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One of the classic problems in industrial engineering is the buffer allocation

problem. The objective of the buffer allocation problem is to maximize some line

output, typically throughput, through the allocation of buffers throughout the

production line. Previous work in this area has focused on either determining

general design rules or developing heuristics to determine optimal buffer

placement. Most of this work was done on production lines which were assumed

to have an unlimited supply ofjobs to the first workstation and an unlimited

storage space after the last workstation (open production lines).

The purpose of this research was to study buffer allocation in closed production

lines and focus on the validation and development of general design rules for

buffer placement. Balanced and unbalanced lines were studied with workstations
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representing manual stations, and then with workstations representing automated

machines.

The general approach taken was to first identify an existing buffer allocation rule

established for open lines and then determine the corresponding rule for closed

production lines. Next, a set of experiments were designed to test the closed

production line design rule. Finally, the design rule was validated, modified, or

reformulated.

The findings of this research indicate that an even buffer allocation is optimal for

balanced closed production lines. It also showed similar behavior to open

production lines when a bottleneck is present, but the effect of the bottleneck is not

as strong. Also, differences between reliable and unreliable lines were observed.

Finally, the rules developed seemed to be consistent for short lines as well as long

ones.

Several of the rules developed in this research can be utilized immediately in the

design of closed production lines. Also, because of the lack of literature on closed

production lines, it will serve as a good first step into the understanding of the role

of buffers in closed production lines.
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GENERAL DESIGN RULES FOR THE ALLOCATION OF
BUFFERS IN CLOSED SERIAL PRODUCTION LINES

INTRODUCTION

This research addresses buffer allocation in closed serial production lines. A

buffer is space to store work-in-progress, and buffer allocation is the specific

placement of a limited number of buffers in a production line. The buffer

allocation problem is a classic industrial engineering problem that has been well

studied since the placement of buffers in a production line can have a significant

impact on the performance (in this case throughput) of the line.

The focus of this research is the development of general design rules for the

placement of buffers in closed serial production lines. A design rule, in general,

holds true based on certain properties of the line. For example, the "bowl

phenomenon" is a general design rule. This rule states that whenever you have a

balanced (stations with the same mean processing time and processing time

variation) open serial production line the buffers should be placed as evenly as

possible (to maximize throughput), with the excess buffers placed symmetrically

around the center of the line. By simply knowing the line is balanced, open, and

serial one can design the line for optimal or near optimal throughput by following

the "bowl phenomenon" design rule.
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Classification of Production Lines

Since this research addresses buffer allocation in serial production lines, it is

necessary to define what a serial production line is and some of the important

differences between its many subdivisions. First, a production line is a

manufacturing system consisting of two or more workstations through which

parts/jobs pass in a specified order and receive processing, never passing through

the same station more than once. Secondly, a serial production line is one where

jobs move in a linear fashion from one workstation to the next. There are no

assembly/merge steps in which a part must wait for one or more other parts before

being able to receive processing. It is assumed that there are no parallel

processing steps in which ajob may enter one of two or more equivalent parallel

positions to receive the same processing. Serial production lines can be further

divided based upon the various operating characteristics of the line such as the

blocking scheme, timing ofjob movements, production control mechanism,

workstation type, and requirement for job carriers. See Figure 1 for a serial

production line configuration tree. The branches in darker shades depict the line

types addressed in this research.
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Figure 1: Serial Production Line Configuration Tree Diagram

Production lines will generally use one of two main types of blocking schemes,

blocking before service (BBS) or blocking after service (BAS). The majority of

production lines use BAS. In BAS, upon completion of service at a workstation, a

job attempts to enter the downstream buffer. If the buffer is full then the

workstation is said to be blocked and cannot start processing another job. The

workstation remains blocked and the job is forced to wait until a departure occurs

in the downstream buffer. This differs from BBS where prior to starting the

processing of a job, a workstation checks to see if there is space available in the

downstream buffer. If the buffer is full then the workstation is considered blocked



and will not process the job. The workstation remains blocked until a departure

occurs in the downstream buffer at which point the workstation begins processing

the job. For this research, all lines are assumed to operate using the BAS scheme.

Production lines can be classified as synchronous, asynchronous, or continuous

depending on the timing of part/job transfers. In synchronous lines (often referred

to as transfer lines), the transfer of all parts in the line takes place simultaneously.

Automated production lines are often transfer lines. In asynchronous lines, each

station operates and transfers jobs at its own pace. In continuous lines, parts move

at a constant continuous speed such as parts on a motorized conveyor. All

production lines studied in this research are asynchronous with respect to part/job

transfers and movement.

Production lines can also be separated based on their production control

mechanisms. A production control mechanism is the method/logic by which jobs

are released from one station to the next. There are several production control

mechanisms that may be used, but the two most general are referred to as "push"

and "pull" systems. Most production lines may be one or the other or, more

commonly, some hybrid of both. Push systems are typically demand driven.

When a system operates in push mode, ajob enters the system and moves from

one station to the next whenever there is room for it to do so. In pull mode, ajob

enters the system or moves from one station to the next based upon system status.
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For example, if when a job completes processing at the final station it initiates a

signal for the first station to begin processing a new job, the line is operating in

pull mode. For this research, all lines are assumed to operate in push mode.

The type of workstations in the production line is also important to consider.

Workstations may, in general, be classified as reliable or unreliable. Reliable lines

are characterized by variable processing times, but are not subject to failures (a

period of time when ajob is in a workstation and no processing or material

movement is taking place). A production line with manual workstations is

considered a reliable line. In contrast an unreliable line may have constant or

variable processing times but are also subject to failures of random duration. A

production line with automated workstations (e.g., robotic welding workstations)

is considered an unreliable line. Both reliable and unreliable lines will be

addressed in this research.

The requirement ofjob carriers is one final distinction to address when looking at

serial production lines. In an "open" production line jobs are moved through the

line and processed in workstations without the need to be attached to a "job

carrier". A sheet metal stamping line is an example of an open production line. In

a closed production line, jobs must be attached or held by ajob carrier as it moves

through the production line and receives processing. An example of a closed

system is an engine block machining line where each job is attached to a fixture to



facilitate movement and to help align jobs for processing. In a closed line there is

a constant number of carriers that is less than the total space available (number of

stations plus the number of buffers) circulating within the system. It will be

assumed that there is an unlimited supply ofjobs entering the production line, and

that there is unlimited space to store completed jobs once they leave the system

after the last station. As a result of the assumptions, the first station in an open

production line is never starved and the last station is never blocked. In a closed

production line, since the number of carriers in the system is constant, once a job

completes processing at the last station, the job is removed from its carrier and the

carrier returns to the first station. The first station becomes starved if no carrier

has been returned from the last station and the station is up and ready to process a

new job. The last station becomes blocked if ajob completes processing and there

is no room before the first station for its carrier. This research focuses on closed

production lines, but also looks at open production lines for comparison purposes.

General Approach

The objective of this research is the development of general design rules for buffer

allocation in closed serial production lines. The general approach used in this

research is as follows:
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I. Examine established buffer allocation design rules for open production

lines in the research literature.

2. Identify the corresponding buffer allocation design rule for closed

production lines.

3. Design a set of experiments to examine the validity of the design rule for

closed production lines.

4. Validate, modify, or generate a new design rule based on the experimental

results.

Throughout this research the effectiveness of a specific buffer allocation will be

evaluated based on line throughput. To determine the throughput of the

production lines, computer simulation is used.

Contribution

There has been a considerable amount of research into the behavior of open serial

production lines and the buffer allocation problem. However, there has been very

little research addressing buffer allocation in closed serial production lines. This is

a significant omission considering there are many closed production lines in use.

For example, production lines that make use of AGV's (automated guidance

vehicles) to transport jobs such as in the automotive industry are closed production



lines. This research is a first step toward better understanding of buffer allocation

in closed serial production lines.

Outline of Thesis

The first section of this thesis is the literature review, describing past research on

buffer allocation in serial production lines. The second section describes the

methodology. It includes descriptions of the model and the experiments

performed. Next is the data analysis and results. This includes a description of the

tests performed and the results obtained. Conclusions of the research follow the

data analysis. Finally, the potential for future research is discussed.



LITERATURE REVIEW

Serial production lines can be quite varied so it is important to clearly identify the

type of production line being studied in this research, and where this research lies

relative to the overall body of production line research. In this research, the serial

production lines examined all have asynchronous part transfers, finite buffers, and

a "push" production control mechanism. The papers reviewed in detail will also

only deal with production lines of this type. However, there exists a vast amount

of research on other production line types as well. There are many papers dealing

with synchronous part transfers. A few that address buffer effects and buffer

allocations include Buzacott (1967), Sheskin (1976), and Yamashina and Okamura

(1983). There are also many papers that address other production control

mechanisms. Some of these papers include Atwater and Chakavorty (1996) and

Kirkavak and Dincer (1999) who studied pull production lines, Blackstone Jr.

(2004) who looked at a CON WIP (constant WIP) system, and Kadipasaoglu et al.

(2000) who looked at DBR (Drum-Rope-Buffer) lines. These papers are only

relevant in that they show areas for potential extensions to the research presented

in this document.

The bulk of the past research on buffer allocation for asynchronous push serial

production lines falls into one of two categories. The first category is the

development of heuristics and algorithms for buffer allocation optimization. The
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second category is the development of general design rules and guidelines for

buffer allocation. The research on heuristics and algorithms is extensive, but since

the focus of this research is on general design rules, the first part of the literature

review will only briefly cover heuristics and algorithms. The remainder of the

literature review will go into detail reviewing papers that focus on general design

rules for buffer allocation in asynchronous serial production lines.

Algorithms and Heuristics

Due to the complexity of solving buffer allocation optimization problems for

longer lines (for example a 10 workstation line with total buffer capacity of 20 has

over 10 million possible allocations) much effort has been put into developing

algorithms that will reduce the time needed to find an optimal (ex. maximizing

production line throughput) or near optimal allocation. Harris and Powell (1999)

developed a simplex search algorithm which works by starting with an initial set of

buffer allocations (the simplex) and sorting them from best to worst. Then using a

combination of the best and worst solutions a new allocation is determined and if it

is better than the worst solution, it replaces it in the simplex and the process is

repeated. Vouros and Papadopoulos (1998) came up with a knowledge based

system in which an algorithm allocates buffer slots to each station then simulation

is used to determine line characteristics (e.g. throughput, average waiting time,
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etc.) or "knowledge". Based on the knowledge the algorithm determines how to

rearrange the buffer slots. Kim and Lee (2001) used a non-standard exchange

vector algorithm (iterative) with the goal of minimizing WIP. This is done by

defining a "neighborhood" around an initial solution and then finding the best

solution in the neighborhood. This solution then serves as the starting point for the

next neighborhood and a new local optimum is found. This repeats until no better

solution can be found. Spinellis et al. (2000) used simulated annealing and a

generalized queuing network algorithm to find optimal server, work, and buffer

allocations. These papers are just a small portion of the papers in the area of

buffer allocation algorithms. For a more thorough review see Vergara (2005).

Design Rules/Guidelines

This section of the literature review begins with a review of the work allocation

problem since it is directly related to the buffer allocation problem. The work

allocation problem deals with unbalancing the line in order to reduce the negative

affects of variability and improve line performance. Following this, the bulk of

this section addresses literature directly addressing design rules/guidelines for

buffer allocation. Buffer allocation research for both balanced and unbalanced

production lines is reviewed, as is buffer allocation research for closed production
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lines. A balanced line is one in which the mean and the variability of operating

times are equal for all workstations.

Work Allocation Problem

Early work by Hillier and Boling (1966) investigated unbalancing production lines

by unbalancing the mean operating times of the workstations. They found that by

deliberately unbalancing the line in such a way that stations in the middle of the

line had lower mean operating times than stations at the ends of the line that the

throughput would be increased. They termed this the "bowl phenomenon".

Since then, several other papers have addressed the work allocation problem.

Hillier and Boling (1979) looked at the effect of the number of stations in the line,

the maximum buffer size between stations, as well as the station operating time

variability. They found that as the number of stations in the line increases, the

difference in throughput from balanced to optimal also increases (although at a

decreasing rate). However, the average amount of unbalance ([ w, 1 I N,

where N is the number of stations, w is the mean processing time at workstation j,

and 1 is the mean processing time for all stations in the balanced line) in optimal

allocation remains approximately the same for all line lengths. They also found
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that if operating times are highly variable (coefficient of variation greater than 1),

increasing the buffer size decreases the average amount of unbalance in the

optimal allocation but only slightly decreases the resulting throughput

improvement (from balanced to optimal). Finally, they showed that with small

buffer capacities, decreasing the operating variability decreases the amount of

unbalance and the throughput improvement, but at a very slow rate. However, if

the buffer capacity is increased while simultaneously decreasing the variability

then the decrease in unbalance and throughput improvement both occur very

rapidly.

Hillier and So (1993) investigated the bowl phenomenon by extending the work of

Hillier and Boling (1979) to longer lines and lines with larger variability. Their

findings also showed that the improvement in throughput associated with the bowl

phenomenon increases with line length. However, although Hillier and Boling

found that increasing the operating variability results in the increase of both the

unbalance and the percentage improvement in throughput, Hillier and So showed

that this does not hold true for all levels of variability. As the variability continues

to increase, there comes a point where the degree of unbalance and throughput

improvement levels off and eventually decreases.

Pike and Martin (1994) investigated the operation time distribution and variance.

They found that there was little effect on the optimal configuration. They also
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found that the amount of imbalance in the line can generally be twice the amount

of imbalance in the optimal bowl and still perform better than the balanced line.

Buffer Allocation Problem

The work allocation problem and in particular the bowl phenomenon show that

unbalancing production lines can result in an increase in throughput. However,

assigning significantly different workloads to different stations can be difficult, so

researchers began investigating other ways to unbalance the line. This led to the

buffer allocation problem.

Balanced Production Lines

El-Rayah (1979) investigated imbalance of buffer allocation and processing time

variability effects on throughput and average number of units in system. He found

that for relatively small amounts of buffers (total buffers 4(N- 1), where N = the

number of workstations in the line) that the throughput is maximized and the

amount of WIP is minimized when the buffer allocation is uniformly distributed.

However, if imbalance is unavoidable then the extra buffers should be located in
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the center of the line. El-Rayah also found that imbalances in variability act like

imbalances in mean operating times in that the bowl phenomenon (the stations

with lower variability should be placed in the center of the line and the stations

with larger variability at the ends) results in the optimal throughput.

A landmark paper for general design rules of serial production lines was done by

Conway et al. (1988). Among the numerous experiments performed, they looked

at balanced lines with no buffers, lines with balanced allocation of buffers, and

also lines with unbalanced allocation of buffers. They found that most of the line

capacity lost due to interference between stations occurs in the first few stations

(75% of capacity is lost in the first five stations), meaning that longer lines are not

much worse than shorter ones. The presence of buffers will help overcome this

capacity loss, and that these buffers should be proportional to the coefficient of

variation (CV) of the workstation operating times. Conway et al. claim that buffer

sizes often times the CV should be sufficient to recover 80-85% of the capacity

lost. In contrast with El-Rayah, Conway et al. found that the optimal buffer

allocation pattern should be symmetrical with slightly greater capacity in the

center ("inverse bowl phenomenon"). This conclusion was a result of some other

observations they made which together have been termed "the decomposition

principle". Conway et al. showed that the best location to place a single buffer is

where an infinitely large buffer would be most effective and that throughput is a

decreasing function of line length. Therefore, the throughput of a line that is split
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into multiple sections with buffers will be dominated by the throughput of the

largest section. Conway et al. also show that when a symmetrical pattern of buffer

allocation is not possible, the same throughput is achieved with mirror allocations

("reversibility principle"). This reversibility principle can be seen as a corollary

to the reversibility property shown by Muth (1979) in which the workstation

processing times were investigated instead of buffers.

Studying reliable lines, Hillier et al. (1993) found that no single pattern of buffer

allocations is optimal for all situations. If there are no additional buffer storage

spaces available beyond a uniform allocation to each of the storage areas, then for

a small number of buffers between each station, a uniform allocation of buffers is

optimal. However, for larger number of buffers, the buffers shift away from the

ends of the line toward the center. If there is one addition to a buffer storage

space, it should be placed in the center position (or the downstream one when there

are two center buffers). If there are multiple extra buffer spaces, they should be

spread out across all the interior buffers. If the number of buffers is also a decision

variable and they are assumed to have a certain cost, then the optimal pattern will

commonly be in the form of(n, n + 1, n + 1, ..., n + 1, n) where n is the greatest

integer Q/(N-1) and Q is the total number of buffers and N is the total number of

stations in the line.
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Papadopoulos and Vidalis (2001) looked at shorter reliable lines and the effect of

buffer allocations on the average work-in-process (WIP). They found that WIP is

an increasing function of ordered buffer allocations. The throughput of these

allocations forms the shape of an inverse bowl, which agrees with Conway et al.'s

findings. However, Papadopoulos and Vidalis further show that within the bowl

smaller inverse bowls are formed which are further divided into smaller bowls and

so on ("self-similarity phenomenon")

Hillier and So (1991 a) investigated the effect of the coefficient of variation on

buffer allocation in unreliable serial production lines. They found further evidence

of the inverse bowl phenomenon and that the bowl phenomenon is more

pronounced with higher values of variability. Hillier and So (1991b) found that

for lines with stations having CV values below 1.5 that percentage increases in

throughput are the same for incremental increases in buffer capacity regardless of

the probability of failure and the mean downtime.

Hillier (2000) found that the inverse bowl pattern becomes more pronounced as

the number of buffers increases. He refined the pattern (n, n + 1, n + 1, ..., n +1,

n) described by Hillier et al. (1993) to be (n, n +0.O3Nn, ..., n +0.O3Nn, n). Also,

conflicting with Hillier and So (1991a) he found that the CV had very little impact

on the pattern of buffer space allocation. However, he did find that the optimal

number of buffer spaces was proportional to the CV.
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Enginarlar et al. (2002) studied unreliable production lines with exponential,

erlang, and rayleigh distributions for both uptime and downtime. They found that

longer lines require a larger level of buffering between stations to reach a

minimum throughput and that this increase is exponentially decreasing as a

function of the total number of stations. They also found that the buffering

necessary for lines with ten stations is sufficient to accommodate downtime in

lines with greater than ten stations. Additionally, they showed that larger machine

efficiencies requires less buffering while smaller variability of uptime and

downtime distributions leads to smaller level of buffering. Finally, they develop

some simple equations based on machine efficiencies that can be used to

determine the amount of buffers to allocate in order to achieve a minimum

throughput.

Unbalanced Production Lines

One of the earlier works on unbalanced production lines was done by Freeman

(1964). Several design rules were determined for automated production lines. The

first is to avoid extreme buffer allocations. The second is that the greater the

difference between a bad station (bottleneck) and a good station the more buffer

capacity should be allocated to it. Thirdly, more capacity should be assigned
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between a bad and a mediocre station (or bad and bad) than a bad and good station.

Finally, the end of the line is more critical than the front; therefore, if a bottleneck

station is at the end of the line, even more buffer capacity should be allocated to it.

Conway et al. (1988) investigated unbalanced reliable production lines. They

claim that buffers are more essential in balanced lines than in unbalanced ones

because stations adjacent to the bottleneck (largest mean processing time) in a

sense act as buffers. In unbalanced lines, the bottleneck station pulls the buffer

capacity toward itself while the fastest station pushes it away.

Powell (1994) looked at unbalanced three-station production lines with regards to

means, standard deviations, or both. He found that the station with a higher

standard deviation or mean draws the first buffer toward it then the remaining

buffers are placed alternatively between the buffer slots unless imbalance is

extreme (termed the "Alternation Rule"). Powell also found that if there is both an

imbalance in mean and standard deviation that the imbalance in mean has a greater

effect on the optimal buffer placement.

Powell and Pyke (1996) studied the effects of bottlenecks on slightly longer

production lines. Using lognormal distribution for the processing times and lines

with no breakdowns, several conclusions were reached. First, relatively large

imbalances (10-30 percent) in means between a single bottleneck and rest of the
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line are required to shift the optimal allocation from a balanced distribution. As

the bottleneck increases the optimal buffer pattern gradually shifts toward the

bottleneck, with the best buffer to move being the one furthest away. Second, for

small number of buffers, the imbalance required to cause a shift in the optimal

pattern is less the closer the bottleneck is to the center of the line. Third, as the

number of stations in the line increase, the imbalance required to move all the

buffers next to the bottleneck increases while the imbalance required to shift

successive buffers decreases. Finally, preliminary results suggest that the CV of

the line has little impact on when buffer allocation shifts occur, and that buffer

allocation is less sensitive to changes in variability than to the mean (of a

bottleneck station).

Closed Production Lines

Virtually all the research involving general design rules have dealt with open

production lines; however, one paper that dealt with closed production lines was

done by Dallery and Towsley (1991). They claimed that the throughput of a line

with population N (can be thought of as the number of carriers) is the same as that

with population C-N, where C is the total buffer capacity. They also claim that the

reverse network (with the same population) of a line will have an equivalent

throughput. However, these results are for systems run using blocking before
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service which is not typical of most production lines and not what this thesis is

concerned about.

Summary

The literature dealing with production lines is quite large and varied. The research

in this thesis is specifically addressing general properties for the distribution of

buffers in closed production systems and their effect on line productivity (the

buffer allocation problem). The buffer allocation problem is a well studied one,

and the papers in this area can generally be divided into those that develop

algorithms to solve for an optimal solution and those that develop general design

rules. This research falls into the latter category, and so the literature reviewed is

focused on papers that address the development of general design rules.

The type of line being studied is another way papers related to the buffer allocation

problem can be differentiated from one another. To look at literature dealing with

all types of lines would be overwhelming. For that reason, certain line types were

mostly ignored. With regards to blocking, the vast majority of production lines

use blocking after service, and the production lines investigated in this research are

no different. Therefore, little attention was paid to production lines with other

types of blocking in the literature review. Papers dealing with asynchronous part
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transfers and synchronous part transfers are both common, as is literature on both

push and pull lines. However, since this research is limited to asynchronous serial

production lines that are run in push mode, all the papers detailed in this review

are also limited to this type. Research dealing with synchronous part transfer and

control mechanisms other than "push" mode is only briefly mentioned.

Another production line aspect that often differentiates papers is workstation type.

Both reliable and unreliable workstations are prevalent in the real world and in the

literature. Although much of the research in this paper deals with reliable

workstations, unreliable workstations are addressed as well because of the

possibility that the two types don't behave similarly. The literature review covers

both types as well.

Over the years, there have been two main approaches to the buffer allocation

problem; studying balanced lines, and studying unbalanced lines. Balanced lines

have been studied because they are simpler and easier to analyze than unbalanced

ones. Also, many real life production lines are designed to be balanced.

However, realistically there will always be some imbalance in a line so research

has examined unbalanced lines to see what kind of effect it has. The focus of this

research is on unbalanced lines, specifically the effect of bottlenecks, but balanced

lines are also addressed. Therefore prior research on both types of lines was

studied.
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Virtually all research on the buffer allocation problem has been done for open

production lines. That is the main difference of this research from the research

described in this section. The previous research developed rules for open lines;

this research examines rules for closed lines. Due to the lack of literature on

closed production lines, the prior research on open lines is used as a starting point

for experiments and rules to test.
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METHODOLOGY

This section describes the details of tools and experiments that were used to

explore buffer allocation design rules for closed serial production lines. It consists

of two parts. The first part describes the simulation model that was used to

calculate the line output (throughput) for the various experiments performed.

Specific operating assumptions modeled are explained. The second part describes

the individual experiments in more detail. Buffer allocations rules! guidelines

existing for open serial production lines were the starting point for the experiments

in this paper. The first step was to duplicate previous experiments used to validate

a buffer allocation design rule for an open line, using a closed line. Based on the

results, more questions were raised and new experiments performed. This process

was repeated as new questions/ideas were formulated.

The Simulation Model

Model Description and Assumptions



25

The simulation program used to run the experiments was a custom program

written using the C programming language. The reason for using a custom

program was that commercial general purpose simulation software is too slow to

handle the considerable number of tests conducted with the precision desired.

Specific operating assumptions modeled are that workstation processing times are

independent, transit times between buffers are zero, blocking follows the block-

after-service scheme, and that each job/part requires a carrier for movement and

processing in the line. The buffer transit time is assumed to be zero because

relative to the processing time it is quite small. Blocking-after-service is assumed

because that is how most production lines are run. Requiring a carrier for every

job makes the line a closed production line. The output generated from the model

was line throughput. For unreliable production lines, processing times were

assumed constant, and failures were assumed to be operation-dependent. That is,

failures could only occur during the processing of ajob. The time between failures

and repair times were both assumed to be exponentially distributed. While looking

at data from actual automated production lines, Inman (1999) showed that these

assumptions are reasonable. The downtime of a station was lumped into the

overall processing time of a given job.

An important aspect of the model is the number of carriers in the production line.

Closed production lines may have as few as one carrier and as many as the number



of workstations plus the total buffer capacity. The number of carriers has an effect

on the throughput so a standard rule was followed throughout this research for

consistency. According to Kim et al (2002) the upper bound on the number of

carriers in a three-station production line is equivalent to the number of stations in

the line plus half the total buffer capacity. Any value above this number will have

a negative impact on the throughput. It is conjectured that this rule holds for

closed production lines with more than three workstations. To be consistent as

well as to maximize throughput this rule was adopted for all closed production

lines tested.

Running the Simulation (Simulation Parameters)

Before running the simulation, several factors had to be considered. For each

production line setup (number of stations, buffer allocation, processing time

distributions), the number ofjobs to simulate (simulation length), the number of

individual runs per replication, and the number of replications had to be decided

upon. The main tradeoffs for each of these parameters were precision and run

time. By increasing any of these parameters the precision of the model increases,

but at the cost of taking more time. Five throughput values (replications) were

calculated. Five replications were chosen to get as many points to analyze as

possible without taking too much computer time. Each throughput value was
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determined by taking an average of 30 individual runs of 50,000 jobs. By taking

the average of 30 runs there was more confidence in the data analysis because the

averages come from a normal population (central limit theorem). The run time

was set at 50,000 jobs, a value that was large enough that the system had time to

settle into a steady state and any startup time became negligible.

Also, for each unique buffer allocation pattern, the same sequence of random

numbers was used for determining workstation processing times. This was done to

cut down on variability between buffer allocations and to allow pair-wise

comparisons. The intent is to reduce as much variability from the throughput

differences (between different buffer allocations) as possible. The use of random

numbers was completely synchronized for all open lines and for closed production

lines with a least one buffer after the last workstation. Therefore, for two different

buffer allocations, the difference in throughput would be solely due to the buffer

allocation scheme and not the variability of the processing times. However, it

should be noted that complete synchronization of random numbers was not

obtained for closed production lines with no buffer after the last workstation. This

will result in slightly higher variability when comparing two buffer allocations.

Validation ofSimulation Model



A critical component to having an accurate model is the uniform random variables

used in generating the workstation processing times. To verify that these random

variables were indeed random and possessed the necessary characteristics of

uniformity, independence, and correlation, the random number generator was put

through a series of tests and passed them all. See Appendix A for the detailed

results. These tests were suggested by Law and Kelton (1991).

To verify the simulation model's accuracy, production line setups from other

papers were run and compared to the results in those papers. Results for both open

and closed serial production lines as well as lines with lognormal and exponential

processing times and unreliable workstations were compared. The largest

difference between throughputs of this paper and published results was 0.3% with

the majority less than 0.05%. See Appendix B for complete results.

The Experiments

There were several general questions about buffer allocation in closed serial

production lines examined in this research. The five basic questions investigated

were:

1. In a balanced closed serial production line, is the optimal buffer allocation

evenly distributed across the line?



2. What is the effect of the presence of a bottleneck workstation? Is buffer

allocation less sensitive to bottlenecks in closed production lines (vs.

open)?

3. What is the difference in throughput between the optimal buffer allocation

and an even allocation for higher bottleneck levels?

4. Do automated lines behave the same as reliable?

5. Does the behavior seen in shorter lines hold for longer lines?

A series of experiments were designed to help shed some light onto these

questions. This section of the paper will go into more detail on how these

experiments were run.

Experimental Line Setups

Although the types of production lines being studied in this research operate under

specific assumptions, there are still several factors involved that may cause

different behaviors. Several different line setups were used in each experiment to

show the effect (or lack of effect) of various line variables. These variables and

the respective levels used are summarized in Table 1. Every possible combination

of these variables (for the exponential distribution, only a CV equal to 1 could be

used) was used in each of the first three experiments.
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Table 1: Line Setup Summary
Variable Levels
Distribution Type Lognormal, Exponential
CV 0.5,1,2
Line Length 4, 8

Both exponential and lognormal processing time distributions were used in the

various tests performed. The exponential distribution was chosen because it is

easy to work with and has often been used in previous research. The lognormal

distribution was used because the mean and CV can be easily changed

(independently of each other) and according to Powell and Pyke (1996) (citing

Knot and Sury (1987) and Buzacott and Shantikumar (1993)) it has a positively

skewed distribution which is more consistent with real world production lines.

The lognormal processing times used had coefficient of variations (CV) of 0.5, 1,

and 2. A CV of 1 was chosen to match the exponential so that a comparison

between distributions could be made, a CV of .5 was examined because it is in the

center of the range of realistic values (according to Powell and Pyke (1996) citing

Knott and Sury (1987)), and a CV of 2 was included as a worst case scenario

(worse than typically found in industry).

As line length increases the number of possible buffer allocations also increases,

but at an exponentially greater rate. Therefore, only line lengths of four and eight
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stations are examined for most of the experiments. Longer lines are addressed in

experiment 5.

Experiment 1

As shown previously in Conway et al.(1988), in open production lines the best

location to place a single buffer is where an infinitely large buffer would be most

effective. An infinite buffer effectively creates two independent lines and Conway

also showed that throughput is a decreasing function of line length. Therefore, the

throughput of a line that is split into multiple sections with buffers will be

dominated by the throughput of the largest section (decomposition principle). In a

balanced closed production line, this means that the optimal solution for a given

number of buffers should be one in which those buffers are as evenly placed as

possible.

The purpose of the first experiment was to show that the optimal buffer allocation

in a balanced closed production line is in fact one in which the buffers are spread

as evenly across the line as possible. This was accomplished by finding the

throughput for the different possible buffer allocations (for each setup) and

determining which allocation resulted in the highest throughput (optimal solution).
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Total line buffer capacities of 1 through 4 were tested using each possible setup

determined from Table 1. To save computation time only the exponential

distribution was used to test buffer capacities greater than 4. Also, in the eight-

station lines, not all possible buffer allocations were considered. Each buffer had a

maximum capacity set at 2. This may not include the optimal allocation, but if a

buffer required a capacity greater than 2 to optimize the line, then it would stand to

reason that having a capacity of 2 would be a better solution than a capacity of 1

(no buffer capacity would exceed 1 in an evenly distributed case). Therefore, a

maximum capacity of 2 should be enough to determine if an even distribution is

not optimal.

Experiment 2

The second experiment is a continuation of the work done in Powell and Pyke

(1996) who examined bottlenecks in open production lines and how the magnitude

of the bottleneck affects optimal buffer allocation. This research took the same

basic experimental design of Powell and Pike and performed it on both open and

closed production lines.

Again, all line setups possible from Table 1 were tested for both open and closed

production lines. For each case the starting condition was such that the
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workstations were balanced so the optimal buffer allocation for the closed

production lines was an evenly distributed one. It was decided to have one buffer

between each station; therefore, the total buffer capacity depended on the line

length. Closed production lines always have one more buffer than their open

equivalents. For example, a closed production line with four stations would have a

total buffer capacity of four, while an open production line with four stations

would only have a total buffer capacity of three (one buffer space between station).

Starting with a balanced system, a single bottleneck was created by increasing only

the mean processing time or increasing both the mean processing time and the

processing time variation of one station. This bottleneck was made progressively

worse until a shift of the optimal buffer allocation (highest throughput) occurred.

Starting with workstations with processing times equal to 1 (arbitrary time unit),

the increase in mean processing times was done in increments of 0.01 time units.

This increment was chosen because it was small enough to offer a fairly high

precision level without being so small that computer time needed to find the

optimal buffer allocation was exceptionally long. The bottleneck for all closed

lines was chosen to be the first station. The first station was arbitrarily chosen

because the behavior of the line should be the same wherever the bottleneck

occurs. However, in an open line, the behavior of the line may differ depending

on where the bottleneck occurs. Therefore in open lines, multiple runs of each
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setup were performed with a different station chosen as the bottleneck for each

run.

With experimental runs involving the exponential distribution only one parameter

could be changed, which effectively increased both the mean processing time as

well as the processing time variability. With the lognormal distribution, the mean

and variability can be increased separately or at once. Two different approaches to

increasing the bottleneck in the lines with lognormal processing times were

employed. The first approach was to increase just the mean and the second was to

increase both the mean and the variability. Increasing only the mean is simpler

and more likely to happen in a real life situation because mean processing times

are easier to control than variability. However, the exponential distribution has a

constant CV and increasing the mean only in a lognormal distribution reduces the

CV. Therefore, the second approach was to increase both the mean and variability

such that the CV remained constant so that a more direct comparison between the

two distributions could be made.

Experiment 3

Experiment 2 examined bottleneck severity such that a statistically significant

difference in throughput between allocations (optimal and even) was detected.
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However, a statistical difference does not necessarily equate to a practical

difference. Due to the long run lengths and common random number threads

which are to reduce variability and shrink confidence interval sizes, a statistically

significant difference can be detected with an absolute difference of less than

0.05% in throughput. The purpose of experiment 3 is to see what happens to the

absolute difference in throughput between the optimal and even buffer allocations

as the bottleneck continues to increase in severity past the point of a new optimal

buffer allocation.

The same setups (distribution, CV, buffer capacity, line length) used in experiment

2 were also used in this experiment. Line throughputs were determined at several

set bottleneck levels. The bottleneck workstation's mean processing time was

incremented by 0.25 time units from 1.5 to 3 and from 1.5 to 2.75 for lines with

four stations and eight stations respectively. The non-bottleneck workstation's

mean processing time was 1 time unit. The percent below optimal of the balanced

buffer allocation (1- (even allocation throughput/optimal allocation throughput))

was recorded. A heuristic algorithm program developed by Vergara (2005) was

used in order to get a near optimal solution for eight-station lines because the time

necessary for an exhaustive search of all possible solutions was too great. This

algorithm is a genetic algorithm that uses the number of times each workstation

(on a critical path) is starved to determine where to place the buffers. Also to save

time, the bottleneck in the open eight-station lines was only considered to be one
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of the first 4 stations because results from the four-station line and experiment 2,

show that the behavior is symmetric around the center of the line (i.e. the first and

last station behave the same, as does the second and second to last, etc.). This

appears to be a result of the reversibility property of open lines addressed by Muth

(1979) and Conway et al. (1988) among others. Graphs of this data were plotted to

see if any trend.s could be determined (e.g. maximum throughput % difference,

bottleneck level when the difference reaches some critical point, etc.)

Experiment 4

The first three experiments all examined reliable production lines; however,

unreliable lines are also of interest. Experiment 4 examined these lines. The first

thing investigated with unreliable lines was to see if an evenly distributed buffer

allocation pattern is optimal for balanced closed production lines. Like all the

other experiments, production lines of length 4 and 8 were used. However, unlike

reliable lines, the processing times are constant and the variability comes from the

failure rates. Therefore, a variety of different MTTR (Mean Time to Repair) and

MTBF (Mean Time between Failures) were used in the testing instead of different

distributions and CVs. The values of MTTR and MTBF were chosen such that

they fell within the range of a real world situation representing an automobile body

shop assembly system (MTTR = 1, 5, and 10; MTBF = 50, 100, 250, and 500).
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The real world data was supplied by an automotive manufacturer through personal

communication (see Appendix C).

The next part of this experiment examined the difference between open production

lines and closed production lines with respect to how sensitive the optimal buffer

allocation pattern is to the severity of a bottleneck. An initial balanced line

consisting of stations with the various MTTR and MTBF values had a bottleneck

created by increasing the MTTR of a single station. The MTTR was increased

such that the te (effective mean processing time) increased by increments of 0.05.

Effective mean processing time is a term defined in Hopp and Spearman (2001)

and is equivalent to the mean processing time after accounting for the time a

station is unavailable due to machine breakdowns. The te is found by dividing the

workstation's mean processing time by its availability. The MTTR was increased

until there was a shift in the buffer allocation pattern or until the te of the

bottleneck station was equal to two time units (approximately twice the te of the

non-bottleneck stations). Once a change was detected, the bottleneck was looked

at closer by evaluating the buffer allocations with MTTR values in increments of

one just prior to the change. This was done to get the precision of the MTTR level

creating a shift down to one time unit and be consistent for all setups. Only lines

of length 4 were used in this comparison. Also, because of the reversibility

property the bottleneck 1 was only considered to be located in one of the first two

stations. Eight-station lines were not tested due to time constraints.
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Unreliable lines were then compared to reliable lines. Using the same MTTR and

MTBF values that fell within a range of a real production line, the unreliable line

was compared to its equivalent reliable line (in terms of te and CV). The reliable

lines had lognormal distributions. Again due to time constraints, only four-station

closed lines were tested. The optimal, second best, and worst solutions were

examined to see if the allocations were the same. The throughput values were

recorded as well.

The next experiment comparing unreliable lines and equivalent reliable lines

examined the magnitude of throughput differences with various buffer allocations

and bottleneck severity levels. The optimal, 2u1 best, and worst buffer allocations

were determined at multiple bottleneck levels (te = 1.05, 1.1, 1.25, 1.5, 1.75, 2).

The throughput for these allocations was determined and compared to the

throughput for an evenly distributed buffer allocation pattern. Four-station lines

were investigated where the CV = 0.5 and the CV = 1 to see if the lines behaved

the same for different CVs and line lengths. The CV was kept constant to compare

unreliable lines more directly with reliable lines. Increasing the MTTR only in an

unreliable line to increase the te would result in an increase of the bottleneck

station's CV, while increasing the mean only in a reliable station to increase te

would decrease the CV.
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Experiment 5

The prior experiments dealt with lines that consisted of four or eight stations.

However, in industry, lines can be much longer and these longer lines need to be

investigated as well. They were not included in the previous experiments because

of the massive computer time needed to run through all the possible buffer

allocations. Only a small number of tests were performed on longer lines for this

reason.

To investigate longer lines, a line length of 20 stations was used. The first thing

done was to check the hypothesis that an evenly distributed buffer allocation is

best for a balanced closed serial production line. Stations with an exponential

processing time distributions and the lognormal distributions with CV 0.5 and 1,

as well as unreliable stations with CV = 1 were included. The reliable lines had

workstations with te'S = 1, whereas the unreliable line used a te'S = 1.01. A te of

1.01 was used in the unreliable case instead of te = 1 because a te of 1 is only

possible if there are no failures (when the processing time equals 1 time unit). To

save more time, the lognormal distribution with a CV = 2 was omitted because a

CV value that high is less likely to be encountered in industry. Also, due to

computer time constraints, only a fraction of the possible buffer allocations were

examined. Included allocations were an evenly distributed allocation (all buffers

of capacity 1) and allocations in which one buffer had a capacity of 2, one a



capacity of 0, and the rest with a capacity of 1. This can be thought of as a shift of

one buffer. Since buffers attempt to reduce the impact of variability to improve

throughput, if one section of a line is more variable than the rest, then shifting a

single buffer toward it should improve the overall throughput of the line. If

shifting a single buffer does not improve the throughput of the line, it would stand

to reason that the even distribution is optimal. Also, to further verify that an

evenly distributed distribution is best, the optimal allocation was determined with

the heuristic algorithm developed by Vergara(2005) and checked for agreement

with the above results.

Next the hypothesis that closed production lines are less sensitive to bottlenecks

than open lines was tested. Using the same technique as in experiment 2, the te at

one station was increased until the optimal buffer allocation pattern changes. The

CV was kept constant for all setups for this experiment. Exponential and

lognormal (CV = 0.5, 1) processing time distributions were used. The lognormal

distributions were tested only for the closed production lines to see the effect of

distribution and CV on bottleneck sensitivity in a closed production line. For open

lines, only the exponential distribution was used. From prior experiments the

behavior of exponential and lognormal distributions was the same, so the

lognormal distribution was not used to save time. For open production lines, the

bottleneck was located at the 1st 5th and 10th station. The behavior had been

symmetric in the other experiments so the bottleneck was not included in the
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second half of the line. These three bottleneck locations were chosen to represent

the beginning of the line, the center of the line, and one station somewhere in

between.
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ANALYSIS AND RESULTS

The analysis and results are divided into six subsections with the first five

addressing each experiment and the last a summary of the results. The

organization of each sub-section consists of data analysis followed by a discussion

of the results. Some experiments consisted of multiple sub-experiments. In these

cases each sub-experiment is addressed separately describing the analysis and

results of one sub-experiment before describing the next.

Experiment 1

For experiment 1, the throughput of production lines with multiple buffer

allocations were compared to each other to find the optimal (i.e., highest average

throughput as indicated by simulation) allocation(s). Of interest was whether or

not the mean throughputs for each allocation differed from each other, and if so,

does the even allocation result in the greatest mean throughput. Since several

buffer allocations were to be compared against each other, the appropriate

statistical tests applied were multiple sample comparison tests. From the several

methods available for use, the LSD (least significant difference), Scheffe, and

Bonferroni methods were all used. These are standard statistical tests that are
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described in many statistical texts such as the one by Ramsey and Shafer (2002).

The LSD method generates the narrowest confidence intervals, the Scheffe method

generates the largest confidence intervals, and the Bonferroni method generates an

intermediate confidence interval size. A 95% confidence level was used for all

comparisons. Using the statistical software package Statgraphics, the allocations

that had statistically significant differences in throughput means were determined

and graphed (See Appendix G for the raw data). Unless there was a difference in

conclusions among the different statistical tests applied, only the results of the

LSD method are presented.

Four-station line setups were investigated first. Starting with the placement of a

single buffer and testing the null hypothesis that t1 = = = p4 with the

alternative hypothesis being one at least one other ji, there was found to be no

significant difference in throughput between any of the allocations. This holds for

all processing time distributions. This was expected because no matter where the

buffer is placed it will break up the line exactly the same since all stations are

identical.

Table 2 shows the groupings of the buffer allocations using the multiple

comparison methods (each column of X's represent one grouping of allocations in

which the mean throughputs are statistically indistinguishable from each other).

Note that the notation (bj, b2, ...) for the buffer allocation represents the buffer



capacity after workstation 1, 2, etc. Also, the allocations are listed from top to

bottom in ascending order of mean throughput.

Table 2: LSD 95% Multiple Comparison of Throughput for Exponential Four-
Station Line with Single Butter

ethod: 95.0 percent LSD
allocation Count Mean Homogeneous Groups

(1,0,0,0) 5 0.513284 X

(0,0,0,1) 5 0.513288 X

(0,1,0,0) 5 0.513308 x

(0,0,1,0) 5 0.513328 X

Looking at the exponential distribution, the largest difference in means was only

0.0000442 while the half-widths of the 95% confidence intervals (CI) for

throughput difference were 0.000405708, 0.000596584, and 0.000575736 for the

LSD, Scheffe, and Bonferroni methods respectively. Table 3 summarizes the

largest difference in means and the half-widths of the 95% CIs for throughput

difference for the four different distributions as well as the F-test p-values. All p-

values were well above 0.05; therefore, the null hypothesis that = .12 = = t4

cannot be rejected.

Table 3: Summary of Multiple Comparison Half-Widths for 95% CT's for
ThrouhDut - Four-Station Lines with Sin2le Buffer

Distribution
Largest

difference
LSD Half-
Interval

Scheffe
Half-Interval

Bonferroni
Half-Interval

P-
value

Exponential 0.000044 0.00040571 0.00059658 0.00057574 0.9952
Lognormal (1,25) 0.000039 0.00023515 0.00034578 0.00033369 0.9842
Lognormal(1,1) 0.000045 0.00030518 0.00044876 0.00043308 0.9918
Lognormal (1,4) 0.000043 0.00025605 0.00037651 0.00036335 0.9861
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When a second buffer was introduced into the system, the number of possible

allocations increased, but the results for the optimal allocation stayed consistent

with the hypothesis that evenly distributed buffers in a balanced line is optimal.

Using the same multiple comparison methods as before, the allocations were

separated into groups within which no statistical difference in mean throughput

existed. These groupings are presented in Table 4.

Table 4: LSD 95% Multiple Comparison of Throughput for Exponential Four-
Station Line with Two Buffers

4ethod: 95.0 percent LSD

allocation Count Mean Homogeneous Groups

(2,0,0,0) 5 0.513284 X

(0,0,0,2) 5 0.513288 X

(0,2,0,0) 5 0.513308 X

(0,0,2,0) 5 0.513328 X

(1,1,0,0) 5 0.53434 X

(1,0,0,1) 5 0.534343 X

(0,0,1,1) 5 0.534359 X

(0,1,1,0) 5 0.534378 X

(1,0,1,0) 5 0.541813 X

(0,1,0,1) 5 0.541814 X

A couple of things stood out when looking at Table 4. First, the optimal

allocations were the two in which the buffers were as evenly distributed

throughout the line as possible ((1,0,1,0) and (0,1,0,1)). Second, all the results

stayed consistent with the decomposition principle. There were clearly three

groupings among the allocations which were also shown in Figure 2. Figure 2



presents the means and the LSD intervals for the average throughput of each buffer

allocation.

Means and 95.0 Percent LSD Intervals
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Figure 2: Means Plot for Exponential Four-Station Line with Two Buffers

The best were the two in which the buffers separated the lines into two smaller

lines consisting of two stations each, the next best were the lines which were

broken up into two lines consisting of one and three stations, and the worst were

the lines that were not separated at all and still one line of four stations. See

Figures 3-5 for graphical representations of these lines. Finally, the allocations

(2,0,0,0), (0,2,0,0), (0,0,2,0), and (0,0,0,2) had the exact same throughput as
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(1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1) respectively. Placing a second buffer in

the same spot as the first had no effect on the throughput at all.

Wostation Workstation

Workstation

Figure 3: Buffer Configuration Resulting in Two Sub-lines of Length 2
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Workstation

Wostation Wostation

Wostation

Figure 4: Buffer Configuration Resulting in Sub-lines of Length 1 and 3

Wostation

Workstation Wostation

Wostation

Figure 5: Buffer Configuration Resulting in Sub-line of Length 4



As more buffers were added to the system, the patterns seen in the case of two

buffers continued to hold. Tables 5 and 6 show the results for three and four

buffers in four-station lines respectively. Table 7 presents the half-widths of95%

CIs for line throughput difference for the setups represented by Tables 4-6. The

best solutions (resulting in the highest throughput) continued to be the allocations

that separated the line into the smallest length subsections which were the

allocations in which the buffers were as evenly distributed across the line as

possible. Also, the worst solutions (lowest throughput) were the allocations that

did not break up the line at all. Finally, intermediate allocations resulted in

increased throughput as the length of the largest subsection (stations not separated

by buffers) decreased. Lines with five to eight buffers were also examined with no

new findings from what was already observed. These results can be obtained from

the data in Appendix G.
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Table 5: LSD 95 % Multiple Comparison of Throughput for Exponential Four-
Station Line with Three Buffers

Jethod: 95.0 percent LSD

allocation Count Mean Homogeneous Groups

(3, 0,0,0) 5 0.514914 X

(0,0,0,3) 5 0.514918 X

(0,3,0,0) 5 0.51493 x

(0,0,3,0) 5 0.514955 X

(0,0,2,1) 5 0.544078 X

(2,1,0,0) 5 0.544084 X

(2,0,0,1) 5 0.544085 x

(1,0,0,2) 5 0.544089 X

(1,2,0,0) 5 0.5441 X

(0,2,1,0) 5 0.544117 X

(0,0,1,2) 5 0.544118 x

(0,1,2,0) 5 0.544181 X

(0,2,0,1) 5 0.558165 X

(2,0,1,0) 5 0.558181 X

(0,1,0,2) 5 0.558185 X

(1,0,2,0) 5 0.558228 X

(0,1,1,1) 5 0.571825 x

(1,1,0,1) 5 0.571838 X

(1,0,1,1) 5 0.571845 x

(1,1,1,0) 5 0.571849 X
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Table 6: LSD 95% Multiple Comparison of Throughput for Exponential Four-
Station Line with Four Buffers

ethod: 95.0 percent LSD

allocation Count Mean Homogeneous Groups

(4,0,0,0) 5 0.514914 X

(0,0,0,4) 5 0.514918 X

(0,4,0,0) 5 0.51493 X

(0,0,4,0) 5 0.514955 X

(0,0,3,1) 5 0.544078 X

(3,1,0,0) 5 0.544084 X

(3,0,0,1) 5 0.544085 X

(1,0,0,3) 5 0.544089 X

(1,3,0,0) 5 0.5441 X

(0,3,1,0) 5 0.544117 X

(0,0,1,3) 5 0.544118 X

(0,1,3,0) 5 0.544181 X

(2,2,0,0) 5 0.552021 X

(2,0,0,2) 5 0.552025 X

(0,0,2,2) 5 0.552033 X

(0,2,2,0) 5 0.55207 X

(0,3,0,1) 5 0.558165 X

(3,0,1,0) 5 0.558181 X

(0,1,0,3) 5 0.558185 X

(1,0,3,0) 5 0.558228 X

(2,0,2,0) 5 0.573348 X

(0,2,0,2) 5 0.573349 x

(0,1,2,1) 5 0.579512 X

(2,1,0,1) 5 0.57952 X

(1,2,1,0) 5 0.579561 X

(1,0,1,2) 5 0.579566 X

(0,2,1,1) 5 0.583629 x

(2,0,1,1) 5 0.583653 x

(1,0,2,1) 5 0.583666 X

(0,1,1,2) 5 0.583676 X

(2,1,1,0) 5 0.583681 X

(1,1,0,2) 5 0.583683 X

(1,2,0,1) 5 0.583685 X

(1,1,2,0) 5 0.583718 x

(1,1,1,1) 5 0.607215 X

Table 7: Multiple Comparison Half-Widths for 95% CT's for Throughput
Exponential Four-Station Lines

Number of
Buffers

LSD Half-
Interval

Scheffe Half-
Interval

Bonferroni
Half-Interval

2 0.000405708 0.000596584 0.000575736

3 0.000360817 0.001035880 0.000692440

4 0.000356838 0.001294690 0.000731220
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Eight -stations lines were also examined in experiment 1. The same tests

performed for the four-station lines were performed for the eight -station lines and

the results (see Appendix G for raw data) also demonstrated applicability of the

decomposition principle and that the even buffer allocation pattern was optimal.

Table 8 presents the multiple comparisons for a single buffer and shows that there

was no difference in throughput means between the different allocations. Also,

Table 9 presents the partial results of the multiple comparisons with four buffers.

It shows the lowest throughput grouping of allocations and the highest throughput

grouping. Again, the optimal solution was an evenly distributed buffer allocation

scheme and the worst scheme was when all buffers were located at a single station.

Table 8: LSD 95% Multiple Comparison of Throughput for Exponential Eight -
Station Line with Sin2le Buffer

ethod: 95.0 percent LSD

allocation Count Mean Homogeneous Groups

(00100000) 5 0.426503 X

(00010000) 5 0.426507 x

(00001000) 5 0.426509 X

(01000000) 5 0.426518 X

(00000100) 5 0.42652 X

(00000010) 5 0.426527 X

(10000000) 5 0.426542 X

(00000001) 5 0.426543 X
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Table 9: Partial LSD 95% Multiple Comparison of Throughput for Exponential
Eight-Station Line with Four Buffers

4ethod: 95.0 percent LSD

allocation Count Mean Homogeneous Groups

(04000000) 5 0.313326 X

(00000400) 5 0.313329 X

(00004000) 5 0.313333 X

(00000040) 5 0.313338 X

(00040000) 5 0.313347 x

(00000004) 5 0.313349 X

(00400000) 5. 0.313354 X

(10101010) 5 0.331384 X

(01010101) 5 0.331393 X

Experiment 2

The purpose of the second experiment was to determine if a difference in the

sensitivity of the optimal buffer allocation (to the severity of a single bottleneck)

exists between open and closed production lines. The bottleneck severity level

that created a change in the optimal buffer allocation was determined for a variety

of different setups. A single workstation had its mean processing time increased

from a mean equal to one, until a buffer allocation change showed a better

throughput. This change was determined to have occurred once there was a

statistically significant difference between the buffer allocation that had the

highest simulated throughput (investigated all cases where there was a shift of a

single buffer from one spot to another) and the buffer allocation pattern optimal for

the balanced line. The optimal allocation for all balanced lines, with the total

number of buffers set to have one buffer between each station, was one buffer



54

between each station (except the eight-station open production lines with

lognormal(1, 4)1 distributed processing times). Paired t-tests were used to

determine when there was a significant (at a 95% confidence level) difference

between the two allocations. A paired t-test was used because the simulation of

production lines (to determine throughput) used synchronized random number

streams. The null hypothesis of the paired t-test was that the mean throughput

difference between lines with different buffer allocations was zero and the

alternative hypothesis was that the difference was greater than zero. The reason

for using a one-sided test was because the question of interest was whether the

new allocation was better than the even allocation, not just whether the two were

different. The final results for the four-station and eight-station lines are shown in

Table 10 and Table 11 respectively. They show the bottleneck severity level (the

mean processing time at the bottleneck) required to cause a change in the optimal

(balanced) buffer allocation in closed production lines and open production lines

(for each position of the bottleneck workstation). The starting mean processing

times for all stations was one.

if X-iognormal(a,b), then E[X] = a, Var[X] = b



Table 10: Required Mean Processing Time at the Bottleneck Station to Cause a
Change in the Optimal Buffer Allocation for Four-Station Lines

Four Stations
Processing Time

Distribution Closed Open: Position of Bottleneck
1 2 3 4

exponential 1.76 1.45 1.44 1.44 1.45

lognormal(1,.25) 1.49 1.35 1.39 1.39 1.35
Const.

Variance lognormal(1,1) 1.69 1.50 1.44 1.44 1.49

lognormal(1,4) 1.71 1.50 1.30 1.29 1.50

lognormal(1,.25) 1.51 1.33 1.38 1.38 1.33
Co nst.

CV lognormal(1,1) 1.74 1.46 1.44 1.43 1.46

lognormal(1,4) 1.88 1.51 1.34 1.33 1.51

Table 11: Required Mean Processing Time at the Bottleneck Station to Cause a
Change in the Optimal Buffer Allocation for Eight-Station Lines

Processing
Time

Distribution
exponential

Eight_Stations

Closed
Open: Position of Bottleneck

1 2 3 4 5 6 7 8

1.54 1.35 1.26 1.23 1.22 1.21 1.22 1.26 1.35

lognormal(1,.25) 1.38 1.30 1.27 1.27 1.28 1.29 1.27 1.27 1.30
Const.

Variance lognormal(1 , 1) 1.64 1.48 1.35 1.28 1.25 1.25 1.28 1.35 1.48

lognormal(1 4) 1.77 1.09 1.09 1.27 1.14 1.14 1.27 1.09 1.08

lognormal(1,.25) 1.35 1.26 1.24 1.24 1.25 1.25 1.24 1.24 1.26
Const.
cv Iognormal(1,1) 1.57 1.36 1.25 1.20 1.18 1.18 1.20 1.25 1.36

lognormal(1 4) 1.75 1.08 1.08 1.24 1.12 1.12 1.24 1.08 1.08

Several conclusions were reached by looking at this data. First, the bottleneck

severity necessary for a different buffer allocation (other than the balanced

allocation) to be the optimal allocation was greater for the closed production line
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than the open production line with the same number of stations, regardless of the

open system bottleneck location. This is also shown graphically in Figure 6 and

Figure 7.

Bottleneck Severity Required to Change Optimal
Allocation -4 Stations
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Figure 6: Bottleneck Severity Level Required to Change to a Non-Even Buffer
Allocation as Optimal Four Stations
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Note: Original optimal allocation for lognormal(1 4) open lines was not an even allocation. For this
case the bottleneck level recorded was for the change from allocation (0,1,2,12,1,0).

Figure 7: Bottleneck Severity Level Required to Change to a Non-Even Buffer
Allocation as Optimal Eight Stations

Second, the bottleneck severity appeared to be affected by the CV of the

workstations. The larger the CV, the larger the bottleneck required to create a

change in the optimal buffer allocation for closed production lines (Figure 8). For

open productions lines the effect of the CV was less clear. In open lines the

bottleneck severity looked to also depend on both the location of the bottleneck

and the length of the line.
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Bottleneck Severity vs. CV
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Figure 8: Bottleneck Severity that First Causes a Change to the Optimal Buffer
Allocation at Various CV Levels for Lognormal Distribution

With regards to the length of the line, the bottleneck severity level required to

create a shift in the optimal buffer allocation appeared to decrease with an increase

in line length (Figure 9). There was only one case in which the severity was larger

in the eight-station line (closed production line with lognormal( 1,4) distributed

processing times). Since the bottleneck location in open lines seemed to have an

effect, when comparing four-station lines and eight-station lines, the bottleneck

needed to be in the same position. Both the first workstation (labeled "open-end"

on graph) and one of the inner most stations (second station in four-station line,

fourth station in eight-station line labeled "open-center" on graph) were chosen for

comparisons in Figure 9.
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Figure 9: Bottleneck Severity Levels that First Cause a Change to the Optimal
Buffer Allocation for Different Line Types

Finally, in open production lines the bottleneck severity level necessary to create a

change in optimal allocation depended on the location of the bottleneck. It

appeared to be symmetric around the center of the line. That is, the change

occurred at the same time when the bottleneck was located at the first or last

station, the second or second to last station, the third or third to last station, etc.

This result is not surprising because the reversibility property of open lines

addressed by Muth (1979) and Conway et al - (1988) among others states that two

serial lines, which are mirror images of each other, will have the same throughput.



Experiment 3

As shown in experiment 1, the evenly distributed buffer allocation is optimal for a

balanced line and is optimal in the presence of a single bottleneck up to some

bottleneck severity level. For many cases this level exceeded a 50% increase in

the mean effective processing time relative to other stations in the line (e.g., when

the CV ? 1). Since lines are not normally designed to have such severe

bottlenecks but they do occur, a natural question is: can an even buffer allocation

be used as a general design rule for closed and br open production lines with

minimal risk of losing much in terms of throughput? Specifically of interest was

how much worse an evenly distributed buffer allocation performs in lines where it

is not the optimal buffer allocation (i.e., the allocation resulting in the greatest

throughput). This is the question addressed in experiment 3.

The throughput was calculated for both the optimal allocation of the balanced line

(one buffer between each station except for lognormal(1 ,4) open lines) and the

optimal (or near optimal) allocation at a given bottleneck level. With four-station

lines, the optimal buffer allocation was determined after estimating the throughput

for all possible allocations through simulation. The optimal buffer allocation for

eight -station lines was determined using the algorithm developed by Vergara

(2005). For a complete listing of the optimal buffer allocations see Appendix D.

Once the throughput for each allocation was calculated, the percentage of
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throughput lost by using the even allocation rather than the optimal allocation was

determined (1 -(even allocation throughput/optimal allocation throughput)). These

percentages were determined for all the same setups explored in experiment 2 at

multiple bottleneck levels. For eight-station open lines the bottleneck was located

in the first half of the line only (due to reversibility property). Table 12 shows an

example of this data (for complete data see Appendix E). A series of graphs

(percentage loss vs. bottleneck severity) were then plotted to determine if anything

of interest could be noted.

Table 12: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal (Bottleneck Mean = 2.00)

4 stations, Bottleneck mean = 2.00

Processing Time
Distribution

Closed Open: Position of Bottleneck
1 2 3 4

exponential 0.4751% 2.2611% 1.1542% 1.1478% 2.2588%
lognormal(1,.25) 0.0988% 0.0568% 0.0512% 0.0508% 0.0570%

const.
lognormal(1,1) 0.7581% 1.3896% 0.9104% 0.9160% 1.3923%
Iognormal(1,4) 0.5621% 1.6431% 1.2656% 1.2771% 1.6505%
lognormal(1,.25) 0.3262% 0.2474% 0.1882% 0.1878% 0.2477%

coflst.
lognormal(1,1) 0.4654% 1.7920% 1.0202% 1.0290% 1.7971%
Iognormal(1,4) 0.1806% 1.3628% 1.0032% 1.0131% 1.3670%

The first thing that stood out when examining the data from Figures 10-13 was that

the throughput difference between the optimal and the even allocations initially

increased as the bottleneck increased. The increase occurred quickly at first, but

then gradually lessened until some point was reached at which the difference
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started to decrease (note: this was true for all but the lognormal( 1,4) distribution

because the maximum was not reached in every case). This pattern makes sense

because there will be a point at which a bottleneck is so severe that it dominates

the line and any buffer allocation scheme will have little effect on the throughput.
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Although all the different lines tested followed the same basic pattern several

differences were seen based on line length, CV of the non-bottleneck stations, CV

ofjust the bottleneck station, and type of line (open or closed). First, the most

obvious effect seen was that by which the line length affected the maximum

throughput difference seen. In every case (in which a maximum could be

determined) the maximum throughput difference between allocations was greater

in the line with eight stations than the one with four stations. Table 13 shows the
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data for the closed production lines tested. Also, when looking at the data for

closed lines, the maximum difference appeared to occur sooner for longer lines.

Table 13: Maximum Throughput Difference between Optimal and Even Buffer
Allocation for Closed Production Line Setups

4 Stations 8 Stations

Maximum Bottleneck Maximum Bottleneck
Processing Time Difference severity at Difference severity at

Distribution Observed Maximum Observed Maximum

Exponential 1.5538% 2.75 2.7862% 2.5

Lognormal (1,.25) 0.2347% 1.75 0.3978% 1.50

Lognormal (1,1) 1.0542% 2.25 1.6062% 2.25

Lognormal (1,4) 1.7826% 3.00* 1.9377% 2.75*

Lognormal (1,.25)
0.4014% 1.75 0.9033% 1.75

Const. CV
Lognormal (1,1) -

1.2494% 2.75 2.1136% 2.50
Const.CV

Lognormal (1,4)
1.2956% 3.00* 1.6479% 2.75*

Const. CV
maximum bottleneck level tested was 3.00 and 2.75 for four and eight stations

respectively

The next observation is the effect of the CV of the non-bottleneck stations. For the

smallest value of CV (CV 0.5) tested, the maximum throughput difference

occurred quicker and at the lower bottleneck severity levels than when compared

to the larger CV values. The maximum difference always occurred by a

bottleneck severity level of 1.75 and often prior to a 1.50 severity level. See



Figure 11 for the graphs of all lognormal(1,.25) data. In addition, the degree of

this difference was relatively small. In the four-station closed lines, the maximum

difference seen was only 0.4% and in the eight-station closed lines the difference

was only 0.9%. This suggests that for small values of CV, that an even buffer

allocation could be a decent option no matter what kind of bottleneck is present.

For the largest CV (CV = 2), the maximum occurred at much larger bottleneck

severity levels, often occurring at bottleneck severity levels in excess of 2.75 (See

Figure 13). Also, for closed lines the maximum throughput difference observed

appeared to increase with CV. This observation does not hold for open production

lines.

Not only did the CV of the non-bottleneck workstations appear to have an effect in

closed production lines, but so did the CV of the bottleneck station. When the

mean only was increased to create a bottleneck (constant variance) the overall CV

of the bottleneck decreased; therefore the CV of the bottleneck station was smaller

than in the constant CV case. When examining these two cases (shown best in

Figure 12) the effect of the bottleneck's CV appeared to be similar to that of the

CV of the non-bottleneck stations. The maximum percentage difference in

throughput was greater for the constant CV (larger bottleneck CV) case, and the

bottleneck severity level when this occurred was equal to or greater than the

constant variance (smaller bottleneck CV) case. Unlike the effect of CV of the
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bottleneck station, the CV of the non-bottleneck station appears to behave the

same in the open production lines tested as the closed production lines.

When looking at the behavior of open lines vs. the closed lines, a few things were

seen. First, although the first change from an even allocation being optimal was

later (in terms of bottleneck severity level) for closed lines, the maximum

throughput difference at higher bottlenecks sometimes exceeded that of open lines.

For example, looking at Figure 10 in the four-station line, the closed line reached a

maximum throughput difference of just more than 1.50%; where as, the open line

with the bottleneck located at the second or third workstation reached an

approximate 1.20% difference. However, when there were eight stations, the

closed production lines never had a maximum difference that was more than the

open lines. It seems that for longer lines the even allocation will perform as well

or better (with regards to optimal buffer allocation) in closed lines than open lines

no matter the severity of the bottleneck. Also, in closed lines the maximum

difference occurred sooner (with respect to the bottleneck severity level) as the

line length increased. However, the behavior of open lines was not consistent. For

example, when looking at open lines with the bottleneck located in the center of

the line (second and fourth stations in the four-station and eight-station lines

respectively), the maximum difference occurred in the four-station line sooner than

the eight-station line with the exponential distribution, but occurred later with the

lognormal( 1,1) distribution with constant CV.



68

Experiment 4

Experiment 4 examined buffer allocation in automated/unreliable lines. Unreliable

lines are ones in which the workstation processing time variability comes from

random breakdowns. The first part of experiment 4 was to determine if the evenly

allocated buffer pattern is optimal for closed automated/unreliable production

lines. Lines of four stations and eight stations were tested with buffer capacities of

four and eight respectively. Like experiment 1, differences in simulated

throughput for lines with different buffer allocations were determined using

multiple comparison tests. The LSD, Bonferroni, and Scheffe methods were

applied. Not all test results are shown here, but they can be verified from the data

in Appendix G. Various MTTR and MTBF combinations were tested which

represented a wide range of CV values for the effective processing times. The CV

values resulting from the MTTR/MTBF combinations are shown in Table 14

(assuming a constant processing time of one).



Table 14: CVs (Mean Processing Time = 1) for Various MTTR and MTBF
Combinations

CV MTBF MTTR
0.1961 50 1

0.9091 50 5

1.6667 50 10

0.1400 100 1

0.6734 100 5

1.2856 100 10

0.0891 250 1

0.4384 250 5

0.8600 250 10

0.0631 500 1

0.3131 500 5

0.6201 500 10

0.0447 1000 1

0.2225 1000 5

0.4428 1000 10

Test results showed that the even allocation of buffers has the highest average

throughput for all buffer allocations tested (see Table 15). However, the results of

the multiple comparison tests were not the same as in the reliable lines tested in

experiment 1. For reliable closed lines, the even buffer allocation always had a

statistically significantly higher throughput than any other buffer allocation, and

the different homogenous groups of buffer allocations could be predicted based on

the decomposition principle. However, in the unreliable case, the results were

much more variable. Sometimes the even allocation was significantly higher than

all other allocations (see Table 16), but sometimes there were multiple buffer

allocations that resulted in the same throughput (see Table 17). Often the result

would depend on the statistical test being employed. This suggests that there may

be less throughput difference between the different buffer allocations in unreliable
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lines than in reliable ones. While the even allocation may not be the only optimal

solution, it is always among the optimal solution(s) for unreliable closed lines.

More extensive simulations may be able to detect significant differences that were

not found in this experimentation.

Table 15: Buffer Allocation Resulting in the Greatest Throughput
MTBF MTTR Greatest TH Allocation
50 1 0.948203 (1-1-1-1)

50 5 0.738164 (1-1-1-1)

50 10 0.57472 (1-1-1-1)

100 1 0.97309 (1-1-1-1)

100 5 0.847019 (1-1-1-1)

100 10 0.726101 (1-1-1-1)

250 1 0.989001 (1-1-1-1)

250 5 0.932045 (1-1-1-1)

250 10 0.867779 (1-1-1-1)

500 1 0.994403 (1-1-1-1)

500 5 0.964445 (1-1-1-1)

500 10 0.928457 (1-1-1-1)

1000 1 0.997178 (1-1-1-1)

1000 5 0.981846 (1-1-1-1)

1000 10 0.9628 (1-1-1-1)
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Table 16: LSD Multiple Comparison of Throughput for Unreliable (MTTR1,
MTBF=50) Four-Station Closed Line (95% Confidence Level)

ethod: 95.0 percent LSD

allocation Count Mean Homogeneous Groups

(0,0,4,0) 5 0.927471 X

(0,4,0,0) 5 0.927478 X

(4,0,0,0) 5 0.927485 X

(0,0,0,4) 5 0.927486 X

(1,3,0,0) 5 0.935654 X

(3,1,0,0) 5 0.935656 X

(1,0,0,3) 5 0.935656 X

(3,0,0,1) 5 0.935663 X

(0,0,1,3) 5 0.935677 X

(0,3,1,0) 5 0.935681 x

(0,1,3,0) 5 0.935682 x

(0,0,3,1) 5 0.935685 X

(1,0,3,0) 5 0.938588 X

(0,1,0,3) 5 0.938596 X

(3,0,1,0) 5 0.938596 X

(0,3,0,1) 5 0.938605 X

(2,2,0,0) 5 0.939347 X

(2,0,0,2) 5 0.939347 X

(0,0,2,2) 5 0.939386 X

(0,2,2,0) 5 0.939397 X

(0,1,2,1) 5 0.943255 X

(1,2,1,0) 5 0.943266 X

(1,0,1,2) 5 0.943271 X

(2,1,0,1) 5 0.943277 x

(0,2,0,2) 5 0.94411 X

(2,0,2,0) 5 0.944111 x
(0,2,1,1) 5 0.944593 X

(1,1,2,0) 5 0.944601 X

(2,1,1,0) 5 0.944602 X

(1,1,0,2) 5 0.944602 X

(0,1,1,2) 5 0.944609 X

(1,2,0,1) 5 0.944614 X

(1,0,2,1) 5 0.944639 X

(2,0,1,1) 5 0.944644 X

(1,1,1,1) 5 0.948203 X
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Table 17: Scheffe Multiple Comparison of Throughput for Unreliable (MTTR= 1,
MTBF=1000) Four-Station Closed Line (95% Confidence Level)

Iethod: 95.0 percent Scheffe

allocation Count Mean Homogeneous Groups

(0,4,0,0) 5 0.995943 X

(0,0,0,4) 5 0.995943 X

(4,0,0,0) 5 0.995943 X

(0,0,4,0) 5 0.995943 X

(1,0,0,3) 5 0.996433 X

(3,1,0,0) 5 0.996433 X

(1,3,0,0) 5 0.996433 X

(3,0,0,1) 5 0.996433 X

(0,1,3,0) 5 0.996439 X

(0,3,1,0) 5 0.996439 X

(0,0,3,1) 5 0.996448 X

(0,0,1,3) 5 0.996448 X

(1,0,3,0) 5 0.996608 XX

(0,3,0,1) 5 0.996608 XX

(0,1,0,3) 5 0.996609 XX

(3,0,1,0) 5 0.996609 XX

(2,0,0,2) 5 0.996658 XXX

(2,2,0,0) 5 0.996658 XXX

(0,2,2,0) 5 0.996667 XXXX

(0,0,2,2) 5 0.996692 XXXXX

(2,1,0,1) 5 0.996885 XXXXX

(1,2,1,0) 5 0.996885 XXXXX

(1,0,1,2) 5 0.996894 XXXXX

(0,1,2,1) 5 0.996896 XXXXX

(2,0,2,0) 5 0.996943 XXXX

(0,2,0,2) 5 0.996943 xXXX

(1,2,0,1) 5 0.996964 XXX

(1,1,2,0) 5 0.996964 XXX

(2,1,1,0) 5 0.996965 XXX

(1,1,0,2) 5 0.996965 XXX

(0,2,1,1) 5 0.996967 XXX

(2,0,1,1) 5 0.996969 XXX

(0,1,1,2) 5 0.996979 XX

(1,0,2,1) 5 0.996981 XX

(1,1,1,1) 5 0.997178 X

The second part of experiment 4 examined the differences in sensitivity of the

optimal buffer allocation to the severity of a single bottleneck in closed lines and

open lines, as was done in experiment 2 for reliable lines. In this experiment the

MTTR of a single workstation was increased in order to create a bottleneck. A
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bottleneck severity level up to te = 2 time units was investigated. Looking at the

results for four-station lines, a few observations can be made. First, the even

allocation pattern remained optimal at the largest bottleneck level for all

MTTRIMTBF combinations (Table 18). Since the MTTR!MTBF combinations

had similar CVs to the reliable lines tested but exceeded the bottleneck levels that

created a shift in the optimal solution, it can be concluded that closed unreliable

lines are less sensitive to bottlenecks than closed reliable lines.

Table 18: Buffer Allocation Resulting in the Greatest Throughput with te = 2 at
Bottleneck Station

MTBF MTTR Allocation Greatest TH
50 1 (1-1-1-1) 0.488339
50 5 (1-1-1-1) 0.426412
50 10 (1-1-1-1) 0.366722
100 1 (1-1-1-1) 0.494334
100 5 (1-1-1-1) 0.459642
100 10 (1-1-1-1) 0.421725
250 1 (1-1-1-1) 0.50001

250 5 (1-1-1-1) 0.484986
250 10 (1-1-1-1) 0.467014
500 1 (1-1-1-1) 0.501666
500 5 (1-1-1-1) 0.493894
500 10 (1-1-1-1) 0.484284
1000 1 (1-1-1-1) 0.505376
1000 5 (1-1-1-1) 0.50138
1000 10 (1-1-1-1) 0.496352

Next, the results for open lines were examined. Again, the results differed from

the reliable cases examined in experiment 2. When determining a starting optimal

solution, an even allocation was only best when the MTTR equaled one time unit,
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and depending on the comparison method was not always the only optimal

solution. In cases where the MTTR equaled five or ten time units, the best

solutions were where all the buffers were placed in the center location, but again

there were usually many optimal solutions and in the extreme case with MTTR =

10 and MTBF = 1000, there was no difference between any of the allocations

(Table 19). These results also indicate that buffer allocation is less important in

unreliable open lines. Finally, although the results are not as straight forward as in

experiment 2, the data does indicate that the closed lines are less affected by the

presence of a bottleneck than the open line equivalents. For many of the open line

setups and all of the closed lines examined, there was no change in the optimal

buffer allocation for the bottleneck levels tested. A change in the optimal buffer

allocation was seen at some point in all the open lines with an MTTR equal to one

time unit, and in two cases where the MTTR equaled five time units. When a shift

occurred, it usually happened at a very low bottleneck severity. The lines where a

change in the optimal allocation occurred are summarized in Table 20 (optimal

solution designated to be allocation with the highest average throughput when

multiple allocations determined optimal).
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Table 19: LSD Multiple Comparison of Throughput for Unreliable (MTTR= 10,
MTBF=1000) Four-Station Open Line (95% Confidence Level)

ethod: 95.0 percent Scheffe

allocation Count Mean Homogeneous Groups

(3,0,0,6) 5 0.962878 x

(0,0,3,6) 5 0.962913 x

(2,0,1,6) 5 0.962985 X

(1,0,2,6) 5 0.962994 X

(2,1,0,6) 5 0.963162 X

(0,1,2,6) 5 0.963186 x

(1,1,1,6) 5 0.963223 X

(1,2,0,6) 5 0.963371 X

(0,2,1,6) 5 0.963387 X

(0,3,0,6) 5 0.963506 X

Table 20: Four-Station Open Lines where an Increase in Bottleneck Severity
Caused a Chan2e in the Optimal Buffer Allocation

Original
MTTR MTBF

bottleneck
station

MTTR value
causing shift

1 50 1 2

1 50 2 3

1 100 1 3

1 100 2 3

1 250 1 3

1 250 2 3

1 500 1 3

1 500 2 4

1 1000 1 3

1 1000 2 7

5 50 1 8

5 100 1 62

After performing the first two parts of experiment 4, it appeared that the unreliable

lines were behaving differently than the reliable lines, so a more direct comparison

between unreliable and reliable lines was made. For each unreliable line setup

tested, a reliable equivalent (same te and CV) was also tested. Only closed lines
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were investigated. Looking at the multiple comparison tests on throughput for the

equivalent unreliable and reliable lines, it can be seen that there is much lower

throughput differences between different buffer allocations in the unreliable lines.

Tables 19 and 20 show results from applying the Scheffe multiple comparison

method for throughput from equivalent reliable and unreliable lines with te 1.01

and CV = 0.313.
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Table 21: Scheffe Multiple Comparison of Throughput for Reliable (with
Lognormal (1.01, 0.1) Processing Times) Four-Station Closed Line (95%

Confidence Level)
lethod: 95.0 percent Scheffe

allocation Count Mean Homogeneous Groups

(4,0,0,0) 5 0.764229 X

(0,0,0,4) 5 0.764232 X

(0,4,0,0) 5 0.76425 X

(0,0,4,0) 5 0.764265 X

(1,3,0,0) 5 0.790606 X

(3,1,0,0) 5 0.790609 X

(0,0,1,3) 5 0.790611 X

(1,0,0,3) 5 0.790611 X

(0,0,3,1) 5 0.790612 X

(3,0,0,1) 5 0.790615 X

(0,3,1,0) 5 0.79062 X

(0,1,3,0) 5 0.790624 X

(0,2,2,0) 5 0.792 X

(2,2,0,0) 5 0.792002 X

(2,0,0,2) 5 0.792005 x

(0,0,2,2) 5 0.792017 X

(3,0,1,0) 5 0.811381 X

(0,1,0,3) 5 0.811382 X

(1,0,3,0) 5 0.811384 X

(0,3,0,1) 5 0.811391 X

(2,0,2,0) 5 0.822406 X

(0,2,0,2) 5 0.822406 X

(1,0,1,2) 5 0.833706 X

(1,2,1,0) 5 0.833709 X

(2,1,0,1) 5 0.833709 x

(0,1,2,1) 5 0.833749 x

(2,0,1,1) 5 0.836303 X

(2,1,1,0) 5 0.836316 X

(1,1,0,2) 5 0.836317 x

(1,2,0,1) 5 0.836323 X

(1,1,2,0) 5 0.836325 X

(1,0,2,1) 5 0.836329 x

(0,1,1,2) 5 0.836356 X

(0,2,1,1) 5 0.836363 X

(1,1,1,1) 5 0.886243 X
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Table 22: Scheffe Multiple Comparison of Throughput for Unreliable (MTTR=5,
MTBF=500) Four-Station Closed Line (95% Confidence Level)

ethod: 95.0 percent Scheffe

allocation Count Mean Homogeneous Groups

(0,4,0,0) 5 0.961104 X

(0,0,4,0) 5 0.961104 X

(4,0,0,0) 5 0.961109 x

(0,0,0,4) 5 0.96111 x

(1,3,0,0) 5 0.962375 XX

(3,1,0,0) 5 0.962376 XX

(1,0,0,3) 5 0.962377 XX

(3,0,0,1) 5 0.962378 XX

(0,1,3,0) 5 0.962382 XX

(0,3,1,0) 5 0.962382 XX

(0,0,1,3) 5 0.962397 X

)0,0;3,1) 5 0.962398 X

(1,0,3,0) 5 0.962811 XX

(0,3,0,1) 5 0.962815 XX

(3,0,1,0) 5 0.962816 XX

(0,1,0,3) 5 0.962817 XX

(2,2,0,0) 5 0.963422 XXX

(2,0,0,2) 5 0.963422 XXX

(0,2,2,0) 5 0.963434 XXX

(0,0,2,2) 5 0.963466 XXX

(1,2,1,0) 5 0.963618 XXX

(2,1,0,1) 5 0.96362 XXX

(1,0,1,2) 5 0.96363 XXX

(0,1,2,1) 5 0.963642 XXX

(2,1,1,0) 5 0.963968 XX

(1,1,0,2) 5 0.963969 XX

(1,1,2,0) 5 0.963976 XX

(2,0,1,1) 5 0.963976 XX

(1,2,0,1) 5 0.963981 XX

(0,2,1,1) 5 0.963984 XX

(0,1,1,2) 5 0.963993 XX

(1,0,2,1) 5 0.963993 XX

(2,0,2,0) 5 0.964229 X

(0,2,0,2) 5 0.964229 X

(1,1,1,1) 5 0.964445 X

Reliable and unreliable lines were then compared by looking at the throughput

differences between the optimal buffer allocation, the second best allocation, and

the worst allocation (in terms of throughput). Table 23 shows an example for one

line (results for other lines are in Appendix F). One observation is that the

throughput values for different buffer allocations vary much more in the reliable
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lines than the unreliable ones. The difference between the optimal throughput and

the second best allocation's throughput (Figure 14) and the difference between the

optimal and worst throughput (Figure 15) were plotted for each setup tested. The

unreliable lines had little throughput difference between the various allocations at

all CV values. The reliable lines on the other hand, had much larger differences

that depended on the CV. Peaking at CV values between 0.1 and 0.2, the

throughput differences rapidly increase at first and then slowly decrease.

Table 23: Reliable and Unreliable Line Comparison of Throughput for the
Optimal, Second Best, and Worst Buffer Allocation

Setup
Optimal

Allocation TH

2d Best
Allocation TH

Worst
Allocation TH

MTTR=1, MTBF=50 (1-1-1-1) 0.948203 (2-0-1-1) 0.944644 (0-0-4-0) 0.927471

log(1 .02.04) (1-1-1-1) 0.931590 (0-1-1-2) 0.882390 (4-0-0-0) 0.828330
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Figure 14: Throughput Differences between the Best and Second Best Buffer
Allocations vs. CV
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Figure 15: Throughput Differences between the Best and Worst Buffer Allocations
vs. CV
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Also, by plotting the optimal throughput rates against CV (Figure 16) it can be

seen, as expected, that the throughput of the unreliable lines decrease with an

increasing CV just like the reliable line. However, it does not occur at a smooth

consistent rate like the reliable line, so the unreliable lines were separated into

three groups based on the MTTR and replotted (Figure 17). This graph shows that

for an MTTR = 1, the unreliable lines behave very much like the reliable lines, but

as the MTTR increases, the throughput differences between the reliable and

unreliable lines increases.

Optimal THvs CV

1.2

ri.unrehabIe

Figure 16: Optimal Throughput for Lines with Various CVs
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Figure 17: Optimal Throughput for Lines with Various CVs (Unreliable Lines
Separated by MTTR)

Finally, reliable and unreliable lines were compared when there was a bottleneck

present. Looking at four-station lines with a CV of 1 and 0.5, the optimal buffer

allocation was found at different bottleneck severity levels. Then the throughputs

for the optimal, even, and worst buffer allocations were recorded (see Appendix

F). Using the LSD multiple comparison test (95% confidence level) on the

unreliable lines, no significant differences in throughputs could be determined for

any of the buffer allocations when CV = 1. Only the most extreme allocations (all

buffers assigned to the same location) could be seen as significantly different when

CV = 0.5. However, the even allocation had the highest average throughput when

CV = .05 and the third highest when CV = 1, so it was chosen to be the optimal

solution for the balanced line, and was used in the comparisons. Several



83

observations were made. First, the reliable lines behaved consistently with the

observations made in experiment 2, but the unreliable lines tested did not behave

the same as the earlier ones tested. The optimal allocation did not change until the

bottleneck severity was 1.75 and 2 time units (for line with CV = 0.5 and 1

respectively) in the reliable line, but the optimal solution changed almost

immediately (bottleneck severity = 1.05 time units) in the unreliable lines. The

difference in results for the unreliable lines could be due to the fact that both the

MTTR and MTBF were changed to keep a constant CV and both had larger

starting values than previously tested. Although the optimal solution changed

almost immediately, the actual difference in throughputs between the new optimal

solution and the even allocation was quite small. These differences are shown in

Table 22.

Table 24: Percent Loss of Throughput of the Even Buffer Allocation from Optimal
Allocation in Unreliable Lines

Bottleneck
Severity

te

TH loss of even from
optimal allocation
CV=1 CV=.5

1.05 0.034% 0.103%
1.10 0.039% 0.123%
1.25 0.040% 0.127%
1.50 0.041% 0.124%
1.75 0.042% 0.121%
2.00 0.040% 0.116%

The second observation was made when comparing the optimal allocation

throughput at the different bottleneck levels as seen in Figure 18. The difference
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in throughput between the reliable and unreliable is quite large at small bottleneck

levels, but difference becomes smaller as the bottleneck severity increases. Figure

18 also shows that the throughput values are nearly identical between the two

unreliable lines, suggesting that CV does not affect the throughput as much as in

reliable lines.

0.9

0.8

I
I-

0.6

0.5

0.4

Optimal TH vs Bottleneck

1 1.2 1.4 16 1.8 2

Bottleneck Severity

unreliable CV

-.-- reliable CV =1

unreliable CV 0.5

reliable CV= 05_J

Figure 18: Throughput of Optimal Buffer Allocation at Various Bottleneck
Severity Levels

The last observation was made by looking at Figure 19 in which the difference in

throughput between the best allocation and worst allocation was plotted for the

various bottleneck levels. For the reliable lines there was quite a large difference

showing the importance of buffer allocation. The difference decreased as the

bottleneck worsened, but at differing rates depending on the CV. The buffer

allocation appeared to be more important at low bottleneck levels when the CV
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was smaller, but less important at higher bottleneck levels. For unreliable lines,

the difference was small for all bottleneck levels at both CV levels. In Table 23

the maximum percentage lost due to a non-optimal allocation was determined for

the various bottleneck levels by taking (1-(worst allocation throughput / optimal

allocation throughput)). This table suggests that the potential lost throughput is

greater when the CV is smaller, but still very minimal. If the absolute worst buffer

allocation was chosen, the maximum throughput loss would only be about 0.4%,

further supporting the conclusion that buffer allocation is rather unimportant when

dealing with unreliable lines.
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0.1
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Figure 19: Throughput Difference between Optimal Buffer Allocation and Worst
Buffer Allocation at Various Bottleneck Severity Levels



Table 25: Percent Loss of Throughput of the Worst Buffer Allocation from the
Optimal Allocation

Bottleneck
Severity

te

TH loss of worst from
optimal allocation
CVI CV=.5

1.01 0.043% 0.146%
1.05 0.183% 0.373%
1.10 0.147% 0.408%
1.25 0.198% 0.402%
1.50 0.104% 0.379%
1.75 0.147% 0.332%
2.00 0.161% 0.337%

Experiment 5

'74

Experiment 5 was designed to see if the previous results for four and eight-station

lines hold for longer lines. This was done by examining lines with 20 stations.

First, the hypothesis that the evenly distributed buffer allocation is optimal for a

balanced closed production line was tested. The exponential, lognormal(l,l), and

lognormal(1,.25) processing time distributions were used in the examination of

reliable lines. To examine unreliable lines, a line where the workstations had te =

1.01 time units and CV = 1 was used. The LSD, Bonferroni, and Scheffe multiple

comparison tests were used to determine if the even buffer allocation was optimal.

The data (Tables 26-28) showed the same results as for the four and eight-station

lines. The even distribution was significantly better than all other allocations at a

95% confidence level using the LSD and Bonferroni method for all three reliable

line distributions. Only the results of the Scheffe method applied to the lognormal
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(1, 1) line concluded the even buffer allocation was not significantly better than all

other allocations. The evidence suggests that an even buffer allocation is indeed

optimal for a longer closed line with identical stations. These results were further

supported by the results from rulming the algorithm developed by Vergara (2005)

to find the optimal/near optimal buffer allocation. Table 26 provides the ten best

buffer allocations ranked by average throughput for the reliable line with

exponentially distributed processing times and Figure 20 shows the scatterplot of

the data for the 10 best allocations. The even allocation results in a much higher

throughput. The results for the two lines tested with lognormally distributed

processing times are similar to the exponential case and are shown in Tables 25

and 26 and Figures 18 and 19.

Table 26: 10 Best Buffer Allocations Ranked by Average Throughput for Line
with Exponentially Distributed Processing Times

Exponential_Distribution
Rank Allocation Avg. TH

1 (1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1) 0.522560

2 (1,1,1,10,2,1,1,1,1,1,1,1,1,1,1,11,1,1) 0.518266

3 (1,1,1,2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.518259

4 (1,1,1,1,1,0,2,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.518248

5 (1,1,1,1,1,1,1,1,1,1,O,2,1,1,1,1,1,1,1,1) 0.518244

6 (1,1,1,1,1,10,2,1,1,1 1,1,1,1,1,1,1,1,1) 0.518244

7 (1,1,1,1,1,1,2,0,1,1,1,1,1,1,1,1,1,1,1,1) 0.518242

8 (1,1,2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.518241

9 (1,1,1,1,1,1,1,1,0,2,1,1,1,1,1,1,1,1,1,1) 0.518234

10 (2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 1,1 1) 0.518230
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Figure 20: Scatterplot of Throughput Results for the 10 Best Buffer Allocations for
Line with Exponentially Distributed Processing Times
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Figure 21: Scatterplot of Throughput Results for the 10 Best Buffer Allocations for
Line with Lognormally( 1,1) Distributed Processing Times

Table 28: 10 Best Buffer Allocations Ranked by Average Throughput for Line
with Lonormallv(10.25) Distributed Processinz Times

Lognormal(1 ,.25) Distribution
Rank Allocation Avg. TH

1 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.7437072

2 (1,1,1,1,1,1,1,1,1,1,1,1,2,0,1,1,1,1,1,1) 0.7329688

3 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,1,1,1,1) 0.7329524

4 (1,1,1,1,1,1,1,1,1,1,1,1,1,2,0,1,1,1,1,1) 0.7329506

5 (1,1,1,1,1,1,1,1,1,1,1,2,0,1,1,1,1,1,1,1) 0.732948

6 (1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,1,1,1,1,1) 0.7329436

7 (1,1,1,2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.7329422

8 (1,1,1,1,1,0,2,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.7329392

9 (1,1,1,1,1,1,1,1,1,1,1,1,0,2,1,1,1,1,1,1) 0.732939

10 (1,1,1,1,0,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.7329382
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Figure 22: Scatterplot of Throughput Results for the 10 Best Buffer Allocations for
Line with Lognormally(1,.25) Distributed Processing Times

For longer lines with unreliable stations, the results are different from reliable lines

but consistent with the results seen in experiment 4. With the unreliable line, the

buffer allocation giving the highest throughput was not the even allocation. The

even allocation was the fifth best among the allocations tested (see Table 29). Yet

the multiple comparison tests did not detect a significant difference between the

throughputs for any of the different allocations. A scatterplot of throughput for the

10 best allocations (Figure 23) shows no discernable differences. Only a small

fraction of the possible allocations were tested, so there is a chance that an

allocation that was not tested could be shown to be significantly better than the

even allocation. The algorithm developed by Vergara (2005) found that the

allocation (1,0,0,0,0,1,0,0,0,9,0,0,0,1,0,0,0,0,8,0) was optimal/near optimal.

However, when the even allocation was compared to the optimal/near optimal

solution determined by the algorithm, the even allocation had a significantly



higher throughput using a one-sided paired t-test. Under the null hypothesis that

the mean dfference (the even allocation 's throughput the algorithm allocation 's

throughput) = 0 and alternate hypothesis of the mean dfference ? 0, a p-value <

0.05 was calculated and thus the null hypothesis can be rejected with a confidence

of 95%. This result suggests that the even allocation can be considered an optimal

or near optimal buffer allocation.

Table 29: 10 Best Buffer Allocations Ranked by Average Throughput for an
Unreliable Line (Mean 1.0, t = 1.01, CV =1.0)

Unreliable_Line_(CV_=_1)

Rank Allocation Avg. TH

1 (2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) 0.82828

2 (1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) 0.8282678

3 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,2) 0.8282674

4 (1,1,1,1,1,1,2,0,1,1,1,1,1,1,1,1,1,1,1,1) 0.828264

5 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.8282636

6 (1,2,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0.8282626

7 (1,1,1,1,1,1,2,1,0,1,1,1,1,1,1,1,1,1,1,1) 0.8282604

8 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,1) 0.8282604

9 (1,1,1,1,1,1,1,l,1,1,2,0,1,1,1,l,1,1,1,1) 0.8282598

10 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,1,1,1) 0.8282594
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Figure 23: Scatterplot of Throughput for the 10 Best Buffer Allocations Ranked by
Average Throughput for an Unreliable Line (Mean 1.0, te = 1.01, CV = 1.0)

Next, the sensitivity of the best buffer allocation to the severity level of a

bottleneck (as in experiment 2) was investigated for longer lines. This was done

by plotting the bottleneck severity level causing the optimal allocation to shift

from the original (for the balanced line) optimal allocation for various line setups.

In Figure 24, a closed reliable line was compared to an open line using lines in

which the stations had exponentially distributed processing times. When

comparing the buffer allocation sensitivity to bottleneck severity in closed lines

and in open lines (with the bottleneck station located at the first, fifth, and tenth

station), it is clear that the closed line still requires a larger bottleneck severity

level to create a change in the optimal allocation. These confirm the results

obtained for lines with four and eight stations. A plot of the results from the four

and eight-station lines along with the 20-station line (Figure 25) shows the

behavior. In all three cases, the closed line is the least sensitive to bottleneck
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severity, and an open line with the bottleneck located at the end of the line is less

sensitive than an open line with the bottleneck located in the center of the line.

Bottleneck Severity vs. Line Type
(Exponential Distribution)
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Figure 24: Bottleneck Level Required to Cause a Shift in Optimal Allocation for
Various Exponential Lines
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Figure 25: Bottleneck Level Required to Shift the Optimal Buffer Allocation in
Exponentially Distributed Lines
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Also, in experiment 2 it was shown that the CV had an effect on the sensitivity of a

buffer allocation to bottleneck severity. Figure 26 shows that the 20-station line

behaves the same as the shorter lines in this regard. The bottleneck required to

cause the shift in optimal allocation was plotted against different distributions

(processing times of the individual workstations). For the smaller CV

(lognormal(1,.25)) the required bottleneck severity level causing a change in the

best buffer allocation is lower than for the larger CV (lognormal(1 , 1) and

exponential) There is not much difference between the two distributions with the

larger CVs (both have CV =1).

Bottleneck Level vs. Distribution for Closed
Production Lines
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Figure 26: Bottleneck Level Required to Shift Optimal Buffer Allocation in Closed
Lines with Various Workstation Distributions
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Finally, the effect of line length is clearly seen from Figures 22 and 23. The 20-

station case stays consistent with the results from experiment 2. As the line length

increases, the necessary bottleneck level to create a shift in optimal allocation

decreases.



CONCLUSIONS

Based on the results from the five experiments several conclusions were reached

regarding closed serial production lines. Since a difference was observed between

the behavior of reliable and unreliable lines the conclusions have been separated

into those for reliable production lines and those for unreliable production lines.

Reliable Production Lines

The optimal/near optimal buffer allocation for a balanced closed production

line will be the allocation in which the buffers are as evenly distributed across

the line as possible.

The optimal buffer allocation in a closed line is less likely to change when a

bottleneck is present than in an open line.

. In open lines, if a bottleneck is located at the end of the line the optimal

allocation is less affected than if the bottleneck is located in the center of the

line.

The bottleneck level required to create a change in optimal buffer allocation

increases as the CV's of stations increase.

The bottleneck level required to create a change in optimal buffer allocation

decreases as line length increases.



. The maximum potential throughput lost from using the even buffer allocation

rather than the optimal allocation increases as line length, CV of the bottleneck

station, and CV of the non-bottleneck stations increases.

. The maximum potential throughput loss is less for closed lines than open lines

for longer line lengths.

Unreliable Production Lines

. The even buffer allocation is not always the best solution (highest throughput)

for a balanced unreliable closed production line, but no significant difference

between it and the best buffer allocation can be detected.

. The buffer allocation pattern is much less important in unreliable lines. There

is less throughput difference between different allocations (compared to

reliable lines).

. An even allocation appears to result in a throughput that is near optimal for all

cases and all bottleneck levels.

The throughput difference between an even buffer allocation and the best

(highest throughput) buffer allocation decreases as the CV of the workstations

increase.

If MTTR is equal to 1, the optimal throughput of the unreliable line is similar

to the equivalent reliable line, but as MTTR increases, the difference between

the two increases with the unreliable line performing better.
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FUTURE RESEARCH

The potential for additional experiments and investigations from this research is

virtually limitless. This section suggests some of the possible future research that

can be performed. It is separated into two parts describing two different types of

research. The first part describes some ways that this research can be changed and

improved, while the second part discusses ways to extend or continue this

research.

Limitations/Improvements

There were some limitations to this research that may be improved upon in future

research. Some of these limitations have been identified and suggestions for

improving them have been made. They are as follows:

1. All buffer allocations in longer lines were not tested.

In order to determine optimal allocations the average throughputs of multiple

buffer allocations were determined and then compared to each other. This method



was very time consuming. The time needed to calculate the throughput for each

allocation increased as the number of workstations in the line increased, as did the

number of possible allocations. As a result, the time requirements became greater

as the line length increased. To compensate, the number of buffer allocations

considered was reduce, which in effect reduced the reliability of the results. This

research could be improved if a better more efficient way of determining optimal

buffer allocations is used. This would make it easier to test longer lines, and

generate more data.

2. Precision of the model and results is arbitrary

The precision of the model and results could also be improved. Although the

parameters of the simulation model chosen seemed reasonable, some could be

changed in order to give more precision. For example, more jobs could be

simulated or additional replications could be performed. The only downside to

doing this is that the simulation run time will increase. Within the experiments

themselves, additional precision could be added by decreasing the increment size

when increasing bottlenecks. The increment size used in this research was

arbitrarily chosen and could easily be reduced if higher precision is desired. In

particular, Experiments 3 and 4 could be improved by using smaller increments.
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3. Inferences do not extend beyond the lines tested

The use of fixed factors in the experimental design used limits the inference space

so that any conclusions do not apply to lines outside of what was tested.

Conclusions regarding behavior outside of what was tested are speculative (not

statistically supported), but can lead to more thorough investigations. For

example, one conclusion reached was that the necessary bottleneck severity to

change the optimal buffer allocation decreases as the line length increases.

However, this conclusion was only based on results from lines of length 4, 8, and

20. To draw inferences to all line lengths an experiment would need to be

designed with line length as a random factor.

Extensions/Continuations

There was not time to investigate everything in this research so there are numerous

ways to extend it. The following is a small list of suggestions:

1. Different line types
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This research only investigated a very small portion of the many different

production line types. One potential area for further research is to examine some

of the other types of lines. What happens if the line uses a pull production control

mechanism instead of a push mechanism, part transfer is synchronous instead of

asynchronous, or uses a blocking-before-service instead of blocking-after-service

blocking scheme? Any one of these factors could be studied.

2. Different processing time distributions

The only two processing time distributions used in this research were the

exponential and lognormal distributions. Many other types of distributions can

and have been used to model reliable production lines. Therefore, one logical

direction to take this research is to look at some of these other distributions and

whether or not they behave the same as the exponential and lognormal.

3. Different unreliable parameters and assumptions

Like using different processing time distributions in reliable lines, there are also

other ways to model unreliable lines. The unreliable lines in this research were

assumed to have constant processing times, but this doesn't have to be so. Also,



102

the exponential distribution was used to model time to failures and repair times,

but other distributions could be used instead. Also, failures could be modeled as

time-dependent instead of operation-dependent. Varying any, or all, of the factors

would be a natural extension to this research.

4. Different parameters (different line lengths, buffers, CVs, etc.)

Another easy extension of this research would be to use more levels of the various

line factors. For many of the experiments only two different levels were used for

the different factors. Using two factors would allow for the detection of linear

relationships, but there is no guarantee that the relationships are linear. The more

factor levels used the better the understanding of the relationships will be.

5. Create bottlenecks by increasing variance or MTBF only

In reliable lines, bottlenecks can be created by a workstation with a higher mean

processing time than the other stations or a higher processing time variance. In

unreliable lines, bottlenecks are created when a station has a higher MTTR or a

lower MTBF than the other stations. In this research the method to create

bottlenecks was to increase the mean in reliable lines and the MTTR in unreliable.
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Although MTBFs were changed in some cases to keep constant variances, they

were never looked at alone for causing bottlenecks. Examining if the cause of the

bottleneck has an effect on the observed behaviors would be an interesting

continuation of this research.

6. Multiple bottlenecks

Another interesting extension would be to look at multiple bottlenecks. How

would having two or more bottlenecks present in the line have effected the results?

Also, what effect does the position of those bottlenecks have? It seems likely that

larger lines could have multiple bottlenecks so this would be a worthwhile area of

research to pursue.

7. Observation from investigation of unreliable lines

One of the more interesting observations made during this research was that for

many unreliable line setups, there was no statistically significant difference

between any buffer allocation for any bottleneck level. This means that the buffers

could be placed anywhere and it wouldn't affect the throughput. More research
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into this area would be useful to see under what circumstances this observation

holds true. If true a lot of time can be saved when deciding on buffer placement.
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APPENDIX A: RANDOM NUMBER TESTS

The following tests were performed to check various characteristics of the

uniform(0, 1) random variables which are used to generate the exponential and

lognormal random variables used in the simulation. For further explanation see

Law and Kelton (1991). The results of these tests can be found in Appendix G.

Runs-up Test

The runs test is a direct test of independence. In the runs-up test the sequence of

the uniform (0, 1) random variables (U1's) was checked for subsequences in which

the U's monotonically increased, which is referred to as a "run up". The length of

the runs up were counted and added to the appropriate r1. Where,

fnumberofrunsupoflengthi fori=1,2,...,5
tnumberof runs up of length 6 for i = 6

The test statistic R = 1 a,1 (r, nb, )(r1 nb,) was then compared to a chi-
n 1=1 /=1

square distribution with 6 df (degrees of freedom) using the null hypothesis that

the U,'s are lID random variables.
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When this test was performed R was calculated as 7.4728. The chi-square

distribution with 6 df and an a of 0.95 is 12.59159. Therefore, the null hypothesis

fails to be rejected and independence can be assumed.

Note that aij is the (i,j)th element of the matrix shown below.

Table 30: Runs-up Test Matrix used to Calculate Test Statistic
4,529.4 9,044.9 13,568 18,091 22,615 27,89

9,044.9 18,097 27,139 36,187 45,234 55,78

13,568 27,139 40,721 54,281 67,852 83,68

18,091 36,187 54,281 72,414 90,470 111,580

22,615 45,234 67,852 90,470 113,262 139,476

27,892 55,789 83,685 111,580 139,476 172,860

and

(1 5 11 19 29 1 '\
(b1,b2,b3,b4,b5,b6)=

6'24'120'720' 5O4O'84OJ

Chi-Square Test
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The chi-square test was performed in order to check for uniformity along the

interval from 0 to 1. To do so the interval from 0 to 1 was divided into k equal

length subintervals and n uniform random variables were generated (U1, U2,

Un). Then the number of U's that fell within theJth subinterval (j = 1, 2, ..., k)

were totaled (jJ).

Letting

2

=1If1

2 has a chi-square distribution with k-i df for large values of n. Then with the

null hypothesis being that the U,'s are lID U(0,1) random variables, the null

hypothesis is rejected if 2

> ZI,1_a , where %11a is the upper 1-ct critical point

of the chi-squared distribution with k-i df.

Using k = 100 and n = 100,000,
2 was calculated to be 945.18 which was less

than %_i 1a which equaled 1073.643 for a = 0.95. Therefore, the null hypothesis

fails to be rejected and it can be assumed that the random variables are indeed

uniformly distributed.
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The values of k and n were arbitrarily chosen as 100 and 100,000 respectively, but

complied with Kelton and Law (1991) who suggested that k should be at least 100

and nlk at least 5.

Serial Tests

The serial tests provide indirect tests on the independence of the random variables

by checking uniformity in higher dimensions. This again was done using a chi-

square test. The interval [0,11 was divided into k equal size subintervals and arrays

of uniform (0, 1) random variables (V1 = (U1, U2, ..., Ud), V2 = (Ud+1, Ud+2,

U2d), ... , V) were generated. Next the number of U's were totaled (ff1 ) that

had the first component in subintervalji and second component in subintervalj2,

z2dkf

2(d) has a chi-square distribution with k4 -1 df for large values of n. Then with

the null hypothesis being that the V,'s are lID random variables, the null



114

hypothesis is rejected if 2(d) > where is the upper 1-ct critical

point of the chi-squared distribution with k"-1 df.

Both d = 2 and d = 3 were tested. With d 2, k100, and n=100,000, 2(d) was

calculated to be 9,843.80 and,11 = 10,232.70 (for a = 0.95).

Since 2
(d) <''H the null hypothesis cannot be rejected and it is assumed

that the random variables are uniform in the 2x1 dimension. With d = 3, k=25, and

n=100,000, 2(d) was calculated to be 15,784.38 and,11 15,915.90 (for a

= .95). Since 2

(d) <X'i 1-a
the null hypothesis fails to be rejected and it is

assumed that the random variables are uniform in the dimension.

Correlation Tests

The last tests performed on the uniform (0, 1) random variables verified that no

correlation existed. This was done by testing that several levels of correlation lag

were zero. Correlation lag is correlation between two series where one of the

series has a lag with reference to the other. A correlation lag off is defined aspj =

Cd/Co, where C = Cov(X1, X-1-), and a good estimator of correlation lag is the

following:
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12 h

p1 = Ul+(k+l)f 3] where h = L(
1)/j] 1

n +1 k=O

Since previous tests showed that the U,'s can be assumed independent,

i \ 13h+7
Varp )=

.1

(h+1)2

To test the null hypothesis that the correlation lag = 0, the test statistic

A, = b1/Jvar(j1) was used which has an approximate standard normal

distribution. The null hypothesis is rejected if AJ > Zi_a12

Correlations with lags of 1 through 10 were tested with the following test statistics

calculated.

Table 31: Calculated Test Statistics for Lags of 1 to 10
Lag Test Stat.

1 1.2379

2 0.8081

3 0.7359

4 0.0646

5 0.3884

6 0.6837

7 0.1725

8 0.5705

9 1.0417

10 0.2600
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Using a = .95, Zi_a12 = 1.96. All of the calculated test statistics are less than 1.96

so the null hypothesis fails to be rejected and it can be assumed that there is no

discernable correlation among the U's.
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APPENDIX B: SIMULATION MODEL VALIDATION

To help validate the throughput results obtained by the simulation model used in

this research, various line setups were run that matched various ones in previous

publications and the resulting throughputs compared to each other.

Closed Serial Production Lines

To check the validity of the simulation of closed production lines, results were

compared to ones in Lui et al. (1992). Several setups using three, four, and seven

workstations were examined as shown in Table 30, Table 33, and Table 34

respectively. In these tables, M is equal to the number of workstations in the line,

p represents the exponential rate of the service time of each workstation, b is the

buffer capacity at each workstation (including space at the workstation), and c is

-L... fl.... mL.. ...-. /i
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Table 32: Results of Closed Production Line Comparisons with 3 Workstations

Setup (M=3)
Throughput

DifferencePaper Simulation
p=(2,l,2), b=(6,2,4), c=7 0.928 0.928 0.02%

iJ=(1,1,3), b=(2,6,2), c=6 0.812 0.812 0.02%

p=(l,4,4), b=(3,6,6), c=9 0.997 0.997 0.03%

p=(l,4,3), b=(6,2,2), c=6 0.984 0.984 -0.01%

p=(4,l,l), b=(3,2,2), c=5 0.749 0.749 0.06%

p=(l,4,l), b=(3,3,6), c=7 0.800 0.799 0.11%

p=(l,l,2), b=(6,2,6), c=8 0.750 0.750 0.05%

p=(3,4,3), b=(2,4,2), c=5 2.144 2.142 0.09%

j=(l,l,l), b(6,3,6), c=9 0.770 0.770 0.03%

p=(l,4,2), b=(2,6,3), c=7 0.933 0.933 0.04%

Table 33: Results of Closed Production Line Comparisons with 4 Workstations

Setup (M=4)
Throughput

DifferencePaper Simulation
p=(l,2,2,l), b=(4,2,6,2), c=9 0.805 0.805 0.05%

p=(3,44,l), b=(6,2,4,2), c=9 0.988 0.987 0.12%

p=(l,4,3,2), b=(3,2,6,2), c=8 0.959 0.958 0.09%
IJ=(1,1,1,3), b=(2,6,6,6), c=12 0.821 0.821 0.06%

p=(2,4,2,l), b=(3,2,3,3), c=7 0.946 0.945 0.11%

p=(3,4,4,l), b=(5,6,2,4), c=10 0.998 0.997 0.09%

p=(3,2,2,3), b=(2,3,3,2), c=7 1.492 1.493 -0.03%

p=(2,3,3,1), b=(6,4,6,6), c=13 0.996 0.995 0.13%

p=(4,4,4,l), b(6,4,6,6), c=13 1 0.999 0.13%

p=(4,3,3,2), b(6,2,6,6), c=12 1.919 1.917 0.08%

Table 34: Results of Closed Production Line Comparisons with 7 Workstations

Setup (M=7)
Throughput

DifferencePaper Simulation
p=(3,2,4,5,1,2,3) b=(2,2,2,2,2,2,2), c=9 0.925 0.925 0.05%

p=(3,2,4,5,1,2,3) b=(2,2,2,2,2,2,2), c=11 0.918 0.918 0.01%
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From these three tables, the largest difference is only 0.13% meaning the

simulation model can be considered fairly accurate in determining the throughput

of closed production lines of different lengths and setups.

Open Serial Production lines

Further validation was done by comparing various open production line setups.

First, some more lines with exponentially distributed processing times (mean = 1)

was examined by using Hillier et al.(1993) for comparison. These results are

shown in Table 35. Again, b represents the buffer capacities at each workstation

(not including space at the workstation). These results once again show very little

difference between the two sources.

Table 35: Results of Open Production Line Comparisons from Hillier Ct al. (1993)

Buffer Setup
Throughput

DifferencePaper Simulation
b = (1,1,1) 0.6312 0.6312 0.00%

b = (7,7,7) 0.8445 0.8444 0.01%

b = (7,8,9) 0.8580 0.8578 0.02%

b=(12,14,13) 0.9013 0.9012 0.01%

b = (1,1,1,1) 0.6076 0.6074 0.03%

b = (4,4,4,4) 0.7659 0.7662 -0.04%

b = (4,6,5,5) 0.7934 0.7936 -0.02%

b= (0,1,0) 0.5589 0.5589 0.00%

b = (5,6,5) 0.8154 0.8153 0.02%

b = (0,0,1,0) 0.5191 0.5189 0.04%

b = (4,4,5,4) 0.7736 0.7739 -0.04%
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Next, some lines with lognormal processing times were examined. Table 36

shows the results of some comparisons made to balanced lines with

lognormal(1,.25) distributed processing times and various numbers of buffers (b)

from Powell (1994). The purpose of including these comparisons was to check the

validity of the simulated lognormal distribution. The results show only a small

difference between the two sources.

Table 36: Results of Open Production Line Comparisons from Powell (1994)

Buffer Setup
Through put

DifferencePaper Simulation
bl=0, b2=0 0.7202 0.7181 0.30%

bl=1, b2=0 0.7734 0.7715 0.25%

bl=1, b2=1 0.8423 0.8413 0.12%

bl=2, b2=1 0.8649 0.8640 0.11%

bl=2, b2=2 0.8911 0.8900 0.13%

bl=3, b2=2 0.9037 0.9023 0.15%

Finally, some automated lines were compared for validity. From Vouros and

Papadoupolos (1998) several setups were investigated and these results are shown

in Table 35 and Table 38. In these lines, exponential service rates (p), repair rates

(r), and time between failure rates (Is) were used. The results show very little

difference in results validating the unreliable simulation model used.
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Table 37: Results of Automated Open Production Line Comparisons from Vouros
and Papadoupolos (1998) with .t = (1,1,1,1), r = (.5,.5,.5,.5, 13 = (.05,02 .01.001)

Buffer Setup
Throughput

DifferencePaper Simulation
b = (0-1-0) 0.5250 0.5251 0.02%

b = (1-1-0) 0.5577 0.5578 0.03%

b = (1-1-1) 0.5916 0.5918 0.04%

b = (2-1-1) 0.6128 0.6130 0.04%

b = (2-1-2) 0.6307 0.6309 0.03%

b = (2-2-2) 0.6563 0.6565 0.04%

Table 38: Results of Automated Open Production Line Comparisons from Vouros
and Papadoupolos (1998) with .t = (1.6,1.4,1.2,1), r = (.5.5,5.5), 13 = (.05.02.01.005)

Buffer Setup
Throughput

DifferencePaper Simulation
b = (0-1-0) 0.6476 0.6478 0.03%

b = (1-1-0) 0.6652 0.6654 0.03%

b = (1-1-1) 0.7289 0.7291 0.02%

b = (2-1-1) 0.7394 0.7396 0.02%

b = (1-3-1) 0.7670 0.7672 0.03%

b = (1-1-4) 0.8013 0.8016 0.03%
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APPENDIX C: REAL WORLD DATA

In order to get an idea of what some realistic values are for MTBF and MTTR in a

production environment, actual data was provided via personal communication by

an automotive manufacturer. This information is presented in Table 39 below.

Table 39: Production Line Data for a Motor Compartment

Workstation Speed(JPH) Speed(JPM)
MTBF
(mm)

MTTR
(mm)

1 63 1.050 609.52 3

2 62 1.033 58.06 2

3 63 1.050 419.05 1.7

4 64 1.067 28.13 1.7

5 63 1.050 95.24 1.3

6 63 1.050 114.29 1.7

7 65 1.083 18.46 1.7

8 64 1.067 140.63 2

9 63 1.050 219.05 1.7

10 59 0.983 1016.95 0

11 63 1.050 95.24 1.3

12 63 1.050 47.62 2.3

13 60 1.000 420.00 5.3
14 64 1.067 93.75 2

15 63 1.050 609.52 3

16 73 1.217 24.66 2.3
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APPENDIX D: OPTIMAL BUFFER ALLOCATIONS

In experiment 3, an even buffer allocation was compared to the optimal/near

optimal buffer allocation of a given line setup. The actual buffer allocations used

as the optimal allocation for the comparisons are shown in Tables 38 51. Each

table gives the buffer allocation for lines with the same processing time

distribution at various bottleneck levels. The buffer allocations are given for both

four and eight-station production lines.

Four-Station Lines

Table 40: Optimal/Near Optimal Buffer Allocations for Exponentially Distributed
Four-Station Reliable Production Lines at Various Bottleneck Levels

Exponential Distribution
Bottleneck

Mean Closed
Open Position of Bottleneck

1 2 3 4
1.50 1-1-1-1 2-1-0 1-2-0 0-2-1 0-1-2
1.75 1-1-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.00 1-1-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.25 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.50 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.75 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
3.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
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Table 41: Optimal/Near Optimal Buffer Allocations for Lognormal(1,.25)
Distributed Four-Station Reliable Production Lines at Various Bottleneck Levels

Lognormal(1,.25) Distribution
Bottleneck

Mean Closed
Open: Position of Bottleneck

1 2 3 4

1.50 1-1-0-2 2-1-0 1-2-0 0-2-1 0-1-2
1.75 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.25 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.50 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.75 2-0-0-2 3-0-0 1-2-0 0-1-2 0-0-3
3.00 2-0-0-2 3-0-0 1-2-0 0-1-2 0-0-3

Table 42: Optimal/Near Optimal Buffer Allocations for Lognormal(1,1)
Distributed Four-Station Reliable Production Lines at Various Bottleneck Levels

Lognormal(1,1) Distribution
Bottleneck

Mean Closed
Open: Position of Bottleneck

1 2 3 4

1.50 1-1-1-1 2-1-0 1-2-0 0-2-1 0-1-2
1.75 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.00 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.25 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.50 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.75 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
3.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3

Table 43: Optimal/Near Optimal Buffer Allocations for Lognormal( 1,4)
Distributed Four-Station Reliable Production Lines at Various Bottleneck Levels

Logormal(1,4) Distribution
Bottleneck

Mean Closed
Open Position of Bottleneck

1 2 3 4
1.50 1-1-1-1 2-1-0 1-2-0 0-2-1 0-1-2
1.75 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.00 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.25 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.50 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.75 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
3.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3



125

Table 44: Optimal/Near Optimal Buffer Allocations for Lognormal(1 ,.25) with
Constant CV Distributed Four-Station Reliable Production Lines at Various

Bottleneck Levels
Lognormal(1,.25) - Const. CV Distribution

Bottleneck
Mean/Var. Closed

Open: Position of Bottleneck
1 2 3 4

1.50/.5625 1-1-1-1 2-1-0 1-2-0 0-2-1 0-1-2
1.75/.765625 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2

2.00/1.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.25/1.265625 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3

2.50/1.5625 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
2.75/1.890625 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3

3.00/2.25 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3

Table 45: Optimal/Near Optimal Buffer Allocations for Lognormal( 1,1) with
Constant CV Distributed Four-Station Reliable Production Lines at Various

Bottleneck Levels
Lognormal(1,1)_- Const. CV Distribution

Bottleneck
Mean/Var. Closed

Open: Position of Bottleneck
1 2 3 4

1.50/2.25 1-1-1-1 2-1-0 1-2-0 0-2-1 0-1-2
1.75/3.0625 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.00/4.00 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2

2.25/5.0625 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.50/6.25 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3

2.75/7.5625 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
3.00/9.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3
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Table 46: Optimal/Near Optimal Buffer Allocations for Lognormal( 1,4) with
Constant CV Distributed Four-Station Reliable Production Lines at Various

Bottleneck Levels
Logormal(1,4)_- Const. CV Distribution

Bottleneck
Mean/Var. Closed

Open: Position of Bottleneck
1 2 3 4

1.50/9.00 1-1-1-1 1-1-1 1-2-0 0-2-1 1-1-1

1.75/12.25 1-1-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.00/16.00 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.25/20.25 2-0-1-1 2-1-0 1-2-0 0-2-1 0-1-2
2.50/25.00 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2
2.75/30.25 2-0-0-2 2-1-0 1-2-0 0-2-1 0-1-2
3.00/36.00 2-0-0-2 3-0-0 1-2-0 0-2-1 0-0-3

8-Station Lines

Table 47: Optimal/Near Optimal Buffer Allocations for Exponentially Distributed
Eight-Station Reliable Production Lines at Various Bottleneck Levels

Exponential_Distribution

Bottleneck
Mean Closed

Open: Postion of Bottleneck____________
1 2 3 4

1.50 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 1-1-2-1-1-1-0 1-1-1-2-1-1-0

1.75 1-1-1-0-1-1-1-2 2-1-1-1-1-1-0 1-2-1-1-1-1-0 1-1-2-1-1-1-0 0-1-2-2-1-1-0

2.00 2-1-0-1-1-0-1-2 2-1-1-1-1-1-0 2-2-1-1-1-0-0 1-2-2-1-1-0-0 0-1-2-2-1-1-0

2.25 2-1-0-1-1-0-1-2 3-1-1-1-1-0-0 2-2-1-1-1-0-0 1-2-2-1-1-0-0 0-1-2-2-1-1-0

2.50 2-1-1-0-1-0-1-2 4-1-1-1-0-0-0 2-3-1-0-1-0-0 1-2-2-1-1-0-0 0-1-2-3-1-0-0

2.75 2-1-0-0-1-0-1-3 4-1-1-1-0-0-0 3-3-1-0-0-0-0 0-3-3-1-0-0-0 0-1-2-3-1-0-0
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Table 48: Optimal/Near Optimal Buffer Allocations for Lognormal(1,.25)
Distributed Eight-Station Reliable Production Lines at Various Bottleneck Levels

Lognormal(1,.25) Distribution

Bottleneck
Mean Closed

Open: Postion of Bottleneck____________
1 2 3 4

1.50 2-1-1-0-1-1-1-1 2-1-1-1-1-1-0 2-2-1-1-0-1-0 1-1-2-1-1-1-0 0-1-2-2-1-1-0

1.75 2-1-0-1-1-0-1-2 3-1-1-1-0-1-0 2-3-1-1-0-0-0 1-2-2-1-1-0-0 0-1-2-2-1-1-0

2.00 3-1-0-0-1-0-0-3 3-1-1-0-1-0-1 3-3-1-0-0-0-0 0-3-3-1-0-0-0 0-1-3-2-1-0-0

2.25 3-0-1-0-0-0-1-3 3-1-0-0-1-0-2 2-3-2-0-0-0-0 0-3-3-0-0-1-0 0-0-3-3-0-0-1

2.50 2-0-0-1-0-1-1-3 3-0-0-0-0-0-4 2-3-0-0-0-0-2 0-2-2-1-0-0-2 0-0-2-3-0-0-2

2.75 3-0-0-0-0-0-1-4 3-0-0-0-0-0-4 2-2-0-0-0-0-3 0-2-2-0-0-0-3 0-0-2-2-0-0-3

Table 49: Optimal/Near Optimal Buffer Allocations for Lognormal(1,1)
Distributed Eight-Station Reliable Production Lines at Various Bottleneck Levels

Lognormal(1,1) Distribution

Bottleneck
Mean Closed

Open: Postion of Bottleneck____________
1 2 3 4

1.50 1-1-1-1-1-1-1-1 1-1-1-1-1-1-1 1-1-1-1-1-1-1 1-1-2-1-1-1-0 1-1-1-1-1-1-1

1.75 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 1-1-2-1-1-1-0 0-1-2-2-1-1-0

2.00 2-1-0-1-1-0-1-2 2-1-1-1-1-1-0 2-2-1-1-0-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.25 2-1-0-1-0-1-1-2 3-1-1-1-1-0-0 2-3-1-0-1-0-0 0-3-2-1-1-0-0 0-1-2-2-1-1-0

2.50 2-1-0-1-0-1-1-2 4-1-1-0-1-0-0 2-3-1-1-0-0-0 0-3-3-1-0-0-0 0-0-3-3-1-0-0

2.75 3-0-1-0-0-1-0-3 5-1-1-0-0-0-0 3-3-1-0-0-0-0 0-3-3-1-0-0-0 0-0-3-3-1-0-0

Table 50: Optimal/Near Optimal Buffer Allocations for Lognormal(1,4)
Distributed Eight-Station Reliable Production Lines at Various Bottleneck Levels

Logormal(1,4) Distribution

Bottleneck
Mean Closed

Open: Postion of Bottleneck___________
1 2 3 4

1.50 1-1-1-1-1-1-1-1 1-1-1-1-1-1-1 1-1-1-1-1-1-1 1-1-2-1-1-1-0 0-1-2-2-1-1-0

1.75 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.00 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.25 2-1-1-0-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.50 2-1-0-1-1-0-1-2 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.75 2-1-1-0-1-0-1-2 3-1-1-1-1-0-0
i

2-2-1-1-1-0-0 0-2-3-1-1-0-0 0-1-2-3-1-0-0
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Table 51: Optimal/Near Optimal Buffer Allocations for Lognormal(1 ,.25) with
Constant CV Distributed Eight-Station Reliable Production Lines at Various

Bottleneck Levels

Lognormal(1,.25) - Const. CV Distribution

Bottleneck
Mean/Var. Closed

Open: Postion of Bottleneck____________
1 2 3 4

1.501.5625 2-1-1-0-1-1-1-1 2-1-1-1-1-1-0 2-2-1-1-0-1-0 1-1-2-1-1-1-0 0-1-2-2-1-1-0

1.751.765625 2-1-1-0-1-0-1-2 3-1-1-1-1-0-0 2-2-1-1-1-0-0 1-2-2-1-1-0-0 0-1-2-2-1-1-0

2.00/1.00 3-1-0-1-0-0-1-2 3-1-1-0-1-1-0 3-3-1-0-0-0-0 0-3-3-1-0-0-0 0-1-2-3-1-0-0

2.25/1.265625 3-0-1-0-0-0-1-3 4-1-0-0-1-0-1 3-3-0-1-0-0-0 0-3-3-1-0-0-0 0-0-3-3-1-0-0

2.50/1.5625 3-0-0-0-1-0-1-3 4-0-0-0-1-1-1 3-3-0-0-0-0-1 0-3-3-1-0-0-0 0-0-3-3-1-0-0

2.75/1.890625 3-0-0-1-0-0-1-3 3-1-1-0-0-0-2 3-3-0-0-0-1-0 0-3-3-1-0-0-0 0-0-3-3-1-0-0

Table 52: Optimal/Near Optimal Buffer Allocations for Lognormal(1,1) with
Constant CV Distributed Eight-Station Reliable Production Lines at Various

Bottleneck Levels

Lognormal(1,1) - Const. CV Distribution

Bottleneck
Mean/Var. Closed

Open: Postion of Bottleneck___________
1 2 3 4

1.50/2.25 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 1-1-2-1-1-1-0 1-1-1-2-1-1-0

1.75/3.0625 2-1-1-0-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 1-1-2-1-1-1-0 0-1-2-2-1-1-0

2.00/4.00 2-1-1-0-1-0-1-2 2-1-1-1-1-1-0 2-2-1-1-1-0-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.25/5.0625 2-1-0-1-0-1-1-2 3-1-1-1-1-0-0 2-2-1-1-1-0-0 1-2-2-1-1-0-0 0-1-2-2-1-1-0

2.50/6.25 2-1-0-1-0-1-1-2 3-1-1-1-1-0-0 2-3-1-0-1-0-0 1-2-2-1-1-0-0 0-1-2-2-1-1-0

2.75/7.5625 2-1-1-0-1-0-1-2 4-1-1-1-0-0-0 2-3-1-1-0-0-0 0-3-3-1-0-0-0 0-1-2-3-1-0-0
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Table 53: Optimal/Near Optimal Buffer Allocations for Lognormal(1,4) with
Constant CV Distributed Eight-Station Reliable Production Lines at Various

Bottleneck Levels

Logormal(1,4) - Const. CV Distribution

Bottleneck
Mean/Var. Closed

Open: Postion of Bottleneck____________
1 2 3 4

1.50/9.00 1-1-1-1-1-1-1-1 1-1-1-1-1-1-1 1-2-1-1-1-1-0 1-1-2-1-1-1-0 1-1-1-2-1-1-0

1.75/12.25 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.00/16.00 1-1-1-1-1-1-1-1 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.25/20.25 1-1-1-1-0-1-1-2 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.50/25.00 1-1-1-1-0-1-1-2 2-1-1-1-1-1-0 1-2-1-1-1-1-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0

2.75/30.25 2-1-1-0-1-0-1-2 3-1-1-1-1-0-0 2-2-1-1-1-0-0 0-2-2-1-1-1-0 0-1-2-2-1-1-0
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APPENDIX E: EXPERIMENT 3 DATA

This Appendix contains the data used to create the graphs used in the analysis of

experiment 3. Tables 52 64 contain the values of the percentage of throughput

lost due to using an even allocation instead of the optimal/near optimal solution (1-

(even allocation throughput/optimal allocation throughput)).

Four-Station Lines

Table 54: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean = 1.50

4 Stations, Bottleneck Mean = 1.50

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 0.0000% 0.4639% 0.2557% 0.2492% 0.4556%
lognormal(1,.25) 0.0413% 0.5201% 0.2733% 0.2746% 0.5241%
lognormal(1,1) 0.0000% 0.0684% 0.2584% 0.2674% 0.0770%
lognormal(1,4) 0.0000% 0.0511% 0.5490% 0.5602% 0.0550%
lognormal(1,.25) 0.0000% 0.8156% 0.3506% 0.3552% 0.8229%

coçst.
lognormal(1,1) 0.0000% 0.3326% 0.2484% 0.2582% 0.3412%
lognormal(1,4) 0.0000% 0.0000% 0.3753% 0.3857% 0.0000%
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Table 55: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean = 1.75

4 Stations, Bottleneck Mean = 1.75

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 0.0054% 1.7526% 0.8861% 0.8800% 1.7492%

lognormal(1,.25) 0.2347% 0.1887% 0.1512% 0.1505% 0.1897%
C,flS

lognormal(1,1) 0.1947% 1.2540% 0.8335% 0.8426% 1.2620%

lognormal(1,4) 0.1193% 1.0175% 1.0057% 1.0180% 1.0247%

lognormal(1,.25) 0.4014% 0.5152% 0.3389% 0.3389% 0.5162%
Coc;lvS. lognormal(1,1) 0.0414% 1.4226% 0.8130% 0.8188% 1.4293%

lognormal(1,4) 0.0000% 0.8045% 0.7550% 0.7660% 0.8081%

Table 56: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean 2.00

4 Stations, Bottleneck Mean = 2.00

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 0.4751% 2.2611% 1.1542% 1.1478% 2.2588%
lognormal(1,.25) 0.0988% 0.0568% 0.0512% 0.0508% 0.0570%

COnS.
lognormal(1,1) 0.7581% 1.3896% 0.9104% 0.9160% 1.3923%

lognormal(1,4) 0.5621% 1.6431% 1.2656% 1.2771% 1.6505%

lognormal(1,.25) 0.3262% 0.2474% 0.1882% 0.1878% 0.2477%
COflS.

lognormal(1,1) 0.4654% 1.7920% 1.0202% 1.0290% 1.7971%
lognormal(1,4) 0.1806% 1.3628% 1.0032% 1.0131% 1.3670%

Table 57: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean = 2.25

4 Stations, Bottleneck Mean = 2.25

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 1.1260% 2.3133% 1.2143% 1.2128% 2.3150%
lognormal(1,.25) 0.0515% 0.0189% 0.0176% 0.0178% 0.0185%

CnS.
lognormal(1,1) 1.0542% 1.1928% 0.7719% 0.7738% 1.1962%

lognormal(1,4) 1.1287% 1.9444% 1.3656% 1.3766% 1.9493%
lognormal(1 .25) 0.1846% 0.1150% 0.0969% 0.0965% 0.1148%

CO1\t
lognormal(1,1) 1.0066% 1.7593% 1.0359% 1.0433% 1.7614%
lognormal(1,4) 0.4414% 1.7204% 1.1542% 1.1634% 1.7214%
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Table 58: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean = 2.50

4 Stations, Bottleneck Mean = 2.50

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 1.4483% 2.2465% 1.1705% 1.1731% 2.2544%

lognormal(1,.25) 0.0150% 0.0070% 0.0063% 0.0068% 0.0068%
COflS.

lognormal(1,1) 0.9700% 0.9269% 0.5935% 0.5946% 0.9301%

lognormal(1,4) 1.5564% 2.0191% 1.3593% 1.3684% 2.0256%

Iognormal(1,.25) 0.0995% 0.0560% 0.0498% 0.0501% 0.0558%

CO1VS. lognormal(1,1) 1.2237% 1.6524% 0.9619% 0.9671% 1.6602%

lognormal(1,4) 0.7260% 1.9268% 1.2354% 1.2448% 1.9243%

Table 59: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean = 2.75

4 Stations, Bottleneck Mean = 2.75

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 1.5538% 2.1252% 1.0816% 1.0847% 2.1342%

Iognormal(1,.25) 0.0071% 0.0030% 0.0025% 0.0041% 0.0025%
const.

lognormal(1,1) 0.7846% 0.6678% 0.4421% 0.4397% 0.6713%

lognormal(1,4) 1.7472% 2.1476% 1.2903% 1.2970% 2.1526%

lognormal(1,.25) 0.0542% 0.0289% 0.0261% 0.0267% 0.0289%
CO

lognormal(1,1) 1.2494% 1.4822% 0.8539% 0.8574% 1.4879%

lognormal(1,4) 1.0645% 2.0238% 1.2690% 1.2790% 2.0231%

Table 60: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Four-Station Line with Bottleneck Mean = 3.00

4 Stations, Bottleneck Mean = 3.00

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 1.5387% 1.9110% 0.9764% 0.9794% 1.9198%

Iognormal(1 ,.25) 0.0042% 0.0015% 0.0012% 0.0030% 0.00 12%
const.

Jognormal(1,1) 0.6035% 0.4746% 0.3258% 0.3231% 0.4783%

lognormal(1,4) 1.7826% 2.0855% 1.1896% 1.1937% 2.0908%

lognormal(1,.25) 0.0309% 0.0156% 0.0141% 0.0147% 0.0156%
CO

lognormal(1,1) 1.1785% 1.2650% 0.7406% 0.7425% 1.2691%

lognormal(1,4) 1.2956% 2.0858% 1.2700% 1.2803% 2.0916%
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Eight-Station Lines

Table 61: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Eight-Station Line with Bottleneck Mean = 1.50

8 Stations, Bottleneck Mean = 1.50

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 0.0000% 1.3358% 1.6520% 1.5361% 1.2998%

lognormal(1,.25) 0.3978% 0.7892% 0.9690% 0.6295% 1.0722%
cnst.

lognormal(1,1) 0.0000% 0.0000% 0.0000% 0.9431% 0.0000%

lognormal(1,4) 0.0000% 1.0497% 0.3374% 0.0000% 0.4122%

lognormal(1 .25) 0.5956% 1.3195% 1.4810% 0.9695% 1.6082%

lognormal(1,1) 0.0000% 0.9850% 1.3830% 1.3628% 1.2023%

lognormal(1,4) 0.0000% 1.0152% 1.1226% 0.0605% -0.3769%

Table 62: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Eight-Station Line with Bottleneck Mean = 1.75

8 Stations, Bottleneck Mean = 1.75

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 0.6590% 2.7934% 2.4641% 2.1244% 3.3007%

lognormal(1,.25) 0.3423% 0.1904% 0.3596% 0.3674% 0.3711%
Cons.

lognormal(1,1) 0.0000% 1.5581% 1.6757% 1.5959% 2.5050%

lognormal(1,4) 0.0000% 2.5829% 2.1640% 0.8651% 0.6838%

lognormal(1,.25) 0.9033% 0.6493% 0.9686% 0.9694% 0.9697%
CO

lognormal(1,1) 0.5419% 2.1685% 2.0898% 1.8907% 2.9004%

lognormal(14) 0.0000% 2.8000% 2.0249% 0.8788% 0.6539%
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Table 63: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Eight-Station Line with Bottleneck Mean = 2.00

8 Stations, Bottleneck Mean = 2.00

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 2.1959% 3.2527% 3.4749% 3.2919% 3.7633%

Iognormal(1,.25) 0.1058% 0.0458% 0.1010% 0.1172% 0.1152%

Iognormal(1,1) 1.4345% 1.7962% 20613% 2.3902% 2.6328%

lognormal(1,4) 0.0000% 4.0506% 3.1011% 1.2491% 0.9152%

lognormal(1,.25) 0.4577% 0.2615% 0.4697% 0.4847% 0.4701%
COflS.

lognormal(1,1) 1.6327% 2.5223% 2.6663% 2.8846% 3.2172%

lognormal(1,4) 0.0000% 3.9841% 2.7698% 1.2022% 0.8381%

Table 64: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Eight-Station Line with Bottleneck Mean = 2.25

8 Stations, Bottleneck Mean = 2.25

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 2.6613% 4.1271% 3.7980% 3.6117% 3.7361%

lognormal(1.25) 0.0317% 0.0090% 0.0286% 0.0409% 0.0430%
COnS.

lognormal(1,1) 1.6062% 1.7637% 2.1891% 2.2495% 2.1459%

lognormal(1,4) 0.6748% 5.1683% 3.7830% 1.5250% 1.0799%

lognormal(1,.25) 0.2279% 0.1165% 0.2159% 0.2237% 0.2254%
CO1

lognormal(1,1) 2.0587% 3.0859% 2.9308% 2.9025% 3.1012%
lognormal(1,4) 0.5999% 4.8957% 3.3379% 1.4493% 0.9775%

Table 65: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Eight-Station Line with Bottleneck Mean = 2.50

8 Stations, Bottleneck Mean = 2.50

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 2.7862% 3.9475% 4.0546% 3.4674% 3.8417%

lognormal(1,.25) 0.0085% 0.0000% 0.0060% 0.0180% 0.0202%
C,flS.

lognormal(1,1) 1.3502% 1.2762% 1.7053% 1.8857% 1.9016%

lognormal(1,4) 1.6649% 5.7872% 4.1517% 1.6695% 1.1601%

lognormal(1,.25) 0.1142% 0.0562% 0.1035% 0.1088% 0.1105%
COnS.

lognormal(1,1) 2.1136% 2.6701% 3.0636% 2.7148% 2.7712%

lognormal(1 4) 0.7966% 5.5368% 3.7381% 1.6226% 1.0771%
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Table 66: Percentage of Throughput Lost by Using an Even Buffer Allocation
when it is not Optimal for Eight-Station Line with Bottleneck Mean = 2.75

8 Stations, Bottleneck Mean = 2.75

Processing Time
Distribution Closed

Open: Position of Bottleneck
1 2 3 4

exponential 2.7531% 3.3935% 3.6377% 3.8000% 3.4799%

lognormal(1,.25) 0.0036% 0.0000% 0.0000% 0.0093% 0.0118%
COIlS.

lognormal(1,1) 1.1998% 0.8627% 1.2637% 1.3681% 1.3695%
lognormal(1,4) 1.9377% 6.6039% 4.7539% 2.3213% 1.6504%

lognormal(1,.25) 0.0610% 0.0289% 0.0514% 0.0553% 0.0569%
COlS.

lognormal(1,1) 1.9728% 2.3309% 2.7328% 2.8931% 2.7008%

lognormal(1,4) 1.6479% 6.6890% 4.2990% 1.7337% 1.1392%
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APPENDIX F: EXPERIMENT 4 LINE COMPARISONS

In experiment 4, unreliable lines were compared to equivalent reliable lines (same

te and CV). The data for these comparisons can be found in this appendix. Table

65 presents the data for balanced closed production lines with realistic unreliable

values for MTTR and MTBF. Table 68 and Table 69 present the data for closed

production lines with various bottleneck levels and workstation CVs of 1 and 0.5

respectively.
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Table 67: Reliable and Unreliable Line Comparisons of Throughput for the Best,
Second Best, and Worst Buffer Allocations in Various Balanced Four-Station

Production Lines

CV Setup
Optimal Optimal 2' Best 2' Best Worst Worst

Allocation TH Allocation TH Allocation TH

MTTR= 1, (1-1-1-1) 0.9482 (2-0-1-1) 0.9446 (0-0-4-0) 0.9275
0.196 MTBF = 50

Iog(1.02,.04) (1-1-1-1) 0.9316 (0-1-1-2) 0.8824 (4-0-0-0) 0.8283

MTTR 1, (1-1-1-1) 0.9731 (0-1-1-2) 0.9712 (4-0-0-0) 0.9618
0.140 MTBF=100

Jog(1.01 .02) (1-1-1-1) 0.9626 (0-1-1-2) 0.9178 (4-0-0-0) 0.8760

MTTR = 1, (1-1-1-1) 0.9890 (1-2-0-1) 0.9882 (4-0-0-0) 0.9842
0.089 MTBF 250

log(1.004,.008) (1-1-1-1) 0.9838 (0-1-1-2) 0.9485 (4-0-0-0) 0.9204

MTTR = 1,

MTBF =
(1-1-1-1) 0.9944 (0-1-1-2) 0.9940 (0-4-0-0) 0.9920

0.063 500

Iog(1.002,.004) (1-1-1-1) 0.9916 (0-1-1-2) 0.9637 (4-0-0-0) 0.9433

MTTR = 5,
MTBF

(1-1-1-1) 0.7382 (2-0-2-0) 0.7367 (0-4-0-0) 0.7190
0.909 50

log(1.1,1) (1-1-1-1) 0.5892 (0-2-1-1) 0.5663 (4-0-0-0) 0.5022

MTTR = 5, (1-1-1-1) 0.8470 (0-2-0-2) 0.8461 (4-0-0-0) 0.8343
0.673 MTBF = 100

Iog(1.05,.5) (1-1-1-1) 0.6933 (0-2-1-1) 0.6614 (4-0-0-0) 0.5866

MTTR = 5, (1-1-1-1) 0.9320 (2-0-2-0) 0.9316 (0-0-0-4) 0.9259
0.438 MTBF = 250

Iog(1.02,.2) (1-1-1-1) 0.8162 (0-2-1-1) 0.7721 (4-0-0-0) 0.6934

MTTR = 5,
MTBF

(1-1-1-1) 0.9644 (0-2-0-2) 0.9642 (0-4-0-0) 0.9611
0.313 = 500

Iog(1 .01,. 1) (1-1-1-1) 0.8862 (0-2-1-1) 0.8364 (4-0-0-0) 0.7642

MTTR = 10, (1-1-1-1) 0.5747 (2-0-2-0) 0.5741 (0-0-4-0) 0.5613
1.667 MTBF = 50

Iog(1.2,4) (1-1-1-1) 0.4220 (0-2-1-1) 0.4114 (4-0-0-0) 0.3705

MTTR = 10, (1-1-1-1) 0.7261 (0-2-0-2) 0.7257 (4-0-0-0) 0.7157
1.286 MTBF = 100

Iog(1.1,2) (1-1-1-1) 0.5107 (0-2-1-1) 0.4951 (4-0-0-0) 0.4421

MTTR = 10, (1-1-1-1) 0.8678 (2-0-2-0) 0.8676 (0-0-0-4) 0.8620
0.860 MTBF = 250

Iog(1.04,.8) (1-1-1-1) 0.6373 (0-2-1-1) 0.6117 (4-0-0-0) 0.5422

MTTR = 10,
MTBF = 500

(1-1-1-1) 0.9285 (0-2-0-2) 0.9283 (0-4-0-0) 0.9252
0.620

109(1.02.4) (1-1-1-1) 0.7349 (0-2-1-1) 0.6997 (4-0-0-0) 0.6214
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Table 68: Reliable and Unreliable Line Comparisons of Throughput for the
Optimal, Second Best, and Worst Buffer Allocations in Various Four-Station

Production Lines with Workstation CV = 1
Setup Optimal

Allocation
Optimal

TH

2d Best
Allocation

2 Best
TH

Worst
Allocation

Worst
THte Line Type

unreliable (0-2-0-2) 09586 (2-0-2-0) 0.9586 (0-0-4-0) 0.9582
1.01 reliable (1-1-1-1) 0.6165 (2-0-1-1) 0.5940 (4-0-0-0) 0.5275

unreliable (2-0-0-2) 0.9246 (1-1-0-2) 0.9245 (0-4-0-0) 0.9229
1.05 reliable (1-1-1-1) 0.6103 (2-0-1-1) 0.5897 (0-4-0-0) 0.5216

unreliable (2-0-0-2) 0.8837 (1-1-0-2) 0.8836 (0-4-0-0) 0.8824
1.10 reliable (1-1-1-1) 0.6022 (2-0-1-1) 0.5840 (0-4-0-0) 0.5141

unreliable (2-0-0-2) 0.7811 (1-1-0-2) 0.7810 (0-4-0-0) 0.7796
1.25 reliable (1-1-1-1) 0.5766 (2-0-1-1) 0.5647 (0-4-0-0) 0.4920

unreliable (2-0-0-2) 0.6535 (1-1-0-2) 0.6533 (0-0-4-0) 0.6528
1.50 reliable (1-1-1-1) 0.5317 (2-0-1-1) 0.5274 (0-4-0-0) 0.4561

unreliable (2-0-0-2) 0.5620 (1-1-0-2) 0.5619 (0-0-4-0) 0.5611

1.75 reliable (1-1-1-1) 0.4874 (2-0-1-1) 0.4874 (0-4-0-0) 0.4226

unreliable (2-0-0-2) 0.4930 (1-1-0-2) 0.4930 (0-0-4-0) 0.4923
2.00 reliable (2-0-1-1) 0.4481 (1-1-0-2) 0.4481 (0-4-0-0) 0.3918

Table 69: Reliable and Unreliable Line Comparisons of Throughput for the
Optimal, Second Best, and Worst Buffer Allocations in Various Four-Station

Production Lines with Workstation CV = 0.5
Setup Optimal

Allocation
Optimal

TH
2 Best

Allocation
2 Best

TH
Worst

Allocation
Worst

THte Line Type
unreliable (1-1-1-1) 0.9622 (0-2-0-2) 0.9622 (0-0-0-4) 0.9608

1.01 reliable (1-1-1-1) 0.7944 (2-0-1-1) 0.7532 (0-4-0-0) 0.6727

unreliable (2-0-0-2) 0.9289 (1-1-0-2) 0.9285 (0-0-4-0) 0.9255
1.05 reliable (1-1-1-1) 0.7859 (2-0-1-1) 0.7495 (0-4-0-0) 0.6647

unreliable (2-0-0-2) 0.8885 (1-1-0-2) 0.8880 (0-0-4-0) 0.8849
1.10 reliable (1-1-1-1) 0.7739 (2-0-1-1) 0.7437 (0-4-0-0) 0.6545

unreliable (2-0-0-2) 0.7846 (1-1-0-2) 0.7841 (0-0-4-0) 0.7814
1.25 reliable (1-1-1-1) 0.7299 (2-0-1-1) 0.7162 (0-4-0-0) 0.6224

unreliable (2-0-0-2) 0.6565 (1-1-0-2) 0.6561 (0-0-4-0) 0.6540
1.50 reliable (1-1-1-1) 0.6441 (1-1-0-2) 0.6438 (0-4-0-0) 0.5673

unreliable (2-0-0-2) 0.5642 (1-1-0-2) 0.5639 (0-4-0-0) 0.5623

1.75 reliable (2-0-0-2) 0.5661 (2-0-1-1) 0.5653 (0-4-0-0) 0.5143

unreliable (2-0-0-2) 0.4948 (1-1-0-2) 0.4945 (0-0-4-0) 0.4932
2.00 reliable (2-0-0-2) 0.4990 (2-0-1-1) 0.4981 (0-4-0-0) 0.4663




