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A CONSTRUCTION OF THE REAL NUMBERS USING 
NESTED CLOSED INTERVALS 

I. INTRODUCTION 

Cohen and Ehrlich [1] have given a development of the real num- 

ber system from Peano's postulates. The step from the rational 

numbers to the real numbers is made by equivalence classes of 

Cauchy sequences of rational numbers. In this paper, we assume the 

development of the rational numbers as given in [ 1 ] and we use their 

notation, then we define a real number as an equivalence class of se- 

quences of nested closed rational intervals and prove that our develop- 

ment is equivalent to that of Cohen and Ehrlich. 

In [1], an integer is defined as an equivalence class of ordered 

pairs of natural numbers, and a rational number is defined as an 

equivalence class of ordered pairs of integers. In our construction 

of the real numbers we again begin with an equivalence relation. In 

this paper, an equivalence relation will be defined in the set of all se- 

quences of nested closed rational intervals. A real number will be 

defined to be an equivalence class under this equivalence relation. 

By suitable addition, multiplication, and order, the set R of all 

real numbers will be made into an ordered field which will be an ex- 

tension of the ordered field Q of all rational numbers. The order 

in R will have no gaps in the sense of Definition 3. 9 of [ 1 ] . 
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Equivalently, every fundamental sequence of real numbers will have a 

limit in R, i. e. the converse of Theorem 3. 22 of [1] (which is 

false in Q by Theorem 3. 24 of [1] ) will hold in R. 
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II. THE EQUIVALENCE RELATION IN F 

Before we define our equivalence relation in the rational num- 

bers, we need the concept of a sequence of nested closed rational in- 

tervals. 

Definition 1: We define {[a n' b])°°1 as a sequence of nested 

closed rational intervals if 

(1) an and b n are rational numbers. 

(2) an < bn for all n in N. 

(3) [an +1, bn +1] C [an, bn] for all n in N. 

(4) L(a -b ) = 0, where L stands for Lim 
n n 

n 00 

We shall write {[an, b ] } for {[a , b ] }°° , and use F n n n n =1 

to denote the set of all sequences of nested closed rational intervals. 

Actually, from the definition of {[an, Ian)), we can prove that (an) 

and (b n ) are fundamental rational sequences. 

Theorem 2: If { {a , n b n ] } E F, then (an) and (b ) n are 

fundamental rational sequences. 

Proof: 

{fan, b n ] } E F means that L(a n -b 
n 

) = O. Hence, for any given 

s > 0 in Q, there exists n(E) in N such that Ian -bn 
i 

< c for 

all n > n(c) in N. 

n 

n 

n 

n n 
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But [a , b 1C [a , b ] for all m > n in N, m m n n 

i.e. a < a <b <b forallm>n in N. 
n - m- m- n 

Therefore 

l a -a 
l 

< 
l b -a i< E and m n n n 

Ibn -b m < Ibn -a n l<E 

for all n, m > n(c) in N. 

Hence, (an) and (bn) are fundamental rational sequences. 

We are now ready to define our equivalence relation in F. 

Theorem 3: The relation in F defined by 

{[a , n b ] 
n 

} {[c 
n 

, L(a n -c ) 
n 

= 0 is an equivalence relation. 

Proof: 

i) {[a , 
n 

b ] 
n 

} {[a , n b ] } n 
since L(a n -a ) n = O. 

ii) {[an, bn] } {[cn, dn] } implies {[cn, dn] } {[an, bn] } 

since L(a n -c ) n = 0 implies L(c n -a ) 
n 

= O. 

iii) {[a , n b ] n } {[c , n d n ] } and {[c 
n , di)} {[e 

n , 
f ] } 
n 

imply 

{[a , b ] } {[e , f ] } since L(a -c ) = 0 and 
n n n n 

L(c n -e n ) = 0 imply L(a n -e n ) = O. 

Hence, is an equivalence relation in F. 

Theorem 4: If {[a n, b n ]}, c , n d ]} n 
E F, then L(a 

n 
-c n ) = 0 

if and only if L(b 
n 

-d n ) = O. 

n 

d ] } ' 

n 

n n 

` 



Proof: 

If L(a 
n 
-c 

n ) = 0, for any given e > 0 in Q, there exist 

nl, n2, n3 in N such that 

I an -cn I < 3 for all n > nl in N, 

Ian -bn 
I 

< 3 for all n > n in N, 

I cn -dn I < 3 for all n > n3 in N. 

Let n(e) = max {n1, n2, n3} , then 

ibn -dn i 
<_ Ibn + Ian- cnI + Icn-dni 

< e for all n > n(e) in N. 

Hence L(b -d ) = O. Likewise, we can prove the other implication. n n 

Corollary 1: For Han, ion]) e F, L(an) n = a if and only if 

L(bn) =a. 

Proof: 

L(an) = a i. e. L(a n -a) = O. But L(b n 
-a ) 

n 
= O. Then 

L(b 
n -a) = L(b n -a 

n +a n 
-a) = L(b n -a n ) + L(a n 

-a) = O. Therefore 

L(bn) = a. 

Conclusion: If two sequences of nested closed rational intervals 

are equivalent, then their left endpoints and right endpoints form two 

5 

n 

3 

_ 
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fundamental rational sequences; furthermore, if either one of them 

converges, then both of them do so, and they have the same limit. 

Definition 5: A real number is an equivalence class of the set 

F under the equivalence relation - 
. We use C {[a b ] } 

to de- 
n' n 

note the equivalence class containing the element {[an, bill ) E F. 

We denote the set of all real numbers by R and use , r), ... for 

real numbers. 



III. ARITHMETIC OPERATIONS AND ORDER IN R 

Before we define our addition and multiplication in the real 

numbers R, we shall show that the expressions we shall use for 

sum and product of = C {[an, }] b n 

pendent of the choice of Han, b }] E n 

then 

and n 
= C { [ cn, dn} ] 

and { [ cn, do }] E 

7 

are inde- 

Theorem 6: If {[an, b ] n } {[a 
n 

, b 
n 
l ] } and {[c , n d ] 

n }- {[c 
n 

,dn l ]}, 

(1) 

(2) 

{[an+cn, bn+dn] } 

{[ancn, bndn] } - 

- Hann bñ+dñ I } . 

{ [añcn, bñdñ] } . 

Proof: 

(1) By the definition of -, we know L(a -al) = 0 and n n 

But L(a n +c n -(a' 
n +c' )) = 0 in Q. Hence 

n 
L(c --c' ) = O. n n 

{[a +c , b +d ]} ^ {[a.' cl , bl +dl ]} . n n n n n nn n n 

(2) Since (a ), (al ), (c ), and (c' ) are fundamental ration - 
n n n n 

al sequences, by Theorem 3. 19 in [1], there exist a and c' in 

Q such that I a n I 
< a and I cl I < c' for all n in N; by 

Theorem 3. 20 in [ 1], (anal) and (c c' ) are fundamental rational 
n n n n 

L(a -al ) = 0 and L(c -c' ) = 0, there 
n n n n 

are, for each positive e in Q, n1(e) and n2(e) in N such 

sequence in Q. Since 

that 

l . 

n n n n n n n n 

n 

g 



Hence 

8 

Ian -an I < 2cß in Q for all n > nl(e) in N and 

I cn -cl 
I 

< 
2a 

in Q for all n > n2(e) in 
n 

la cn-ancn n I<_ n I I I 
a -cn I+ la n-an I 

lc' I< a _ e 
n + 2c cl 

for all n > max {n1(e), n2(e)} in N. Therefore L(ancn -a' c' ) = 0 nn 
in Q and {[a c , b d ] } {[a cl , b dl j} . 

n n nn n n n n 

Theorem 7: There are binary operations f and g on R 

such that if { [a n , b n ] } E and { [ c n , 
d n ] } E 71 , then 

Proof: 

and 

(1) f(,11 C{[a 
} 

(2) g('rl ) = C{[a c , b d ] } 
n n n n 

The sets 

f = ( 1)' C{[an+cn, bn+dn] }) I 

{[an, bn] }E {[cn, dn] , TIER 

g ((t'11)' C{[a c ,b d ]})I{[an,bn]}E,{[cn,dn]}Er,YIER n n n n 

are subsets of (R x R) x 

N. 
n 

2a 

t 

= +c , b +d n n n n 

, 
t, 

n n n n 

Zc' 
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If (t, TO E R x R, then t = C{[a 
n' b ]}' n 1 = 

C{[c 
n , an]) for 

some {[an, b 
n }, {[c 

n 
, d n ]} in F. Since {[a 

n +c , b n n +d n 
]} E F, 

the pair ((t,i), 0 E f where = C{[ a +c , b +d ]} If 
n n n n 

((t3 1)) E f, then = C{[a'+c',b'+d' ]} 
n n n n 

{ [an, bn] } ' { [a' , b' ] } and 

where 

{ [ cn, dn] } { [ cn, dñ] } 

By the previous Theorem 6, it follows that 

{[an +cn, bn +dn] } 
a {[al +cn, b' +di ] } and _ nnn 

Thus f is a mapping of R x R into R, and hence a binary 

operation on R. 

If (t,i ) E R x R, then {[an, b]) E t and {[c , d 
n 

]} El 

for some {[a , b ] }, {[c , d ] } in F. Since {[a c , b d ] } e F, 
n n n n n n n n 

hence the pair ((e,i), 0 E g, where = C{[a c b d ]} ' 
If 

n n' n n 

((t, i ), ,t)Eg, then ' = C {[a'c',b'd']} where {[at,b'] }E , n 
n n n n 

{[c' , d' ] } E 1. By the previous theorem again, it follows that 
n n 

{[a c , b d ]} {[a' c' , b' d' ] } and = ,' . Thus g is a mapping 
n n n n nn nn 

of R x R into R, and hence a binary operation on R. 

We are now ready to define our addition and multiplication in the 

real numbers R. 

Definition 8: We call the binary operations f and g of 

n 

n 

E, 

r, 

5 ÿ' . 
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Theorem 7 addition and multiplication in R, respectively, and 

write " +R r)" and ot ri" for f( , r)) and g( , q ). As 

usual, we shall feel free to omit the subscript "R ". 

Now that we have defined addition and multiplication in the real 

numbers R, we can prove that (R, +, ) is a field. 

Theorem 9: (R, +, ) is a field. 

Proof: 

i) Associative Laws: If 

then 

and 

{[an, ] } E e , {[cn, dn] } er) , {[en, fn] } e 

(+r)) + =C{[a +c , b +d ]} + 
c{[e 

, f ]} n n n n n n 

- C{[(añ (ani- C{[an+(cn+en),bn+(dn+fn)] } 

= C{[a {[a , b ] + C{[c +e ,d +f ]1= + (rl+) , 

n n } 
n n n n 

. 
C{[a c , b d ]} C{[e , f ]} C{[(a c )e , (b d )f ]} nn nn n n n n n n n, n 

C C{[an(cnen), 
bn(dnfn)]} - C{[an, bn]} {[c nen, dn n]} 

= O1' ) 

(.rl) 

.R 

= 

- 



then 

and 

then 
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ii) Commutative Laws: If 

{ [an, bn] } {{c, dn] } E rl, 

g + 1 = C{[an, + C{[cn, = C{[an+cn, 

= C {[c n+a n, 
dn+bn] C{[ 

} 
+ C{[ bn I) =1+ 

g C{[a c ,b d ] nn nn 
= C{ [ 

} 
= 1 

iii) Distributive Laws: If 

{[an, bn] } e g, {[cn, dn] } E 1, {[en, f n] } E 

(g+rl) = C{[a +c , b +d ]}. C{[e ,f ]} C{[(a +c )e ,(b +d )f ]} 
n n n n n n n n n n n n 

C{[a e+c e, b f+d f]} nn n n nn n n 

= 
bnfn] 

+ C{ 
[cnen' dnfn] } 

_ + 
TI 

iv) Identity Elements: We note that C serves as 
OQ, OQ 

the additive identity, 
OR' C 1 {[ 1 ] } 

as the multiplicative iden- 

tity, 1R; where OQ and 1Q are the additive and multiplicative 

identity of Q, respectively. 

e , 

di)} 

c a 
n n n n 

C{[anea, 

Q Q 

_ 
g, 

.,1 _ 
g 

g, 

g. 



NO Additive Inverse Elements: For any C 
{Lan, b n ] } 

R, {[an, b ] 
n }E F implies {[-b, -an] } E F and 

{[an-bn, bn-an]} - {[OQ, OQ]} . 

C{[an, bn] }+ C{[-bn,-an] 
} C{[an bn' bn-an 

12 

in 

0 
Q]}:-- 

°R 

Hence C 
, -a ]} 

serves as the additive inverse -C {[a , b ]} 
n n n 

of C{[an, 

vi) Multiplicative Inverse Elements: For any C {[a b ] }# OR' n' n 

we know L(an) O. Since (an) does not have limit zero in Q, 

there exists a positive element el in Q such that for every 

in N, I ak I > el for some k > n in Since (an) is funda- 

mental rational sequence, there exists n1 in N such that 
e 

Ian -an1l < 
2 

for all n, m > nl in N. If, for k1 > nl, 

I 
ak I > el' then 

1 

lanl = lak -(ak -an)I > lak I - lak -anl > el 
1 1 1 1 

for all n > n1 in N. Hence an 0 for all n > n1 in N. By 

the same process we can prove bn 0 for all n > n2 in N. Let 

= min (el, e2), ñ = max (n1, n2), then 

# OR 

} C{[OQ, 

n 

# 

n 

N. 

el el 2 = T 

# 

.. 

{[ -b 

bn]} 

- 

é 



Take 

Ian I > 2 and Ibn I > 2 for all n > n in N. 

at = 1 for n<n, at =bl for n >ri; 
n 

n 

b' = 1 for n<n, b' = for n>ñ. 
n a n 
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But for every e > 0 in Q, there exist n(e) and n'(e) in N 

such that 

and 

Then 

and 

_2 ee 
Ibn-bmI < 4 

ee _2 
Ian ̂ am I < 4 

for all n, m > n(e) in N 

for all n, m > n'(e) in N. 

e 
-2 

Ia' -a' I- I bn-bm (< 4 - e for n, m> ma.x(n(e), ñ) 
n m Ib I Ib I e e 

n m 22 

2 

I 
b' -b' I= 

n m Ila 

n-am 
( 

i<_4_ 
_ e for n, m > max(n' (e), ñ). 

Ian! la e e m 22 

Therefore (a') and (b') are fundamental rational sequences. 
n 

Since {[an, b n ]} e F, for any e > 0 in Q, there exists ñ(e) 
2 

in N such that Ian -bn I < 
ee 

4 
for all n > ñ(e) in N. Then 

n 



Ia -b I 

Ian bnI Ianllbnl 

2 
ee 

< -4 
e e 

- e for all n > max(ñ(e), 1) 

2 2 
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Therefore L(a' -b') = O. On the other hand a < a < b < b 
n n n- n +1- n +1 n 

implies at < ai''1 +1 < b' < b' for all n in N, hence 
n 

{[at, b' F. We find 
n n 

2 

eé 

Ia a' Ian Ian -bnI 4 eé 
n n bn IbnI e 2 

2 

for all n > max(ñ(e), ñ), This means (a a') has limit 1, i. e. n n 

L(a na') = 1. Now we have proved: for any C {[a b ]} 
# OR' there 

n' n 

exist fundamental rational sequences (a') and (b') such that 
n n 

{[a', b' ]} E F and L(a na') = 1Q. Hence C {[a' b' ]} 
serves as the 

n' n 

multiplicative inverse, 

, 

C{[an, brill 

of C {[a b]}. This completes the proof that (R, +, ) is a field. 
n' n 

We shall now define an order relation in R. First, we define 

positive elements of R as the equivalence classes containing posi- 

tive sequences in F. Before we do that, we prove the following 

theorem. 

- 

}e 

. 

+l 

= 
lI 

n Z 

1 
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Theorem 10: If {[a , b ]} n E F, then (an) is positive if and 

only if (b ) n 
is positive. 

Proof: 

(an) is positive, i. e. for some positive e in Q, there 

exists n(e) in N such that an - > e for all n > n(e) in N. 
- 

Since {[a 
n, 

bn]} e F, we know for any e > 0 in Q, there exists 

n'(e) in N such that - 
e 

< b - a < 
e for all n > n'(e) in N. 

2 n n 2 - 
But then bn = bn - an + an > 2 + e = 2 for all n > max(n(e), n'(e)) 

in N. Hence (b ) n is positive. By the same process, we can 

prove the other implication. 

Definition 11: {[a n' b n ]} is positive in F if and only if, (an) 

is positive. Notation: We let 

R+ = eRI 

ER1 

for some {[an, b n ]} E , {[a 
n, 

b ]} 
n 

is positive in 

for some {[an, b ]} 
n 

E , (an) is positive. 

Next, we will prove that if {[an, b ]} 
n 

E is positive in F, 

then all {[an 
n 

' , b' ]} e are positive in F. 

Theorem 12: If {[an, b ]} a {[a' , bi "ill and {[a , b ]} n 
is 

n n 

positive, then {[a', b' ]} is positive. 
n n 

1 

n 

_ 

n n 

n 

n 

( 

n 
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Proof: 

By definition, we know {[an, b ]} n 
is positive if and only if 

(an) is positive. (an) is positive means for any e > 0 in Q, 

there exists n(e) in N such that an - > e in Q for all 

n > n(e) in N. On the other hand, {[an, b n ]} - {[a' , b' ]} if and 
n n 

only if L(a -a') = O. That means for any e > 0 in Q, there 
n n 

exists n'(e) in N such that - e < a a' < e for all n > n'(e) 
2 n n 2 - 

in N. Then a' = a' - an +an > - 2 +e =2> 0 for all 

n > max {n(e), n'(e)} in N. Hence (a') is positive and {[a', bñ]} 

is positive in F. 

Now we can say 

Corollary 1: R+ = {tE R I {[an, b 
n 

]} is positive for all {[a 
n 

,b 
n ]Et }. 

Theorem 13: R+ is a set of positive elements for R. 

Proof: 

We shall show that 

(1) + E R+ for all t,r1 E R +. 

(2) t r) E R+ for all t, e R+. 

(3) For t E R, exaclty one of the following holds: 

E R+, = 0, -t E R+ 

- 

n n 

1 

11 

t 
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If t, ri e R +, then t= C {[a n' bn ] }' C {[c 
n 

d 
n 

]} where 

{[an, b ]} 
n 

and {[c 
n , d ]} n are positive in F. Therefore (an) and 

(cn) are positive sequences in Q. By the exercise 3. 24 in [1], we 

know (a n +c ) n and (a c ) n n are positive in Q. Hence 

+ 
g = C{[an+cn, e and 

that (1) and (2) are fulfilled. If 

= C{[a c , bd ]} 
E R , so 

n n nn 
= C{[an' by the Corollary of 

Theorem 12, t E R+ if an only if {[an, b 
n 

]} is positive in F if 

and only if (an) is positive in Q. = OR C {[0 0 ]} 
if and 

only if L(an) = 0Q. -t = C {[_b -a ]} e R if and only if ( -bn) 
n' n 

is positive if and only if (-an) is positive. Hence, by Theorem 

3.26 in [1], exactly one of t e R +, g = OR, e R+ must hold. 

Thus (3) is fulfilled, and R+ is a set of positive elements for R. 

By Theorem 2. 19 and Definition 3. 5 in [1], we have the follow- 

ing theorems. 

Theorem 14: The set T = {(t, l) Irl -; e R +} is an order rela- 

tion in R. 

Notation: We write lit nu 
(iii >R " 

ually, we omit the subscript R. 

if (t,ri) e T. Us- 

Theorem 15: (R, +, , < ) is an ordered field. 

+ +c , b +d ]} 
n n n n 

t b ] }' n' n 

t 
Q 

, 

-g 

q 
= 

= 

<R 
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So far we have defined addition, multiplication and an order re- 

lation in the real numbers R, and we have shown that (R, +, , <) is 

an ordered field. Now, we are going to prove the ordered field R 

of real numbers which we made is an extension of the ordered field 

Q of rational numbers. 

Theorem 16: The mapping E of Q into R such that 

E(a) = C {[a, a]} 

addition, multiplication and order. 

is an isomorphism of Q into R preserving 

Proof: 

E is a one to one mapping of Q into R. For 

C {[a, a]} C {[b, b]} 
if and only if {[a, all {[b, b]} in F if and 

only if L(a -b) = 0 if and only if a = b. 

If a, b E Q, then 

and 

E(a+b) = C{[a+b, a+b]} C{[a, a]} + C{[b, b]} 
= E(a) + E(b), 

E(ab) = C{[ab, ab]} C{[a, b]} C{[a, b]} - E(a) E(b) 

Thus, E preserves addition and multiplication. Also, a < b in 

Q if and only if b - a > 0 in Q, so that (b -a) is a positive 

sequence in Q. On the other hand, C {[a a]} < C {[b b]} 
it R 

if and only if C {[b b]} C {[a a]} > 0 in R, so that C {[b-a, b-all 

- 

. 

= 

- 

- 

- 
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is a positive element in R, i. e. (b -a) is a positive sequence in 

Q. Thus a < b in Q if and only if C {[a a]} < C {[b b]} 
in R, 

and E preserves order. 

We have just seen that the ordered field Q of rational num- 

bers is isomorphic to a subfield of the real numbers R. As usual, 

we will identify Q with its image in R and use interchangeably 

the symbols a and C 
]} a, a . 
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IV. COMPLETENESS OF R 

In this paper, first we have defined real numbers as equivalence 

classes of sequences of nested closed rational intervals; second we 

have proved that the set R of all real numbers is an ordered field 

which is an extension of the ordered field Q of rational numbers. 

Now we are going to prove that R is complete, i.e. every Cauchy 

sequence in R is convergent. Before proving this completeness, 

we need some preliminary results. 

Theorem 17: For every real number e > 0 in R, there is 

a rational number e such that 0 < e < s in R. 

Proof: 

Suppose E = C{[a b in R. Since 8 > 0 in R, by 
n' n 

definition, we know (an) is positive in Q. Then, for some posi- 

tive e' in Q, there exists n(e') in N such that a n- > e' 
P 

in R for all n > n(e') in N. Therefore, an - > 0 in R 

for all n > n(e') in N, and an - 
e' 
2 - < b n - 

2 

e' for all n in N. - 
Hence C e' e' is a positive element in R. It follows 

{[an- 2 , b n- ]} 

that e' 
s = C > C _ - = e> 0. 

{[an,b.n]} {[ 
2, 2 

]} 2 

Theorem 18: (an) is a fundamental rational sequence in 

2 

l 

Q 



if and only if (an 

Proof: 

is a fundamental rational sequence in R. 
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By the previous theorem, we know, for any real number E > 0, 

there exists e > 0 in Q such that 0 < e < E . But for this e > 0, 

there exists n(e) in N such that la n -a I m 
< e in Q for all 

n, m > n(e) in N. It follows la n 
-a m I < E for all n, m > n(e) - 

in N. Therefore (an) is fundamental in R. On the other hand, 

for any e > 0 in QC R, there exists n(e) in N such that 

Ian-am I < e in Q whenever n, m > n(e) in N. Hence (an) 

is fundamental in Q. 

With the aid of two theorems above, we can prove the next. 

Theorem 1 9 : If {[a 
n 

, b n ]} E in R, then L(a n ) = L(b 
n 

) _ . 

Proof: 

The proof is by contraposition. Suppose L(an) and 

C {[a' b' ]} 
in R; we shall prove that L(an -a') # O. Since 

n' 

{[an, bn]} is a sequence of nested closed rational intervals, by The- 

orem 2, (an) and (b ) n 
are fundamental in Q. From Theorem 

18, we know (an) and (bn) are fundamental in R too. But 

since L(an) , then there exists E > O in R such that 

an- n - I 
> E in R for all large n in N. In other words 

= n 

g e 

# f, 



or 

an-C{[a' , b' n 

I C{[an-bñ, an-añ]}I > e> 0 
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for all large n in N. From Theorem 17, we can find e > 0 in 

Q such that c > e > 0 for large n in N. But by the definition 

of absolute value (see page 68 of [1] ), it follows that 

or 

If 

I C{[an-bñ, an-añ]}I = C{[an-bñ, an-al',1]} 

C{[a -b' , a -a' ]}I ^ C{[a -b' , a -a' ]} 
n n n n n n n n 

C{[ann, an_a]}I C{[an-bn, an_añ]} > e> 0 

for large n in N, then (a -a') is positive, therefore 
n n 

L(a n 
-a'n ) 0 and {[an, 

n 
b ]} n . . 

If 

C{[a -b', a -a' ]}I= - C{[a -b' , a -al)} - C{[a'-a ,b°-a 
n n n n n n n n n n n n 

for large n in N, then (a' -a ) is positive; therefore 
n n 

L(a' -a ) n 0 and {[an, b ]} j n 

e> 0 

}I 
> 

- 

n . 

c 

= 

# `5 

# `5 
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We now get a conclusion: for any {[an, bn]} e F if L(an) 

then {[an, b]} ; i. é. for any {[a , b ] }e F, if {[an, brill E 

n n n n n 

in R, then L(an) = . But from the Corollary of Theorem 4, 

we know L(an) = L(bn) = , . This completes the proof. 

Now we can say for any {[an, b ]} n e F, we are able to find a 

real number t such that {[an, b ]} n E t and L(an) = L(b ) 
n 

= t . 

Since {[an, bn]} can only belong to one ,, therefore we have a 

stronger statement that for any {[an, bn]} E F, 

real number such that {[a , 
n 

b ]} n e t and L(an) = L(bn) = . 

there exists a unique 

The following statements are consequences of Theorem 19. 

Corollary 1: If t e R, for any E > 0 in R there exists 

a in Q such that I ' -a I< E in R. 

Proof: 

If = C {[a b ]} 
in R, from Theorem 19, we know 

n' n 
L(an) = , . Then, for any E > 0 in R there exists n(e) in N 

such that I e -a 
n 

I < E whenever n > n(e) in N. In particular, if 

a = an(E), then I -a1< E is as required. 

Corollary 2: If < in R, there exists a in Q such 

that ,< a <i in R. 

# t , 

i t 

t 

n 

r 

n 

; g 

g 

g 



Proof: 

Since R is an ordered field, by Theorem 3. 16 of [1], then 

there exists R such that t < ,< ri in R. Let 

e = min { - T1-0 > 0, then for this r, e R and e > 0 in R 

there exists a in Q such that 

- e< - a < e in R. Therefore 

< 

t< e< 

Corollary 3: R is Archimedean. 

Proof: 

in R, i. e. 

a < +e<11. 
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For 0 < t < ri in R, let a and b be two rational num- 

bers such that 0 < a < t < b < t + ri in R. Since Q is Archi- 

medean (see page 69 of [1]) and the embedding isomorphism preserves 

addition and order, there is an interger n in N such that 

na > b. But nt > na > b > in R, therefore R is Archime- 

dean. 

Conclusion: From Theorem 2, we only know that for every se- 

quence {[an, b ]} 
n 

of nested closed rational intervals, the left end- 

points (an) and the right endpoints (b) form fundamental se- 

quences. But now we know more. That is, they are convergent, and 

converge to the real number which the sequence {[an, b ]} n repre- 

sents. We also know every real number is the limit of at least one 

fundamental rational sequence. Finally, we know that for any real 

,E 

E Is -aI 

Y l; 

q 

n 
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number, we can find a rational number as near the real number as 

desired; no matter how close together two real numbers are, there 

are rational numbers in between. We are now ready to prove the 

completeness of R. 

Theorem 20: R is complete. 

Proof: 

Suppose (p) is Cauchy in R, where = C {[ap, bp]} ' n n 
then, for any k in N, there exists nk in N such that 

n 
k 

k< < +k p k 

is true for all p > nk in N. But, on the other hand, 

and 

=C nk 
{[an k, bn k]} 

L(ak) = L(b nk) , n nk n 

n nk 
k< < b 

k 
n - nk - n 

for all n in N. Therefore, for any k in N, there exist 

n(k) and n' (k) in N such that 

- 

a 

P 

= 



and 

i. e. 

and 

nk 
-a I < 

nk n + k 
for n > n(k) in N 

in -a k I< k for n > n° (k) in N, respectively; 
k 

n n 
k 

nk - an(k) < an < nk for n > n(k) in N 

k 
< b < b (k) + k 

for n > nB (k) in N N. 
n 

k k 

Hence, for all m in N, there exist 

such that 

p max {nk I k < m} in N, 

n 
am = max {an(k) - k I k< m } in Q, 

n 
b = min {bn + k I 

k < m} in Q, 

a m -1 < m < <b m- <b m -1 
for all m in N and 

p 

P pm 
in N. 
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But then we have {[a m' b ]} m C {[a m -l' b m - ]} for all m in N, 
1 

and 

< 

nk 

n 

- tp 

_> 

n 

< 

= 

- 



nm nm 

I bm-am i - < 
I bna (m)+ m ° (an(m)° m ) 1 

= I? m +b 
m n' (m) 

2 1 1 4 <-+-+- =- m m m m 

n m 
an(m) 

tends to 0 as m tends to infinity. Hence {[a , b ]} is a m m 

nested closed rational sequence. For this {[an1, brnI }, we know 

there exists some 
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in R such that L(am) = L(b m) = . Then 

n n 
a -1< - a m - < < b m- < b 

m 
n' (m) + 1 n(m) for all m in N; 

m m 

anm 1< a m < b < bnm + 1 

n(m) m - m p m - n' (m) m 

for all m in N and p > n in N. Hence - m 

n n n n 
m m m m 

I p- I = I p-bns +13 n + n - an(m)+ an(m) 
m m 

< 1 + 1 + 1 + 1 =4. m m m mm 

Since R is Archimedean, 4 < e for some m in N. There - m 

fore I - I < E for large p in N. Hence R is complete. 

We have just proved that the ordered field R which we have 

constructed by using nested closed rational intervals is complete and 

n 
nrn) I 

m 

, 

- 

< 

I 

m 

g 

^5 
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Archimedean. Although the way we build up the system of real num- 

bers from rational numbers is different from that of Cohen and Ehr- 

lich, our end results (i. e. the field of real numbers) are isomorphic 

by Theorem 5. 3 of [ l ] . 
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