es. Since each (Tπ)t

is left stochastic and es is the standard unit vector, each entry in each summand is
non-negative. Therefore, ∀γ ∈ [0, 1) : fπ,s(γ)⊤es′ ≥ 0, and this function monotonically
increases on γ.

Item 2:

∥∥fπ,s(γ)∥∥
1
=

∥∥∥∥∥∥
∞∑
t=0

(γTπ)t es

∥∥∥∥∥∥
1

(D.3)

=
∞∑
t=0

γt
∥∥∥(Tπ)t es

∥∥∥
1

(D.4)

=
∞∑
t=0

γt (D.5)

=
1

1− γ . (D.6)

Equation (D.4) follows because all entries in each (Tπ)t es are non-negative by item 1.
Equation (D.5) follows because each (Tπ)t is left stochastic and es is a stochastic vector,
and so

∥∥∥(Tπ)t es

∥∥∥
1
= 1.

Lemma D.9 (f ∈ F(s) is multivariate rational on γ). fπ ∈ F(s) is a multivariate rational
function on γ ∈ [0, 1).

Proof. Let r ∈ R|S| and consider fπ ∈ F(s). Let vπ
R be the V ∗

R (s, γ) function in column
vector form, with one entry per state value.

By the Bellman equations, vπ
R = (I− γTπ)−1 r. Let Aγ := (I− γTπ)−1, and for state s,

form As,γ by replacing Aγ ’s column for state s with r. As noted by Lippman [48], by
Cramer’s rule, V π

R (s, γ) =
detAs,γ

detAγ
is a rational function with numerator and denominator

having degree at most |S|.

In particular, for each state indicator reward function esi , V π
si (s, γ) = fπ,s(γ)⊤esi is a
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rational function of γ whose numerator and denominator each have degree at most |S|.
This implies that fπ(γ) is multivariate rational on γ ∈ [0, 1).

Corollary D.10 (On-policy value is rational on γ). Let π ∈ Π and R be any reward
function. V π

R (s, γ) is rational on γ ∈ [0, 1).

Proof. V π
R (s, γ) = fπ,s(γ)⊤r, and f is a multivariate rational function of γ by lemma D.9.

Therefore, for fixed r, fπ,s(γ)⊤r is a rational function of γ.

D.4.1 Non-dominated visit distribution functions

Definition D.11 (Continuous reward function distribution). Results with Dcont hold for
any absolutely continuous reward function distribution.

Remark. We assume R|S| is endowed with the standard topology.

Lemma D.12 (Distinct linear functionals disagree almost everywhere on their domains).
Let x,x′ ∈ R|S| be distinct. Pr∼Dcont

(
x⊤r = x′⊤r

)
= 0.

Proof.
{
r ∈ R|S| | (x− x′)⊤r = 0

}
is a hyperplane since x− x′ ̸= 0. Therefore, it has no

interior in the standard topology on R|S|. Since this empty-interior set is also convex, it
has zero Lebesgue measure. By the Radon-Nikodym theorem, it has zero measure under
any continuous distribution Dcont.

Corollary D.13 (Unique maximization of almost all vectors). Let X ⊊ R|S| be finite.

Pr∼Dcont

(∣∣∣∣∣argmax
x′′∈X

x′′⊤r

∣∣∣∣∣ > 1

)
= 0. (D.7)

Proof. Let x,x′ ∈ X be distinct. For any r ∈ R|S|, x,x′ ∈ argmaxx′′∈X x′′⊤r iff x⊤r =

x′⊤r ≥ maxx′′∈X\{x,x′} x
′′⊤r. By lemma D.12, x⊤r = x′⊤r holds with probability 0 under

any Dcont.
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D.4.1.1 Generalized non-domination results

Our formalism includes both Fnd(s) and RSDnd (s); we therefore prove results that are
applicable to both.

Definition D.14 (Non-dominated linear functionals). Let X ⊊ R|S| be finite. ND (X) :={
x ∈ X | ∃r ∈ R|S| : x⊤r > maxx′∈X\{x} x

′⊤r
}

.

Lemma D.15 (All vectors are maximized by a non-dominated linear functional). Let
r ∈ R|S| and let X ⊊ R|S| be finite and non-empty. ∃x∗ ∈ ND (X) : x∗⊤r = maxx∈X x⊤r.

Proof. Let A(r | X) := argmaxx∈X x⊤r = {x1, . . . ,xn}. Then

x⊤
1 r = · · · = x⊤

n r > max
x′∈X\A(r|X)

x′⊤r. (D.8)

In eq. (D.8), each x⊤r expression is linear on r. The max is piecewise linear on r since
it is the maximum of a finite set of linear functionals. In particular, all expressions in
eq. (D.8) are continuous on r, and so we can find some δ > 0 neighborhood B(r, δ) such
that ∀r′ ∈ B(r, δ) : maxxi∈A(r|X) x

⊤
i r

′ > maxx′∈X\A(r|X) x
′⊤r′.

But almost all r′ ∈ B(r, δ) are maximized by a unique functional x∗ by corollary D.13; in
particular, at least one such r′′ exists. Formally, ∃r′′ ∈ B(r, δ) : x∗⊤r′′ > maxx′∈X\{x∗} x

′⊤r′′.
Therefore, x∗ ∈ ND (X) by definition D.14.

x∗⊤r′ ≥ maxxi∈A(r|X) x
⊤
i r

′ > maxx′∈X\A(r|X) x
′⊤r′, with the strict inequality following

because r′′ ∈ B(r, δ). These inequalities imply that x∗ ∈ A(r | X).

Corollary D.16 (Maximal value is invariant to restriction to non-dominated functionals).
Let r ∈ R|S| and let X ⊊ R|S| be finite. maxx∈X x⊤r = maxx∈ND(X) x

⊤r.

Proof. If X is empty, holds trivially. Otherwise, apply lemma D.15.

Lemma D.17 (How non-domination containment affects optimal value). Let r ∈ R|S|

and let X,X ′ ⊊ R|S| be finite.

1. If ND (X) ⊆ X ′, then maxx∈X x⊤r ≤ maxx′∈X′ x′⊤r.
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2. If ND (X) ⊆ X ′ ⊆ X, then maxx∈X x⊤r = maxx′∈X′ x′⊤r.

Proof. Item 1:

max
x∈X

x⊤r = max
x∈ND(X)

x⊤r (D.9)

≤ max
x′∈X′

x′⊤r. (D.10)

Equation (D.9) follows by corollary D.16. Equation (D.10) follows because ND (X) ⊆ X ′.

Item 2: by item 1, maxx∈X x⊤r ≤ maxx′∈X′ x′⊤r. Since X ′ ⊆ X, we also have
maxx∈X x⊤r ≥ maxx′∈X′ x′⊤r, and so equality must hold.

Definition D.18 (Non-dominated vector functions). Let I ⊆ R and let F ⊊
(
R|S|

)I
be

a finite set of vector-valued functions on I.

ND (F ) :=

{
f ∈ F | ∃γ ∈ I, r ∈ R|S| : f(γ)⊤r > max

f ′∈F\{f}
f ′(γ)⊤r

}
. (D.11)

Remark. Fnd(s) = ND
(
F(s)

)
by definition 5.6.

Definition D.19 (Affine transformation of visit distribution sets). For notational conve-
nience, we define set-scalar multiplication and set-vector addition on X ⊆ R|S|: for c ∈ R,
cX :=

{
cx | x ∈ X

}
. For a ∈ R|S|, X + a :=

{
x+ a | x ∈ X

}
. Similar operations hold

when X is a set of vector functions R 7→ R|S|.

Lemma D.20 (Invariance of non-domination under positive affine transform).

1. Let X ⊊ R|S| be finite. If x ∈ ND (X), then ∀c > 0,a ∈ R|S| : (cx + a) ∈
ND (cX + a).

2. Let I ⊆ R and let F ⊊
(
R|S|

)I
be a finite set of vector-valued functions on I. If

f ∈ ND (F ), then ∀c > 0,a ∈ R|S| : (cf + a) ∈ ND (cF + a).

Proof. Item 1: Suppose x ∈ ND (X) is strictly optimal for r ∈ R|S|. Then let c > 0,a ∈
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R|S| be arbitrary, and define b := a⊤r.

x⊤r > max
x′∈X\{x}

x′⊤r (D.12)

cx⊤r+ b > max
x′∈X\{x}

cx′⊤r+ b (D.13)

(cx+ a)⊤r > max
x′∈X\{x}

(cx′ + a)⊤r (D.14)

(cx+ a)⊤r > max
x′′∈(cX+a)\{cx+a}

x′′⊤r. (D.15)

Equation (D.13) follows because c > 0. Equation (D.14) follows by the definition of b.

Item 2: If f ∈ ND (F ), then by definition D.18, there exist γ ∈ I, r ∈ R|S| such that

f(γ)⊤r > max
f ′∈F\{f}

f ′(γ)⊤r. (D.16)

Apply item 1 to conclude

(cf(γ) + a)⊤r > max
(cf ′+a)∈(cF+a)\{cf+a}

(cf ′(γ) + a)⊤r. (D.17)

Therefore, (cf + a) ∈ ND (cF + a).

D.4.1.2 Inequalities which hold under most reward function distribu-
tions

Definition 5.21 (Inequalities which hold for most probability distributions). Let f1, f2 :
∆(R|S|) → R be functions from reward function distributions to real numbers and let
D ⊆ ∆(R|S|) be closed under permutation. We write f1(D) ≥most: D f2(D) when, for all
D ∈ D, the following cardinality inequality holds:∣∣∣{D′ ∈ S|S| · D | f1(D′) > f2(D′)}

∣∣∣ ≥ ∣∣∣{D′ ∈ S|S| · D | f1(D′) < f2(D′)}
∣∣∣ . (5.9)

Lemma D.21 (Helper lemma for demonstrating ≥most: Dany
). Let D ⊆ ∆(R|S|). If

∃ϕ ∈ S|S| such that for all D ∈ D, f1 (D) < f2 (D) implies that f1 (ϕ · D) > f2 (ϕ · D),
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then f1(D) ≥most: D f2(D).

Proof. Since ϕ does not belong to the stabilizer of S|S|, ϕ acts injectively on S|S| · D. By
assumption on ϕ, the image of {D′ ∈ S|S|·D | f1(D′) < f2(D′)} under ϕ is a subset of {D′ ∈
S|S| · D | f1(D′) > f2(D′)}. Since ϕ is injective,

∣∣∣{D′ ∈ S|S| · D | f1(D′) < f2(D′)}
∣∣∣ ≤∣∣∣{D′ ∈ S|S| · D | f1(D′) > f2(D′)}

∣∣∣. f1(D) ≥most: D f2(D) by definition 5.21.

Lemma D.22 (A helper result for expectations of functions). Let B1, . . . , Bn ⊊ R|S| be
finite and let D ⊆ ∆(R|S|). Suppose f is a function of the form

f
(
B1, . . . , Bn | D

)
= E

r∼D

[
g

(
max
b1∈B1

b⊤
1 r, . . . , max

bn∈Bn

b⊤
n r

)]
(D.18)

for some function g, and that f is well-defined for all D ∈ D. Let ϕ be a state permutation.
Then

f
(
B1, . . . , Bn | D

)
= f

(
ϕ ·B1, . . . , ϕ ·Bn | ϕ · D

)
. (D.19)

Proof. Let distribution D have probability measure F , and let ϕ · D have probability
measure Fϕ.

f
(
B1, . . . , Bn | D

)
(D.20)

:= E
r∼D

[
g

(
max
b1∈B1

b⊤
1 r, . . . , max

bn∈Bn

b⊤
n r

)]
(D.21)

:=

∫
R|S|

g

(
max
b1∈B1

b⊤
1 r, . . . , max

bn∈Bn

b⊤
n r

)
dF (r) (D.22)

=

∫
R|S|

g

(
max
b1∈B1

b⊤
1 r, . . . , max

bn∈Bn

b⊤
n r

)
dFϕ(Pϕr) (D.23)

=

∫
R|S|

g

(
max
b1∈B1

b⊤
1

(
P−1

ϕ r′
)
, . . . , max

bn∈Bn

b⊤
n

(
P−1

ϕ r′
)) ∣∣detPϕ

∣∣dFϕ(r
′) (D.24)

=

∫
R|S|

g

(
max
b1∈B1

(
Pϕb1

)⊤
r′, . . . , max

bn∈Bn

(
Pϕbn

)⊤
r′
)
dFϕ(r

′) (D.25)

=

∫
R|S|

g

(
max

b′
1∈ϕ·B1

b′⊤
1 r′, . . . , max

b′
n∈ϕ·Bn

b′⊤
n r′

)
dFϕ(r

′) (D.26)
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=: f
(
ϕ ·B1, . . . , ϕ ·Bn | ϕ · D

)
. (D.27)

Equation (D.23) follows by the definition of Fϕ (definition 5.19). Equation (D.24) follows
by substituting r′ := Pϕr. Equation (D.25) follows from the fact that all permutation
matrices have unitary determinant and are orthogonal (and so (P−1

ϕ )⊤ = Pϕ).

Definition D.23 (Support of Dany). Let Dany be any reward function distribution.
supp(Dany) is the smallest closed subset of R|S| whose complement has measure zero
under Dany.

Definition D.24 (Linear functional optimality probability). For finite A,B ⊊ R|S|, the
probability under Dany that A is optimal over B is

pDany (A ≥ B) := Pr∼Dany

(
max
a∈A

a⊤r ≥ max
b∈B

b⊤r

)
. (D.28)

Proposition D.25 (Non-dominated linear functionals and their optimality probability).
Let A ⊊ R|S| be finite. If ∃b < c : [b, c]|S| ⊆ supp(Dany), then a ∈ ND (A) implies that a
is strictly optimal for a set of reward functions with positive measure under Dany.

Proof. Suppose ∃b < c : [b, c]|S| ⊆ supp(Dany). If a ∈ ND (A), then let r be such that
a⊤r > maxa′∈A\{a} a

′⊤r. For a1 > 0, a2 ∈ R, positively affinely transform r′ := a1r+ a21

(where 1 ∈ R|S| is the all-ones vector) so that r′ ∈ (b, c)|S|.

Note that a is still strictly optimal for r′:

a⊤r > max
a′∈A\{a}

a′⊤r ⇐⇒ a⊤r′ > max
a′∈A\{a}

a′⊤r′. (D.29)

Furthermore, by the continuity of both terms on the right-hand side of eq. (D.29),
a is strictly optimal for reward functions in some open neighborhood N of r′. Let
N ′ := N ∩ (b, c)|S|. N ′ is still open in R|S| since it is the intersection of two open sets N
and (b, c)|S|.

Dany must assign positive probability measure to all open sets in its support; otherwise,
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its support would exclude these zero-measure sets by definition D.23. Therefore, Dany

assigns positive probability to N ′ ⊆ supp(Dany).

Lemma D.26 (Expected value of similar linear functional sets). Let A,B ⊊ R|S| be finite,
let A′ be such that ND (A) ⊆ A′ ⊆ A, and let g : R→ R be an increasing function. If B
contains a copy B′ of A′ via ϕ, then

E
r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
≤ E

r∼ϕ·Dbound

[
g

(
max
b∈B

b⊤r

)]
. (D.30)

If ND (B) \B′ is empty, then eq. (D.30) is an equality. If ND (B) \B′ is non-empty, g is
strictly increasing, and ∃b < c : (b, c)|S| ⊆ supp(Dbound), then eq. (D.30) is strict.

Proof. Because g : R → R is increasing, it is measurable (as is max). Therefore, the
relevant expectations exist for all Dbound.

E
r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
= E

r∼Dbound

[
g

(
max
a∈A′

a⊤r

)]
(D.31)

= E
r∼ϕ·Dbound

[
g

(
max
a∈ϕ·A′

a⊤r

)]
(D.32)

= E
r∼ϕ·Dbound

[
g

(
max
b∈B′

b⊤r

)]
(D.33)

≤ E
r∼ϕ·Dbound

[
g

(
max
b∈B

b⊤r

)]
. (D.34)

Equation (D.31) holds because ∀r ∈ R|S| : maxa∈A a⊤r = maxa∈A′ a⊤r by lemma D.17’s
item 2 with X := A, X ′ := A′. Equation (D.32) holds by lemma D.22. Equation (D.33)
holds by the definition of B′. Furthermore, our assumption on ϕ guarantees that B′ ⊆ B.
Therefore, maxb∈B′ b⊤r ≤ maxb∈B b⊤r, and so eq. (D.34) holds by the fact that g is an
increasing function. Then eq. (D.30) holds.

If ND (B) \ B′ is empty, then ND (B) ⊆ B′. By assumption, B′ ⊆ B. Then apply
lemma D.17 item 2 with X := B, X ′ := B′ in order to conclude that eq. (D.34) is an
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equality. Then eq. (D.30) is also an equality.

Suppose that g is strictly increasing, ND (B) \B′ is non-empty, and ∃b < c : (b, c)|S| ⊆
supp(Dbound). Let x ∈ ND (B) \B′.

E
r∼ϕ·Dbound

[
g

(
max
b∈B′

b⊤r

)]
< E

r∼ϕ·Dbound

g( max
a∈B′∪{x}

b⊤r

) (D.35)

≤ E
r∼ϕ·Dbound

[
g

(
max
b∈B

b⊤r

)]
. (D.36)

x is strictly optimal for a positive-probability subset of supp(Dbound) by proposition D.25.
Since g is strictly increasing, eq. (D.35) is strict. Therefore, we conclude that eq. (D.30)
is strict.

Lemma D.27 (Continuous DX-iid have nonempty interior). For continuous iid distribu-
tions DX-iid, ∃b < c : (b, c)|S| ⊆ supp(DX-iid).

Proof. DX-iid := X |S|. Since the state reward distribution X is continuous, X must
have support on some open interval (b, c). Since DX-iid is iid across states, (b, c)|S| ⊆
supp(DX-iid).

Definition D.28 (Bounded, continuous iid reward). Dc/b/iid is the set of DX-iid which
equal X |S| for some continuous, bounded-support distribution X over R.

Lemma D.29 (Expectation superiority lemma). Let A,B ⊊ R|S| be finite and let
g : R→ R be an increasing function. If B contains a copy B′ of ND (A) via ϕ, then

E
r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
≤most: Dbound

E
r∼Dbound

[
g

(
max
b∈B

b⊤r

)]
. (D.37)

Furthermore, if g is strictly increasing and ND (B) \ ϕ · ND (A) is non-empty, then
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eq. (D.37) is strict for all DX-iid ∈ Dc/b/iid. In particular,

E
r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
̸≥most: Dbound

E
r∼Dbound

[
g

(
max
b∈B

b⊤r

)]
.

Proof. Because g : R → R is increasing, it is measurable (as is max). Therefore, the
relevant expectations exist for all Dbound.

Suppose thatDbound is such that Er∼Dbound

[
g
(
maxb∈B b⊤r

)]
< Er∼Dbound

[
g
(
maxa∈A a⊤r

)]
.

E
r∼ϕ·Dbound

[
g

(
max
a∈A

a⊤r

)]
≤ E

r∼ϕ2·Dbound

[
g

(
max
b∈B

b⊤r

)]
(D.38)

= E
r∼Dbound

[
g

(
max
b∈B

b⊤r

)]
(D.39)

< E
r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
(D.40)

≤ E
r∼ϕ·Dbound

[
g

(
max
b∈B

b⊤r

)]
. (D.41)

Equation (D.38) follows by applying lemma D.26 with permutation ϕ and A′ := ND (A).
Equation (D.39) follows because involutions satisfy ϕ−1 = ϕ, and ϕ2 is therefore the
identity. Equation (D.40) follows because we assumed that

E
r∼Dbound

[
g

(
max
b∈B

b⊤r

)]
< E

r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
.

Equation (D.41) follows by applying lemma D.26 with permutation ϕ and and A′ :=

ND (A). By lemma D.21, eq. (D.37) holds.

Suppose g is strictly increasing and ND (B) \B′ is non-empty. Let ϕ′ ∈ S|S|.

E
r∼ϕ′·DX-iid

[
g

(
max
a∈A

a⊤r

)]
= E

r∼DX-iid

[
g

(
max
a∈A

a⊤r

)]
(D.42)
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< E
r∼ϕ·DX-iid

[
g

(
max
b∈B

b⊤r

)]
(D.43)

= E
r∼ϕ′·DX-iid

[
g

(
max
b∈B

b⊤r

)]
. (D.44)

Equation (D.42) and eq. (D.44) hold because DX-iid distributes reward identically across
states: ∀ϕx ∈ S|S| : ϕx ·DX-iid = DX-iid. By lemma D.27, ∃b < c : (b, c)|S| ⊆ supp(DX-iid).
Therefore, apply lemma D.26 with A′ := ND (A) to conclude that eq. (D.43) holds.

Therefore, ∀ϕ′ ∈ S|S| : Er∼ϕ′·DX-iid

[
g
(
maxa∈A a⊤r

)]
< Er∼ϕ′·DX-iid

[
g
(
maxb∈B b⊤r

)]
,

and so Er∼Dbound

[
g
(
maxa∈A a⊤r

)]
̸≥most: Dbound

Er∼Dbound

[
g
(
maxb∈B b⊤r

)]
by defi-

nition 5.21.

Definition D.30 (Indicator function). Let L be a predicate which takes input x. 1L(x)
is the function which returns 1 when L(x) is true, and 0 otherwise.

Lemma D.31 (Optimality probability inclusion relations). Let X,Y ⊊ R|S| be finite and
suppose Y ′ ⊆ Y .

pDany (X ≥ Y ) ≤ pDany

(
X ≥ Y ′) ≤ pDany

(
X ∪

(
Y \ Y ′) ≥ Y ) . (D.45)

If ∃b < c : (b, c)|S| ⊆ supp(Dany), X ⊆ Y , and ND (Y ) ∩
(
Y \ Y ′) is non-empty, then the

second inequality is strict.

Proof.

pDany (X ≥ Y ) := E
r∼Dany

[
1maxx∈X x⊤r≥maxy∈Y y⊤r

]
(D.46)

≤ E
r∼Dany

[
1maxx∈X x⊤r≥maxy∈Y ′ y⊤r

]
(D.47)

≤ E
r∼Dany

[
1maxx∈X∪(Y \Y ′) x

⊤r≥maxy∈Y ′ y⊤r

]
(D.48)

= E
r∼Dany

[
1maxx∈X∪(Y \Y ′) x

⊤r≥maxy∈Y ′∪(Y \Y ′) y
⊤r

]
(D.49)
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= E
r∼Dany

[
1maxx∈X∪(Y \Y ′) x

⊤r≥maxy∈Y y⊤r

]
(D.50)

=: pDany

(
X ∪

(
Y \ Y ′) ≥ Y ) . (D.51)

Equation (D.47) follows because ∀r ∈ R|S| : 1maxx∈X x⊤r≥maxy∈Y y⊤r ≤ 1maxx∈X x⊤r≥maxy∈Y ′ y⊤r

since Y ′ ⊆ Y ; note that eq. (D.47) equals pDany

(
X ≥ Y ′), and so the first inequality of

eq. (D.45) is shown. Equation (D.48) holds because

∀r ∈ R|S| : 1maxx∈X x⊤r≥maxy∈Y ′ y⊤r ≤ 1maxx∈X∪(Y \Y ′) x
⊤r≥maxy∈Y ′ b⊤r.

Suppose ∃b < c : (b, c)|S| ⊆ supp(Dany), X ⊆ Y , and ND (Y ) ∩
(
Y \ Y ′) is non-empty.

Let y∗ ∈ ND (Y ) ∩
(
Y \ Y ′). By proposition D.25, y∗ is strictly optimal on a subset of

supp(Dany) with positive measure under Dany. In particular, for a set of r∗ with positive
measure under Dany, we have y∗⊤r∗ > maxy∈Y ′ y⊤r∗.

Then eq. (D.48) is strict, and therefore the second inequality of eq. (D.45) is strict as
well.

Lemma D.32 (Optimality probability of similar linear functional sets). Let A,B,C ⊊ R|S|

be finite, and let Z ⊆ R|S| be such that ND (C) ⊆ Z ⊆ C. If ND (A) is similar to B′ ⊆ B
via ϕ such that ϕ ·

(
Z \

(
B \B′)) = Z \

(
B \B′), then

pDany (A ≥ C) ≤ pϕ·Dany (B ≥ C) . (D.52)

If B′ = B, then eq. (D.52) is an equality. If ∃b < c : (b, c)|S| ⊆ supp(Dany), B′ ⊆ C, and
ND (C) ∩

(
B \B′) is non-empty, then eq. (D.52) is strict.

Proof.

pDany (A ≥ C) = pDany (A ≥ Z) (D.53)

= pDany

(
ND (A) ≥ Z

)
(D.54)

≤ pDany

(
ND (A) ≥ Z \

(
B \B′)) (D.55)

= pϕ·Dany

(
ϕ ·ND (A) ≥ ϕ · Z \

(
B \B′)) (D.56)
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= pϕ·Dany

(
B′ ≥ Z \

(
B \B′)) (D.57)

≤ pϕ·Dany

(
B′ ∪

(
B \B′) ≥ Z) (D.58)

= pϕ·Dany (B ≥ C) . (D.59)

Equation (D.53) and eq. (D.59) follow by lemma D.17’s item 2 with X := C, X ′ := Z.
Similarly, eq. (D.54) follows by lemma D.17’s item 2 with X := A, X ′ := ND (A).
Equation (D.55) follows by applying the first inequality of lemma D.31 with X :=

ND (A) , Y := Z, Y ′ := Z \ (B \B′). Equation (D.56) follows by applying lemma D.22 to
eq. (D.53) with permutation ϕ.

Equation (D.57) follows by our assumptions on ϕ. Equation (D.58) follows because
by applying the second inequality of lemma D.31 with X := B′, Y := ND (C) , Y ′ :=

ND (C) \ (B \B′).

Suppose B′ = B. Then B \B′ = ∅, and so eq. (D.55) and eq. (D.58) are trivially equalities.
Then eq. (D.52) is an equality.

Suppose ∃b < c : (b, c)|S| ⊆ supp(Dany); note that (b, c)|S| ⊆ supp(ϕ · Dany), since such
support must be invariant to permutation. Further suppose that B′ ⊆ C and that
ND (C) ∩

(
B \B′) is non-empty. Then letting X := B′, Y := Z, Y ′ := Z \ (B \B′) and

noting that ND
(
ND (Z)

)
= ND (Z), apply lemma D.31 to eq. (D.58) to conclude that

eq. (D.52) is strict.

Lemma D.33 (Optimality probability superiority lemma). Let A,B,C ⊊ R|S| be finite,
and let Z satisfy ND (C) ⊆ Z ⊆ C. If B contains a copy B′ of ND (A) via ϕ such that
ϕ ·
(
Z \

(
B \B′)) = Z \

(
B \B′), then pDany (A ≥ C) ≤most: Dany

pDany (B ≥ C).

If B′ ⊆ C and ND (C) ∩
(
B \B′) is non-empty, then the inequality is strict for all

DX-iid ∈ Dc/b/iid and pDany (A ≥ C) ̸≥most: Dany
pDany (B ≥ C).

Proof. Suppose Dany is such that pDany (B ≥ C) < pDany (A ≥ C).

pϕ·Dany (A ≥ C) = pϕ−1·Dany (A ≥ C) (D.60)

≤ pDany (B ≥ C) (D.61)
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< pDany (A ≥ C) (D.62)

≤ pϕ·Dany (B ≥ C) . (D.63)

Equation (D.60) holds because ϕ is an involution. Equation (D.61) and eq. (D.63) hold
by applying lemma D.32 with permutation ϕ. Equation (D.62) holds by assumption.
Therefore, pDany (A ≥ C) ≤most: Dany

pDany (B ≥ C) by lemma D.21.

Suppose B′ ⊆ C and ND (C) ∩
(
B \B′) is non-empty, and let DX-iid be any continuous

distribution which distributes reward independently and identically across states. Let
ϕ′ ∈ S|S|.

pϕ′·DX-iid (A ≥ C) = pDX-iid (A ≥ C) (D.64)

< pϕ·DX-iid (B ≥ C) (D.65)

= pϕ′·DX-iid (A ≥ C) . (D.66)

Equation (D.64) and eq. (D.66) hold because DX-iid distributes reward identically across
states, ∀ϕx ∈ S|S| : ϕx · DX-iid = DX-iid. By lemma D.27, ∃b < c : (b, c)|S| ⊆ supp(DX-iid).
Therefore, apply lemma D.32 to conclude that eq. (D.65) holds. Therefore, ∀ϕ′ ∈
S|S| : pϕ′·DX-iid (A ≥ C) < pϕ′·DX-iid (B ≥ C). In particular, pDany (A ≥ C) ̸≥most: Dany

pDany (B ≥ C) by definition 5.21.

Lemma D.34 (Limit probability inequalities which hold for most distributions). Let
I ⊆ R, let D ⊆ ∆(R|S|) be closed under permutation, and let FA, FB, FC be finite sets of
vector functions I 7→ R|S|. Let γ be a limit point of I such that

f1(D) := lim
γ∗→γ

pD
(
FB(γ

∗) ≥ FC(γ
∗)
)
,

f2(D) := lim
γ∗→γ

pD
(
FA(γ

∗) ≥ FC(γ
∗)
)

are well-defined for all D ∈ D.

Let FZ satisfy ND (FC) ⊆ FZ ⊆ FC . Suppose FB contains a copy of FA via ϕ such that
ϕ ·
(
FZ \

(
FB \ ϕ · FA

))
= FZ \

(
FB \ ϕ · FA

)
. Then f2(D) ≤most: D f1(D).
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Proof. Suppose D ∈ D is such that f2(D) > f1(D).

f2 (ϕ · D) = f2

(
ϕ−1 · D

)
(D.67)

:= lim
γ∗→γ

pϕ−1·D
(
FA(γ

∗) ≥ FC(γ
∗)
)

(D.68)

≤ lim
γ∗→γ

pD
(
FB(γ

∗) ≥ FC(γ
∗)
)

(D.69)

< lim
γ∗→γ

pD
(
FA(γ

∗) ≥ FC(γ
∗)
)

(D.70)

≤ lim
γ∗→γ

pϕ·D
(
FB(γ

∗) ≥ FC(γ
∗)
)

(D.71)

=: f1 (ϕ · D) . (D.72)

By the assumption that D is closed under permutation and f2 is well-defined for all
D ∈ D, f2(ϕ · D) is well-defined. Equation (D.67) follows since ϕ = ϕ−1 because ϕ
is an involution. For all γ∗ ∈ I, let A := FA(γ

∗), B := FB(γ
∗), C := FC(γ

∗), Z :=

FZ(γ
∗) (by definition D.18, ND (C) ⊆ Z ⊆ C). Since ϕ · A ⊆ B by assumption,

and since ND (A) ⊆ A, B also contains a copy of ND (A) via ϕ. Furthermore, ϕ ·(
Z \

(
B \ ϕ ·A

))
= Z\

(
B \ ϕ ·A

)
(by assumption), and so apply lemma D.32 to conclude

that pϕ−1·D
(
FA(γ

∗) ≥ FC(γ
∗)
)
≤ pD

(
FB(γ

∗) ≥ FC(γ
∗)
)
. Therefore, the limit inequality

eq. (D.69) holds. Equation (D.70) follows because we assumed that f1(D) < f2(D).
Equation (D.71) holds by reasoning similar to that given for eq. (D.69).

Therefore, f2(D) > f1(D) implies that f2 (ϕ · D) < f1 (ϕ · D), and so apply lemma D.21
to conclude that f2(D) ≤most: D f1(D).

D.4.1.3 Fnd results

Proposition D.35 (How to transfer optimal policy sets across discount rates). Suppose
reward function R has optimal policy set Π∗ (R, γ) at discount rate γ ∈ (0, 1). For any
γ∗ ∈ (0, 1), we can construct a reward function R′ such that Π∗ (R′, γ∗

)
= Π∗ (R, γ).

Furthermore, V ∗
R′ (·, γ∗) = V ∗

R (·, γ).

Proof. Let R be any reward function. Suppose γ∗ ∈ (0, 1) and construct R′(s) :=

V ∗
R (s, γ)− γ∗maxa∈A Es′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
.
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Let π ∈ Π be any policy. By the definition of optimal policies, π ∈ Π∗ (R′, γ∗
)

iff for all s:

R′(s) + γ∗ E
s′∼T(s,π(s))

[
V ∗
R′
(
s′, γ∗

)]
= R′(s) + γ∗max

a∈A
E

s′∼T (s,a)

[
V ∗
R′
(
s′, γ∗

)]
(D.73)

R′(s) + γ∗ E
s′∼T(s,π(s))

[
V ∗
R

(
s′, γ

)]
= R′(s) + γ∗max

a∈A
E

s′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
(D.74)

γ∗ E
s′∼T(s,π(s))

[
V ∗
R

(
s′, γ

)]
= γ∗max

a∈A
E

s′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
(D.75)

E
s′∼T(s,π(s))

[
V ∗
R

(
s′, γ

)]
= max

a∈A
E

s′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
. (D.76)

By the Bellman equations, R′(s) = V ∗
R′ (s, γ∗) − γ∗maxa∈A Es′∼T (s,a)

[
V ∗
R′
(
s′, γ∗

)]
. By

the definition of R′, V ∗
R′ (·, γ∗) = V ∗

R (·, γ) must be the unique solution to the Bellman
equations for R′ at γ∗. Therefore, eq. (D.74) holds. Equation (D.75) follows by plugging
in R′ := V ∗

R (s, γ) − γ∗maxa∈A Es′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
to eq. (D.74) and doing algebraic

manipulation. Equation (D.76) follows because γ∗ > 0.

Equation (D.76) shows that π ∈ Π∗ (R′, γ∗
)

iff

∀s : E
s′∼T (s,π(s))

[
V ∗
R

(
s′, γ

)]
= max

a∈A
E

s′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
.

That is, π ∈ Π∗ (R′, γ∗
)

iff π ∈ Π∗ (R, γ).

Definition D.36 (Evaluating sets of visit distribution functions at γ). For γ ∈ (0, 1),
define F(s, γ) :=

{
f(γ) | f ∈ F(s)

}
and Fnd(s, γ) :=

{
f(γ) | f ∈ Fnd(s)

}
. If F ⊆ F(s),

then F (γ) :=
{
f(γ) | f ∈ F

}
.

Lemma D.37 (Non-domination across γ values for mixtures of f). Let ∆d ∈ ∆
(
R|S|

)
be

any state distribution and let F :=
{
Esd∼∆d

[fπ,sd ] | π ∈ Π
}
. f ∈ ND (F ) iff ∀γ∗ ∈ (0, 1) :

f(γ∗) ∈ ND
(
F (γ∗)

)
.

Proof. Let fπ ∈ ND (F ) be strictly optimal for reward function R at discount rate
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γ ∈ (0, 1):

fπ(γ)⊤r > max
fπ′∈F\{fπ}

fπ
′
(γ)⊤r. (D.77)

Let γ∗ ∈ (0, 1). By proposition D.35, there exists R′ such that Π∗ (R′, γ∗
)
= Π∗ (R, γ).

Since the optimal policy sets are equal, lemma D.6 implies that

fπ(γ∗)⊤r′ > max
fπ′∈F\{fπ}

fπ
′
(γ∗)⊤r′. (D.78)

Therefore, fπ(γ∗) ∈ ND
(
F (γ∗)

)
.

The reverse direction follows by the definition of ND (F ).

Lemma D.38 (∀γ ∈ (0, 1) : d ∈ Fnd(s, γ) iff d ∈ ND
(
F(s, γ)

)
).

Proof. By definition D.36, Fnd(s, γ) :=
{
f(γ) | f ∈ ND

(
F(s)

)}
. By applying lemma D.37

with ∆d := es, f ∈ ND
(
F(s)

)
iff ∀γ ∈ (0, 1) : f(γ) ∈ ND

(
F(s, γ)

)
.

Lemma D.39 (∀γ ∈ [0, 1) : V ∗
R (s, γ) = maxf∈Fnd(s) f(γ)

⊤r).

Proof. ND
(
F(s, γ)

)
= Fnd(s, γ) by lemma D.38, so apply corollary D.16 with X :=

F(s, γ).

D.4.2 Some actions have greater probability of being optimal

Lemma D.40 (Optimal policy shift bound). For fixed R, Π∗ (R, γ) can take on at most
(2 |S|+ 1)

∑
s

(|F(s)|
2

)
distinct values over γ ∈ (0, 1).

Proof. By lemma D.6, Π∗ (R, γ) changes value iff there is a change in optimality status
for some visit distribution function at some state. Lippman [48] showed that two visit
distribution functions can trade off optimality status at most 2 |S| + 1 times. At each
state s, there are

(|F(s)|
2

)
such pairs.
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Proposition D.41 (Optimality probability’s limits exist). Let F ⊆ F(s). PDany
(F, 0) =

limγ→0 PDany
(F, γ) and PDany

(F, 1) = limγ→1 PDany
(F, γ).

Proof. First consider the limit as γ → 1. Let Dany have probability measure Fany, and

define δ(γ) := Fany

({
R ∈ RS | ∃γ∗ ∈ [γ, 1) : Π∗ (R, γ∗) ̸= Π∗ (R, 1)

})
. Since Fany is a

probability measure, δ(γ) is bounded [0, 1], and δ(γ) is monotone decreasing. Therefore,
limγ→1 δ(γ) exists.

If limγ→1 δ(γ) > 0, then there exist reward functions whose optimal policy sets Π∗ (R, γ)

never converge (in the discrete topology on sets) to Π∗ (R, 1), contradicting lemma D.40.
So limγ→1 δ(γ) = 0.

By the definition of optimality probability (definition 5.9) and of δ(γ), |PDany
(F, γ) −

PDany
(F, 1) | ≤ δ(γ). Since limγ→1 δ(γ) = 0, limγ→1 PDany

(F, γ) = PDany
(F, 1).

A similar proof shows that limγ→0 PDany
(F, γ) = PDany

(F, 0).

Lemma D.42 (Optimality probability identity). Let γ ∈ (0, 1) and let F ⊆ F(s).

PDany (F, γ) = pD′
(
F (γ) ≥ F(s, γ)

)
= pD′

(
F (γ) ≥ Fnd(s, γ)

)
. (D.79)

Proof. Let γ ∈ (0, 1).

PDany (F, γ) := P
R∼Dany

(
∃fπ ∈ F : π ∈ Π∗ (R, γ)

)
(D.80)

= E
r∼Dany

[
1maxf∈F f(γ)⊤r=maxf ′∈F(s) f

′(γ)⊤r

]
(D.81)

= E
r∼Dany

[
1maxf∈F f(γ)⊤r=maxf ′∈Fnd(s) f

′(γ)⊤r

]
(D.82)

=: pD′
(
F (γ) ≥ Fnd(s, γ)

)
. (D.83)

Equation (D.81) follows because lemma D.6 shows that π is optimal iff it induces an
optimal visit distribution f at every state. Equation (D.82) follows because ∀r ∈ R|S|:

max
f ′∈F(s)

f ′(γ)⊤r = max
f ′∈Fnd(s)

f ′(γ)⊤r
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by lemma D.39.

D.4.3 Basic properties of Power

Lemma D.43 (Power identities). Let γ ∈ (0, 1).

PowerDbound (s, γ) = E
r∼Dbound

[
max

f∈Fnd(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(D.84)

=
1− γ
γ

E
r∼Dbound

[
V ∗
R (s, γ)−R(s)

]
(D.85)

=
1− γ
γ

(
V ∗
Dbound

(s, γ)− E
R∼Dbound

[
R(s)

])
(D.86)

= E
R∼Dbound

max
π∈Π

E
s′∼T(s,π(s))

[
(1− γ)V π

R

(
s′, γ

)] . (D.87)

Proof.

PowerDbound(s, γ) := E
r∼Dbound

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(D.88)

= E
r∼Dbound

[
max

f∈Fnd(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(D.89)

= E
r∼Dbound

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(D.90)

=
1− γ
γ

E
r∼Dbound

[
V ∗
R (s, γ)−R(s)

]
(D.91)

=
1− γ
γ

(
V ∗
Dbound

(s, γ)− E
R∼Dbound

[
R(s)

])
(D.92)

= E
r∼Dbound

max
π∈Π

E
s′∼T(s,π(s))

[
(1− γ) fπ,s′(γ)⊤r

] (D.93)

= E
R∼Dbound

max
π∈Π

E
s′∼T(s,π(s))

[
(1− γ)V π

R

(
s′, γ

)] . (D.94)
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Equation (D.89) follows from lemma D.39. Equation (D.91) follows from the dual formu-
lation of optimal value functions. Equation (D.92) holds by the definition of V ∗

Dbound
(s, γ)

(definition 5.11). Equation (D.93) holds because fπ,s(γ) = es + γ Es′∼T(s,π(s))

[
fπ,s

′
(γ)
]

by the definition of a visit distribution function (definition 5.3).

Definition D.44 (Discount-normalized value function). Let π be a policy, R a reward
function, and s a state. For γ ∈ [0, 1], V π

R, norm (s, γ) := limγ∗→γ(1− γ∗)V π
R (s, γ∗).

Lemma D.45 (Normalized value functions have uniformly bounded derivative). There ex-
ists K ≥ 0 such that for all reward functions r ∈ R|S|, sups∈S,π∈Π,γ∈[0,1]

∣∣∣ d
dγV

π
R,norm (s, γ)

∣∣∣ ≤
K ∥r∥1.

Proof. Let π be any policy, s a state, and R a reward function. Since

V π
R, norm (s, γ) = lim

γ∗→γ
(1− γ∗)fπ,s(γ∗)⊤r,

d
dγV

π
R, norm (s, γ) is controlled by the behavior of limγ∗→γ(1− γ∗)fπ,s(γ∗). We show that

this function’s gradient is bounded in infinity norm.

By lemma D.9, fπ,s(γ) is a multivariate rational function on γ. Therefore, for any state
s′, fπ,s(γ)⊤es′ =

P (γ)
Q(γ) in reduced form. By proposition D.8, 0 ≤ fπ,s(γ)⊤es′ ≤ 1

1−γ . Thus,
Q may only have a root of multiplicity 1 at γ = 1, and Q(γ) ̸= 0 for γ ∈ [0, 1). Let
fs′(γ) := (1− γ)fπ,s(γ)⊤es′ .

If Q(1) ̸= 0, then the derivative f ′s′(γ) is bounded on γ ∈ [0, 1) because the polynomial
(1− γ)P (γ) cannot diverge on a bounded domain.

If Q(1) = 0, then factor out the root as Q(γ) = (1− γ)Q∗(γ).

f ′s′(γ) =
d

dγ

(
(1− γ)P (γ)

Q(γ)

)
(D.95)

=
d

dγ

(
P (γ)

Q∗(γ)

)
(D.96)

=
P ′(γ)Q∗(γ)− (Q∗)′(γ)P (γ)

(Q∗(γ))2
. (D.97)
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Since Q∗(γ) is a polynomial with no roots on γ ∈ [0, 1], f ′s′(γ) is bounded on γ ∈ [0, 1).

Therefore, whether or not Q(γ) has a root at γ = 1, f ′s′(γ) is bounded on γ ∈ [0, 1).
Furthermore, supγ∈[0,1)

∥∥∇(1− γ)fπ,s(γ)∥∥∞ = supγ∈[0,1)maxs′∈S
∣∣f ′s′(γ)∣∣ is finite since

there are only finitely many states.

There are finitely many π ∈ Π, and finitely many states s, and so there exists some K ′ such
that sup s∈S,

π∈Π,γ∈[0,1)

∥∥∇(1− γ)fπ,s(γ)∥∥∞ ≤ K ′. Then
∥∥∇(1− γ)fπ,s(γ)∥∥

1
≤ |S|K ′ =: K.

sup
s∈S,

π∈Π,γ∈[0,1)

∣∣∣∣ ddγV π
R,norm (s, γ)

∣∣∣∣ := sup
s∈S,

π∈Π,γ∈[0,1)

∣∣∣∣ ddγ lim
γ∗→γ

(1− γ∗)V π
R

(
s, γ∗

)∣∣∣∣ (D.98)

= sup
s∈S,

π∈Π,γ∈[0,1)

∣∣∣∣ ddγ (1− γ)V π
R (s, γ)

∣∣∣∣ (D.99)

= sup
s∈S,

π∈Π,γ∈[0,1)

∣∣∣∇(1− γ)fπ,s(γ)⊤r∣∣∣ (D.100)

≤ sup
s∈S,

π∈Π,γ∈[0,1)

∥∥∇(1− γ)fπ,s(γ)∥∥
1
∥r∥1 (D.101)

≤K ∥r∥1 . (D.102)

Equation (D.99) holds because V π
R (s, γ) is continuous on γ ∈ [0, 1) by corollary D.10.

Equation (D.101) holds by the Cauchy-Schwarz inequality.

Since
∣∣∣ d
dγV

π
R,norm (s, γ)

∣∣∣ is bounded for all γ ∈ [0, 1), eq. (D.102) also holds for γ → 1.

Lemma 5.13 (Continuity of Power). PowerDbound (s, γ) is Lipschitz continuous on
γ ∈ [0, 1].

Proof. Let b, c be such that supp(Dbound) ⊆ [b, c]|S|. For any r ∈ supp(Dbound) and
π ∈ Π, V π

R, norm (s, γ) has Lipschitz constant K ∥r∥1 ≤ K |S| ∥r∥∞ ≤ K |S|max(|c| , |b|)
on γ ∈ (0, 1) by lemma D.45.

For γ ∈ (0, 1), PowerDbound (s, γ) = ER∼Dbound

[
maxπ∈Π Es′∼T(s,π(s))

[
(1− γ)V π

R

(
s′, γ

)]]
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by eq. (D.94). The expectation of the maximum of a set of functions which share a Lips-
chitz constant, also shares the Lipschitz constant. This shows that PowerDbound (s, γ) is
Lipschitz continuous on γ ∈ (0, 1). Thus, its limits are well-defined as γ → 0 and γ → 1.
So it is Lipschitz continuous on the closed unit interval.

Proposition 5.14 (Maximal Power). PowerDbound (s, γ) ≤ ER∼Dbound

[
maxs∈S R(s)

]
,

with equality if s can deterministically reach all states in one step and all states are
1-cycles.

Proof. Let γ ∈ (0, 1).

PowerDbound (s, γ) = E
R∼Dbound

[
max
π∈Π

E
s′∼T (s,π(s))

[
(1− γ)V ∗

R

(
s′, γ

)]]
(D.103)

≤ E
R∼Dbound

[
max
π∈Π

E
s′∼T (s,π(s))

[
(1− γ)maxs′′∈S R(s

′′)

1− γ

]]
(D.104)

= E
R∼Dbound

[
max
s′′∈S

R(s′′)

]
. (D.105)

Equation (D.103) follows from lemma D.43. Equation (D.104) follows because V ∗
R

(
s′, γ

)
≤

maxs′′∈S R(s′′)
1−γ , as no policy can do better than achieving maximal reward at each time

step. Taking limits, the inequality holds for all γ ∈ [0, 1].

Suppose that s can deterministically reach all states in one step and all states are 1-cycles.
Then eq. (D.104) is an equality for all γ ∈ (0, 1), since for each R, the agent can select
an action which deterministically transitions to a state with maximal reward. Thus the
equality holds for all γ ∈ [0, 1].

Lemma D.46 (Lower bound on current Power based on future Power).

PowerDbound (s, γ) ≥ (1− γ)min
a

E
s′∼T (s,a),
R∼Dbound

[
R(s′)

]
+ γmax

a
E

s′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
.

(D.106)



165

Proof. Let γ ∈ (0, 1) and let a∗ ∈ argmaxa Es′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
.

PowerDbound (s, γ) (D.107)

=(1− γ) E
R∼Dbound

[
max
a

E
s′∼T (s,a)

[
V ∗
R

(
s′, γ

)]]
(D.108)

≥ (1− γ)max
a

E
s′∼T (s,a)

[
E

R∼Dbound

[
V ∗
R

(
s′, γ

)]]
(D.109)

=(1− γ)max
a

E
s′∼T (s,a)

[
V ∗
Dbound

(
s′, γ

)]
(D.110)

=(1− γ)max
a

E
s′∼T (s,a)

[
E

R∼Dbound

[
R(s′)

]
+

γ

1− γPowerDbound

(
s′, γ

)]
(D.111)

≥ (1− γ) E
s′∼T (s,a∗)

[
E

R∼Dbound

[
R(s′)

]
+

γ

1− γPowerDbound

(
s′, γ

)]
(D.112)

≥ (1− γ)min
a

E
s′∼T (s,a),
R∼Dbound

[
R(s′)

]
+ γ E

s′∼T (s,a∗)

[
PowerDbound

(
s′, γ

)]
. (D.113)

Equation (D.108) holds by lemma D.43. Equation (D.109) follows because

E
x∼X

[
max
a

f(a, x)

]
≥ max

a
E

x∼X

[
f(a, x)

]
by Jensen’s inequality, and eq. (D.111) follows by lemma D.43.

The inequality also holds when we take the limits γ → 0 or γ → 1.

Proposition 5.15 (Power is smooth across reversible dynamics). Let Dbound be bounded
[b, c]. Suppose s and s′ can both reach each other in one step with probability 1.

∣∣PowerDbound (s, γ)− PowerDbound

(
s′, γ

) ∣∣ ≤ (c− b)(1− γ). (5.7)

Proof. Let γ ∈ [0, 1]. First consider the case where PowerDbound (s, γ) ≥ PowerDbound

(
s′, γ

)
.

PowerDbound

(
s′, γ

)
≥ (1− γ)min

a
E

sx∼T (s′,a),
R∼Dbound

[
R(sx)

]
+ γmax

a
E

sx∼T (s′,a)

[
PowerDbound (sx, γ)

]
(D.114)
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≥ (1− γ)b+ γPowerDbound (s, γ) . (D.115)

Equation (D.114) follows by lemma D.46. Equation (D.115) follows because reward is
lower-bounded by b and because s′ can reach s in one step with probability 1.∣∣∣PowerDbound (s, γ)− PowerDbound

(
s′, γ

)∣∣∣ (D.116)

= PowerDbound (s, γ)− PowerDbound

(
s′, γ

)
(D.117)

≤ PowerDbound (s, γ)−
(
(1− γ)b+ γPowerDbound (s, γ)

)
(D.118)

= (1− γ)
(
PowerDbound (s, γ)− b

)
(D.119)

≤ (1− γ)
(

E
R∼Dbound

[
max
s′′∈S

R(s′′)

]
− b
)

(D.120)

≤ (1− γ)(c− b). (D.121)

Equation (D.117) follows because

PowerDbound (s, γ) ≥ PowerDbound

(
s′, γ

)
.

Equation (D.118) follows by eq. (D.115). Equation (D.120) follows by proposition 5.14.
Equation (D.121) follows because reward under Dbound is upper-bounded by c.

The case where PowerDbound (s, γ) ≤ PowerDbound

(
s′, γ

)
is similar, leveraging the fact

that s can also reach s′ in one step with probability 1.

D.4.4 Seeking Power is often more probable under optimality

D.4.4.1 Keeping options open tends to be Power-seeking and tends
to be optimal

Definition D.47 (Normalized visit distribution function). Let f : [0, 1) → R|S| be a
vector function. For γ ∈ [0, 1], Norm (f , γ) := limγ∗→γ(1− γ∗)f(γ∗) (this limit need not
exist for arbitrary f). If F is a set of such f , then Norm (F, γ) :=

{
Norm (f , γ) | f ∈ F

}
.
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Remark. RSD (s) = Norm
(
F(s), 1

)
.

Lemma D.48 (Normalized visit distribution functions are continuous). Let ∆s ∈ ∆(S)
be a state probability distribution, let π ∈ Π, and let f∗ := Es∼∆s [f

π,s]. Norm (f∗, γ) is
continuous on γ ∈ [0, 1].

Proof.

Norm
(
f∗, γ

)
:= lim

γ∗→γ
(1− γ∗) E

s∼∆s

[
fπ,s(γ∗)

]
(D.122)

= E
s∼∆s

[
lim
γ∗→γ

(1− γ∗)fπ,s(γ∗)
]

(D.123)

=: E
s∼∆s

[
Norm (fπ,s, γ)

]
. (D.124)

Equation (D.123) follows because the expectation is over a finite set. Each fπ,s ∈ F(s) is
continuous on γ ∈ [0, 1) by lemma D.9, and limγ∗→1(1− γ∗)fπ,s(γ∗) exists because rsds
are well-defined [68]. Therefore, each Norm (fπ,s, γ) is continuous on γ ∈ [0, 1]. Lastly,
eq. (D.124)’s expectation over finitely many continuous functions is itself continuous.

Lemma D.49 (Non-domination of normalized visit distribution functions). Let ∆s ∈ ∆(S)
be a state probability distribution and let F :=

{
Es∼∆s [f

π,s] | π ∈ Π
}
. For all γ ∈ [0, 1],

ND
(
Norm (F, γ)

)
⊆ Norm

(
ND (F ) , γ

)
, with equality when γ ∈ (0, 1).

Proof. Suppose γ ∈ (0, 1).

ND
(
Norm (F, γ)

)
= ND

(
(1− γ)F (γ)

)
(D.125)

= (1− γ)ND
(
F (γ)

)
(D.126)

= (1− γ)
(
ND (F ) (γ)

)
(D.127)

= Norm
(
ND (F ) , γ

)
. (D.128)

Equation (D.125) and eq. (D.128) follow by the continuity of Norm (f , γ) (lemma D.48).
Equation (D.126) follows by lemma D.20 item 1. Equation (D.127) follows by lemma D.37.

Let γ = 1. Let d ∈ ND
(
Norm (F, 1)

)
be strictly optimal for r∗ ∈ R|S|. Then let Fd ⊆ F
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be the subset of f ∈ F such that Norm (f , 1) = d.

max
f∈Fd

Norm (f , 1)⊤ r∗ > max
f ′∈F\Fd

Norm
(
f ′, 1

)⊤
r∗. (D.129)

Since Norm (f , 1) is continuous at γ = 1 (lemma D.48), x⊤r∗ is continuous on x ∈ R|S|,
and F is finite, eq. (D.129) holds for some γ∗ ∈ (0, 1) sufficiently close to γ = 1. By
lemma D.15, at least one f ∈ Fd is an element of ND

(
F (γ∗)

)
. Then by lemma D.37,

f ∈ ND (F ). We conclude that ND
(
Norm (F, 1)

)
⊆ Norm

(
ND (F ) , 1

)
.

The case for γ = 0 proceeds similarly.

Lemma D.50 (Power limit identity). Let γ ∈ [0, 1].

PowerDbound (s, γ) = E
r∼Dbound

[
max

f∈Fnd(s)
lim
γ∗→γ

1− γ∗
γ∗

(
f(γ∗)− es

)⊤
r

]
. (D.130)

Proof. Let γ ∈ [0, 1].

PowerDbound (s, γ) = lim
γ∗→γ

PowerDbound

(
s, γ∗

)
(D.131)

= lim
γ∗→γ

E
r∼Dbound

[
max

f∈Fnd(s)

1− γ∗
γ∗

(
f(γ∗)− es

)⊤
r

]
(D.132)

= E
r∼Dbound

[
lim
γ∗→γ

max
f∈Fnd(s)

1− γ∗
γ∗

(
f(γ∗)− es

)⊤
r

]
(D.133)

= E
r∼Dbound

[
max

f∈Fnd(s)
lim
γ∗→γ

1− γ∗
γ∗

(
f(γ∗)− es

)⊤
r

]
. (D.134)

Equation (D.131) follows since PowerDbound (s, γ) is continuous on γ ∈ [0, 1] by lemma 5.13.
Equation (D.132) follows by lemma D.43.

For γ∗ ∈ (0, 1), let fγ∗(r) := maxf∈Fnd(s)
1−γ∗

γ∗

(
f(γ∗)− es

)⊤
r. For any sequence γn → γ,(

fγn
)∞
n=1

is a sequence of functions which are piecewise linear on r ∈ R|S|, which means they
are continuous and therefore measurable. Since lemma D.9 shows that each f ∈ Fnd(s)

is multivariate rational on γ∗ (and therefore continuous on γ∗),
{
fγn
}∞
n=1

converges
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pointwise to limit function fγ . Furthermore,
∣∣V ∗

R (s, γn)−R(s)
∣∣ ≤ γ

1−γn
∥R∥∞, and

so
∣∣fγn(r)∣∣ = ∣∣∣1−γn

γn
(V ∗

R (s, γn)−R(s))
∣∣∣ ≤ g(r) ≤ ∥r∥∞ =: g(r), which is measurable.

Therefore, apply Lebesgue’s dominated convergence theorem to conclude that eq. (D.133)
holds. Equation (D.134) holds because max is a continuous function.

Lemma D.51 (Lemma for Power superiority). Let ∆1,∆2 ∈ ∆(S) be state probability
distributions. For i = 1, 2, let F∆i

:=
{
γ−1 Esi∼∆i

[
fπ,si − esi

]
| π ∈ Π

}
. Suppose F∆2

contains a copy of ND
(
F∆1

)
via ϕ. Then ∀γ ∈ [0, 1] : Es1∼∆1

[
PowerDbound (s1, γ)

]
≤most: Dbound

Es2∼∆2

[
PowerDbound (s2, γ)

]
.

If ND
(
F∆2

)
\ϕ ·ND

(
F∆1

)
is non-empty, then for all γ ∈ (0, 1), the inequality is strict for

all DX-iid ∈ Dc/b/iid and Es1∼∆1

[
PowerDbound (s1, γ)

]
̸≥most: Dbound

Es2∼∆2

[
PowerDbound (s2, γ)

]
.

These results also hold when replacing F∆i with F ∗
∆i

:=
{
Esi∼∆i [f

π,si ] | π ∈ Π
}

for i = 1, 2.

Proof.

ϕ ·ND
(
Norm

(
F∆1 , γ

))
⊆ ϕ ·Norm

(
ND

(
F∆1

)
, γ
)

(D.135)

:=

{
Pϕ lim

γ∗→γ
(1− γ∗)f(γ∗) | f ∈ ND

(
F∆1

)}
(D.136)

=

{
lim
γ∗→γ

(1− γ∗)Pϕf(γ
∗) | f ∈ ND

(
F∆1

)}
(D.137)

=

{
lim
γ∗→γ

(1− γ∗)f(γ∗) | f ∈ F ′
sub

}
(D.138)

⊆
{

lim
γ∗→γ

(1− γ∗)f(γ∗) | f ∈ F∆2

}
(D.139)

=: Norm
(
F∆2 , γ

)
. (D.140)

Equation (D.135) follows by lemma D.49. Equation (D.137) follows because Pϕ is a
continuous linear operator. Equation (D.139) follows by assumption.

E
s1∼∆1

[
PowerDbound (s1, γ)

]
:= E

s1∼∆1,
r∼Dbound

[
max
π∈Π

lim
γ∗→γ

1− γ∗
γ∗

(
fπ,s1(γ∗)− es1

)⊤
r

]
(D.141)
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= E
r∼Dbound

[
max
π∈Π

lim
γ∗→γ

1− γ∗
γ∗

E
s1∼∆1

[
fπ,s1(γ∗)− es1

]⊤
r

]
(D.142)

= E
r∼Dbound

 max
d∈Norm(F∆1

,γ)
d⊤r

 (D.143)

= E
r∼Dbound

 max
d∈ND

(
Norm(F∆1

,γ)
)d⊤r

 (D.144)

≤most: Dbound
E

r∼Dbound

 max
d∈Norm(F∆2

,γ)
d⊤r

 (D.145)

= E
r∼Dbound

[
max
π∈Π

lim
γ∗→γ

1− γ∗
γ∗

E
s2∼∆2

[
fπ,s2(γ∗)− es2

]⊤
r

]
(D.146)

= E
s2∼∆2,

r∼Dbound

[
max
π∈Π

lim
γ∗→γ

1− γ∗
γ∗

(
fπ,s2(γ∗)− es2

)⊤
r

]
(D.147)

=: E
s2∼∆2

[
PowerDbound (s2, γ)

]
. (D.148)

Equation (D.141) and eq. (D.148) follow by lemma D.50. Equation (D.142) and eq. (D.147)
follow because each R has a stationary deterministic optimal policy π ∈ Π∗ (R, γ) ⊆ Π

which simultaneously achieves optimal value at all states. Equation (D.144) follows by
corollary D.16.

Apply lemma D.29 with A := Norm
(
F∆1 , γ

)
, B := Norm

(
F∆2 , γ

)
, g the identity

function, and involution ϕ (satisfying ϕ ·ND (A) ⊆ B by eq. (D.140)) in order to conclude
that eq. (D.145) holds.

Suppose that ND
(
F∆2

)
\ϕ·ND

(
F∆1

)
is non-empty; let F ′

sub := ϕ·ND
(
F∆1

)
. Lemma D.37

shows that for all γ ∈ (0, 1), ND
(
F∆2(γ)

)
\F ′

sub(γ) is non-empty. Lemma D.20 item 1 then
implies that ND (B)\ϕ·A = 1−γ

γ

(
ND

(
F∆2(γ)

)
− es

)
\
(
1−γ
γ F ′

sub(γ)
)

is non-empty. Then
lemma D.29 implies that for all γ ∈ (0, 1), eq. (D.145) is strict for all DX-iid ∈ Dc/b/iid

and Es1∼∆1

[
PowerDbound (s1, γ)

]
̸≥most: Dbound

Es2∼∆2

[
PowerDbound (s2, γ)

]
.



171

We show that this result’s preconditions holding for F ∗
∆i

implies the F∆i preconditions.

Suppose F ∗
∆i

:=
{
Esi∼∆i [f

π,si ] | π ∈ Π
}

for i = 1, 2 are such that F ∗
sub := ϕ ·ND

(
F ∗
∆1

)
⊆

F ∗
∆2

. In the following, the ∆i are represented as vectors in R|S|, and γ is a variable.

ϕ ·
{
γf | f ∈ ND

(
F∆1

)}
= ϕ ·

(
ND

(
F ∗
∆1
−∆1

))
(D.149)

= ϕ ·
(
ND

(
F ∗
∆1

)
−∆1

)
(D.150)

=
{
Pϕf −Pϕ∆1 | f ∈ ND

(
F ∗
∆1

)}
(D.151)

⊆
{
f −∆2 | f ∈ F ∗

∆2

}
(D.152)

=
{
γf | f ∈ F∆2

}
. (D.153)

Equation (D.150) follows from lemma D.20 item 2. Since we assumed that ϕ ·ND
(
F ∗
∆1

)
⊆

F ∗
∆2

, ϕ · {∆1} = ϕ ·
(
ND

(
F ∗
∆1

)
(0)

)
⊆ F ∗

∆2
(0) = {∆2}. This implies that Pϕ∆1 = ∆2

and so eq. (D.152) follows.

Equation (D.153) shows that ϕ ·
{
γf | f ∈ ND

(
F∆1

)}
⊆
{
γf | f ∈ F∆2

}
. But we then

have ϕ ·
{
γf | f ∈ ND

(
F∆1

)}
:=
{
γPϕf | f ∈ ND

(
F∆1

)}
=
{
γf | f ∈ ϕ ·ND

(
F∆1

)}
⊆{

γf | f ∈ F∆2

}
. Thus, ϕ ·ND

(
F∆1

)
⊆ F∆2 .

Suppose ND
(
F ∗
∆2

)
\ ϕ ·ND

(
F ∗
∆1

)
is non-empty, which implies that

ϕ ·
{
γf | f ∈ ND

(
F∆1

)}
=
{
Pϕf −Pϕ∆1 | f ∈ ND

(
F ∗
∆1

)}
(D.154)

=
{
f −Pϕ∆1 | f ∈ ϕ ·ND

(
F ∗
∆1

)}
(D.155)

⊊
{
f −∆2 | f ∈ ND

(
F ∗
∆2

)}
(D.156)

=
{
γf | f ∈ ND

(
F∆2

)}
. (D.157)

Then ND
(
F∆2

)
\ ϕ ·ND

(
F∆1

)
must be non-empty. Therefore, if the preconditions of

this result are met for F ∗
∆i

, they are met for F∆i .

Proposition 5.22 (States with “more options” have more Power). If F(s) contains a
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copy of Fnd(s
′) via ϕ, then ∀γ ∈ [0, 1] : PowerDbound(s, γ) ≥most PowerDbound(s

′, γ). If
Fnd(s) \ ϕ · Fnd(s

′) is non-empty, then for all γ ∈ (0, 1), the converse ≤most statement
does not hold.

Proof. Let Fsub := ϕ · Fnd(s
′) ⊆ F(s). Let ∆1 := es′ ,∆2 := es, and define F ∗

∆i
:={

Esi∼∆i [f
π,si ] | π ∈ Π

}
for i = 1, 2. Then Fnd(s

′) = ND
(
F ∗
∆1

)
is similar to Fsub =

F ∗
sub ⊆ F ∗

∆2
= F(s) via involution ϕ. Apply lemma D.51 to conclude that

∀γ ∈ [0, 1] : PowerDbound

(
s′, γ

)
≤most: Dbound

PowerDbound (s, γ) .

Furthermore, Fnd(s) = ND
(
F ∗
∆2

)
, and Fsub = F ∗

sub, and so if Fnd(s) \ ϕ · Fnd(s
′) :=

Fnd(s) \ Fsub = ND
(
F ∗
∆2

)
\ F ∗

sub is non-empty, then lemma D.51 shows that for all γ ∈
(0, 1), the inequality is strict for allDX-iid ∈ Dc/b/iid and PowerDbound

(
s′, γ

)
̸≥most: Dbound

PowerDbound (s, γ).

Lemma D.52 (Non-dominated visit distribution functions never agree with other visit
distribution functions at that state). Let f ∈ Fnd(s), f

′ ∈ F(s) \ {f}. ∀γ ∈ (0, 1) : f(γ) ̸=
f ′(γ).

Proof. Let γ ∈ (0, 1). Since f ∈ Fnd(s), there exists a γ∗ ∈ (0, 1) at which f is strictly opti-
mal for some reward function. Then by proposition D.35, we can produce another reward
function for which f is strictly optimal at discount rate γ; in particular, proposition D.35
guarantees that the policies which induce f ′ are not optimal at γ. So f(γ) ̸= f ′(γ).

Corollary D.53 (Cardinality of non-dominated visit distributions). Let F ⊆ F(s).
∀γ ∈ (0, 1) :

∣∣F ∩ Fnd(s)
∣∣ = ∣∣F (γ) ∩ Fnd(s, γ)

∣∣.
Proof. Let γ ∈ (0, 1). By applying lemma D.37 with ∆d := es, f ∈ Fnd(s) = ND

(
F(s)

)
iff f(γ) ∈ ND

(
F(s, γ)

)
. By lemma D.38, ND

(
F(s, γ)

)
= Fnd(s, γ). So all f ∈ F ∩Fnd(s)

induce f(γ) ∈ F (γ) ∩ Fnd(s, γ), and
∣∣F ∩ Fnd(s)

∣∣ ≥ ∣∣F (γ) ∩ Fnd(s, γ)
∣∣.

Lemma D.52 implies that for all f , f ′ ∈ Fnd(s), f = f ′ iff f(γ) = f ′(γ). Therefore,∣∣F ∩ Fnd(s)
∣∣ ≤ ∣∣F (γ) ∩ Fnd(s, γ)

∣∣. So
∣∣F ∩ Fnd(s)

∣∣ = ∣∣F (γ) ∩ Fnd(s, γ)
∣∣.
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Lemma D.54 (Optimality probability and state bottlenecks). Let X := Reach
(
s′, a′

)
∪

Reach
(
s′, a

)
. Suppose that s can reach X, but only by taking actions equivalent to

a′ or a at state s′. Fnd,a′ := Fnd(s | π(s′) = a′), Fa := F(s | π(s′) = a). Suppose
Fa contains a copy of Fnd,a′ via ϕ which fixes all states not belonging to X. Then
∀γ ∈ [0, 1] : PDany

(
Fnd,a′ , γ

)
≤most: Dany

PDany
(Fa, γ).

If Fnd(s) ∩
(
Fa \ ϕ · Fnd,a′

)
is non-empty, then for all γ ∈ (0, 1), the inequality is strict

for all DX-iid ∈ Dc/b/iid, and PDany

(
Fnd,a′ , γ

)
̸≥most: Dany

PDany
(Fa, γ).

Proof. Let Fsub := ϕ·Fnd,a′ . Let F ∗ :=
⋃

a′′∈A:

(a′′ ̸≡s′a)∧(a′′ ̸≡s′a
′)
F(s | π(s′) = a′′)∪Fnd,a′∪Fsub.

ϕ · F ∗ :=ϕ ·


⋃

a′′∈A:

(a′′ ̸≡s′a)∧(a′′ ̸≡s′a
′)

F(s | π(s′) = a′′) ∪ Fnd,a′ ∪ Fsub

 (D.158)

=
⋃

a′′∈A:

(a′′ ̸≡s′a)∧(a′′ ̸≡s′a
′)

ϕ · F(s | π(s′) = a′′) ∪
(
ϕ · Fnd,a′

)
∪ (ϕ · Fsub) (D.159)

=
⋃

a′′∈A:

(a′′ ̸≡s′a)∧(a′′ ̸≡s′a
′)

ϕ · F(s | π(s′) = a′′) ∪ Fsub ∪ Fnd,a′ (D.160)

=
⋃

a′′∈A:

(a′′ ̸≡s′a)∧(a′′ ̸≡s′a
′)

F(s | π(s′) = a′′) ∪ Fsub ∪ Fnd,a′ (D.161)

=:F ∗. (D.162)

Equation (D.160) follows because the involution ϕ ensures that ϕ · Fsub = Fnd,a′ . By as-
sumption, ϕ fixes all s′ ̸∈ Reach

(
s′, a′

)
∪Reach

(
s′, a

)
. Suppose f ∈ F(s)\

(
Fnd,a′ ∪ Fa

)
.

By the bottleneck assumption, f does not visit states in Reach
(
s′, a′

)
∪Reach

(
s′, a

)
.

Therefore, Pϕf = f , and so eq. (D.161) follows.

Let FZ :=
(
F(s) \ (F(s | π(s) = a′) ∪ Fa)

)
∪ Fnd,a′ ∪ Fa. By definition, FZ ⊆ F(s).

Furthermore, Fnd(s) =
⋃

a′′∈AFnd(s | π(s′) = a′′) ⊆
(
F(s) \ (F(s | π(s) = a′) ∪ Fa)

)
∪

Fnd(s | π(s) = a′) ∪ Fa =: FZ , and so Fnd(s) ⊆ FZ . Note that F ∗ = FZ \ (Fa \ Fsub).
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Case: γ ∈ (0, 1).

PDany

(
Fnd,a′ , γ

)
= pDany

(
Fnd,a′(γ) ≥ F(s, γ)

)
(D.163)

≤most: Dany pDany

(
Fa(γ) ≥ F(s, γ)

)
(D.164)

= PDany

(
Fnd,a′ , γ

)
. (D.165)

Equation (D.163) and eq. (D.165) follow from lemma D.42. Equation (D.164) follows by
applying lemma D.33 with A := Fnd,a′(γ), B

′ := Fsub(γ), B := Fa(γ), C := F(s, γ), Z :=

FZ(γ) which satisfies ND (C) = Fnd(s, γ) ⊆ FZ(γ) ⊆ F(s, γ) = C, and involution ϕ

which satisfies ϕ · F ∗(γ) = ϕ ·
(
Z \

(
B \B′)) = Z \

(
B \B′) = F ∗(γ).

Suppose Fnd(s) ∩
(
Fa \ Fsub

)
is non-empty.

0 <
∣∣∣Fnd(s) ∩

(
Fa \ Fsub

)∣∣∣ = ∣∣∣Fnd(s, γ) ∩
(
Fa(γ) \ Fsub(γ)

)∣∣∣ =: ∣∣∣ND (C) ∩
(
B \B′)∣∣∣ ,

(with the first equality holding by corollary D.53), and so ND (C)∩
(
B \B′) is non-empty.

We also have B := Fa(γ) ⊆ F(s, γ) =: C. Then reapplying lemma D.33, eq. (D.164) is
strict for all DX-iid ∈ Dc/b/iid, and PDany

(
Fnd,a′ , γ

)
̸≥most: Dany

PDany
(Fa, γ).

Case: γ = 1, γ = 0.

PDany

(
Fnd,a′ , 1

)
= lim

γ∗→1
PDany

(
Fnd,a′ , γ

∗) (D.166)

= lim
γ∗→1

pDany

(
Fnd,a′(γ

∗) ≥ F(s, γ∗)
)

(D.167)

≤most: Dany lim
γ∗→1

pDany

(
Fa(γ

∗) ≥ F(s, γ∗)
)

(D.168)

= lim
γ∗→1

PDany

(
Fa, γ

∗) (D.169)

= PDany (Fa, 1) . (D.170)

Equation (D.166) and eq. (D.170) hold by proposition D.41. Equation (D.167) and
eq. (D.169) follow by lemma D.42. Applying lemma D.34 with γ := 1, I := (0, 1), FA :=

Fnd,a′ , FB := Fa, FC := F(s), FZ as defined above, and involution ϕ (for which ϕ ·(
FZ \

(
FB \ ϕ · FA

))
= FZ \

(
FB \ ϕ · FA

)
), we conclude that eq. (D.168) follows.
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The γ = 0 case proceeds similarly to γ = 1.

Lemma D.55 (Action optimality probability is a special case of visit distribution
optimality probability). PDany

(s, a, γ) = PDany

(
F(s | π(s) = a), γ

)
.

Proof. Let Fa := F(s | π(s) = a). For γ ∈ (0, 1),

P
Dany

(s, a, γ) := P
R∼Dany

(
∃π∗ ∈ Π∗ (R, γ) : π∗(s) = a

)
(D.171)

= P
r∼Dany

(
∃fπ∗,s ∈ Fa : fπ

∗,s(γ)⊤r = max
f∈F(s)

f(γ)⊤r

)
(D.172)

= PDany (Fa, γ) . (D.173)

By lemma D.6, if ∃π∗ ∈ Π∗ (R, γ) : π∗(s) = a, then it induces some optimal fπ∗,s ∈ Fa.
Conversely, if fπ∗,s ∈ Fa is optimal at γ ∈ (0, 1), then π∗ chooses optimal actions on the
support of fπ∗,s(γ). Let π′ agree with π∗ on that support and let π′ take optimal actions
at all other states. Then π′ ∈ Π∗ (R, γ) and π′(s) = a. So eq. (D.172) follows.

Suppose γ = 0 or γ = 1. Consider any sequence (γn)
∞
n=1 converging to γ, and let Dany

induce probability measure F .

PDany (Fa, γ) := lim
γ∗→γ

PDany

(
Fa, γ

∗) (D.174)

= lim
γ∗→γ

P
R∼Dany

(
∃π∗ ∈ Π∗ (R, γ∗) : π∗(s) = a

)
(D.175)

= lim
n→∞

P
R∼Dany

(
∃π∗ ∈ Π∗ (R, γn) : π

∗(s) = a
)

(D.176)

= lim
n→∞

∫
RS

1∃π∗∈Π∗(R,γn):π∗(s)=a dF (R) (D.177)

=

∫
RS

lim
n→∞

1∃π∗∈Π∗(R,γn):π∗(s)=a dF (R) (D.178)

=

∫
RS

1∃π∗∈Π∗(R,γ):π∗(s)=a dF (R) (D.179)

=: P
Dany

(s, a, γ) . (D.180)

Equation (D.175) follows by eq. (D.173). for γ∗ ∈ [0, 1], let fγ∗(R) := 1∃π∗∈Π∗(R,γ∗):π∗(s)=a.
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For each R ∈ RS , lemma D.40 exists γx ≈ γ such that for all intermediate γ′x between
γx and γ, Π∗ (R, γ′x) = Π∗ (R, γ). Since γn → γ, this means that

(
fγn
)∞
n=1

converges
pointwise to fγ . Furthermore, ∀n ∈ N, R ∈ RS :

∣∣fγn(R)∣∣ ≤ 1 by definition. Therefore,
eq. (D.178) follows by Lebesgue’s dominated convergence theorem.

Proposition 5.25 (Keeping options open tends to be Power-seeking and tends to be
optimal).

Suppose Fa := F(s | π(s) = a) contains a copy of Fa′ := F(s | π(s) = a′) via ϕ.

1. If s ̸∈ Reach
(
s, a′

)
, then ∀γ ∈ [0, 1] : Esa∼T (s,a)

[
PowerDbound (sa, γ)

]
≥most: Dbound

Esa′∼T (s,a′)

[
PowerDbound (sa′ , γ)

]
.

2. If s can only reach the states of Reach
(
s, a′

)
∪Reach (s, a) by taking actions equiv-

alent to a′ or a at state s, then ∀γ ∈ [0, 1] : PDany
(s, a, γ) ≥most: Dany

PDany

(
s, a′, γ

)
.

If Fnd(s) ∩
(
Fa \ ϕ · Fa′

)
is non-empty, then ∀γ ∈ (0, 1), the converse ≤most statements

do not hold.

Proof. Note that by definition 5.3, Fa′(0) = {es} = Fa(0). Since ϕ ·Fa′ ⊆ Fa, in particular
we have ϕ · Fa′(0) =

{
Pϕes

}
⊆ {es} = Fa(0), and so ϕ(s) = s.

Item 1. For state probability distribution ∆s ∈ ∆(S), let F ∗
∆s

:=

{
Es′∼∆s

[
fπ,s

′
]
| π ∈ Π

}
.

Unless otherwise stated, we treat γ as a variable in this item; we apply element-wise
vector addition, constant multiplication, and variable multiplication via the conventions
outlined in definition D.19.

Fa′ =

{
es + γ E

sa′∼T (s,a′)
[fπ,sa′ ] | π ∈ Π : π(s) = a′

}
(D.181)

=

{
es + γ E

sa′∼T (s,a′)
[fπ,sa′ ] | π ∈ Π

}
(D.182)

= es + γF ∗
T (s,a′). (D.183)

Equation (D.181) follows by definition 5.3, since each f ∈ F(s) has an initial term of es.
Equation (D.182) follows because s ̸∈ Reach

(
s, a′

)
, and so for all sa′ ∈ supp(T (s, a′)),
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fπ,sa′ is unaffected by the choice of action π(s). Note that similar reasoning implies that
Fa ⊆ es + γF ∗

T (s,a) (because eq. (D.182) is a containment relation in general).

Since Fa′ = es + γF ∗
T (s,a′), if Fa contains a copy of Fa′ via ϕ, then F ∗

T (s,a) contains a copy

of F ∗
T (s,a′) via ϕ. Then ϕ ·ND

(
F ∗
T (s,a′)

)
⊆ ϕ · F ∗

T (s,a′) ⊆ F ∗
T (s,a), and so F ∗

T (s,a) contains a

copy of ND
(
F ∗
T (s,a′)

)
. Then apply lemma D.51 with ∆1 := T (s, a′) and ∆2 := T (s, a) to

conclude that ∀γ ∈ [0, 1]:

E
sa′∼T (s,a′)

[
PowerDbound (sa′ , γ)

]
≤most: Dbound

E
sa∼T (s,a)

[
PowerDbound (sa, γ)

]
.

Suppose Fnd(s)∩
(
Fa \ ϕ · Fa′

)
is non-empty. To apply the second condition of lemma D.51,

we want to demonstrate that ND
(
F ∗
T (s,a)

)
\ ϕ ·ND

(
F ∗
T (s,a′)

)
is also non-empty.

First consider f ∈ Fnd(s) ∩ Fa. Because Fa ⊆ es + γF ∗
T (s,a), we have that γ−1(f − es) ∈

F ∗
T (s,a). Because f ∈ Fnd(s), by definition 5.6, ∃r ∈ R|S|, γx ∈ (0, 1) such that

f(γx)
⊤r > max

f ′∈F(s)\{f}
f ′(γx)

⊤r. (D.184)

Then since γx ∈ (0, 1),

γ−1
x (f(γx)− es)

⊤r > max
f ′∈F(s)\{f}

γ−1
x (f ′(γx)− es)

⊤r (D.185)

= max
f ′∈γ−1

x ((F(s)\{f})−es)
f ′(γx)

⊤r (D.186)

≥ max
f ′∈γ−1

x ((Fa\{f})−es)
f ′(γx)

⊤r (D.187)

= max
f ′∈F ∗

T (s,a)
\{γ−1

x (f−es)}
f ′(γx)

⊤r. (D.188)

Equation (D.187) holds because Fa ⊆ F(s). By assumption, action a is optimal for r at
state s and at discount rate γx. Equation (D.182) shows that F ∗

T (s,a) potentially allows
the agent a non-stationary policy choice at s, but non-stationary policies cannot increase
optimal value [68]. Therefore, eq. (D.188) holds.

We assumed that γ−1(f − es) ∈ γ−1(Fnd(s) − es). Furthermore, since we just showed
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that γ−1(f − es) ∈ F ∗
T (s,a) is strictly optimal over the other elements of F ∗

T (s,a) for reward

function r at discount rate γx ∈ (0, 1), we conclude that it is an element of ND
(
F ∗
T (s,a)

)
by definition D.18. Then we conclude that γ−1(Fnd(s)− es) ∩ F ∗

T (s,a) ⊆ ND
(
F ∗
T (s,a)

)
.

We now show that ND
(
F ∗
T (s,a)

)
\ ϕ ·ND

(
F ∗
T (s,a′)

)
is non-empty.

0 <
∣∣∣Fnd(s) ∩

(
Fa \ ϕ · Fa′

)∣∣∣ (D.189)

=

∣∣∣∣γ−1
(
Fnd(s) ∩

(
Fa \ ϕ · Fa′

)
− es

)∣∣∣∣ (D.190)

≤
∣∣∣∣γ−1

(
Fnd(s)− es

)
∩
(
F ∗
T (s,a) \ ϕ · F ∗

T (s,a′)

)∣∣∣∣ (D.191)

=

∣∣∣∣(γ−1
(
Fnd(s)− es

)
∩ F ∗

T (s,a)

)
\ ϕ · F ∗

T (s,a′)

∣∣∣∣ (D.192)

≤
∣∣∣∣ND

(
F ∗
T (s,a)

)
\ ϕ · F ∗

T (s,a′)

∣∣∣∣ (D.193)

≤
∣∣∣∣ND

(
F ∗
T (s,a)

)
\ ϕ ·ND

(
F ∗
T (s,a′)

)∣∣∣∣ . (D.194)

Equation (D.189) follows by the assumption that Fnd(s)∩
(
Fa \ ϕ · Fa′

)
is non-empty. Let

f , f ′ ∈ Fnd(s) ∩
(
Fa \ ϕ · Fa′

)
be distinct. Then we must have that for some γx ∈ (0, 1),

f(γx) ̸= f ′(γx). This holds iff γ−1
x (f(γx)−es) ̸= γ−1

x (f ′(γx)−es), and so eq. (D.190) holds.

Equation (D.191) holds because Fa ⊆ es+γF
∗
T (s,a) and F ′

a = es+γF
∗
T (s,a′) by eq. (D.183).

Equation (D.193) holds because we showed above that

γ−1(Fnd(s)− es) ∩ F ∗
T (s,a) ⊆ ND

(
F ∗
T (s,a)

)
.

Equation (D.194) holds because ND
(
F ∗
T (s,a′)

)
⊆ F ∗

T (s,a′) by definition D.18.

Therefore, ND
(
F ∗
T (s,a)

)
\ϕ·ND

(
F ∗
T (s,a′)

)
is non-empty, and so apply the second condition

of lemma D.51 to conclude that for all DX-iid ∈ Dc/b/iid,

∀γ ∈ (0, 1) : E
sa′∼T (s,a′)

[
PowerDX-iid (sa′ , γ)

]
< E

sa∼T (s,a)

[
PowerDX-iid (sa, γ)

]
,
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and that

∀γ ∈ (0, 1) : E
sa′∼T (s,a′)

[
PowerDbound (sa′ , γ)

]
̸≥most: Dbound

E
sa∼T (s,a)

[
PowerDbound (sa, γ)

]
.

Item 2. Let ϕ′(sx) := ϕ(sx) when sx ∈ Reach
(
s, a′

)
∪ Reach (s, a), and equal sx

otherwise. Since ϕ is an involution, so is ϕ′.

ϕ′ · Fa′ :=

Pϕ′

(
es + γ E

sa′∼T (s,a′)
[fπ,sa′ ]

)
| π ∈ Π, π(s) = a′

 (D.195)

=

{
es + γ E

sa′∼T (s,a′)

[
Pϕ′fπ,sa′

]
| π ∈ Π, π(s) = a′

}
(D.196)

=

{
Pϕes + γ E

sa′∼T (s,a′)

[
Pϕf

π,sa′
]
| π ∈ Π, π(s) = a′

}
(D.197)

=: ϕ · Fa′ (D.198)

⊆ Fa. (D.199)

Equation (D.196) follows because if s ∈ Reach
(
s, a′

)
∪Reach (s, a), then we already

showed that ϕ fixes s. Otherwise, ϕ′(s) = s by definition. Equation (D.197) follows by
the definition of ϕ′ on Reach

(
s, a′

)
∪ Reach (s, a) and because es = Pϕes. Next, we

assumed that ϕ · Fa′ ⊆ Fa, and so eq. (D.199) holds.

Therefore, Fa contains a copy of Fa′ via ϕ′ fixing all sx ̸∈ Reach
(
s, a′

)
∪Reach (s, a).

Therefore, Fa contains a copy of Fnd,a′ := Fnd(s) ∩ Fa′ via the same ϕ′. Then ap-
ply lemma D.54 with s′ := s to conclude that ∀γ ∈ [0, 1] : PDany

(Fa′ , γ) ≤most: Dany

PDany
(Fa, γ). By lemma D.55, PDany

(
s, a′, γ

)
= PDany

(Fa′ , γ) and PDany
(s, a, γ) =

PDany
(Fa, γ). Therefore, ∀γ ∈ [0, 1] : PDany

(
s, a′, γ

)
≤most: Dany

PDany
(s, a, γ).

If Fnd(s) ∩
(
Fa \ ϕ · Fa′

)
is non-empty, then apply the second condition of lemma D.54

to conclude that for all γ ∈ (0, 1), the inequality is strict for all DX-iid ∈ Dc/b/iid, and
PDany

(
s, a′, γ

)
̸≥most: Dany

PDany
(s, a, γ).
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D.4.4.2 When γ = 1, optimal policies tend to navigate towards “larger”
sets of cycles

Lemma D.56 (Power identity when γ = 1).

PowerDbound (s, 1) = E
r∼Dbound

[
max

d∈RSD(s)
d⊤r

]
= E

r∼Dbound

[
max

d∈RSDnd(s)
d⊤r

]
. (D.200)

Proof.

PowerDbound (s, 1) = E
r∼Dbound

[
max

fπ,s∈F(s)
lim
γ→1

1− γ
γ

(
fπ,s(γ)− es

)⊤
r

]
(D.201)

= E
r∼Dbound

[
max

d∈RSD(s)
d⊤r

]
(D.202)

= E
r∼Dbound

[
max

d∈RSDnd(s)
d⊤r

]
. (D.203)

Equation (D.201) follows by lemma D.50. Equation (D.202) follows by the definition of
RSD (s) (definition 5.26). Equation (D.203) follows because for all r ∈ R|S|, corollary D.16
shows that maxd∈RSD(s) d

⊤r = maxd∈ND(RSD(s)) d
⊤r =: maxd∈RSDnd(s) d

⊤r.

Proposition 5.28 (When γ = 1, rsds control Power). If RSD (s) contains a copy of
RSDnd

(
s′
)

via ϕ, then PowerDbound (s, 1) ≥most PowerDbound

(
s′, 1

)
. If RSDnd (s) \ϕ ·

RSDnd(s
′) is non-empty, then the converse ≤most statement does not hold.

Proof. Suppose RSDnd
(
s′
)

is similar to D ⊆ RSD (s) via involution ϕ.

PowerDbound

(
s′, 1

)
= E

r∼Dbound

[
max

d∈RSDnd(s′)
d⊤r

]
(D.204)

≤most: Dbound
E

r∼Dbound

[
max

d∈RSDnd(s)
d⊤r

]
(D.205)

= PowerDbound (s, 1) (D.206)
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Equation (D.204) and eq. (D.206) follow from lemma D.56. By applying lemma D.29 with
A := RSD

(
s′
)
, B′ := D,B := RSD (s) and g the identity function, eq. (D.205) follows.

Suppose RSDnd (s) \ D is non-empty. By the same result, eq. (D.205) is a strict in-
equality for all DX-iid ∈ Dc/b/iid, and we conclude that PowerDbound

(
s′, 1

)
̸≥most: Dbound

PowerDbound (s, 1).

Theorem 5.29 (Average-optimal policies tend to end up in “larger” sets of rsds). Let
D,D′ ⊆ RSD (s). Suppose that D contains a copy of D′ via ϕ, and that the sets D∪D′ and
RSDnd (s)\

(
D′ ∪D

)
have pairwise orthogonal vector elements (i.e. pairwise disjoint vector

support). Then PDany
(D, average) ≥most PDany

(
D′, average

)
. If RSDnd (s)∩

(
D \ ϕ ·D′)

is non-empty, the converse ≤most statement does not hold.

Proof. Let Dsub := ϕ ·D′, where Dsub ⊆ D by assumption. Let

X := {si ∈ S | max
d∈D′∪D

d⊤esi > 0}.

Define

ϕ′(si) :=

ϕ(si) if si ∈ X
si else.

(D.207)

Since ϕ is an involution, ϕ′ is also an involution. Furthermore, by the definition of X,
ϕ′ ·D′ = Dsub and ϕ′ ·Dsub = D′ (because we assumed that both equalities hold for ϕ).

Let D∗ := D′ ∪Dsub ∪
(
RSDnd (s) \ (D′ ∪D)

)
.

ϕ′ ·D∗ := ϕ′ ·
(
D′ ∪Dsub ∪

(
RSDnd (s) \ (D′ ∪D)

))
(D.208)

=
(
ϕ′ ·D′) ∪ (ϕ′ ·Dsub

)
∪ ϕ′ ·

(
RSDnd (s) \ (D′ ∪D)

)
(D.209)

= Dsub ∪D′ ∪
(
RSDnd (s) \ (D′ ∪D)

)
(D.210)

=: D∗. (D.211)

In eq. (D.210), we know that ϕ′ ·D′ = Dsub and ϕ′ ·Dsub = D′. We just need to show
that ϕ′ ·

(
RSDnd (s) \ (D′ ∪D)

)
= RSDnd (s) \ (D′ ∪D).
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Suppose ∃si ∈ X,d′ ∈ RSDnd (s) \ (D′ ∪ D) : d′⊤esi > 0. By the definition of X,
∃d ∈ D′ ∪D : d⊤esi > 0. Then

d⊤d′ =

|S|∑
j=1

d⊤(d′ ⊙ esj ) (D.212)

≥ d⊤(d′ ⊙ esi) (D.213)

= d⊤
(
(d′⊤esi)esi

)
(D.214)

= (d′⊤esi) · (d⊤esi) (D.215)

> 0. (D.216)

Equation (D.212) follows from the definitions of the dot and Hadamard products. Equa-
tion (D.213) follows because d and d′ have non-negative entries. Equation (D.216) follows
because d⊤esi and d′⊤esi are both positive. But eq. (D.216) shows that d⊤d′ > 0,
contradicting our assumption that d and d′ are orthogonal.

Therefore, such an si cannot exist, andX ′ :=
{
s′i ∈ S | maxd′∈RSDnd(s)\(D′∪D) d

′⊤esi > 0
}
⊆

(S \ X). By eq. (D.207), ∀s′i ∈ X ′ : ϕ′(s′i) = s′i. Thus, ϕ′ ·
(
RSDnd (s) \ (D′ ∪D)

)
=

RSDnd (s) \ (D′ ∪D), and eq. (D.210) follows. We conclude that ϕ′ ·D∗ = D∗.

Consider Z :=
(
RSDnd (s) \ (D′ ∪D)

)
∪ D ∪ D′. First, Z ⊆ RSD (s) by definition.

Second, RSDnd (s) = RSDnd (s) \ (D′ ∪D) ∪ (RSDnd (s) ∩D′) ∪ (RSDnd (s) ∩D) ⊆ Z.
Note that D∗ = Z \ (D \Dsub).

PDany

(
D′, average

)
= pDany

(
D′ ≥ RSD (s)

)
(D.217)

≤most: Dany pDany

(
D ≥ RSD (s)

)
(D.218)

= PDany (D, average) . (D.219)

Since ϕ·D′ ⊆ D and ND
(
D′) ⊆ D′, ϕ·ND

(
D′) ⊆ D. Then eq. (D.218) holds by applying

lemma D.33 with A := D′, B′ := Dsub, B := D,C := RSD (s), and the previously defined
Z which we showed satisfies ND (C) ⊆ Z ⊆ C. Furthermore, involution ϕ′ satisfies
ϕ′ ·B∗ = ϕ′ ·

(
Z \ (B \B′)

)
= Z \ (B \B′) = B∗ by eq. (D.211).
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When RSDnd (s)∩
(
D \Dsub

)
is non-empty, since B′ ⊆ C by assumption, lemma D.33 also

shows that eq. (D.218) is strict for allDX-iid ∈ Dc/b/iid, and that PDany

(
D′, average

)
̸≥most: Dany

PDany
(D, average).

Proposition D.57 (Rsd properties). Let d ∈ RSD (s). d is element-wise non-negative
and ∥d∥1 = 1.

Proof. d has non-negative elements because it equals the limit of limγ→1(1 − γ)f(γ),
whose elements are non-negative by proposition D.8 item 1.

∥d∥1 =
∥∥∥∥ limγ→1

(1− γ)f(γ)
∥∥∥∥
1

(D.220)

= lim
γ→1

(1− γ)
∥∥f(γ)∥∥

1
(D.221)

= 1. (D.222)

Equation (D.220) follows because the definition of rsds (definition 5.26) ensures that
∃f ∈ F(s) : limγ→1(1− γ)f(γ) = d. Equation (D.221) follows because ∥·∥1 is a continuous
function. Equation (D.222) follows because

∥∥f(γ)∥∥
1
= 1

1−γ by proposition D.8 item 2.

Lemma D.58 (When reachable with probability 1, 1-cycles induce non-dominated rsds).
If es′ ∈ RSD (s), then es′ ∈ RSDnd (s).

Proof. If d ∈ RSD (s) is distinct from es′ , then ∥d∥1 = 1 and d has non-negative entries
by proposition D.57. Since d is distinct from es′ , then its entry for index s′ must be
strictly less than 1: d⊤es′ < 1 = e⊤s′es′ . Therefore, es′ ∈ RSD (s) is strictly optimal for
the reward function r := es′ , and so es′ ∈ RSDnd (s).

Corollary 5.30 (Average-optimal policies tend not to end up in any given 1-cycle).
Suppose esx , es′ ∈ RSD (s) are distinct. Then

PDany

(
RSD (s) \ {esx}, average

)
≥most PDany

(
{esx}, average

)
. (5.11)

If there is a third es′′ ∈ RSD (s), the converse ≤most statement does not hold.
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Proof. Suppose esx , es′ ∈ RSD (s) are distinct. Let ϕ := (sx s′), D′ := {esx} , D :=

RSD (s) \ {esx}. ϕ ·D′ = {es′} ⊆ RSD (s) \ {esx} =: D since sx ≠ s′. D′ ∪D = RSD (s)

and RSDnd (s)\(D′∪D) = RSDnd (s)\RSD (s) = ∅ trivially have pairwise orthogonal vec-
tor elements. Then apply theorem 5.29 to conclude that PDany

(
{esx}, average

)
≤most: Dany

PDany

(
RSD (s) \ {esx}, average

)
.

Suppose there exists another es′′ ∈ RSD (s). By lemma D.58, es′′ ∈ RSDnd (s). Fur-
thermore, since s′′ ̸∈

{
s′, sx

}
, es′′ ∈

(
RSD (s) \ {esx}

)
\ {es′} = D \ ϕ ·D′. Therefore,

es′′ ∈ RSDnd (s) ∩
(
D \ ϕ ·D′). Then apply the second condition of theorem 5.29 to

conclude that PDany

(
{esx}, average

)
̸≥most: Dbound

PDany

(
RSD (s) \ {esx}, average

)
.
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E
Parametrically Retargetable Decision-Makers Tend

To Seek Power

E.1 Retargetability over outcome lotteries

Suppose we are interested in d outcomes. Each outcome could be the visitation of an
mdp state, or a trajectory, or the receipt of a physical item. In the card example of
section 6.2, d = 3 playing cards. The agent can induce each outcome with probability
1, so let eo ∈ R3 be the standard basis vector with probability 1 on outcome o and 0

elsewhere. Then the agent chooses among outcome lotteries Ccards :=
{
e♠B , e♥B , e♦A

}
,

which we partition into Acards :=
{
e♠B

}
and Bcards := {e♥B , e♦A}.

Definition E.1 (Outcome lotteries). A unit vector x ∈ Rd with non-negative entries is
an outcome lottery.1

1Our results on outcome lotteries hold for generic x′ ∈ Rd, but we find it conceptually helpful to
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Many decisions are made consequentially: based on the consequences of the decision, on
what outcomes are brought about by an act. For example, in a deterministic setting
like Pac-Man, a policy induces a trajectory. A reward function and discount rate tuple
(R, γ) assigns a return to each state trajectory τ = s0, s1, . . .: G(τ) =

∑∞
i=0 γ

iR(si). The
relevant outcome lottery is the discounted visit distribution over future states in the
Pac-Man video game, and policies are optimal or not depending on which outcome lottery
is induced by the policy.

Definition E.2 (Optimality indicator function). Let X,C ⊊ Rd be finite, and let u ∈ Rd.
Optimal

(
X | C,u

)
returns 1 if maxx∈X x⊤u ≥ maxc∈C c⊤u, and 0 otherwise.

We consider decision-making procedures which take in a targeting parameter u. For
example, the column headers of table E.1a show the 6 permutations of the utility function
u(♠B) := 10, u(♥B) := 5, u(♦A) := 0, representable as a vector u ∈ R3.

u can be permuted as follows. The outcome permutation ϕ ∈ Sd inducing an d × d
permutation matrix Pϕ in row representation: (Pϕ)ij = 1 if i = ϕ(j) and 0 otherwise.
Table E.1a shows that for a given utility function, 2

3 of its orbit agrees that Bcards is
strictly optimal over Acards.

Orbit-level incentives occur when an inequality holds for most permuted parameter choices
u′. Table E.1a demonstrates an application of Turner et al. [99]’s results: Optimal decision-
making induces orbit-level incentives for choosing outcomes in Bcards over outcomes in
Acards.

Furthermore, Turner et al. [99] conjectured that “larger” Bcards will imply stronger orbit-
level tendencies: If going right leads to 500 times as many options as going left, then right
is better than left for at least 500 times as many reward functions for which the opposite
is true. We prove this conjecture with theorem E.46 in appendix E.4.

However, orbit-level incentives do not require optimality. One clue is that the same results
hold for anti-optimal agents, since anti-optimality/utility minimization of u is equivalent
to maximizing −u. Table E.1b illustrates that the same orbit guarantees hold in this
case.

consider the non-negative unit vector case.
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Definition E.3 (Anti-optimality indicator function). Let X,C ⊊ Rd be finite, and let
u ∈ Rd. AntiOpt

(
X | C,u

)
returns 1 if minx∈X x⊤u ≤ minc∈C c⊤u, and 0 otherwise.

Stepping beyond expected utility maximization/minimization, Boltzmann-rational decision-
making selects outcome lotteries proportional to the exponential of their expected util-
ity.

Definition E.4 (Boltzmann rationality [7]). For X ⊆ C and temperature T > 0, let

BoltzmannT
(
X | C,u

)
:=

∑
x∈X eT

−1x⊤u∑
c∈C e

T−1c⊤u

be the probability that some element of X is Boltzmann-rational.

Lastly, orbit-level tendencies occur even under decision-making procedures which partially
ignore expected utility and which “don’t optimize too hard.” Satisficing agents randomly
choose an outcome lottery with expected utility exceeding some threshold. Table E.1d
demonstrates that satisficing induces orbit-level tendencies.

Definition E.5 (Satisficing). Let t ∈ R, letX ⊆ C ⊊ Rd be finite. Satisficet
(
X,C | u

)
:=∣∣∣X∩{c∈C|c⊤u≥t}

∣∣∣∣∣∣{c∈C|c⊤u≥t}
∣∣∣ is the fraction of X whose value exceeds threshold t. Satisficet

(
X,C | u

)
evaluates to 0 the denominator equals 0.

For each table, two-thirds of the utility permutations (columns) assign strictly larger
values (shaded dark gray) to an element of Bcards := {e♥B , e♦A} than to an element of
Acards :=

{
e♠B

}
. For optimal, anti-optimal, Boltzmann-rational, and satisficing agents,

proposition E.11 proves that these tendencies hold for all targeting parameter orbits.

E.1.1 A range of decision-making functions are retargetable

In mdps, Turner et al. [99] consider state visitation distributions which record the total
discounted time steps spent in each environment state, given that the agent follows some
policy π from an initial state s. These visitation distributions are one kind of outcome
lottery, with d = |S| the number of mdp states.

In general, we suppose the agent has an objective function u ∈ Rd which maps outcomes
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to real numbers. In Turner et al. [99], u was a state-based reward function (and so the
outcomes were states). However, we need not restrict ourselves to the mdp setting.

To state our key results, we define several technical concepts which we informally used
when reasoning about Acards :=

{
e♠B

}
and Bcards := {e♥B , e♦A}.

Definition E.6 (Similarity of vector sets). For ϕ ∈ Sd andX ⊆ Rd, ϕ·X :=
{
Pϕx | x ∈ X

}
.

X ′ ⊆ R|S| is similar to X when ∃ϕ : ϕ ·X ′ = X. ϕ is an involution if ϕ = ϕ−1 (it either
transposes states, or fixes them). X contains a copy of X ′ when X ′ is similar to a subset
of X via an involution ϕ.

Definition E.7 (Containment of set copies). Let n be a positive integer, and let A,B ⊆ Rd.
We say that B contains n copies of A when there exist involutions ϕ1, . . . , ϕn ∈ Sd such
that ∀i : ϕi ·A =: Bi ⊆ B and ∀j ̸= i : ϕi ·Bj = Bj .2

Bcards := {e♥B , e♦A} contains two copies of Acards :=
{
e♠B

}
via ϕ1 := ♠B ↔ ♥B and

ϕ2 := ♠B ↔ ♦A.

Definition E.8 (Targeting parameter distribution assumptions). Results with Dany hold
for any probability distribution over Rd. Let Dany := ∆(Rd). For a function f : Rd 7→ R,
we write f(Dany) as shorthand for Eu∼Dany

[
f(u)

]
.

The symmetry group on d elements, Sd, acts on the set of probability distributions over
Rd.

Definition E.9 (Pushforward distribution of a permutation [99]). Let ϕ ∈ Sd. ϕ · Dany

is the pushforward distribution induced by applying the random vector p(u) := Pϕu to
Dany.

Definition E.10 (Orbit of a probability distribution [99]). The orbit of Dany under the
symmetric group Sd is Sd · Dany := {ϕ · Dany | ϕ ∈ Sd}.

Because Bcards contains 2 copies of Acards, there are “at least two times as many ways” for
B to be optimal, than for A to be optimal. Similarly, B is “at least two times as likely”

2Technically, definition E.7 implies that A contains n copies of A holds for all n, via n applications of
the identity permutation. For our purposes, this provides greater generality, as all of the relevant results
still hold. Enforcing pairwise disjointness of the Bi would handle these issues, but would narrow our
results to not apply e.g. when the Bi share a constant vector.
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to contain an anti-rational outcome lottery for generic utility functions. As demonstrated
by table E.1, the key idea is that “larger” sets (a set B containing several copies of set A)
are more likely to be chosen under a wide range of decision-making criteria.

Proposition E.11 (Orbit incentives for different rationalities). Let A,B ⊆ C ⊊ Rd be
finite, such that B contains n copies of A via involutions ϕi such that ϕi · C = C.

1. Rational choice [99].

Optimal
(
B | C,Dany

)
≥n

most: Dany
Optimal

(
A | C,Dany

)
.

2. Uniformly randomly choosing an optimal lottery. For X ⊆ C, let

FracOptimal
(
X | C,u

)
:=

∣∣∣∣{argmaxc∈C c⊤u
}
∩X

∣∣∣∣∣∣∣{argmaxc∈C c⊤u
}∣∣∣ .

Then FracOptimal
(
B | C,Dany

)
≥n

most: Dany
FracOptimal

(
A | C,Dany

)
.

3. Anti-rational choice. AntiOpt
(
B | C,Dany

)
≥n

most: Dany
AntiOpt

(
A | C,Dany

)
.

4. Boltzmann rationality.

BoltzmannT
(
B | C,Dany

)
≥n

most: Dany
BoltzmannT

(
A | C,Dany

)
.

5. Uniformly randomly drawing k outcome lotteries and choosing the best.
For X ⊆ C, u ∈ Rd, and k ≥ 1, let

best-of-k(X,C | u) := E
a1,...,ak∼unif(C)

[
FracOptimal

(
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

)]
.

Then best-of-k(B | C,Dany) ≥n
most: Dany

best-of-k(A | C,Dany).

6. Satisficing [86]. Satisficet
(
B | C,Dany

)
≥n

most: Dany
Satisficet

(
A | C,Dany

)
.

7. Quantilizing over outcome lotteries [93]. Let P be the uniform probability
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distribution over C. For X ⊆ C, u ∈ Rd, and q ∈ (0, 1], let Qq,P (X | C,u)
(definition E.25) return the probability that an outcome lottery in X is drawn
from the top q-quantile of P , sorted by expected utility under u. Then Qq,P (B |
C,u) ≥n

most: Rd Qq,P (A | C,u).

One highly retargetable class of decision-making functions are those which only account
for the expected utilities of available choices.

Definition E.12 (EU-determined functions). Let P
(
Rd
)

be the power set of Rd, and

let f :
∏m

i=1 P
(
Rd
)
×Rd → R. f is an EU-determined function if there exists a family of

functions {gω1,...,ωm} such that

f(X1, . . . , Xm | u) = g|X1|,...,|Xm|
([

x⊤
1 u
]
x1∈X1

, . . . ,
[
x⊤
mu
]
xm∈Xm

)
, (E.1)

where [ri] is the multiset of its elements ri.

For example, letX ⊆ C ⊊ Rd be finite, and consider utility function u ∈ Rd. A Boltzmann-
rational agent is more likely to select outcome lotteries with greater expected utility.
Formally, BoltzmannT

(
X | C,u

)
:=
∑

x∈X
eT ·x⊤u∑

c∈C eT ·c⊤u
depends only on the expected

utility of outcome lotteries in X, relative to the expected utility of all outcome lotteries
in C. Therefore, BoltzmannT is a function of expected utilities. This is why BoltzmannT

satisfies the ≥n
most: Dany

relation.

Theorem E.13 (Orbit tendencies occur for EU-determined decision-making functions).
Let A,B,C ⊆ Rd be such that B contains n copies of A via ϕi such that ϕi · C = C. Let
h :
∏2

i=1 P
(
Rd
)
× Rd → R be an EU-determined function, and let p(X | u) := h(X,C |

u). Suppose that p returns a probability of selecting an element of X from C. Then
p(B | u) ≥n

most: Rd p(A | u).

The key takeaway is that decision rules determined by expected utility are highly re-
targetable. By changing the targeting parameter hyperparameter, the decision-making
procedure can be flexibly retargeted to choose elements of “larger” sets (in terms of set
copies via definition E.7). Less abstractly, for many agent rationalities—ways of making
decisions over outcome lotteries—it is generally the case that larger sets will more often
be chosen over smaller sets.
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For example, consider a Pac-Man playing agent choosing which environmental state cycle
it should end up in. Turner et al. [99] show that for most reward functions, average-
reward maximizing agents will tend to stay alive so that they can reach a wider range of
environmental cycles. However, our results show that average-reward minimizing agents
also exhibit this tendency, as do Boltzmann-rational agents who assign greater probability
to higher-reward cycles. Any EU-based cycle selection method will—for most reward
functions—tend to choose cycles which require Pac-Man to stay alive (at first).

E.2 Theoretical results

Definition 6.2 (Inequalities which hold for most orbit elements). Suppose Θ is a subset
of a set acted on by Sd, the symmetric group on d elements. Let f1, f2 : Θ → R and
let n ≥ 1. We write f1(θ) ≥n

most: Θ f2(θ) when, for all θ ∈ Θ, the following cardinality
inequality holds:∣∣∣{θ′ ∈ Orbit|Θ (θ) | f1(θ′) > f2(θ

′)
}∣∣∣ ≥ n ∣∣∣{θ′ ∈ Orbit|Θ (θ) | f1(θ′) < f2(θ

′)
}∣∣∣ . (6.2)

Lemma E.14 (Limited transitivity of ≥most). Let f0, f1, f2, f3 : Θ → R, and suppose
Θ is a subset of a set acted on by Sd. Suppose that f1(θ) ≥n

most: Θ f2(θ) and ∀θ ∈ Θ :

f0(θ) ≥ f1(θ) and f2(θ) ≥ f3(θ). Then f0(θ) ≥n
most: Θ f3(θ).

Proof. Let θ ∈ Θ and let Orbit|Θ,fa>fb (θ) :=
{
θ′ ∈ Orbit|Θ (θ) | fa(θ′) > fb(θ

′)
}
.

∣∣Orbit|Θ,f0>f3 (θ)
∣∣ ≥ ∣∣Orbit|Θ,f1>f2 (θ)

∣∣ (E.2)

≥ n
∣∣Orbit|Θ,f2>f1 (θ)

∣∣ (E.3)

≥ n
∣∣Orbit|Θ,f3>f0 (θ)

∣∣ . (E.4)

For all θ′ ∈ Orbit|Θ,f1>f2 (θ),

f0(θ
′) ≥ f1(θ′) > f2(θ

′) ≥ f3(θ′)
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by assumption, and so

Orbit|Θ,f1>f2 (θ) ⊆ Orbit|Θ,f0>f3 (θ) .

Therefore, eq. (E.2) follows. By assumption,

∣∣Orbit|Θ,f1>f2 (θ)
∣∣ ≥ n ∣∣Orbit|Θ,f2>f1 (θ)

∣∣ ;
eq. (E.3) follows. For all θ′ ∈ Orbit|Θ,f2>f1 (θ), our assumptions on f0 and f3 ensure that

f0(θ
′) ≤ f1(θ′) < f3(θ

′) ≤ f2(θ′),

so
Orbit|Θ,f3>f0 (θ) ⊆ Orbit|Θ,f2>f1 (θ) .

Then eq. (E.4) follows. By eq. (E.4), f0(θ) ≥n
most: Θ f3(θ).

Lemma E.15 (Order inversion for ≥most). Let f1, f2 : Θ→ R, and suppose Θ is a subset
of a set acted on by Sd. Suppose that f1(θ) ≥n

most: Θ f2(θ). Then −f2(θ) ≥n
most: Θ −f1(θ).

Proof. By definition E.10, f1(θ) ≥n
most: Θ f2(θ) means that∣∣∣{θ′ ∈ Orbit|Θ (θ) | f1(θ′) > f2(θ

′)
}∣∣∣ ≥ n ∣∣∣{θ′ ∈ Orbit|Θ (θ) | f1(θ′) < f2(θ

′)
}∣∣∣ (E.5)∣∣∣{θ′ ∈ Orbit|Θ (θ) | −f2(θ′) > −f1(θ′)

}∣∣∣ ≥ n ∣∣∣{θ′ ∈ Orbit|Θ (θ) | −f2(θ′) < −f1(θ′)
}∣∣∣ .
(E.6)

Then −f2(θ) ≥n
most: Θ −f1(θ).

Remark. Lemma E.16 generalizes Turner et al. [99]’s lemma D.2.

Lemma E.16 (Orbital fraction which agrees on (weak) inequality). Suppose f1, f2 : Θ→

R are such that f1(θ) ≥n
most: Θ f2(θ). Then for all θ ∈ Θ,

∣∣∣{θ′∈(Sd·θ)∩Θ|f1(θ′)≥f2(θ′)}
∣∣∣

|(Sd·θ)∩Θ| ≥
n

n+ 1
.
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Proof. All θ′ ∈ (Sd · θ) ∩Θ such that f1(θ′) = f2(θ
′) satisfy f1(θ′) ≥ f2(θ

′). Otherwise,
consider the θ′ ∈ (Sd · θ) ∩Θ such that f1(θ′) ̸= f2(θ

′). By assumption, at least n
n+1 of

these θ′ satisfy f1(θ′) > f2(θ
′), in which case f1(θ′) ≥ f2(θ′). Then the desired inequality

follows.

E.2.1 General results on retargetable functions

Definition E.17 (Functions which are increasing under joint permutation). Suppose that
Sd acts on sets E1, . . . ,Em, and let f :

∏m
i=1Ei → R. f(X1, . . . , Xm) is increasing under

joint permutation by P ⊆ Sd when ∀ϕ ∈ P : f(X1, . . . , Xm) ≤ f(ϕ ·X1, . . . , ϕ ·Xm). If
equality always holds, then f(X1, . . . , Xm) is invariant under joint permutation by P .

Lemma E.18 (Expectations of joint-permutation-increasing functions are also joint-per-
mutation-increasing). For E which is a subset of a set acted on by Sd, let f : E×Rd → R
be a bounded function which is measurable on its second argument, and let P ⊆ Sd.
Then if f(X | u) is increasing under joint permutation by P , then f ′(X | Dany) :=

Eu∼Dany

[
f(X | u)

]
is increasing under joint permutation by P . If f is invariant under

joint permutation by P , then so is f ′.

Proof. Let distribution Dany have probability measure F , and let ϕ ·Dany have probability
measure Fϕ.

f
(
X | Dany

)
:= E

u∼Dany

[
f(X | u)

]
(E.7)

:=

∫
Rd

f(X | u) dF (u) (E.8)

≤
∫
Rd

f(ϕ ·X | Pϕu) dF (u) (E.9)

=

∫
Rd

f(ϕ ·X | u′)
∣∣detPϕ

∣∣dFϕ(u
′) (E.10)

=

∫
Rd

f(ϕ ·X | u′) dFϕ(u
′) (E.11)

=: f ′
(
ϕ ·X | ϕ · Dany

)
. (E.12)

Equation (E.9) holds by assumption on f : f(X | u) ≤ f(ϕ · X | Pϕu). Furthermore,
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f(ϕ ·X | ·) is still measurable, and so the inequality holds. Equation (E.10) follows by the
definition of Fϕ (definition 5.19) and by substituting r′ := Pϕr. Equation (E.11) follows
from the fact that all permutation matrices have unitary determinant.

Lemma E.19 (Closure of orbit incentives under increasing functions). Suppose that Sd acts
on sets E1, . . . ,Em (with E1 being a poset), and let P ⊆ Sd. Let f1, . . . , fn :

∏m
i=1Ei → R

be increasing under joint permutation by P on input (X1, . . . , Xm), and suppose the fi
are order-preserving with respect to ⪯E1 . Let g :

∏n
j=1R→ R be monotonically increasing

on each argument. Then

f (X1, . . . , Xm) := g
(
f1 (X1, . . . , Xm) , . . . , fn (X1, . . . , Xm)

)
(E.13)

is increasing under joint permutation by P and order-preserving with respect to set inclusion
on its first argument. Furthermore, if the fi are invariant under joint permutation by P ,
then so is f .

Proof. Let ϕ ∈ P .

f (X1, . . . , Xm) := g
(
f1 (X1, . . . , Xm) , . . . , fn (X1, . . . , Xm)

)
(E.14)

≤ g
(
f1 (ϕ ·X1, . . . , ϕ ·Xm) , . . . , fn (ϕ ·X1, . . . , ϕ ·Xm)

)
(E.15)

=: f (ϕ ·X1, . . . , ϕ ·Xm) . (E.16)

Equation (E.15) follows because we assumed that fi (X1, . . . , Xm) ≤ fi (ϕ ·X1, . . . , ϕ ·Xm),
and because g is monotonically increasing on each argument. If the fi are all invariant,
then eq. (E.15) is an equality.

Similarly, suppose X ′
1 ⪯E1 X1. The fi are order-preserving on the first argument, and g

is monotonically increasing on each argument. Then f
(
X ′

1, . . . , Xm

)
≤ f (X1, . . . , Xm).

This shows that f is order-preserving on its first argument.

Remark. g could take the convex combination of its arguments, or multiply two fi

together and add them to a third f3.
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Definition 6.5 (Multiply retargetable function). Let Θ be a subset of a set acted on by
Sd, and let f : {A,B} ×Θ→ R.

f is a (Θ, A
n→ B)-retargetable function when, for each θ ∈ Θ, we can choose per-

mutations ϕ1, . . . , ϕn ∈ Sd which satisfy the following conditions: Consider any θA ∈
Orbit|Θ,A>B (θ) :=

{
θ∗ ∈ Orbit|Θ (θ) | f(A | θ∗) > f(B | θ∗)

}
.

1. Retargetable via n permutations. ∀i = 1, . . . , n : f
(
A | ϕi · θA

)
< f

(
B | ϕi · θA

)
.

2. Parameter permutation is allowed by Θ. ∀i : ϕi · θA ∈ Θ.

3. Permuted parameters are distinct. ∀i ̸= j, θ′ ∈ Orbit|Θ,A>B (θ) : ϕi ·θA ≠ ϕj ·θ′.

Theorem 6.6 (Multiply retargetable functions have orbit-level tendencies).

If f is (Θ, A
n→ B)-retargetable, then f(B | θ) ≥n

most: Θ f(A | θ).

Proof. Let θ ∈ Θ, and let ϕi ·Orbit|Θ,A>B (θ) :=
{
ϕi · θA | θA ∈ Orbit|Θ,A>B (θ)

}
.

∣∣Orbit|Θ,B>A (θ)]
∣∣ ≥

∣∣∣∣∣∣
n⋃

i=1

ϕi ·Orbit|Θ,A>B (θ)

∣∣∣∣∣∣ (E.17)

=

n∑
i=1

∣∣ϕi ·Orbit|Θ,A>B (θ)
∣∣ (E.18)

= n
∣∣Orbit|Θ,A>B (θ)

∣∣ . (E.19)

By item 1 and item 2, ϕi · ϕi ·Orbit|Θ,A>B (θ) ⊆ ϕi ·Orbit|Θ,B>A (θ)] for all i. Therefore,
eq. (E.17) holds. Equation (E.18) follows by the assumption that parameters are distinct,
and so therefore the cosets ϕi ·Orbit|Θ,A>B (θ) and ϕj ·Orbit|Θ,A>B (θ) are pairwise disjoint
for i ̸= j. Equation (E.19) follows because each ϕi acts injectively on orbit elements.

Letting fA(θ) := f(A | θ) and fB(θ) := f(B | θ), the shown inequality satisfies defini-
tion 6.2. We conclude that f(B | θ) ≥n

most: Θ f(A | θ).

Definition 6.3 (Simply-retargetable function). Let Θ be a set acted on by Sd, and let f :

{A,B}×Θ→ R. If there exists a permutation ϕ ∈ Sd such that, if f(B | θA) < f(A | θA)
implies that f(A | ϕ · θA) < f(B | ϕ · θA), then f is a (Θ, A

simple→ B)-retargetable function.
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Proposition 6.4 (Simply-retargetable functions have orbit-level tendencies).

If f is (Θ, A
simple→ B)-retargetable, then f(B | θ) ≥1

most: Θ f(A | θ).

Proof. Given that f is a (Θ, A
simple→ B)-retargetable function (definition 6.3), we want

to show that f is a (Θ, A
1→ B)-retargetable function (definition 6.5 when n = 1).

Definition 6.5’s item 1 is true by assumption. Since Θ is acted on by Sd, Θ is closed under
permutation and so definition 6.5’s item 2 holds. When n = 1, there are no i ̸= j, and so
definition 6.5’s item 3 is tautologically true.

Then f is a (Θ, A
1→ B)-retargetable function; apply lemma E.20.

E.2.2 Helper results on retargetable functions

Lemma E.20 (Quantitative general orbit lemma). Let Θ be a subset of a set acted on by
Sd, and let f : E×Θ→ R. Consider A,B ∈ E.

For each θ ∈ Θ, choose involutions ϕ1, . . . , ϕn ∈ Sd. Let θ∗ ∈ Orbit|Θ (θ).

1. Retargetable under parameter permutation. There exist B⋆
i ∈ E such that if

f(B | θ∗) < f(A | θ∗), then ∀i : f
(
A | θ∗

)
≤ f

(
B⋆

i | ϕi · θ∗
)
.

2. Θ is closed under certain symmetries. f(B | θ∗) < f(A | θ∗) =⇒ ∀i : ϕi · θ∗ ∈
Θ.

3. f is increasing on certain inputs. ∀i : f(B⋆
i | θ∗) ≤ f(B | θ∗).

4. Increasing under alternate symmetries. For j = 1, . . . , n and i ̸= j, if
f(A | θ∗) < f(B | θ∗), then f

(
B⋆

j | θ∗
)
≤ f

(
B⋆

j | ϕi · θ∗
)
.

If these conditions hold for all θ ∈ Θ, then

f(B | θ) ≥n
most: Θ f(A | θ). (E.20)

Proof. Let θ and θ∗ be as described in the assumptions, and let i ∈ {1, . . . , n}.

f(A | ϕi · θ∗) = f(A | ϕ−1
i · θ∗) (E.21)
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≤ f(B⋆
i | θ∗) (E.22)

≤ f(B | θ∗) (E.23)

< f(A | θ∗) (E.24)

≤ f(B⋆
i | ϕi · θ∗) (E.25)

≤ f(B | ϕi · θ∗). (E.26)

Equation (E.21) follows because ϕi is an involution. Equation (E.22) and eq. (E.25) follow
by item 1. Equation (E.23) and eq. (E.26) follow by item 3. Equation (E.24) holds by
assumption on θ∗. Then eq. (E.26) shows that for any i, f(A | ϕi · θ∗) < f(B | ϕi · θ∗),
satisfying definition 6.5’s item 1.

This result’s item 2 satisfies definition 6.5’s item 2. We now just need to show defini-
tion 6.5’s item 3.

Disjointness. Let θ′, θ′′ ∈ Orbit|Θ,A>B (θ) and let i ̸= j. Suppose ϕi · θ′ = ϕj · θ′′. We
want to show that this leads to contradiction.

f(A | θ′′) ≤ f(B⋆
j | ϕj · θ′′) (E.27)

= f(B⋆
j | ϕ−1

i · θ′) (E.28)

≤ f(B⋆
j | θ′) (E.29)

≤ f(B | θ′) (E.30)

< f(A | θ′) (E.31)

≤ f(B⋆
i | ϕi · θ′) (E.32)

= f(B⋆
i | ϕ−1

j · θ′′) (E.33)

≤ f(B⋆
i | θ′′) (E.34)

≤ f(B | θ′′) (E.35)

< f(A | θ′′). (E.36)

Equation (E.27) follows by our assumption of item 1. Equation (E.28) holds because we
assumed that ϕj · θ′′ = ϕi · θ′, and the involution ensures that ϕi = ϕ−1

i . Equation (E.29)
is guaranteed by our assumption of item 4, given that ϕ−1

i · θ′ = ϕi · θ′ ∈ Orbit|Θ,B>A (θ)]
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by the first half of this proof. Equation (E.30) follows by our assumption of item 3.
Equation (E.31) follows because we assumed that θ′ ∈ Orbit|Θ,A>B (θ).

Equation (E.32) through eq. (E.36) follow by the same reasoning, switching the roles of θ′

and θ′′, and of i and j. But then we have demonstrated that a quantity is strictly less
than itself, a contradiction. So for all θ′, θ′′ ∈ Orbit|Θ,A>B (θ), when i ̸= j, ϕi · θ′ ̸= ϕj · θ′′.

Therefore, we have shown definition 6.5’s item 3, and so f is a (Θ, A
n→ B)-retargetable

function. Apply theorem 6.6 in order to conclude that eq. (E.20) holds.

Definition E.21 (Superset-of-copy containment). Let A,B ⊆ Rd. B contains n superset-
copies B⋆

i of A when there exist involutions ϕ1, . . . , ϕn such that ϕi · A ⊆ B⋆
i ⊆ B, and

whenever i ̸= j, ϕi ·B⋆
j = B⋆

j .

Lemma E.22 (Looser sufficient conditions for orbit-level incentives). Suppose that
Θ is a subset of a set acted on by Sd and is closed under permutation by Sd. Let
A,B ∈ E ⊆ P

(
Rd
)
. Suppose that B contains n superset-copies B⋆

i ∈ E of A via ϕi.
Suppose that f(X | θ) is increasing under joint permutation by ϕ1, . . . , ϕn ∈ Sd for all
X ∈ E, θ ∈ Θ, and suppose that ∀i : ϕi ·A ∈ E. Suppose that f is monotonically increasing
on its first argument. Then f(B | θ) ≥n

most: Θ f(A | θ).

Proof. We check the conditions of lemma E.20. Let θ ∈ Θ, and let θ∗ ∈ (Sd · θ) ∩Θ be
an orbit element.

Item 1. Holds since f(A | θ∗) ≤ f(ϕi ·A | ϕi · θ∗) ≤ f(B⋆
i | ϕi · θ∗), with the first inequality

by assumption of joint increasing under permutation, and the second following from
monotonicity (as ϕi ·A ⊆ B⋆

i by superset copy definition E.21).

Item 2. We have ∀θ∗ ∈ (Sd · θ∗) ∩Θ : f(B | θ∗) < f(A | θ∗) =⇒ ∀i = 1, ..., n : ϕi · θ∗ ∈ Θ

since Θ is closed under permutation.

Item 3. Holds because we assumed that f is monotonic on its first argument.

Item 4. Holds because f is increasing under joint permutation on all of its inputs X, θ′ ,
and definition E.21 shows that ϕi · B⋆

j = B⋆
j when i ̸= j. Combining these two
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steps of reasoning, for all θ′ ∈ Θ, it is true that f
(
B⋆

j | θ′
)
≤ f

(
ϕi ·B⋆

j | ϕi · θ′
)
≤

f
(
B⋆

j | ϕi · θ′
)
.

Then apply lemma E.20.

Lemma E.23 (Hiding an argument which is invariant under certain permutations). Let
E1, E2, Θ be subsets of sets which are acted on by Sd. Let A ∈ E1, C ∈ E2. Suppose
there exist ϕ1, . . . , ϕn ∈ Sd such that ϕi · C = C. Suppose h : E1 ×E2 ×Θ→ R satisfies
∀i : h(A,C | θ) ≤ h(ϕi · A, ϕi · C | ϕi · θ). For any X ∈ E1, let f(X | θ) := h(X,C | θ).
Then f(A | θ) is increasing under joint permutation by ϕi.

Furthermore, if h is invariant under joint permutation by ϕi, then so is f .

Proof.

f(X | θ) := h(X,C | θ) (E.37)

≤ h(ϕi ·X,ϕi · C | ϕi · θ) (E.38)

= h(ϕi ·X,C | ϕi · θ) (E.39)

=: f(ϕi ·X | ϕi · θ). (E.40)

Equation (E.38) holds by assumption. Equation (E.39) follows because we assumed
ϕi · C = C. Then f is increasing under joint permutation by the ϕi.

If h is invariant, then eq. (E.38) is an equality, and so ∀i : f(X | θ) = f(ϕi ·X | ϕi · θ).

E.2.2.1 EU-determined functions

Lemma E.24 and lemma E.18 together extend Turner et al. [99]’s lemma D.22 beyond
functions of maxx∈Xi , to any functions of cardinalities and of expected utilities of set
elements.

Definition E.12 (EU-determined functions). Let P
(
Rd
)

be the power set of Rd, and

let f :
∏m

i=1 P
(
Rd
)
×Rd → R. f is an EU-determined function if there exists a family of
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functions {gω1,...,ωm} such that

f(X1, . . . , Xm | u) = g|X1|,...,|Xm|
([

x⊤
1 u
]
x1∈X1

, . . . ,
[
x⊤
mu
]
xm∈Xm

)
, (E.1)

where [ri] is the multiset of its elements ri.

Lemma E.24 (EU-determined functions are invariant under joint permutation). Suppose
that f :

∏m
i=1 P

(
Rd
)
× Rd → R is an EU-determined function. Then for any ϕ ∈ Sd and

X1, . . . , Xm,u, we have f(X1, . . . , Xm | u) = f(ϕ ·X1, . . . , ϕ ·Xm | ϕ · u).

Proof.

f(X1, . . . , Xm | u) (E.41)

= g|X1|,...,|Xm|
([

x⊤
1 u
]
x1∈X1

, . . . ,
[
x⊤
mu
]
xm∈Xm

)
(E.42)

= g|ϕ·X1|,...,|ϕ·Xm|
([

x⊤
1 u
]
x1∈X1

, . . . ,
[
x⊤
mu
]
xm∈Xm

)
(E.43)

= g|ϕ·X1|,...,|ϕ·Xm|
([

(Pϕx1)
⊤(Pϕu)

]
x1∈X1

, . . . ,
[
(Pϕxm)⊤(Pϕu)

]
xm∈Xm

)
(E.44)

= f(ϕ ·X1, . . . , ϕ ·Xm | ϕ · u). (E.45)

Equation (E.43) holds because permutations ϕ act injectively on Rd. Equation (E.44)
follows because I = P−1

ϕ Pϕ = P⊤
ϕPϕ by the orthogonality of permutation matrices, and

x⊤P⊤
ϕ = (Pϕx)

⊤, so x⊤u = x⊤P⊤
ϕPϕu = (Pϕx)

⊤(Pϕu).

Theorem E.13 (Orbit tendencies occur for EU-determined decision-making functions).
Let A,B,C ⊆ Rd be such that B contains n copies of A via ϕi such that ϕi · C = C. Let
h :
∏2

i=1 P
(
Rd
)
× Rd → R be an EU-determined function, and let p(X | u) := h(X,C |

u). Suppose that p returns a probability of selecting an element of X from C. Then
p(B | u) ≥n

most: Rd p(A | u).

Proof. By assumption, there exists a family of functions
{
gi,|C|

}
such that for all X ⊆ Rd,

h(X,C | u) = g|X|,|C|
([

x⊤u
]
x∈X

,
[
c⊤u

]
c∈C

)
. Therefore, lemma E.24 shows that
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h(A,C | u) is invariant under joint permutation by the ϕi. Letting Θ := Rd, apply
lemma E.23 to conclude that f(X | u) is invariant under joint permutation by the ϕi.

Since f returns a probability of selecting an element of X, f obeys the monotonicity
probability axiom: If X ′ ⊆ X, then f(X ′ | u) ≤ f(X | u). Then f(B | u) ≥n

most: Rd f(A |
u) by lemma E.22.

E.2.3 Particular results on retargetable functions

Definition E.25 (Quantilization, closed form). Let the expected utility q-quantile
threshold be

Mq,P (C | u) := inf

{
M ∈ R | P

x∼P

(
x⊤u > M

)
≤ q
}
. (E.46)

Let C>Mq,P (C|u) :=
{
c ∈ C | c⊤u > Mq,P (C | u)

}
. C=Mq,P (C|u) is defined similarly. Let

1L(x) be the predicate function returning 1 if L(x) is true and 0 otherwise. Then for
X ⊆ C,

Qq,P (X | C,u) :=
∑
x∈X

P (x)

q

1x∈C>Mq,P (C|u)
+

1x∈C=Mq,P (C|u)

P
(
C=Mq,P (C|u)

) (q − P (C>Mq,P (C|u)

)) ,

(E.47)

where the summand is defined to be 0 if P (x) = 0 and x ∈ C=Mq,P (C|u).

Remark. Unlike Taylor [93]’s or Carey [20]’s definitions, definition E.25 is written in
closed form and requires no arbitrary tie-breaking. Instead, in the case of an expected
utility tie on the quantile threshold, eq. (E.47) allots probability to outcomes proportional
to their probability under the base distribution P .

Thanks to theorem E.13, we straightforwardly prove most items of proposition E.11 by
just rewriting each decision-making function as an EU-determined function. Most of the
proof’s length comes from showing that the functions are measurable on u, which means
that the results also apply for distributions over utility functions Dany ∈ Dany.

Proposition E.11 (Orbit incentives for different rationalities). Let A,B ⊆ C ⊊ Rd be
finite, such that B contains n copies of A via involutions ϕi such that ϕi · C = C.
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1. Rational choice [99].

Optimal
(
B | C,Dany

)
≥n

most: Dany
Optimal

(
A | C,Dany

)
.

2. Uniformly randomly choosing an optimal lottery. For X ⊆ C, let

FracOptimal
(
X | C,u

)
:=

∣∣∣∣{argmaxc∈C c⊤u
}
∩X

∣∣∣∣∣∣∣{argmaxc∈C c⊤u
}∣∣∣ .

Then FracOptimal
(
B | C,Dany

)
≥n

most: Dany
FracOptimal

(
A | C,Dany

)
.

3. Anti-rational choice. AntiOpt
(
B | C,Dany

)
≥n

most: Dany
AntiOpt

(
A | C,Dany

)
.

4. Boltzmann rationality.

BoltzmannT
(
B | C,Dany

)
≥n

most: Dany
BoltzmannT

(
A | C,Dany

)
.

5. Uniformly randomly drawing k outcome lotteries and choosing the best.
For X ⊆ C, u ∈ Rd, and k ≥ 1, let

best-of-k(X,C | u) := E
a1,...,ak∼unif(C)

[
FracOptimal

(
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

)]
.

Then best-of-k(B | C,Dany) ≥n
most: Dany

best-of-k(A | C,Dany).

6. Satisficing [86]. Satisficet
(
B | C,Dany

)
≥n

most: Dany
Satisficet

(
A | C,Dany

)
.

7. Quantilizing over outcome lotteries [93]. Let P be the uniform probability
distribution over C. For X ⊆ C, u ∈ Rd, and q ∈ (0, 1], let Qq,P (X | C,u)
(definition E.25) return the probability that an outcome lottery in X is drawn
from the top q-quantile of P , sorted by expected utility under u. Then Qq,P (B |
C,u) ≥n

most: Rd Qq,P (A | C,u).
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Proof. Item 1. Consider

h(X,C | u) := 1∃x∈X:∀c∈C:x⊤u≥c⊤u (E.48)

= min

1,
∑
x∈X

∏
c∈C

1(x−c)⊤u≥0

 . (E.49)

Since halfspaces are measurable, each indicator function is measurable on u. The finite sum
of the finite product of measurable functions is also measurable. Since min is continuous
(and therefore measurable), h(X,C | u) is measurable on u.

Furthermore, h is an EU-determined function:

h(X,C | u) = g


VX︷ ︸︸ ︷[

x⊤u
]
x∈X

,

VC︷ ︸︸ ︷[
c⊤u

]
c∈C

 (E.50)

:= 1∃vx∈VX :∀vc∈VC :vx≥vc . (E.51)

Then by lemma E.24, h is invariant to joint permutation by the ϕi. Since ϕi · C = C,
lemma E.23 shows that h′(X | u) := h(X,C | u) is also invariant under joint permutation
by the ϕi. Since h is a measurable function of u, so is h′. Then since h′ is bounded,
lemma E.18 shows that f(X | Dany) := Eu∼Dany

[
h′(X | u)

]
is invariant under joint

permutation by ϕi.

Furthermore, if X ′ ⊆ X, f(X ′ | Dany) ≤ f(X | Dany) by the monotonicity of probability.
Then by lemma E.22,

f(B | Dany) := Optimal
(
B | C,Dany

)
≥n

most: Dany Optimal
(
A | C,Dany

)
=: f(A | Dany).

Item 2. Because X,C are finite sets, the denominator of FracOptimal
(
X | C,u

)
is never

zero, and so the function is well-defined. FracOptimal
(
X | C,u

)
is an EU-determined
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function:

FracOptimal
(
X | C,u

)
= g


VX︷ ︸︸ ︷[

x⊤u
]
x∈X

,

VC︷ ︸︸ ︷[
c⊤u

]
c∈C

 (E.52)

:=

∣∣∣[v ∈ VX | v = maxv′∈VC
v′
]∣∣∣∣∣∣∣[argmaxv′∈VC

v′
]∣∣∣∣ , (E.53)

with the [·] denoting a multiset which allows and counts duplicates. Then by lemma E.24,
FracOptimal

(
X | C,u

)
is invariant to joint permutation by the ϕi.

We now show that FracOptimal
(
X | C,u

)
is a measurable function of u.

FracOptimal
(
X | C,u

)
:=

∣∣∣∣{argmaxc′∈C c′⊤u
}
∩X

∣∣∣∣∣∣∣{argmaxc′∈C c′⊤u
}∣∣∣ (E.54)

=

∑
x∈X 1x∈argmaxc′∈C c′⊤u∑
c∈C 1c∈argmaxc′∈C c′⊤u

(E.55)

=

∑
x∈X

∏
c′∈C 1(x−c′)⊤u≥0∑

c∈C
∏

c′∈C 1(c−c′)⊤u≥0

. (E.56)

Equation (E.56) holds because x belongs to the argmax iff ∀c ∈ C : x⊤u ≥ c⊤u.
Furthermore, this condition is met iff u belongs to the intersection of finitely many closed
halfspaces; therefore,

{
u ∈ Rd |∏c∈C 1(x−c)⊤u≥0 = 1

}
is measurable. Then the sums

in both the numerator and denominator are both measurable functions of u, and the
denominator cannot vanish. Therefore, FracOptimal

(
X | C,u

)
is a measurable function

of u.

Let g(X | u) := FracOptimal
(
X | C,u

)
. Since ϕi · C = C, lemma E.23 shows that

g(X | u) is also invariant to joint permutation by ϕi. Since g is measurable and bounded
[0, 1], apply lemma E.18 to conclude that f(X | Dany) := Eu∼Dany

[
g(X | C,u)

]
is also

invariant to joint permutation by ϕi.

Furthermore, if X ′ ⊆ X ⊆ C, then f(X ′ | Dany) ≤ f(X | Dany). So apply lemma E.22
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to conclude that FracOptimal
(
B | C,Dany

)
=: f(B | Dany) ≥n

most: Dany
f(A | Dany) :=

FracOptimal
(
A | C,Dany

)
.

Item 3. Apply the reasoning in item 1 with inner function h(X | C,u) := 1∃x∈X:∀c∈C:x⊤u≤c⊤u.

Item 4. Let X ⊆ C. BoltzmannT
(
X | C,u

)
is the expectation of an EU function:

BoltzmannT
(
X | C,u

)
= gT


VX︷ ︸︸ ︷[

x⊤u
]
x∈X

,

VC︷ ︸︸ ︷[
c⊤u

]
c∈C

 (E.57)

:=

∑
v∈VX

ev/T∑
v∈VC

ev/T
. (E.58)

Therefore, by lemma E.24, BoltzmannT
(
X | C,u

)
is invariant to joint permutation by

the ϕi.

Inspecting eq. (E.58), we see that g is continuous on u (and therefore measurable),
and bounded [0, 1] since X ⊆ C and the exponential function is positive. Therefore,
by lemma E.18, the expectation version is also invariant to joint permutation for all
permutations ϕ ∈ Sd: BoltzmannT

(
X | C,Dany

)
= BoltzmannT

(
ϕ ·X | ϕ · C, ϕ · Dany

)
.

Since ϕi ·C = C, lemma E.23 shows that f(X | Dany) := BoltzmannT
(
X | C,Dany

)
is also

invariant under joint permutation by the ϕi. Furthermore, if X ′ ⊆ X, then f(X ′ | Dany) ≤
f(X | Dany). Then apply lemma E.22 to conclude that BoltzmannT

(
B | C,Dany

)
=: f(B |

Dany) ≥n
most: Dany

f(A | Dany) := BoltzmannT
(
A | C,Dany

)
.

Item 5. Let involution ϕ ∈ Sd fix C (i.e. ϕ · C = C).

best-of-k(X | C,u) (E.59)

:= E
a1,...,ak∼unif(C)

[
FracOptimal

(
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

)]
(E.60)

= E
a1,...,ak∼unif(C)

[
FracOptimal

(
(ϕ ·X) ∩ {ϕ · a1, . . . , ϕ · ak}|{ϕ · a1, . . . , ϕ · ak}, ϕ · u

)]
(E.61)
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= E
ϕ·a1,...,ϕ·ak∼unif(ϕ·C)

[
FracOptimal

(
(ϕ ·X) ∩ {ϕ · a1, . . . , ϕ · ak}|{ϕ · a1, . . . , ϕ · ak}, ϕ · u

)]
(E.62)

=: best-of-k(ϕ ·X | ϕ · C, ϕ · u). (E.63)

By the proof of item 2,

FracOptimal
(
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

)
=

FracOptimal
(
(ϕ ·X) ∩ {ϕ · a1, . . . , ϕ · ak} | {ϕ · a1, . . . , ϕ · ak}, ϕ · u

)
;

thus, eq. (E.61) holds. Since ϕ · C = C and since the distribution is uniform, eq. (E.62)
holds. Therefore, best-of-k(X | C,u) is invariant to joint permutation by the ϕi, which
are involutions fixing C.

We now show that best-of-k(X | C,u) is measurable on u.

best-of-k(X | C,u) (E.64)

:= E
a1,...,ak∼unif(C)

[
FracOptimal

(
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

)]
(E.65)

=
1

|C|k
∑

(a1,...,ak)∈Ck

FracOptimal
(
X ∩ {a1, . . . ,ak} | {a1, . . . ,ak},u

)
. (E.66)

Equation (E.66) holds because FracOptimal
(
X | C,u

)
is measurable on u by item 2, and

measurable functions are closed under finite addition and scalar multiplication. Then
best-of-k(X | C,u) is measurable on u.

Let g(X | u) := best-of-k(X | C,u). Since ϕi ·C = C, lemma E.23 shows that g(X | u) is
also invariant to joint permutation by ϕi. Since g is measurable and bounded [0, 1], apply
lemma E.18 to conclude that f(X | Dany) := Eu∼Dany

[
g(X | C,u)

]
is also invariant to

joint permutation by ϕi.

Furthermore, if X ′ ⊆ X ⊆ C, then f(X ′ | Dany) ≤ f(X | Dany). So apply lemma E.22
to conclude that best-of-k(B | C,Dany) =: f(B | Dany) ≥n

most: Dany
f(A | Dany) :=

best-of-k(A | C,Dany).
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Item 6. Satisficet
(
X | C,u

)
is an EU-determined function:

Satisficet
(
X | C,u

)
= gt


VX︷ ︸︸ ︷[

x⊤u
]
x∈X

,

VC︷ ︸︸ ︷[
c⊤u

]
c∈C

 (E.67)

:=

∑
v∈VX

1v≥t∑
v∈VC

1v≥t
, (E.68)

with the function evaluating to 0 if the denominator is 0.
Then applying lemma E.24, Satisficet

(
X | C,u

)
is invariant under joint permutation by

the ϕi.

We now show that Satisficet
(
X | C,u

)
is measurable on u.

Satisficet
(
X | C,u

)
=


∑

x∈X 1
x∈{x′∈Rd|x′⊤u≥t}∑

c∈C 1
c∈{x′∈Rd|x′⊤u≥t}

∃c ∈ C : c⊤u ≥ t,

0 else.
(E.69)

Consider the two cases.

∃c ∈ C : c⊤u ≥ t ⇐⇒ u ∈
⋃
c∈C

{
u′ ∈ Rd | c⊤u ≥ t

}
.

The right-hand set is the union of finitely many halfspaces (which are measurable), and
so the right-hand set is also measurable. Then the casing is a measurable function of u.
Clearly the zero function is measurable. Now we turn to the first case.

In the first case, eq. (E.69)’s indicator functions test each x, c for membership in a closed
halfspace with respect to u. Halfspaces are measurable sets. Therefore, the indicator
function is a measurable function of u, and so are the finite sums. Since the denominator
does not vanish within the case, the first case as a whole is a measurable function of u.
Therefore, Satisficet

(
X | C,u

)
is measurable on u.

Since Satisficet
(
X | C,u

)
is measurable and bounded [0, 1] (as X ⊆ C), apply lemma E.18

to conclude that Satisficet
(
X | C,Dany

)
= Satisficet

(
ϕ ·X | ϕ · C, ϕ · Dany

)
. Next, let

f(X | Dany) := Satisficet
(
X | C,Dany

)
. Since we just showed that Satisficet

(
X | C,Dany

)



208

is invariant to joint permutation by the involutions ϕi and since ϕi · C = C, f(X | Dany)

is also invariant to joint permutation by ϕi.

Furthermore, if X ′ ⊆ X, we have f(X ′ | Dany) ≤ f(X | Dany). Then applying lemma E.22,
Satisficet

(
B | C,u

)
=: f(B | Dany) ≥n

most: Dany
f(A | Dany) := Satisficet

(
A | C,u

)
.

Item 7. Suppose P is uniform over C and consider any of the involutions ϕi.

Mq,P (C | u) := inf

{
M ∈ R | P

x∼P

(
x⊤u > M

)
≤ q
}

(E.70)

= inf

{
M ∈ R | P

x∼P

(
(Pϕi

x)⊤(Pϕi
u) > M

)
≤ q
}

(E.71)

= inf

{
M ∈ R | P

x∼ϕi·P

(
x⊤(Pϕi

u) > M
)
≤ q
}

(E.72)

= inf

{
M ∈ R | P

x∼P

(
x⊤(Pϕi

u) > M
)
≤ q
}

(E.73)

=:Mq,P (ϕi · C | ϕi · u). (E.74)

Equation (E.71) follows by the orthogonality of permutation matrices. Equation (E.73)
follows because if x ∈ supp(P ) = C, then ϕi · x ∈ C = supp(P ), and furthermore
P (x) = P (Pϕi

x) by uniformity.

Now we show the invariance of C>Mq,P (C|u) under joint permutation by ϕi:

C>Mq,P (C|u) :=
{
c ∈ C | c⊤u > Mq,P (C | u)

}
(E.75)

=
{
c ∈ C | (Pϕi

c)⊤(Pϕi
u) > Mq,P (ϕi · C | ϕi · u)

}
(E.76)

=
{
c ∈ ϕi · C | c⊤(Pϕi

u) > Mq,P (ϕi · C | ϕi · u)
}

(E.77)

=: C>Mq,P (ϕi·C|ϕi·u). (E.78)

Equation (E.76) follows by the orthogonality of permutation matrices and because
Mq,P (C | u) = Mq,P (ϕi · C | ϕi · u) by eq. (E.74). A similar proof shows that
C=Mq,P (C|u) = C=Mq,P (ϕi·C|ϕi·u).
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Recall that

Qq,P (X | C,u) :=
∑
x∈X

P (x)

q

1x∈C>Mq,P (C|u)
+

1x∈C=Mq,P (C|u)

P
(
C=Mq,P (C|u)

) (q − P (C>Mq,P (C|u)

)) .

(E.79)

Qq,P (X | C,u) = Qq,P (ϕi ·X | ϕi ·C, ϕi ·u), since Q is the sum of products of ϕi-invariant
quantities.

P (x) is non-negative because P is a probability distribution, and q is assumed positive. The
indicator functions 1 are non-negative. By the definition of Mq,P , P

(
C>Mq,P (C|u)

)
≤ q.

Therefore, eq. (E.79) is the sum of non-negative terms. Thus, if X ′ ⊆ X, then Qq,P (X
′ |

C,u) ≤ Qq,P (X | C,u).

Let f(X | u) := Qq,P (X | C,u). Since ϕi ·C = C and since Qq,P (X | C,u) = Qq,P (ϕi ·X |
ϕi · C, ϕi · u), lemma E.23 shows that f(X | u) is also jointly invariant to permutation by
ϕi. Lastly, if X ′ ⊆ X, we have f(X ′ | Dany) ≤ f(X | Dany).

Apply lemma E.22 to conclude that Qq,P (B | C,u) =: f(B | u) ≥n
most: Rd f(A | u) :=

Qq,P (A | C,u).

Conjecture E.26 (Orbit tendencies occur for more quantilizer base distributions). Propo-
sition E.11’s item 7 holds for any base distribution P over C such that minb∈B P (b) ≥
maxa∈A P (a). Furthermore, Qq,P (X | C,u) is measurable on u and so ≥n

most: Rd can be
generalized to ≥n

most: Dany
.

E.3 Detailed analyses of mr scenarios

E.3.1 Action selection

Consider a bandit problem with five arms a1, . . . , a5 partitioned A := {a1} , B :=

{a2, . . . , a5}, which each action has a definite utility ui. There are T = 100 trials.
Suppose the training procedure train uses the ϵ-greedy strategy to learn value estimates
for each arm. At the end of training, train outputs a greedy policy with respect to its value
estimates. Consider any action-value initialization, and the learning rate is set α := 1. To
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learn an optimal policy, at worst, the agent just has to try each action once.

Lemma E.27 (Lower bound on success probability of the train bandit). Let u ∈ R5

assign strictly maximal utility to ai, and suppose train (described above) runs for T ≥ 5

trials. Then ftrain({ai} | u) ≥ 1− (1− ϵ
4)

T .

Proof. Since the trained policy can be stochastic,

ftrain({ai} | u) ≥ P (ai is assigned probability 1 by the learned greedy policy) .

Since ai has strictly maximal utility which is deterministic, and since the learning rate
α := 1, if action ai is ever drawn, it is assigned probability 1 by the learned policy. The
probability that ai is never explored is at most (1− ϵ

4)
T , because at worst, ai is an “explore”

action (and not an “exploit” action) at every time step, in which case it is ignored with
probability 1− ϵ

4 .

Proposition E.28 (The train bandit is 4-retargetable). ftrain is (R5, A
4→ B)-retargetable.

Proof. Let ϕi := a1 ↔ ai for i = 2, . . . , 5 and let Θ := R5. We want to show that whenever
u ∈ R5 induces ftrain(A | u) > ftrain(B | u), retargeting u will get train to instead learn
to pull a B-action: ftrain(A | ϕi · u) < ftrain(B | ϕi · u).

Suppose we have such a u. If u is constant, a symmetry argument shows that each action
has equal probability of being selected, in which case ftrain(A | u) = 1

5 <
4
5 = ftrain(B |

u)—a contradiction. Therefore, u is not constant. Similar symmetry arguments show
that A’s action a1 has strictly maximal utility (u1 > maxi=2,...,5 ui).

But for T = 100, lemma E.27 shows that ftrain(A | u) = ftrain({a1} | u) ≈ 1 and
ftrain(

{
ai ̸=1

}
| u) ≈ 0 =⇒ ftrain(B | u) =

∑
i ̸=1 ftrain({ai} | u) ≈ 0. The converse state-

ment holds when considering ϕi · u instead of u. Therefore, train satisfies definition 6.5’s
item 1 (retargetability). These ϕi · u ∈ Θ := R5 because R5 is closed under permutation
by S5, satisfying item 2.

Consider another u′ ∈ R5 such that ftrain(A | u′) > ftrain(B | u′), and consider i ≠ j. By
the above symmetry arguments, u′ must also assign a1 maximal utility. By lemma E.27,
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Figure E.1: Map of the first level of Montezuma’s Revenge.

ftrain({ai} | ϕi · u) ≈ 1 and ftrain(
{
aj
}
| ϕi · u) ≈ 0 since i ̸= j, and vice versa when

considering ϕj · u instead of ϕi · u. Then since ϕi · u and ϕj · u induce distinct probability
distributions over learned actions, they cannot be the same utility function. This satisfies
item 3.

Corollary E.29 (The train bandit has orbit-level tendencies). ftrain(B | u) ≥4
most: R5

ftrain(A | u).

Proof. Combine proposition E.28 and theorem 6.6.

E.3.2 Observation reward maximization

Let T be a reasonably long rollout length, so that OT -reach is large—many different step-T
observations can be induced.

Proposition E.30 (Final reward maximization has strong orbit-level incentives in mr).
Let n := ⌊ |Oleave|

|Ostay| ⌋. fmax(Oleave | R) ≥n
most: RO fmax(Ostay | R).
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Proof. Consider the vector space representation of observations, R|O|. Define A := {eo |
o ∈ Ostay}, B := {eo | o ∈ Oleave}, and C := OT -reach = A ∪B the union of Ostay, Oleave.

Since |Oleave| ≥
∣∣Ostay

∣∣ by assumption that T is reasonably large, consider the involution
ϕ1 ∈ S|O| which embeds Ostay into Oleave, while fixing all other observations. If possible,
produce another involution ϕ2 which also embeds Ostay into Oleave, which fixes all other
observations, and which “doesn’t interfere with ϕ1” (i.e. ϕ2 · (ϕ1 ·A) = ϕ1 ·A). We can
produce n := ⌊ |Oleave|

|Ostay| ⌋ such involutions. Therefore, B contains n copies (definition E.7) of

A via involutions ϕ1, . . . , ϕn. Furthermore, ϕi · (A ∪B) = A ∪B, since each ϕi swaps A
with B′ ⊆ B, and fixes all b ∈ B \B′ by assumption. Thus, ϕ · C = C.

By proposition E.11’s item 2, FracOptimal
(
B | C,R

)
≥n

most: RO FracOptimal
(
A | C,R

)
.

Since fmax uniformly randomly chooses a maximal-reward observation to induce, ∀X ⊆
C : fmax(X | R) = FracOptimal

(
X | C,R

)
. Therefore, fmax(Oleave | R) ≥n

most: RO

fmax(Ostay | R).

We want to reason about the probability that decide leaves the initial room by time T in
its rollout trajectories.

pdecide(leave | θ) := P
π∼decide(θ),

τ∼π|s0

(τ has left the first room by step T ) , (E.80)

pdecide(stay | θ) := P
π∼decide(θ),

τ∼π|s0

(τ has not left the first room by step T ) . (E.81)

We want to show that reward maximizers tend to leave the room: pmax(leave | R) ≥n
most: Θ

pmax(stay | R). However, we must be careful: In general, fmax(Oleave | R) ̸= pmax(leave |
R) and fmax(Ostay | R) ̸= pmax(stay | R). For example, suppose that oT ∈ Oleave. By
the definition of Oleave, oT can only be observed if the agent has left the room by time
step T , and so the trajectory τ must have left the first room. The converse argument
does not hold: The agent could leave the first room, re-enter, and then wait until time T .
Although one of the doors would have been opened (fig. 6.1), the agent can also open the
door without leaving the room, and then realize the same step-T observation. Therefore,
this observation doesn’t belong to Oleave.
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Lemma E.31 (Room-status inequalities for mr).

pdecide(stay | θ) ≤ fdecide(Ostay | θ), (E.82)

and fdecide(Oleave | θ) ≤ pdecide(leave | θ). (E.83)

Proof. For any decide,

pdecide(stay | θ) (E.84)

= P
π∼decide(θ),

τ∼π|s0

(τ stays through step T ) (E.85)

=
∑
o∈O

P
π∼decide(θ),

τ∼π|s0

(o at step T of τ) P
π∼decide(θ),

τ∼π|s0

(
τ stays | o at step T

)
(E.86)

=
∑

o∈OT -reach

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

(
τ stays | o at step T

)
(E.87)

=
∑

o∈Ostay

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

(
τ stays | o at step T

)
(E.88)

≤
∑

o∈Ostay

P
π∼decide(θ),

τ∼π|s0

(o at step T ) (E.89)

= P
π∼decide(θ),

τ∼π|s0

(
oT ∈ Ostay

)
(E.90)

=: fdecide(Ostay | θ). (E.91)

Equation (E.87) holds because the definition of OT -reach ensures that if o ̸∈ OT -reach, then
Pπ∼decide(θ),

τ∼π|s0

(
o | θ

)
= 0. Because o ∈ OT -reach \Ostay implies that τ left and so

P
π∼decide(θ),

τ∼π|s0

(
τ stays | o at step T

)
= 0,

eq. (E.88) follows. Then we have shown eq. (E.82).

For eq. (E.83),

fdecide(Oleave | θ) (E.92)
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:= P
π∼decide(θ),

τ∼π|s0

(oT ∈ Oleave) (E.93)

=
∑

o∈Oleave

P
π∼decide(θ),

τ∼π|s0

(o at step T ) (E.94)

=
∑

o∈Oleave

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

(
τ leaves by step T | o at step T

)
(E.95)

=
∑
o∈O

P
π∼decide(θ),

τ∼π|s0

(o at step T ) P
π∼decide(θ),

τ∼π|s0

(
τ leaves by step T | o at step T

)
(E.96)

= P
π∼decide(θ),

τ∼π|s0

(τ has left the first room by step T ) (E.97)

=: pdecide(leave | θ). (E.98)

Equation (E.95) follows because, since o ∈ Oleave are only realizable by leaving the first
room, this implies Pπ∼decide(θ),

τ∼π|s0

(
τ leaves by step T | o at step T

)
= 1. Equation (E.96)

follows because Oleave ⊆ O, and probabilities are non-negative. Then we have shown
eq. (E.83).

Corollary E.32 (Final reward maximizers tend to leave the first room in mr).

pmax(leave | R) ≥n
most: RO pmax(stay | R). (E.99)

Proof. Using lemma E.31 and proposition E.30, apply lemma E.14 with f0(R) :=

pmax(leave | R), f1(R) := fmax(Oleave | R), f2(R) := fmax(Ostay | R), f3(R) := pmax(stay |
R) to conclude that pmax(leave | R) ≥n

most: RO pmax(stay | R).



215

E.3.3 Featurized reward maximization

Consider the featurization function which takes as input an observation o ∈ O:

feat(o) :=


# of keys in inventory shown by o

# of swords in inventory shown by o
# of torches in inventory shown by o
# of amulets in inventory shown by o

 . (E.100)

Consider Afeat :=
{
feat(o) | o ∈ Ostay

}
, Bfeat :=

{
feat(o) | o ∈ Oleave

}
.

Let ei ∈ R4 be the standard basis vector with a 1 in entry i and 0 elsewhere. When
restricted to the room shown in fig. 6.1, the agent can either acquire the key in the first
room and retain it until step T (e1), or reach time step T empty-handed (0). We conclude
that Afeat = {e1,0}.

For Bfeat, recall that in section 6.4.2 we assumed the rollout length T to be reasonably
large. Then by leaving the room, some realizable trajectory induces oT displaying an
inventory containing only a sword (e2), or only a torch (e3), or only an amulet (e4),
or nothing at all (0). Therefore, {e2, e3, e4,0} ⊆ Bfeat. Bfeat contains 3 copies of Afeat

(definition E.7) via involutions ϕi : 1↔ i, i ̸= 1. Suppose all feature coefficient vectors
α ∈ R4 are plausible. Then Θ := R4.

Let us be more specific about what is entailed by featurized reward maximization.
The decidemax(α) procedure takes α as input and then considers the reward function
o 7→ feat(o)⊤α. Then, decidemax uniformly randomly chooses an observation oT ∈ OT -reach

which maximizes this featurized reward, and then uniformly randomly chooses a policy
which implements oT .

Lemma E.33 (FracOptimal inequalities). Let X ⊆ Y ′ ⊆ Y ⊊ Rd be finite, and let
u ∈ Rd. Then

FracOptimal
(
X | Y,u

)
≤ FracOptimal

(
X | Y ′,u

)
≤ FracOptimal

(
X ∪ (Y \ Y ′) | Y,u

)
.

(E.101)

Proof. For finite X1 ⊊ Rd, let Best
(
X1 | u

)
:= argmaxx1∈X1

x⊤
1 u. Suppose y′ ∈
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Best
(
Y ′ | u

)
, but y′ ̸∈ Best

(
Y | u

)
. Then for all a ∈ Best

(
Y ′ | u

)
,

a⊤u = y′⊤u < max
y∈Y

y⊤u. (E.102)

So a ̸∈ Best
(
Y | u

)
. Then either Best

(
Y ′ | u

)
⊆ Best

(
Y | u

)
, or the two sets are disjoint.

FracOptimal
(
X | Y,u

)
:=

∣∣∣Best (Y | u) ∩X∣∣∣∣∣∣Best (Y | u)∣∣∣ (E.103)

≤

∣∣∣Best (Y ′ | u
)
∩X

∣∣∣∣∣∣Best (Y ′ | u
)∣∣∣ =: FracOptimal

(
X | Y ′,u

)
(E.104)

If Best
(
Y ′ | u

)
⊆ Best

(
Y | u

)
, then since X ⊆ Y ′, we have X ∩ Best

(
Y ′ | u

)
= X ∩

Best
(
Y | u

)
. Then in this case, eq. (E.103) has equal numerator and larger denominator

than eq. (E.104). On the other hand, if Best
(
Y ′ | u

)
∩ Best

(
Y | u

)
= ∅, then since

X ⊆ Y ′, X∩Best
(
Y | u

)
= ∅. Then eq. (E.103) equals 0, and eq. (E.104) is non-negative.

Either way, eq. (E.104)’s inequality holds. To show the second inequality, we handle the
two cases separately.

Subset case. Suppose that Best
(
Y ′ | u

)
⊆ Best

(
Y | u

)
.∣∣∣Best (Y ′ | u

)
∩X

∣∣∣∣∣∣Best (Y ′ | u
)∣∣∣ ≤

∣∣∣Best (Y ′ | u
)
∩X

∣∣∣+ ∣∣∣Best (Y \ Y ′ | u
)∣∣∣∣∣∣Best (Y ′ | u

)∣∣∣+ ∣∣∣Best (Y \ Y ′ | u
)∣∣∣ (E.105)

=

∣∣∣Best (Y ′ | u
)
∩X

∣∣∣+ ∣∣∣Best (Y \ Y ′ | u
)
∩ (Y \ Y ′)

∣∣∣∣∣∣Best (Y ′ | u
)∣∣∣+ ∣∣∣Best (Y \ Y ′ | u

)∣∣∣ (E.106)

=

∣∣∣Best (Y ′ | u
)
∩X

∣∣∣+ ∣∣∣Best (Y | u) ∩ (Y \ Y ′)
∣∣∣∣∣∣Best (Y ′ | u

)∣∣∣+ ∣∣∣Best (Y \ Y ′ | u
)∣∣∣ (E.107)

=

∣∣∣Best (Y ′ | u
)
∩X

∣∣∣+ ∣∣∣Best (Y | u) ∩ (Y \ Y ′)
∣∣∣∣∣∣Best (Y | u)∣∣∣ (E.108)
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=

∣∣∣Best (Y | u) ∩X∣∣∣+ ∣∣∣Best (Y | u) ∩ (Y \ Y ′)
∣∣∣∣∣∣Best (Y | u)∣∣∣ (E.109)

=

∣∣∣Best (Y | u) ∩ (X ∪ (Y \ Y ′))
∣∣∣∣∣∣Best (Y | u)∣∣∣ (E.110)

=: FracOptimal
(
X ∪ (Y \ Y ′) | Y,u

)
. (E.111)

Equation (E.105) follows because when n ≤ d, k ≥ 0, we have n
d ≤ n+k

d+k . For eq. (E.107),
since Best

(
Y ′ | u

)
⊆ Best

(
Y | u

)
, we must have

Best
(
Y | u

)
= Best

(
Y \ Y ′ | u

)
∪ Best

(
Y ′ | u

)
.

But then

Best
(
Y | u

)
∩ (Y \ Y ′) =

(
Best

(
Y \ Y ′ | u

)
∩ (Y \ Y ′)

)
∪
(
Best

(
Y ′ | u

)
∩ (Y \ Y ′)

)
(E.112)

= Best
(
Y \ Y ′ | u

)
∩ (Y \ Y ′). (E.113)

Then eq. (E.107) follows. Equation (E.108) follows since

Best
(
Y | u

)
= Best

(
Y \ Y ′ | u

)
∪ Best

(
Y ′ | u

)
.

Equation (E.109) follows since X ⊆ Y ′, and so

Best
(
Y ′ | u

)
∩X = Best

(
Y | u

)
∩X.

Equation (E.110) follows because X ⊆ Y ′ is disjoint of Y \ Y ′. We have shown that

FracOptimal
(
X | Y ′,u

)
≤ FracOptimal

(
X ∪ (Y \ Y ′) | Y,u

)
in this case.
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Disjoint case. Suppose that Best
(
Y ′ | u

)
∩ Best

(
Y | u

)
= ∅.∣∣∣Best (Y ′ | u

)
∩X

∣∣∣∣∣∣Best (Y ′ | u
)∣∣∣ ≤ 1 (E.114)

=

∣∣∣Best (Y \ Y ′ | u
)∣∣∣∣∣∣Best (Y \ Y ′ | u
)∣∣∣ (E.115)

=

∣∣∣Best (Y \ Y ′ | u
)
∩ (Y \ Y ′)

∣∣∣∣∣∣Best (Y \ Y ′ | u
)∣∣∣ (E.116)

=

∣∣∣Best (Y \ Y ′ | u
)
∩ (X ∪ (Y \ Y ′))

∣∣∣∣∣∣Best (Y \ Y ′ | u
)∣∣∣ (E.117)

=

∣∣∣Best (Y | u) ∩ (X ∪ (Y \ Y ′))
∣∣∣∣∣∣Best (Y | u)∣∣∣ (E.118)

=: FracOptimal
(
X ∪ (Y \ Y ′) | Y,u

)
. (E.119)

Equation (E.114) follows because Best
(
Y ′ | u

)
∩ X ⊆ Best

(
Y ′ | u

)
. For eq. (E.117),

note that we trivially have Best
(
Y ′ | u

)
∩ Best

(
Y \ Y ′ | u

)
= ∅, and also that X ⊆ Y ′.

Therefore, Best
(
Y \ Y ′ | u

)
∩X = ∅, and eq. (E.117) follows. Finally, the disjointness

assumption implies that
max
y′∈Y ′

y′⊤u < max
y∈Y

y⊤u.

Therefore, the optimal elements of Y must come exclusively from Y \Y ′; i.e. Best
(
Y | u

)
=

Best
(
Y \ Y ′ | u

)
. Then eq. (E.118) follows, and we have shown that

FracOptimal
(
X | Y ′,u

)
≤ FracOptimal

(
X ∪ (Y \ Y ′) | Y,u

)
in this case.

Conjecture E.34 (Generalizing lemma E.33). Lemma E.33 and Turner et al. [99]’s
Lemma E.26 have extremely similar functional forms. How can they be unified?
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Proposition E.35 (Featurized reward maximizers tend to leave the first room in mr).

pmax(leave | α) ≥3
most: R4 pmax(stay | α). (E.120)

Proof. We want to show that fmax(Oleave | α) ≥n
most: R4 fmax(Ostay | α). Recall that

Afeat = {e1,0}, B′
feat := {e2, e3, e4} ⊆ Bfeat.

pmax(stay | α) (E.121)

≤ fmax(Ostay | α) (E.122)

:= P
π∼decidemax(α),

τ∼π|s0

(
oT ∈ Ostay

)
(E.123)

= P
π∼decidemax(α),

τ∼π|s0

(
oT ∈ Ostay, feat(oT ) ̸= 0

)
+ P

π∼decidemax(α),
τ∼π|s0

(
oT ∈ Ostay, feat(oT ) = 0

)
(E.124)

≤ FracOptimal
(
{e1} | Cfeat, α

)
+ P

π∼decidemax(α),
τ∼π|s0

(
oT ∈ Ostay, feat(oT ) = 0

)
(E.125)

≤ FracOptimal
(
{e1} | {e1, e2, e3, e4} , α

)
+ P

π∼decidemax(α),
τ∼π|s0

(
oT ∈ Ostay, feat(oT ) = 0

)
(E.126)

≤3
most: R4

>0
FracOptimal

(
{e2, e3, e4} | {e1, e2, e3, e4} , α

)
+ P

π∼decidemax(α),
τ∼π|s0

(
oT ∈ Oleave, feat(oT ) = 0

)
(E.127)

≤ FracOptimal
(
{e2, e3, e4} ∪ (Cfeat \ {e1, e2, e3, e4}) | Cfeat, α

)
(E.128)

= FracOptimal
(
Cfeat \ {e1} | Cfeat, α

)
(E.129)

≤ P
π∼decidemax(α),

τ∼π|s0

(oT ∈ Oleave) (E.130)

=: fmax(Oleave | α) (E.131)

≤ pmax(leave | α). (E.132)

Equation (E.121) and eq. (E.132) hold by lemma E.31. If oT ∈ Ostay is realized by fmax
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and feat(oT ) ̸= 0, then we must have feat(oT ) = {e1} be optimal and so the e1 inventory
configuration is realized. Therefore, eq. (E.125) follows. Equation (E.126) follows by
applying the first inequality of lemma E.33 with X := {e1}, Y ′ := {e1, e2, e3, e4}, Y :=

Cfeat.

By applying proposition E.11’s item 2 with A := Afeat = {e1}, B′ := B′
feat = {e2, e3, e4},

C := A ∪B′, we have

FracOptimal
(
{e1} | {e1, e2, e3, e4} , α

)
≤3

most: R4
>0

FracOptimal
(
{e2, e3, e4} | {e1, e2, e3, e4} , α

)
. (E.133)

Furthermore, observe that

P
π∼decidemax(α),

τ∼π|s0

(
oT ∈ Ostay, feat(oT ) = 0

)
≤ P

π∼decidemax(α),
τ∼π|s0

(
oT ∈ Oleave, feat(oT ) = 0

)
(E.134)

because either 0 is not optimal (in which case both sides equal 0), or else 0 is optimal,
in which case the right side is strictly greater. This can be seen by considering how
decidemax(α) uniformly randomly chooses an observation in which the agent ends up with
an empty inventory. As argued previously, the vast majority of such observations can
only be induced by leaving the first room.

Combining eq. (E.133) and eq. (E.134), eq. (E.127) follows. Equation (E.128) follows by
applying the second inequality of lemma E.33 with X := {e2, e3, e4}, Y ′ := {e1, e2, e3, e4},
Y := Cfeat. If feat(oT ) ∈ Bfeat is realized by fmax, then by the definition of Bfeat,
oT ∈ Oleave is realized, and so eq. (E.130) follows.

Then by applying lemma E.14 with

f0(α) := pmax(leave | α), (E.135)

f1(α) := FracOptimal
(
{e1} | {e1, e2, e3, e4} , α

)
, (E.136)

f2(α) := FracOptimal
(
{e2, e3, e4} | {e1, e2, e3, e4} , α

)
, (E.137)

f3(α) := pmax(stay | α), (E.138)
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we conclude that pmax(leave | α) ≥3
most: R4

>0
pmax(stay | α).

Lastly, note that if 0 ∈ Θ and f(A | 0) > f(B | 0), f cannot be even be simply
retargetable for the Θ parameter set. This is because ∀ϕ ∈ Sd, ϕ · 0 = 0. For example,
inductive bias ensures that, absent a reward signal, learned policies tend to stay in the
initial room in mr. This is one reason why section 6.4.4’s analysis of the policy tendencies
of reinforcement learning excludes the all-zero reward function.

E.4 Lower bounds on mdp power-seeking incentives for optimal poli-
cies

Turner et al. [99] prove conditions under which at least half of the orbit of every reward
function incentivizes power-seeking behavior. For example, in fig. E.2, they prove that
avoiding ∅ maximizes average per-timestep reward for at least half of reward functions.
Roughly, there are more self-loop states (∅, ℓ↙, r↘, r↗) available if the agent goes left
or right instead of up towards ∅. We strengthen this claim, with corollary E.47 showing
that for at least three-quarters of the orbit of every reward function, it is average-optimal
to avoid ∅.

Therefore, we answer Turner et al. [99]’s open question of whether increased number of
environmental symmetries quantitatively strengthens the degree to which power-seeking
is incentivized. The answer is yes. In particular, it may be the case that only one
in a million state-based reward functions makes it average-optimal for Pac-Man to die
immediately.

F

∅

`/
left

`↙

`↖

r.
right

r↘

r↗

Figure E.2: A toy mdp for reasoning about power-seeking tendencies. Reproduced from
Turner et al. [99].

We will briefly restate several definitions needed for our key results, theorem E.46 and
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corollary E.47. For explanation, see Turner et al. [99].

Definition E.36 (Non-dominated linear functionals). Let X ⊊ R|S| be finite. ND (X) :={
x ∈ X | ∃r ∈ R|S| : x⊤r > maxx′∈X\{x} x

′⊤r
}

.

Definition E.37 (Bounded reward function distribution). Dbound is the set of bounded-
support probability distributions Dbound.

Remark. When n = 1, lemma E.38 reduces to the first part of Turner et al. [99]’s
lemma D.29, and lemma E.40 reduces to the first part of Turner et al. [99]’s lemma D.33.

Lemma E.38 (Quantitative expectation superiority lemma). Let A,B ⊊ Rd be finite and
let g : R→ R be a (total) increasing function. Suppose B contains n copies of ND (A).
Then

E
r∼Dbound

[
g

(
max
b∈B

b⊤r

)]
≥n

most: Dbound
E

r∼Dbound

[
g

(
max
a∈A

a⊤r

)]
. (E.139)

Proof. Because g : R→ R is increasing, it is measurable (as is max).

Let L := infr∈supp(Dbound)maxx∈X x⊤r, U := supr∈supp(Dbound)
maxx∈X x⊤r. Both exist

because Dbound has bounded support. Furthermore, since g is monotone increasing, it
is bounded [g(L), g(U)] on [L,U ]. Therefore, g is measurable and bounded on each
supp(Dbound), and so the relevant expectations exist for all Dbound.

For finite X ⊊ Rd, let f(X | u) := g(maxx∈X x⊤u). By lemma E.24, f is invariant under
joint permutation by Sd. Furthermore, f is measurable because g and max are. Therefore,
apply lemma E.18 to conclude that f(X | Dbound) := Eu∼Dbound

[
g(maxx∈X x⊤u)

]
is

also invariant under joint permutation by Sd (with f being bounded when restricted
to supp(Dbound)). Lastly, if X ′ ⊆ X, f(X ′ | Dbound) ≤ f(X | Dbound) because g is
increasing.

E
u∼Dbound

[
g

(
max
a∈A

a⊤u

)]
= E

u∼Dbound

g( max
a∈ND(A)

a⊤u

) (E.140)

≤n
most: Dany E

r∼Dbound

[
g

(
max
b∈B

b⊤r

)]
. (E.141)
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Equation (E.140) follows by corollary D.16 of [99]. Equation (E.141) follows by applying
lemma E.22 with f as defined above with the ϕ1, . . . , ϕn guaranteed by the copy assumption.

Definition E.39 (Linear functional optimality probability [99]). For finite A,B ⊊ R|S|,
the probability under Dany that A is optimal over B is

pDany (A ≥ B) := Pr∼Dany

(
max
a∈A

a⊤r ≥ max
b∈B

b⊤r

)
.

Lemma E.40 (Quantitative optimality probability superiority lemma). Let A,B,C ⊊ Rd

be finite and let Z satisfy ND (C) ⊆ Z ⊆ C. Suppose that B contains n copies of ND (A)

via involutions ϕi. Furthermore, let Bextra := B \
(
∪ni=1ϕi ·ND (A)

)
; suppose that for all

i, ϕi ·
(
Z \Bextra

)
= Z \Bextra.

Then pDany (B ≥ C) ≥n
most: Dany

pDany (A ≥ C).

Proof. For finite X,Y ⊊ Rd, let

g(X,Y | Dany) := pDany (X ≥ Y ) = E
u∼Dany

[
1maxx∈X x⊤u≥maxy∈Y y⊤u

]
.

By the proof of item 1 of proposition E.11, g is the expectation of a u-measurable
function. g is an EU function, and so lemma E.24 shows that it is invariant to joint
permutation by ϕi. Letting fY (X | Dany) := g(X,Y | Dany), lemma E.23 shows that
fY (X | Dany) = fY (ϕi ·X | ϕi · Dany) whenever the ϕi satisfy ϕi · Y = Y .

Furthermore, if X ′ ⊆ X, then fY (X ′ | Dany) ≤ fY (X | Dany).

pDany (A ≥ C) = pDany

(
ND (A) ≥ C

)
(E.142)

≤ pDany

(
ND (A) ≥ Z \Bextra

)
(E.143)

≤n
most: Dany pDany

(
B ≥ Z \Bextra

)
(E.144)

≤ pDany (B ∪Bextra ≥ Z) (E.145)

= pDany (B ≥ Z) (E.146)

= pDany (B ≥ C) . (E.147)
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Equation (E.142) follows by Turner et al. [99]’s lemma D.17’s item 2 with X := A,
X ′ := ND (A) (similar reasoning holds for C and Z in eq. (E.147)). Equation (E.143)
follows by the first inequality of lemma D.31 of [99] with X := A, Y := C, Y ′ := Z \Bextra.
Equation (E.144) follows by applying lemma E.22 with the fZ\Bextra defined above.
Equation (E.145) follows by the second inequality of lemma D.31 of [99] with X :=

A, Y := Z, Y ′ := Z \Bextra. Equation (E.146) follows because Bextra ⊆ B.

Letting f0(Dany) := pDany (A ≥ C) , f1(Dany) := pDany

(
ND (A) ≥ Z \Bextra

)
, f2(Dany) :=

pDany

(
B ≥ Z \Bextra

)
, f3(Dany) := pDany (B ≥ C), apply lemma E.14 to conclude that

pDany (A ≥ C) ≤n
most: Dany pDany (B ≥ C) .

Definition E.41 (Rewardless mdp [99]). ⟨S,A, T ⟩ is a rewardless mdp with finite state
and action spaces S and A, and stochastic transition function T : S × A → ∆(S). We
treat the discount rate γ as a variable with domain [0, 1].

Definition E.42 (1-cycle states [99]). Let es ∈ R|S| be the standard basis vector for
state s, such that there is a 1 in the entry for state s and 0 elsewhere. State s is a 1-cycle
if ∃a ∈ A : T (s, a) = es. State s is a terminal state if ∀a ∈ A : T (s, a) = es.

Definition E.43 (State visit distribution [91]). Π := AS , the set of stationary determin-
istic policies. The visit distribution induced by following policy π from state s at discount
rate γ ∈ [0, 1) is fπ,s(γ) :=

∑∞
t=0 γ

t Est∼π|s [est ]. fπ,s is a visit distribution function;
F(s) := {fπ,s | π ∈ Π}.

Definition E.44 (Recurrent state distributions [68]). The recurrent state distribu-
tions which can be induced from state s are RSD (s) :=

{
limγ→1(1− γ)fπ,s(γ) | π ∈ Π

}
.

RSDnd (s) is the set of rsds which strictly maximize average reward for some reward
function.

Definition E.45 (Average-optimal policies [99]). The average-optimal policy set for reward
function R is Πavg (R) :=

{
π ∈ Π | ∀s ∈ S : dπ,s ∈ argmaxd∈RSD(s) d

⊤r
}

(the policies
which induce optimal rsds at all states). For D ⊆ RSD (s), the average optimality
probability is PDany

(D, average) := PR∼Dany

(
∃dπ,s ∈ D : π ∈ Πavg (R)

)
.
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Remark. Theorem E.46 generalizes the first claim of Turner et al. [99]’s theorem 5.29,
and corollary E.47 generalizes the first claim of Turner et al. [99]’s corollary 5.30.

Theorem E.46 (Quantitatively, average-optimal policies tend to end up in “larger” sets
of rsds). Let D′, D ⊆ RSD (s). Suppose that D contains n copies of D′ and that the sets
D′ ∪D and RSDnd (s) \

(
D′ ∪D

)
have pairwise orthogonal vector elements (i.e. pairwise

disjoint vector support). Then PDany

(
D′, average

)
≤n

most: Dany
PDany

(D, average).

Proof. Let Di := ϕi ·D′, where Di ⊆ D by assumption.
Let S :=

{
s′ ∈ S | maxd∈D′∪D d⊤es′ > 0

}
.

Define

ϕ′i(s
′) :=

ϕi(s
′) if s′ ∈ S

s′ else.
(E.148)

Since ϕi is an involution, ϕ′i is also an involution. Furthermore, ϕ′i ·D′ = Di, ϕ′i ·Di = D′,
and ϕ′i · Dj = Dj for j ̸= i because we assumed that these equalities hold for ϕi, and
D′, Di, Dj ⊆ D′ ∪D and so the vectors of these sets have support contained in S.

Let D∗ := D′ ∪ni=1 Di ∪
(
RSDnd (s) \

(
D′ ∪D

))
. By an argument mirroring that in

the proof of theorem 5.29 in Turner et al. [99] and using the fact that ϕ′i ·Dj = Dj for
all i ≠ j, ϕ′i · D∗ = D∗. Consider Z :=

(
RSDnd (s) \ (D′ ∪D)

)
∪ D′ ∪ D. First, Z ⊆

RSD (s) by definition. Second, RSDnd (s) = RSDnd (s) \ (D′ ∪D) ∪
(
RSDnd (s) ∩D′) ∪(

RSDnd (s) ∩D
)
⊆ Z. Note that D∗ = Z \ (D \ ∪ni=1Di).

PDany

(
D′, average

)
= pDany

(
D′ ≥ RSD (s)

)
(E.149)

≤n
most: Dany pDany

(
D ≥ RSD (s)

)
(E.150)

= PDany (D, average) . (E.151)

Since ϕ′i ·D′ ⊆ D and ND
(
D′) ⊆ D′, ϕ′i ·ND

(
D′) ⊆ D and so D contains n copies of

ND
(
D′) via involutions ϕ′i. Then eq. (E.150) holds by applying lemma E.40 with A := D′,

Bi := Di for all i = 1, . . . , n, B := D,C := RSD (s), Z as defined above, and involutions
ϕ′i which satisfy ϕ′i ·

(
Z \ (B \ ∪ni=1Bi)

)
= ϕ′i ·D∗ = D∗ = Z \ (B \ ∪ni=1Bi).
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Corollary E.47 (Quantitatively, average-optimal policies tend not to end up in any
given 1-cycle). Let D′ :=

{
es′1 , . . . , es′k

}
, Dr :=

{
es1 , . . . , esn·k

}
⊆ RSD (s) be disjoint,

for n ≥ 1, k ≥ 1. Then PDany

(
D′, average

)
≤n

most: Dany
PDany

(
RSD (s) \D′, average

)
.

Proof. For each i ∈ {1, . . . , n}, let

ϕi := (s′1 s(i−1)·k+1) · · · (s′k s(i−1)·k+k),

Di :=
{
es(i−1)·k+1

, . . . , es(i−1)·k+k

}
,

D := RSD (s) \D′.

Each Di ⊆ Dr ⊆ RSD (s) \D′ by disjointness of D′ and Dr.

D contains n copies of D′ via involutions ϕ1, . . . , ϕn. D′ ∪D = RSD (s) and RSDnd (s) \
RSD (s) = ∅ trivially have pairwise orthogonal vector elements.

Apply theorem E.46 to conclude that

PDany

(
D′, average

)
≤n

most: Dany PDany

(
RSD (s) \D′, average

)
.

Let A := {e1, e2} , B ⊆ R5, C := A ∪B. Conjecture E.48 conjectures that e.g.

pD′ (B ≥ C) ≥
3
2
most: Dany

pD′ (A ≥ C) .

Conjecture E.48 (Fractional quantitative optimality probability superiority lemma).
Let A, B, C ⊊ Rd be finite. If A =

⋃m
j=1Aj and

⋃n
i=1Bi ⊆ B such that for each Aj , B

contains n copies (B1, . . . , Bn) of Aj via involutions ϕji which also fix ϕji ·Aj′ = Aj′ for
j′ ̸= j, then

pDany (B ≥ C) ≥
n
m
most: Dany

pDany (A ≥ C) .

We suspect that any proof of the conjecture should generalize lemma E.20 to the fractional
set copy containment case.
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Table E.1: Orbit-level incentives across 4 decision-making functions.

Utility function u′ ♠B

10 ,
♥B

5 ,
♦A

0
♠B

10 ,
♥B

0 ,
♦A

5
♠B

5 ,
♥B

10,
♦A

0
♠B

5 ,
♥B

0 ,
♦A

10
♠B

0 ,
♥B

10,
♦A

5
♠B

0 ,
♥B

5 ,
♦A

10

Optimal
({

e♠B , e♥B
}
| Ccards,u

′
)

1 1 1 0 1 0

Optimal
(
{e♦A} | Ccards,u

′) 0 0 0 1 0 1

(a) Dark gray columns indicate utility function permutations u′ for which
Optimal

(
Bcards | Ccards,u

′) > Optimal
(
Acards | Ccards,u

′), while white indicates that the
opposite strict inequality holds.

Utility function u′ ♠B

10 ,
♥B

5 ,
♦A

0
♠B

10 ,
♥B

0 ,
♦A

5
♠B

5 ,
♥B

10,
♦A

0
♠B

5 ,
♥B

0 ,
♦A

10
♠B

0 ,
♥B

10,
♦A

5
♠B

0 ,
♥B

5 ,
♦A

10

AntiOpt
({

e♠B , e♥B
}
| Ccards,u

′
)

0 1 0 1 1 1

AntiOpt
(
{e♦A} | Ccards,u

′) 1 0 1 0 0 0

(b) Utility-minimizing outcome selection probability.

Utility function u′ ♠B

10 ,
♥B

5 ,
♦A

0
♠B

10 ,
♥B

0 ,
♦A

5
♠B

5 ,
♥B

10,
♦A

0
♠B

5 ,
♥B

0 ,
♦A

10
♠B

0 ,
♥B

10,
♦A

5
♠B

0 ,
♥B

5 ,
♦A

10

Boltzmann1

({
e♠B , e♥B

}
| Ccards,u

′
)

1 .993 1 .007 .993 .007

Boltzmann1

(
{e♦A} | Ccards,u

′) .000 .007 .000 .993 .007 .993

(c) Boltzmann selection probabilities for T = 1, rounded to three significant digits.

Utility function u′ ♠B

10 ,
♥B

5 ,
♦A

0
♠B

10 ,
♥B

0 ,
♦A

5
♠B

5 ,
♥B

10,
♦A

0
♠B

5 ,
♥B

0 ,
♦A

10
♠B

0 ,
♥B

10,
♦A

5
♠B

0 ,
♥B

5 ,
♦A

10

Satisfice3
({

e♠B , e♥B
}
| Ccards,u

′
)

1 .5 1 .5 .5 .5

Satisfice3
(
{e♦A} | Ccards,u

′) 0 .5 0 .5 .5 .5

(d) A satisficer uniformly randomly selects an outcome lottery with expected utility greater
than or equal to the threshold t. Here, t = 3. When Satisfice3

({
e♠B , e♥B

}
| Ccards,u

′
)

=

Satisfice3
(
{e♦A} | Ccards,u

′), the column is colored medium gray.
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Targeting parameter θ f(
{
♦A
}
|θ) f(

{
♥B
}
|θ) f(

{
♠B
}
|θ) f(

{
♥B,♠B

}
|θ)

θ′ := 1e1 + 3e2 + 2e3 1 0 0 0
ϕ1 · θ′ = ϕ2 · θ′′ := 3e1 + 1e2 + 2e3 0 2 2 2

ϕ2 · θ′ := 2e1 + 3e2 + 1e3 0 2 2 2
θ′′ := 2e1 + 1e2 + 3e3 1 0 0 0

ϕ1 · θ′′ := 1e1 + 2e2 + 3e3 0 2 2 2
θ⋆ := 3e1 + 2e2 + 1e3 1 0 0 0

Table E.2: Let ϕ1 := ♦A ↔ ♥B, ϕ2 := ♦A ↔ ♠B. We tabularly define a function f
which meets all requirements of lemma E.20, except for item 4: letting j := 2, f(B⋆

2 |
ϕ1 · θ′) = 2 > 0 = f(B⋆

2 | θ′). Although f(B | θ) ≥1
most: S3·θ f(A | θ), it is not true that

f(B | θ∗) ≥2
most: S3·θ f(A | θ∗). Therefore, item 4 is generally required.
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F
Additional Theoretical Results

This chapter contains results on:

• Mdp structure and representation (seemingly building towards a novel category-
theoretic treatment of mdps),

• The expressivity of Markov reward [1],

• The properties of optimal value functions,

• Characterizing the mdps in which there exist reward functions whose optimal policy
set depends on the discount rate,

• An optimal value-based distance metric on the state space,

• An improved rl regret formalism and a no-free-lunch theorem prohibiting simulta-
neously bounding this regret for all reward functions,
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• Power-seeking incentives for agents with discount rate very close to 1, and

• Power-seeking incentives for ϵ-optimal agents.

F.1 Basic results on visit distributions

The traditional view of Markov decision processes (mdps) takes for granted a reward
function and discount rate, and considers the on-policy value function induced by solving
the Bellman equations for a given policy. The “dual” view considers the available state
visit distribution functions.

I think that the dual view deserves more prominence: each reward function and discount
rate tuple merely imposes a preordering over policies given the existing dynamics. The
dual view regards the environment structure as primary, and the optimization objective
as secondary. Studying this environmental structure makes available unexplored areas of
basic mdp theory.

We freely rely on the theorems and definitions of Optimal Policies Tend to Seek Power
[99] and Avoiding Side Effects in Complex Environments [98], as they do not depend on
these results. All mdps are assumed to have finite state and action spaces.

Lemma F.1 (Each state has a visit distribution function). ∀s ∈ S : 1 ≤
∣∣F(s)∣∣.

Proof. |Π| = |A||S|. Each mdp must have at least one action and one state, and so Π is
not empty.

Let π ∈ Π, γ ∈ [0, 1), s ∈ S and consider Tπ, the transition matrix which π induces. Tπ is
left stochastic and hence has spectral radius at most 1. Therefore, γTπ has spectral radius
strictly less than 1. This means that its Neumann series

∑∞
t=0 (γT

π)t = (I− γTπ)−1,
where I is the |S|-dimensional identity matrix.

fπ,s(γ) :=
∞∑
t=0

γt E
s′

[
es′ | π followed for t steps from s

]
. (F.1)

By inspection, fπ,s(γ) = Ies+(γTπ) es+(γTπ)2 es+· · · , so fπ,s(γ) = (I− γTπ)−1 es.
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Corollary F.2 (fπ,s identity [68]). fπ,s(γ) = (I− γTπ)−1 es.

Lemma F.3 (Strictly increasing visit frequency). If ∃γ ∈ [0, 1) : fπ,ss′ (γ) ̸∈ {0, 1}, then
fπ,ss′ (γ) is strictly monotonically increasing on γ ∈ [0, 1).

Proof. Suppose ∃γ ∈ [0, 1) : fπ,ss′ (γ) ̸∈ {0, 1}. This implies that there exists a summand in
the Neumann series

∑∞
t=0 (γT

π)t es in whose result s′ has a positive entry. If the only
such summand were at t = 0, fπ,ss′ (γ) = 0, which is not the case. Therefore, t > 0 and the
summand must strictly increase with γ ∈ [0, 1).

The intuition for the following result is that if s ̸= s1, s can achieve strictly greater
discounted s-visitation frequency than s1 can.

Lemma F.4 (Each state has a unique visit distribution). If s ≠ s1 and γ ∈ [0, 1), then
∃fπ(γ) ∈ Fnd(s, γ) \ F(s1, γ).

Proof. Given the fixed γ ∈ [0, 1), consider the visit distributions of s whose policies always
maximize discounted s-visitation frequency, no matter which state is the initial state. By
corollary F.67, at least one such maximizing visit distribution fπ(γ) is non-dominated.
Let s1 ̸= s and fπ

′ ∈ F(s1).

fπ
′,s1

s (γ) ≤ fπ,s1s (γ) (F.2)

= 1s1=s + γ E
s2∼T (s1,π(s1))

[
fπ,s2s (γ)

]
(F.3)

= γ E
s2∼T (s1,π(s1))

[
fπ,s2s (γ)

]
(F.4)

= γ E
s2∼T (s1,π(s1))

[
1s2=s + γ E

s3∼T (s2,π(s2))

[
fπ,s3s (γ)

]]
(F.5)

≤ γfπ,ss (γ) (F.6)

< fπ,ss (γ). (F.7)

Equation (F.2) follows because π maximizes s-visitation frequency from every state.
Equation (F.4) follows because s1 ̸= s (1s1=s is the indicator function which returns 1 if
s1 = s and 0 otherwise). Equation (F.6) follows because, at best, s2 = s with probability
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1; until s is reached, no visitation frequency is accrued. Equation (F.7) follows because
γ ∈ (0, 1).

Since ∀fπ′,s1 ∈ F(s1) : fπ
′,s1

s (γ) < fπ,ss (γ), fπ,s ̸∈ F(s1).

F.1.1 Child distributions

Definition F.5 (Child state distributions). T (s) :=
{
T (s, a) | a ∈ A

}
.

Definition F.6 (Non-dominated child state distributions). The non-dominated child
state distributions are Tnd (s) := ND

(
T (s)

)
.

Lemma F.7 (When the dynamics are locally deterministic, T (s) = Tnd (s)). Suppose s
is such that ∀a ∈ A, s′ ∈ S : T (s, a, s′) ∈ {0, 1}. Then T (s) = Tnd (s).

Proof. Local determinism implies that T (s) is a set of one-hot state vectors es∗ . Then
each es∗ strictly maximizes visitation frequency for s∗. Therefore, es∗ is strictly optimal
for reward function r := es∗ when γ ≈ 0, and so es∗ ∈ Tnd (s).

Lemma F.8 (Dominated child state distributions induce dominated visit distribution
functions). If T (s, a) ∈ T (s) \ Tnd (s) and π(s) = a, then fπ ∈ F(s) \ Fnd(s).

Proof. Let d := T (s, a) ∈ T (s) \ Tnd (s) and π(s) = a for some policy π. If fπ ∈ Fnd(s),
fπ has to be strictly optimal for some R at some discount rate γ ∈ (0, 1). In particular,
in order for fπ to be uniquely optimal for R at γ, only actions equivalent to a at state s
can be optimal.

Let vπ
γ ∈ R|S| be V π

R (·, γ) in column vector form. Then we must have

d⊤vπ
γ > max

d′∈T (s)\{d}
d′⊤vπ

γ . (F.8)

This contradicts the fact that T (s, a) ̸∈ Tnd (s).
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Lemma F.9 (Dynamics characterize the nested structure of visit distribution functions).

T (s, a) ∈ T (s) iff
{
es + γ Es′∼T (s,a)

[
fπ,s

′
]
| fπ,s′ ∈ F(s′ | π(s) = a)

}
⊆ F(s).

Proof. T (s) =
{
limγ→0 γ

−1
(
fs,γ − es

)
| fs ∈ F(s)

}
. The lemma then follows from the

linear independence of the canonical unit vectors:
∑

i αiesi is an element of the right-hand
set iff it is an element of T (s).

Definition F.10 (Normalized value and action-value functions). For policy π,

V π
R, norm (R) s, γ := lim

γ∗→γ
(1− γ∗)V π

R

(
s, γ∗

)
;

this limit exists for all γ ∈ [0, 1] by lemma D.45. We similarly define V ∗
R, norm (s, γ) and

Q∗
R, norm (s, a, γ).

Lemma F.11 (PowerDbound is the average normalized next-state optimal value).

PowerDbound (s, γ) = E
R∼D

max
π∈Π

E
s′∼T(s,π(s))

[
V π
R,norm

(
s′, γ

)] . (F.9)

Proof. The γ ∈ (0, 1) case follows from eq. (D.94) in the proof of lemma D.43 and the fact
that when γ ∈ (0, 1), V π

R, norm
(
s′, γ

)
:= limγ∗→γ(1 − γ∗)V π

R

(
s′, γ∗

)
= (1 − γ)V π

R

(
s′, γ

)
because on-policy value is continuous on γ ∈ [0, 1). The γ = 0 and γ = 1 cases follow by
taking the appropriate limits and applying the continuity of PowerDbound .

Proposition F.12 (Identical Tnd (s) implies equal PowerDbound(s, γ)). If Tnd (s) =

Tnd
(
s′
)
, then ∀γ ∈ [0, 1] : PowerDbound (s, γ) = PowerDbound

(
s′, γ

)
.

Proof. Let γ ∈ (0, 1). Lemma F.11 shows that

PowerDbound (s, γ) = (1− γ) E
R∼D

max
π∈Π

E
s′∼T(s,π(s))

[
V π
R

(
s′, γ

)] (F.10)
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= (1− γ) E
R∼D

[
max
a

E
s′∼T (s,a)

[
V ∗
R

(
s′, γ

)]]
(F.11)

= (1− γ) E
R∼D

[
max
d∈T (s)

E
s′∼d

[
V ∗
R

(
s′, γ

)]]
(F.12)

= (1− γ) E
R∼D

[
max

d∈Tnd(s)
E

s′∼d

[
V ∗
R

(
s′, γ

)]]
(F.13)

= (1− γ) E
R∼D

[
max

d′∈Tnd(s′)
E

s′∼d′

[
V ∗
R

(
s′, γ

)]]
(F.14)

= PowerDbound

(
s′, γ

)
. (F.15)

Equation (F.10) follows from lemma F.11. Since restriction to stationary policies leaves
optimal value unchanged, the non-stationarity in eq. (F.11) leaves optimal value unchanged.

Lemma F.8 shows that dominated child distributions induce dominated visit distribution
functions. By lemma D.39, restriction to non-dominated visit distribution functions leaves
optimal value unchanged for all reward functions, and so only considering d ∈ Tnd (s)

leaves optimal value unchanged. Therefore, eq. (F.13) follows. Equation (F.14) follows
because we assumed that Tnd (s) = Tnd

(
s′
)
. Equation (F.15) follows by the reasoning for

eq. (F.10) through eq. (F.14).

The equality holds in the limit as γ → 0 or γ → 1.

Figure F.1 demonstrates how proposition F.12 establishes PowerDbound equality, even
when the equality is not intuitively obvious.

F.1.2 Optimal policy set transfer across discount rates

Definition F.13 (Blackwell optimal policies [11]). Π∗ (R, 1) := limγ→1Π
∗ (R, γ) is the

Blackwell optimal policy set for reward function R.

Definition F.14 (Greedy optimality). Πgreedy (R) is the set of policies π for which ∀s:

E
s′∼T (s,π(s))

[
R(s′)

]
= max

a
E

s′∼T (s,a)

[
R(s′)

]
.
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1

2

3

4a

Figure F.1: The bifurcated action a is a stochastic transition, where T (s1, a, s2) = .5 =
T (s1, a, s3). Since T (s1, a) ∈ T (s1) \ Tnd (s1), Tnd (s1) = Tnd (s4) and so proposition F.12
implies that ∀γ ∈ [0, 1] : PowerDbound (s1, γ) = PowerDbound (s4, γ).

Figure F.2 shows that Turner et al. [99]’s proposition D.35 does not always hold for γ = 0,
but proposition F.18 shows that it almost always does hold.

s0

s1
1

s′1
.5

s2
0

s′2
.5

up

down

Figure F.2: When γ = 1
2 , going up and going down are both optimal, with V ∗

R

(
s1,

1
2

)
=

V ∗
R

(
s′1,

1
2

)
= 1. However, proposition D.35 does not hold when the new discount rate is

0: only πdown ∈ Π∗
(
V ∗
R

(
·, 12
)
, 0

)
, with greedy policies preferring to “gradually” navigate

through higher-value states. When the new discount rate γ = 0, the optimal policies for
the constructed reward function are guaranteed to also be optimal for the original by
proposition F.18, but the converse statement is not true in this mdp.

Lemma F.15 (When γ ≈ 0, optimal policies are greedy). Π∗ (R, 0) ⊆ Πgreedy (R).

Proof. Let π∗ ∈ Π∗ (R, 0), π ∈ Π, and γ ∈ (0, 1).

V π∗
R (s, γ) ≥ V π

R (s, γ) (F.16)
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R(s) + γ E
s′∼T(s,π∗(s))

[
V π∗
R (s′, γ)

]
≥ R(s) + γ E

s′∼T(s,π(s))

[
V π
R (s′, γ)

]
(F.17)

E
s′∼T(s,π∗(s))

[
V π∗
R (s′, γ)

]
≥ E

s′∼T(s,π(s))

[
V π
R (s′, γ)

]
(F.18)

E
s′∼T(s,π∗(s))

[
R(s′) + γ E

s′′

[
V π∗
R (s′′, γ)

]]
≥ E

s′∼T(s,π(s))

[
R(s′) + γ E

s′′

[
V π
R (s′′, γ)

]]
. (F.19)

Equation (F.18) is valid because γ > 0.

Let b := mins−∈S R(s
−), c := maxs+∈S R(s

+); these exist because S is finite. Then
∀s′′ : b

1−γ ≤ V ∗
R

(
s′′, γ

)
≤ c

1−γ . Because optimal value is thus bounded, eq. (F.19)
is controlled by expected next-state reward when γ ≈ 0. The result follows because
definition 5.7 defines Π∗ (R, 0) := limγ→0Π

∗ (R, γ).

Corollary F.16 (At each γ ∈ (0, 1), almost all reward functions have optimal actions at
each state which are unique up to action equivalence).

Proof. Let s be a state. Lemma F.105 implies that, for any fixed γ ∈ (0, 1) and for
almost all reward functions R, the optimal action at s is unique up to action equivalence
(definition 5.23). Since there are only finitely many states, almost all reward functions R
must have a unique-up-to-equivalence optimal action at all states.

It is optimal to stochastically mix between two actions iff both actions are (determin-
istically) optimal. Corollary F.17 shows that almost no reward functions have optimal
policies which mix between non-equivalent actions.

Corollary F.17 (Almost all reward functions do not have non-trivial stochastic optimal
policies). Let γ ∈ (0, 1) and let X :=

{
R ∈ RS | ∃s, π∗1, π∗2 ∈ Π∗ (R, γ) : π∗1(s) ̸≡s π

∗
2(s)

}
.

Considered as a subset of R|S|, X has zero Lebesgue measure.

Proof. The result follows directly from corollary F.16.

Proposition F.18 (Transferring optimal policy sets to γ = 0). Fix γ ∈ (0, 1) and let
R be a reward function. Π∗ (V ∗

R(·, γ), 0
)
⊆ Πgreedy (V ∗

R(·, γ)
)
= Π∗ (R, γ). Equality holds
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for almost all R; in particular, equality holds when ∀s ∈ S : ∃f ∈ Fnd(s) : f(γ)⊤r >

maxf ′∈Fnd(s)\{f} f
′(γ)⊤r.

Proof. By lemma F.15, Π∗ (V ∗
R(·, γ), 0

)
⊆ Πgreedy (V ∗

R(·, γ)
)
. By the definition of an

optimal policy, π ∈ Π∗ (R, γ) iff π maximizes value V π
R (s, γ) at all states s, which holds iff

π maximizes the rightmost term of V ∗
R (s, γ) := R(s) + γmaxa Es′∼T (s,a)

[
V ∗
R

(
s′, γ

)]
since

γ ∈ (0, 1). This is true iff π ∈ Πgreedy (V ∗
R(·, γ)

)
. Therefore, Πgreedy (V ∗

R(·, γ)
)
= Π∗ (R, γ).

Corollary F.16 implies that, for any fixed γ ∈ (0, 1) and for almost all reward functions
R, the optimal action at each state is unique up to action equivalence (definition 5.23).
Therefore, ∀s : ∃f ∈ Fnd(s) : f(γ)

⊤r > maxf ′∈Fnd(s)\{f} f
′(γ)⊤r for these reward functions

R.

For such reward functions R, a policy π′ ∈ Π∗ (R, γ) iff it induces the appropriate strictly
optimal f ∈ Fnd(s) at each state s. Let π ∈ Π∗ (V ∗

R(·, γ), 0
)
. Since π ∈ Π∗ (R, γ) by the

above and since optimal action for R at γ is unique up to action equivalence, π and π′

must choose equivalent actions at all states. Then π′ ∈ Π∗ (R, γ). Since π′ was arbitrary,
Π∗ (V ∗

R(·, γ), 0
)
= Π∗ (R, γ).

Question F.19 (Can proposition D.35 be generalized to γ = 1?).

F.1.3 Optimal policy set characterization

Definition F.20 (Set of optimal policy sets). The set of deterministic stationary optimal
policy sets is

Popt :=
{
Π∗ (R, γ) | R ∈ RS , γ ∈ [0, 1]

}
. (F.20)

Theorem F.21 (Characterization of Popt). Let Π′ ⊆ Π be a set of deterministic stationary
policies. The following are equivalent:

1. ∀γ1 ∈ [0, 1] : ∃R1 ∈ RS : Π∗ (R1, γ1) = Π′.

2. ∃γ2 ∈ [0, 1], R2 ∈ RS : Π∗ (R2, γ2) = Π′ (i.e. Π′ ∈ Popt).
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1

A

B

2

up

down

up

down

Figure F.3: In general, not all policy sets are valid optimal policy sets (Popt ⊊ P(Π)).
In the above, consider the policy π(s1) := up, π(s2) := down. Then Π′ := {π} ̸∈ Popt. If
R(sA) > R(sB), then no π ∈ Π′ would choose up over down; similar reasoning holds for
R(sA) < R(sB). If R(sA) = R(sB), then Π′ would contain some π2(s1) = down.

3. ∃R3 ∈ RS : Πgreedy (R3) = Π′.

Item 1 and item 2 say that the set of feasible optimal policy sets is invariant to the discount
rate. In particular, any optimal policy set can be rationalized as asymptotically greedy or
Blackwell-optimal.

Item 2 and item 3 show that a policy set is an optimal policy set for some R2 at some γ2
iff that policy set can be rationalized as greedily optimizing some R3.

Proof. 1 =⇒ 2 by definition F.20.

2 =⇒ 3. Suppose item 2 holds. If γ2 ∈ (0, 1), define R3(s) := V ∗
R2

(s, γ2). Then apply
proposition F.18 to conclude that Πgreedy (R3) = Π∗ (R2, γ2) = Π′.

Since Π∗ (R2, 1) := limγ→1Π
∗ (R2, γ) (definition 5.7) always exists by corollary F.124

and only finitely many optimal policy shifts occur (lemma D.40), ∀R : ∃γ ∈ (0, 1) :

Π∗ (R, γ) = Π∗ (R, 1). Select such a γ for R2. Since γ ∈ (0, 1), we have just shown that
∃R3 : Π

′ = Π∗ (R2, 1) = Π∗ (R2, γ) = Πgreedy (R3).

The γ2 = 0 case follows by the same reasoning. Then item 2 implies item 3.

3 =⇒ 1. Suppose item 3 holds. Let π ∈ Πgreedy (R3) and γ1 ∈ (0, 1). Define
R1 := (I− γ1Tπ)R3. By reasoning identical to that in the proof of proposition D.35,
∃R1 ∈ RS : Π∗ (R1, γ1) = Πgreedy (R3) = Π′.
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Now suppose γ1 = 1 and consider the function R1(s, γ1) := (I− γ1Tπ)R3(s). Since ∀γ ∈
(0, 1) : Π∗ (R1(·, γ), γ

)
= Π′ by the above reasoning, Π∗ (R1, 1) = limγ→1Π

∗ (R1(·, γ), γ
)
=

Π′ (by definition 5.7).

Similar reasoning holds when γ1 = 0. Since this equality can be satisfied for any γ1 ∈ [0, 1],
item 3 implies item 1.

Recall the following definition:

Definition F.5 (Child state distributions). T (s) :=
{
T (s, a) | a ∈ A

}
.

Given a starting state s, we can consider its available child state distributions T (s) to
be lotteries over the next state the agent will visit. A set of policies Π′ can be seen as
preferring some state lotteries (by containing policies which take a certain action at s)
over others (lotteries which are not induced by any π ∈ Π′ at state s).

Definition F.22 (State lottery relation implied by a policy set). The relations implied
by policy set Π′ ⊆ Π is defined as follows. Consider s such that L1, L2 ∈ T (s) (i.e. the
lotteries are realizable at state s), where ∃π1 ∈ Π′ : T (s, π1(s)) = L1.

L1 ∼Π′
L2 if ∃π2 ∈ Π′ : T (s, π2(s)) = L2. In other words, L1 and L2 are both induced by

π1, π2 ∈ Π′, respectively. This implies that L1 and L2 are “equally good,” since Π′ induces
both of them.

L1 ≻Π′
L2 if ¬∃π2 ∈ Π′ : T (s, π2(s)) = L2. Since no policy induces L2, L2 is considered

to be strictly worse than L1.

However, some Π′ imply incoherent preferences over states: in fig. F.3, Π′ implies that
sA ≻Π′

sB (via s1) and also sB ≻Π′
sA (via s2’s).

Definition F.23 (Coherent state lottery relations). (∼Π′
,≻Π′

) is coherent when ∃r ∈ R|S|:

1. L1 ∼Π′
L2 implies that L⊤

1 r = L⊤
2 r.

2. L1 ≻Π′
L2 implies that L⊤

1 r > L⊤
2 r.

Theorem F.24 (Optimal policy sets imply coherent preference relations). If Π′ ∈ Popt,
then (∼Π′

,≻Π′
) is coherent.
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Proof. If Π′ ∈ Popt, then let R be a reward function for which Πgreedy (R) = Π′ (such a
reward function exists by theorem F.21). By the definition of Πgreedy (R) (definition F.14),
π ∈ Πgreedy (R) iff ∀s ∈ S : π(s) maximizes expected next-step reward.

Suppose L1 ∼Π′
L2. Then by definition F.22, ∃π1, π2 ∈ Π′ :

(
T (s, π1(s)) = L1

)
∧(

T (s, π2(s)) = L2

)
. By the greediness of Π′, this implies that both L1 and L2 maximize

next-step reward. Therefore, T (s, π1(s))⊤r = T (s, π2(s))
⊤r and so L⊤

1 r = L⊤
2 r.

Suppose L1 ≻Π′
L2. Then by definition F.22, there ∃s ∈ S, π1 ∈ Π′ : T (s, π1(s)) = L1 and

L2 ∈ T (s), but ¬∃π2 ∈ Π′ : T (s, π2(s)) = L2. Since there is no π2 ∈ Πgreedy (R) taking
some action a2 such that T (s, a2) = L2, and since such an action exists (L2 ∈ T (s)), we
conclude that a′ is not a greedy action at state s for R. In other words, T (s, π1(s))⊤r >
T (s, a′)⊤r and so L⊤

1 r > L⊤
2 r.

Since L1 ∼Π′
L2 and L1 ≻Π′

L2 were arbitrary, (∼Π′
,≻Π′

) is coherent for R.

The vnm utility theorem implies that agents with a coherent preference ordering over state
lotteries can be rationalized as maximizing the expected utility of some utility function.
Somewhat similarly, theorem F.24 shows that optimal policy sets can be rationalized as
coherently trading off the greedy values of environment states.

For incoherent Π′, it is not generally possible to rectify the incoherence of (∼Π′
,≻Π′

) by
deducing a reward function for which Π′ “should” be greedy. For example, in fig. F.3, it is
unclear what preferences over state lotteries Π′ “should” have.

Conjecture F.25 (Coherent relations imply greedy policy subset). If (∼Π′
,≻Π′

) is
coherent for R, then Π′ ⊆ Πgreedy (R).

F.1.3.1 Optimal policy sets factorize

We now further constrain the structure of optimal policy sets.

Definition F.26 (Actions taken by a policy set at a state). Let Π′ ⊆ Π.

AΠ′
s :=

{
a ∈ A | ∃π ∈ Π′ : π(s) = a

}
. (F.21)
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Lemma F.27 (Optimal policy sets mix-and-match optimal actions). Let π1, π2 ∈ Π′ ∈
Popt and consider state-space partition S = S1 ⊔ S2. Then ∃π3 ∈ Π′ such that ∀s1 ∈ S1 :
π3(s1) = π1(s1) and ∀s2 ∈ S2 : π3(s2) = π2(s2).

Proof. Since Π′ ∈ Popt, ∃R ∈ RS : Π′ = Πgreedy (R) by theorem F.21. By the definition
of Πgreedy (R) (definition F.14), each action of π1 and π2 maximizes expected next-state
reward. Therefore, any π3 agreeing with π1 on S1 and with π2 on S2 must also maximize
expected next-state reward for all states in the mdp. Then π3 ∈ Πgreedy (R) = Π′.

Proposition F.28 (If Π′ ∈ Popt, then Π′ ∼=
∏

sAΠ′
s ). There exists a set bijection between

Π′ and
∏

sAΠ′
s .

Proof. Apply lemma F.27 to conclude that any combination of actions in
∏

sAΠ′
s maps

to an optimal policy in Π′. By inverting the same map, any policy in Π′ must map to a
unique element of

∏
sAΠ′

s by the definition of AΠ′
s (definition F.26).

This implies that optimal policy sets admit compressed representations: instead of
explicitly storing the outputs of (up to) |A||S| optimal policies at |S| states, we can simply
record (up to) |A| optimal actions at |S| states. Then, we regenerate the full set Π′ by
taking the Cartesian product of the optimal actions.

This immediately suggests divisibility tests which rule out certain policy sets from being
optimal policy sets.

Corollary F.29 (If Π′ ∈ Popt, then ∀s :
∣∣∣AΠ′

s

∣∣∣ divides
∣∣Π′∣∣).

Lemma F.30 (Optimal policy sets take all equivalent actions). Let Π′ ∈ Popt. For any
state s and action a, if a ∈ AΠ′

s and a′ ≡s a, then a′ ∈ AΠ′
s .

Proof. Since Π′ ∈ Popt, ∃R ∈ RS : Π′ = Πgreedy (R) by theorem F.21. If a ∈ AΠ′
s and

a′ ≡s a, a is greedily optimal at s. Then a′ ≡s a must also be greedily optimal because
T (s, a) = T (s, a′) by definition 5.23. Therefore, a′ ∈ AΠ′

s .
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Proposition F.31 (Multiple optimal actions at multiple states implies that the optimal
policy set has composite cardinality). Let Π′ ∈ Popt. If ∃s ̸= s′ :

∣∣∣AΠ′
s

∣∣∣ · ∣∣∣AΠ′
s′

∣∣∣, then
∣∣Π′∣∣

is composite.

Proof. By corollary F.29,
∣∣∣AΠ′

s

∣∣∣ · ∣∣∣AΠ′
s′

∣∣∣ divides
∣∣Π′∣∣. Since both of these factors are greater

than 1,
∣∣Π′∣∣ is a composite number.

Corollary F.32 (If ∀s ∈ S, a ∈ A : ∃a′ ≠ a : a ≡s a
′ and if |S| > 1, then no optimal

policy sets have prime cardinality).

Proof. Let Π′ ∈ Popt. Let s ̸= s′ be distinct states. Π′ is nonempty by the existence of a
stationary deterministic optimal policy for all reward functions and discount rates. Let
π ∈ Π′. Since ∀s′′ ∈ S, a ∈ A : ∃a′ ≠ a : a ≡s′′ a

′, apply lemma F.30 to conclude that∣∣∣AΠ′
s

∣∣∣ , ∣∣∣AΠ′
s′

∣∣∣ > 1. Apply proposition F.31.

F.1.3.2 Deciding whether a policy set is optimal

Theorem F.24 allows us to efficiently decide whether a policy set is optimal for some (R, γ)

tuple (since enumeration is impossible for the uncountably many such tuples). I initially
conjectured conjecture F.33 in 2020. Abel et al. [1]’s Theorem 4.3 has since proven a
generalization of it.

Conjecture F.33 (Π′ ∈ Popt? can be efficiently decided). The decision problem corre-
sponding to deciding whether Π′ ∈ Popt is in P.

F.1.4 How reward function combination affects optimality

Lemma F.34 (Non-negative combination of reward functions preserves value ordering
agreement). If V π

R1
(s, γ) ≥ V π′

R1
(s, γ) and V π

R2
(s, γ) ≥ V π′

R2
(s, γ), then for any α, β ≥ 0,

V π
αR1+βR2

(s, γ) ≥ V π′
αR1+βR2

(s, γ) . (F.22)

Proof. The premise implies that fπ,s(γ)⊤r1 ≥ fπ
′,s(γ)⊤r1 and fπ,s(γ)⊤r2 ≥ fπ

′,s(γ)⊤r2.
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Then

V π
αR1+βR2

(s, γ) = fπ,s(γ)⊤ (αr1 + βr2) (F.23)

≥ fπ
′,s(γ)⊤ (αr1 + βr2) (F.24)

= V π′
αR1+βR2

(s, γ) . (F.25)

Corollary F.35 (Non-negative combination of reward functions preserves optimal policy
agreement). If π∗ is optimal for R1 and R2 at discount rate γ, it is also optimal for
αR1 + βR2 at discount rate γ for any α, β ≥ 0.

However, R1 and R2 having the same optimal policy set doesn’t mean they will incentivize
the same distribution over learned policies.

Question F.36 (If two reward functions induce the same ordering over policies, when do
they tend to incentivize similar learned policies?).

Remark. With respect to a distribution over network initializations and a fixed learning
process, the distribution over learned policies is sometimes invariant to positive affine
transformation of the reward function (so long as no e.g. underflow or overflow errors
occur, or instability does not occur). In contrast, reward shaping [58] often accelerates
learning and changes which policies get tend to get learned after a fixed number of policy
improvement steps. Both transformations preserve policy ordering, but only shaping
improves learning. What is the fundamental difference?

F.1.5 Visit distribution function agreement

Figure F.4 illustrates how two distinct visit distribution functions can output the same
visit distribution for certain γ.

Lemma F.37 (Distinct visit distribution functions agree finitely many times). Let s, s′

be any two states and let f ∈ F(s), f ′ ∈ F(s′) be distinct visit distribution functions. For
all but finitely many γ ∈ (0, 1), f(γ) ̸= f ′(γ).
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1 2

3

Figure F.4: When γ = 1
2 , the trajectories s1s2s3s3 . . . and s1s3s2s2 . . . induce the same

state visitation distribution of
(
1 1

2
1
2

)⊤
. Both trajectories are induced by dominated

state visit distribution functions; lemma D.52 shows that this is no coincidence.

Proof. By lemma D.9, each visit distribution function is multivariate rational on γ. If the
functions are distinct, then they must disagree on at least one output dimension. Their
difference along this dimension is a rational non-zero function, which has finitely many
roots by the fundamental theorem of algebra.

Lemma F.38 (Different states have disjoint visit distribution function sets). If s ̸= s′,
¬∃f ∈ F(s), f ′ ∈ F(s′) : ∀γ ∈ (0, 1) : f(γ) = f(γ).

Proof. When γ ≈ 0, the visit distributions approximate the appropriate unit vectors:
f(γ) ≈ es and f ′(γ) ≈ es′ . Since s ≠ s′, f(γ) ̸= f ′(γ) when γ ≈ 0. Therefore, f and f ′ are
distinct visit distribution functions. Apply lemma F.37.

Corollary F.39 (Visit distributions are distinct at all but finitely many γ). ∀s, s′ ∈
S, f ∈ F(s), f ′ ∈ F(s′) : either f = f ′ or f(γ) ̸= f ′(γ) holds for all but finitely many
γ ∈ (0, 1).

Proof. By lemma F.37, the distinct visit distributions at s agree with each other for at
most finitely many γ. Likewise, the visit distributions of other states s′ agree with f for
at most finitely many γ. Since there are only finitely many visit distribution pairs, there
is a finite set of the γ at which any two distinct visit distributions agree.
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Proposition F.40 (Cross-state linear independence of visit distribution functions).
f ∈ F(s) cannot be written as a linear combination of the visit distribution functions of
other states.

Proof. Suppose f =
∑

i αifsi such that ∀i : αi ∈ R ∧ si ̸= s ∧ fsi ∈ F(si). Then

lim
γ→0

∑
i

αifsi =
∑
i

αiesi (F.26)

̸= es (F.27)

= lim
γ→0

f(γ), (F.28)

where eq. (F.27) follows because si ̸= s and the canonical basis vectors are linearly
independent.

Figure F.5 shows that proposition F.40 does not hold amongst the visit distribution
functions of a single state.

1

2

3

up

down
a

Figure F.5: The bifurcated action a is a stochastic transition, where T (s1, a, s2) = .5 =
T (s1, a, s3). fπa,s1 = .5(fπup,s1 + fπdown,s1).

Lemma D.52 is generalized by proposition F.41.

Proposition F.41 (At every γ ∈ (0, 1), non-dominated visit distributions are outside
of the convex hull of any set of other visit distributions). Let f ∈ F(s). If there exists
γ ∈ (0, 1) and f1, . . . , fk ∈ F(s)\{f} such that f can be expressed as the convex combination
f(γ) =

∑k
i=1 αifi(γ), then f ̸∈ Fnd(s).
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Proof. If some αi = 1, then f ̸∈ Fnd(s) by lemma D.52. Suppose at least two αi > 0. Then
the conclusion follows by proposition F.59 (letting X :=

{
f(γ) | f ∈ F(s)

}
,x := f(γ)).

Lemma F.42 (Geometry of optimality support). At any γ ∈ (0, 1), supp
(
f(γ) ≥ F(s, γ)

)
(the set of reward functions for which f ∈ F(s) is optimal) is both a closed convex polytope
and a pointed convex cone.

Proof. supp
(
f(γ) ≥ F(s, γ)

)
is a closed convex polytope because it is the intersection of

half-spaces: f(γ)⊤r ≥ maxf ′∈F(s)\{f} f
′(γ)⊤r. The set is a pointed cone because for any

α ≥ 0, f(γ)⊤r ≥ maxf ′∈F(s)\{f} f
′(γ)⊤r implies f(γ)⊤(αr) ≥ maxf ′∈F(s)\{f} f

′(γ)⊤(αr).

Proposition F.43 (Visit dist. function convex hull intersection at any γ implies shared
optimality status). Let f ∈ F(s). Suppose there exists γ ∈ (0, 1) and f1, . . . , fk ∈ F(s)\{f}
such that f can be expressed as the convex combination f(γ) =

∑k
i=1 αifi(γ) (where each

αi > 0).

f is optimal for reward function R at γ∗ ∈ (0, 1) iff ∀i : fi is optimal for R at γ∗.

Proof. If ∀i : fi is optimal for R at γ∗, then f is also optimal for R at γ∗ by lemma F.42.

Suppose that f is optimal for R at γ∗ ∈ (0, 1), while for some i, fi is not optimal for R at
γ∗. In particular, suppose R induces optimal policy set Πγ∗ at discount rate γ∗. Then by
proposition D.35, we can construct a reward function R′ which has optimal policy set
Πγ∗ at discount rate γ.

Suppose αi = 1. Since fi was not optimal at γ∗, fi isn’t optimal at γ either. But this is
absurd, since then f(γ) = fi(γ) and so they must both be optimal at γ, a contradiction.
This means that fi is optimal for R at γ∗.

Suppose αi < 1. As fi is not optimal for R at γ but f is, there must be another fi′ such
that fi′(γ)⊤r ≥ f(γ)⊤r > fi(γ)

⊤r. Since we assumed that αi > 0, the first inequality must
be strict. This means that f cannot be optimal for R at γ, a contradiction. Therefore, fi
must be optimal for R at γ∗.
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Corollary F.44 (Visit distribution functions which agree at any γ, must be optimal
together). Let f , f ′ ∈ F(s). Suppose ∃γ ∈ (0, 1) : f(γ) = f ′(γ). Then ∀γ∗ ∈ (0, 1):

supp
(
f(γ∗) ≥ F(s, γ∗)

)
= supp

(
f ′(γ∗) ≥ F(s, γ∗)

)
.

Proof. Apply proposition F.43.

Figure F.6 illustrates the power of corollary F.44.

1 2

3

Figure F.6: When γ = 1
2 , the trajectories s1s2s3s3 . . . and s1s3s2s2 . . . induce the same

state visitation distribution. Therefore, corollary F.44 shows that at any γ ∈ (0, 1), one
trajectory is optimal iff the other trajectory is. Basic algebra confirms the point: one of
these trajectories is optimal iff R(s2) = R(s3); in that case, every policy is optimal.

Consider again proposition D.35:

Theorem (A means of transferring optimal policy sets across discount rates). Suppose
reward function R has optimal policy set Π∗ (R, γ) at discount rate γ ∈ (0, 1). For any
γ∗ ∈ (0, 1), we can construct a reward function R′ such that Π∗ (R′, γ∗

)
= Π∗ (R, γ).

Figure F.7 shows that V π
R (s, γ) ≥ V π′

R (s, γ) does not imply V π
R′ (s, γ∗) ≥ V π′

R′ (s, γ∗). The
new reward function R′ is only guaranteed to have the same optimal policy set, not the
same policy ordering.

Let R be a reward function and γ∗ ∈ (0, 1), γ ∈ [0, 1). Figure F.7 demonstrates that
there does not always exist R′ such that ∀s, π : V π

R (s, γ∗) = V π
R′ (s, γ). By preserving

the optimal value function across discount rates, R′ necessarily differs on its other value
functions.
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12

3

4
left

down

right State R R′

s1 0
γ − γ∗
1− γ

s2 1 1
s3 0 0

s4 0
γ(γ − γ∗)
1− γ

Figure F.7: R and the transformed R′ := (I− γ∗Tπleft)V ∗
R(·, γ) for which proposi-

tion D.35’s reward transformation does not preserve the policy ordering. Even though
V πdown
R (s1, γ) = V

πright
R (s1, γ) = 0, when γ∗ > γ, V πdown

R′ (s1, γ) > V
πright
R′ (s1, γ).

Question F.45 (Does there exist a transformation like that of proposition D.35 which
preserves the entire policy ordering of R? ).

Question F.46 (Can we characterize the permissible policy orderings in a given mdp?
Does the discount rate affect the permissible orderings?).

Proposition F.47 (Almost all reward functions induce strict non-dominated visitation
distribution orderings). Let s be a state and γ ∈ (0, 1).{

r | r ∈ R|S|,∃f , f ′ ∈ Fnd(s) : f ̸= f ′ ∧ f(γ)⊤r = f ′(γ)⊤r
}

(F.29)

has Lebesgue measure zero. The same statement holds for F instead of Fnd for all but
finitely many γ ∈ (0, 1).

Proof. Since f , f ′ ∈ Fnd(s) are distinct, ∀γ ∈ (0, 1) : f(γ) ̸= f ′(γ) by lemma D.52. Apply
lemma D.12.

All distinct f , f ′ ∈ F(s) disagree for all but finitely many γ by corollary F.39. Then apply
lemma D.12 for these γ at which they all disagree, and the second claim follows.

Remark. For almost all reward functions, proposition F.47 prohibits value equality
anywhere in the non-dominated visit distribution ordering. In contrast, lemma F.106 only
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shows that almost all reward functions have a unique optimal visit distribution.

Lemma F.48 (Reward negation flips the visit distribution ordering). Let s be a state,
f , f ′ ∈ F(s), r ∈ R|S|, and γ ∈ (0, 1). f(γ)⊤r ≥ f ′(γ)⊤r iff f(γ)⊤(−r) ≤ f ′(γ)⊤(−r). In
particular, optimal policies for r minimize value for −r.

Proof. This follows directly from the fact that ∀a, b ∈ R : a ≥ b iff −a ≤ −b.

F.1.6 Visit distributions functions induced by non-stationary poli-
cies

Definition F.49 (Non-stationary visit distribution functions). Let ΠHD be the set of
history-dependent (or non-stationary) deterministic policies [68]. FHD(s) :=

{
fπ,s | π ∈ ΠHD

}
.

We continue using Π to denote the space of deterministic stationary policies. Clearly,
F(s) ⊆ FHD(s).

Proposition F.50 (Visit distribution functions induced by non-stationary or non-deter-
ministic policies are dominated).

Proof. This follows from the fact that every reward function has a stationary, deterministic
optimal policy.

Proposition F.51 (FHD(s) is finite iff stationarity is irrelevant). FHD(s) is finite iff
F(s) = FHD(s).

Proof. Suppose FHD(s) is finite but F(s) ̸= FHD(s). Since F(s) ⊆ FHD(s), let fπ ∈
FHD(s) \ F(s). π must exhibit a non-stationarity which affects the induced visit distribu-
tion, which means that starting from s, following π must induce a positive probability of
visiting some state s′ twice. If

∣∣T (s′)∣∣ = 1, π cannot affect the induced visit distribution
with a non-stationarity at s′, so

∣∣T (s′)∣∣ > 1.

Since s′ can reach itself with positive probability, there exists some stationary policy π′

which has positive probability of visiting s′ k times, for any natural number k. Let action
a be such that T (s′, π′(s′)) ̸= T (s′, a) (such an action exists because

∣∣T (s′)∣∣ > 1). Let πk
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be a non-stationary policy which agrees with π′ for the first k visits to s′, but which takes
action a after visit k.

Each πk induces a different state visit distribution function; since there are infinitely many
of them, FHD(s) cannot be finite if F(s) ̸= FHD(s). Then if FHD(s), then F(s) = FHD(s).

The reverse direction follows because
∣∣F(s)∣∣ ≤ |S||A|, which is finite.

Proposition F.52 (Characterization of when stationarity is relevant). FHD(s) = F(s)
iff for all states s′ reachable from s with positive probability, if s′ can reach itself with
positive probability,

∣∣T (s′)∣∣ = 1.

Proof. For the forward direction, apply the reasoning from the proof of proposition F.51.

Reverse direction: if non-stationarity is to affect the induced visit distribution function,
there must be some s′ which can reach itself with positive probability, and which is
reachable from s. But if

∣∣T (s′)∣∣ = 1 for all such s′, then non-stationarity does not affect
the induced visitation distribution function (because all actions have the same local
dynamics at s′).

F.1.7 Generalized non-domination results

Lemma F.53 (Idempotence of non-domination). Let X,Y ⊊ Rd be finite.

ND
(
ND (X) \ Y

)
= ND (X) \ Y.

Proof. Trivially, ND
(
ND (X) \ Y

)
⊆ ND (X) \ Y . Let x ∈ ND (X) \ Y . Then ∃r ∈ Rd :

x⊤r > maxx′∈X\{x} x
′⊤r ≥ maxx′∈X\(Y ∪{x}) x

′⊤r, and so x ∈ ND
(
ND (X) \ Y

)
by the

definition of non-domination (definition 5.6).

Then ND
(
ND (X) \ Y

)
⊇ ND (X) \ Y , and so ND

(
ND (X) \ Y

)
= ND (X) \ Y .

Lemma F.54 (Non-dominated inclusion relation). Let A,B ⊊ R|S| be finite. If A ⊆ B,
then ND (B) ∩A ⊆ ND (A).
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Proof. Suppose a ∈ ND (B) ∩A.

∃r ∈ R|S| : a⊤r > max
b∈B\{a}

b⊤r (F.30)

≥ max
b∈A\{a}

b⊤r. (F.31)

Equation (F.30) follows by the definition of ND (definition D.14). Equation (F.31)
follows because A ⊆ B. Therefore, ∃r ∈ R|S| : a⊤r > maxb∈A\{a} b

⊤r. Since a ∈ A,
a ∈ ND (A).

Lemma F.55 (Permutation commutes with non-dominance). Let X ⊊ R|S| be finite and
let ϕ ∈ S|S|. ϕ ·ND (X) = ND (ϕ ·X).

Proof. x ∈ ND (X) iff ∃r ∈ R|S| for which

x⊤r > max
x′∈X\{x}

x′⊤r (F.32)

x⊤P−1
ϕ Pϕr > max

x′∈X\{x}
x′⊤P−1

ϕ Pϕr (F.33)(
Pϕx

)⊤
Pϕr > max

x′∈X\{x}

(
Pϕx

′)⊤Pϕr (F.34)(
Pϕx

)⊤
Pϕr > max

x′
ϕ∈ϕ·X\{Pϕx}

x′⊤
ϕ Pϕr. (F.35)

Equation (F.33) follows because the identity matrix I = P−1
ϕ Pϕ, since permutation matri-

ces are invertible. Equation (F.34) follows because permutation matrices are orthogonal,

and so
(
P−1

ϕ

)⊤
= Pϕ. By eq. (F.35), ϕ ·ND (X) = ND (ϕ ·X).

Lemma F.56 (Number of non-dominated linear functionals). Let X ⊊ R|S| be finite.
1 <

∣∣ND (X)
∣∣ iff 1 < |X|.

Proof. Since ND (X) ⊆ X, 1 <
∣∣ND (X)

∣∣ ≤ |X| implies that 1 <
∣∣ND (X)

∣∣ =⇒ 1 < |X|.

Suppose 1 < |X|. Since X is non-empty, 0 the zero vector has some optimal x ∈ ND (X)

by lemma D.15. Since 1 < |X|, let x′ ∈ X be such that x′ ̸= x. Since x ∈ ND (X), let
r ∈ R|S| be such that x⊤r > maxx′′∈X\{x} x

′′⊤r ≥ x′⊤r.
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Then for r′ := −r, x′⊤r′ > x⊤r′. By lemma D.15, ∃xnd ∈ ND (X) such that x⊤
ndr

′ >

maxx′′∈X\{xnd} x
′′⊤r′. But x⊤

ndr
′ ≥ x′⊤r′ > x⊤r′, and so xnd ̸= x. Then 1 <

∣∣ND (X)
∣∣.

Lemma F.57 (Sufficient conditions for a linear functional being non-dominated). Let
X ⊊ R|S| be finite and let x ∈ X. If

1. ∃ei : x⊤ei > maxx′∈X\{x} x
′⊤ei, or

2. ∃ei : x⊤ei < minx′∈X\{x} x
′⊤ei,

then x ∈ ND (X).

Proof. The first item follows directly from the definition of ND (X) (definition D.14),
where x is strictly maximal for vector r := ei. For the second item, x is strictly maximal
for vector r := −ei.

Conjecture F.58 (Expanded sufficient conditions for a linear functional being non-domi-
nated). Lemma F.57 can be expanded to account for reasoning like “x has non-strictly
maximal entries along dimensions 1 and 2; among those x′ ∈ X tied with x on both
dimensions, x has strictly maximal entry value on dimension 3.”

Proposition F.59 (Non-dominated linear functionals are convex independent of other
functionals). Let X ⊊ R|S| be finite and let x ∈ X. If x ∈ ND (X), then x cannot be
written as a convex combination of x1, . . . ,xn ∈ X \ {x}.

Proof. Suppose x ∈ ND (X) can be written as the convex combination x =
∑n

i=1 θixi.
By non-domination, ∃r ∈ R|S| : x⊤r > maxx′∈X\{x} x

′⊤r. Therefore,

 n∑
i=1

θixi

⊤

r = x⊤r (F.36)

> max
x′∈X\{x}

x′⊤r (F.37)

≥ max
i

x⊤
i r. (F.38)
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But this is a contradiction; a convex combination of values cannot be strictly greater than
all of its constituent values.

The reverse direction of proposition F.59 is not true. Let X :=


1

0

 ,

.5
.5

 ,

.4
.6


.

ND (X) =


1

0

 ,

.4
.6


. x :=

.5
.5

 is dominated, even though it cannot be written

as a convex combination of functionals X \ {x}.

Conjecture F.60 (Characterizing when X = ND (X)). Let X ⊊ R|S| be finite. X =

ND (X) iff |X| ≤ 1 or ∀x,x′ ∈ X : ∃c > 0 : x = cx′.

Conjecture F.61 (ND argmax equality implies argmax equality). Let X ⊊ R|S|

be finite and let r, r′ ∈ R|S|. If argmaxx∈ND(X) x
⊤r = argmaxx∈ND(X) x

⊤r′, then
argmaxx∈X x⊤r = argmaxx∈X x⊤r′.

Lemma F.62 (Invariances of linear functional optimality probability). Let A,B ⊊ R|S|

be finite.

1. pDany (A ≥ B) = pDany

(
A ≥

(
B \A

))
.

2. pDany (A ≥ B) = pDany

(
A ≥ ND (B)

)
= pDany

(
ND (A) ≥ ND (B)

)
.

3. For any x ∈ R|S|, pDany (A ≥ B) = pDany (A− x ≥ B − x).

Proof. Item 1:

pDany (A ≥ B) := Pr∼Dany

(
max
a∈A

a⊤r ≥ max
b∈B

b⊤r

)
(F.39)

= Pr∼Dany

max
a∈A

a⊤r ≥ max

(
max

b∈B∩A
b⊤r, max

b∈B\A
b⊤r

) (F.40)

= Pr∼Dany

(
max
a∈A

a⊤r ≥ max
b∈B\A

b⊤r

)
(F.41)

=: pDany

(
A ≥

(
B \A

))
. (F.42)
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Equation (F.41) holds because maxa∈A a⊤r ≥ maxb∈B∩A b⊤r for all r ∈ R|S|, and so the
constraint is vacuous.

Item 2:

pDany (A ≥ B) := Pr∼Dany

(
max
a∈A

a⊤r ≥ max
b∈B

b⊤r

)
(F.43)

= Pr∼Dany

(
max
a∈A

a⊤r ≥ max
b∈ND(B)

b⊤r

)
(F.44)

= Pr∼Dany

(
max

a∈ND(A)
a⊤r ≥ max

b∈ND(B)
b⊤r

)
(F.45)

=: pDany

(
ND (A) ≥ ND (B)

)
. (F.46)

Equation (F.44) follows because corollary D.16 shows that maxb∈B b⊤r = maxb∈ND(B) b
⊤r.

Similarly, eq. (F.45) follows because corollary D.16 shows that maxa∈A a⊤r = maxa∈ND(A) a
⊤r.

Item 3: For all r ∈ R|S|, maxa∈A a⊤r ≥ maxb∈B b⊤r iff x⊤r + maxa∈A a⊤r ≥ x⊤r +

maxb∈B b⊤r iff maxa∈A(a+ x)⊤r ≥ x⊤r+maxb∈B(b+ x)⊤r.

Proposition F.63 (Additivity of linear functional optimality probability for Dcont). For
finite A,B ⊊ R|S|, pDcont (A ≥ B) =

∑
a∈A pDcont

(
{a} ≥ B

)
.

Proof. Let A = {a1, . . . ,an}. For each i between 1 and n, define the event Xi := {r |
a⊤i r ≥ maxb∈B b⊤r}.

pDcont (A ≥ B) := Pr∼Dcont

(
max
a∈A

a⊤r ≥ max
b∈B

b⊤r

)
(F.47)

= PDcont

 n⋃
i=1

Xi

 (F.48)

=

n∑
k=1

(−1)k−1
∑

I⊆{1,...,n},
|I|=k

PDcont

⋂
i∈I

Xi

 (F.49)
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=
n∑

i=1

PDcont (Xi) (F.50)

=:
∑
a∈A

pDcont

(
{a} ≥ B

)
. (F.51)

Equation (F.49) follows by the inclusion-exclusion formula. Almost all r′ ∈ R|S| are
maximized by a unique functional a∗ by corollary D.13. By the same result, since Dcont

is continuous, it assigns probability 0 to r′ which are simultaneously maximized by at
least two functionals. Therefore, all terms k > 1 in eq. (F.49) must vanish, and eq. (F.50)
follows.

Lemma F.64 (Positive probability under Dcont implies non-dominated functional). Let
A ⊊ R|S| be finite. Let a ∈ A. If pDcont

(
{a} ≥ A

)
> 0, then a ∈ ND (A).

Proof. Let a ∈ A. If a ̸∈ ND (A), then by lemma D.15,

∀r ∈ R|S| : a⊤r = max
a′∈A

a′⊤r =⇒ ∃a∗ ∈ ND (A) : a∗⊤r = a⊤r. (F.52)

a ̸= a∗ since a ̸∈ ND (A). But corollary D.13 shows that continuous Dcont assign 0

probability to the set of r for which multiple a∗, a are optimal. Then pDcont

(
{a} , A

)
= 0,

a contradiction. So we conclude that a ∈ ND (A).

F.1.8 Non-dominated visit distribution functions

Corollary F.65 (
∣∣Fnd(s)

∣∣ ≥ 1, with equality iff
∣∣F(s)∣∣ = 1).

Proof. We show
∣∣Fnd(s)

∣∣ = 1 implies
∣∣F(s)∣∣ = 1 by proving the contrapositive. Suppose∣∣F(s)∣∣ ≥ 2, let f , f ′ ∈ F(s), and let γ ∈ (0, 1) be such that f(γ) ̸= f ′(γ). Then

1 <
∣∣F(s, γ)∣∣. Apply lemma F.56 to conclude that 1 <

∣∣∣ND
(
F(s, γ)

)∣∣∣ = ∣∣Fnd(s, γ)
∣∣ ≤∣∣Fnd(s)

∣∣, with the first equality following by lemma D.38, and the second following from
the definition of Fnd(s, γ) (definition D.36).

If
∣∣F(s)∣∣ = 1, then the sole visit distribution function is trivially strictly optimal for all

r ∈ R|S| at all γ ∈ (0, 1). Thus
∣∣Fnd(s)

∣∣ = 1.



256

Lemma F.66 (Each reward function has an optimal non-dominated visit distribution).
Let r ∈ R|S| and γ ∈ [0, 1). ∃f ∈ argmaxf∈F(s) f(γ)

⊤r : f ∈ Fnd(s).

Proof. Apply lemma D.15 with X := F(s, γ).

Corollary F.67 (Strict visitation optimality is sufficient for non-domination). Let γ ∈
[0, 1) and let s, s′ ∈ S. At least one element of

{
argmaxf∈F(s) f(γ)

⊤es′
}

is non-dominated.

Proof. Apply lemma F.66 to the reward function es′ .

Remark. Corollary F.67 implies that if s′ is reachable with positive probability from
s, then there is at least one non-dominated visit distribution function which assigns s′

positive visitation frequency. In this sense, Fnd(s) “covers” the states reachable from s.

Definition F.68 (Surely reachable children). The surely reachable children of s are
Chsure (s) :=

{
s′ | ∃a : T (s, a) = es′

}
. Note that determinism implies that Ch (s) =

Chsure (s).

Corollary F.69 (Minimum number of non-dominated visit distribution functions). Sup-
pose f1, . . . , fk ∈ F(s) place strictly greater visitation frequency on some corresponding
states s1, . . . , sk than do other visitation distributions. Then f1, . . . , fk ∈ Fnd(s) and∣∣Fnd(s)

∣∣ ≥ k. In particular,
∣∣Fnd(s)

∣∣ ≥ ∣∣Chsure (s)
∣∣.

Proof. f1, . . . , fk ∈ Fnd(s) by corollary F.67.
∣∣Fnd(s)

∣∣ ≥ ∣∣Chsure (s)
∣∣ because each

s′ ∈ Chsure (s) must have at least one visitation frequency-maximizing visit distribu-
tion function f ∈ Fnd(s).

Corollary F.70 (When
∣∣F(s)∣∣ ≤ 2, F(s) = Fnd(s)).

Proof. F(s) = Fnd(s) trivially when
∣∣F(s)∣∣ = 1. When

∣∣F(s)∣∣ = 2, each visitation
distribution must visit at least one state with strictly greater frequency than does the
other visitation distribution; apply corollary F.69.
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Lemma F.71 (Initial-state non-domination implies non-dom. at visited states). If fπ,s ∈
Fnd(s) is strictly optimal for reward function R at discount rate γ and fπ,s(γ)⊤es′ > 0,
then fπ,s

′ ∈ Fnd(s
′).

Proof. Because fπ,s(γ)⊤es′ > 0, π can induce some trajectory prefix (s, s1, . . . sn−1, s
′)

with positive probability. By definition 5.3,

fπ,s(γ) = es + γ E
s1∼T (s,π(s))

[
es1 + . . .+ γ E

s′∼T (sn−1,π(sn−1))

[
fπ,s

′
(γ)
]]
. (F.53)

Since fπ is the strictly optimal visit distribution from state s for reward function R at
discount rate γ, eq. (F.53) shows that π must in particular induce a strictly optimal visit
distribution for R at γ starting from state s′. If not, another visit distribution would
induce optimality starting from s′, contradicting the strict optimality of fπ.

Corollary F.72 (Domination at visited state implies domination at initial state). If fπ,s′

is dominated at s′, then either fπ,s is dominated at s or fπ,s⊤es′ = 0.

Proof. This statement is the contrapositive of lemma F.71.

Lemma F.73 (Dominated child state distributions induce dominated visit distributions).
Let action a induce a dominated child state distribution d := T (s1, a) at state s1, and let
s be the initial state. If a policy π has π(s1) = a and fπ(γ)⊤es1 ̸= 0, then π induces a
dominated visit distribution fπ ∈ F(s) \ Fnd(s).

Proof. By lemma F.8, fπ,s1 ∈ F(s1) \ Fnd(s1). Since fπ(γ)⊤es1 ̸= 0, fπ ∈ F(s) \ Fnd(s)

by corollary F.72.

The following extends lemma F.75 to account for non-domination.

Kulkarni et al. [44] learn to estimate Succ(s, a) := Es′∼T (s,a)

[
fπ,s

′
(γ)
]

in order to infer
state-space bottlenecks. We prove that bottlenecks “factorize” state visit distribution
functions.
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s s′
a1

Figure F.8: Informally, lemma F.75 shows that a bottleneck at s′ “factorizes” F(s |
π(s′) = a1) into combinations of “what happens before acting at the bottleneck” and “what
happens after acting at the bottleneck.” In this rewardless mdp, s→ s′

a1→ Reach
(
s′, a1

)
.

Therefore,
∣∣F(s)∣∣ = 9: each of the three red “prefix” visit distribution functions (induced

before reaching s′) can combine with the three green “suffix” visit distribution functions
(induced after reaching s′).

Definition F.74 (State-space bottleneck). Starting from s, state s′ is a bottleneck for
X ⊆ S via action a when state s can reach the states of X with positive probability, but
only by taking actions equivalent to a at state s′. We write this as s→ s′

a→ X.

Lemma F.75 (F(s) “factorizes” across bottlenecks). Suppose ∀1 ≤ i ≤ k : s →
s′

ai→ Reach
(
s′, ai

)
. Then let 1reach :=

∑k
i=1

∑
sj∈Reach(s′,ai) esj and 1rest := 1 −

1reach (where 1 ∈ R|S| is the all-ones vector). Let F b
rest :=

{
fπ,s ⊙ 1rest | π ∈ Π

}
(with

⊙ the Hadamard product), F b
rest,ai :=

{
fπ,s ⊙ 1rest | π ∈ Π : π(s′) ≡s′ ai

}
, and F b

ai
:={

Esai∼T (s′,ai) [f
π,sai ] | π ∈ Π

}
. In the following, γ is left variable on [0, 1).

F(s | π(s′) = ai) =

{
frest(γ) +

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai(γ) | frest ∈ F b
rest,a1 , fai ∈ F b

ai

}
.

(F.54)

Proof. Keep in mind that in order to detail how state-space bottlenecks affect the structure
of visit distribution functions, we hold γ variable on [0, 1).

F(s | π(s′) = ai) (F.55)

:=
{
fπ,s | π ∈ Π : π(s′) = ai

}
(F.56)

=
{
fπ,s | π ∈ Π : π(s′) ≡s′ ai

}
(F.57)

=
{
fπ,s(γ)⊙ (1rest + 1reach) | π ∈ Π : π(s′) ≡s′ ai

}
(F.58)
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=

{
fπ,s(γ)⊙ 1rest +

(
1− (1− γ)

∥∥fπ,s(γ)⊙ 1rest
∥∥
1

)
fπai(γ) | π ∈ Π : π(s′) ≡s′ ai

}
(F.59)

=

{
frest(γ) +

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai(γ) | frest ∈ F b
rest,ai , fai ∈ F b

ai

}
(F.60)

=

{
frest(γ) +

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai(γ) | frest ∈ F b
rest,a1 , fai ∈ F b

ai

}
. (F.61)

Equation (F.57) holds because by the definition of action equivalence (definition 5.23),
equivalent actions induce identical state visit distribution functions fπ,s. Equation (F.58)
follows since 1rest + 1reach = 1. To see that eq. (F.59) follows, consider first that once
the agent takes an action equivalent to ai at state s′, it induces state visit distribution
fπai(γ) ∈ F b

ai(γ) (by the definition of F b
ai). Since the bottleneck assumption ensures that no

other components of fπ,s visit the states of ∪ki=1Reach
(
s′, ai

)
, fπ,s(γ)⊙1reach = c(γ)fπai(γ)

for some scaling function c ∈ R[0,1).

∥∥fπ,s(γ)∥∥
1
=

1

1− γ (F.62)∥∥∥fπ,s(γ)⊙ 1rest + c(γ)fπai(γ)
∥∥∥
1
=

1

1− γ (F.63)∥∥fπ,s(γ)⊙ 1rest
∥∥
1
+
∥∥∥c(γ)fπai(γ)∥∥∥1 = 1

1− γ (F.64)∣∣c(γ)∣∣ = ∥∥∥fπai(γ)∥∥∥−1

1

(
1

1− γ −
∥∥fπ,s(γ)⊙ 1rest

∥∥
1

)
(F.65)

∣∣c(γ)∣∣ = (1− γ)
(

1

1− γ −
∥∥fπ,s(γ)⊙ 1rest

∥∥
1

)
(F.66)

c(γ) = 1− (1− γ)
∥∥fπ,s(γ)⊙ 1rest

∥∥
1
. (F.67)

Equation (F.62) and eq. (F.66) follow by proposition D.8 item 2. Equation (F.64) follows
because frest(γ), f

π
ai(γ) ⪰ 0. In eq. (F.67),

∣∣c(γ)∣∣ = c(γ) must hold because if c(γ) were
negative, fπ,s(γ) would contain negative entries (which is impossible by proposition D.8
item 1). Equation (F.67) demonstrates that eq. (F.59) holds.

To see that eq. (F.60) holds, consider that policy choices on Reach
(
s′, ai

)
cannot affect the

visit distribution function fπ,s(γ)⊙ 1rest. This is because the definition of Reach
(
s′, ai

)
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ensures that once the agent reaches Reach
(
s′, ai

)
, it never leaves. Therefore, for all

π, π′ ∈ Π which only disagree on sj ∈ Reach
(
s′, ai

)
, fπ,s(γ) ⊙ 1rest = fπ

′,s(γ) ⊙ 1rest.
This implies that any fπ ∈ F b

ai is compatible with any fπ
′ ∈ F b

rest. Therefore, eq. (F.60)
holds.

Lastly, we show that F b
rest,ai = F b

rest,a1 , which shows that eq. (F.61) holds. In the following,
let d(γ) := 1− (1− γ)

∥∥fπ,s(γ)⊙ 1rest
∥∥
1
.

F b
rest,ai (F.68)

:=
{
fπ,s ⊙ 1rest | π ∈ Π : π(s′) ≡s′ ai

}
(F.69)

=

{(
fπ,s(γ)⊙ 1rest + d(γ)fπai(γ)

)
⊙ 1rest | π ∈ Π : π(s′) ≡s′ ai

}
(F.70)

=
{(

fπ,s(γ)⊙ 1rest + d(γ)fπa1(γ)
)
⊙ 1rest | π ∈ Π : π(s′) ≡s′ ai

}
(F.71)

=
{(

fπ,s(γ)⊙ 1rest + d(γ)fπa1(γ)
)
⊙ 1rest | π ∈ Π : π(s′) ≡s′ a1

}
(F.72)

=
{
fπ,s ⊙ 1rest | π ∈ Π : π(s′) ≡s′ a1

}
(F.73)

=: F b
rest,a1 . (F.74)

Equation (F.70) and eq. (F.73) follow by eq. (F.59) above. Equation (F.71) follows
because by the definition of 1rest and of fπai ∈ F b

ai , f
π
a1 ∈ F b

a1 , we have d(γ)fπai(γ)⊙ 1rest =

d(γ)fπa1(γ)⊙ 1rest = 0 (the all-zeros vector in R|S|). Equation (F.72) follows because the
definition of Reach

(
s′, ai

)
ensures that once the agent takes actions equivalent to ai at

s′, it only visits states sj ∈ ∪ki′=1Reach
(
s′, a′i

)
. The same is true for a1. Therefore, by

the definition of 1rest, fπ,s(γ)⊙ 1rest is invariant to the choice of action ai versus a1. We
conclude that eq. (F.61) holds, which proves the desired equality.

Definition F.76 (Non-dominated single-state F restriction). Fnd(s | π(s′) = a) := F(s |
π(s′) = a) ∩ Fnd(s).

Conjecture F.77 (Fnd factorizes across state bottlenecks). In the following, γ is left
variable on [0, 1). Suppose that starting from s, state s′ is a bottleneck for Reach

(
s′, ai

)
via actions {ai}, for 1 ≤ i ≤ k. Then let 1reach :=

∑k
i=1

∑
sj∈Reach(s′,ai) esj and 1rest :=

1− 1reach (where 1 ∈ R|S| is the all-ones vector). Let F b
rest :=

{
fπ,s ⊙ 1rest | π ∈ Π

}
(with
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⊙ the Hadamard product), F b
rest,ai :=

{
fπ,s ⊙ 1rest | π ∈ Π : π(s′) ≡s′ ai

}
, and F b

ai
:={

Esai∼T (s′,ai) [f
π,sai ] | π ∈ Π

}
.

1. F(s) =
(
F b

rest \ F b
rest,a1

)
∪
(
∪ki=1F(s | π(s′) = ai)

)
.

2. Fnd(s | π(s′) = ai) ⊆{
frest(γ) +

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai(γ) | fai ∈ ND
(
F b
ai

)
, frest ∈ ND

(
F b

rest,a1

)}
.

3. Fnd(s | π(s′) = ai) ⊆{
frest(γ) +

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai(γ) | fai ∈ ND
(
F b
ai

)
, frest ∈ ND

(
F b

rest,a1

)}
.

4. Fnd(s | π(s′) = ai) ={
frest(γ) +

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai | fai ∈ ND
(
F b
ai

)
, frest ∈ ND

(
F b

rest,a1

)}
.

5. Fnd(s) = ND
(
F b

rest \ F b
rest,a1

)
∪{

frest(γ) +
(
1− (1− γ)

∥∥frest(γ)∥∥1) fai | fai ∈ ⋃k
i=1 ND

(
F b
ai

)
, frest ∈ ND

(
F b

rest,a1

)}
.

Partial proof sketch. Item 1.

F(s)
=
⋃
a∈A
Fnd(s | π(s′) = a) (F.75)

=

 ⋃
a∈A:

∀i:a̸≡s′ai

F(s | π(s′) = a)

 ∪
 k⋃

i=1

F(s | π(s′) = ai)

 (F.76)

=

 ⋃
a∈A:

∀i:a̸≡s′ai

{
fπ,s | π ∈ Π : π(s′) = a

}
 ∪

 k⋃
i=1

F(s | π(s′) = ai)

 (F.77)

=

 ⋃
a∈A:

∀i:a̸≡s′ai

{
fπ,s ⊙ 1rest | π ∈ Π : π(s′) = a

}
 ∪

 k⋃
i=1

F(s | π(s′) = ai)

 (F.78)
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=

(
F b

rest \
(
∪ki=1F

b
rest,ai

))
∪

 k⋃
i=1

F(s | π(s′) = ai)

 (F.79)

=
(
F b

rest \ F b
rest,a1

)
∪

 k⋃
i=1

F(s | π(s′) = ai)

 . (F.80)

By the bottleneck assumption, s can only reach the states of ∪ki=1Reach
(
s′, ai

)
by taking

actions equivalent to some ai at state s′. Therefore, eq. (F.78) holds by the definition
of 1rest. Equation (F.79) holds by the definition of F b

rest and F b
rest,ai . Equation (F.80)

because eq. (F.74) showed that ∀i : F b
rest,ai = F b

rest,a1 . We have now shown item 1.

Item 2. Let f ∈ Fnd(s | π(s′) = ai) be strictly optimal for r at discount rate γ∗ ∈ (0, 1).
By lemma F.75, for some frest ∈ F b

rest,a1 , fai ∈ F b
ai , f = frest(γ)+

(
1− (1− γ)

∥∥frest(γ)∥∥1) fai(γ).
Suppose that fai ̸∈ ND

(
F b
ai

)
. Then there exists another f ′ai ∈ F b

ai for which fai(γ
∗)⊤r ≥

f ′ai(γ
∗)⊤r.

Consider f ′ := frest(γ) +
(
1− (1− γ)

∥∥frest(γ)∥∥1) f ′ai(γ). By item 1, f ′ ∈ F(s). However,

since fai(γ
∗)⊤r ≥ f ′ai(γ

∗)⊤r, f ′(γ∗)⊤r ≥ f(γ∗)⊤r. This contradicts the assumed strict

optimality of f . Therefore, fai ∈ ND
(
F b
ai

)
(in particular, fai(γ∗) ∈ ND

(
F b
ai(γ

∗)
)
).

Conjecture F.78 (Action-restricted visit distribution function similarity requires action
similarity). If s can reach s′ with positive probability and Fnd(s | π(s′) = a′) is similar to
a subset of F(s | π(s′) = a) via state permutation ϕ, then PϕT (s

′, a′) = T (s′, a).

F.1.9 Properties of optimality support

Definition F.79 (Optimality support). Let A,B ⊊ R|S| be finite.

supp (A ≥ B) :=

{
r ∈ R|S| | max

a∈A
a⊤r ≥ max

b∈B
b⊤r

}
. (F.81)

We sometimes abuse notation by replacing the set A with a vector a, as in: supp (a ≥ B).

supp
(
f(γ) ≥ F(s, γ)

)
represents the set of reward functions for which f(γ) is optimal
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at state s. supp
(
f(γ) ≥ F(s, γ)

)
can be calculated by solving the relevant system of∣∣F(s)∣∣− 1 inequalities.1

1 2

3

right

down

Figure F.9: A simple environment where it’s easy to derive which reward functions make
a trajectory optimal.

For example, consider fig. F.9.

fπright⊤r ≥ fπdown⊤r

R(s1) +
γR(s2)

1− γ ≥ R(s1) +
γR(s3)

1− γ ,

so R(s2) ≥ R(s3).

Definition F.80 (Topological boundary). bd(X) is the topological boundary of set X,
equal to X’s closure minus its interior (Int(X)).

Remark. Unless otherwise stated, assume R|S| is endowed with the standard topology.

Lemma F.81 (A topological lemma). Let X ⊆ R|S| and suppose S is such that S∩Int(X)

is convex and has no interior. If s ∈ S ∩ Int(X), then ∃θ ∈ (0, 1), x1, x2 ∈ Int(X) \ S :

s = θx1 + (1− θ)x2.

Proof. Since S has no interior, its restriction to Int(X) must equal a convex subset of
some (|S| − 1)-dimensional hyperplane intersect Int(X). Let x be a unit-length vector
orthogonal to this hyperplane. Since R ∈ Int(X), there exists ϵ > 0 small enough such
that R+ ϵx, R− ϵx ∈ Int(X). Because x is perpendicular to the hyperplane, neither of
these points belong to S. R = .5(R+ ϵx) + .5(R− ϵx).

1V ∗
Dbound (s, γ) can sometimes be computed analytically. The Power and optimal-

ity probability in small deterministic mdps can be computed using Mathematica code at
https://github.com/loganriggs/Optimal-Policies-Tend-To-Seek-Power.

https://github.com/loganriggs/Optimal-Policies-Tend-To-Seek-Power
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Lemma F.82 (Topological properties of optimality support). Let f , f ′ ∈ F(s) and
γ ∈ (0, 1).

1. bd(supp
(
f(γ) ≥ F(s, γ)

)
) ⊆ supp

(
f(γ) ≥ F(s, γ)

)
, with equality iff f is dominated.

2. If f ̸= f ′ are both optimal for R at discount rate γ, then R ∈ bd(supp
(
f(γ) ≥ F(s, γ)

)
)∩

bd(supp
(
f ′(γ) ≥ F(s, γ)

)
).

Proof. Item 1: bd(supp
(
f(γ) ≥ F(s, γ)

)
) ⊆ supp

(
f(γ) ≥ F(s, γ)

)
because optimality

support is closed by lemma F.42. If equality holds, supp
(
f(γ) ≥ F(s, γ)

)
has no interior,

and f is therefore dominated by proposition F.151. Similarly, if f is dominated, then
proposition F.151 dictates that supp

(
f(γ) ≥ F(s, γ)

)
has no interior and thus equals its

boundary.

Item 2: by lemma F.106, almost no reward functions have multiple optimal visit distribu-
tions, and so f and f ′ cannot both be optimal in an open neighborhood of R. Thus, R must
lie on at least one boundary: R ∈ bd(supp

(
f(γ) ≥ F(s, γ)

)
)∪bd(supp

(
f ′(γ) ≥ F(s, γ)

)
).

Suppose R ∈ Int(supp
(
f(γ) ≥ F(s, γ)

)
). Then f is optimal in an open neighborhood N

around R and R ∈ bd(supp
(
f ′(γ) ≥ F(s, γ)

)
) by the above reasoning. By lemma F.106,

f must be uniquely (and therefore strictly) optimal for almost all reward functions in N .
Furthermore, supp

(
f ′(γ) ≥ F(s, γ)

)
has no interior and is convex (by lemma F.42), so

by lemma F.81, R ∈ supp
(
f ′(γ) ≥ F(s, γ)

)
∩ Int(supp

(
f(γ) ≥ F(s, γ)

)
) can be written

as the convex combination of reward functions for which f is optimal but f ′ is not. But
corollary F.35 shows that convex combination of reward functions preserves optimal policy
sets, and so f ′ cannot be optimal for R, a contradiction. So R ̸∈ Int(supp

(
f(γ) ≥ F(s, γ)

)
),

and so R ∈ bd(supp
(
f(γ) ≥ F(s, γ)

)
) ∩ bd(supp

(
f ′(γ) ≥ F(s, γ)

)
).

Theorem F.83 (If a dominated visit distribution is optimal, so are at least two non-dom-
inated visit distributions). Suppose fd ∈ F(s) \ Fnd(s) is optimal for reward function R

at discount rate γ ∈ (0, 1). Then there exist distinct f1, f2 ∈ Fnd(s) which are also optimal
for R at γ.

Proof. If fd were optimal for R at γ, then some non-dominated f1 must also be optimal
by corollary F.65. R ∈ bd(supp (fd)) ∩ bd(supp (f1)) by lemma F.82(2).
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supp (fd) ∪ supp (f1) = supp (f1) ⊊ R|S| by corollary F.69. But⋃
f∈F(s)

supp
(
f(γ) ≥ F(s, γ)

)
= R|S|.

Therefore, since all supp (f) are closed and convex (lemma F.42), there must be at least one
more f2 such that supp (f2) has non-empty interior (i.e. f2 ∈ Fnd(s) by proposition F.151)
and f2 is optimal for R. Then R ∈ bd(supp (fd)) ∩ bd(supp (f1)) ∩ bd(supp (f2)).

Conjecture F.84 (Geometry of dominated optimality support). If fd ∈ F(s) \ Fnd(s)

and f ∈ Fnd(s) are both optimal for R at γ ∈ (0, 1), then supp (fd) ⊆ bd(supp (f)).

F.1.10 How geodesics affect visit distribution optimality

Definition F.85 (Geodesic trajectory). In a directed graph, a path between two vertices
is geodesic when it is a shortest path. In deterministic environments, a state trajectory
(s0, s1, . . .) is geodesic when, for all i ≤ j, the trajectory traces a geodesic path between
si and sj .

Intuitively, non-geodesic trajectories take “detours” (see fig. F.10).

Remark. We refer to a policy or trajectory as “dominated” when the corresponding visit
distribution function is dominated.

Proposition F.86 (In deterministic mdps, geodesic trajectories induce non-dominated
visit distributions). Suppose the mdp is deterministic and that starting from state s0,
policy π induces geodesic trajectory τπ = (s0, s1, . . .). fπ ∈ Fnd(s0).

Proof. Since the mdp is deterministic and the state space is finite, τπ visits a finite number
of states s0, . . . , sk. Consider reward function R such that ∀i ≤ k : R(si) :=

i+1
|S| ; for all

states s′ not visited by τπ, R(s′) := 0. Because τπ is geodesic, fπ is strictly greedily
optimal for R. Since optimal value changes continuously with γ, fπ is also strictly optimal
for some γ ≈ 0. Then fπ ∈ Fnd(s0).

Corollary F.87 (In deterministic mdps, dominated trajectories are not geodesic).
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Conversely, fig. F.10 shows that non-dominated visit distribution functions need not be
geodesic.

0

1

2

Figure F.10:
∣∣Fnd(s0)

∣∣ = 2, even though one of the visit distribution functions is not
geodesic because it induces state trajectory (s0, s1, s2, s2, . . .).

Conjecture F.88 (Geodesics in stochastic environments). Proposition F.86 can be
generalized in some form to stochastic mdps.

F.1.11 Number of visit distribution functions

Since F(s) only contains the visit distribution functions induced by deterministic stationary
policies, fig. F.11 shows that s3 being able to reach s1 doesn’t imply that

∣∣F(s3)∣∣ ≥∣∣F(s1)∣∣.
1

2 3 4

Figure F.11:
∣∣F(s1)∣∣ = 8 > 7 =

∣∣F(s3)∣∣. In particular, considering only deterministic
stationary policies, s1 can reach s4 via two different trajectories: (s1, s2, s3, s4, s4, . . .) and
(s1, s3, s4, s4, . . .). However, s3 can only reach s4 in one way.

Lemma F.89 (Maximum number of visit distribution functions (deterministic)). Suppose

the mdp is deterministic. For all s,
∣∣F(s)∣∣ ≤ ∑|S|

j=1 j
(|S|−1)!
(|S|−j)!

, with equality iff ∀s′ :

Ch
(
s′
)
= S.

Proof. First assume ∀s′ : Ch
(
s′
)
= S. We count how many trajectories can be induced

by deterministic stationary policies, starting from state s. Any trajectory visits at least
1 and at most |S| states. Since order matters, a j-state trajectory can be chosen in
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j!
(|S|

j

)
= |S|!

(|S|−j)!
ways. However, we must always begin the trajectory at s, so divide by

|S| possible starting states.

Since S is finite, the policy is stationary and deterministic, and the mdp is deterministic,
each trajectory must have a cycle by the pigeonhole principle. For any list of j states,
there are j locations at which the cycle can begin. Then there are

∑|S|
j=1 j

(|S|−1)!
(|S|−j)!

viable
trajectories starting from state s. Two different trajectories induce different visitation
distribution power series on γ (definition 5.3), and so different trajectories correspond to
different visitation distribution functions.

Given ∀s′ : Ch
(
s′
)
= S, we showed that

∣∣F(s)∣∣ =∑|S|
j=1 j

(|S|−1)!
(|S|−j)!

. If ∃s′, s′′ : s′′ ̸∈ Ch
(
s′
)
,

this rules out trajectories containing an s′ → s′′ transition. Therefore, we have
∣∣F(s)∣∣ ≤∑|S|

j=1 j
(|S|−1)!
(|S|−j)!

in general, with equality iff ∀s′ : Ch
(
s′
)
= S.

Remark. When ∀s′ : Ch
(
s′
)
= S, the non-dominated trajectories are the ones that

immediately navigate to a state and stay there: ∀s :
∣∣Fnd(s)

∣∣ = |S|. However, fig. F.12
demonstrates an mdp containing a state s for which

∣∣Fnd(s)
∣∣ > |S|.

1

2 3

Figure F.12: ∀s :
∣∣Fnd(s)

∣∣ = 4 > 3 = |S|.

Puterman [68] notes that often, multiple policies map to the same visit distribution
function. This is always true in deterministic environments if there is more than one
possible policy.

Theorem F.90 (In deterministic environments, π 7→ fπs is non-injective unless |A| = 1).
Suppose the environment is deterministic. ∃s :

∣∣F(s)∣∣ = |Π| iff |A| = 1.

Proof. Suppose |A| > 1. If |S| < |A|, then by determinism, at least two distinct actions
must be equivalent. By the definition of action equivalence (definition 5.23), policies
taking equivalent actions at all states induce the same visit distribution functions, and so
then

∣∣F(s)∣∣ < |Π|.
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Suppose |S| ≥ |A|; then |S| > 1. If a cycle can be induced before visiting all states, the
premise is contradicted by modifying the π in question in any unvisited states. So starting
from s, let π induce the visitation of all states. Since 2 ≤ |A| , |S|, 2 < 2 |S| ≤ |A| |S|
states can be reached over the course of π’s state trajectory.

Therefore, by the time the trajectory has traversed 1 ≤ ⌈ |S|2 ⌉ < |S| states, there must
exist an action returning to a state which has already been visited. Modify π to take
that action, and a cycle is formed before all states are visited. Since 2 ≤ |A| and the
induced visit distribution function is not affected by the action taken at the unvisited
state, there are at least two policies which induce the same visit distribution function. So∣∣F(s)∣∣ < |Π|.
Suppose |A| = 1. By the definition of F(s) (definition 5.3), ∀s :

∣∣F(s)∣∣ ≤ |Π| = |A||S| = 1.
∀s : 1 ≤

∣∣F(s)∣∣ by lemma F.1.

Theorem F.90 does not hold for stochastic environments.

Conjecture F.91 (Sufficient condition for
∣∣F(s)∣∣ = |Π|). If ∀s :

∣∣T (s)∣∣ = |A| and
∀s, s′ ∈ S,d ∈ T (s) : d⊤es′ > 0, ∀s :

∣∣F(s)∣∣ = |A||S| = |S|.
Lemma F.92 (|F| bounds).

1 ≤
∣∣F(s)∣∣ ≤ ∏

si∈Reach(s)

∣∣T (si)∣∣ ≤ |S|∏
i=1

∣∣T (si)∣∣ ≤ |A||S| = |Π| .
Proof. ∀s : 1 ≤

∣∣F(s)∣∣ by lemma F.1. By the definition of visit distribution functions
(definition 5.3), policy choices at unreachable states cannot affect the induced visit
distribution function, so

∣∣F(s)∣∣ ≤∏si∈Reach(s)

∣∣T (si)∣∣. ∣∣T (si)∣∣ ≤ |A| by the definition of
child state distributions (definition F.5). |A||S| = |Π| because Π is the set of deterministic
stationary policies.

By theorem F.90, if |A| > 1, then
∣∣F(s)∣∣ < |Π| and so at least one of the intermediate

inequalities must be strict. Figure F.13 demonstrates example cases.
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(a) F(s) <∏
si reach. from s

∣∣T (si)∣∣
s

(b)
∏|S|

i=1

∣∣T (si)∣∣ < |Π|
Figure F.13: Suppose |A| = 2 in both cases. a: ∀s :

∣∣F(s)∣∣ = 6 < 8 =∏
si∈Reach(s)

∣∣T (si)∣∣ = ∏|S|
i=1

∣∣T (si)∣∣ = |Π|. b:
∣∣F(s)∣∣ = 2 =

∏
si∈Reach(s)

∣∣T (si)∣∣ =∏|S|
i=1

∣∣T (si)∣∣ < |Π| = 16.

F.1.12 Variation distance of visit distributions in deterministic envi-
ronments

Lemma F.93 (When γ = 0, the visit distributions of different states have 1 total
variation). Let f ∈ F(s), f ′ ∈ F(s′). TV

(
f(0), f ′(0)

)
= 1s ̸=s′ .

Proof. TV
(
f(0), f ′(0)

)
= TV (es, es′) = 1s ̸=s′ .


1
γ
γ2

γ3

1−γ




0
0
0
1

1−γ


Figure F.14: Visit distribution functions fπ induced at different states along a path.

Lemma F.94 (Total variation along a graphical path). Let γ ∈ (0, 1). Suppose that π
travels a deterministic path from s1, . . . , sℓ+1 and that π will not visit sℓ again.

TV
(
fπ,s1(γ), fπ,sℓ+1(γ)

)
=

1− γℓ
1− γ . (F.82)

Proof. Since the path is deterministic, π never revisits any state in s1, . . . , sℓ, since
otherwise π would visit sℓ again. By definition 5.3, ∀1 ≤ i < ℓ+1 : fπ,s1si (γ)− f

π,sℓ+1
si (γ) =

γi−1: each si “loses” γi−1 visitation frequency. Since all visitation distributions f have
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∥∥f(γ)∥∥
1
= 1

1−γ , the total visitation frequency thus “lost” equals the total visitation
frequency gained by other states (and therefore the total variation; see fig. F.14). Then
TV

(
fπ,s1(γ), fπ,sℓ+1(γ)

)
=
∑ℓ−1

i=0 γ
i = 1−γℓ

1−γ .

Question F.95 (In stochastic environments, what general principles govern total variation
among a policy’s visit distributions?).

Figure F.15 demonstrates how travelling along a deterministic cycle causes less total
variation in the visit distributions.

s1



1
γ
...

γj−2

γj−1

γj

...
γk−1

 s2 sj−1

sj



γk−j+1

γk−j+2

...
γk−1

1
γ
...

γk−j



sj+1sk

Figure F.15: Visitation distributions fπ,s1(γ) and fπ,sj . Total variation is maximized at
diametrically opposite states in the cycle. Factors of 1

1−γk left out to avoid clutter.

Lemma F.96 (Total variation along a graphical cycle). Let γ ∈ (0, 1) and suppose that
starting from state s1, π induces a deterministic k-cycle (k > 1).

max
j∈[k]

TV
(
fπ,s1(γ), fπ,sj (γ)

)
≤ 1− γ k

2

(1− γ)(1 + γ
k
2 )
<

1− γ k
2

1− γ . (F.83)

Proof.

TV
(
fπ,s1(γ), fπ,sj (γ)

)
=

j−1∑
i=0

γi − γk−i−1 (F.84)

=
1− γj
1− γ ·

1− γk−j

1− γk (F.85)

=
1− γj + γk − γk−j

(1− γ)(1− γk) . (F.86)
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Equation (F.84) can be verified by inspection of fig. F.15. Setting the derivative with
respect to j to 0, we solve

0 = −γj + γk−j (F.87)

j =
k

2
. (F.88)

Equation (F.88) follows because γ ∈ (0, 1). Solving via the derivative is justified because
the function is strictly concave on j ∈ [0, k] by the second-order test and the fact that
γ ∈ (0, 1). If k is even, we are done. If k is odd, then we need an integer solution. Plugging
j = ⌊k2⌋ and ⌈k2⌉ into eq. (F.85) yields the same maximal result.

Therefore, in the odd case, both inequalities in the theorem statement are strict. In the
even case, the first inequality is an equality.

Proposition F.97 (Lower bound for total variation of a policy’s visit distributions in
deterministic environments). Suppose the environment is deterministic. For any π ∈ Π,
if s ̸= s′, TV

(
fπ,s(γ), fπ,s

′
(γ)
)
≥ 1

1+γ ≥ 1
2 .

Proof. If π follows a path, it does so for at least 1 state. Plugging in ℓ = 1 to lemma F.94
results in TV

(
fπ,s(γ), fπ,s

′
(γ)
)
= 1. If π follows a k-cycle (k > 1), it does so for at least

one step. Then j = 1, k = 2 for lemma F.96, in which case TV
(
fπ,s(γ), fπ,s

′
(γ)
)
= 1

1+γ <

1.

F.2 Optimal value function theory

Lemma F.98 (Optimal value is piecewise rational on γ). V ∗
R (s, γ) is piecewise rational

on γ.

Proof. By lemma D.40, the optimal visit distribution changes a finite number of times for
γ ∈ [0, 1). Corollary D.10 implies V ∗

R (s, γ) is rational on each non-degenerate subinterval
where the optimal visit distribution set is constant.

Lemma F.99 (V ∗
R (s, γ) is piecewise linear on R).
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Proof. V ∗
R(s, γ) = maxf∈F(s) f(γ)

⊤r takes the maximum over a finite set of fixed |S|-
dimensional linear functionals. Therefore, the maximum is piecewise linear with respect
to R.

Lemma F.99 shows that optimal value is piecewise linear in the reward function. In
unpublished work, Jacob Stavrianos showed that optimal value is globally sublinear in
the reward function:

Lemma F.100 (Optimal value is sublinear in the reward function). Let R1, R2 be reward
functions and let γ ∈ [0, 1).

1. Let r ≥ 0. V ∗
rR1

(s, γ) = rV ∗
R1

(s, γ).

2. V ∗
R1+R2

(s, γ) ≤ V ∗
R1

(s, γ) + V ∗
R2

(s, γ).

Proof. V ∗
rR1

(s, γ) = maxf∈F(s) f(γ)
⊤(rr1) = rmaxf∈F(s) f(γ)

⊤r1 = rV ∗
R1

(s, γ).

For the second condition, we check that

V ∗
R1+R2

(s, γ) = max
f∈F(s)

f(γ)⊤(r1 + r2) (F.89)

≤ max
f1∈F(s)

f(γ)⊤r1 + max
f2∈F(s)

f(γ)⊤r2 (F.90)

= V ∗
R1

(s, γ) + V ∗
R2

(s, γ) . (F.91)

Corollary F.101 (Optimal value is concave in the reward function).

Proof. Optimal value is sublinear in the reward function by lemma F.100; sublinearity is
a sufficient condition for concavity.

Lemma F.102 (Optimal value is monotonically increasing in the reward function). Let
s ∈ S, γ ∈ [0, 1), and suppose ∀s′ ∈ S : R1(s

′) ≥ R2(s
′). Then V ∗

R1
(s, γ) ≥ V ∗

R2
(s, γ).
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Proof. Let f2 ∈ argmaxf∈F(s) f(γ)
⊤r2.

V ∗
R1

(s, γ) = max
f∈F(s)

f(γ)⊤r1 (F.92)

≥ f2(γ)
⊤r1 (F.93)

≥ f2(γ)
⊤r2 (F.94)

= V ∗
R2

(s, γ) . (F.95)

Equation (F.94) follows by the assumed component-wise domination r1 ⪰ r2. Equa-
tion (F.95) follows by the definition of f2.

Theorem F.103 (Reward functions map injectively to optimal value functions). ∀γ ∈
[0, 1), R 7→ V ∗

R(·, γ) is injective.

Proof. Given V ∗
R (·, γ) and the rewardless mdp, deduce an optimal policy π∗ for R by

choosing a V ∗
R (·, γ)-greedy action for each state.

V ∗
R (·, γ) = R+ γTπ∗

V ∗
R (F.96)(

I− γTπ∗
)
V ∗
R (·, γ) = R. (F.97)

If two reward functions have the same optimal value function, then they have the same
optimal policies. Then eq. (F.97) shows that the reward functions must be identical.

Scott Emmons provided the proof sketch for theorem F.103.

Lemma F.104 (Linear independence of a policy’s visit distributions). At any fixed
γ ∈ [0, 1), the elements of

{
fπ,s(γ) | s ∈ S

}
are linearly independent.

Proof. Consider the all-zero optimal value function with optimal policy π∗. Theorem F.103
implies the following homogeneous system of equations has a unique solution for r:

fπ
∗,s1(γ)⊤r = 0

...
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fπ
∗,s|S|(γ)⊤r = 0.

Therefore, π∗ induces linearly independent f . But r must be the all-zero reward function
(for which all policies are optimal), so the fπ,s are independent for any policy π.

Lemma F.105 (Two distinct visit distributions differ in expected optimal value for
almost all reward functions). Let γ ∈ (0, 1), and let ∆,∆′ ∈ ∆(S). If ∆ ̸= ∆′,

PR∼Dcont

(
E

s∼∆

[
V ∗
R (s, γ)

]
= E

s′∼∆′

[
V ∗
R

(
s′, γ

)])
= 0. (F.98)

Proof. Let R ∈ supp(Dcont) and π∗ ∈ Π∗ (R, γ). By lemma F.104, E∆

[
fπ

∗,s
]

=

E∆′

[
fπ

∗,s′
]

iff ∆ = ∆′. Therefore, E∆

[
fπ

∗,s
]
̸= E∆′

[
fπ

∗,s′
]
. Trivially, E∆

[
V ∗
R (s, γ)

]
=

E∆′

[
V ∗
R

(
s′, γ

)]
iff E∆

[
fπ

∗,s
]⊤

r = E∆′

[
fπ

∗,s′
]⊤

r. Since E∆

[
fπ

∗,s
]

≠ E∆′

[
fπ

∗,s′
]
,

lemma D.12 implies that the equality holds with 0 probability under Dcont.

No f is suboptimal for all reward functions: every visit distribution is optimal for a
constant reward function. However, for any given γ, almost every reward function has a
unique optimal visit distribution at each state.

Lemma F.106 (Optimal visit distributions are almost always unique). Let s be any state.
For any γ ∈ (0, 1),

{
r such that

∣∣∣argmaxf∈F(s) f(γ)
⊤r
∣∣∣ > 1

}
has measure zero under any

continuous reward function distribution.

Proof. Let R be a reward function and let s be a state at which there is more than one
optimal visit distribution for R at discount rate γ. Since R has more than one optimal visit
distribution, there must exist a state s′ reachable with positive probability from s such
that actions a, a′ are both optimal at s′, where a ̸≡s′ a

′. Then Es′′∼T (s′,a)

[
V ∗
R

(
s′′, γ

)]
=

Es′′∼T (s′,a′)

[
V ∗
R(s

′′, γ)
]
.

By lemma F.105, since T (s′, a) ̸= T (s′, a′), this equation holds with probability 0 for
reward functions drawn from any continuous reward function distribution.
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F.2.1 Discovering the true reward function

Definition F.107 (Value of reward information). Let Dbound have mean reward function
R̄. For state s and γ ∈ [0, 1), VOID(Dbound) := V ∗

Dbound
(s, γ)− V ∗

R̄
(s, γ).

Question F.108 (In what situations is VOID(s, γ) small?).

Proposition F.109 (Value of reward information is non-negative). For state s and
γ ∈ [0, 1), VOID(Dbound) ≥ 0.

Proof.

V ∗
R̄ (s, γ) := max

π
V π
R̄ (s, γ) (F.99)

= max
π

E
R∼Dbound

[
V π
R (s, γ)

]
(F.100)

≤ E
R∼Dbound

[
max
π

V π
R (s, γ)

]
(F.101)

= V ∗
Dbound

(s, γ) . (F.102)

The result follows since VOID(Dbound) := V ∗
Dbound

(s, γ)−V ∗
R̄
(s, γ) by definition F.107.

F.3 Mdp Structure

Knowing the visit distribution functions for each state provides an enormous amount of
information about the mdp. As γ → 0, the local dynamics are revealed (lemma F.9).
As γ → 1, the renormalized visit distributions (1 − γ)f(γ) limit to the recurrent state
distributions which can be induced from state s: RSD (s) (definition 5.26).

As it turns out, F encodes the entire mdp (corollary F.114). First, we recap all of our
visit distribution notation in table F.1.

Definition F.110 (Visitation function isomorphism). Let M := ⟨S,A, T, γ⟩ and M ′ :=

⟨S ′,A′, T ′, γ′⟩ be two rewardless mdps. M ∼=F M ′ (read “M and M ′ have isomorphic
visitation functions”) when there exists a bijection ϕ : S → S ′ (with corresponding
permutation matrix Pϕ) satisfying ∀s ∈ S : FM ′(ϕ(s)) = ϕ · FM (s).
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Notation Meaning

Visit distribution function fπ,s Definition 5.3: The discounted state visit distribution
function induced by following policy π starting from
state s. A function from γ ∈ [0, 1) to R|S|. π and s
are often left implicit.

Visit distribution fπ,s(γ) Definition 5.3: fπ,s evaluated at discount rate γ.∥∥fπ,s(γ)∥∥
1
= 1

1−γ . π and s are often left implicit.
F(s) Definition 5.3:

{
fπ,s | π ∈ Π

}
.

F(s, γ) Definition D.36:
{
f(γ) | f ∈ F(s)

}
.

Fnd(s) Definition 5.6: The elements of F(s) which are
strictly optimal for some reward function r ∈ R|S|

and discount rate γ ∈ (0, 1).
Fnd(s, γ) Definition D.36:

{
f(γ) | f ∈ Fnd(s)

}
.

Fnd(s | π(s′) = a) Definition 5.4: The elements of Fnd(s) whose policies
take action a at state s′.

Fnd(s | π∗, S) Definition F.158: The elements of Fnd(s) whose poli-
cies agree with π∗ on the states in S ⊆ S.

FHD(s) Definition F.49:
{
fπ,s | π ∈ ΠHD

}
.

Table F.1: Summary of visit distribution notation.

This isomorphism is invariant to state representation, state labelling, action labelling, and
the addition of superfluous actions (a such that ∀s : ∃a′ ̸= a : T (s, a) = T (s, a′)).

Definition F.111 (Directed graph of a deterministic mdp). The directed graph of a
deterministic mdp is a directed graph with a vertex for each state such that there is an
arrow from vertex s to vertex s′ iff s′ ∈ Ch (s).

Directed graphs are deterministic special cases of so-called mdp models [68]. We introduce
the following definition; when the dynamics are deterministic, it reduces to the standard
directed graph isomorphism.

Definition F.112 (Stochastic model isomorphism). ϕ is a stochastic model isomorphism
between rewardless mdps M,M ′ when ϕ is a bijection ϕ : S → S ′ is such that for all s ∈ S,{
PϕT (s, a) | a ∈ A

}
=
{
T ′(ϕ(s), a′) | a′ ∈ A′}. We then say that M ∼=ϕ M

′, which is
read as read “M and M ′ have isomorphic transitions”.
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Theorem F.113 (∼=F is equivalent to transition isomorphism). M ∼=F M ′ via bijection
ϕ iff M ∼=ϕ M

′.

Proof. Forward direction: let s ∈ S.

{
T ′(ϕ(s), a′) | a′ ∈ A′} =

{
lim
γ→0

γ−1(fπ
′,ϕ(s)(γ)− eϕ(s)) | π′ ∈ Π′

}
(F.103)

=

{
Pϕ lim

γ→0
γ−1(fπ,s(γ)− es) | π ∈ Π

}
(F.104)

=
{
PϕT (s, a) | a ∈ A

}
. (F.105)

Equation (F.104) follows because M ∼=F M ′. Then M ∼=ϕ M
′.

Suppose instead that M ∼=ϕ M
′. Let π ∈ Π be a policy in M . Let π′ be such that for

all s ∈ S: π′ satisfies T ′(ϕ(s), π′(ϕ(s))) = PϕT (s, π(s)); such actions exist because we
assumed that M ∼=ϕ M

′. Then by repeated application of lemma F.9, fπ′,ϕ(s) = Pϕf
π,s

for all s ∈ S. Since π was arbitrary, M ∼=F M ′ via ϕ.

Corollary F.114 (Visit distribution functions encode mdps). Given the function F , the
generating dynamics can be reconstructed up to transition isomorphism.

Proof. Given F , for each state s, deduce T (s) =
{
limγ→0 γ

−1(f s(γ)− es) | f ∈ F(s)
}
.

In deterministic environments, the dynamics are encoded (up to transition isomorphism)
by the visit distributions at a single γ ∈ (0, 1).

Theorem F.115 (Visit distributions encode rewardless deterministic mdps). Given the
function F(·, γ) generated by a deterministic rewardless mdp, the generating dynamics
can be reconstructed up to transition isomorphism.

Proof. Since ∀s ∈ S, f(γ) ∈ F(s, γ) :
∥∥f(γ)∥∥

1
= 1

1−γ (by proposition D.8) and f(γ) ∈ R|S|,
we can deduce γ and |S|. Let S ′ :=

{
1, . . . , |S|

}
. Using lemma F.9, deduce the children

Ch (s) of each state s. Define A :=
{
1, . . . ,maxs

∣∣Ch (s)∣∣}. Construct a transition
function T ′ using Ch (s); if |A| >

∣∣Ch (s)∣∣ for some state s, map the redundant actions
to any element of Ch (s).
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Let M ′ := ⟨S ′,A′, T ′, γ⟩. By construction, M and M ′ are transition isomorphic.

Conjecture F.116 (Theorem F.115 holds in stochastic environments).

Theorem F.117 (Optimal value functions encode rewardless deterministic mdps). Given
the optimal value function/reward function pairs of a rewardless deterministic mdp M ,
M can be reconstructed up to F-isomorphism.

Proof. Suppose that for rewardless mdp M , we are given
{
(R, V ∗

R (·, γ)) | R ∈ [0, 1]|S|
}

for fixed γ. Let S ′ :=
{
1, . . . , |domain of R|

}
for any reward function R.

For each s, we determine if it can reach itself. Let Rs be the indicator reward function on
state s. s can reach itself iff V ∗

Rs
(s, γ) > 1. Because the mdp is finite, at least one state s

must be able to reach itself.

If other states s′ also have V ∗
Rs
(s′, γ) > 0, consider spre ∈ argmaxs′∈S\{s} V

∗
Rs
(s′, γ). spre

must be able to reach s in one step, so V ∗
Rs
(spre, γ) = γV ∗

Rs
(s, γ). Then γ =

V ∗
Rs

(s,γ)

V ∗
Rs

(spre,γ)
.

If s is the only state with positive optimal value for Rs, V ∗
Rs

(s, γ) > 1 implies that s must
be able to reach itself. Then V ∗

Rs
(s, γ) = 1

1−γ ; solve for γ.

The above reasoning explained how to test whether s can reach itself and how to determine
which other states can reach s. This information allows us to construct a transition function
T ′, setting the action space A′ to be as large as necessary to accommodate the state with
the most children. Because their directed graphs are isomorphic, ⟨S ′,A′, γ, T ′⟩ ∼=F M by
theorem F.113.

Remark. The proof of theorem F.117 shows that deterministic dynamics are fully
determined by |S| optimal value functions (one for each state indicator reward function).

Corollary F.118 (Non-dominated visit distribution functions encode rewardless deter-
ministic mdps). Suppose the rewardless deterministic mdp M := ⟨S,A, T, γ⟩ induces Fnd.
From Fnd, M can be reconstructed up to F-isomorphism.

Proof. Restriction to non-dominated distributions leaves optimal value unchanged for all
reward functions. Apply theorem F.117 to recover M up to F-isomorphism.
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Figure F.16 shows that neither theorem F.117 nor corollary F.118 hold for stochastic
environments. Given known transition dynamics, theorem F.103 guarantees that R
recovered from V ∗

R (·, γ), but in the stochastic variant of theorem F.117, we would not
know the transition dynamics a priori.

1

2

3

a

Figure F.16: The bifurcated action a is a stochastic transition, where T (s1, a, s2) =
p, T (s1, a, s3) = 1 − p. For any p ∈ (0, 1), a is a dominated action: T (s1, a) ∈ T (s1) \
Tnd (s1). Since there is no optimal value function for which it is strictly optimal to take
action a, no optimal value function is affected by the presence of a. This ambiguity does
not arise in deterministic mdps, since T (s) = Tnd (s) when the dynamics are deterministic.

Figure F.17 summarizes this section’s results.

Fnd(·, γ)

⟨S,A, γ, T ⟩
{(

Rs, V
∗
Rs

(·, γ)
)
| s ∈ S

}
Figure F.17: In deterministic mdps, these three objects contain the same information (up
to transition isomorphism).

Figure F.18 shows that theorem F.117 cannot be proven without knowing which reward
functions generate which optimal value functions (although γ can still be deduced from
the optimal value functions for all reward functions with reward bounded in [0, 1]).

Question F.119 (In what category of mdps is ∼=F an isomorphism?).

Question F.120 (Is ∼=F natural in the category-theoretic sense?).
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1 2

3

(a) R(s1) = 1

1 2

3

(b) R(s1) = .8

Figure F.18: Suppose γ = .5 and V ∗
R (s1, .5) = 1.5, V ∗

R (s2, .5) = 1, V ∗
R (s3, .5) = 1.4.

This optimal value function is compatible with a (where R(s1) = 1) and with b (where
R(s1) = .8).

Question F.121 (What properties would ∼=Fnd
have?).

Conjecture F.122 (Optimality probability and Power change “continuously” with
respect to transition dynamics).

F.4 Properties of optimal policy shifts

Definition F.123 (Optimal policy shift). R has an optimal policy shift at γ ∈ (0, 1)

when limγ−↑γ Π
∗ (R, γ−) ̸= Π∗ (R, γ). Similarly, R has an optimal visit distribution shift

at γ and at state s.

Corollary F.124 (One-sided limits exist for Π∗ (R, γ)). Let L ∈ (0, 1) and let R be any
reward function. limγ↑LΠ∗ (R, γ) and limγ↓LΠ∗ (R, γ) both exist.

Proof. By lemma D.40, Π∗ (R, γ) can take on at most finitely many values for γ ∈ (0, 1).
Thus, infinite oscillation cannot occur in either one-sided limit, and so both one-sided
limits exist.

Corollary F.126 shows that definition F.123 loses no generality by defining optimal policy
shifts with respect to the limit from below.

Lippman [48] showed that two visit distribution functions can trade off optimality status
at most 2 |S|+ 1 times. We slightly improve this upper bound. We thank Max Sharnoff
for contributions to lemma F.125.
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Lemma F.125 (Upper bound on optimal visit distribution shifts). For any reward
function R and f , f ′ ∈ F(s),

(
f(γ)− f ′(γ)

)⊤
r is either the zero function, or it has at

most 2 |S| − 1 roots on γ ∈ (0, 1).

Proof. Consider two policies π, π′. By lemma D.9, (fπ(γ)− fπ
′
(γ))⊤r is a rational function

with degree at most 2 |S| by the sum rule for fractions. The fundamental theorem of
algebra shows that (fπ(γ)− fπ

′
(γ))⊤r is either 0 for all γ or for at most 2 |S| values of

γ ∈ [0, 1). Since f(0) = f ′(0) = es (definition 5.3), one of the roots is at γ = 0.

Corollary F.126 (Lower-limit optimal policy set inequality iff upper-limit inequality).
Let γ ∈ (0, 1), and Π− := limγ−↑γ Π

∗ (R, γ−) ,Π+ := limγ+↓γ Π
∗ (R, γ+). Π− ̸= Π∗ (R, γ)

iff Π+ ̸= Π∗ (R, γ).

Proof. Suppose Π− ≠ Π∗ (R, γ) but Π∗ (R, γ) = Π+. By lemma F.127, if Π− ̸= Π∗ (R, γ),
then Π− ⊊ Π∗ (R, γ). Let π∗ ∈ Π∗ (R, γ) \ Π− and π− ∈ Π−. Since π∗ ̸∈ Π−, there
exists some ϵ1 > 0 such that π∗ isn’t optimal for all γ′ ∈ (γ − ϵ1, γ]. In particular,
(fπ

∗
(γ′)− fπ

−
(γ′))⊤r < 0 for such γ′. In particular, (fπ∗

(γ∗)− fπ
−
(γ∗))⊤r is not the zero

function on γ∗.

Therefore, lemma F.125 implies that (fπ
∗
(γ∗)− fπ

−
(γ∗))⊤r has finitely many roots on

γ∗. But since π∗ ∈ Π∗ (R, γ) = Π+, there exists ϵ2 > 0 such that ∀γ′ ∈ [γ, γ + ϵ2) :

(fπ
∗
(γ′)− fπ

−
(γ′))⊤r = 0. But this would imply that the expression has infinitely many

roots, a contradiction. Therefore, if Π− ̸= Π∗ (R, γ), then Π∗ (R, γ) ̸= Π+.

The proof of the reverse implication proceeds identically.

0 −.25 1 −1 0

Figure F.19: In lemma F.127, Π− can equal Π+. Let R be the reward function whose
rewards are shown in green. The shortcut is optimal for all γ. An optimal policy
shift occurs at γ = .5. Since Π− = Π+ only contain policies which take the shortcut,
Π− ∪Π+ ⊊ Π∗ (R, γ).

https://www.wolframalpha.com/input/?i=-.25x+%2B+x%5E2+-+x%5E3
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Lemma F.127 (Optimal policy sets overlap when shifts occur). Let R be a reward
function and γ ∈ (0, 1). Let Π− := limγ−↑γ Π

∗ (R, γ−) ,Π+ := limγ+↓γ Π
∗ (R, γ+). Then

Π− ∪Π+ ⊆ Π∗ (R, γ). Furthermore, if R has an optimal policy shift at γ, ∃s ∈ S:∣∣∣∣∣argmax
f∈F(s)

f(γ)⊤r

∣∣∣∣∣ ≥ 2.

Proof. Since an optimal policy shift occurs at γ and since V ∗
R (s, γ) is continuous on

γ by lemma F.98, ∀π− ∈ Π−, π+ ∈ Π+, s ∈ S : V π−
R (s, γ) = V π+

R (s, γ). Therefore,
Π− ∪Π+ ⊆ Π∗ (R, γ).

By lemma D.6, for any R ∈ RS , an optimal policy shift occurs at γ iff an optimal visit
distribution shift occurs at γ for at least one state s.

To better appreciate how optimal policy sets can be linked to the discount rate, consider
the fact that some rewardless mdps have no optimal policy shifts. In other words, for any
reward function and for all γ ∈ (0, 1), greedy policies are optimal, as shown in fig. F.20.
In deterministic environments, optimal policy shifts can occur if and only if the agent can
be made to choose between lesser immediate reward and greater delayed reward.

s0
1

s1
.1

s′1
0

(a)

s0
0

s1
.1

s′1
0

s2
0

s′2
1

(b) (c) (d)

Figure F.20: a and b show reward functions whose optimal policies shift. No shifts occur
in c or d.

Theorem F.128 suggests that the vast majority of deterministic rewardless mdps allow
optimal policy shifts, as the criterion is easily fulfilled.

Theorem F.128 (Characterization of optimal policy shifts in deterministic rewardless
mdps). In deterministic environments, there exists a reward function whose optimal action
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at s0 changes with γ iff ∃s1 ∈ Ch(s0), s′1 ∈ Ch(s0), s′2 ∈ Ch(s′1) \ Ch(s1):

s′2 ̸∈ Ch(s0) ∨
(
s1 ̸∈ Ch(s1) ∧ s′1 ̸∈ Ch(s1)

)
.

Proof. Forward direction. Without loss of generality, suppose the optimal policy set of
some R is shifting for the first time (a finite number of shifts occur by Blackwell [11]).

Starting at state s0, let the policies π, π′ induce state trajectories s0s1s2 . . . and s0s′1s′2 . . .,
respectively, with the shift occurring to an optimal policy set containing π′ at discount
rate γ. By the definition of an optimal policy shift at γ, V π

R (s0, γ) = V π′
R (s0, γ). Because

π was greedily optimal and π′ was not, s1 ̸= s′1 and R(s1) > R(s′1). If Ch (s1) = Ch
(
s′1
)
,

π(s0) remains the optimal action at s0 and no shift occurs. Without loss of generality,
suppose s′2 ̸∈ Ch (s1).

We show the impossibility of ¬
(
s′2 ̸∈ Ch (s0) ∨

(
s1 ̸∈ Ch (s1) ∧ s′1 ̸∈ Ch (s1)

))
= s′2 ∈

Ch (s0) ∧
(
s1 ∈ Ch (s1) ∨ s′1 ∈ Ch (s1)

)
, given that π′ becomes optimal at γ.

s0

s1

s′1

s2

s′2

(a) s′2 ∈ Ch (s0) ∧ s1 ∈
Ch (s1)

s0

s1

s′1

s2

s′2

(b) s′2 ∈ Ch (s0) ∧ s′1 ∈ Ch (s1)

Figure F.21: Dotted arrows illustrate the assumptions for each case. Given that there
exists a reward function R whose optimal action at s0 changes at γ, neither assumption
can hold. Although not illustrated here, e.g. s2 = s0 or s′2 = s0 is consistent with
theorem F.128. We leave the rest of the model blank as we make no further assumptions
about its topology.

Case: s′2 ∈ Ch (s0) ∧ s1 ∈ Ch (s1). For π′ to be optimal, navigating to s1 and staying
there cannot be a better policy than following π′ from s0. Formally, R(s1)

1−γ ≤ V π′
R (s′1, γ)

implies R(s1) ≤ (1− γ)V π′
R (s′1, γ) = (1− γ)

(
R(s′1) + γV π′

R (s′2, γ)
)
.

We now construct a policy π′2 which strictly improves upon π′. Since s′2 ∈ Ch (s0),
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∃a′2 : T (s0, a′2, s′2) = 1. Let π′2 equal π′ except that π′2(s0) := a′2. Then sinceR(s′1) < R(s1),
V

π′
2

R (s0, γ) > V π′
R (s0, γ), contradicting the assumed optimality of π′.

Case: s′2 ∈ Ch (s0) ∧ s′1 ∈ Ch (s1). For π′ to be optimal, navigating to s1, then to
s′1 (made possible by s′1 ∈ Ch (s1)), and then following π′ cannot be a better policy
than following π′ from s0. Formally, R(s1) + γV π′

R (s′1, γ) ≤ V π′
R (s′1, γ). This implies that

R(s1) ≤ (1 − γ)V π′
R (s′1, γ) = (1 − γ)

(
R(s′1) + γV π′

R (s′2, γ)
)
. The policy π′2 constructed

above is again a strict improvement over π′ at discount rate γ, contradicting the assumed
optimality of π′.

Backward direction. Suppose ∃s1, s′1 ∈ Ch (s0) , s′2 ∈ Ch
(
s′1
)
\Ch (s1) : s′2 ̸∈ Ch (s0)∨(

s1 ̸∈ Ch (s1) ∧ s′1 ̸∈ Ch (s1)
)
. We show that there exists a reward function R whose

optimal policy at s0 changes with γ.

If s′2 ̸∈ Ch (s0), then s′2 ̸= s1 because s1 ∈ Ch (s0). Let R(s1) := .1, R(s′2) := 1, and 0

elsewhere. Suppose that s1 can reach s′2 in two steps and then stay there indefinitely,
while the state trajectory of π′ can only stay in s′2 for one time step, after which no
more reward accrues. Even under these impossibly conservative assumptions, an optimal
trajectory shift occurs from s0s1s2 . . . to s0s

′
1s

′
2 . . .. At the latest, the shift occurs at

γ ≈ 0.115, which is a solution of the corresponding equality:

R(s1) +
γ2

1− γR(s
′
2) = R(s′1) + γR(s′2) (F.106)

.1 +
γ2

1− γ = γ. (F.107)

Alternatively, suppose s2 = s1, and so π continually accumulates R(s1) = .1. Then there
again exists an optimal policy shift corresponding to a solution to .1

1−γ = γ.

By construction, these two scenarios are the only ways in which π might accrue reward,
and so an optimal policy shift occurs for R.

If s′2 ∈ Ch (s0), then set R(s1) := 1, R(s′1) := .99, R(s′2) := .9, and 0 elsewhere. Suppose
that s1 can reach itself in two steps (the soonest possible, as s1 ̸∈ Ch (s1)), while neither
s′1 or s′2 can reach themselves or s1. The corresponding equation 1

1−γ2 = .99 + .9γ has a
solution in the open unit interval. Therefore, a shift occurs even under these maximally

https://www.wolframalpha.com/input/?i=.1%2Bx%5E2%2F%281-x%29%3Cx
https://www.wolframalpha.com/input/?i=.1%2F%281-x%29%3Dx
https://www.wolframalpha.com/input/?i=1%2F%281-x%5E2%29%3C.99%2B.9x
https://www.wolframalpha.com/input/?i=1%2F%281-x%5E2%29%3C.99%2B.9x


285

conservative assumptions.

Conjecture F.129 (If some reward function has optimal policy shifts, then almost all
reward functions have optimal policy shifts).

Proposition F.130 (Sufficient conditions for a reward function not having optimal policy
shifts). Let R ∈ RS .

1. If R assigns reward r to all states, or

2. If the environment is deterministic and R is a state indicator reward function, or

3. If the environment is deterministic and R is assigns reward r1 to states which can
reach themselves and r2 to states which cannot reach themselves, or

4. If the environment is deterministic and R is assigns reward r1 to some set of 1-cycle
states and r2 to all other states, or

5. If R = mR′ + b for some m > 0, b ∈ R and R′ ∈ RS which has no optimal policy
shifts,

then R has no optimal policy shifts.

Proof. Item 1: If R assigns reward r to all states, then all policies are optimal at all
discount rates.

Item 2: Let s be a state and Rs be the indicator reward function for s. At each state, let
π choose an action which minimizes graph distance to s. Such an action exists because
there are only finitely many actions. Since R(s) = 1 and 0 elsewhere, π is optimal for Rs

for all discount rates.

Item 3: If r1 = r2, then apply item 1.

Suppose that r1 > r2. Then starting from any state s, each policy π induces a trajectory
which deterministically visits 0 ≤ ℓ < |S| transient states before entering a k-cycle
(0 < k ≤ S − ℓ). By assumption on r1, r2, we have V π

R (s, γ) = 1−γℓ

1−γ · r2 + γℓ r1
1−γ . Then a

policy induces optimal value at s iff it minimizes ℓ; such a policy must exist, since there
are only finitely many admissible values of ℓ.
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This criterion is independent of the value of γ ∈ (0, 1), and so there are no optimal policy
shifts at s. Since s was arbitrary, there are no optimal policy shifts for R. Similar logic
proves the r1 < r2 case, except that optimal policies maximize ℓ.

Item 4: If r1 = r2, then apply item 1.

Suppose that r1 > r2 and let s be a state. If s cannot reach any r1-states, then every
action is optimal for R at s at any discount rate.

If s can reach an r1 state s′ via some policy π, then by determinism, π induces a trajectory
which deterministically visits 0 ≤ ℓ < |S| states before reaching s′. By the definition of
r1, r2, we have V π

R (s, γ) ≤ 1−γℓ

1−γ · r2 + γℓ r1
1−γ , with equality iff π stays at s′. Then since

r1 > r2, π induces optimal value at s iff it minimizes ℓ and stays at s′; such a policy must
exist, since there are only finitely many admissible values of ℓ.

This criterion is independent of the value of γ ∈ (0, 1), and so there are no optimal policy
shifts at s. Since s was arbitrary, there are no optimal policy shifts for R. Similar logic
proves the r1 < r2 case, except that optimal policies maximize ℓ and avoid staying at s′.

Item 5: Optimal policy is invariant to positive affine transformation, and so the result
follows immediately.

Figure F.22 shows that the presence of optimal policy shifts is not invariant to negation
of the reward function.

s0
0

s1
−1

s′1
−1

2

s2
−1

2

s′2
−1

Figure F.22: The given R has no optimal policy shifts, but its inverse −R does have
optimal policy shifts.

Figure F.23 shows a counterexample to proposition F.130’s item 2 for stochastic environ-
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ments.

1 3

2

4

a

Figure F.23: Optimal policy shifts can occur for state indicator reward functions in stochas-
tic environments, but they cannot occur in deterministic environments (proposition F.130).
Let Rs3 be the state indicator reward function for s3, and let T (s1, a, s3) = T (s1, a, s4) =

1
2 .

Rs3 has an optimal policy shift at γ = 1
2 .

Since we assume state-based reward functions, naively plugging in γ = 0 would make all
policies optimal. Instead, we consider the limiting optimal policy set as γ → 0, in a similar
manner as Blackwell optimality considers the limiting optimal policy set as γ → 1.

Definition F.131 (Asymptotically greedy optimality). Π∗ (R, 0) is the asymptotically
greedily optimal policy set for state-based reward function R.

Although, lemma F.15 proved that Π∗ (R, 0) ⊆ Πgreedy (R), fig. F.24 shows that equality
need not hold.

s0

s1
1

s′1
1

s2
1

s′2
0

up

down

Figure F.24: For all γ > 0, up has greater value than down. Therefore, even though both
up and down are greedy actions, only πup ∈ Π∗ (R, 0).

Definition F.132 (Reward sequence induced by a policy). Let R be a reward function,
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and let the sequence
((

(Tπ)tes
)⊤

r
)s,π,R
t≥1

contain the expected undiscounted R-reward at

time steps t given that policy π is followed starting from state s.

Proposition F.133 (Dictionary-ordered greediness). π∗ ∈ Π∗ (R, 0) iff ∀s ∈ S, π ∈ Π :

(r1, r2, . . .)
s,π∗,R ⪰ (r1, r2, . . .)

s,π,R, where ⪰ is the dictionary ordering over R∞.

Proof. Repeatedly apply lemma F.15 to conclude that π∗ ∈ Π∗ (R, 0) iff it satisfies the
dictionary ordering condition at all time steps.

Lemma F.134 (For almost all reward functions, asymptotically greedy action is deter-
mined by expected immediate reward). For almost all reward functions R, π ∈ Π∗ (R, 0)

iff π ∈ Πgreedy (R).

Proof. The forward direction holds for all reward functions as a corollary of proposi-
tion F.133. The converse holds for almost all reward functions R, since {r ∈ R|S| | ∃s, a :

T (s, π(s)) ̸= T (s, a) ∧ T (s, π(s))⊤r = T (s, a)⊤r} has no interior in the standard topology
on R|S| by lemma D.12. Therefore, for almost all R, the policy which maximizes expected
next-state return π is unique up to action equivalence. By this uniqueness and by the
fact that Π∗ (R, 0) cannot be empty by lemma D.40, π ∈ Π∗ (R, 0) for almost all R.

Proposition F.135 (Child distribution similarity implies equal greedy optimality proba-
bility). If T (s, a), T (s, a′) ∈ T (s) are similar via a permutation ϕ such that ϕ · Tnd (s) =

Tnd (s), then PDX-iid
(s, a, 0) = PDX-iid

(
s, a′, 0

)
.

Proof.

PDX-iid
(s, a, 0) (F.108)

:= P
R∼D

(
∃π∗ ∈ Π∗ (R, 0) : π∗(s) = a

)
(F.109)

= E
r∼D

[
1T (s,a)⊤r≥maxd∈T (s) d

⊤r

]
(F.110)

= E
r∼D

[
1T (s,a)⊤r≥maxd∈Tnd(s) d

⊤r

]
(F.111)

= E
r∼D

[
1T (s,a′)⊤r′≥maxd∈Tnd(s) d

⊤r′

]
(F.112)
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= P
R∼D

(
∃π∗ ∈ Π∗ (R, 0) : π∗(s) = a′

)
(F.113)

=:PDX-iid

(
s, a′, 0

)
. (F.114)

Equation (F.109) and eq. (F.113) follow from lemma F.134. Equation (F.110) follows by
lemma D.39. Let

g(d1, d2) := 1d1≥d2

and

f(B1, B2 | D) := E
r∼D

[
g(max

d∈B1

d⊤r, max
d′∈B2

d′⊤r)

]
.

Then by lemma D.22, f
({
T (s, a)

}
, Tnd (s) | D

)
= f

(
ϕ ·
{
T (s, a)

}
, ϕ · Tnd (s) | ϕ · D

)
=

f
({
T (s, a′)

}
, Tnd (s) | D

)
(as D distributes reward identically across states, so ϕ ·D = D).

Then eq. (F.112) holds.

Corollary F.136 (Equal action optimality probability when γ = 0). If the environment
is deterministic and γ = 0, then all actions are equally probably optimal at any given state.

Proof. In deterministic mdps, ∀s : Tnd (s) = T (s) because each child state s′ ∈ Ch (s) is
strictly greedily optimal for the indicator reward function 1s′′=s′ . Furthermore, for any
two actions a1, a2 leading to children s1, s2 ∈ Ch (s) respectively, the transposition of
s1, s2 satisfies the requirements of proposition F.135.

Apply proposition F.135 to conclude a1, a2 have equal optimality probability at s when
γ = 0.

Proposition F.137 (No-shift, injective reward functions can be solved greedily). Let R
be a reward function which has no optimal policy shifts such that ∀s ∈ S, a, a′ ∈ A, a and
a′ are both greedily optimal iff a ≡s a

′. Then ∀γ ∈ [0, 1] : Π∗ (R, γ) = Πgreedy (R).

In deterministic environments, this holds for no-shift reward functions which assign a
unique reward to each state.
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Proof. By lemma F.15, π ∈ Π∗ (R, 0) must be greedily optimal. By the next-step reward
assumption, each greedily optimal policy is determined up to action equivalence; therefore,
if π ∈ Π∗ (R, 0) and π′ is greedily optimal for R, then ∀s ∈ S : π(s) ≡s π

′(s). This implies
that π′ ∈ Π∗ (R, 0). So Π∗ (R, 0) = Πgreedy (R). Since no optimal policy shifts occur,
these greedy policies must always be optimal.

In deterministic environments, an injective reward function implies that ∀s ∈ S, a, a′ ∈ A,
a and a′ have equal next-step expected reward iff a ≡s a

′. Injectivity implies that a and
a′ are both greedily optimal iff a ≡s a

′.

In fig. F.25, for each γ ∈ (0, 1), there exists a reward function whose optimal policy set has
not yet “settled down.” However, when γ ≈ 1, “most” reward functions have a Blackwell
optimal policy set.

1

2

3 4

Figure F.25: Let γ ∈ (0, 1), and consider R(s1) = R(s3) := 0, R(s4) := 1. The optimal
policy set is not yet Blackwell-optimal if R(s2) ∈ (γ, 1).

Conjecture F.138 (There exists a characterization of optimal policy shift existence in
stochastic mdps).

Lemma F.139 (Optimal policy shift bound). For fixed R, Π∗ (R, γ) can take on at most
(2 |S| − 1)

∑
s

(|F(s)|
2

)
values over γ ∈ (0, 1).

Proof. By lemma D.6, Π∗ (R, γ) changes value iff there is a change in optimality status
for some visit distribution function at some state. By lemma F.125, each pair of distinct
visit distributions can switch optimality status at most 2 |S| − 1 times. At each state s,
there are

(|F(s)|
2

)
such pairs.

Conjecture F.140 (Linear bound on optimal visit distribution function shifts). For any
reward function R and f , f ′ ∈ F(s), f and f ′ shift at most |S| − 1 times.
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Conjecture F.141 (Quadratic upper bound on optimal policy shifts). For any reward
function R, at most O(|S|2) optimal policy shifts occur.

F.5 Optimality probability

Figure F.26 serves as a reminder that the relatively greater optimality probability of an
action a at γ does not imply that PD (s, a, γ) ≥ 1

2 .

1
right

Figure F.26: By theorem 5.29, PDX-iid
(s, right, 1) = 2

5 <
1
2 . In other words, when γ ≈ 1,

it’s more probable than not that right isn’t optimal, even though right is more probable
under optimality than other actions.

F.5.1 Impossibility of graphical characterization of which actions are
more probably optimal

Even restricting ourselves to DX-iid beliefs, we can’t always just look at the rewardless
mdp structure to determine which actions are more probable under optimality. In fig. F.27,
going up is more probable under optimality at s1 for some state reward distributions X,
but not for others.

Theorem F.142 (The state reward distribution can affect which actions have the greatest
optimality probability). There can exist state reward distributions X1, X2, a state s, and
a discount rate γ for which argmaxa PDX1-iid

(s, a, γ) ̸= argmaxa PDX2-iid
(s, a, γ).

Proof. See fig. F.27.
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1

up

right

Figure F.27: For X1 uniform, up and right are equally probable under optimality. For
X2 with cdf F (x) := x2 on the unit interval, PDX2-iid

(s1, up, γ) =
10+3γ−3γ2

20 .

F.5.2 Sample means

For arbitrary D,D′ ⊆ RSDnd (s), determining if PD (D, 1) > PD
(
D′, 1

)
is at least as

hard as answering questions like “for sample means x̄n of n iid draws from an arbitrary
continuous bounded distributionX, is P

(
max(x̄4, x̄

′
4, x̄5) > max(x̄′′4, x̄

′
5, x̄

′′
5)
)
> 1

2?”. These
questions about maximal order statistics are often difficult to answer.

Thus, there is no simple characterization of the D,D′ ⊆ RSDnd (s) for which

PD (D, 1) [DX-iid] > PD
(
D′, 1

)
[DX-iid].

However, there may be X for which k-cycle optimality probability decreases as k in-
creases.

Conjecture F.143 (Increased sample size decreases maximality probability [94]). Con-
sider a finite set of sample means x̄i of ki draws from unif(0, 1). If ki > kj , then
P (x̄i = maxl x̄l) < P

(
x̄j = maxl x̄l

)
.

Corollary. Suppose the environment is deterministic. Let k > k′ and dk,dk′ ∈ RSDnd (s)

be k, k′-cycles, respectively. Suppose that

∥∥{dk} −RSDnd (s) \ {dk}
∥∥
1
=
∥∥{dk′} −RSDnd (s) \ {dk′}

∥∥
1
= 2.

For X uniform, PD (dk, 1) < PD (dk′ , 1).
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F.5.3 Optimality probability of linear functionals

Conjecture F.144 (Optimality probability changes continuously under Dcont). Let
D ⊆ R and let G,H be two finite sets of continuous functions (or paths) from D to
R|S|. Define G(γ) :=

{
g(γ) | g ∈ G

}
, and similarly for H(γ). pDcont

(
G(γ) ≥ H(γ)

)
is

continuous on γ ∈ X.

F.5.4 Properties of optimality probability

Corollary F.145 (Almost all reward functions don’t have an optimal policy shift at any
given γ). For any γ ∈ (0, 1), PR∼Dcont

(
limγ−↑γ Π

∗ (R, γ−) ̸= Π∗ (R, γ)
)
= 0.

Proof. Let γ ∈ (0, 1). By lemma F.127, if R ∈ RS has an optimal policy shift at γ, then
∃s ∈ S :

∣∣∣argmaxf∈F(s) f(γ)
⊤r
∣∣∣ ≥ 2. At least one such f ∈ Fnd(s) by lemma D.15 and

lemma D.38. Let f ′ ∈ F(s) be a distinct element of the argmax.

By lemma D.52, f(γ) ̸= f ′(γ). Then
∣∣∣argmaxd∈F(s,γ) d

⊤r
∣∣∣ ≥ 2. Corollary D.13 shows

that Pr∼Dcont

(∣∣∣argmaxf∈F(s) f(γ)
⊤r
∣∣∣ ≥ 2

)
= 0.

Lemma F.146 (For continuous reward function distributions, optimality probability is ad-
ditive over visit distribution functions). Let F ⊆ F(s). PDcont

(F, γ) =
∑

f∈F PDcont
(f , γ).

Proof. Suppose γ ∈ (0, 1). Since Dcont is continuous, apply proposition F.63 with A :=

F (γ), B := F(s, γ).

Since the result holds for γ ∈ (0, 1), it holds in the limits of γ → 0 and γ → 1.

Lemma F.147 (Optimality probability is continuous on γ). For F ⊆ F(s), PDcont
(F, γ)

is continuous on γ ∈ [0, 1].

Proof. Since lemma F.146 shows that PDcont
(F, γ) =

∑
f∈F PDcont

(f , γ), it is sufficient to
show that each summand is continuous.

Let f ∈ F . If PDcont
(f , γ) were discontinuous at γ∗ ∈ (0, 1), then a positive measure subset

of Dcont experiences an optimal policy shift at γ∗. This contradicts corollary F.145, and
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so PDcont
(f , γ) must be continuous on γ ∈ (0, 1). Proposition D.41 shows that optimality

probability’s limits exist, and so PDcont
(f , γ) is actually continuous on γ ∈ [0, 1].

Conjecture F.148 (Finite disagreement of optimality probability for DX-iid). For any
f , f ′ ∈ F(s), PDX-iid

(f , γ) = PDX-iid

(
f ′, γ

)
either for all γ ∈ [0, 1] or for finitely many γ.

Lemma F.149 (Only f ∈ Fnd(s) have positive optimality probability at any γ). f ∈ Fnd(s)

iff ∃γ ∈ (0, 1) : PDX-iid
(f , γ) > 0.

Proof. If f ∈ Fnd(s), then ∃γ ∈ (0, 1), r1 ∈ R|S| : f(γ)⊤r1 > maxf ′∈F(s)\{f} f
′(γ)⊤r1.

Then PDX-iid
(f , γ) = pDX-iid

(
f(γ) ≥ F(s, γ)

)
> 0 by proposition D.25.

If ∃γ ∈ (0, 1) : PDX-iid
(f , γ) > 0, then f(γ) ∈ ND

(
F(s, γ)

)
by lemma F.64. This implies

f ∈ Fnd(s) by lemma D.38.

Corollary F.150 (Dominated visit distributions are almost never optimal). f ∈ F(s) is
dominated iff ∀γ ∈ [0, 1] : PDcont

(f , γ) = 0.

Proof. Let γ ∈ (0, 1). If f ∈ F(s) \ Fnd(s), then PDcont
(f , γ) = 0 by lemma F.149.

Furthermore, PDcont
(f , 0) := limγ→0 PDcont

(f , γ) = 0. Similar reasoning applies when
γ = 1.

We show that ∀γ ∈ [0, 1] : PDcont
(f , γ) = 0 implies that f ∈ F(s) \ Fnd(s) by proving the

contrapositive. Suppose ∃γ ∈ (0, 1) : PDcont
(f , γ) ̸= 0. Then by lemma F.149, f cannot be

dominated, and so f ∈ Fnd(s).

If PDcont
(f , 0) := limγ→0 PDcont

(f , γ) ̸= 0, then the optimality probability must be non-
zero in a neighborhood of 0. By lemma F.149, this can only be true if f ∈ Fnd(s). Similar
reasoning applies to the γ = 1 case.

Proposition F.151 (Non-domination iff positive measure). f ∈ Fnd(s) iff ∀γ ∈ (0, 1) :

PDX-iid
(f , γ) > 0.

Proof. By the same arguments used in lemma F.149’s proof’s forward direction, PDX-iid
(f , γ) >

0. Therefore, ∀γ ∈ (0, 1) : PDX-iid
(f , γ) > 0.



295

If ∀γ ∈ (0, 1) : PDX-iid
(f , γ) > 0, apply corollary F.150 to conclude that f cannot be

dominated (corollary F.150 applies because DX-iid is continuous), and so f ∈ Fnd(s).

Proposition F.152 (Non-domination iff positive probability for γ ∈ [0, 1)).

f ∈ Fnd(s) iff ∀γ ∈ [0, 1) : PDX-iid
(f , γ) > 0.

Proof. The case for γ ∈ (0, 1) is proved by proposition F.151.

For the γ = 0 case, suppose f ∈ Fnd(s) and fix γ∗ ∈ (0, 1). By corollary F.16, almost
all reward functions in the interior of supp(f(γ∗) ≥ F(s, γ∗)) ∩ supp(D) have optimal
actions at each state which are unique up to action equivalence. Let R be one such reward
function for which f ∈ Fnd(s) is strictly optimal.

By proposition F.18, Π∗ (V ∗
R (·, γ∗) , 0

)
= Π∗ (R, γ∗). Since optimal value is continuous

on the reward function (lemma F.99) and since f is strictly optimal for R, there exists
an ϵ-ball of reward functions around the reward function V ∗

R (·, γ∗) for which f is strictly
optimal. By lemma D.20, we can positively affinely transform this ball to be contained
in supp(f , 0) ∩ supp(D); since this is a positive affine transformation, the image has
non-empty interior. Then PDX-iid

(f , 0) > 0 since DX-iid is a continuous distribution.

Suppose f ∈ F(s) \ Fnd(s). By lemma F.106, for any γ∗ ∈ (0, 1), the set of reward
functions with multiple optimal visit distributions has measure zero. Dominated visit
distribution functions cannot be uniquely optimal at any γ∗ ∈ (0, 1). Therefore, if f is
dominated, ∀γ∗ ∈ (0, 1) : PDX-iid

(f , γ∗) = 0, and PDX-iid
(f , 0) := limγ∗→0 PDX-iid

(f , γ∗) =

limγ∗→0 0 = 0. So for any γ ∈ [0, 1), PDX-iid
(f , γ) > 0 implies f ∈ Fnd(s).

Lemma F.153 (Non-dominated child distributions facilitate a non-dominated visit
distribution function). If T (s, a) ∈ Tnd (s), then ∃π : π(s) = a and fπ ∈ Fnd(s).

Proof. Let d := T (s, a) and let V :=
{
v ∈ R|S| | d⊤ > maxd′∈T (s)\{d′} d

′⊤v
}
. V is

nonempty because d ∈ Tnd (s) and has positive Lebesgue measure by the continuity of
d⊤v and the max on v ∈ R|S|.
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For all π ∈ Π, let Vπ :=
{
v ∈ V | π ∈ Πgreedy (v)

}
. Since Π is finite, there must exist

π∗ such that Vπ∗ ⊆ V has positive Lebesgue measure. Then consider the set of reward

functions Rπ∗ :=

{(
I− .5Tπ∗

)
v | v ∈ Vπ∗

}
. Since

(
I− .5Tπ∗

)
is invertible because its

spectral radius is strictly less than 1 (see the proof of lemma F.1), det
(
I− .5Tπ∗

)
̸= 0

and so Rπ∗ also has positive Lebesgue measure.

But then almost all reward functions r in Rπ∗ must have a unique optimal visit distribution
fπ

′ ∈ F(s) when γ = .5 ∈ (0, 1) by lemma F.106. Therefore, fπ′ ∈ Fnd(s) by definition 5.6.
Lastly, since ∀r′ ∈ Rπ∗ : Π∗ (r′, .5) = Πgreedy (v′) (where each r′ :=

(
I− .5Tπ∗

)
v′),

π′(s) ≡s a by the definitions of V and Πgreedy (v′).
Let π equal π′, except that π(s) = a. Because π′(s) ≡s a = π(s), fπ = fπ

′ ∈ Fnd(s). We
have thus shown that ∃π ∈ Π : π(s) = a and fπ ∈ Fnd(s).

Proposition F.154 (Fnd(s) controls optimality probability). Let F ⊆ F(s). PDcont
(F, γ) =

PDcont

(
F ∩ Fnd(s), γ

)
.

Proof.

PDcont (F, γ) =
∑
f∈F

PDcont (f , γ) (F.115)

=
∑

f∈F∩Fnd(s)

PDcont (f , γ) (F.116)

= PDcont

(
F ∩ Fnd(s), γ

)
. (F.117)

Equation (F.115) and eq. (F.117) follow by lemma F.146 since Dcont is continuous.
Equation (F.116) follows by corollary F.150, since dominated visit distribution functions
have 0 optimality probability under continuous reward function distributions.

Lemma F.155 (Only non-dominated transitions are greedily optimal with positive
probability). Let T (s, a) ∈ T (s). T (s, a) ∈ Tnd (s) iff PDX-iid

(s, a, 0) > 0.

Proof. Suppose that T (s, a) ∈ Tnd (s). This means that ∃π ∈ Π : π(s) = a and fπ ∈ Fnd(s)

by lemma F.153, and so PDX-iid
(fπ, 0) > 0 by proposition F.152. Then PDX-iid

(s, a, 0) ≥
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PDX-iid
(fπ, 0) > 0.

Suppose that PDX-iid
(s, a, 0) > 0. Proposition F.152 implies that PDX-iid

(s, a, 0) > 0 iff
∃π ∈ Π : fπ ∈ Fnd(s) such that π(s) = a, since PDX-iid

(s, a, 0) = PDX-iid

(
F(s | π(s) = a), 0

)
by lemma F.30.

Lemma F.8 shows that if T (s, a) ∈ T (s) \ Tnd (s) and π(s) = a, then fπ ∈ F(s) \ Fnd(s).
The contrapositive is then: if fπ ∈ Fnd(s), then either π(s) ̸= a or T (s, a) ∈ Tnd (s). But
π(s) = a, so the fact that PDX-iid

(s, a, 0) > 0 implies that fπ ∈ Fnd(s), which implies that
T (s, a) ∈ Tnd (s).

Corollary F.156 (Similarity to a dominated action implies domination). If T (s, a) ∈
T (s)\Tnd (s) is similar to T (s, a′) ∈ T (s) via a permutation ϕ such that ϕ·Tnd (s) = Tnd (s),
then T (s, a′) ̸∈ Tnd (s).

Proof. Apply proposition F.135 to conclude that PDX-iid
(s, a, 0) = PDX-iid

(
s, a′, 0

)
. By

lemma F.155, PDX-iid
(s, a, 0) = 0. Then PDX-iid

(
s, a′, 0

)
= 0; apply lemma F.155 to

conclude that T (s, a′) ̸∈ Tnd (s).

Question F.157 (Is there anything to be gained by formalizing the optimality probability
of sets of policies?).

Definition F.158 (Fnd multi-state restriction). F(s | π∗, S) ⊆ F(s) contains the non-
dominated visit distributions induced by a policy which agrees with π on the states of
S ⊆ S. Fnd(s | π∗, S) := Fnd(s | π∗, S) ∩ Fnd(s).

Proposition F.159 (Optimality probability factorizes). Let fπ ∈ Fnd(s) and let γ ∈ [0, 1).

PDX-iid
(fπ, γ) =

|S|∏
i=1

PDX-iid

(
Fnd(s | π∗, {s1, . . . , si−1, si}), γ

)
PDX-iid

(
Fnd(s | π∗, {s1, . . . , si−1}), γ

) . (F.118)

Proof. Equation (F.118) holds for any state indexing and is well-defined on γ ∈ [0, 1)

because fπ ∈ Fnd(s) has PDX-iid
(f , γ) > 0 on that domain (proposition F.151).

Definition F.160 (Optimality probability factorization). The optimality probability
factorization of fπ ∈ Fnd(s) is the RHS of eq. (F.118).
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Lemma F.161 (Optimality probability varies iff a factor varies). Let f ∈ Fnd(s).
PDX-iid

(f , γ) varies with γ iff its factorization has a factor which varies with γ.

Proof. The forward direction is trivial. For the backward direction, suppose factor i = k

equals the non-constant function f(γ); note that ∀γ ∈ [0, 1) : f(γ) > 0. Suppose that
the product of other factors equals c

f(γ) . If one action becomes more likely at sk, then
another action must become less likely, and vice versa. 1

f(γ) cannot be the multiplicative
inverse (up to a constant) for both of these variations, and so PDX-iid

(
f ′, γ

)
must vary

with γ for some f ′ ∈ Fnd(s).

Conjecture F.162 (In deterministic environments, constant optimality probability
implies rational probabilities). Suppose the mdp is deterministic and s is such that
∀f ∈ F(s) : PDX-iid

(f , γ) does not vary with γ ∈ [0, 1]. Then ∀f ∈ F(s) : PDX-iid
(f , γ) ∈

[0, 1] ∩Q.

Proposition F.163 (Positive optimality probability under Dcont implies Fnd membership
and RSDnd (s) membership). PDcont

(f , 1) > 0 implies f ∈ Fnd(s) and limγ→1(1−γ)f(γ) ∈
RSDnd (s).

Proof. Suppose PD (f , 1) > 0. By corollary F.150, f cannot be dominated, else

lim
γ→1

PD
(
(1− γ)f(γ), 1

)
= 0.

Therefore, f ∈ Fnd(s). By proposition D.25, limγ→1(1− γ)f(γ) ∈ RSDnd (s).

Conjecture F.164 (RSDnd (s) membership and Fnd membership implies positive
iid optimality probability). If f ∈ Fnd(s) and limγ→1(1 − γ)f(γ) ∈ RSDnd (s), then
PDX-iid

(f , 1) > 0.

Conjecture F.165 (Optimality probabilities reach ordinal equilibrium as γ → 1). For
any f , f ′ ∈ F(s), PDX-iid

(f , γ) and PDX-iid

(
f ′, γ

)
reach ordinal equilibrium as γ → 1.

Conjecture F.166 (Each non-dominated visit distribution “takes” optimality probability
from all other non-dominated visit distributions). Let f , f ′ ∈ Fnd(s), where f ̸= f ′. Then



299

∀γ ∈ (0, 1):

PDX-iid
(f , γ) < Pr∼DX-iid

(
f(γ)⊤r = max

f ′′∈Fnd(s)\{f ′}
f ′′(γ)⊤r

)
. (F.119)

F.5.5 Properties of instrumental convergence

Instrumental convergence exists when actions have different optimality probabilities.

Definition F.167 (Existence of instrumental convergence). Instrumental convergence
starting at state s when ∃a, a′ ∈ A, γ ∈ [0, 1] : PD (s, a, γ) ̸= PD

(
s, a′, γ

)
.

Conjecture F.168 (Instrumental convergence exists at almost all discount rates, if it
exists). If instrumental convergence exists starting at state s for some γ, it exists starting
at s for almost all γ ∈ [0, 1].

Lemma F.169 (Optimality probability is unaffected by unreachable states). If s cannot
reach s′, then ∀a : PDany

(
F(s | π(s′) = a), γ

)
= 1.

Proof. Policies can output any action at unreachable states without affecting the induced
visit distribution.

Proposition F.170 (Instrumental convergence without domination or stochasticity
implies iid optimality probability varies with γ). In deterministic environments, if
instrumental convergence exists at some γ∗ starting from s and if F(s) = Fnd(s), then
∃f : PDX-iid

(f , γ) varies with γ.

Proof. Let a be more probably optimal than a′ at state s′ (thus fulfilling definition 5.10).
Since the environment is deterministic and F(s) = Fnd(s), it is equally probable that
each child of s′ is the greedy choice at γ = 0. Then

PDX-iid

(
Fnd(s |π(s′) = a), 0

)
= PDX-iid

(
Fnd(s |π(s′) = a′), 0

)
.



300

Therefore, at least one PDX-iid
(f , γ) must vary on γ ∈ [0, γ∗] so that

PDX-iid

(
Fnd(s |π(s′) = a), γ∗

)
> PDX-iid

(
Fnd(s |π(s′) = a′), γ∗

)
.

1

Figure F.28: Our ongoing assumption of X’s continuity is required for proposition F.170.
Under the uniform distribution on {0, 1}S , the visit distribution going up from s1 has
probability 10

24 , while the other two visit distributions have probability 7
24 . However, under

the uniform distribution on [0, 1]S , the upwards visit distribution has probability 3−γ
6 ,

while the other two each have probability 3+γ
12 .

Proposition F.170 shows the following while making the strong assumption that F(s) =
Fnd(s).

Conjecture F.171 (In deterministic environments, instrumental convergence implies vari-
able optimality probability). In deterministic environments, if instrumental convergence
exists at some γ∗ starting from s, then ∃f : PDX-iid

(f , γ) varies with γ.

Conjecture F.172 (Optimal policy shifts necessary for instrumental convergence). In
deterministic environments, if optimal policy shifts cannot occur, then instrumental
convergence does not exist.

Remark. Proposition F.170’s assumption of determinism is required: suppose state
s has Ch (s) = {s1, s2, s3} and |A| = 3. T (s, a1) = es1 , T (s, a2) = (0, .5, .5)⊤, and
T (s, a3) = es3 . When X is uniform and γ ≈ 0, action a1 will be strictly more probably
optimal than actions a2 or a3.

Proposition F.173 (No domination, stochasticity, or optimal policy shifts means equal
optimality probabilities). In deterministic environments where optimal policy shifts cannot
occur, if F(s) = Fnd(s), then no instrumental convergence exists starting from s.
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Proof. Since the environment is deterministic and F(s) = Fnd(s), proposition F.170
applies. But ¬∃f ∈ F(s) : PDX-iid

(f , γ) which varies with γ, because optimal policies
cannot shift.

Question F.174 (How does entropy relate to instrumental convergence?). Is there a
formal relationship between the “degree” of instrumental convergence and the entropy of
the distribution over optimal policy sets induced by reward function distribution D?

F.6 Properties of recurrent state distributions

Conjecture F.175 (In deterministic envs., limγ→1(1 − γ)Fnd(s, γ) = RSDnd (s)). In
deterministic environments, if f ∈ Fnd(s), then limγ→1(1− γ)f(γ) ∈ RSDnd (s).

Corollary. In deterministic environments, PDX-iid
(f , 1) > 0 iff f ∈ Fnd(s).

Conjecture F.175 does not hold in stochastic environments; see fig. F.29. Conversely, some
dominated f do limit to non-dominated d ∈ RSDnd (s); for example, consider a state s in
a unichain mdp in which there are dominated f ∈ F(s) but

∣∣RSD (s)
∣∣ = 1.

1 2

3

4

a

Figure F.29: The bifurcated action a is a stochastic transition, where T (s2, a, s3) = 1
2 =

T (s2, a, s4). By corollary F.67, navigating from s1 → s2 induces a non-dominated visit
distribution f . However, its limiting rsd is half s3, half s4 and is therefore dominated.
PDX-iid

(f , 1) = 0 even though f ∈ Fnd(s).

Proposition F.176 (If s′ can reach s deterministically, RSD
(
s′
)
⊆ RSD (s)).

Proof. Let dπ ∈ RSD
(
s′
)
. Starting from s′, π induces state trajectory s′s1s2 . . .. Let π′

navigate to a state sk in this trajectory which s can reach in the fewest steps (where s is
considered to “reach” itself in 0 steps); since s can deterministically reach s′, this fewest
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number of steps is finite. ∀t ≥ k : π′(st) := π(st); dπ′
= dπ. π′ is stationary because it

navigates to the state trajectory in the fewest possible number of steps, and therefore it
does not conflict with itself.

1 2

3

4

a

Figure F.30: The bifurcated action a is a stochastic transition, where T (s2, a, s3) = 1
2 =

T (s2, a, s4). Proposition F.176 does not hold in stochastic environments.

RSD (s1) =




0
0
.5
.5

 ,


0
0
0
1


 ̸=




0
0
1
0

 ,


0
0
0
1


 = RSD (s3)

Remark. Proposition F.176 is not true in some stochastic settings, even if s can reach s′

with probability 1, since it may be the case that only non-stationary policies navigate to
s′ and then induce the appropriate rsd.

Lemma F.177 (Reachability with probability 1 implies uniformly greater average reward).
If

max
π∈Π

lim
t→∞

P
(
s′ reached in the first t steps while following π starting from s

)
= 1,

(F.120)

then ∀R ∈ RS : V ∗
R,norm (s, 1) ≥ V ∗

R,norm
(
s′, 1

)
.

Proof. Let r ∈ R|S| and let d ∈ RSD
(
s′
)

be such that V ∗
R, norm

(
s′, 1

)
= d⊤r. In

eq. (F.120), each limit exists because the probability is monotonically increasing and
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bounded [0, 1], and the maximum exists because Π is finite. Let π maximize eq. (F.120).

π has probability 1 of eventually reaching s′. Let πHD implement this strategy until it has
reached s′ at least once in its history. After the agent has reached state s′, πHD is defined
so as to induce d. This is possible because d ∈ RSD

(
s′
)
. Since γ = 1, πHD therefore

induces d starting from s. Therefore, starting from s, a history-dependent policy can
achieve V ∗

R, norm
(
s′, 1

)
average reward for reward function r.

Puterman [68]’s Theorem 6.2.7 shows that when 0 < γ < 1 in finite mdps, discounted
optimal value is invariant to restriction to deterministic stationary policies. If s could
not induce an average reward of at least V ∗

R, norm
(
s′, 1

)
via a stationary policy, but could

with a history-dependent policy, this would contradict Theorem 6.2.7 by the continuity
of V ∗

R, norm (s, γ) on γ ∈ [0, 1], which is shown by lemma D.45 in Turner et al. [99]. That
is, if no such gain-optimal stationary policy existed, then stationary optimal policies
would be strictly worse than non-stationary optimal policies for γ ≈ 1. Therefore, when
starting from state s, there exists some stationary policy with average reward of at least
V ∗
R, norm

(
s′, 1

)
.

Corollary F.178 (When γ = 1, iid Power decreases iff rsds become unreachable). If
s can reach s′ with probability 1, then PowerDbound

(
s′, 1

)
≤ PowerDbound (s, 1). If the

environment is deterministic, the inequality is strict iff RSDnd
(
s′
)
⊊ RSDnd (s).

Proof. Since s can reach s′ with probability 1, lemma F.177 implies that PowerDbound

(
s′, 1

)
≤

PowerDbound (s, 1).

Given determinism, proposition F.176 implies that RSDnd
(
s′
)
⊆ RSDnd (s). Then if the

inequality is strict, RSDnd
(
s′
)
⊊ RSDnd (s) because PowerDbound

(
s′, 1

)
is determined

by the availability of non-dominated rsds by lemma D.56. If RSDnd
(
s′
)
⊊ RSDnd (s),

the inequality is strict by proposition 5.28 via ϕ the identity permutation.

Remark. Corollary F.178 is false if s can only reach s′ with positive probability less than
1. For example, suppose action a is such that T (s, a, shigh) = .5 = T (s, a, slow) = .99 and
all actions are equivalent to a at state s. Further suppose that PowerDbound

(
shigh, 1

)
>
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PowerDbound (slow, 1). Then

PowerDbound (s, 1) =
1

2

(
PowerDbound

(
shigh, 1

)
+ PowerDbound (slow, 1)

)
is intermediate between the two values.

Definition F.179 (Communicating mdp). An mdp is communicating when every state
is able to reach every other state with positive probability.

Proposition F.180 (When γ = 1 in communicating mdps, PowerDbound is equal
everywhere). In communicating mdps, ∀s, s′ : PowerDbound (s, 1) = PowerDbound

(
s′, 1

)
.

Proof. Since the mdp is communicating, all states can reach each other with asymp-
totic probability 1. Apply corollary F.178 to conclude that PowerDbound (s, 1) =

PowerDbound

(
s′, 1

)
.

F.7 Power

F.7.1 The structure of Power

Conjecture F.181 (Graphical characterization of iid Power agreement). There exists
a graphical condition characterizing when, for all bounded state reward distributions X,
states s, s′ are such that ∀γ ∈ [0, 1] : PowerDX-iid (s, γ) = PowerDX-iid

(
s′, γ

)
.

Theorem F.182 (The structure of Power). Let γ ∈ (0, 1) and let Dbound induce
probability measure F .

PowerDbound (s, γ) = (1− γ)
∞∑
t=1

γt−1
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

(
(Tπ)t es

)⊤
r dF (r).

(F.121)

Proof. Suppose γ ∈ (0, 1).

V ∗
Dbound

(s, γ) :=

∫
supp(Dbound)

max
fπ∈F(s)

fπ(γ)⊤r dF (r) (F.122)
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=
∑

fπ∈F(s)

∫
supp(fπ(γ)≥F(s,γ))

fπ(γ)⊤r dF (r) (F.123)

=
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

fπ(γ)⊤r dF (r) (F.124)

=
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

 ∞∑
t=0

(γTπ)t es

⊤

rdF (r) (F.125)

=
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

∞∑
t=0

(
(γTπ)t es

)⊤
r dF (r) (F.126)

=
∑

fπ∈Fnd(s)

∞∑
t=0

γt
∫
supp(fπ(γ)≥F(s,γ))

(
(Tπ)t es

)⊤
r dF (r) (F.127)

=

∞∑
t=0

γt
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

(
(Tπ)t es

)⊤
r dF (r). (F.128)

Equation (F.124) follows because optimal value is invariant to restriction to non-dominated
visit distribution functions. Equation (F.125) holds by the definition of a visit distribution
(definition 5.3).

Equation (F.127) holds by Fubini’s theorem: for a fixed π, consider the function f(t, r |
π) :=

(
(γTπ)t es

)⊤
r. Since X is bounded [a, b],

∣∣f(t, r | π)∣∣ ≤ γt |b| for all t ≥ 0, r ∈
supp(D). Since γ ∈ (0, 1),∫

supp(fπ(γ)≥F(s,γ))

∞∑
t=0

∣∣f(t, r | π)∣∣dF (r) ≤ |b|
1− γ <∞. (F.129)

Furthermore, for a fixed t, f is continuous on r (as the function is linear when t is fixed).
Therefore, f : Z≥0 × R|S| → R is continuous: the preimage of an open set in R is open
in the product topology on the domain, since the standard topology on Z≥0 is discrete.
Since f is continuous, it is measurable. Therefore, the conditions of Fubini’s theorem are
met. Equation (F.128) holds because Fnd(s) is finite.
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We now show the desired Power identity.

PowerDbound (s, γ) (F.130)

:= E
r∼D

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(F.131)

=
1− γ
γ

− E
r∼Dbound

[
e⊤s r

]
+

∞∑
t=0

γt
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

(
(Tπ)t es

)⊤
rdF (r)


(F.132)

= (1− γ)
∞∑
t=1

γt−1
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

(
(Tπ)t es

)⊤
rdF (r). (F.133)

Equation (F.132) holds by eq. (F.128). Equation (F.133) holds by the fact that the t = 0

summand equals Er∼Dbound

[
e⊤s r

]
.

Proposition F.183 (Sufficient condition for Power being rational on γ). If no re-
ward function has optimal policy shifts and the environment is deterministic, then
PowerDbound (s, γ) is a rational function on γ ∈ (0, 1).

Proof. Let γ ∈ (0, 1).

PowerDbound (s, γ) = (1− γ)
∞∑
t=1

γt−1
∑

fπ∈Fnd(s)

∫
supp(fπ(γ)≥F(s,γ))

(
(Tπ)t es

)⊤
r dF (r)

(F.134)

= (1− γ)
∑

fπ∈Fnd(s)

∞∑
t=1

γt−1cπt . (F.135)

Equation (F.134) follows by theorem F.182. In eq. (F.135), let each cπt be a con-
stant depending only on π and t. Since no optimal policy shifts occur, ∀fπ ∈ F(s) :

supp
(
fπ(γ) ≥ F(s, γ)

)
is constant on γ. Therefore, the domain of integration is fixed

in each inner-summand of eq. (F.134), and so the constants cπt do not depend on γ.
Furthermore, Fnd(s) is finite and so we can interchange the summation signs.
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Since the environment is deterministic, each fπ has entered a cycle at most |S| steps into
the policy’s trajectory from s. Therefore, (cπt )t≥|S| is k-periodic for some k (1 ≤ k ≤ |S|).
Then for each fπ, there exists a (k − 1)-degree polynomial P π such that

∞∑
t=|S|

γt−1cπt =
γ|S|−1

1− γkP
π. (F.136)

Therefore,
∞∑
t=1

γt−1cπt =

|S|−1∑
t=1

γt−1cπt +

∞∑
t=|S|

γt−1cπt (F.137)

is also rational on γ. Since PowerDbound equals (1− γ) times the sum of finitely many
rational functions, PowerDbound is also rational.

Conjecture F.184 (PowerDbound(s, γ) is piecewise rational on γ).

F.7.2 Power at its limit points

Lemma F.185 (Power when γ = 0).

PowerDbound (s, 0) = E
r∼Dbound

[
max
d∈T (s)

d⊤r

]
= E

r∼Dbound

[
max

d∈Tnd(s)
d⊤r

]
. (F.138)

Proof.

PowerDbound (s, 0) := lim
γ→0

E
r∼Dbound

[
max

fπ,s∈F(s)

1− γ
γ

(
fπ,s(γ)− es

)⊤
r

]
(F.139)

= lim
γ→0

E
r∼Dbound

[
max

fπ,s∈F(s)
(1− γ) E

s′∼T (s,π(s))

[
fπ,s

′
(γ)
]⊤

r

]
(F.140)

= E
r∼Dbound

[
max

fπ,s∈F(s)
lim
γ→0

(1− γ) E
s′∼T (s,π(s))

[
fπ,s

′
(γ)
]⊤

r

]
(F.141)

= E
r∼Dbound

[
max

fπ,s∈F(s)
E

s′∼T (s,π(s))
[es′ ]

⊤ r

]
(F.142)
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= E
r∼Dbound

[
max
d∈T (s)

d⊤r

]
(F.143)

= E
r∼Dbound

[
max

d∈Tnd(s)
d⊤r

]
. (F.144)

Equation (F.144) follows because for all r ∈ R|S|, corollary D.16 shows that maxd∈T (s) d
⊤r =

maxd∈ND(T (s)) d
⊤r =: maxd∈Tnd(s) d

⊤r.

Remark. The non-strict inequality of lemma F.186 holds for any state reward distribution
– X need not be continuous. However, the strict inequality does require continuity in
general.

Lemma F.186 (Minimal PowerDX-iid). PowerDX-iid (s, γ) ≥ E [X]. If γ ∈ (0, 1),
equality holds iff

∣∣F(s)∣∣ = 1.

Proof. Let γ ∈ (0, 1). If
∣∣F(s)∣∣ = 1, then V ∗

DX-iid
(s, γ) = E [X] 1

1−γ by the linearity of
expectation and the fact that DX-iid distributes reward independently and identically
across states according to state distribution X. By lemma D.43,

PowerDX-iid (s, γ) =
1− γ
γ

(
V ∗
DX-iid

(s, γ)− E [X]
)
,

and so PowerDX-iid (s, γ) = E [X].

Suppose
∣∣F(s)∣∣ > 1, and let f ∈ F(s).

E [X]

1− γ = E
r∼DX-iid

[
max
f ′′∈{f}

f ′′(γ)⊤r

]
(F.145)

< E
r∼DX-iid

[
max

f ′′∈F(s)
f ′′(γ)⊤r

]
(F.146)

=: V ∗
DX-iid

(s, γ) . (F.147)

Let A :=
{
f(γ)

}
, B := F(s, γ). Since

∣∣F(s)∣∣ > 1, ND (B) = Fnd(s, γ) > 2 by
corollary F.65. Therefore, ND (B) \ A is non-empty. Since DX-iid is continuous iid,
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∃b < c : (b, c)|S| ⊆ supp(DX-iid) by lemma D.27. Therefore, for g : R → R the identity
and ϕ the identity permutation, eq. (F.146) holds by lemma D.26. Equation (F.147)
implies that PowerDX-iid (s, γ) > E [X].

In general, eq. (F.146) holds as a non-strict inequality, and so PowerDX-iid (s, γ) ≥ E [X]

for all γ ∈ (0, 1). This inequality therefore holds in the limits γ → 0 and γ → 1.

Conjecture F.187 handles the limiting cases of lemma F.186 (minimal Power).

Conjecture F.187 (Minimal Power at γ = 0 and γ = 1).

1. PowerDbound (s, 0) = E [X] iff
∣∣T (s)∣∣ = 1.

2. PowerDbound (s, 1) = E [X] iff
∣∣RSD (s)

∣∣ = 1.

Remark. The non-strict inequality of lemma F.188 holds for any state reward distribution
– X need not be continuous. However, the strict inequality does require continuity in
general.

Lemma F.188 (Maximal PowerDX-iid). PowerDX-iid (s, γ) ≤ E
[
max of |S| draws from X

]
.

If γ ∈ (0, 1), equality holds iff s can deterministically reach all states in one step and all
states have deterministic self-loops.

Proof.

PowerDX-iid (s, γ) ≤ E
R∼D

[
max
s′′∈S

R(s′′)

]
(F.148)

= E
[
max of |S| draws from X

]
. (F.149)

Equation (F.148) holds by proposition 5.14. Equation (F.149) holds because DX-iid is iid

over states according to state reward distribution X.

If Chsure (s) = S and ∀s′ ∈ S : s′ ∈ Chsure
(
s′
)
, then eq. (F.148) is an equality by

proposition 5.14.
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Backward direction. Suppose that γ ∈ (0, 1). To show that

PowerDX-iid (s, γ) = E
[
max of |S| draws from X

]
implies that Chsure (s) = S and ∀s′ ∈ S : s′ ∈ Chsure

(
s′
)
, we show the contrapositive:

∃s′ ∈ S : s′ ̸∈ Chsure (s) or s′ ̸∈ Chsure
(
s′
)

implies that

PowerDX-iid (s, γ) < E
[
max of |S| draws from X

]
.

Let f s
′
:= es +

γ
1−γes′ be the visit distribution function which would be induced by

immediately navigating to s′ from s and then staying at s′. By assumption, this is not
currently possible for some s′ ∈ S, and so f s

′ would strictly increase the achievable visit
frequency on s′, starting from s. Formally, f s′(γ)⊤es′ > maxf∈F(s) f(γ)

⊤es′ .

Let F s′ be the set of visit distribution functions at s which would be made available as a
result of adding deterministic transitions s→ s′ and s′ → s′.

PowerDX-iid (s, γ) := E
r∼DX-iid

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(F.150)

< E
r∼DX-iid

[
max

f∈F(s)∪F s′

1− γ
γ

(
f(γ)− es

)⊤
r

]
(F.151)

≤ E
[
max of |S| draws from X

]
. (F.152)

Let A :=
{

1−γ
γ

(
f(γ)− es

)
| f ∈ F(s)

}
, B :=

{
1−γ
γ

(
f(γ)− es

)
| f ∈ F(s) ∪ F s′

}
. Since

f s
′ maximizes s′-visitation frequency, f s′(γ)⊤es′ > maxf∈(F(s)∪F s′)\{fs′} f(γ)⊤es′ , which

implies that f s
′
(γ) ∈ ND (B) \ND (A). Therefore, ND (B) \ND (A) is non-empty. Since

DX-iid is continuous iid, ∃b < c : (b, c)|S| ⊆ supp(DX-iid) by lemma D.27. Therefore, for
g : R→ R the identity and ϕ the identity permutation, eq. (F.151) holds by lemma D.26.
Equation (F.152) follows because proposition 5.14 bounds the PowerDX-iid of all valid
mdp structures.

Proposition F.189 handles the limiting cases of lemma F.188 (maximal Power).
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Proposition F.189 (Maximal Power at γ = 0 and γ = 1).

1. PowerDX-iid (s, 0) = E
[
max of |S| draws from X

]
iff Chsure (s) = S.

2. PowerDX-iid (s, 1) = E
[
max of |S| draws from X

]
iff s can reach all states with

probability 1 and ∀s′ ∈ S : s′ ∈ Chsure
(
s′
)
.

Proof. Item 1:

PowerDX-iid (s, 0) = E
r∼DX-iid

[
max
d∈T (s)

d⊤r

]
(F.153)

≤ E
r∼DX-iid

 max
d∈T (s)∪{es′′ |s′′∈S}

d⊤r

 (F.154)

= E
r∼DX-iid

 max
d∈{es′′ |s′′∈S}

d⊤r

 (F.155)

= E
[
max of |S| draws from X

]
. (F.156)

Equation (F.153) holds by lemma F.185. Applying lemma D.26 (lemma D.27 guarantees
that ∃b < c : (b, c)|S| ⊆ supp(DX-iid)), A := T (s), B := T (s) ∪ {es′}, g : R → R the
identity function, and ϕ the identity permutation, eq. (F.154) holds by lemma D.26. Equa-
tion (F.155) holds because ND

(
T (s) ∪

{
es′′ | s′′ ∈ S

})
=
{
es′′ | s′′ ∈ S

}
by lemma F.57.

Equation (F.156) holds because reward is iid across states under DX-iid.

Suppose ∃s′ ̸∈ Chsure (s). By the definition of T (s) (definition F.5), ∃s′ ∈ S : es′ ̸∈
T (s). Furthermore, e⊤s′es′ > maxd∈T (s)∪{es′′ |s′′ ̸=s′} d⊤es′ , and so es′ ∈

{
es′′ | s′′ ∈ S

}
=

ND
(
T (s) ∪

{
es′′ | s′′ ∈ S

})
. Therefore, lemma D.26 guarantees that eq. (F.154) is strict.

Therefore, PowerDX-iid (s, 0) = E
[
max of |S| draws from X

]
implies that Chsure (s) =

S.

Suppose Chsure (s) = S. Then lemma D.26 guarantees that eq. (F.154) is an equality, and
so Chsure (s) = S implies that PowerDX-iid (s, 0) = E

[
max of |S| draws from X

]
.

Item 2 follows by applying the above reasoning with RSD (s) in place of T (s), substituting
in the fact that es′ ∈ T (s) iff s can reach s′ with probability 1 and s′ ∈ Chsure

(
s′
)
.
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Conjecture F.190 (Lower bound on current Power based on next-step expected reward).

PowerDbound (s, γ) ≥ (1− γ)max
a

E
s′∼T (s,a),
R∼Dbound

[
R(s′)

]
+ γmin

a
E

s′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
.

Lemma F.191 (When γ = 0, having similar children implies equal PowerDbound). Sup-
pose D ⊆ Tnd (s) is similar to Tnd

(
s′
)
. Then PowerDX-iid (s, 0) ≥ PowerDX-iid

(
s′, 0

)
.

If D ⊊ Tnd (s), then ∃γ∗ : ∀γ ∈ [0, γ∗) : PowerDX-iid (s, γ) > PowerDX-iid

(
s′, γ

)
.

Proof. Suppose Tnd
(
s′
)
= ϕ ·D, where ϕ .

PowerDX-iid (s, 0) = E
r∼DX-iid

[
max

d∈Tnd(s)
d⊤r

]
(F.157)

≥ E
r∼DX-iid

[
max
d∈D

d⊤r

]
(F.158)

= E
r∼DX-iid

[
max
d∈D

(Pϕd)
⊤r

]
(F.159)

= PowerDX-iid

(
s′, 0

)
. (F.160)

Equation (F.157) follows by lemma F.185. Equation (F.159) follows because reward is
assumed to be iid over states. If D ⊊ Tnd (s), non-domination ensures that the child
distributions of Tnd (s) \ D are strictly greedily optimal for a positive measure set of
reward functions. In this case, eq. (F.158)’s inequality is strict; strict inequality holds for
γ ≈ 0 by the continuity of PowerDX-iid

(
s′, γ

)
on γ (lemma 5.13).

Proposition F.192 (Power achieves ordinal equilibrium as γ → 1). Let s ⪰γ
PowerDbound

s′ when PowerDbound (s, γ) ≥ PowerDbound

(
s′, γ

)
. ∃γ∗ : ∀γ ∈ (γ∗, 1) : ⪰γ

PowerDbound
is

constant.

Proof. Consider two states s and s′. By the Lipschitz continuity of Power on γ
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(lemma 5.13) and the fact that the domain is bounded γ ∈ [0, 1],

sgn
(
PowerDbound (s, γ)− PowerDbound

(
s′, γ

))
changes value finitely many times on γ ∈ [0, 1]. There are only finitely many such pairs of
states, and so the result follows.

Conjecture F.193 (States with different PowerDbound functions are equal for finitely
many γ).

F.7.3 States whose PowerDbound can be immediately determined

Corollary F.194 (Delay linearizes Power). Let s0, . . . , sℓ be such that for all i < ℓ,
Ch(si) = {si+1}. Then PowerDX-iid (s0, γ) =

∑ℓ
i=1 γ

i−1 ER∼D′
[
R(si)

]
+γℓPowerDX-iid (sℓ, γ).

Proof. Iteratively apply lemma D.46 ℓ times. Equality must hold, as each si can only
reach si+1.

Remark. For DX-iid, the
∑ℓ

i=1 γ
i−1 ER∼DX-iid

[
R(si)

]
term in corollary F.194 simplifies

to (1− γℓ)E [X].

Deterministic delay is a special case of a more general principle.

Definition F.195 (State reachability by time t). Reach(s, t) is the set of states which s
can reach in exactly t steps with positive probability.

Definition F.196 (Time-uniform states). In deterministic environments, a state s is
time-uniform when ∀t > 0, s′, s′′ ∈ Reach(s, t) : s′ and s′′ can either reach the same
states in one step, or they can only reach themselves.

Lemma F.197 (If s′ is reachable from a time-uniform state s, then s′ is time-uniform).

Proof. This follows directly from definition F.196.
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1

(a)

2

(b)

Figure F.31: States of the same color have the same children. For X uni-
form: PowerDX-iid (s1, γ) = (1 − γ)(23 + 3

4γ) + 1
2γ

2 and PowerDX-iid (s2, γ) =
1−γ
1−γ5

(
1
2 + 3

4γ + 2
3γ

2 + 1
2(γ

3 + γ4)
)

by proposition F.198.

Proposition F.198 (Time-uniform Power bound). If s is time-uniform, then either all
trajectories simultaneously enter 1-cycles or no trajectory ever enters a 1-cycle. Further-
more,

PowerDX-iid (s, γ) = UnifPower(s, γ)

:= (1− γ)
∞∑
t=1

γt−1 E
[
max of

∣∣Reach(s, t)
∣∣ draws from X

]
.

Proof. Suppose s is time-uniform. The fact that all trajectories simultaneously enter
1-cycles or no trajectory ever enters a 1-cycle, follows directly from definition F.196.

Starting from s, suppose all policies enter a 1-cycle at timestep k (if no policy enters a
1-cycle, k = ∞). Consider any reward function R. The agent starts at timestep 0. At
timestep t < k, its optimal policy selects greedily from

∣∣Reach(s, t+ 1)
∣∣ choices. At

t ≥ k, the agent is in the best of
∣∣Reach(s, t)

∣∣ 1-cycles.

Proposition F.199 (PowerDX-iid bounds).

0 < E [X] ≤ PowerDX-iid (s, γ) ≤ UnifPower(s, γ) ≤ E
[
max of |S| draws from X

]
< 1.

Proof. E
[
max of |S| draws from X

]
< 1 because X is a continuous distribution on the

unit interval; similarly for 0 < E [X]. PowerDX-iid (s, γ) ≤ UnifPower(s, γ) because
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for each reward function and at each time step t, the agent can (at best) enter the highest-
reward state from Reach(s, t). The other inequalities follow directly from lemma F.186
and lemma F.188.

Corollary F.200 (Time-uniformity implies no optimal policy shifts). The optimal
trajectory cannot shift at time-uniform states.

Proof. Apply theorem F.128.

F.7.4 Recursive Power computation

In general, V ∗
Dbound

(s, γ) can be computed by solving for
∣∣Fnd(s)

∣∣ convex polytopes (the
optimality supports, definition F.79) and integrating the average on-policy value:

V ∗
Dbound

(s, γ) =
∑

f∈Fnd(s)

∫
supp(f(γ)≥F(s,γ))

f(γ)⊤rdF (r). (F.161)

However, the optimality supports and the corresponding integrals may be difficult to
compute. In certain “tree-like” environments, we can compute PowerDbound via dynamic
programming.

Definition F.201 (Support of a set of visit distributions). Let F ⊆ F(s). supp(F ) :={
s′ | ∃f ∈ F : (f(.5)− es)

⊤es′ > 0
}

is the set of states s′ visited with positive probability
by some f ∈ F .

Definition F.202 (Reward independence). Let F, F ′ ⊆ F(s). F ⊥⊥Dany F
′ (read “F and

F ′ are reward independent under Dany”) when ∀s ∈ supp(F ), s′ ∈ supp(F ′), the reward
at s is independent of the reward at s′ under Dany.

Theorem F.203 (Factored Power computation). Let D′ be a probability distribution
over reward functions, with probability measure F ′. Let F 1, . . . , F k ⊆ Fnd(s) be pairwise
reward independent under D′, where

⋃
i F

i = Fnd(s). For each F i and any γ∗ ∈ (0, 1),
define the random variable Xi

γ∗ := maxf∈F i
1
γ∗ (f(γ∗) − es)

⊤r | r ∼ D′ with cdf FXi
γ∗

.
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0

1

2

3

Figure F.32: Let distribution Xa have cdf Fa(v) := v on v ∈ [0, 1] and distribution Xb

have cdf Fb(v) := v2 on v ∈ [0, 1]. Suppose the reward function distribution D′ is such
that R(s1), R(s3) ∼ Xa, R(s2) ∼ Xb. Then theorem F.203 shows that PowerD′(s0, γ) =∫ 1
0 v

d
dv (v · v2 · v) =

∫ 1
0 4v4 dv = 4

5 .

Then for any γ ∈ [0, 1],

PowerD′(s, γ) = lim
γ∗→γ

(1− γ∗)
∫ ∞

−∞
v d

∏
i

FXi
γ∗
(v)

 . (F.162)

Proof. Define the random variable X∗
γ := maxiX

i
γ with cdf FX∗

γ
. Consider Xj

γ , Xk
γ ,

where j ̸= k. We have

Xj
γ := max

f∈F j
γ−1(f(γ)− es)

⊤r | r ∼ D′ (F.163)

Xk
γ := max

f∈Fk
γ−1(f(γ)− es)

⊤r | r ∼ D′. (F.164)

For each sj ∈ supp(F j), sk ∈ supp(F k), the random variable Rsj | R ∼ D′ is in-
dependent of the random variable Rsk | R ∼ D′ because we assumed F j ⊥⊥D′ F k

(definition F.202). Then any random variable corresponding to a linear combination
Lj :=

∑
sj∈supp(F j) αjR(sj) (where αj ∈ R) is also independent of each random variable

Rsk | R ∼ D′. Furthermore, any such Lj is independent of any linear combination
Lk :=

∑
sk∈supp(Fk) αkR(sk), where αk ∈ R.

But each γ−1(fj(γ)−es)⊤r is precisely such a linear combination. So Xj
γ = maxn Ln, X

k
γ =

maxm Lm, where each Ln := γ−1(fj(γ)− es)
⊤r is independent of each Lm := γ−1(fk(γ)−



317

es)
⊤r. So Xj

γ and Xk
γ are independent under D′. Therefore, ∀v ∈ R : FX∗

γ
(v) =

∏
i FXi

γ
(v).

V ∗
D′(s, γ) :=

∫
supp(D′)

max
f∈Fnd(s)

f(γ)⊤r dF ′(r) (F.165)

= E
R∼D

[
R(s)

]
+ γ

∫
supp(D′)

max
f∈Fnd(s)

γ−1(f(γ)− es)
⊤r dF ′(r) (F.166)

= E
R∼D

[
R(s)

]
+ γ

∫ ∞

−∞
v dFX∗

γ
(v) (F.167)

= E
R∼D

[
R(s)

]
+ γ

∫ ∞

−∞
v d

∏
i

FXi
γ
(v)

 . (F.168)

Equation (F.165) follows from the definition of average optimal reward (definition 5.11)
and the fact that restricting maximization to Fnd leaves optimal value unchanged for all
reward functions by definition 5.6. Equation (F.167) follows from the definition of FX∗

γ
.

Equation (F.168) follows from the factorization FX∗
γ
=
∏

i FXi
γ
, proved above.

Then since γ ∈ (0, 1),

PowerD′(s, γ) =
1− γ
γ

(
V ∗
D′(s, γ)− E

R∼D

[
R(s)

])
(F.169)

= (1− γ)
∫ ∞

−∞
v d

∏
i

FXi
γ
(v)

 . (F.170)

Equation (F.169) follows from definition 5.12. Equation (F.170) follows from eq. (F.168).

Since PowerD′ is Lipschitz continuous on γ ∈ [0, 1] (lemma 5.13) and since eq. (F.170)
holds for all γ ∈ (0, 1), the result holds in the limits and therefore holds for all γ ∈ [0, 1].

F.7.5 Complexity of estimating PowerDbound and optimality proba-
bility

Proposition F.204 (Power sampling bounds). Let γ ∈ [0, 1], D′ be a reward function
distribution which is bounded [b, c]|S|, s be a state, and ϵ > 0. For the random variable
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X̄
PowerD′
n := 1

n

∑n
i=1 Es′∼T (s,π∗

i (s))

[
V ∗
Ri,norm

(
s′, γ

)]
for iid draws R1, . . . , Rn ∼ D′,

P
R1,...,Rn∼D′

(∣∣∣X̄PowerD′
n − PowerD′ (s, γ)

∣∣∣ ≥ ϵ) ≤ 2e
− 2nϵ2

(c−b)2 . (F.171)

Proof. Normalized optimal value for each Ri is bounded [b, c]. Since the draws Ri ∼ D′

are independent, apply Hoeffding’s inequality.

At any fixed discount rate γ ∈ [0, 1), an optimal value function can be computed in time
polynomial in |S| and |A| (via e.g. value iteration [49]). Therefore, proposition F.204
shows that when γ ∈ [0, 1), PowerDbound can be efficiently approximated with high
probability.

Conjecture F.205 (Power can be efficiently computed).

We show a similar result for optimality probability, except proposition F.206 does not
require a bounded reward function distribution.

Proposition F.206 (Optimality probability sampling bounds). Let γ ∈ [0, 1], F ⊆ F(s),
and ϵ > 0. For the random variable X̄

PDany
n := 1

n

∑n
i=1 1∃f∈F : f is optimal for Ri at γ for iid

draws R1, . . . , Rn ∼ Dany,

P
R1,...,Rn∼Dany

(∣∣∣∣X̄PDany
n − PDany (F, γ)

∣∣∣∣ ≥ ϵ) ≤ 2e−2nϵ2 . (F.172)

Proof. X̄
PDany
n is an unbiased estimator of PDany

(F, γ) and it is bounded [0, 1]. Since the
draws Ri ∼ Dany are independent, apply Hoeffding’s inequality.

Conjecture F.207 (Optimality probability can be efficiently computed).

F.7.6 How Power relates to empowerment

Definition F.208 (n-step reachable states). Let Reachsure (s, t) be the set of states
which are reachable from state s with probability 1 in exactly t time steps.
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Conjecture F.209 (A function of the number of reachable states lower-bounds Power).
Let St ⊆ Reachsure (s, t) be those states only reachable in exactly t steps. For any
γ ∈ [0, 1],

PowerDbound (s, γ) ≥
(
1− (1− γ)γt−1

)
E [X]+(1−γ)γt−1 E

[
max of |St| draws from X

]
.

(F.173)

1

Figure F.33: The PowerDX-iid expansion of theorem F.182 can have summands less than
E [X].

The caption of fig. F.33 is justified because

PowerDX-iid (s1, γ) =
1

1 + γ

(
E [max of 2 draws from X] + γ E [min of 2 draws from X]

)
.

Although fig. D.1 demonstrates how information-theoretic empowerment fails to cap-
ture important non-local information about the agent’s control over the environment,
PowerDbound and empowerment are not unrelated. As Salge et al. [77] remark, “In a
discrete deterministic world empowerment reduces to the logarithm of the number of
sensor states reachable with the available actions.” Conjecture F.210 reflects the fact that
an agent can at least choose from the highest-reward reachable state after t steps.

Conjecture F.210 (A function of empowerment lower-bounds PowerDbound). If the
environment is deterministic and contains an absorbing state, then for any γ ∈ [0, 1],

PowerDbound (s, γ) ≥

sup
t≥1

(
1− (1− γ)γt−1

)
E [X] + (1− γ)γt−1 E

[
max of 2Et(s) draws from X

]
. (F.174)

Proof. Suppose the environment is deterministic and let γ ∈ [0, 1]. Let t be a positive
integer. By Equation 4.15 of Salge et al. [77], Et(s) = log2

∣∣Reachsure (s, t)
∣∣ (given
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deterministic dynamics). Since the environment contains an absorbing state, apply
conjecture F.209 to conclude that

PowerDbound (s, γ) ≥
(
1− (1− γ)γt−1

)
E [X]+(1−γ)γt−1 E

[
max of 2Et(s) draws from X

]
.

Since t was arbitrary, PowerDbound (s, γ) must be greater than the supremum over such
t.

Figure F.34 shows that this inequality would be tight.

1

Figure F.34: PowerDbound (s1, γ) = (1 − γ)E [max of 2 draws from X] + γ E [X] by
proposition F.198. Since E1(s) = 1, the inequality of conjecture F.210 would be tight.

F.8 Power-seeking

Question F.211 (Probability of Power-seeking being incentivized). Seeking Power

is not always more probable under optimality, but we have shown sufficient conditions
for when it is. We believe that this relationship often holds, but it is impossible to

1

2

3

up

right

Figure F.35: Policies which go right are PowerDX-iid-seeking: ∀γ ∈ (0, 1] :

PowerDX-iid (s3, γ) > PowerDX-iid (s2, γ) by lemma F.186 and proposition 5.28. How-
ever, for X ′ with cdf F (x) = x2 on the unit interval, PDX′-iid

(s1, up, .12) ≈ .91. For
DX′-iid and at γ = 0.12, it is more probable that optimal trajectories go up through s2,
which has less PowerDX′-iid .
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graphically characterize when it holds (proposition D.1). For some suitable high-entropy
joint distribution over mdp structures (e.g. Erdős–Rényi), state reward distributions X,
starting states s, and future states s′, with what probability is seeking PowerDbound at
s′ more probable under optimality, given that the agent starts at s?

F.8.1 Ordering policies based on Power-seeking

PowerDbound-seeking is not a binary property: it’s not true that a policy either does or
doesn’t seek PowerDbound . The PowerDbound-seeking definition (definition 5.16) accounts
for the fact that π might seek a lot of PowerDbound at s but not seek much PowerDbound

at s′ (appendix F.8.1) and that a policy π may seek PowerDbound for one discount rate
but not at another (appendix F.8.2).

The PowerDbound-seeking definition (definition 5.16) implies a total ordering over actions
based on how much PowerDbound they seek at a fixed state s and discount γ.

Definition F.212 (≥s,γ
PowerDbound -seek). a ≥

s,γ
PowerDbound -seek a

′ when

E
s′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
≥ E

s′∼T (s,a′)

[
PowerDbound

(
s′, γ

)]
. (F.175)

Action amaximally/minimally seeks PowerDbound at s and γ when it is a maximal/minimal
element of ≥s,γ

PowerDbound -seek.

Figure F.37 illustrated how PowerDbound-seeking depends on γ. Figure F.36 shows how
a policy might maximally seek PowerDbound at s but then minimally seek PowerDbound

at s′; therefore, many policy pairs aren’t comparable in their PowerDbound-seeking.

Ultimately, we’re interested in the specific situations in which a policy seeks “a lot” of
PowerDbound , not whether the policy seeks PowerDbound “in general.” Even so, we can
still formalize a good portion of the latter concept. Definition F.213 formalizes the natural
Power-seeking preorder over the policy space Π.

Definition F.213 (⪰S,γ
PowerDbound -seek). π ⪰

S,γ
PowerDbound -seek π

′ when ∀s ∈ S : π(s) ≥s,γ
PowerDbound -seek

π′(s).
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1 2
right

4

5

3

down

Figure F.36: If π(s1) = right, π(s2) = down, then ∀γ ∈ [0, 1], π maximally seeks
PowerDbound at s1 but minimally seeks PowerDbound at s2. Just as a consumer earns
money in order to spend it, a policy may gain PowerDbound in order to “spend it” to
realize a particular trajectory.

Proposition F.214 (⪰S,γ
PowerDbound -seek is a preorder on Π).

Proof. ⪰S,γ
PowerDbound -seek is reflexive and transitive because of the reflexivity and transi-

tivity of the total ordering ≥s,γ
PowerDbound -seek.

Proposition F.215 (Existence of a maximally PowerDbound-seeking policy). Let γ ∈
[0, 1]. ⪰S,γ

PowerDbound -seek has a greatest element.

Proof. Construct a policy π such that ∀s : π(s) ∈ argmaxa Es′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
.

This is well-defined because A is finite.

F.8.2 Seeking Power at different discount rates

Figure F.37 shows that at any given state, the extent to which an action seeks PowerDbound

depends on the discount rate. Greedier optimal policies might tend to accumulate
short-term PowerDbound (i.e. PowerDbound (s, γ) for γ ≈ 0), while Blackwell optimal
policies might tend to accumulate long-term PowerDbound (i.e. PowerDbound (s, γ) for
γ ≈ 1).

Lemma F.216 (PowerDbound bounds when γ = 0). Let X ′ be any bounded distribution
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over R.

E
[
max of

∣∣Chsure (s)
∣∣ draws from X ′] (F.176)

≤PowerDX′-iid (s, 0) (F.177)

≤E
[
max of

∣∣Ch (s)∣∣ draws from X ′] . (F.178)

Proof. The left inequality holds because restricting policies to deterministic action at s
cannot increase PowerDX′-iid (s, 0). The right inequality holds because at best, greedy
policies deterministically navigate to the child with maximal reward.

Definition F.217 (Children). The children of state s are Ch(s) :=
{
s′ | ∃a : T (s, a, s′) > 0

}
.

Proposition F.218 (When γ = 0 under local determinism, maximally PowerDX-iid-seeking
actions lead to states with the most children). Let X ′ be a nondegenerate distribution on R.
Suppose all actions have deterministic consequences at s and its children. For each action a,
let sa be such that T (s, a, sa) = 1. PowerDX′-iid (sa, 0) = maxa′∈A PowerDX′-iid (sa′ , 0)

iff
∣∣Ch (sa)∣∣ = maxa′∈A

∣∣Ch (sa′)∣∣.
Proof. Apply the bounds of lemma F.216; by the assumed determinism, Ch (sa) =

Chsure (sa) and so PowerDX′-iid (sa, 0) = E
[
max of

∣∣Ch (sa)∣∣ draws from X
]

(similarly
for each sa′). E

[
max of

∣∣Ch (sa)∣∣ draws from X
]

is strictly monotonically increasing in∣∣Ch (sa)∣∣ by the non-degeneracy of X.

Figure F.37 illustrates proposition F.218 and proposition F.219.

Proposition F.219 (When γ = 1, staying put is maximally Power-seeking). Suppose
∃a ∈ A : T (s, a, s) = 1. When γ = 1, a is a maximally PowerDbound-seeking action at
state s.

Proof. Staying put via action a has an expected Power of PowerDbound (s, 1). By
lemma D.46, PowerDbound (s, 1) ≥ maxa′ Es′∼T (s,a′)

[
PowerDbound

(
s′, γ

)]
.

When γ = 1, proposition F.219 implies that the agent cannot expect that any action will
increase its PowerDbound .



324

1stay

2

up

3

down

Figure F.37: When γ ≈ 0, PowerDX-iid (s2, γ) < PowerDX-iid (s3, γ), and so down seeks
PowerDX-iid compared to up and stay (proposition F.218). When γ ≈ 1, up seeks
PowerDbound compared to down: PowerDX-iid (s2, γ) > PowerDX-iid (s3, γ) (proposi-
tion 5.28). However, stay is maximally PowerDX-iid-seeking when γ ≈ 1, as demanded
by proposition F.219.

F.9 Attainable utility distance

Consider Definition 1 of Turner et al. [98]:

Definition F.220 (Aup reward function). Consider an mdp ⟨S,A, T,R, γ⟩ with state
space S, action space A, transition function T : S × A → ∆(S), reward function
R : S ×A → R, and discount factor γ ∈ [0, 1). Let λ ≥ 0 and ∅ ∈ A, and let R ⊊ RS be
a finite set of auxiliary reward functions.

Raup(s, a) := R(s, a)− λ

|R|
∑
Ri∈R

∣∣∣Q∗
Ri
(s, a)−Q∗

Ri
(s,∅)

∣∣∣ . (F.179)

The following results provide intuition about how the aup penalty term works in general.
We first formalize a distance metric which is tightly linked to the aup penalty term
[97, 98].

Definition F.221 (Attainable utility distance dauD ). Let D be a bounded continuous
distribution over reward functions bounded [0, 1], with probability measure F . With
respect to D and discount rate γ ∈ [0, 1), the attainable utility distance between state
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distributions ∆,∆′ ∈ ∆(S) is

dauD
(
∆,∆′ | γ

)
:=

∫
RS

∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣dF (R). (F.180)

Each expectation can be interpreted as the Q-value of an action. With respect to reward
function distribution D, dau returns the expected advantage magnitude for one action
over another.

Proposition F.222 (dauD is a distance metric on ∆(S)).

Proof. For ∆,∆′,∆′′ ∈ ∆(S):

1. dauD
(
∆,∆′ | γ

)
≥ 0.

2. dauD
(
∆,∆′ | γ

)
= 0 iff ∆ = ∆′.

3. dauD
(
∆,∆′ | γ

)
= dauD

(
∆′,∆ | γ

)
.

4. dauD
(
∆,∆′′ | γ

)
≤ dauD

(
∆,∆′ | γ

)
+ dauD

(
∆′,∆′′ | γ

)
.

Properties 1 and 3 are trivially true. Property 2 follows from lemma F.105. For property
4,

dauD
(
∆,∆′′ | γ

)
=

∫
RS

∣∣∣∣∣
(

E
s∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)])
+ (F.181)

(
E

s′∼∆′

[
V ∗
R

(
s′, γ

)]
− E

s′′∼∆′′

[
V ∗
R

(
s′′, γ

)]) ∣∣∣∣∣dF (R).
≤
∫
RS

∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣ dF (R)+ (F.182)∫
RS

∣∣∣∣ E
s′∼∆′

[
V ∗
R

(
s′, γ

)]
− E

s′′∼∆′′

[
V ∗
R(s

′′)
]∣∣∣∣dF (R)

= dauD
(
∆,∆′ | γ

)
+ dauD

(
∆′,∆′′ | γ

)
. (F.183)

Restricting dauD to degenerate probability distributions yields a distance metric over the



326

state space.

Viewing the designer as sampling auxiliary reward functions from distribution D, the aup

penalty term is the Monte Carlo integration of λγ · dauD
(
T (s, a), T (s,∅) | γ

)
:

λ

|R|
∑
Ri∈R

∣∣∣Q∗
Ri
(s, a, γ)−Q∗

Ri
(s,∅, γ)

∣∣∣ (F.184)

=
λγ

|R|
∑
Ri∈R

∣∣∣∣∣ E
sa∼T (s,a)

[
V ∗
Ri

(sa)
]
− E

s∅∼T (s,∅)

[
V ∗
Ri

(s∅)
]∣∣∣∣∣ . (F.185)

Insofar as the Monte Carlo integration approximates dauD , the attainable utility distance
sheds light on the attainable utility penalty term in eq. (F.179). For example, we want
to penalize side effects, but not smaller changes, such as easily reversible movement.
Corollary F.227 guarantees this.

Lemma F.223 (Statewise AU distance inequality).

dauD
(
∆,∆′ | γ

)
≤ Es∼∆,s′∼∆′

[
dauD

(
es, es′ | γ

)]
.

Proof.

dauD
(
∆,∆′ | γ

)
:=

∫
RS

∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣dF (R) (F.186)

≤
∫
RS

E
s∼∆,s′∼∆′

[∣∣∣V ∗
R (s, γ)− V ∗

R

(
s′, γ

)∣∣∣] dF (R) (F.187)

= E
s∼∆,s′∼∆′

[∫
RS

∣∣∣V ∗
R (s, γ)− V ∗

R

(
s′, γ

)∣∣∣]dF (R) (F.188)

= E
s∼∆,s′∼∆′

[
dauD

(
es, es′ | γ

)]
. (F.189)

Equation (F.187) holds by the triangle inequality. Equation (F.188) holds by the linearity
of expectation.

Lemma F.224 (Statewise AU distance upper bound). ∀s, s′ : dauD
(
es, es′ | γ

)
< 1

1−γ .

Proof. Because optimal value is bounded [0, 1
1−γ ], d

au
D
(
es, es′ | γ

)
≤ 1

1−γ . The equality
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holds iff for almost all R ∈ supp(D), V ∗
R (s, γ) = 1

1−γ and V ∗
R

(
s′, γ

)
= 0, or vice versa.

But because D is continuous, s′ must induce positive optimal value for a positive measure
set of reward functions.

Corollary F.225 (AU distance upper bound). dauD
(
∆,∆′ | γ

)
< 1

1−γ .

Lemma F.226 (One-step reachability bounds average difference in optimal value). Let
Dbound be bounded [b, c] and let γ ∈ [0, 1). If s and s′ can reach each other with probability
1 in one step, then ER∼Dbound

[∣∣∣V ∗
R (s, γ)− V ∗

R

(
s′, γ

)∣∣∣] ≤ c − b, with strict inequality if
Dbound is continuous.

Proof. By Proposition 1 of Turner et al. [98] and because each R ∈ supp(Dbound) is
bounded [b, c],

∣∣∣V ∗
R (s, γ)− V ∗

R

(
s′, γ

)∣∣∣ ≤ (1− γ) c−b
1−γ = c− b.

Suppose Dbound is continuous; then b < c. For equality to hold, it must be the case that
for almost all R ∈ supp(Dbound),

∣∣∣V ∗
R (s, γ)− V ∗

R

(
s′, γ

)∣∣∣ = c − b. Because we assumed
that such s and s′ can reach each other in one step, this implies that for almost all such
R, either R(s) = b and R(s′) = c, or vice versa. This would imply that Dbound has a
discontinuous marginal reward distribution for these states, which is impossible if Dbound

is continuous. Then the inequality is strict if Dbound is continuous.

The following result also applies to the aup penalty term for any R over reward functions
bounded [0, 1].

Corollary F.227 (Movement penalties are small). Let ∆ ̸= ∆′. Suppose that all states
in the support of ∆ can deterministically reach in one step all states in the support of ∆′,
and vice versa. Then 0 < dauD

(
∆,∆′ | γ

)
< 1.

Proof. 0 < dauD
(
∆,∆′ | γ

)
by proposition F.222.

dauD
(
∆,∆′ | γ

)
≤ E

s∼∆,s′∼∆′

[
dauD

(
es, es′ | γ

)]
(F.190)

< 1. (F.191)
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Equation (F.190) holds by lemma F.223. For eq. (F.191), apply lemma F.226 to conclude
that dauD

(
es, es′ | γ

)
< 1 for each such s, s′. Therefore, dauD

(
∆,∆′ | γ

)
< 1.

Aup penalizes both seeking and decreasing PowerDbound , compared to the null action.

Proposition F.228 (Change in expected PowerD lower-bounds dauD ).

dauD
(
∆,∆′ | γ

)
≥
∣∣∣∣ Es∼∆

[
V ∗
Dbound

(s, γ)
]
− E

s′∼∆′

[
V ∗
Dbound

(
s′, γ

)]∣∣∣∣ . (F.192)

Proof.

dauD
(
∆,∆′ | γ

)
:= E

R∼D

[∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣] (F.193)

≥
∣∣∣∣∣ E
R∼D

[
E

s∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]]∣∣∣∣∣ (F.194)

=

∣∣∣∣ Es∼∆

[
V ∗
Dbound

(s, γ)
]
− E

s′∼∆′

[
V ∗
Dbound

(
s′, γ

)]∣∣∣∣ . (F.195)

Equation (F.194) follows by the reverse triangle inequality.

While we conjectured that aup penalizes green cell disruption because it decreases Power,
Turner et al. [97]’s Correction gridworld showed that aup also penalizes increases in
Power.

F.9.1 Upper-bounding AU distance by variation distance

Proposition F.229 shows that dauD is upper-bounded by the maximal TV between the visit
distributions of s and s′. As fig. F.38 shows, if their visit distributions are “forced to
overlap,” dauD must be relatively small.

Proposition F.229 (AU distance upper-bounded by maximal variation distance of visit
distributions). Let D′ be any reward function distribution which is bounded [b, c] and let

γ ∈ [0, 1). dauD′
(
∆,∆′ | γ

)
≤ (c− b)maxπ∈ΠTV

(
Es∼∆

[
fπ,s(γ)

]
,Es′∼∆′

[
fπ,s

′
(γ)
])

.
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3

1

2

Figure F.38: For all D′ bounded [0, 1], dauD′
(
es1 , es2 | γ

)
≤ 1 by proposition F.229, since

for any π ∈ Π, fπ,s1 ∈ F(s1), fπ,s2 ∈ F(s2) only disagree on the initial state.

Proof.

dauD′
(
∆,∆′ | γ

)
:= E

R∼D′

[∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣] (F.196)

= E
r∼D′

[∣∣∣∣∣max
π∈Π

(
E

s∼∆

[
fπ,s(γ)

]
− E

s′∼∆′

[
fπ,s

′
(γ)
])⊤

r

∣∣∣∣∣
]

(F.197)

≤ E
R∼D′

[
max
π∈Π

1

2

∥∥∥∥ E
s∼∆

[
fπ,s(γ)

]
− E

s′∼∆′

[
fπ,s

′
(γ)
]∥∥∥∥

1

(c− b)
]

(F.198)

= (c− b)max
π∈Π

TV

(
E

s∼∆

[
fπ,s(γ)

]
, E
s′∼∆′

[
fπ,s

′
(γ)
])

. (F.199)

Equation (F.197) uses a single max because all optimal policies π ∈ Π∗ (R, γ) induce the
same optimal value function. For each r ∈ supp(D′) with π ∈ Π∗ (R, γ), consider the
difference vector d := Es∼∆

[
fπ,s(γ)

]
− Es′∼∆′

[
fπ,s

′
(γ)
]
. Since r is bounded [b, c],

∣∣∣d⊤r
∣∣∣

is maximized when r assigns c reward to the positive entries of d, b reward to the negative
entries, and c reward to the zero entries.

Since we always have
∥∥fπ,s(γ)∥∥

1
= 1

1−γ by proposition D.8, the negative and positive

entries of d both have measure equal to 1
2

∥∥∥∥Es∼∆

[
fπ,s(γ)

]
− Es′∼∆′

[
fπ,s

′
(γ)
]∥∥∥∥

1

. Lastly,

we maximize over all possible π ∈ Π. Then eq. (F.198) follows.

Equation (F.199) follows because

TV

(
E

s∼∆

[
fπ,s(γ)

]
, E
s′∼∆′

[
fπ,s

′
(γ)
])

=
1

2

∥∥∥∥ E
s∼∆

[
fπ,s(γ)

]
− E

s′∼∆′

[
fπ,s

′
(γ)
]∥∥∥∥

1

.
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Proposition F.229 shows that no matter the bounded D′, some states always must be
close in AU distance.

Conjecture F.230 (Proposition F.229 can be extended to only account for policies which
induce non-dominated visit distribution functions).

Corollary F.231 (Average optimal value difference is bounded by maximum visit distri-
bution distance). Let D′ be any reward function distribution which is bounded [b, c] and
let γ ∈ [0, 1).∣∣∣V ∗

D′ (s, γ)− V ∗
D′
(
s′, γ

)∣∣∣ ≤ (c− b)max
π∈Π

TV
(
fπ,s(γ), fπ,s

′
(γ)
)
. (F.200)

Proof. By proposition F.228,
∣∣∣V ∗

D′ (s, γ)− V ∗
D′
(
s′, γ

)∣∣∣ ≤ dauD′
(
es, es′ | γ

)
.

By proposition F.229, dauD′
(
es, es′ | γ

)
≤ (c− b)maxπ∈ΠTV

(
fπ,s(γ), fπ,s

′
(γ)
)
.

F.9.2 AU distance for discount rates close to 1

Definition F.232 (Normalized dauD ). Let γ ∈ [0, 1),∆,∆′ ∈ ∆(S), and let D be a
bounded continuous reward function distribution.

dau,norm
D

(
∆,∆′ | γ

)
:= (1− γ)dauD

(
∆,∆′ | γ

)
. (F.201)

Note that this normalization is order-preserving and dau,norm
D′

(
∆,∆′ | γ

)
∈ [0, 1]. Proposi-

tion F.233 demonstrates that dau,norm
D extends to γ = 1 via the appropriate limit.

Proposition F.233 (For any bounded reward function distribution D′, dau,norm
D′

(
·, · | γ

)
is Lipschitz continuous on γ ∈ [0, 1]).

Proof. By lemma D.45, limγ∗→γ(1 − γ∗)V ∗
R (s, γ∗) is Lipschitz continuous on γ ∈ [0, 1],

with Lipschitz constant depending only on ∥r∥1. Let γ ∈ (0, 1),∆,∆′ ∈ ∆(S). Since
expectation, subtraction, and absolute value preserve Lipschitz continuity under some
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bounded Lipschitz constant, we conclude the Lipschitz continuity of

dau,norm
D′

(
∆,∆′ | γ

)
= (1− γ) E

R∼D′

[∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣] . (F.202)

By the above continuity, we can extend dau,norm
D to γ = 1 via the appropriate limit.

Corollary F.234 (dauD is continuous on γ ∈ [0, 1)).

Proof. By definition F.232, dauD
(
·, · | γ

)
= 1

1−γd
au,norm
D

(
·, · | γ

)
.

By proposition F.233, dau,norm
D

(
·, · | γ

)
is continuous on γ ∈ [0, 1), as is 1

1−γ . The space
of continuous functions is closed under pointwise multiplication.

Remark. By the continuity of dauD , if ∆,∆′,∆′′ ∈ ∆(S) are such that dau,norm
D

(
∆,∆′ | 1

)
>

dau,norm
D

(
∆,∆′′ | 1

)
, then for all γ sufficiently close to 1, dauD

(
∆,∆′ | γ

)
> dauD

(
∆,∆′′ | γ

)
.

For proposition F.235 and proposition F.236, we use the following shorthand: for any
sa′ , sa, s∅ ∈ S, Da′ := RSDnd (sa′) , Da := RSDnd (sa) , D∅ := RSDnd (s∅).

Proposition F.235 (Losing access to rsds increases dau,norm
D ). If Da′ ⊆ Da ⊆ D∅, then

dau,norm
D

(
es∅ , esa | 1

)
≤ dau,norm

D

(
es∅ , esa′ | 1

)
. If Da′ ⊊ Da, then the inequality is strict.

Proof.

dau,norm
D

(
es∅ , esa | 1

)
=

∫
R|S|

∣∣∣∣max
d∈D∅

d⊤r− max
d′∈Da

d′⊤r

∣∣∣∣ dF (r) (F.203)

≤
∫
R|S|

∣∣∣∣∣max
d∈D∅

d⊤r− max
d′∈Da′

d′⊤r

∣∣∣∣∣dF (r) (F.204)

= dau,norm
D

(
es∅ , esa′ | 1

)
. (F.205)

Equation (F.203) holds by the definition of rsds (definition 5.26). Since Da′ ⊆ Da, for
all reward functions r ∈ R|S|,∣∣∣∣max

d∈D∅
d⊤r− max

d′∈Da

d′⊤r

∣∣∣∣ ≤
∣∣∣∣∣max
d∈D∅

d⊤r− max
d′∈Da′

d′⊤r

∣∣∣∣∣ . (F.206)
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If Da′ ⊊ Da, by proposition D.25, D assigns positive measure to the set of reward functions
for which some d′′ ∈ Da \Da′ is strictly gain-optimal. Therefore, eq. (F.206) is strict for
a positive measure set of reward functions, and so eq. (F.204) holds.

s

Figure F.39: At γ = 1, all other states are “equally distant” from s because they each can
only access a single 1-cycle rsd. By proposition F.236, ∀s′, s′′ ̸= s : dau,norm

D
(
es1 , es′ | 1

)
=

dau,norm
D

(
es1 , es′′ | 1

)
.

Proposition F.236 (Losing access to similar rsds implies equal dau,norm
D ). If Da′ , Da ⊆

D∅, if some Dsub ⊆ Da is similar to Da′ , and if
∥∥Da′ −D∅ \Da′

∥∥
1
=
∥∥Dsub −D∅ \Dsub

∥∥
1
=

2, then dau,norm
D

(
es∅ , esa | 1

)
≤ dau,norm

D

(
es∅ , esa′ | 1

)
. If Dsub ⊊ Da, then the inequality

is strict.

Proof. Let ϕ be the guaranteed state permutation such that ϕ ·Dsub = Da′ . Define

ϕ′(s) :=


ϕ(s) if s visited by d ∈ Dsub

ϕ−1(s) if s visited by d ∈ Da′

s else.

(F.207)

By the ∥·∥1 assumption, ϕ′ is a well-defined permutation.

dau,norm
D

(
es∅ , esa | 1

)
= E

r∼D

[∣∣∣∣max
d∈D∅

d⊤r− max
d′∈Da

d′⊤r

∣∣∣∣] (F.208)

≤ E
r∼D

[∣∣∣∣max
d∈D∅

d⊤r− max
d′∈Dsub

d′⊤r

∣∣∣∣] (F.209)

= E
r∼D

[∣∣∣∣∣max
d∈D∅

d⊤r′ − max
d′∈Da′

d′r′

∣∣∣∣∣
]

(F.210)

= dau,norm
D

(
es∅ , esa′ | 1

)
. (F.211)
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Equation (F.208) holds by the definition of rsds (definition 5.26). Equation (F.209) holds
by proposition F.235, with strict inequality if Dsub ⊊ Da.

Let g(b1, b2) := |b1 − b2| and let f(B1, B2 | D) := Er∼D

[
g
(
maxd∈B1 d

⊤r,
)
,maxd∈B2 d

⊤r

]
.

Then lemma D.22 shows that f(D∅, Dsub | D) = f(ϕ′(D∅), ϕ
′(Dsub) | ϕ′(D)).

By the ∥·∥1 assumption, ϕ′(Dsub) = Da′ , ϕ′(Da′) = Dsub, and ϕ′
(
D∅ \ (Da′ ∪Dsub)

)
=

D∅ \ (Da′ ∪Dsub) by eq. (F.207). Then ϕ′(D∅) = D∅. Since D distributes reward
identically across states, ϕ′(D) = D. We thus conclude that f(D∅, Dsub | D) = f(D∅, Da′ |
D), and so eq. (F.210) follows.

Proposition F.237 (AUP penalty sampling bounds). Let γ ∈ [0, 1], D′ be a reward func-
tion distribution which is bounded [b, c]|S|, s be a state, a,∅ be actions, and ϵ > 0. For re-

ward functions R1, . . . , Rn, define
∣∣∣∆QR1,...,Rn

s,a,∅

∣∣∣ := 1
n

∑n
i=1

∣∣∣Q∗
Ri,norm (s, a, γ)−Q∗

Ri,norm (s,∅, γ)
∣∣∣.

P
R1,...,Rn∼D′

(∣∣∣∣∣∣∣∆QR1,...,Rn
s,a,∅

∣∣∣− dau,norm
D′

(
T (s, a), T (s,∅) | γ

)∣∣∣∣ ≥ ϵ) ≤ 2e
− 2nϵ2

(c−b)2 . (F.212)

Proof. Normalized optimal Q-value is bounded [b, c], and so the absolute difference
is bounded [0, c − b]. Since the draws Ri ∼ D′ are independent, apply Hoeffding’s
inequality.

F.10 Proportional regret

We formalize a relaxed variant of worst-case regret minimization which accounts for the
human’s ability to later correct the robot. We show a common-sense no-free lunch theorem:
without any way of learning about the true reward function, no policy can do better
than losing half of its value in the worst-case. This result underscores the importance of
thinking carefully about what objective we wish to give the agent, and ensuring it can
gather enough information about our preferences.

We also show that even when the human may later communicate the true reward function
to the robot, it is often impossible to meaningfully minimize worst-case regret. In
particular, this occurs when the agent is forced to make an irreversible decision early
on.
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Regan and Boutilier [71] select policies which minimize worst-case regret against a set
of feasible reward functions. We show that when this feasible set is large enough, worst-
case regret minimization is infeasible if the agent cannot learn more about the true
objective.

Regan and Boutilier [72] quantify regret as the decrease in value from following a sub-
optimal policy π: V R

R (s, γ) − V π
R (s, γ). However, while optimal policies are invariant

to positive rescaling of the reward function, absolute regret is not: starting from state
s, if π induces 1 regret for reward function R, then π induces 10 regret for 10R! The
relative regret [39] of a policy π is V ∗

R(s,γ)−V π(s,γ)

V ∗
R(s,γ) , but the denominator is not invariant to

translation of the reward function.

We propose a regret metric which quantifies the proportion of attainable value lost by
following a suboptimal policy.

Definition F.238 (Minimal value). V min
R (s, γ) := minπ∈Π V

π
R (s, γ) = −V −R

R (s, γ).

Definition F.239 (Proportional regret). Let s be a state and let π be a policy, R ∈ RS ,
γ ∈ [0, 1]. The proportional regret of following policy π is

PropRegret
(
π | R, s, γ

)
:=

V R
R, norm (s, γ)− V π

R,norm(s, γ)

V R
R, norm (s, γ)− V min

R, norm (s, γ)
. (F.213)

PropRegret is defined to be 0 when the denominator is 0, as no policy can incur regret
for R starting from s under such conditions. In particular, this occurs when γ = 0 in
our state-based reward setting: Reward from other states is discounted away, and so all
policies are optimal. PropRegret is clearly bounded [0, 1].

Conjecture F.240 (Optimal policies have 0 PropRegret, while maximally suboptimal
policies have 1 PropRegret).

Proposition F.241 (PropRegret is invariant to positive affine transformation of the
reward function). Let π be any policy, R ∈ RS , s ∈ S, γ ∈ [0, 1], and m > 0, b ∈ R.

PropRegret
(
π | R, s, γ

)
= PropRegret

(
π | mR+ b, s, γ

)
. (F.214)
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Proof. Suppose γ < 1.

PropRegret
(
π | R, s, γ

)
(F.215)

:=
V R
R, norm (s, γ)− V π

R,norm(s, γ)

V R
R, norm (s, γ)− V min

R, norm (s, γ)
(F.216)

=
m−1V mR+b

R, norm (s, γ)− b
1−γ −

(
m−1V π

mR+b,norm(s, γ)− b
1−γ

)
m−1V mR+b

R, norm (s, γ)− b
1−γ −

(
m−1V min

mR+b, norm (s, γ)− b
1−γ

) (F.217)

=
V mR+b
R, norm (s, γ)− V π

mR+b,norm(s, γ)

V mR+b
R, norm (s, γ)− V min

mR+b, norm (s, γ)
(F.218)

= PropRegret
(
π | mR+ b, s, γ

)
. (F.219)

The γ = 1 case follows automatically from the equality for all γ < 1.

Proposition F.242 (Reward function negation flips the PropRegret of any policy).
Let π be any policy, R ∈ RS , s ∈ S, γ ∈ [0, 1]. If V R

R,norm (s, γ) > V min
R,norm (s, γ), then

PropRegret
(
π | −R, s, γ

)
= 1− PropRegret

(
π | R, s, γ

)
. (F.220)

Proof.

PropRegret
(
π | −R, s, γ

)
(F.221)

:=
V −R
R, norm (s, γ)− V π

−R,norm(s, γ)

V −R
R, norm (s, γ)− V min

−R, norm (s, γ)
(F.222)

=
−V min

R, norm (s, γ) + V π
R,norm(s, γ)

−V min
R, norm (s, γ) + V ∗

R, norm (s, γ)
(F.223)

=
V π
R,norm(s, γ)− V min

R, norm (s, γ)

V ∗
R, norm (s, γ)− V min

R, norm (s, γ)
(F.224)

= 1 +
−
(
V ∗
R, norm (s, γ)− V min

R, norm (s, γ)
)
+ V π

R,norm(s, γ)− V min
R, norm (s, γ)

V ∗
R, norm (s, γ)− V min

R, norm (s, γ)
(F.225)

= 1 +
−V ∗

R, norm (s, γ) + V π
R,norm(s, γ)

V ∗
R, norm (s, γ)− V min

R, norm (s, γ)
(F.226)
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= 1−
V ∗
R, norm (s, γ)− V π

R,norm(s, γ)

V ∗
R, norm (s, γ)− V min

R, norm (s, γ)
(F.227)

= 1− PropRegret
(
π | R, s, γ

)
. (F.228)

F.10.1 No free lunch for robust optimization

Let Rtrue ⊆ RS be a set of reward functions. Robust optimization minimizes maximal
regret with respect to this feasible set Rtrue [72]. We show that when Rtrue has enough
reward functions in it, no policy can do well in the worst case. As illustrated by fig. F.40,
no policy can simultaneously optimize a generic reward function and its inverse.

1 2

Figure F.40: If Rtrue is the set of state indicator reward functions, then no policy can
do better than alternating between the two states. When γ = 1, this policy induces
worst-case PropRegret of 1

2 : half of the attainable value is lost for each reward function
in Rtrue.

Theorem F.243 (No free lunch theorem for proportional regret minimization). Let π
be any policy, s a state, and γ ∈ [0, 1]. If there exists R ∈ Rtrue such that a negatively
affinely transformed −mR+ b ∈ Rtrue as well, and if V ∗

R,norm (s, γ) > V min
R,norm (s, γ), then

sup
Rtrue∈Rtrue

PropRegret
(
π | Rtrue, s, γ

)
≥ 1

2
. (F.229)

Proof.

sup
Rtrue∈Rtrue

PropRegret
(
π | Rtrue, s, γ

)
(F.230)

≥ max
Rtrue∈{R,−mR+b}

PropRegret
(
π | Rtrue, s, γ

)
(F.231)

= max
Rtrue∈{R,−R}

PropRegret
(
π | Rtrue, s, γ

)
(F.232)
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= max
(
PropRegret

(
π | Rtrue, s, γ

)
, 1− PropRegret

(
π | Rtrue, s, γ

))
(F.233)

≥ .5. (F.234)

Equation (F.231) holds because R,−mR + b ∈ Rtrue. Equation (F.232) holds by proposi-
tion F.241. Equation (F.233) holds by proposition F.242, which can be applied since

V ∗
R, norm (s, γ) > V min

R, norm (s, γ) .

Equation (F.234) holds because PropRegret is bounded [0, 1].

Proposition F.244 (Uninformative Rtrue satisfy no-free-lunch conditions). Let π be
any policy and s ∈ S. Suppose there exist a < b such that [a, b]S ⊆ Rtrue. If either γ ∈ (0, 1)

and
∣∣F(s)∣∣ > 1 or γ = 1 and

∣∣RSD (s)
∣∣ > 1, then supRtrue∈Rtrue PropRegret

(
π | Rtrue, s, γ

)
≥

1
2 .

Proof. Let U := [a, b]S for the assumed real numbers a < b. Let U− := {R ∈ U | ∃mR >

0, bR ∈ R : −mRR + bR ∈ U}. Since all R ∈ U are bounded, any reward function
−mRR + bR can be positively affinely transformed so that its reward is bounded [a, b].
Therefore, U− = U .

Since γ > 0 and either
∣∣F(s)∣∣ > 1 or

∣∣RSD (s)
∣∣ > 1, by lemma F.106, almost every reward

function in U− has a strictly optimal visit distribution or rsd at discount rate γ. Since
U− = U has positive measure, almost all elements of U− must have a strictly optimal visit
distribution or rsd at discount rate γ. Let R ∈ U− be one such element. We conclude
that V ∗

R, norm (s, γ) > V min
R, norm (s, γ).

By the definition of U−, R has a negatively affinely transformed counterpart in U ⊆ Rtrue.
Then theorem F.243 implies that supRtrue∈Rtrue PropRegret

(
π | Rtrue, s, γ

)
≥ .5.

Remark. Proposition F.244’s conditions of
∣∣F(s)∣∣ > 1 or

∣∣RSD (s)
∣∣ > 1 are trivial: if

they are not met, then the agent makes no meaningful choices and PropRegret trivially
equals 0 for every policy and reward function.
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F.10.2 Corrigible regret minimization

Even though we often can’t fully specify the intended reward function or minimize worst-
case regret under complete uncertainty, we can correct an agent after watching it make
mistakes.

Definition F.245 (Corrigibility). An agent-supervisor pair enables perfect corrigibility
when the supervisor can modify the agent’s policy to any other policy.

Definition F.245 is optimistic: it is obviously unrealistic to demand the supervisor be able
to implement in the agent an optimal policy for any reward function. Furthermore, the
agent may act to avoid correction [87, 19, 99], or an agent may leave the supervisor’s
range of correction. We set these complications aside for now.

Theorem F.243 does not imply that ϵ-PropRegret minimization is impossible for ϵ < 1
2 ,

even when Rtrue = RS . Theorem F.243 says that any π cannot do well across all reward
functions, if π cannot somehow be conditioned on each Rtrue. However, definition F.245
allows the agent to be “corrected” after t time steps to an optimal policy π∗Rtrue

.

Even if the agent cannot somehow discover which reward function it should optimize,
exogenous correction by the supervisor often allows an agent to bound its worst-case
proportional regret.

12 3 4

Figure F.41: In some environments, non-trivial corrigible regret minimization is impossible.
The agent starts at s1 (the starting state s is shown in blue). Suppose ∃R,R′ ∈ Rtrue :

R(s2) > R(s3) ∧R′(s2) < R′(s3). Then ∀γ ∈ (0, 1], t > 0, no policy can avoid incurring
maximal worst-case proportional regret for Rtrue. However, intuitively, going right is “less
option-destroying.”

Eysenbach et al. [28] train an agent to preserve initial state reachability. Proposition F.246
shows that reversibility allows the agent to bound worst-case regret, if the agent can later
be corrected to pursue the true objective.

Proposition F.246 (Given perfect corrigibility, initial state reachability bounds worst–
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case PropRegret). Let γ ∈ [0, 1] and let π be any policy which, when followed from
s for t steps, has probability 1 of residing in states which can reach s in k steps with
probability 1.

sup
R∈RS

PropRegret
(
πswitch(π, π

∗
R, t) | R, s, γ

)
≤ 1− γt+k, (F.235)

where π∗R ∈ Π∗ (R, γ) for each R.

Proof. If ∀R ∈ RS : V ∗
R, norm (s, γ) = V min

R, norm (s, γ), then the supremum in eq. (F.235)
equals 0 by definition F.239 and we are done. Otherwise, let Y ⊆ RS be the subset of
reward functions for which this equality does not hold.

Suppose γ ∈ [0, 1). Let πreturn be a policy which always navigates to s as quickly as
possible, when possible. Let πrecover(π

′) := πswitch
(
πswitch(π, πreturn, t), π

′, t+ k
)

be the
non-stationary policy which follows π for the first t time steps, switches to πreturn for the
next k time steps, and then follows π′ thereafter. Starting from s, the value gained before
time t+ k is then Grecover

R (γ) := V
πrecover(π,πreturn,π∗

R)
R (s, γ)− γt+kV ∗

R (s, γ).

sup
R∈RS

PropRegret
(
πswitch(π, π

∗
R, t) | R, s, γ

)
(F.236)

= sup
R∈Y

PropRegret
(
πswitch(π, π

∗
R, t) | R, s, γ

)
(F.237)

:= sup
R∈Y

V R
R, norm (s, γ)− V πswitch(π,π

∗
R,t)

R,norm (s, γ)

V R
R, norm (s, γ)− V min

R, norm (s, γ)
(F.238)

= sup
R∈Y

V R
R (s, γ)− V πswitch(π,π

∗
R,t)

R (s, γ)

V R
R (s, γ)− V min

R (s, γ)
(F.239)

≤ sup
R∈Y

V R
R (s, γ)− V πrecover(π,πreturn,π∗

R)
R (s, γ)

V R
R (s, γ)− V min

R (s, γ)
(F.240)

≤ sup
R∈Y

V R
R (s, γ)− V πrecover(π,πreturn,π∗

R)
R (s, γ)

V R
R (s, γ)− 1

1−γt+kG
recover
R (γ)

(F.241)

= sup
R∈Y

V R
R (s, γ)−Grecover

R (γ)− γt+kV ∗
R (s, γ)

V R
R (s, γ)− 1

1−γt+kG
recover
R (γ)

(F.242)
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= sup
R∈Y

(
1− γt+k

)
V ∗
R (s, γ)−Grecover

R (γ)

V R
R (s, γ)− 1

1−γt+kG
recover
R (γ)

(F.243)

= 1− γt+k. (F.244)

Equation (F.237) follows because all reward functions R′ ∈ RS \ Y have 0 PropRegret

by the definition of Y , and PropRegret is bounded [0, 1]. Equation (F.239) follows
because the continuity of (optimal) value functions on γ ∈ [0, 1) allows us to ignore the
limit in the normalized value functions (definition F.10). Equation (F.240) holds because

V
πrecover(π,πreturn,π∗

R)
R (s, γ) ≤ V πswitch(π,π

∗
R,t)

R (s, γ),

as πrecover(π, πreturn, π
∗
R) takes longer to begin following an optimal policy for R.

By the definition of V min
R (s, γ), V min

R (s, γ) ≤ 1
1−γt+kG

recover
R (γ), the value of forever

alternating between following π for t steps and πreturn for k steps. Therefore, eq. (F.241)
holds.

If γ = 1, then for all R ∈ RS ,

V ∗
R, norm (s, 1) = V

πrecover(π,πreturn,π∗
R)

R,norm (s, 1) (F.245)

≤ V πswitch(π,π
∗
R,t)

R,norm (s, 1) (F.246)

≤ V ∗
R, norm (s, 1) . (F.247)

Equation (F.245) holds by definition F.10: since s can be returned to within k steps, the
transient reward from the first t+k steps does not affect the normalized V πrecover(π,πreturn,π∗

R)
R,norm (s, 1).

Equation (F.247) holds by the definition of normalized optimal value. Therefore,

PropRegret
(
πswitch(π, π

∗
R, t) | R, s, 1

)
= 0,

and the supremum in eq. (F.235) also equals 0.

Proposition F.246 shows that as we take longer to correct the agent, or the agent takes
longer to undo its actions, PropRegret increases. On the other hand, as the discount
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rate increases to 1, PropRegret decreases because transient mistakes become relatively
less important. Figure F.42 shows that the inequality in proposition F.246 is sharp.

1 23

Figure F.42: Let R(s1) := 0, R(s2) := .5, R(s3) := 1, and let πright go right at s1.
PropRegret

(
πswitch(πright, π

∗
R, 1) | R, s, γ

)
= 1 − γ2. At s2, k = 1 step is required to

return to the initial state s1, and t = 1. Therefore, 1−γ2 = 1−γt+k, so proposition F.246’s
bound is tight.

Definition F.247 (Communicating mdp). An mdp is communicating when every state
is able to reach every other state with positive probability.

Proposition F.248 (Given perfect corrigibility, all policies are low-regret in communi-
cating mdps for γ = 1). Suppose the environment is communicating, let π be any policy,
and let ϵ > 0. If the agent can be corrected within t time steps, then

sup
R∈RS

PropRegret
(
πswitch(π, π

∗
R, t) | R, s, 1

)
= 0.

Proof. Since the mdp is communicating, ∀R ∈ RS , s, s′ ∈ S : V ∗
R, norm (s, 1) = V ∗

R, norm
(
s′, 1

)
by lemma F.251. This implies that V ∗

R, norm (s, 1) = V
πswitch(π,π

∗
R,t)

R,norm (s, 1), because the agent
switches to an optimal policy after t time steps (transient reward differences vanish in
the γ = 1 case). This implies that ∀R ∈ RS : PropRegret

(
πswitch(π, π

∗
R, t) | R, s, 1

)
=

0.

Conjecture F.249 (Given perfect corrigibility, all policies are low-regret in communicating
mdps for γ ≈ 1). Suppose the environment is communicating, let π be any policy, and
let ϵ > 0. If the agent can be corrected within t time steps, then there exists some γ < 1

such that
sup
R∈RS

PropRegret
(
πswitch(π, π

∗
R, t) | R, s, γ

)
< ϵ. (F.248)

Suppose that the human designers have uncertainty about what reward function they
should provide, with the uncertainty represented by a probability distribution D.
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Proposition F.250 (Worst-case PropRegret minimization is equivalent to robustness
against D). Let π be any policy and let Rtrue ⊆ RS .

sup
D∈∆(Rtrue)

E
R∼D

[
PropRegret

(
π | R, s, γ

)]
= sup

R∈Rtrue

PropRegret
(
π | R, s, γ

)
.

(F.249)

Proof. Suppose (Rn)n≥1 is such that ∀n : Rn ∈ Rtrue and

lim
n→∞

PropRegret
(
π | Rn, s, γ

)
= sup

R∈Rtrue

PropRegret
(
π | R, s, γ

)
.

Then let (Dn)n≥1 be a sequence of degenerate probability distributions which place
probability 1 on Rn. Then each Dn ∈ ∆(Rtrue). Furthermore,

sup
D∈∆(Rtrue)

E
R∼D

[
PropRegret

(
π | R, s, γ

)]
(F.250)

≥ lim
n→∞

E
R∼Dn

[
PropRegret

(
π | Rn, s, γ

)]
(F.251)

= lim
n→∞

PropRegret
(
π | Rn, s, γ

)
(F.252)

= sup
R∈Rtrue

PropRegret
(
π | R, s, γ

)
. (F.253)

On the other hand,

sup
D∈∆(Rtrue)

E
R∼D

[
PropRegret

(
π | R, s, γ

)]
(F.254)

≤ sup
D∈∆(Rtrue)

sup
R∈supp(D)

PropRegret
(
π | R, s, γ

)
(F.255)

≤ sup
D∈∆(Rtrue)

sup
R∈Rtrue

PropRegret
(
π | R, s, γ

)
(F.256)

= sup
R∈Rtrue

PropRegret
(
π | R, s, γ

)
. (F.257)

Equation (F.256) follows because supp(D) ⊆ Rtrue by the definition of ∆(Rtrue), the set
of all probability distributions over Rtrue.

Therefore, the equality of eq. (F.249) holds.
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However, fig. F.41 shows that in non-communicating environments, robustness against D
is too restrictive, even if we assume perfect corrigibility. Therefore, we step away from
worst-case regret minimization.

Lemma F.251 (Equal optimal average reward in communicating mdps). If the environ-
ment is communicating, then ∀R ∈ RS , s, s′ ∈ S : V ∗

R,norm (s, 1) = V ∗
R,norm

(
s′, 1

)
.

Proof. Since the mdp is communicating, s can reach s′ with positive probability after
at most |S| timesteps under some policy π. If an agent following π has not reached s′

within |S| timesteps, all states can reach s′ with positive probability and so πHD once
again attempts to navigate to s′. Since the mdp is finite, there is a state with a minimal
(but positive) probability p of reaching s′ within |S| time steps. Because p is positive
and minimal, πHD has probability at most

∏∞
t=1(1− p)t = 0 of not reaching s′ eventually.

Apply lemma F.177 to conclude that V ∗
R, norm (s, 1) ≥ V ∗

R, norm
(
s′, 1

)
.

The proof for s′ reaching s is similar, and so V ∗
R, norm (s, 1) = V ∗

R, norm
(
s′, 1

)
.

Conjecture F.252 (PropRegret is piecewise rational on γ ∈ [0, 1]).

F.11 Varying the reward function distribution

Proposition F.253 (Power, attainable utility distance, and optimality probability are
convex over mixture distributions). Let D1,D2 be two bounded reward function distribu-
tions, let θ ∈ [0, 1], and let D′ := θD1 + (1 − θ)D2 be a mixture distribution of the two.
Let s be any state and γ ∈ [0, 1].

1. PowerD′(s, γ) = θPowerD1(s, γ) + (1− θ)PowerD2(s, γ).

2. ∀∆1,∆2 ∈ ∆(S) :

dau,norm
D′

(
∆1,∆2 | γ

)
= θdau,norm

D1

(
∆1,∆2 | γ

)
+ (1− θ)dau,norm

D2

(
∆1,∆2 | γ

)
.

(F.258)

3. ∀F ⊆ F(s) : PD′ (F, γ) = θ PD1
(F, γ) + (1− θ)PD2

(F, γ).
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Proof. Item 1: suppose γ ∈ (0, 1). Then

PowerD′(s, γ) (F.259)

:= E
r∼D′

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(F.260)

= θ E
r∼D1

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
+ (1− θ) E

r∼D2

[
max
f∈F(s)

1− γ
γ

(
f(γ)− es

)⊤
r

]
(F.261)

= θPowerD1(s, γ) + (1− θ)PowerD2(s, γ). (F.262)

Since eq. (F.262) holds for arbitrary γ ∈ (0, 1), it must hold in the limits as γ → 0 and
γ → 1; the limits of PowerDbound exist by lemma 5.13. Then item 1 follows.

Similar logic proves item 2 via the linearity of expectation over reward functions.

Consider item 3. By the definition of optimality probability (definition 5.9), some f ∈ F
is optimal at discount rate γ with probability PD1

(F, γ) when R is drawn from D1 and
with probability PD2

(F, γ) when R is drawn from D2. Then by the definition of the
mixture distribution D′, the total probability of this event is PD′ (F, γ) = θ PD1

(F, γ) +

(1− θ)PD2
(F, γ). This proves item 3.

Corollary F.254 (Convexity in the space of probability distributions). Let D1,D2 be
two bounded reward function distributions, let θ ∈ [0, 1], and let D′ := θD1 + (1− θ)D2 be
a mixture distribution of the two. Let s be any state, let γ ∈ [0, 1], and let k ∈ R.

1. If PowerD1(s, γ),PowerD2(s, γ) ≥ k, then PowerD′(s, γ) ≥ k.

2. Let ∆1,∆2 ∈ ∆(S). If dau,norm
D1

(
∆1,∆2 | γ

)
, dau,norm

D2

(
∆1,∆2 | γ

)
≥ k then

dau,norm
D′

(
∆1,∆2 | γ

)
≥ k.

3. Let F ⊆ F(s). If PD1
(F, γ), PD2

(F, γ) ≥ k, then PD′ (F, γ) ≥ k.

Proof. All items follow directly from proposition F.253.
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Proposition F.255 (PowerDbound difference bounded by total variation distance). Let
D1,D2 be bounded reward function distributions on [0, 1]|S|.

∣∣PowerD1(s, γ)− PowerD2(s, γ)
∣∣ ≤ TV (D1,D2) . (F.263)

Proof. If TV (D1,D2) = 0, then PowerD1(s, γ) = PowerD2(s, γ) and the statement
holds.

Suppose TV (D1,D2) > 0. Letting D1,D2 respectively correspond to probability measures
F1, F2, consider the finite signed probability measure Fdiff := F1−F2. The positive sets of
Fdiff are the sets to which F1 assigns more probability; vice versa for the negative sets and
F2. By the Hahn decomposition theorem, there exist (non-negative) measures F+, F−

such that Fdiff = F+ − F−.

By the fact that F1, F2 are probability measures with support contained in [0, 1]|S|,

F1([0, 1]
|S|)− F2([0, 1]

|S|) = 0 (F.264)

= Fdiff

(
[0, 1]|S|

)
(F.265)

= F+
(
[0, 1]|S|

)
− F−

(
[0, 1]|S|

)
. (F.266)

Therefore, F+
(
[0, 1]|S|

)
= F−

(
[0, 1]|S|

)
. Furthermore, they both equal TV (D1,D2) > 0

by the definition of total variation distance for probability measures. Let probability
measures F+

renorm, F
−
renorm be the renormalized versions of the non-negative measures

F+, F−; renormalization is possible because both measures assign finite positive probability
to [0, 1]|S|.

Let γ ∈ (0, 1) and let s be arbitrary. Let f(R) := 1−γ
γ

(
V ∗
R (s, γ)−R(s)

)
.

∣∣PowerD1(s, γ)− PowerD2(s, γ)
∣∣ (F.267)

=

∣∣∣∣∣
∫
[0,1]|S|

f(R) dF1(R)−
∫
[0,1]|S|

f(R) dF2(R)

∣∣∣∣∣ (F.268)

=

∣∣∣∣∣
∫
[0,1]|S|

f(R)
(
dF1(R)− dF2(R)

)∣∣∣∣∣ (F.269)
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=

∣∣∣∣∣
∫
[0,1]|S|

f(R) dFdiff(R)

∣∣∣∣∣ (F.270)

=

∣∣∣∣∣
∫
[0,1]|S|

f(R)
(
dF+(R)− dF−(R)

)∣∣∣∣∣ (F.271)

=

∣∣∣∣∣F+
(
[0, 1]|S|

)
E

R∼F+
renorm

[
f(R)

]
− F−

(
[0, 1]|S|

)
E

R∼F−
renorm

[
f(R)

]∣∣∣∣∣ (F.272)

=TV (D1,D2)

∣∣∣∣∣ E
R∼F+

renorm

[
f(R)

]
− E

R∼F−
renorm

[
f(R)

]∣∣∣∣∣ (F.273)

≤TV (D1,D2) . (F.274)

Equation (F.272) follows by the definitions of F+
renorm, F

−
renorm. Equation (F.273) follows

from the fact that F+
(
[0, 1]|S|

)
= F−

(
[0, 1]|S|

)
= TV (D1,D2) > 0. Equation (F.274)

follows from the fact that f is bounded [0, 1], since its domain is [0, 1]|S|. Then eq. (F.263)
holds.

Since eq. (F.263) holds for all γ ∈ (0, 1), it also holds in the limits γ → 0 and γ → 1.

Conjecture F.256 (Improved total variation bound). Let F1,v(v) be the optimal value
cdf of D1 at state s and discount rate γ; similarly define F2,v(v). The bound of eq. (F.263)
can be improved to

TV (D1,D2)max

∫ 1

F−1
1,v (1−TV(D1,D2))

v dF+
renorm(v), 1−

∫ F−1
2,v (TV(D1,D2))

0
v dF−

renorm(v)

 .

The bound of proposition F.255 is sharp; suppose D1 puts probability 1 on the all-1
reward function, while D2 puts probability 1 on the all-0 reward function. Then in any
mdp, at any s and for any γ ∈ [0, 1],

∣∣PowerD1(s, γ)− PowerD2(s, γ)
∣∣ = |1− 0| = 1 = TV (D1,D2) . (F.275)

Theorem F.257 (PowerDbound difference bounded by Wasserstein 1-distance). Let
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D1,D2 be any bounded reward function distributions.

∣∣PowerD1(s, γ)− PowerD2(s, γ)
∣∣ ≤W1 (D1,D2) . (F.276)

Proof. Suppose γ ∈ (0, 1) and once again let f(R) := 1−γ
γ

(
V ∗
R (s, γ)−R(s)

)
. We first

show that f has Lipschitz constant 1. Let Ra, Rb ∈ R|S|; without loss of generality,
suppose V ∗

Ra
(s, γ) ≥ V ∗

Rb
(s, γ).

∣∣f(Ra)− f(Rb)
∣∣ = 1− γ

γ

∣∣∣∣∣ max
fa∈F(s)

(
fa(γ)− es

)⊤
ra − max

fb∈F(s)

(
fb(γ)− es

)⊤
rb

∣∣∣∣∣ (F.277)

≤ 1− γ
γ

∣∣∣∣∣ max
fa∈F(s)

(
fa(γ)− es

)⊤
ra −

(
fa(γ)− es

)⊤
rb

∣∣∣∣∣ (F.278)

=
1− γ
γ

∣∣∣∣∣ max
fa∈F(s)

(
fa(γ)− es

)⊤
(ra − rb)

∣∣∣∣∣ (F.279)

≤ 1− γ
γ

∥∥fa(γ)− es
∥∥
1
∥ra − rb∥1 (F.280)

= ∥ra − rb∥1 . (F.281)

Equation (F.278) follows because fb was optimal for rb, and so (fa(γ)− es)
⊤rb ≤ (fb(γ)−

es)
⊤rb. Equation (F.280) is a simple application of the Cauchy-Schwarz inequality.

Equation (F.281) follows because proposition D.8 shows that ∀f ∈ F(s) :
∥∥f(γ)∥∥

1
= 1

1−γ ,
and es is a unit vector. Therefore, f has Lipschitz constant 1.

We now show the desired inequality.

∣∣PowerD1(s, γ)− PowerD2(s, γ)
∣∣ (F.282)

=

∣∣∣∣∣
∫
[0,1]|S|

f(R)
(
dF1(R)− dF2(R)

)∣∣∣∣∣ (F.283)

=

∣∣∣∣∣
∫
[0,1]|S|

f(R) d(F1 − F2)(R)

∣∣∣∣∣ (F.284)
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≤

∣∣∣∣∣∣∣∣∣ sup
flip :R|S| →R,

flip has minimal Lipschitz constant ≤ 1

∫
[0,1]|S|

flip(R) d(F1 − F2)(R)

∣∣∣∣∣∣∣∣∣ (F.285)

=W1(D1,D2). (F.286)

Equation (F.285) follows because f has Lipschitz constant 1 (and so its minimal constant
is at most 1). Equation (F.286) follows by the dual formulation of Wasserstein 1-distance
(which is applicable since both distributions have bounded support).

Theorem F.258 (Optimality probability difference bounded by total variation distance).
Let D1,D2 be any reward function distributions. Let F ⊆ F(s).

∣∣PD1
(F, γ)− PD2

(F, γ)
∣∣ ≤ TV (D1,D2) . (F.287)

Proof. Let D1 and D2 have probability measures F1 and F2.

∣∣PD1
(F, γ)− PD2

(F, γ)
∣∣ := ∣∣∣∣F1

(
supp

(
F (γ) ≥ F(s, γ)

))
− F2

(
supp

(
F (γ) ≥ F(s, γ)

))∣∣∣∣
(F.288)

≤ sup
B∈B(R|S|)

∣∣F1 (B)− F2 (B)
∣∣ (F.289)

=: TV (D1,D2) . (F.290)

Equation (F.289) follows because supp
(
F (γ) ≥ F(s, γ)

)
=
⋃

f∈F supp
(
f(γ) ≥ F(s, γ)

)
is the finite union of closed sets (lemma F.42), and therefore supp

(
F (γ) ≥ F(s, γ)

)
is a

Borel set.

However, fig. F.43 shows that optimality probability cannot be bounded by Wasserstein
distance.

Taken together, these results show that strict PowerDbound-seeking and optimality prob-
ability inequality holds within a TV neighborhood in the space of reward function
distributions, and that one action seeks strictly more PowerDbound than another action
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1 2

stay

Figure F.43: Let ϵ > 0. If D1 assigns probability 1 to s 7→ ϵ
21s=s1 and D2 assigns

probability 1 to s 7→ ϵ
21s=s2 , then W1(D1,D2) = ϵ. However, PD1

(s1, stay, .5) = 1 while
PD2

(s1, stay, .5) = 0.

in a 1-Wasserstein neighborhood of reward function distributions. In particular, the strict
inequality conditions of proposition 5.25 and theorem 5.29 hold within TV neighborhoods
of distributions which are finite mixtures of bounded continuous iid reward function
distributions.

Conjecture F.259 (Close D1, D2 induce similar dau,norm
D metrics). Let D1,D2 be bounded

reward function distributions. sup∆a,∆b∈∆(S)

∣∣∣dau,norm
D1

(
∆a,∆b | γ

)
− dau,norm

D2

(
∆a,∆b | γ

)∣∣∣ ≤
W1(D1,D2), where W1 is the first Wasserstein distance on R|S|.

F.11.1 Distributional transformations

Positive affine transformation of D allows generalization of our results to other bounds, as
optimal policy is invariant to positive affine transformation of the reward function. Item 3
of proposition F.260 can be viewed as proving Turner et al. [97]’s proposition 4, in the
limit of infinitely many draws from the auxiliary reward function distribution D′.

Proposition F.260 (How positive affine transformation affects optimality probability,
Power, and normalized au distance). Let γ ∈ [0, 1] and let D′ be any bounded reward
function distribution. Let m > 0, b ∈ R and let b ∈ R|S| be the ones vector times the scalar
b. mD′ + b is the pushforward distribution over reward functions formed by applying the
positive affine transformation f(r) := mr+ b to D′.

1. Let F ⊆ F(s). PmD′+b (F, γ) = PD′ (F, γ).

2. PowermD′+b (s, γ) = m · PowerD′ (s, γ) + b.

3. Let ∆1,∆2 ∈ ∆(S). dau,norm
mD′+b

(
∆1,∆2 | γ

)
= m · dau,norm

D′
(
∆1,∆2 | γ

)
.
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Proof. Let D′ have probability measure F ′ and let mD′ + b have probability measure
F ′

aff.

Item 1: let γ ∈ (0, 1). By definition 5.9,

PmD′+b (F, γ) := P
R∼mD′+b

(
∃fπ ∈ F : π ∈ Π∗ (R, γ)

)
(F.291)

= P
R∼mD′+b

(
∃fπ ∈ F : π ∈ Π∗

(
m−1(R− b), γ

))
(F.292)

= P
R′∼D′

(
∃fπ ∈ F : π ∈ Π∗ (R′, γ

))
(F.293)

=: PD′ (F, γ) . (F.294)

Equation (F.292) holds because optimal policy sets are invariant to positive affine trans-
formation m−1(R− b) of the reward function.

Since this equality holds for all γ ∈ (0, 1), it holds in the limits γ → 0 and γ → 1 as well.

Item 2: let γ ∈ (0, 1).

V ∗
mD′+b (s, γ) (F.295)

=

∫
R|S|

V ∗
R (s, γ) dF ′

aff(R) (F.296)

=

∫
R|S|

V ∗
R (s, γ) dF ′(m−1(R− b)) (F.297)

=

∫
R|S|

V ∗
mR′+b (s, γ) dF

′(R′) (F.298)

=

∫
R|S|

mV ∗
R′ (s, γ) +

b

1− γ dF ′(R′) (F.299)

= m · V ∗
D′ (s, γ) +

b

1− γ . (F.300)

Equation (F.297) follows by the definition of a pushforward measure. Equation (F.298)
follows by substituting R′ := m−1(R − b). Equation (F.299) follows because optimal
policies are invariant to positive affine transformations.
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PowermD′+b (s, γ) =
1− γ
γ

(
V ∗
mD′+b (s, γ)− E

R∼mD′+b

[
R(s)

])
(F.301)

=
1− γ
γ

(
mV ∗

D′ (s, γ) +
b

1− γ −m E
R∼D′

[
R(s)

]
− b
)

(F.302)

=
1− γ
γ

(
mV ∗

D′ (s, γ)−m E
R∼D′

[
R(s)

]
+

bγ

1− γ

)
(F.303)

= m · PowerD′ (s, γ) + b. (F.304)

Equation (F.301) and eq. (F.304) follow by lemma D.43 since γ ∈ (0, 1). Equation (F.302)
follows by eq. (F.300) and the linearity of expectation.

Finally, eq. (F.304) holds in the limits as γ → 0 and γ → 1.

Item 3: let γ ∈ [0, 1).

daumD′+b

(
∆,∆′ | γ

)
(F.305)

=

∫
R|S|

∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣dF ′
aff(R) (F.306)

=

∫
R|S|

∣∣∣∣ Es∼∆

[
V ∗
R (s, γ)

]
− E

s′∼∆′

[
V ∗
R

(
s′, γ

)]∣∣∣∣dF ′(m−1(R− b)) (F.307)

=

∫
R|S|

∣∣∣∣ Es∼∆

[
V ∗
mR′+b (s, γ)

]
− E

s′∼∆′

[
V ∗
mR′+b

(
s′, γ

)]∣∣∣∣ dF ′(R′) (F.308)

=

∫
R|S|

∣∣∣∣∣ Es∼∆

[
mV ∗

R′ (s, γ) +
b

1− γ

]
− E

s′∼∆′

[
mV ∗

R′
(
s′, γ

)
+

b

1− γ

]∣∣∣∣∣dF ′(R′) (F.309)

= m · dauD′
(
∆,∆′ | γ

)
. (F.310)

Equation (F.307) follows by the definition of a pushforward measure. Equation (F.308)
follows via substitution R′ := m−1(R − C). Equation (F.309) follows because optimal
policy is invariant to positive affine transformation of the reward function.

dau,norm
mD′+b

(
∆1,∆2 | γ

)
:= lim

γ∗→γ
(1− γ∗)daumD′+b

(
∆,∆′ | γ

)
(F.311)
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= m · lim
γ∗→γ

(1− γ∗)dauD′
(
∆,∆′ | γ

)
(F.312)

= m · dau,norm
D′

(
∆1,∆2 | γ

)
. (F.313)

Equation (F.312) holds by eq. (F.310).

Equation (F.313) shows the desired result for all γ ∈ [0, 1). Equation (F.313) holds in the
limit γ → 1, and so the relationship holds for all γ ∈ [0, 1].

F.11.1.1 Power inequalities under certain distributional transforma-
tions

Proposition F.261 (How non-affine transformations affect Power). Let γ ∈ (0, 1), let s
be a state, and let D′ be any bounded reward function distribution. Suppose g : R|S| → R|S|

is measurable and is such that ∀r ∈ supp(D′) :

∀f ∈ Fnd(s) : f(γ)
⊤r ≥ f(γ)⊤g(r). (F.314)

Then PowerD′ (s, γ) ≥ Powerg(D′) (s, γ). This inequality is strict iff eq. (F.314) is strict
for a subset of supp(D′) with positive measure under D′.

A similar statement holds when all of the above inequalities are flipped.

Proof. Let D′ have probability measure F ′. Let g(D′) be the pushforward probability
distribution induced by applying measurable function g to D′, and let F ′

g be its probability
measure.

V ∗
D′ (s, γ) :=

∫
R|S|

max
f∈F(s)

f(γ)⊤r dF ′(r) (F.315)

=

∫
supp(D′)

max
f∈Fnd(s)

f(γ)⊤r dF ′(r) (F.316)

≥
∫
supp(D′)

max
f∈Fnd(s)

f(γ)⊤g(r) dF ′(r) (F.317)

=

∫
supp(g(D′))

max
f∈Fnd(s)

f(γ)⊤r′ dF ′(g−1(r′)) (F.318)
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=

∫
supp(g(D′))

max
f∈Fnd(s)

f(γ)⊤r′ dF ′
g(r

′) (F.319)

= V ∗
g(D′) (s, γ) . (F.320)

Equation (F.316) and eq. (F.320) follow by lemma D.39 and the definition of supp(D′).
Equation (F.317) follows by our assumptions on g. Equation (F.318) holds by the
substitution r′ := g(r). Equation (F.319) follows by the definition of a pushforward
measure F ′

g.

Integration is invariant to strict optimal value decrease on a zero-measure subset of
supp(D′), but not to strict optimal value decrease on a zero-measure subset of supp(D′).
Therefore, eq. (F.317) is strict iff eq. (F.314) is strict for a subset of supp(D′) with positive
measure under D′.

Since PowerD′ (s, γ) =
1− γ
γ

(
V ∗
D′(s, γ)− ER∼D′

[
R(s)

])
by lemma D.43,

PowerD′ (s, γ) ≥ Powerg(D′) (s, γ) ,

with strict inequality iff eq. (F.314) is strict for a subset of supp(D′) with positive measure
under D′.

The proof for reward-increasing g follows similarly.

Proposition F.262 (How non-affine transformations affect optimality probability). Let
γ ∈ (0, 1), let s be a state, let F ⊆ F(s), and let D′ be any bounded reward function
distribution. Suppose g : R|S| → R|S| is measurable and is such that ∀r ∈ supp(D′) :

∀f ∈ F : f(γ)⊤r ≥ f(γ)⊤g(r), (F.321)

∀f ′ ∈ Fnd(s) \ F : f ′(γ)⊤r ≤ f ′(γ)⊤g(r). (F.322)

Then PD′ (F, γ) ≥ Pg(D′) (F, γ). Equality holds if eq. (F.321) and eq. (F.322) are equalities
for a subset of supp(D′) with measure 1 under D′.

A similar statement holds when all of the above inequalities are flipped.
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Proof. Let D′ have probability measure F ′. Let g(D′) be the pushforward probability
distribution induced by applying measurable function g to D′, and let F ′

g be its probability
measure.

PD′ (F, γ) =

∫
R|S|

1maxf∈F f(γ)⊤r=maxf ′∈Fnd(s) f
′(γ)⊤r dF

′(r) (F.323)

=

∫
supp(D′)

1maxf∈F f(γ)⊤r=maxf ′∈Fnd(s)\F f ′(γ)⊤r dF
′(r) (F.324)

≥
∫
supp(D′)

1maxf∈F f(γ)⊤g(r)=maxf ′∈Fnd(s)\F f ′(γ)⊤g(r) dF
′(r) (F.325)

=

∫
supp(g(D′))

1maxf∈F f(γ)⊤r′=maxf ′∈Fnd(s)\F f ′(γ)⊤r′ dF
′(g−1(r′)) (F.326)

=

∫
supp(g(D′))

1maxf∈F f(γ)⊤r′=maxf ′∈Fnd(s)\F f ′(γ)⊤r′ dF
′
g(r

′) (F.327)

=

∫
supp(g(D′))

1maxf∈F f(γ)⊤r′=maxf ′∈Fnd(s) f
′(γ)⊤r′ dF

′
g(r

′) (F.328)

= Pg(D′) (F, γ) . (F.329)

Equation (F.323) and eq. (F.329) follow by lemma D.42. Equation (F.324) and eq. (F.328)
follow by lemma F.62 (1) and the definition of supp(D′). Equation (F.325) follows because
our assumptions on g imply that

∀r ∈ supp(D′) : 1maxf∈F f(γ)⊤r=maxf ′∈Fnd(s)\F f ′(γ)⊤r ≥ 1maxf∈F f(γ)⊤g(r)=maxf ′∈Fnd(s)\F f ′(γ)⊤g(r).

Equation (F.326) follows by the substitution r′ := g(r). Equation (F.327) follows by the
definition of the pushforward measure F ′

g.

Integration is invariant to strict optimal value decrease on a zero-measure subset of
supp(D′). Therefore, eq. (F.317) is an equality if eq. (F.321) and eq. (F.322) are equalities
for a subset of supp(D′) with measure 1 under D′.

A similar proof follows when the theorem statement’s inequalities are flipped.

Remark. Unlike proposition F.261, proposition F.262 does not have a strict inequality
if-and-only-if. This is because even if g strictly increases return for f ∈ F , that increase
may be insufficient to change the optimality status of f ∈ F for any r ∈ supp(D′).
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Proposition F.261 and proposition F.262 significantly expand the initial PowerDbound-
seeking results to g(D) which distribute reward independently and non-identically across
states.

Reconsider proposition 5.25. For e.g. the max-entropy D over [0, 1]|S|, at s′, action a

is strictly PowerDbound-seeking and more probable under optimality compared to a′.
Proposition F.261 and proposition F.262 show that by e.g. doubling reward at green
states and zeroing the reward at two of the red states (call this distribution g(D)), the
same Powerg(D)-seeking and optimality probability statements hold.

F.11.2 Fnd symmetry

Definition F.263 (Fnd(s) symmetry group). Let Sn be the permutation group on n

elements. For any state s,

SFnd(s)
:=
{
ϕ ∈ S|S| | ϕ · Fnd(s) = Fnd(s)

}
. (F.330)

Proposition F.264 (SFnd(s) is a subgroup of S|S|).

Proof. Let s be any state. By definition F.263, SFnd(s) ⊆ S|S|. We show that SFnd(s)

satisfies the group axioms under permutation composition.

Identity. Let ϕid ∈ S|S| be the identity permutation. Then clearly ϕid
(
Fnd(s)

)
=

Fnd(s), so ϕid ∈ SFnd(s).

Composition. Let ϕ1, ϕ2 ∈ S|S|. Then

(ϕ1 ◦ ϕ2)
(
Fnd(s)

)
= ϕ1

(
ϕ2
(
Fnd(s)

))
(F.331)

= ϕ1

(
ϕ2
(
Fnd(s)

))
(F.332)

= ϕ1
(
Fnd(s)

)
(F.333)

= Fnd(s), (F.334)

and so (ϕ1 ◦ ϕ2) ∈ SFnd(s).
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Inverse. Let ϕ ∈ SFnd(s). ϕ · Fnd(s) = Fnd(s) implies that Fnd(s) = ϕ−1
(
Fnd(s)

)
, and

so ϕ−1 ∈ SFnd(s).

Therefore, SFnd(s) is a group.

Lemma F.265 (If ϕ · Fnd(s) = Fnd(s
′), then ϕ(s) = s′).

Proof. ϕ · Fnd(s) = Fnd(s
′) implies that{

lim
γ→0

Pϕf(γ) | f ∈ Fnd(s)

}
=

{
lim
γ→0

f(γ) | f ∈ Fnd(s
′)

}
. (F.335)

But the right-hand side equals {es′} by the definition of a state visit distribution function
f ∈ F(s′) (definition 5.3). The left-hand side also equals {es′}, implying that Pϕes = es′

and so ϕ(s) = s′.

Proposition F.266 (PowerDbound across certain distributional symmetries). Let s, s′

be states. If ∃ϕ ∈ S|S| such that ϕ · Fnd(s) = Fnd(s
′), then PowerDbound (s, γ) =

Powerϕ·Dbound

(
s′, γ

)
.

Proof. Let γ∗ ∈ (0, 1), F :=
{
f(γ∗)− es | f ∈ Fnd(s)

}
, F ′ :=

{
f(γ∗)− es′ | f ∈ Fnd(s

′)
}
.

PowerDbound (s, γ) (F.336)

:= lim
γ∗→γ

1− γ∗
γ∗

E
r∼Dbound

[
max
f∈F(s)

(
f(γ∗)− es

)⊤
r

]
(F.337)

= lim
γ∗→γ

1− γ∗
γ∗

E
r∼Dbound

[
max

f∈Fnd(s)

(
f(γ∗)− es

)⊤
r

]
(F.338)

= lim
γ∗→γ

1− γ∗
γ∗

E
r∼ϕ·Dbound

[
max
f ′∈ϕ·F

f ′⊤r

]
(F.339)

= lim
γ∗→γ

1− γ∗
γ∗

E
r∼ϕ·Dbound

[
max
f ′∈F ′

f ′⊤r

]
(F.340)

=: Powerϕ·Dbound

(
s′, γ

)
. (F.341)
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Equation (F.338) follows because lemma D.39 shows that optimal value is invariant to
restriction to Fnd. Let g : R → R be the identity function, and let f(B | Dbound) :=

Er∼Dbound

[
g
(
maxf∈B f⊤r

)]
. Equation (F.339) follows by applying lemma D.22 to con-

clude that f(F | Dbound) = f(ϕ · F | ϕ · Dbound).

ϕ · F =
{
Pϕf(γ

∗)−Pϕes | f ∈ Fnd(s)
}
= F ′ by the assumptions on ϕ and the fact that

ϕ(s) = s′ by lemma F.265. Therefore, eq. (F.340) follows.

Since this holds for all γ ∈ (0, 1), it holds in the limits γ → 0 and γ → 1 as well.

1 2

3 4

5

ϕ

Figure F.44: By proposition F.266, ∀γ ∈ [0, 1] : PowerDX-iid (s1, γ) =
PowerDX-iid (s2, γ). In general, PowerDbound (s3, γ) = Powerϕ·Dbound (s3, γ).

F.11.3 State similarity

Definition F.267 (State similarity). State s is similar to s′ if there exists a stochastic
model isomorphism ϕ such that ϕ(s) = s′. If all states are similar, the model is vertex
transitive.

When the dynamics are deterministic, definition F.267 reduces to the standard graph-
theoretic vertex similarity, as shown in fig. F.45.

Corollary F.268 (State similarity criterion). s and s′ are similar via permutation ϕ iff
F(s′) = ϕ · F(s).

Proof. Apply theorem F.113.
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Figure F.45: The tetrahedral graph is vertex transitive.

Lemma F.269 (Similar states have similar non-dominated visit distribution functions).
If s and s′ are similar via permutation ϕ, then Fnd(s

′) = ϕ · Fnd(s).

Proof. State similarity implies visit distribution function similarity (corollary F.268), so
F(s′) =

{
Pϕf | f ∈ F(s)

}
. Without loss of generality, suppose that Pϕf is non-dominated

at s′; this implies Pϕf is strictly optimal for reward function R at discount rate γ. Then

(Pϕf(γ))
⊤r > max

f ′∈F(s′)\{Pϕf}
f ′(γ)⊤r. (F.342)

f(γ)⊤(Pϕ−1r) > max
f ′∈F(s)\{f}

f ′(γ)⊤(Pϕ−1r). (F.343)

Then f is strictly optimal at state s for reward function Pϕ−1r at discount rate γ, and
thus f ∈ Fnd(s).

Proposition F.270 (Similar states have equal PowerDbound). If s and s′ are similar,
∀γ ∈ [0, 1] : PowerDX-iid (s, γ) = PowerDX-iid

(
s′, γ

)
.

Proof. Suppose ϕ·F(s) = F(s′). Apply lemma F.269 to conclude that ϕ·Fnd(s) = Fnd(s
′).

Then apply proposition F.266 to conclude the desired equality (with identical distribution
ensuring that ϕ · DX-iid = DX-iid).

Corollary F.271 (Vertex transitivity implies PowerDX-iid is equal everywhere). If the
model is vertex transitive, then all states have equal PowerDX-iid.

Figure F.44 shows that non-dominated similarity (proposition F.266) allows us to conclude
PowerDbound equality in a greater range of situations than does proposition F.270.
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F.11.4 Strong visitation distribution set similarity

Definition F.272 (Strong visitation distribution set similarity). Let F, F ′ ∈ F(s). We
say that F and F ′ are strongly similar if they are similar via a permutation ϕ ∈ SFnd(s).

Strong visitation distribution similarity depends on the totality of Fnd(s). We aren’t just
interested in whether F ′ = ϕ · F — we want to know whether F and F ′ “interact with
Fnd(s) in the same way.”

Proposition F.273 (Similar visit distribution functions have the same optimality prob-
ability). If F, F ′ ⊆ F(s) are strongly similar via permutation ϕ, then PDany

(F, γ) =

Pϕ·Dany

(
F ′, γ

)
.

Proof. Let γ ∈ (0, 1).

PD (F, γ) = E
r∼Dany

[
1maxf∈F f(γ)⊤r≥maxfi∈Fnd(s) f

i(γ)⊤r

]
(F.344)

= E
r∼ϕ·Dany

[
1maxf ′∈F ′ f ′(γ)⊤r≥maxfi∈Fnd(s) f

i(γ)⊤r

]
(F.345)

= Pϕ·Dany

(
F ′, γ

)
. (F.346)

Equation (F.344) follows by lemma D.42. Let g(b1, b2) := 1b1≥b2 and f(B1, B2 | Dany) :=

Er∼Dany

[
g
(
maxb1∈B1 b

⊤
1 r,maxb2∈B2 b

⊤
2 r
)]

. Then by lemma D.22 and the definition of

strong similarity,

f
(
F (γ),Fnd(s, γ) | Dany

)
= f

(
ϕ · F (γ), ϕ · Fnd(s, γ) | ϕ · Dany

)
= f

(
F ′(γ),Fnd(s, γ) | ϕ · Dany

)
.

This implies eq. (F.345).

The γ = 0 and γ = 1 cases hold via the appropriate limits.

The existence of such a stochastic model isomorphism ϕ on the full model is sufficient
(but not necessary) for strong similarity (see fig. F.46).
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1

Figure F.46: Gray actions are only taken by the policies of dominated visit distribution
functions. Considered as singleton sets, all four non-dominated visitation distribution
functions are strongly similar. Conjecture F.274 allows us to conclude they all have equal
optimality probability, even though this is not obvious just from looking at the full model.
Indeed, the left-most and right-most trajectories would not be classified as “similar” under
a definition where ϕ has to be a stochastic model isomorphism.

Figure F.47 shows that vertex transitivity does not imply that all visitation distributions
at a state are strongly similar to each other. By theorem F.113, vertex transitivity shows
that all states have similar visitation distribution function sets, but not that all visit
distribution functions within each set are strongly similar to each other.

Figure F.47: The complete directed graph on two vertices is vertex transitive, but each
self-loop is not strongly similar to each state’s other visit distribution functions.

Conjecture F.274 (Strongly similar non-dominated visit distributions and determinism
imply no instrumental convergence). If the environment is deterministic and all non-
dominated visitation distributions of a state are strongly similar, then no instrumental
convergence exists downstream of that state.

F.12 Orbits

Lemma F.275 (Trivial satisfaction of ≥n
most). Let f : Θ→ R, and suppose Θ is a subset

of a set acted on by Sd. ∀n ≥ 0 : f(θ) ≥n
most: Θ f(θ).

Proof. Because f(θ) > f(θ) is impossible, both cardinalities in definition E.10 are zero,
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and so the claim holds trivially.

Conjecture F.276 (Lower-bound on joint ≥most: Dany
agreement strength).

Suppose
(
fi ≥Ci

most: Dany
f ′i

)
i∈I

for countable index set I. Then for all Dbound, the pro-

portion of the Dϕ
bound ∈

(
S|S| · Dbound

)
which satisfy

∧
i∈I fi

(
Dϕ

bound

)
≥ f ′i

(
Dϕ

bound

)
is

greater than 1−∑i∈I(1− Ci
Ci+1).

Proposition F.277 (Orbit tendencies lower-bound measure under DX-iid). Suppose
f, g : Rd → R are measurable, let n be a positive integer, and suppose f(Rd) ≥n

most: Dany

g(Rd). For u ∈ Rd, let Of<g(u) :=
{
u′ ∈ Sd · u | f(u′) < g(u′)

}
. Suppose there exist

ϕ1, . . . , ϕn ∈ Sd such that for all u ∈ Rd : ϕi · Of<g(u) ⊆ (Sd · u) \ Of<g(u), and when
i ̸= j, ϕi ·Of<g(u) and ϕj ·Of<g(u) are disjoint.

Then for any iid distribution D ∈ ∆(Rd), Pu∼D
(
f(u) ≥ g(u)

)
≥ n

n+1 .

Proof. f and g are measurable, and thus f − g is measurable, and the set (−∞, 0) is
measurable in R, and so (f − g)−1

(
(−∞, 0)

)
is measurable. But this preimage equals

X :=
{
u ∈ Rd | f(u) < g(u)

}
, and so X is measurable.

Let D have probability measure F .

Pu∼D
(
f(u) ≥ g(u)

)
:= F

({
u ∈ Rd | f(u) ≥ g(u)

})
(F.347)

≥ F (∪ni=1ϕi ·X) (F.348)

=

n∑
i=1

F (ϕi ·X) (F.349)

=

n∑
i=1

F (X) (F.350)

= nF (X). (F.351)

Equation (F.347) is well-defined because the right-hand set is measurable for the same
reason that X is measurable. Equation (F.348) holds because assumption on ϕi ensures
that ϕi ·X ⊆

{
u ∈ Rd | f(u) ≥ g(u)

}
.
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If ϕi ̸= ϕj , then suppose u,u′ ∈ Rd. If they are not in the same orbit under Sd, then
ϕi ·u ̸= ϕj ·u′ by the definition of an orbit. Otherwise, the inequality holds by the assumed
disjointness. Therefore the elements of

{
ϕi ·X | i = 1, . . . , n

}
are pairwise disjoint, and

so eq. (F.349) holds by the finite additivity of probability measures on disjoint sets.
Equation (F.350) follows because probability measure F is iid across states and so is
invariant to permutation of X, and because permutations are measurable transformations
with unitary Jacobian determinant.

Since X ∪
{
u ∈ Rd | f(u) ≥ g(u)

}
= Rd and the two sets are disjoint, their probability

sums to 1 and so Pu∼D
(
f(u) ≥ g(u)

)
≥ n

n+1 .

Conjecture F.278 (Generalized measure lower-bound for orbit tendencies). Suppose
f, g : Rd → R are measurable, let C ≥ 0, and suppose f(Rd) ≥C

most: Dany
g(Rd). Then for

all DX-iid, Pu∼DX-iid

(
f(u) ≥ g(u)

)
≥ C

C+1 .

F.12.1 Blackwell versus average optimality

Turner et al. [99]’s theorem 5.29 applies to average-optimal policies (γ = 1), but not
to Blackwell-optimal policies. Therefore, their results are inapplicable to discount rates
γ ≈ 1. Proposition F.281 shows corollary F.283, which shows that theorem 5.29 holds
when γ ≈ 1 for almost all reward function orbits.

Definition F.279 (Visit distribution functions which induce rsds). Let D ⊆ RSD (s).
The set of visit distribution functions which induce d ∈ D is:

F(s | rsd ∈ D) :=
{
f ∈ F(s) | Norm (f , 1) ∈ D

}
. (F.352)

PDany
(D, 1) := PDany

(
F(s | rsd ∈ D), 1

)
.

Lemma F.280 (Average optimality probability is greater than Blackwell optimality
probability). Let D ⊆ RSD (s). PDany

(
F(s | rsd ∈ D), 1

)
≤ PDany

(D, average).

Proof. If some f ∈ F(s | rsd ∈ D) is Blackwell optimal for reward function R ∈ RS ,
then Norm (f , 1) is average optimal for R – i.e. Blackwell optimality at a state implies
average optimality at a state [68] . Therefore, the set of reward functions for which
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some f ∈ F(s | rsd ∈ D) is Blackwell optimal is a subset of the set of reward functions
for which some d ∈ D is average optimal. Then the desired inequality follows by the
monoticity of probability.

Proposition F.281 (Average optimality probability equals Blackwell optimality proba-
bility for almost all reward functions). Let D ⊆ RSD (s). For almost all reward functions
r ∈ R|S|, PDr

(D, 1) = PDr
(D, average) (where Dr is the degenerate probability distribution

which places probability 1 on r).

Proof. Lemma F.280 shows that PDr
(D, 1) ≤ PDr

(D, average). So inequality only holds
if PDr

(D, 1) < PDr
(D, average). Since Dr is a degenerate distribution, this implies that

PDr
(D, 1) = 0 < 1 = PDr

(D, average). D is non-empty because 1 = PDr
(D, average);

in particular, there must exist dA ∈ D which is average optimal for r but which is not
induced by a Blackwell optimal policy for r.

Let DB :=
{
dπ,s | π ∈ Π∗ (r, 1)

}
be the set of rsds induced by Blackwell optimal policies

for r. Since every reward function has a Blackwell optimal policy [11], DB must be
non-empty. Let dB ∈ DB be one of its elements.

We know that dA ̸∈ DB, and so dA ̸= dB. Since Blackwell optimal policies must be
average optimal [68], dA and dB are both average optimal. By corollary D.13,{

r ∈ R|S| |
∣∣∣∣∣ argmax
d∈RSD(s)

d⊤r

∣∣∣∣∣ > 1

}

has measure zero under all absolutely continuous measures on R|S|. In particular, this set
has zero Lebesgue measure.

Corollary F.282 (Average optimality probability equals Blackwell optimality probability
for Dcont). Let D ⊆ RSD (s). PDcont

(D, 1) = PDcont
(D, average).

Proof.

PDcont (D, 1) := P
R∼Dcont

(
∃fπ ∈ F(s | rsd ∈ D) : π ∈ Π∗ (R, 1)

)
(F.353)
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= E
r∼Dcont

[
PDr

(D, 1)
]

(F.354)

= E
r∼Dcont

[
PDr

(D, 1, average)
]

(F.355)

= PDcont (D, average) . (F.356)

By proposition F.281, almost all r ∈ R|S| agree that PDr
(D, 1) = PDr

(D, average). Since
Dcont is absolutely continuous with respect to the Lebesgue measure, it also assigns zero
probability measure to disagreeing reward functions. Then eq. (F.355) follows.

Corollary F.283 (Average optimality probability equals Blackwell optimality probability
for all orbit elements in almost all orbits). Let D ⊆ RSD (s). For almost all r ∈ R|S|, all
Dr′ ∈ S|S| · Dr satisfy PDr′

(D, 1) = PDr′
(D, average).

Proof. By proposition F.281, the set X :=
{
r ∈ R|S| | PDr

(D, 1) ̸= PDr
(D, average)

}
has

Lebesgue measure zero. Let O :=
{
r′ ∈ R|S| | ∃r ∈ S|S| · r′ : r ∈ X

}
be the set of reward

functions whose orbits contain an element of X. Alternatively, O =
{
∪ϕ∈S|S|Pϕr | r ∈ X

}
.

Let µ be the Lebesgue measure; we want to show that µ(O) = 0.

µ (O) := µ
(
∪ϕ∈S|S|

{
Pϕr | r ∈ X

})
(F.357)

= µ
(
∪ϕ∈S|S|ϕ ·X

)
(F.358)

≤
∑

ϕ∈S|S|

µ (ϕ ·X) (F.359)

=
∑

ϕ∈S|S|

µ (X) (F.360)

= |S|! · 0 (F.361)

= 0. (F.362)

Equation (F.359) follows by the union bound. Equation (F.360) follows because per-
mutations have Jacobian determinant 1 and therefore are measure-preserving operators.
Equation (F.361) follows because

∣∣∣S|S|∣∣∣ = |S|! and µ(X) = 0.

Therefore, µ(O) = 0, and so for almost all r ∈ R|S|, all Dr′ ∈ S|S| ·Dr satisfy PDr′
(D, 1) =
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PDr′
(D, average).

1

2

up

3

down

Figure F.48: More states are reachable by going up compared to down. Thus, most orbit
elements of S|S| · es make it strictly Blackwell-optimal to go up, while also most elements
make it (at least weakly) average-optimal to go down. Therefore, the orbit S|S| · es does
not satisfy corollary F.283.

Conjecture F.284 (Appendix F.12.1’s results hold for child-state distributions T (s)
instead of RSD (s)).

Conjecture F.284 will probably be aided by definition F.285, which takes the place of
definition F.279.

Definition F.285 (Visit dist. functions which induce child visit distributions). Let
N ⊆ T (s).

F(s | child distribution ∈ N) :=

{
f ∈ F(s) | lim

γ→0
γ−1

(
f(γ)− es

)
∈ N

}
. (F.363)

PD (N, 0) := PD
(
F(s | child distribution ∈ N), 0

)
.

F.12.2 Power

Conjecture F.286 (Orbit incentives characterization for Power). Let γ ∈ (0, 1). The
following statements are equivalent:

1. PowerDbound ≥most: Dbound
PowerDbound

(
s′, γ

)
.

2. For all continuous bounded iid DX-iid, PowerDX-iid (s, γ) ≥ PowerDX-iid

(
s′, γ

)
.
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3. Fnd(s
′) is similar to a subset of F(s).

Conjecture F.287 (≥most: Dbound is not a complete ordering for the Power of states).

Lastly, a remark motivating the requirement of involution in the copy containment
definition (definition 5.17).

Remark. Lemma D.29 and lemma D.33 require similarity via involution (not just via

permutation). Consider A :=


 0

5

10


 , B :=


10

0

5


 , ϕ := (1 2 3). A is similar to B

via permutation ϕ. However, there is no involution which enforces the similarity.

Furthermore, consider the orbit S3 · De3 =
{
De1 ,De2 ,De3

}
and consider the conditions

of lemma D.29 with g the identity function.

E
r∼De1

[
max
b∈B

b⊤r

]
= 10 > 0 = E

r∼De1

[
max
a∈A

b⊤r

]
,

but the opposite is true for the other two orbit elements. Therefore,

E
r∼Dbound

[
max
a∈A

b⊤r

]
̸≤most: Dbound

E
r∼Dbound

[
max
b∈B

b⊤r

]
.

Proposition F.288 (Nontrivial copy containment guarantee). If B contains n > 1 copies
of A via ϕ1, ..., ϕn, then for any i = 1, ..., n, A ̸= Bi.

Proof. Suppose A = Bi := ϕi ·A for some ϕi. Then consider any j ≠ i (which exists since
n > 1). ϕj ·Bi = ϕj ·A = Bj . But by the set copy definition (definition E.7), ϕj ·Bi = Bi

since j ̸= i. Then Bi = Bj , which contradicts the set copy assumption.

F.13 Featurized utility functions

Consider the case where utility functions over outcomes are featurized : u(o) = feat(o)⊤α,
with feat(o) : {1, . . . , d} → Rnf linearly mapping deterministic outcomes to nf -dimensional
feature vectors. Let F :=

(
feat(o1) · · · feat(od)

)
be the feature matrix. For outcome
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lottery set X ⊆ Rd, F ·X :=
{
Fx | x ∈ X

}
is the left-coset.

For feature weighting α ∈ Rnf , the expected utility of an outcome lottery x ∈ Rd

is then the expected value of the α-weighted combination of each outcome’s features:
x⊤u = x⊤(F⊤α) = (Fx)⊤α. For example, if an agent maximizes expected utility, it
essentially makes decisions according to the available feature vectors of outcomes, and so
instead of looking for copy containment in the outcome lottery sets A,B ⊆ Rd, we can
look for copy containment in the feature vector sets F ·A,F ·B ⊆ Rnf .

Proposition F.289 (Feature-level tendencies guaranteed by featurizations which commute
with outcome symmetries). Let A,B ⊊ Rd, and suppose that B contains a copy of A via
ϕ with permutation matrix Pϕ ∈ Rd×d. Consider featurization F ∈ Rnf×d which maps
each of d outcomes to their nf -feature vectors.

If there exists a feature involution ϕf ∈ Snf
such that Pϕf

F = FPϕ, then F ·B contains
a copy of F ·A via ϕf .

Proof.

ϕf · (F ·A) :=
{
Pϕf

Fa | a ∈ A
}

(F.364)

=
{
FPϕa | a ∈ A

}
(F.365)

⊆
{
Fb | b ∈ B

}
(F.366)

=: F ·B. (F.367)

Equation (F.365) follows by the assumption that Pϕf
F = FPϕ. Equation (F.366) follows

because we assumed that ϕ ·A ⊆ B.

Since ϕf · (F ·A) ⊆ F ·B and ϕf is an involution by assumption, then we conclude that
F ·B contains a copy of F ·A via ϕf .

Conjecture F.290 (Multiple feature copy containment ensured by feature commutation).
Proposition F.289 generalizes to the case with multiple feature involutions ϕf1 , . . . , ϕfn .
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F.14 ϵ-Optimal policies

Turner et al. [99]’s results assume perfectly optimal agents. We now relax that assumption
slightly to ϵ-optimality, although ϵ may be extremely small (and so these results do not
seem very practically interesting). For a more practical extension, see chapter 6’s total
abandonment of the optimality requirement.

Traditionally, ϵ-optimal policies are defined as π such that for all s ∈ S:

V ∗
R (s, γ)− V π

R (s, γ) ≤ ϵ (F.368)

for fixed γ ∈ (0, 1). However, in the state-based reward setting, this is equivalent to(
R(s) + γmax

π′
E

s′∼T (s,π′(s))

[
V π′
R

(
s′, γ

)])
−
(
R(s) + γ E

s′∼T (s,π(s))

[
V π
R

(
s′, γ

)])
≤ ϵ

(F.369)

max
π′

E
s′∼T (s,π′(s))

[
V π′
R

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R

(
s′, γ

)]
≤ γ−1ϵ. (F.370)

To avoid superfluous division by γ, we modify the traditional criterion to

max
π′

E
s′∼T (s,π′(s))

[
V π′
R

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R

(
s′, γ

)]
≤ ϵ. (F.371)

However, since the magnitude of on-policy value often diverges as γ → 1, we instead
consider a discount-averaged per-time step suboptimality of ϵ:

max
π′

E
s′∼T (s,π′(s))

[
V π′
R

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R

(
s′, γ

)]
≤ ϵ

1− γ . (F.372)

Multiplying both sides by 1− γ, we arrive at our definition.

Definition F.291 (ϵ-optimal policy). Let ϵ ≥ 0. Policy π is ϵ-optimal for reward function
R at discount rate γ ∈ [0, 1] when for all s ∈ S,

max
π′

E
s′∼T (s,π′(s))

[
V π′
R, norm

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R, norm

(
s′, γ

)]
≤ ϵ. (F.373)



369

For any fixed γ ∈ (0, 1), the traditional definition (eq. (F.368)) is equivalent to defi-
nition F.291, in that traditional ϵ-optimality is equivalent to definition F.291’s ϵ

γ(1−γ) -
optimality.

Definition F.292 (ϵ-optimal policy set). Let ϵ ≥ 0. The ϵ-optimal policy set for reward
function R at discount rate γ ∈ [0, 1] is

Πϵ (R, γ) :=
{
π ∈ Π | π is ϵ-optimal for R at γ

}
. (F.374)

Remark. When γ ∈ (0, 1), many reward functions may have multiple ϵ-optimal visit dis-
tributions, whereas lemma F.105 shows that continuous distributions place zero probability
on reward functions with multiple optimal visit distributions.

F.14.1 ϵ-optimal PowerDbound

The situation for ϵ-optimal PowerDbound is quite simple.

Definition F.293 (ϵ-optimal policy-generating function). pol : RS × [0, 1] → Π is an
ϵ-optimal policy-generating function when ∀R ∈ RS , γ ∈ [0, 1] : pol (R, γ) ∈ Πϵ (R, γ).

Proposition F.294 (ϵ-optimal PowerDbound bound). Let ϵ ≥ 0 and γ ∈ [0, 1]. Let pol
be an ϵ-optimal policy-generating function. Then for all states s,

PowerDbound (s, γ)− Powerpol
Dbound

(s, γ) ≤ ϵ. (F.375)

Proof.

PowerDbound (s, γ)− Powerpol
Dbound

(s, γ) (F.376)

= E
R∼Dany

[
max
π′

E
s′∼T (s,π′(s))

[
V π′
R, norm

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R, norm

(
s′, γ

)]]
(F.377)

≤ E
R∼Dany

[ϵ] (F.378)

= ϵ. (F.379)
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Equation (F.377) follows from lemma F.11 and definition D.5 of Powerpol
Dbound

. Equa-
tion (F.378) follows from its assumed ϵ-optimality for all reward functions.

Theorem F.295 (Optimal Power-seeking implies ϵ-optimal Power-seeking). Let k ≥ 1,
s ∈ S, a, a′ ∈ A, γ ∈ [0, 1]. If

E
s′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
> k E

s′∼T (s,a′)

[
PowerDbound

(
s′, γ

)]
,

then there exists ϵ > 0 such that

E
s′∼T (s,a)

[
Powerpol

Dbound

(
s′, γ

)]
> k E

s′∼T (s,a′)

[
Powerpol

Dbound

(
s′, γ

)]
,

where pol is any ϵ-optimal policy-generating function.

Proof. Let δ := Es′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
− kEs′∼T (s,a′)

[
PowerDbound

(
s′, γ

)]
.

E
sa∼T (s,a),
sa′∼T (s,a′)

[
Powerpol

Dbound
(sa, γ)− kPowerpol

Dbound
(sa′ , γ)

]
(F.380)

= E sa∼T (s,a),
sa′∼T (s,a′)

[(
Powerpol

Dbound
(sa, γ)− PowerDbound (sa, γ)

)
+
(
PowerDbound (sa, γ)− kPowerDbound (sa′ , γ)

)
+
(
PowerDbound (sa′ , γ)− Powerpol

Dbound
(sa′ , γ)

)]
(F.381)

= E sa∼T (s,a),
sa′∼T (s,a′)

[ (
PowerDbound (sa, γ)− kPowerDbound (sa′ , γ)

)
−
(
PowerDbound (sa, γ)− Powerpol

Dbound
(sa, γ)

)
+
(
PowerDbound (sa′ , γ)− Powerpol

Dbound
(sa′ , γ)

)]
(F.382)

≥ E
sa∼T (s,a),
sa′∼T (s,a′)

[(
PowerDbound (sa, γ)− kPowerDbound (sa′ , γ)

)
− ϵ+ 0

]
(F.383)

= δ − ϵ (F.384)
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> 0. (F.385)

Equation (F.384) follows because PowerDbound (sa′ , γ) ≥ Powerpol
Dbound

(sa′ , γ) and be-
cause proposition F.294 bounds PowerDbound (sa, γ)− Powerpol

Dbound
(sa, γ) ≤ ϵ because

pol is an ϵ-optimal policy generating function. Equation (F.385) follows for any ϵ < δ;
since δ is positive, we can ensure that ϵ is as well.

F.14.2 ϵ-optimality probability

The situation for ϵ-optimality probability is less simple.

Definition F.296 (ϵ-optimality probability). For state s, let F ⊆ F(s), γ ∈ [0, 1], and
ϵ ≥ 0.

Pϵ
Dany (F, γ) := P

R∼Dany

(
∃fπ ∈ F : π ∈ Πϵ (R, γ)

)
. (F.386)

Definition F.297 (Average-optimal policies). Πavg (R) is the set of average reward-
optimal policies for reward function R.

Proposition F.298 (Characterizing 0-optimal policy sets). Let γ ∈ (0, 1).

1. Π∗ (R, γ) = Π0 (R, γ).

2. Π∗ (R, 0) ⊆ Π0 (R, 0) = Πgreedy (R).

3. Π∗ (R, 1) ⊆ Π0 (R, 1) = Πavg (R).

Proof. If γ ∈ (0, 1), Π0 (R, γ) must be optimal at every s by definition F.291. Π0 (R, 0) =

Πgreedy (R) by definition F.14 and Π0 (R, 1) = Πavg (R) by definition F.297. Π∗ (R, 0) ⊆
Πgreedy (R) by lemma F.15 and Π∗ (R, 1) ⊆ Πavg (R) by the fact that Blackwell optimal
policies must be average optimal ([68]).

Corollary F.299 (When γ ∈ (0, 1), 0-optimality probability coincides with optimality
probability). Let F ⊆ F(s). If γ ∈ (0, 1), then PDany

(F, γ) = P0
Dany

(F, γ).
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s00

s1
1

s′1
1

s2
1

s′2
0

ssink
0

up

down

Figure F.49: All policies are average-optimal, since there is only one rsd. However,
only going up is Blackwell-optimal. Similarly, all policies are greedily optimal, since
R(s1) = R(s′1) = 1, but only going up is asymptotically greedily optimal. In this mdp,
Π0 (R, 0) ̸= Π∗ (R, 0) and Π0 (R, 1) ̸= Π∗ (R, 1) by proposition F.298.

Proof. When γ ∈ (0, 1), Π∗ (R, γ) = Π0 (R, γ) by proposition F.298. ϵ-optimality proba-
bility (definition F.296) then reduces to optimality probability (definition 5.9).

Lemma F.300 (ϵ-optimal policy set monotonicity). Let 0 ≤ ϵ1 ≤ ϵ2. Then Πϵ1 (R, γ) ⊆
Πϵ2 (R, γ).

Proof. Suppose π ∈ Πϵ1 (R, γ). Then by definition F.292,

max
π′

E
s′∼T (s,π′(s))

[
V π′
R, norm

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R, norm

(
s′, γ

)]
≤ ϵ1 (F.387)

≤ ϵ2. (F.388)

Therefore, π ∈ Πϵ2 (R, γ).

Corollary F.301 (ϵ-optimal policy set containment). Let ϵ ≥ 0. For all R ∈ RS , γ ∈ [0, 1],
Π∗ (R, γ) ⊆ Π0 (R, γ) ⊆ Πϵ (R, γ).

Proof. The first containment holds by proposition F.298. The second containment holds
by lemma F.300.

Proposition F.302 (ϵ-optimality probability is monotonically increasing in ϵ). Let s be
a state and consider F ⊆ F(s), γ ∈ [0, 1]. Let 0 ≤ ϵ1 ≤ ϵ2. PD (F, γ) ≤ Pϵ1

Dany
(F, γ) ≤

Pϵ2
Dany

(F, γ).
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Proof. By lemma F.300 and corollary F.301, Π∗ (R, γ) ⊆ Πϵ1 (R, γ) ⊆ Πϵ2 (R, γ). Then
PD (F, γ) ≤ Pϵ1

Dany
(F, γ) ≤ Pϵ2

Dany
(F, γ) by the monotonicity of probability.

As ϵ increases, more policies are ϵ-optimal for any given reward function (lemma F.300).
The following result shows that for bounded reward function distributions, “anything goes”
for sufficiently large ϵ.

Proposition F.303 (Under Dbound, every policy can be ϵ-optimal (for the right ϵ)).
Let Dbound be a reward function distribution which is bounded [b, c]. Then for all R ∈
supp(Dbound) and γ ∈ [0, 1], Π(c−b) (R, γ) = Π and for all s, non-empty F ⊆ F(s),
P(c−b)
Dbound

(F, γ) = 1.

Proof. Let γ ∈ [0, 1].

∀R ∈ supp(Dbound), s ∈ S : V ∗
R, norm (s, γ) ≤ lim

γ∗→γ

c

1− γ∗ = c. (F.389)

Its minimal normalized value is likewise at least b. Therefore, for all π ∈ Π, we have

max
π′

E
s′∼T (s,π′(s))

[
V π′
R, norm

(
s′, γ

)]
− E

s′∼T (s,π(s))

[
V π
R, norm

(
s′, γ

)]
(F.390)

≤ max
π′

E
s′∼T (s,π′(s))

[c]− E
s′∼T (s,π(s))

[b] (F.391)

= c− b. (F.392)

This holds at all states s. So every π is (c− b)-optimal, and Π(c−b) (R, γ) = Π.

Since F is not empty, it must contain some fπ ∈ F . Since Π(c−b) (R, γ) = Π, π ∈
Π(c−b) (R, γ) for all R, and so P(c−b)

Dbound
(F, γ) = 1 by definition F.296.

Suppose that we know that action a is both strictly Power-seeking and strictly more
probable under optimality compared to another action a′. Proposition F.294 implies
that there exists an ϵ > 0 for which a is ϵ-optimal Power-seeking compared to a′. The
following result implies a similar result with respect to ϵ-optimality probability.
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Proposition F.304 (ϵ-optimality probability approaches 0-optimality probability in a
continuous fashion). Let F ⊆ F(s). limϵ→0 Pϵ

Dany
(F, γ) = P0

Dany
(F, γ).

Proof. Let f(ϵ) := Pϵ
Dany

(F, γ). f is monotonically increasing in ϵ and has range
[P0

Dany
(F, γ) , 1] by proposition F.302. Suppose the sequence s := (ϵi)i≥1 converges to 0.

Choose a monotonically decreasing subsequence s′ :=
(
ϵ′j

)
j∈I

. s′ must also converge to

0. Then s′f :=
(
f(ϵ′j)

)
j∈I

monotonically decreases and is bounded below by P0
Dany

(F, γ).

Therefore, by the monotone convergence theorem, s′f has non-negative limit L.

Suppose L > P0
Dany

(F, γ). This implies that all elements of s′ are positive. Then there
exist reward functions for which some fπ ∈ F is ϵ-optimal for arbitrarily small ϵ > 0, but
for which f is not 0-optimal. This is impossible, and so L = P0

Dany
(F, γ).

Furthermore, since s→ 0,
(
f(ϵi)

)
i≥1
→ P0

Dany
(F, γ) as well. Since this limit applies for

any sequence s→ 0, the result follows.

Corollary F.305 (For small ϵ, ϵ-optimality probability approximates optimality prob-
ability). Let F ⊆ F(s). When γ ∈ (0, 1), for any δ > 0, there exists ϵ > 0 such that
Pϵ
Dany

(F, γ)− PDany
(F, γ) < δ.

Proof. By corollary F.299, when γ ∈ (0, 1), P0
Dany

(F, γ) = PDany
(F, γ). Therefore, when

γ ∈ (0, 1), proposition F.304 shows that limϵ→0 Pϵ
Dany

(F, γ) = PDany
(F, γ). Proposi-

tion F.304 showed that f(ϵ) := Pϵ
Dany

(F, γ) is sequentially continuous at ϵ = 0; since
f : R → R has metric spaces for both its domain and its range, sequential continuity
implies (topological) continuity at ϵ = 0. Then the claim follows from the definition of
continuity on metric spaces.

Lemma F.306 (Strict optimality probability inequalities are preserved for small enough
ϵ). Let k ≥ 1, s, s′ ∈ S, F ⊆ F(s), F ′ ⊆ F(s′), and γ ∈ (0, 1). If PDany

(F, γ) >

k PDany

(
F ′, γ

)
, then there exists ϵ > 0 such that Pϵ

Dany
(F, γ) > k Pϵ

Dany

(
F ′, γ

)
.

Proof. Let δ := PDany
(F, γ)− k PDany

(
F ′, γ

)
; note that δ > 0 by assumption.

Pϵ
Dany (F, γ)− k Pϵ

Dany

(
F ′, γ

)
(F.393)
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=
(
Pϵ
Dany (F, γ)− PDany (F, γ)

)
+
(
PDany (F, γ)− k PDany

(
F ′, γ

))
+ k

(
PDany

(
F ′, γ

)
− Pϵ

Dany

(
F ′, γ

))
(F.394)

= δ +
(
Pϵ
Dany (F, γ)− PDany (F, γ)

)
− k

(
Pϵ
Dany

(
F ′, γ

)
− PDany

(
F ′, γ

))
(F.395)

≥ δ + 0− k
(
Pϵ
Dany

(
F ′, γ

)
− PDany

(
F ′, γ

))
(F.396)

> 0. (F.397)

Equation (F.396) follows by proposition F.302. By corollary F.305, γ ∈ (0, 1) and δ > 0

implies that we can choose ϵ so that Pϵ
Dany

(F, γ)−PDany
(F, γ) < δ

k ; by doing so, eq. (F.397)
follows.

Conjecture F.307 (ϵ-optimality results hold for rsd optimality probability).

For shorthand, we define action ϵ-optimality probability, mirroring definition 5.10’s
definition of action optimality probability.

Definition F.308 (Action ϵ-optimality probability). Let ϵ ≥ 0. At discount rate γ and
at state s, the ϵ-optimality probability of action a is

Pϵ
Dany (s, a, γ) := P

R∼Dany

(
∃π ∈ Πϵ (R, γ) : π(s) = a

)
.

Proposition F.309 (Action ϵ-opt. probability is a special case of visit distribution ϵ-opt.
prob.). For any γ ∈ [0, 1] and ϵ ≥ 0, Pϵ

Dany
(s, a, γ) = Pϵ

Dany

(
F(s | π(s) = a), γ

)
.

Proof. Let Fa := F(s | π(s) = a). For γ ∈ [0, 1] and any state s,

Pϵ
Dany (s, a, γ) := P

R∼Dany

(
∃π ∈ Πϵ (R, γ) : π(s) = a

)
(F.398)

= P
r∼Dany

(
∃fπ ∈ Fa : π ∈ Πϵ (R, γ)

)
(F.399)

=: Pϵ
Dany (Fa, γ) . (F.400)
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Equation (F.399) follows because f ∈ Fa iff ∃π ∈ Π : fπ = f , π(s) = a by the definition of
F(s | π(s) = a) (definition 5.4).

Theorem F.310 (Optimal Power-seeking incentives imply ϵ-optimal Power-seeking
incentives). Let s ∈ S, a, a′ ∈ A, γ ∈ (0, 1). If

E
s′∼T (s,a)

[
PowerDbound

(
s′, γ

)]
> E

s′∼T (s,a′)

[
PowerDbound

(
s′, γ

)]
and

PDany (s, a, γ) > PDany

(
s, a′, γ

)
,

then there exists ϵ > 0 such that

E
s′∼T (s,a)

[
Powerpol

Dbound

(
s′, γ

)]
> E

s′∼T (s,a′)

[
Powerpol

Dbound

(
s′, γ

)]
and

Pϵ
Dany (s, a, γ) > Pϵ

Dany

(
s, a′, γ

)
,

where pol is any ϵ-optimal policy-generating function.

Proof. Theorem F.295 guarantees the existence of ϵPower > 0 such that

E
s′∼T (s,a)

[
Powerpol

Dbound

(
s′, γ

)]
> E

s′∼T (s,a′)

[
Powerpol

Dbound

(
s′, γ

)]
.

Lemma F.306 guarantees the existence of ϵP > 0 such that

PϵP
Dany

(s, a, γ) = PϵP
Dany

(
F(s | π(s) = a), γ

)
(F.401)

> PϵP
Dany

(
F(s | π(s) = a′), γ

)
(F.402)

= PϵP
Dany

(
s, a′, γ

)
. (F.403)

Equation (F.401) and eq. (F.403) follow from proposition F.309.

Choosing ϵ < min (ϵPower, ϵP) ensures that both strict inequalities hold. Since both
ϵPower and ϵP are positive, we can ensure that ϵ > 0.
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The PowerDbound-seeking theorems are only concerned with the probability of the ex-
istence of ϵ-optimal policies which seek PowerDbound . Supposing that an agent is only
constrained to follow some ϵ-optimal policy, the agent may end up seeking PowerDbound

with lower probability due to the influence of e.g. some tie-breaking rule for policy
selection.

Conjecture F.311 (Continuous distributions have continuous ϵ-optimality probability
functions). Fixing any s ∈ S, F ⊆ F(s), γ ∈ [0, 1], Pϵ

Dcont
(F, γ) is continuous on ϵ ∈ [0,∞).
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