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Abstract

Junior level physics students are familiar with a few types of vector field derivatives,
such as divergence and curl, but are typically unfamiliar with how to take a general
derivative of a vector field. Three junior-level physics students were interviewed with
the open-ended prompt, “How would you think about taking a derivative of a vector
field?” The resulting data was analyzed using Zandieh’s theoretical framework devel-
oped in 2000, along with extensions by Roundy et al. and Emigh. We also present a
new idea of confounding, demonstrated by the students, and propose a small extension
to Emigh’s work.
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1 Introduction

Vector fields are important objects in both mathematics and physics. In vector calculus
courses, students are typically introduced to the idea of a vector field and learn about two
different types of vector field derivatives: divergence and curl. Divergence and curl are used
frequently in electromagnetism (E&M), but a general vector field derivative is not encoun-
tered in classes until much later, if at all. Consequently, although there have been many
research studies that explore student understanding of divergence and curl, particularly in
Physics Education Research, very few study student understanding of general vector field
derivatives.

There are two main approaches a student can take when trying to take a general deriva-
tive of a vector field: a component-based approach, where students attempt to differentiate
each component individually, and a vector-valued approach, where students subtract two
nearby vectors. Within these broad categories, students can use a variety of methods and
strategies to find a derivative, including graphical approaches, numerical approaches, or
drawing ideas from what they know about divergence and curl. Due to the unfamiliar
nature of a general vector field derivative to many undergraduate physics and mathematics
students, it is of interest to study the approaches students take in attempting to differen-
tiate a vector field.

This study aims to answer two research questions:

1. How do students attempt to take a derivative of a vector field?

2. How well does Zandieh’s framework and subsequent extensions (Zandieh, 2001) de-
scribe student understanding of vector field derivatives, and, in particular, is an
additional extension necessary to describe vector field derivatives?

These questions will be examined using interview data from three physics students an-
swering open-ended prompts about differentiating vector fields. Section 2 explores current
literature relating to student understanding of vector fields and derivatives, Section 3 ex-
plains the methodology used in the interviews and analysis, Section 4 outlines in detail the
data from each interview, and Section 5 further analyzes the data and compares the results
of the three interviews to draw conclusions and propose answers to the research questions
above. Finally, Section 6 discusses the limitations of this study, possible ideas for future
studies, and possible implications of instruction.

2 Literature Review

Students’ understanding of derivatives and multivariate calculus is of interest to both
mathematics and physics education, and the current literature shows a wide variety of
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concepts, misunderstandings, and ideas that students have when tasked to think about
vectors and derivatives. There are three main areas where students’ understandings of
derivatives in vector calculus have been explored: derivatives in general, understanding
of vector fields and vector field representations, and vector calculus, particularly in an
electricity and magnetism setting. This review spotlights the work of several authors that
study how students think about derivatives in a multivariate and vector calculus setting,
and notes the similarities and patterns that show up throughout the literature explored.

2.1 Derivatives

Student understanding of derivatives has been studied extensively in both mathematics
and physics education literature.

The Action-Process-Object Schema (APOS) framework has been used in the context
of multivariate functions in Martinez-Planell et al.’s study on student understanding of
multivariate functions and directional derivatives (Martnez-Planell, Gaisman, & McGee,
2015). The APOS framework breaks a task into a genetic decomposition and studies stu-
dents’ actions and processes on the objects in the decomposition. Martinez-Planell and
Gaisman’s study decomposed the task of finding a directional derivative of a scalar valued,
two-variable function into finding a function of the change in height as a function of the
x-direction, and the change in height as a function of the y direction. The authors found
that in their student interviews, most of the students did not use this particular genetic
decomposition, suggesting that students do not think about the derivative of a multivari-
ate function in the same way that they would approach the derivative of a single variable
function.

An earlier study by Martinez-Planell and Gaisman tested students understanding of
functions of two variables as a whole. They found that students’ confusions and under-
standings seem to correspond to historical discovery of properties of multivariate functions
(Martnez-Planell & Gaisman, 2012). Students were particularly challenged by the idea of
restricting domain. Students’ struggles with the notion of restricting domains in multivari-
ate functions may provide some explanation for their difficulties in finding small changes
in multivariate functions and understanding directional derivatives.

2.2 Vector Fields

There have been many studies that provide insight into students’ struggles and under-
standing of vector fields, particularly in the context of electricity and magnetism. Dray
and Manogue outline the between differences in how vector calculus is taught in mathe-
matics and the way vector calculus is used in physics, and the possible impacts this “gap”
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has on student understanding (Dray & Manogue, 1999). They explain that mathematics
courses emphasize algebraic understanding and calculations, whereas physics courses typi-
cally use graphical understanding and symmetry, with less emphasis placed on algebra. The
authors suggest that this disparity may contribute to students’ difficulties in understanding
vector calculus in physics contexts, and suggest more communication between mathematics
and physics instructors as a possible solution to the problem. Dray and Manogue’s paper
does not explicitly use data, instead outlining common themes the authors noticed while
teaching, but the studies referenced in this paper tend to corroborate their findings with
data from surveys, exams, and interviews with students.

Bollen et al. specifically studied students’ difficulties with vector calculus in electric-
ity and magnetism by testing students’ understanding of vector calculus in physical and
non-physical contexts (Bollen, van Kampen, & Cock, 2015). They found from analyzing
survey data that students have trouble understanding what graphs and equations actually
mean, likely because traditional classes do not heavily emphasize conceptual understand-
ing. These students struggle to understand how to use mathematics to represent physical
systems, and apply mathematical and physical laws inappropriately.

Other studies have indicated that students’ difficulties come from fundamental misun-
derstandings of vector fields and their different representations. In particular, graphical
representations of vector fields prove to be a large source of difficulty for students. Graph-
ical understanding is not often emphasized in vector calculus classes, and consequently
students do not understand how to effectively create a vector field map, let alone under-
stand what the resulting figure represents (Bollen, van Kampen, Baily, Kelly, & Cock,
2017). Gire and Price found that students see the arrows in graphical representations of
vector fields as solid objects, leading to misunderstandings such as not realizing that there
are infinitely many more vectors in the vector field than the picture shows, or believing
that the vectors themselves take up space equal to their magnitude (Gire & Price, 2013).
In an earlier study, Gire and Price found that students see variable and component as in-
terchangeable when looking at algebraic representations of vector fields, and consequently
creating a graph of a vector field from an algebraic function is exceptionally difficult for
students (Gire & Price, 2011).

These studies vary widely in the size of the data set and methods, as Bollen et al. used
survey data from large numbers of students in both their 2015 and 2017 studies, and Gire
and Price’s studies used interview data from a much smaller sample, but all four studies
clearly show that students do not understand how to draw vector field graphs, nor do they
understand what they mean. Rather than a tool to help students visualize and understand
an abstract concept like a vector field, graphical representations seem to add to students’
confusion, and lead to fundamental misunderstandings about vector fields. Because these
misunderstandings are often unaddressed from the beginning, introducing calculus opera-
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tions on vector fields becomes even more difficult for students to fully understand.

2.3 Vector Calculus and Electromagnetism

Studies that focus specifically on student understanding of calculus of vector fields tend
to focus on the operations that are relevant to electricity and magnetism (E&M), namely
divergence, curl, and gradient. Although there is merit to studying student understanding
of these operations, there is a significant gap in the literature on student understanding of a
general derivative of a vector field. Students typically do not encounter this idea explicitly
in classes outside of advanced mathematics courses, but students have seen partial deriva-
tives of vector fields frequently in the context of divergence, curl, and the applications of
those operations.

Students’ understanding and misconceptions about divergence and curl roughly agree
with what studies have shown about students’ understanding of vector fields in general.
Students are able to calculate divergence, curl, and gradient algebraically, but struggle
with graphical representations and tend not to understand what gradient, divergence, and
curl mean in a physical sense. In particular, a study that used pre and post tests given to
students in vector calculus and electricity and magnetism found that students who have
only had vector calculus instruction in a mathematics class tend to show less graphical
understanding of vector fields than students with electricity and magnetism instruction
(Baily, Bollen, Pattie, van Kampen, & Cock, 2015). This further reinforces the points
Dray and Manogue make about a gap in vector calculus instruction. The E&M students
showed significant improvement after instruction on questions related to visual represen-
tations, but the students with only mathematics instruction had more consistency with
answers. An example of an inconsistent student answer is selecting the statement “curl is
a vector,” but leaving the statement “curl has direction” blank.

That does not mean that physics students have a full understanding of the graphical
meanings of curl and divergence. Baily and Astolfi found that E&M students have dif-
ficulties with divergence that persist even after instruction, particularly with estimating
divergence from graphs (Baily & Astolfi, 2014). The authors found that students asso-
ciate divergence too closely with the idea of sources and sinks. When tasked to identify
if a given vector field graph had positive, negative, or zero divergence, students tended
to answer that a field without obvious sources or sinks has zero divergence. This result
aligns with the findings in the Section 2.2: students struggle with graphical representations
of vector fields, and they consequently tend to focus all their attention on one particular
aspect of the graph, ignoring potentially important information.

The Colorado Upper-Dvision E&M Instrument (CUE) has been used in many studies
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to test student understanding of electricity and magnetism. The test was developed by
physics education researchers at CU-Boulder to measure how students think about a vari-
ety of concepts in electricity and magnetism, including vector calculus. Pepper et al. used
the CUE test in their study on student difficulties with mathematics in E&M. The study
used interview data in addition to the CUE test, and found that students tend to focus on
one part of vector fields (either direction or magnitude) when doing calculations. Whether
the students focused on magnitude or direction differed depending on the problem, but the
pattern persisted throughout the exam (Pepper, Chasteen, Pollock, & Perkins, 2012). The
CUE test also showed that students had difficulty with understanding the physical meaning
behind vector field operations, such as gradient, divergence, and curl. The students were
able to calculate the gradient, divergence, and curl, but were often unable to explain what
the results meant, corroborating the results of similar studies on student understanding of
vector calculus.

Despite general difficulties with vector calculus, students seem to respond well to E&M
classes that have been restructured to a more student-centered approach. Another study
used the CUE test to examine how students understand E&M by comparing students in
traditionally structured classes with a class that had been restructured to center around
student engagement. The authors found that students in the restructured class performed
as well or better on the exam than the students in the traditional lecture-based class, and
exhibited a higher retention rate when given the exam again after some time had passed
since the students took the E&M class (Pollock & Chasteen, 2009). Though these are
promising results in favor of restructured upper division physics classes, the CUE test pos-
sibly has problems with the rubric that make it an imperfect measurement tool for student
understanding of electricity and magnetism in its current state (Zwolak & Manogue, 2015).

2.4 Theoretical Framework

Zandieh developed a theoretical framework to analyze students’ understandings of ordinary
derivatives (Zandieh, 2001). Zandieh’s framework focuses on the process-object layers of
derivatives: ratio, limit, and function. These process-object layers each can be expressed
using several representations: graphical (slope), verbal (rate of change), physical (velocity),
and symbolic (difference quotient). Zandieh organized the process-objects and layers into
a chart, shown in Figure 1.

Zandieh’s framework was developed using interview data from AP Calculus students.
Consequently, the framework does not include representations typically implemented in
physics contexts. Roundy et al. (Roundy, Dray, Manogue, Wagner, & Weber, 2015) ex-
tended this framework to include a numerical representation, and altered the physical
representation to be a measurement, instead of a velocity (Roundy et al., 2015). Figure 2,
recreated from Roundy et al., shows each process-object layer. Roundy et al.’s extension
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Figure 1: A chart showing the process-object layers and representations for the concept of
derivative (Zandieh, 2001).

intended to make Zandieh’s framework more applicable to the analysis of physics’ students
approaches to derivatives. The authors also edited Zandieh’s table to include examples of
how the different process-objects may be implemented using the various representations.
For example, a graphical representation of the “ratio” object would look like a line between
two points on a curve.

8



Figure 2: A chart that shows the process-object layers and different representations for the
concept of derivative, as well as examples of how a student may use them (Roundy et al.,
2015).
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Figure 3: Another extension of Zandieh’s framework chart, extended to include narrowing
(Emigh & Manogue, 2019)

Roundy et al.’s extension made the framework more useful to describe the learning
progression for physics students, but the framework is still rather restricted to single vari-
able derivatives. Emigh and Manogue suggest adding an additional process-object layer of
“narrowing” to Zandieh’s framework (Emigh & Manogue, 2019). The layer of narrowing
would represent how students choose which variable(s) to hold constant or take a deriva-
tive with respect to when taking derivatives of multivariate functions. The definition of
narrowing is intentionally broad, and includes numerous different approaches students can
take when determining what to hold constant.

The order of the layers in the theoretical framework takes a roughly chronological order
based on when students typically learn and implement them. The narrow layer is presented
first, as students generally determine what to hold constant prior to taking a derivative,
and the function layer is presented last, as students typically first learn the ratio and limit
layers prior to a function definition of derivative (Zandieh, 2001),(Emigh & Manogue, 2019).

Smith created a framework similar to Zandieh’s focused on describing student under-
standing of divergence (Smith, 2014). Like Zandieh, Smith uses three process-object layers

10



with three different representations (called “contexts”) with which the layers are presented.
The process-object layers Smith uses are the finite layer, limit layer, and function layer.
The finite layer “describes divergence in terms of finite volumes,” (Smith, 2014). The limit
and function layer are the same as the limit and function layers in Zandieh. The repre-
sentations (“contexts”) Smith uses in her framework are the descriptive context, which is
similar to Zandieh’s verbal representation, the symbolic context, which uses mathematical
formulas to represent divergence, and the example context. The example context is broad,
and includes physical examples as well as descriptions of qualities.

3 Methods

3.1 Interview Protocol

Individual interviews were conducted with four students at the end of the Static Fields
Paradigms course at Oregon State University by Paul Emigh. The interviews aimed to
determine how students think about partial derivatives of functions. The first phase of the
interviews asked students to think about the partial derivative of a scalar-valued function,
and the second phase of the interview prompted the students to think about the partial
derivative of a vector field. Three of the four students completed both phases of the in-
terview. This paper only focuses on the vector field phase of the protocol, although some
students reference their work on the scalar field during the vector field phase. Students
were encouraged to say their thoughts and processes out loud, and write/draw on the pro-
vided paper throughout the interview.

Each interview lasted approximately 90 minutes, with the vector field phase lasting ap-
proximately 45 minutes. The vector field phase of the interview had two main parts: (1) a
general question about vector field derivatives and (2) questions about partial derivatives.
The third part of the protocol consisted of questions about divergence and curl, but the
protocol dictated using these prompts only if time allowed, or if the students mentioned
divergence and curl themselves. As such, only one interviewee was given the divergence
and curl prompts. The prompts were open ended, and the students were provided with
paper and some visual aids, as dictated by the protocol.

In Part 1, students were not provided any visual aid, and nor were they asked to take
the derivative of any particular vector field. Instead, they were asked how they would
think about taking a derivative of a vector field. The students were not given a writ-
ten version of the prompt. The prompt was deliberately vague, and students were only
asked to find the derivative of a vector field. The protocol mentions explicitly the motive
for this approach: this enables the interviewer to see if the students focused on compo-
nents, magnitude, direction, or simply discussed divergence and curl. In the typical physics
courses at Oregon State University, divergence and curl are the only vector field derivatives
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Figure 4: A vector field graph, provided to students in protocol.

the students encounter, prior to taking a differential geometry/general relativity class. Be-
cause the students were interviewed in the fall at the end of the second paradigms course, it
is unlikely that any of them had encountered general vector field derivatives in their classes.

In Part 2, the students were given a printout of a vector field from Mathematica (Fig-
ure 4) and asked to find the partial derivative of the given vector field with respect to
x. Because the Part 1 prompt was open ended, and did not have a definitive answer, the
interviewer would give the Part 2 prompt when the student seemed to run out of things to
say. The chosen vector field had constant magnitude, and the axes were labeled as shown
in the figure. The prompts the students were given were more specific than in Part 1,
yet were still deliberately vague in the protocol. For example, the interviewees were not
given a particular location to find the derivative unless they asked for one. Throughout the
interview, the interviewer asked clarifying questions and gave more personalized prompts
based on the students approaches. Although not part of the original protocol, the inter-
viewer would typically ask the students to find the partial derivative of the vector field
with respect to y.

The Physics Education Research Group at Oregon State University uses open-ended
interview questions frequently, particularly in the Paradigms project. Open-ended prompts
allow students the freedom to develop their own unique approaches to the problems pre-
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sented, and their approaches adapt and change as they work through the prompt. Students
are also free to use and create their own notation to represent their mathematical ideas.

Open-ended prompts come with negative aspects. For instance, students may become
flustered or confused by the nature of the question, particularly when the subject of the
prompt is unfamiliar. Students may also lose track of what they are doing, or get stuck
when their initial attempts do not work. To account for this, the interview progressed to
Part 2 when the students appeared to get stuck or become flustered. Part 2 had follow-
up questions included in the protocol. The interviewer also asked clarifying questions or
prompted the interviewees to consider a particular idea they had brought up previously if
the students appeared to become confused or flustered.

Each interview was recorded with video and audio, and the students’ written work was
collected and scanned. The parts of the interviews relating to vector fields were transcribed
in their entirety, and the resulting transcripts and videos were analyzed qualitatively, in the
style of Thematic Analysis (Aronson, 1995). Common themes throughout the interviews
were noted and discussed. We present the results of each interview individually, then
discuss the similarities, differences, and common themes further in the Discussion, where
we also identify some of the particular concept images and representations that the students
used in their interviews. The three interviews used were anonymized, and the pseudonyms
Alex, Bailey, and Cam are used for the three participants. The alphabetical order of the
pseudonyms corresponds to the chronological order in which the interviews were taken.

3.2 Interview Population

The students interviewed were enrolled in the Paradigms in Physics sequence at Oregon
State University in 2016. At the time of the interview, the students would have completed
the entire calculus sequence, including vector calculus 1 and 2, and the general physics
with calculus sequence. The students also likely had completed Intro to Modern Physics,
which was a sophomore level course introducing ideas such as relativity, quantum physics,
statistical physics, and other physical ideas from the 20th century. This course was typically
taken immediately after completion of the general physics with calculus sequence, though
if any of the interviewees were transfer students, they may have not taken Intro to Modern
Physics or were taking it concurrently with Paradigms.

3.3 Uniqueness of Paradigms Program

The Paradigms in Physics sequence is the junior-level physics curriculum at Oregon State
University. The Paradigms project began in 1996 with the aim of restructuring the upper-
division physics curriculum to more closely resemble the organization used by professional
physicists, and to make the junior-level curriculum more accessible and improve informa-
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tion retention among juniors compared to the previous structure (Manogue et al., 2001).
Under the Paradigms curriculum, rather than taking two courses in different subdisci-
plines simultaneously for ten weeks each term, each of which meets three days per week,
the Paradigms students at this time took one physics course for three weeks at a time,
meeting five days per week. This structure allows students to focus all of their attention
on a single subdiscipline, and not become overwhelmed from dividing their attention be-
tween difficult concepts in different courses. Additionally, the Paradigms courses have a
student-centered approach to teaching, and students engage in group work, discussion, and
experiments throughout the courses. In the fall term, these students took the Static Fields
paradigm, the Oscillations paradigm, and the Energy and Entropy paradigm. At the time
of these interviews, the students had completed the Static Fields paradigm.

The Paradigms program was additionally altered in 2017 to make further improve-
ments, but the students interviewed here did not take the newer courses. The changes
included but were not limited to changing the courseload from three 3-week courses per
term to two 5-week courses per term, and moving the Static Fields paradigm to spring
term (Roundy, Gire, Minot, Van Zee, & Manogue, 2017).

4 Interviews

4.1 Alex

When Alex is asked about the derivative of a vector field, his first remark is, “gradient of
you know some scalar valued function like this,” and writes Of(x; y), shown in Figure 6.
He then realizes that the prompt asked about the derivative of a vector field, rather than
a derivative that is a vector field, and draws a simple vector field graph on the page in
Figure 5.

He mentions that there are many different types of derivatives, like divergence and curl,
saying, “I mean I’m sure there’s, we mentioned in class that there was some ridiculous
amount, but the two useful ones we talk about are the grad- er the curl and um um
uh kay so we got this guy [referring to divergence], and the divergence thank you that’s
the word.” He also brings up the “del” operator, and the possibility of applying this to
different components. He refers to the “del” operator as partial derivatives on all the
different components:
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Figure 5: A vector field drawn by
Alex

Figure 6: Expression For Gradient

A: So these are the ones that um I mean, those have been the relevant
ones so far, the derivatives that we’ve been asked to think about. Um, so
I guess one this just comes from applying so we’ve got our del guy here
which is partial of F and dot dot dot, all of those di�erent directions.
Cause I suppose we could have more than just three.

(A1)

From the previous quotes, Alex’s first response seems to be to bring up as much in-
formation as he can remember about vector fields and derivatives, then he attempts to
piece it together. This seems to show that he does not seem to have a clear definition
in mind for a vector field derivative. He brings up the idea of gradient, divergence, and
curl repeatedly, and repeatedly mentions that there are many different types of derivatives.
Perhaps because he is trying to say as much as he can about the subject, but does not
have much experience with vector field derivatives, Alex ends up expressing that there are
many types of partial derivatives in multiple ways.

Alex starts to think about the components as individual functions, and begins to think
about direction:

A: But then this is also like F of x [sic], is also gonna be a function of
x and y and [Fy] is gonna be a function of x and y [writes expression in
Figure 7]. So, I suppose when you’re thinking about derivatives it’s, it’s a
little more complicated than when we just had the like the scalar thing,
like the height [points at scalar valued function graph]. Um, because,
you’ve got these these directions [points at \Fx x̂" and \Fy ŷ" on paper]
that each of these are going in...

(A2)

The above quote and figure show that Alex understands that both Fx and Fy are func-
tions of x and y, but he does not immediately say that each of these functions hes noticed
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Figure 7: Alex’s vector field equation

are differentiable with respect to both x and y. Instead, Alex seems to focus on the idea
of direction and component.

He does seem to recognize the existence of partial derivatives of vector fields, after initial
confusion about the idea of components. He recalls from classes that different operations
incorporate partial derivatives of vector fields:

A: I think when we’ve mentioned in class, we’ve talked about how there’s,
you know, a ton of di�erent ways we can consider applying, you know,
these di�erent partial derivatives, um, some of them are more useful than
others so, uh, but you know, I guess the two that come to mind are you
know the gradient [sic], and the curl.

(A3)

The above quote shows that not only does Alex consciously know that a vector field is
a function of both x and y, as shown in the previous quote, but he also understands that
there are many ways to potentially take partial derivatives. He notes that gradient and
curl are types of partial derivatives. It is possible that Alex meant to say divergence when
he said Gradient. However, Alex sees the partial derivatives used in calculating divergence
and curl as different from simply taking a partial derivative of a function.

This is further shown when Alex is prompted to just take the partial derivative of the
vector field, rather than a more complex partial derivative operation like divergence or
curl. He expresses that he is uncomfortable with the unfamiliarity of the question. His
immediate response is that he cannot simply take the partial derivative, saying “my gut
response was no but that’s without really thinking about it,” but he decides to give the
question more consideration. He initially decides to try to take the partial derivative with
respect to x of each component:
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A: So, if I was to �nd, if I was trying to �nd this I’m not, I’m not
quite sure if that would mean I was to go like the partial of Fx um with
respect to x in x̂ plus the partial of Fy with respect to y in the ŷ direction
[writes expression in Figure 8] um, that seems reasonable? I’m just not
sure what that would tell you I guess about the actual, like, about what
this whole �eld is doing, because...
I: You mean by dy here or dx? [points to

@Fy

@y ŷ]

A: Oh sorry yeah x. That was x. [changes
@Fy

@y ŷ to
@Fy

@x ŷ]

(A4)

Figure 8: Alex’s first definition for a partial derivative of a vector field

Alex recognizes that the y component of the vector field (Fy) has a dependence on
x as does the x component (Fx), and comes to the correct conclusion that computing
the partial derivatives of each component with respect to x results in another vector. He
appears uncertain about the partial derivative as hes defined it, because he cannot find
any physical meaning or relationship to the original function:

A: Yeah, this just seems kind of this seems kind of strange I think
because uh [pause] [unclear] the concept of what like the what a slope
would mean for all these, these �elds. Yeah, so I guess when I’m thinking
about like a derivative...

(A5)

Here, Alex seems to be attempting to justify this interpretation with either an analog
to the derivative of a single variable function, which can give information on the behavior
of the original function, or a physical application that would back up this mathematical
idea hes introduced. In particular, he is searching for an example of a slope.

It is also notable that Alex accidentally refers to the x variable as y when considering
the partial derivative with respect to the y component, and writes y in the expression (see
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Figure 8) initially before correcting to x after prompting. Early in the interview, Alex
shows a clear understanding that variable and component are distinct objects. However,
the mistake he made in the figure, writing y instead of x, shows that he is beginning to
confound the idea of variable with component. This may also explain his initial response
of “no” when asked if he can take the partial derivative of the y component with respect to
x, as he may have been thinking of holding y constant, and confounding the y component
with the y variable.

Alex’s confounding of variable and component seems to become much more evident
when Alex is able to think about the idea using a graphical representation, given by the
interviewer as part of the protocol. Alex again brings up divergence and curl, and says
that divergence and curl show how a vector field is “expanding or coming together,” but
is unsure what just taking the partial derivative would describe physically. He draws
horizontal lines on the vectors at the top of the graph (see Figure 9), seemingly to show
the magnitude of the x component, saying:

A: My inkling is like okay, I know that each of these is itself got a
component and so, I’d imagine that this is all in that direction right. So
I’d imagine that this this derivative of{
I: When you say this derivative
A: Sorry, I mean the derivative of this guy, the vector of the �eld in a
certain direction, in this case x. I feel like this is gonna tell me how just
[the x] component is changing, but I feel like I would need to hold this,
this like I feel like I would need to choose kind of [points at di�erent rows
of vectors] well yeah this is interesting.

(A6)

Figure 9: Alex draws the magnitude of the x component of the vectors.

In the above quote, Alex realizes from looking at the graph that the elements of the
vector field have an x component in the x direction, and a y component in the y direction.
This realization seems to cause Alex to doubt the validity of his previous theory. Instead
Alex seems to be saying that the partial derivative with respect to x shows how the function
changes “in the x direction,” and the y component of a vector relates to the y direction.
He appears to be considering the idea that the y component is held constant when taking
the partial derivative with respect to x. He knows that he needs to hold y constant, but
seems unsure if y refers to variable, component, or both.

Alex’s second idea of partial derivative with respect to x, taking the partial derivative
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of just the x component, does not necessarily have direction or two dimensions. Alex does
not recognize that taking the partial derivative of both components instead of just the
x component are two different operations, but recognizes that their results are different
objects:

A: No, I suppose that that does sort of tell you [points at vector val-
ued de�nition in Figure 8]. Well no this is weird, cause I don’t know
why would [the derivative] be a vector then. If I just apply [the partial
derivative] here [to the entire vector], then this is gonna be a vector that
has an x component and a y component. So I suppose what I’ve written
here [Figure 8] does not necessarily match what I’ve drawn here, right
[points to horizontal lines, Figure 9].
I: What did you draw there?
A: ...So on each of these arrows [points to paper] I was just drawing like,
for example like the x component.

(A7)

This change in Alex’s thinking seems to suggest that when he is looking at a vector
field map, he begins to focus on direction rather than variable dependence. He knows
that the partial derivative with respect to x shows how the function is changing in the x
direction, holding the y direction constant, but he has not made a distinction between the
y component and the y variable, and is instead holding both the y component and the y
variable constant. This shows that he does not see these two objects as entirely separate.
The two ideas hes come up with differ in precisely that sense: the first idea is the partial
derivative of the function with respect to the x variable, holding the y variable constant,
and the second idea is the partial derivative of the x component, holding the y component
constant. Alex recognizes that these are different operations, as one outputs a vector and
the other outputs a scalar, but since he does not see variable and component as separate
objects, he does not understand why these two “partial derivatives” are different, and he
cannot find an obvious reason why one would be incorrect.

He expands further on this new idea:
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A: Right, yeah, yeah, that would be Fx. I was thinking maybe a useful
thing to know would be, okay, how is this, how is the size of this Fx

changing. But then I would probably want to �x a y, [moves hand down
page] otherwise like what I would be you know doing is a change in this
way or am I going this way [moves pen diagonally toward bottom left of
paper from top right and top left corners]
I: Okay
A: Or this way or this way [moves pen towards bottom right corner from
top right and top left corners]. So like I would want, like, I would want
to know maybe what [pause, makes circling motion with pen] like would
I be �xing a �xing a y on all of these I guess that’s sort of my like my
like my \question" [�nger quotes] cause I would think so this [pointing at
vector �eld map] would seem like it might be something useful to know
so I don’t know that this is really the correct interpretation.

(A8)

Here, Alex explains the importance of fixing a y value by demonstrating that without
a specific fixed y, it is unclear that he is taking the partial derivative of Fx along a line
parallel to the x̂ vector. Hes brought up the possibility of taking the partial derivative in
different directions, but does not expand further on how that operation would be done.

Alex did not express these same concerns when he defined the partial derivative with
respect to x of the vector field as taking the partial derivative of each component. This is
possibly because with a visual representation of a vector field, Alex is able to focus more
easily on direction than when he drew a simple vector field and was thinking mostly ab-
stractly, resulting in a confounding that was not present when he did not have a specific
vector field to consider.

The interviewer prompted Alex to further clarify what he thinks is useful:
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Figure 10: Alex’s second idea of a vector field derivative.

A: It might be useful to know how the um the magnitude of Fx here so
the x component of the vector �eld so{ not just Fx I suppose yeah no
this is sorry Fx so how the size of Fx is changing um say that again so it
might be useful it seems like it would be useful to know how the the size
of Fx is changing...
I: That you drew yep.
A: Is changing um as a function, uh, for this like �xed y, I guess. So to
me that sounds like uh I’m wanting to know how the size of this, like
I’ve picked a y, that sounds like I’m taking Fx with respect to x, like
holding y constant, right [writes expression in Figure 10]. That sounds
like it might be useful to know, um, but I don’t, yeah, I don’t know if,
like, how you would apply a derivative to this entire thing. Because if
I like what I have written here would be like a vector itself, right. This
would have an x, an x component and a y component and I don’t know
what that would be telling me visually, I guess.

(A9)

Alex claims that the partial derivative of the x component with respect to x would be
“useful,” but is reluctant to claim that the new operation he has defined is a partial deriva-
tive. He notices that there is no way to perform this operation on the entire vector field
in a meaningful way, as this definition requires both the y variable and the y component
of the vector field to be fixed. Alex seems to consider a derivative to be an operation that
must be defined on all or most of a functions domain, possibly explaining his hesitation
with defining a partial derivative this way. He has previously throughout the interview
made comments such as “some are more useful than others,” (see Quote A.3) and said
that he did not know what information taking the partial derivative of each component
would provide about the whole field (Quote A4). These comments seem to indicate that
Alex believes a derivative must be informative and useful. He does not believe that a vec-
tor field could give information about the “slope of another vector field, or at least cannot
visualize what a vector field could show about how another vector field is changing. Alex
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is forgetting that curl, which he has mentioned a few times throughout the interview, is a
type of vector field derivative which results in another vector field.

The interviewer prompts Alex to think about the definition in Figure 10, and Alex
begins to explain that when taking the partial derivative of Fx with respect to x, y is held
constant. He then considers the possibility of taking the partial derivative of the y compo-
nent of the vector field with respect to x, saying “so here I’ve taken the partial derivative
of Fx with respect to x holding y constant, so I was just thinking well what if I did that
to Fy as well, what would that tell me about here?” Alex is still confused by the notion
of holding y constant while focusing on the component of the vector field pointing in the
y direction, but has again started thinking about the y variable and the y component as
distinct objects. He is beginning to separate, or “unconfound” the idea of variable and
component.

Although he is beginning to distinguish variable and component, Alex seems to still be
uncomfortable with the idea of holding the y variable constant but not Fy:

A: ...I’m just gonna like pull it up here real quick, so it goes like this
[draws line] just a little bit magni�ed. So we’ve got, this way we can say
that this is Fx and this is Fy right. Fy I would need, mmm. [Pause] Yeah
unless, I guess, I’m just, I’m less certain what that would look like if I
said I wanted to take the derivative of that of, of this whole thing [vector
�eld] holding if this was holding y constant. That’s probably what I
would be doing right?
I: Sure
A: That seems like thats usually how we do these partial derivatives.
And then I wanna know how this is changing. First of all, changes in, I
wanna know how F the vect- yet Im thi- yeah its the whole vector �eld
thing thats kinda throwing me o�, I guess.

(A10)

The above quote seems to indicate that while Alex is still fully aware of the dependence
of the x and y components of the vector field on the x and y variables in the plane, he
still tends to confound the two concepts and implement a relationship that is not actually
present. As a result, he doubts his conclusions. The interviewer prompts him to think
about just x component of the vector field. Alex feels more comfortable with the physical
and mathematical meaning of the operation hes defined, namely the partial derivative of
Fx with respect to x.

Alex begins to estimate the magnitudes of the x components of the vectors at the fixed
y value of �0:75 (see Figures 11 and 12) and plots them on a graph:
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Figure 11: Alex approximates the
partial derivative of Fx with respect
to x.

Figure 12: Alex’s graph approximat-
ing the magnitude of the x compo-
nent of vectors with respect to the x
variable.

A: Okay, so the total length of the vector is 1, um, so each of these this
length is 1, and this length is 1 and this length is 1, so I suppose, um
[pause] interesting. [pause] I guess I would want, I would just want a
value for each of these. So, maybe this is something, like, I mean over
here this is gonna be 1, Fx is Fx this guy’s gonna be 1 over here, so I
would think that, um, if I were to assign these values. If this is like, you
know 0:8 and then like 0:85 and then 0:9 which seems about right cause
if it’s you know, steadily going then maybe then we can say that over this
[clears throat] this region we’ve got, um [pause], trying to think about
what this would look like if I do this as sort of, like a like a function I
guess.

(A11)

Here, Alex creates a single-variable linear function that shows the magnitude of the x
component of the vector field with respect to the x variable, at a fixed y of �0:75. This
allows Alex to estimate the derivative of Fx with respect to x at that specific y value by
finding the slope of the line hes drawn.

After he finds a measurable approximation for the partial derivative of Fx with respect
to x, Alex again decides to think about the y component of the vector field. He has
managed to convince himself that the y component of the vector field is involved in the
partial derivative of the entire vector field function, and therefore cannot justify ignoring
it anymore. However, he is still confused by the idea of holding y constant while taking
the partial derivative of the y component of the vector field, showing that he is still in the
process of separating the two objects:

A: ...That was the one I was having a little bit more trouble with. Trying
to imagine I think, so, this is, would be so we have the partial of Fy with
respect to x. Shouldn’t this be zero everywhere? [Chuckles] um...

(A12)

Although he initially thinks the partial derivative of the y component of the vector field
with respect to x should be zero, when prompted to explain why, he remembers that Fy
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Figure 13: A graph approximating the magnitude of the y component of the vector field
with respect to the x variable.

depends on the x variable, and is not being held constant, so he claims that the behavior
of the partial derivative function of Fy with respect to x would behave similarly to the
partial derivative of Fx with respect to x, presumably because the magnitude of the vector
field is constant. He makes another linear graph to approximate the magnitude of the y
component with respect to x at the same fixed y value (figure 13).

Interestingly, Alex again inadvertently calls the x variable “y” when referring to the
partial derivative of Fy, and corrects his error when the interviewer calls attention to it:

A: ...This depends on x and y so it’s gonna change, right the size of this
this this something that um, oh no no no. So, if I’m thinking of just
this by itself, uh, if I’m just thinking of Fy, then I suppose that what
I’m thinking now is how it is, this would be similar to if we like instead
went in this direction. This would be looking at how this component
here is chang-so this would almost be like the um, like, similar graph,
but slightly di�erent. Right, so this is y vs Fy instead at um [Interviewer
points at paper] no this is x sorry.
I: x
A: Yeah thank you, that’s what I meant.

(A13)

This is the second time in the interview Alex makes the mistake of referring to the y
variable as x and is corrected by the interviewer. This previously occurred early in the
interview, prior to the introduction of the vector field graph, when Alex initially defined
the partial derivative of the vector field with respect to x by applying the partial derivative
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operator to the x and y components (see Quote A4). It is unclear whether this mistake is
a simple slip of the tongue, and Alex did indeed mean x when he said y, or if he really did
mean y and only realized the error when the interviewer questioned his statement.

If this is a simple slip of the tongue, it is noteworthy because this error may indicate
that while Alex may consciously understand that both the x and y components of the
vector field can depend on both the x and y variables, because he has already begun the
process of distinguishing the two objects, he still subconsciously has a strong association of
the x component with the x variable and the y component with the y variable, impeding
his ability to separate the variables and components. As an isolated incident, this would
not be so, but Alex has made the same mistake twice during the interview, and he has
demonstrated other signs of confounding variable and component even after showing evi-
dence that he is once again beginning to separate variable and component.

He then notices that the y component of the vector field is positive at certain points and
negative at others, whereas the x component is always positive. Alex uses this information
to think about how the x component of the vector field is always positive, but the y
component changes. He specifically notices that the y component changes from negative
to positive direction at the line x = 0, where the vector field is parallel to the vector x̂:

A: Wait a second, these are pointing you know sort of in terms of y,
this is pointing down and now it’s pointing up. After we get to the zero
line so that doesn’t really change here um for for \x" [�nger quotes] but
y kind of does change [drums �ngers] Yeah, I suppose if I was thinking
about you know these two things that’s probably how I’d think about it.
The vector �eld.

(A14)

Alexs strategy of focusing purely on the change in sign of the y component, rather than
the general idea of changing, seems to help him make sense of the idea that the derivative
has direction. This approach gives him something more visually obvious to focus on than
trying to find a semblance of slope in the vector field plot, as he tried to do when he was
first given the visual. He seems to have a better understanding of how the y component can
change with respect to x, and he is fully recognizing the y variable and the y component as
separate objects. He has also begun to accept that the derivative of the vector field object
is another vector field, a conclusion hes struggled to wrap his head around throughout the
interview. He still struggles with the idea of differentiability and the idea of direction in
the context of a derivative:
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A: I mean, I guess, I guess in the way that I’ve I sort of guessed that
this is linear on both sides, that sort of makes a problem if this is a sharp
point here, cause that’s sort of hard to de�ne what a derivative is at a
sharp point.
I: That’s true. So it’s probably not that.
A: So if it’s not that yeah, if it’s nice and round then it looks like that
would be if um zero slope cause it’s gonna you know if it’s something
like...

(A15)

Here, Alex seems to be making sense of the idea of change in direction by associating
it with the idea of a single-variable function changing from increasing to decreasing or
decreasing to increasing at a critical point in calculus. He recognizes that because the
y component changes from negative to positive, there must be either a point where the
derivative is undefined, or there is a point where the derivative is zero in order for the
direction to change. He assumes that the derivative is likely defined everywhere, so rather
than a “sharp point” or point where the derivative is undefined, the direction changes at
a point where the slope is zero:

A: I’m thinking about this, this slope of at, so I’m thinking of the
derivative of this of Fy with respect to x. We were saying this is gonna
look you know something like this. It might look a little you know more
curvy but um [drums �ngers] to me this looks like this has got a positive
slope everywhere. But that that this the change in this is always positive.
I: Does that agree with the picture?
A: Um the y component is very negative negative negative. It’s starting
very negative and getting less and less so. it’s not{it’s zero then it’s
increasing right. So um yeah so I suppose that agrees with the picture.
At this point y is going to be changing. Yeah. I mean I have to I have
to consider just kind of you know if I was just looking at a single arrow
it would be kind of impossible to think about that right?

(A16)

Here, Alex again reinforces his association between the vector field having a positive
component and an increasing function, but now hes begun to consider the fact that not
only does the direction of the y component go from negative to positive, but the change
in the vectors y component is gradual and always positive as the x variable changes. Alex
now recognizes not only that the y component changes, but the change has dependence on
the x variable, not just the y variable. He draws the “derivative” of the vectors as arrows
on the vector field map (see Figure 14), indicating the change in the vectors with respect
to the x variable.

The interviewer asks Alex about the entire vector field, or the “whole thing,” and
Alex appears to have returned to his initial idea of the partial derivative of a vector field,
applying the partial derivative with respect to x to each component. He draws arrows on
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Figure 14 that show the partial derivative with respect to x at each of the points hes chosen,
but Alex still struggles with the lack of a clear physical example of the phenomenon, and
how this concept relates to what he already knows:

A: I dunno, I dunno what this is like I guess, I don’t know what this
would like describe ph-I mean, okay, so it seems like this now is gonna
be pointing like a little bit like this more? So, it seems like we’ve taken,
and this �eld looks like it de�nitely has some curl but it doesn’t look like
it really is diverging? I guess those sort of things, so somehow it looks
like I’ve taken something that that had curl but no divergence and given
it some kind of negative divergence.

(A17)

Even though hes accepted that the derivative of a vector field is another vector field, he
struggles to find a meaningful relationship between the vector field and its partial derivative.
In particular, the derivative he has drawn (see Figure 14) indicate that the derivative he
has found is a vector field that behaves very differently than the original vector field. The
original vector field has zero divergence, but the derivative has at least one clear “sink,”
giving it a negative divergence in at least one point, so Alex is hesitant to accept his ideas
without an associated physical meaning:

A: Like I understand sort of the process I’ve done so far, I just don’t
understand like what I would use this to like to describe I guess if I was
like trying to think about useful like if I had a vector �eld...
I: Right
A: Some kind of I dunno, I guess now I’d be thinking about maybe about
like sort of like a temperature gradient I guess? I don’t know what this
would be telling me I guess.

(A18)

Figure 14: The provided vector field map with added vectors showing the derivative at
each point of the vector field.

Here, Alex again brings up the idea of usefulness, which hes expressed throughout the
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interview is an important quality of a derivative or derivative-like operation to him. Alex
seems to believe that a derivative needs to provide insight into the behavior of the original
function, and he does not see that happening with the quantity hes defined, and he cant
find a physical example to prove to himself that the derivative is correct. He cant seem to
come up with a good physical example, and says that he wants to try to use Mathematica
to get a better visualization of the derivative hes just found.

4.2 Bailey

When prompted to explain his thoughts on a vector field derivative, Bailey immediately
brings up the idea of gradient, noting that a scalar field does not inherently have a direction
like a vector field does:

B: So we’re like, your derivative of a vector �eld which is the gradient if
I’m-if I recall right.
I: Mhm
B: Um, and that gradient is going to have a direction um uh in terms of
like if you have a vector �eld in like the x, y, and z [points to either side
of him, then up] then your your derivative is gonna have your gradient
is gonna have direction.
I: Okay.
B: So it tells you in what direction your vector �eld is changing.

(B1)

Despite incorrectly claiming that the derivative of a vector field is the gradient, Bailey
understands that direction is a defining factor in a vector field, so the derivative of a vector
field needs to include an element of direction. However, since Bailey is thinking specifically
about the gradient rather than a derivative in general, he possibly confounds the idea of
the derivative having a direction with the gradients property of showing the direction of
greatest increase. He says that the “gradient” or derivative of a vector field, points in the
direction that the vector field changes. Bailey seems to understand the idea of gradient
and its relation to the direction of greatest change, but he is misremembering the exact
definition. More importantly, Bailey is misremembering the object the gradient operation
is applied to. It is also possible that Bailey is incorrectly referring to the derivative of a
vector field as the gradient.

The interviewer presents a vector field graph as part of the interview protocol, and
Bailey shifts from thinking about the gradient as the derivative of a vector field to thinking
about divergence. He specifically implements the box method he learned in the Paradigms
class by drawing a box around a certain point on the graph (see Figure 15). Bailey also
says that each vector has a “certain amount” in the x and the y directions, and draws lines
showing the projections of each vector onto the basis vectors, also shown in the figure. He
explains how this method is used to estimate the divergence of a vector field at a particular
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point:

B: So, like if you look at like, how much is coming in that box in terms
of just the x component of each arrows, then you look out. So if I make
my box like right here, [draws lines] so like this those vector x right here,
we can see that they’re a lot shorter, so those at this point the vector
�eld is less um has less like strength in the x direction than it does in the
y direction. I think. So, the way I see it is that like youre your, I don’t
know if it’s the derivative, but like it’s... it’s negative, for the x right.
I: Okay.
B: Um whereas the y um if we pick this one and this one, we can see
that like this value is much greater than this one.
I: Okay.
B: So, in that case, it would be positive.

(B2)

Figure 15: Bailey’s box to estimate the divergence of the vector field

Bailey is using the box to visualize the “strength” of the x and y components of the
vectors, like a tool to estimate the magnitude of each component. He seems to be saying
that the vectors point more in the direction of the horizontal lines than the vertical lines,
and he uses the fact that the magnitude of the x component of the vector field decreases to
justify his claim. He seems to be saying that the magnitude of the y component increases
as the x variable increases, but the magnitude of the x component decreases as the x vari-
able increases. The box tool seems to help him visualize the change by looking at how the
vectors cross the lines.

Bailey also begins thinking more broadly about vector field derivatives other than
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gradient and divergence:

B: And then the idea of the derivative of the vector �eld at that point
with respect to x. I don’t know if they’re really the same thing, I think
that like I picture the same thing cause here we’re looking at how much
is here, and how much is here after.
I: Okay.
B: Um so there’s the same idea of change.

(B3)

Here, Bailey is using the concept of divergence to find a visual representation that
clearly shows that the vector field is changing, and that the change in the vector field
depends on the position. He recognizes that divergence is not the same as simply taking
the partial derivative, but divergence shows a way the vector field changes with respect to
position.

Bailey also recognizes that the derivative of the vector field has both a magnitude and a
direction, and emphasizes several times that there is a directional element to the derivative:

B: Yeah, so like the derivative of um the vector �eld at that point...
I: Mhm
B: Is gonna have a magnitude with respect to x which I can’t, I don’t
know what it is, but it it’s gonna have direction [follows the way the
vectors point with hand] and like, since it looks like kind of like a circle
or um um vector �eld like [makes circle with hands] your direction of
your derivative of your gradient is gonna be pointing towards like in that
direction somehow like here. [moves pencil from center of map towards
top right corner]
I: How did you �gure that out?
B: Because your next value on the vector �eld.
I: Mhm
B: Is gonna be like pointing more in that [points to upper right of paper]
direction. [laughs]

(B4)

In the above quote, Bailey specifically mentions that the vector field looks like a circle,
and seems to be attempting to explain that the direction of the vectors is changing to
be more positive in the y direction, so the derivative must be pointing in the direction
the vectors are moving. He does not draw much on the paper, but points toward the top
of the paper to show where he thinks the derivative would be pointing at a particular point.

He also begins to refer to the derivative as the gradient again, and attempts to explain
where the gradient points in this context:
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B: ...Yeah your vector �eld is like, well it looks like in magnitude it’s not
changing so that’s good, but like the direction is constantly changing,
right?
I: Yep.
B: So you have like at each point at each point you’re gonna have um
a direction that is gonna tell you like the gradient of it is gonna tell
you that the way it’s changing it’s kind of like it’s direction is gonna be
changing. [makes circles and points with hands]

(B5)

Here, Bailey recognizes that the derivative must have a magnitude and a direction.
Because the example vector field used has constant magnitude, Bailey explains that the
only change comes from the direction, so the derivative must have an element of direction.
He tries to explain precisely where the direction of the “gradient” points, but cannot find
the words to explain. In the process, he seems to realize that gradient and derivative are
not synonyms:

I: You said \gradient" there, is that the same thing in this case as
derivative? Or is that something di�erent?
B: Um well, I think the gradient is like the um oh wait is the gradient..
well I think the gradient is like when you take the derivative, like the
partial of the vector �eld with respect to each variable, right?
I: Okay.
B: So, if you want just a derivative of your variable with respect to x, I
guess in that sense they’re di�erent.

(B6)

Here, Bailey seems to be confusing the notion of derivative with gradient, and he ap-
pears to mistakenly believe that the gradient is defined to be the partial derivative of a
vector field with respect to each variable. He says that the “gradient,” as he has incorrectly
defined it, is different from a partial derivative. He seems to be saying that the gradient
involves partial derivatives of all independent variables, which distinguishes the gradient
from a general partial derivative.

Earlier in the interview, Bailey says “so if we call this vector field ‘h’.” This is inciden-
tally the same name he assigned the scalar field in the first part of the interview. He may
be attempting to find an analog between vector fields and scalar fields to help him answer
the question of what a vector field derivative would look like, and giving the fields the
same name will help him with that task. He seems to be confusing himself in his attempt
to generalize the notion of partial derivative to a vector field, and his thinking seems to
change from seeing variable and component as distinct to interchangeable, by only focusing
on the x component:
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B: ...So I guess this the derivative of the vector �eld with respect to x
would tell you how the x component of your vector �eld is gonna be is
gonna be changing in the x direction.
I: So it only tells me how the x component is changing in the x direction?
Or does it also tell me about the y component?
B: Umm about the y component? [pause] Um I guess, I guess it tells
you also how the y component is changing? I don’t know. Because if
you have a function of h that’s like x and y that’s like a function where
like um when you take the partial of h with respect to x you still have
a y in [the derivative], right? That happens. Then you would have um
like y would be in
uenced, like would have an in
uence in how um your
vector �eld is changing, but I don’t think it’s going to tell you how y is
changing.

(B7)

In the block quote above, it is unclear if the “h” Bailey refers to when he says, “if
you have a function of h thats like x and y” is the vector field or the scalar field. He
seems to be most likely referring to a general function of two variables. He notes that
the partial derivative of a function typically is a function of (“influences” as Bailey says)
all independent variables. He says that y would influence the derivative, but the par-
tial derivative with respect to x would not show how the y component changes. He refers
to both component and variable simply as “y” and begins to show evidence of confounding.

The interviewer specifically asks how one can find how the y component changes with
respect to x, and Bailey becomes noticeably flustered, shown by an increase in stammering,
and he apologizes for lack of understanding, saying:

B: Um [pause] Um yes I think. I’m not entirely sure.
I: That’s okay. Wanna think about it a little more?
B: Yeah, um so like, when when we talk about change I try to always see
like it’s hard to hard to think about like when we talk about like partials
or like cause it’s um...
I: Yeah sure
B: Really small so like, like between like this point and this point, for
example.
I: Mhm
B: So I can see that my y was �:1 and then it’s 0 here. So I can tell what
my y change in y is. But I don’t know if I can tell that just by taking
the derivative of this with respect to x cause that’s gonna give me, that’s
gonna give me a value um I I don’t know, I’m sorry.

(B8)

Here, Bailey seems to recognize that the y component is changing with respect to the
x variable, but he struggles to understand a relationship between existence of change and
an existence of a derivative. More precisely, Bailey is unsure if the partial derivative of the
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vector field with respect to x would give information about the change in the y component
with respect to the x variable. There is some aspect of a derivative that stops Bailey from
considering a derivative as a representation of change in the y component. As he elaborates
further, he clarifies precisely what aspect of a vector field derivative is troubling him:

B: It’s just, I’m having a hard time trying to picture um how um from
what we learned like how this like how this y is changing. That I know
just by looking at it right, but if I take the derivative, the partial of h
with respect to x with like the derivative of h with respect to x, then
um it’s gonna... [quietly] holding y constant right? I’m gonna have two
di�erent values of y in there.
I: Can you say that again?
B: So, I think I’m getting kinda myself tangled with the things we learned,
but like um if we take the derivative of your vector �eld h with respect
to x, um that implies right that you’re holding y constant when you take
that derivative.

(B9)

Baileys confusion here apparently stems from “two different values of y” in the vector
field, a problem that is not present when taking partial derivatives of scalar valued func-
tions. He understands that a partial derivative of x must hold y constant, but does not
see that holding the y variable constant does not mean that the y component is also held
constant. Bailey is troubled by the notion of two different objects having the same name,
and believes incorrectly that “y” must refer to both the y variable and the y component.
It is the notion of “holding y constant” that is confusing Bailey, leading him to believe
that despite evidence of change in the y component as the x variable changes, the partial
derivative of the vector field with respect to x would give no information about the behav-
ior of the y component, because y is held constant.

The interviewer asks Bailey if the same would be true if he took the partial derivative
of the vector field with respect to y, which Bailey affirms, adding “I think that is what
you have to go on. Like you’re only gonna be able to know like how fully your vector
field is changing when you know how it’s changing with the x and the y.” He does not
elaborate on that statement, and is quiet for several moments until the interviewer asks
about divergence. Bailey says “I’m not entirely sure how those two are connected exactly,”
referring to divergence and the general partial derivative hed just discussed.

4.3 Cam

Cam initially appeared bewildered by the prompt to take the derivative of a vector field.
He furrowed his brows and scratched his head, saying, “Derivative for a vector field. Al-
right,” before pausing to think about the prompt.
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Figure 16: Various vector field derivatives, written by Cam.

He then brings up divergence, curl, and gradient, and the importance of considering
direction in a vector field:

C: Yeah, so if I wanted to �nd the derivative of a vector �eld I would
use, I would use something else. I would use [pause] for example, I could
use curl [writes O � f ], I could use divergence [writes O � f ], or I could
use gradient [writes Of ]. Each of these incorporate the di�erent bases’
directions into the derivative, which I would need for say if we were doing
a vector �eld.
I: Okay.
C: Yeah, so [long pause] whereas if you were doing a scalar �eld it’s a
lot simpler um you don’t have to incorporate um di�erent directions of,
I guess...

(C1)

He also writes down the expressions for gradient and curl without using vector notation
(see figure 16). He also writes Of , then crosses it out later in the interview. He recognizes
that the operations curl, divergence, and gradient involve basis directions in their calcu-
lation, but he struggles to draw a conclusion from that bit of information. He adds that
a derivative of a scalar field is a simpler operation, because directions are not involved,
indicating that he understands the importance of direction in taking the derivative of a
vector field. Cam does recognize that curl, gradient, and divergence are not strictly par-
tial derivatives themselves, but rather operations that involve partial derivatives, saying,
“they’re all different operators that– operations that deal with partial derivatives.”

Cam attempts to expand further on what he means by operations that deal with partial
derivatives, saying:
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Figure 17: The formula for gradient

C: I’m fairly con�dent that these are needed, um, if you want to do an
operation with, um, a vector �eld. For example, you want to take, um
you want to �nd the magnetic �eld from the magnetic vector potential.
You can just take, a you couldn’t take the gradient, oh wait a minute. I
can’t use the gradient, you couldn’t take the gradient of that [crosses out
Of ] because because, you know that the magnetic �eld is also a vector
�eld right, so the gradient will give you um a scalar �eld from the vector
�eld. And if I wanted to �nd the magnetic �eld from magnetic vector
potential, I would use um, I believe it’s the curl.
I: Okay.
C: Um [pause] its, its still a derivative operation, but its not a [mumbles
something] its not a derivative as explicitly as the gradient is.

(C2)

Here, Cam recalls the example of magnetic field and magnetic vector potential. He
is possibly trying to make sense of the unfamiliar question of a vector field derivative by
using a familiar physical example as a guide. By thinking about the magnetic field and
magnetic vector potential, he correctly remembers that the magnetic field is a vector field,
so the gradient is not relevant. His justification is incorrect, as he states that the gradient
of a vector field is a scalar field. He knows that the gradient of a vector field is not a vector
field, but does not realize that the gradient is not defined on a vector field. He remembers
that the magnetic field is the curl of the magnetic vector potential. He then reaffirms his
previous point that the curl is a type of derivative, adding that the gradient is a more
“explicit” derivative.

The interviewer asks, “Gradient’s what you wrote down before, right?” Cam then
writes the formula for the gradient shown in Figure 17. He explains that hes written down
the formula for gradient, and that it is a scalar field. Cam then states that he got side-
tracked, and the interviewer repeats the prompt, saying “if I have a vector field, and I want
to take the derivative of that vector field...”

In his response, Cam switches from using algebraic representations of gradient, diver-
gence, and curl, to a more verbal approach, saying:
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C: Take the de-okay that would be applying the, okay so that would
be the rate of change of the vector �eld [pause]. But the rate of change
of what, see that’s the thing, I, you can’t, I don’t think you can take
just a plain old derivative of a vector �eld. You’d have to do some other
operation to it.

(C3)

In the above quote, Cam realizes that he is looking for the rate of change, but he seems
to be unsure exactly what is changing. Its unclear if he is thinking about magnitude and
direction as possibly changing, or if he is simply puzzled by the entire idea of change in a
vector field. He does not know if one can take a “plain old derivative” of a vector field, and
likely recalls curl, divergence and (incorrectly) gradient as being operations that involve
partial derivatives on a vector field.

The interviewer gives Cam the example vector field (Figure 4) and asks him to find the
derivative of the vector field represented in the graph in the x direction. Cam is silent for
several moments, staring at the graph.

With a graphical representation to look at, Cam seems to change his mind about not
being able to find the rate of change of a vector field:

C: I would say yes, actually so you would be able to �nd [pause] the rate
of change the rate of change of the [mutters something, moves hand to
the right] �eld pointing in the x direction.
I: Can you explain what you mean?
C: Yeah, for example as the arrow{as the x position shifts to 1 the arrows
are pointing less and less in the x direction. Okay, starting from zero.
Going from zero to one the arrows are pointing less and less in the x
direction and more and more in the y direction, which leads me to believe
that the rate of change er okay, so that must mean that, okay so since
the total change in x is going negative at each at each

(C4)

Here, Cam seems to be having difficulty expressing his thoughts in words, but he ap-
pears to be trying to say that since the vector arrows are pointing in different directions,
the vector field is changing in the x direction. He brings up that the arrows are pointing
less “in the x direction” and more in the y direction, and mentions that the total change
in x is going negative at each. It is unclear whether Cam means there is negative change
in the x direction or the x component is decreasing, or if he is incorrectly stating that the
x component is negative. Given the context, the most likely interpretation is that Cam is
saying the rate of change in the x component is negative.

Cam observes that the magnitude of the vectors in the vector field is constant, and
explains that the x component has a maximum length:
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C: And... I’m assuming that these are all the same length. They look
the same length.
I: They’re about the same length, you’re right.
C: So this means, since this [pointing at a horizontal vector on the line
y = 0] one’s parallel, you’re not gonna get any more in the x direction
than that. This has no y component. It’s all exclusively in x. So as you
move, as it moves along to the next the next arrow [points at arrow to the
right of horizontal arrow], it looks like there’s a slight inclination point,
which means that if these arrows were the same length, there can’t, there
can’t be any um it can’t be, it can’t have the same magnitude in the x
direction. Um and that goes on and on and on til say the last one where
it’s a signi�cant portion in the y direction and not as much in the x.

(C5)

In the previous quote, Cam observes that the points where the vector field is parallel
to the x̂ vector has the largest x component, since the magnitude of the whole vector field
is constant. He uses this to explain that the magnitude of the x component decreases from
the maximum at x = 0 as the x component increases in the positive direction. At larger
y values, Cam observes that the y component has a much larger magnitude than the x
component.

This observation that the magnitude of the x component decreases leads Cam to make
additional operations about the y-variable:

C: So that leads me to believe that there could be a change in f or a
derivative in the x. But then the rate of change in the x also depends
on not the necessarily the x direction [points to the right] that you go
but it also depends on y direction [points to top of the paper] because
for example, arrows up at the top up higher, say y = 1 have more [points
to a vector at the top of the page], they’re pointing more [puts pen on
table vertically] in the y direction than those at the bottom.
I: Okay.
C: That makes me think that the derivative, er the rate of change of the
arrows is also dependent not only on the x position but also dependent
on the y position.

(C6)

Here, Cam notes that the direction the vectors point is different on different locations
of the graph, so he conjectures that the partial derivative of the vector field with respect
to x has dependence on both the x and y variable. This shows that Cam is starting to
think more about how both variables influence the change in the vector field, rather than
just focusing on the x variable.

Cam begins to discuss infinitesimals, and their role in finding the partial derivative of
a vector field. He also begins to use invented notation and terminology:
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Figure 18: Cam’s expression showing the partial derivative of the vector field.

C: And this is only in the x{okay so, yeah the rate of change in so, let’s
just call that a function �eld, x um is some some function of x and y. Of
course, it’s also in�nitesimal so it needs to be a dx and then a dy [writes
expression shown in Figure 18].

(C7)

In the above quote, Cam refers to the rate of change as a “function field.” A “function
field” is a term in algebraic geometry referring to the field of objects that can be interpreted
as rational functions, or a term in abstract algebra referring to a finitely generated field
extension with a finite transcendence degree. Cam is most likely not referring to either of
those definitions, but it is unclear exactly what he means. He could have been trying to
say that the x component of the vector field is a function of x and y.

In Figure 18, Cam seems to have been writing that the derivative of the vector field
with respect to x is a function of x and y. He originally names this function f , but after
the interviewer asked for clarification, Cam renamed the function g. Since the derivative
is a function of x and y, Cam says the derivative function, g, must have the terms dx and dy.

The interviewer asks for clarification about the infinitesimals, and Cam says “[dx, dy]
is just saying that somewhere in here there also needs to be infinitesimals relating the two
sides.” It is important to note that he originally wrote a comma between the dx and dy,
likely trying to indicate that the dx and dy are somewhere in the function g, but they may
not be in the same terms of the function. He appears to be confusing differential notation
with the rate of change definition of derivative. He is also unsure of how to represent
an equation with differentials when the function is unknown. He also does not seem to
understand how to vary one variable at a time. He is clearly taking the partial derivative
with respect to x, but includes differentials dx and dy. Cam does not seem to understand
the distinction between “2-ness,” with two variables, and “1-ness” with one variable in the
context of taking derivatives.
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Though he appears to be confused about the meaning of taking the derivative, Cam
is acknowledging that the x component of the vector field is a function of x and y, and
therefore can be differentiated by both x and y. Here, Cam has already separated the idea
of variable and component.

The interviewer asks if “dx, dy” is multiplied by the function g:

I: But this isn’t just like multiplied or something?
C: Um [pause] no it’s not...
I: No
C: No it’s not just multiplied. There’s gonna be an in�nitesimal related
to... there should be. [pause, looks puzzled] but not necessarily because
dividing an in�nitesimal by an in�nitesimal means that you know so I
wouldnt need an in�nitesimal here [crosses out \dx", \dy"] because if
you divide an in�nitesimal by an in�nitesimal um you get a real not
necessarily real but physical number. Not an in�nitesimal. Yeah that
um if that if that if that’s helping you I don’t know.

(C8)

Here, Cam is trying to explain his notation, and in the process, he seems to realize that
having the quotient of differentials on the left side of the equation means the right side does
not include infinitesimals. He crosses out “dx, dy” because the left side of the equation
already has a “dx” in the denominator. In writing “dx, dy” initially, Cam specifies that
both the x and y variables are being differentiated, but only “cancels” the differentials
with dx. Cam may have realized that the y variable is not being differentiated, so the “dy”
should not be there, but this is not clear. He may also be struggling with the “2-ness” on
the right-hand side of the equation, and cancelling the two dimensional differentials with
one differential on the left-hand side.

Cam’s phrasing of “not necessarily real but physical number” to mean not infinitesimal
is also interesting. He may be trying to make what he’s written as general as possible
by acknowledging that the derivative may be complex. Because the vector field given is
certainly a vector field on the real numbers, Cam may have been transitioning to a more
general case. If this is true, this seems to have been unintentional on Cam’s part, as the
interviewer then asks if Cam is referring to the derivative of the function in the graph with
respect to x, which Cam affirms. The additional generality would likely be due to Cam
being unsure of the exact function being graphed, and he does not want to claim that the
function is on the real numbers without confirmation. It is also possible that Cam is simply
confused, and is not sure how to express his thoughts in words.

Cam restates a previous statement that one can’t take a derivative (see Quote C3) but
acknowledges that there is clear evidence of change, saying, “just looking at the graph
makes me think that there certainly is a rate of change occurring.” He explains what is
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meant by the rate of change:

I: What does it mean when you say rate of change?
C: Rate of change means derivative in the x direction.
I: Why is a rate of change the same as derivative here?
C: Um
I: How are you using those words?
C: Right so. The derivative, that’s the that’s the physical meaning of
rate of change. So rate of change is let’s say that, in this case, rate of
change is how rapidly is this arrow going from parallel to the x axis to
um not parallel to the x axis. How rapidly is that shift occurring? Um
that would give me the rate of change.

(C9)

Here, Cam says that the derivative and the rate of change are the same concept, which
seems to contradict his previous statement that there is no “basic” derivative, but there is
a rate of change. Cam has also introduced a new idea of derivative that does not involve
infinitesimals at all, but is instead more of an approximation of the derivative using very
small increments. Interestingly, Cam’s approach measures the change in x with respect to
a particular change in F :

I: What does rapidly mean here?
C: Um with how small of an increment do I need to go in order to get
let’s say a given amount of change.

(C10)

In the above quote, Cam is clearly saying that the derivative, or rate of change, shows
the “amount” of change in the x direction needed to achieve a given change in f . He
seems to change his approach immediately after saying the above quote, after prompting
for clarification. He also begins focusing only on the change in the x component, and
ignores the y component:

C: So let’s just say that I go :1 from 0:5 in the x um how much does the
angle of basically this shift. How much less does this arrow point in the
x direction at this increment, or at this this point than it does at this
point?
I: Okay how would you quantify how much less it points?
C: Um that would also be equivalent to the um distance in the x direction.
[draws dotted line near vector in �gure 19]
I: And when you say distance you sketched the triangle there...
C: The triangle yes. I’m trying to break it down into its, trying to break
down the vector into its di�erent components.

(C11)

In the above quote, rather than determining how much change in the x direction is
needed to produce a given change in the function, Cam uses the more traditional method
of estimating a derivative. He finds how much the direction changes by finding the length
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Figure 19: A triangle on the vector, seemingly indicating the magnitude of x and y com-
ponents

of the x component. Cam has previously expressed understanding that the magnitude is
constant (see Quote C5), so he is possibly trying to quantify the change in direction with
magnitude of the x component because the change in y magnitude is equivalent. This
may also be evidence that Cam is beginning to confound the x variable with the x compo-
nent, despite previously showing evidence of understanding that component and variable
are separate objects. He does acknowledge that he is “breaking the vector down into its
different components.” However, it remains to be seen whether he is doing this because he
acknowledges the constant magnitude, or if he is confounding the variable and component.

When asked for clarification, Cam seems to be struggling with finding how the vector
field is changing:

I: So you’ve only been looking at the x part of that vector?
C: Yes I’m only looking at um yes. Only looking at the x part of that
vector.
I: Okay.
C: And how rapidly it changes. Um [pause] wait. [long pause] Maybe I
couldn’t then. Okay. So dF okay so the function for our vector �eld dF
um dx is the rate of change of F as x is as x is changing. But F , F isn’t
changing. Yeah so now I’m, now I’m thinking that you couldn’t use a
basic derivative.
I: Can you tell me more about that?
C: Um well F is changing. F is ��f okay the, the equation for the vector
at each point is changing. That. That uh the equation for a vector
at each point is changing. So plug in di�erent points to your{to your
equation [long pause] So it’s this that is tripping me up. So the rate of
change...

(C12)

Here, Cam clarifies that he is measuring the change using the x component only, but
realizes there is a problem with his approach. He again says, “you couldnt use a basic
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derivative,” a term hes used several times in the interview (See Quote C3) . He also says
that the vector field is not changing, then changes his mind and says the equations of
the vectors are changing at different points. The contradictions and frequently changing
statements indicate that Cam is very confused. He likely saw a problem with his previous
approach, and without another clear approach to the problem, Cam is likely trying to make
sense of his ideas by saying whatever he can come up with.

Cam again says that he cannot take a basic derivative, and begins to consider the
implications of the object being a vector:

I: What’s a vector?
C: Oh it is a vector. I got vectors. Hopefully. It is a vector so that means
yeah it, it just doesn’t work you can’t, you’re not saying what you’re not
saying like a direction associated with that, or how it’s changing, so yeah
that would lead me to believe that you can’t take a vector �eld, no you
can’t take a basic derivative of a vector �eld. In a certain direction.

(C13)

Here, Cam attempts to justify his claim that he cannot take a “basic” derivative of a
vector field. He seems to be saying that without a specific direction, there is no way to ac-
curately measure the change in the vector field. He says, “youre not saying like a direction
associated with that” as he is explaining why he cannot take a derivative, but moments
later, Cam says “you cant take a basic derivative of a vector field in a certain direction.”
Cam seems to be using the word “direction” to refer to two different ideas. It is not clear
what those are, but one possibility is that when he says there is not a direction associated,
he is referring to the components. If that is what Cam means, then his comment in the
above quote may mean he does not know if he should be taking the derivative of the x
component or the y component.

Another possible explanation is that Cam is trying to say that he does not have an
explicit basis with which to find the direction. Cam has mentioned basis directions previ-
ously (Quote C1) so he may be acknowledging the role the basis plays in finding a vectors
direction:

I: So when you say basic derivative you mean something like this? [points
to expression in Figure 18]
C: I mean yeah something like this. [points to expression in �gure 18]
Yes. I think. Let’s see how much I remember.

(C14)

Here, Cam explains what he means by a “basic” derivative (see Quote C13). He says
that the expression in Figure 18 is an example of a basic derivative, so Cam seems to be
saying that a basic derivative is a scalar valued derivative.

The interviewer then asks Cam if there are other derivatives of vector fields, and Cam
mentions curl and divergence. He says that curl and divergence are “different arrangements
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Figure 20: Scribbled out expression. The writing is O � f = @f
@x x̂+.

of derivatives that allow you to find different things about [the vector field].”

The interviewer asks Cam if there are other derivatives that “live within” divergence
and curl:

C: [pause] Yes that okay yeah yeah you just have to associate a direction
with it. So for example the curl of f is um so I believe this is right df
dx x̂ [writes expression in Figure 20, see caption] + oh no that would
be gradient [scribbles out writing]. I don’t remember curl. Um yes
I so I don’t remember the exact equation for curl but I know that it
incorporates di�erent partial derivatives of F um in its equation.

(C15)

Cam initially writes “O � f” the correct notation for curl, then begins writing the for-
mula for gradient of a scalar valued function. He catches himself and scratches out what
hes written. Cam then says that curl “incorporates different partial derivatives of F .” He
seems to be starting to understand that there is some distinction between the components
of the vector field that would change the value of the partial derivatives, but Cam does not
realize that the components are represented by different functions entirely. He so far only
recognizes that the components are needed to find the derivative.

Cam clarifies what he means by direction after the interviewer asks for an example:

I: Can you give me an example of one such partial derivative?
C: Okay, so I’m not recalling exactly what-which speci�c ones um are
incorporated into the curl um I don’t recall exactly um but we say in
the x̂ direction [writes expression in Figure 21] um so this should be how
much is the function F changing when an increment of y is taken so from
0 to 1 say.
I: Okay
C: Um in the x̂ direction so how much..

(C16)

In the above quote and Figure 21, Cam provides a correct example of one of the partial
derivatives that make up the curl operation. He explains after the interviewer asks for
clarification that the invented notation in figure 21 refers to the partial derivative of the
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Figure 21: Can’s expression for the partial derivative of the x component of the vector field
with respect to y.

x component with respect to the y variable. He specifically says, “so my two different
points that I’m taking for finding my derivative are moving in the y direction, but when
I’m looking at the um vector field exclusively, I’m only looking in the x̂.” Cam does not
seem to recall the standard notation for the x components and y components of a vector
field, and uses the notation above.

It is also interesting that Cam has chosen a partial derivative taken with respect to
y instead of with respect to x. Cam may be interpreting the prompt “partial derivative
in the x direction” to mean “partial derivative of the x component.” This could also be
a coincidence, as he has previously stated that the “direction” (i.e. component) was not
specified in the prompt, and Cam instead chose the first partial derivative that he recalled
in the formula for curl.

Cam finds a numerical approximation for the partial derivative shown in Figure 21, and
the interviewer asks if he can do the same process with the y component:

I: But could you have found df
dy but with ŷ here? Is that something

that’s possible to �nd from this �eld?
C: [long pause] Yes yeah.
I: How would you do that?
C: instead of using the x di�erence in the vector, um you would use the
y, how much the y change. You’d still pick your points moving in the y
direction, but you’d just change that so that...
I: How would you know that you’d still want to change in the y direction?
C: Because you’re assuming that this is{it’s still df

dy you’re still changing

f with a small change in y, so this would be df
dy um in ŷ [writes expression

in Figure 22]. So yeah you’re still um moving in the y direction you’re
still changing your points in the y direction.

(C17)
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Figure 22: Cam’s expression for the partial derivative of the y component with respect to
y.

Here Cam, after a moment of consideration, claims that he could take the derivative
of the y component of the vector field, indicated by the “ŷ” in the expression he wrote
in Figure 22. Cam no longer has an issue with the presence of change in the vector field,
and he has found an understandable notation that allows him to find the different partial
derivatives one can take of a vector field.

Cam also does not have difficulty recognizing that the x and y components each depend
on the x and y variables. He also seems to understand that both the x and y components
are changing. Cams difficulties seem to come from having many different objects that could
be differentiated in the vector field. More precisely, he does not know whether he should
be looking at the x component or y component. Cam also does not seem to recognize that
the derivative would have a direction, or if he does, Cam appears to believe that this is an
error. Consequently, he does not consider the possibility of taking the partial derivative
of both the x and y components. Moreover, Cams approach seems to aim to remove the
directional element to the change, seen here:

C: Yeah um that makes me think that in order to take a derivative
in a vector �eld, you need to have a speci�c{a more speci�c direction
associated then just
I: Can you tell me what you mean by more speci�c?
C: Yeah yeah. If I can �nd the words. The uh the so for example if I
wanted to just say oh I’ll take df

dy and not have um a certain direction

associated with it, if I took df
dy um it’s not de�ned what it’s not de�ned

how the actual vector itself is changing. You’re not giving it a bound
to measure how much the arrow say changes in that time. You’re just
giving it, what’s the change? That you don’t know. You need a certain
direction associated with it.

(C18)

In the above quote, Cam explains that a vector field changes in different directions,
so to take the derivative, one needs to know the direction, or component, that should be
differentiated. He still does not recognize that the derivative of the vector field would itself
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Figure 23: Cam’s expressions for more possible partial derivatives.

have direction, but he recognizes that the y component can be differentiated with respect
to each variable.

He explicitly writes the derivative of each component with respect to each variable:

I: Are there any other of these derivatives beyond what you wrote down
there?
C: Oh certainly um I could �nd the partial f of and then partial x and
then just kinda and then I could �nd partial f partial y in the x̂ [writes
expression in Figure 23].

(C19)

Here, Cam correctly deduces that the x component of the vector field can be differ-
entiated with respect to each component, as with the y component. From his previous
discussion of curl, Cam seems to understand that these partial derivatives are combined
to form derivatives of the entire vector field. Cam does not bring up any potential ways
of combining them, or the type of objects these partial derivatives are. Because he chose,
whether consciously or not, to find derivatives that produce scalars rather than vectors with
direction, Cam did not realize that the derivative could itself be a vector and have direction.

Additionally, Cam seems to consider divergence and curl to be entirely separate from
derivatives. He has previously referred to them as “arrangements” of derivatives, but does
not bring them up again when asked about other derivatives:
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I: Are there any others or is that it?
C: Well if you wanted to �nd more basis directions you could.
I: So if I had more directions I could get more?
C: Yes.
I: But without more directions there’s no other derivatives that I could
come up with.
C: None that are particularly useful, yes.

(C20)

Here, Cam affirms that the number of partial derivatives of a vector field depends
on the number of variables and components, or basis directions. Cam does not mention
the arrangements of derivatives, or say that he could arrange the derivatives hes found
in different ways to form new derivative operations. He seems to believe that the partial
derivatives hes defined, and other objects defined similarly, are the only “derivatives” of
the vector field, and anything involving them would be “arrangements.”

5 Results

Here, we discuss the content of Alex, Bailey, and Cam’s interviews, including the similarities
and differences between the three students’ approaches. We also propose answers to the
research questions in Section 1:

1. How do students attempt to take a derivative of a vector field?

2. How well does Zandieh’s framework and subsequent extensions (Zandieh, 2001) de-
scribe student understanding of vector field derivatives, and, in particular, is an
additional extension necessary to describe vector field derivatives?

Questions 1 and 2 are addressed by introducing the new idea of confounding and uncon-
founding, describing the interviewees’ difficulties with terminology, and using Zandieh’s
framework, along with Roundy and Emigh’s extensions, to describe the students’ processes
in addressing the prompts.

5.1 Confounding and Unconfounding

Confounding involves treating distinct objects as interchangeable. In this study, we focus
on confounding of variable and component, though other types of confounding may be
present. Alex, Bailey, and Cam each showed evidence of confounding variable and compo-
nent throughout their interviews, as well as evidence of unconfounding, or separating the
ideas which they had previously confounded.

Both Alex and Bailey struggled with the idea of “holding y constant.” Bailey seemed
to consciously know that the y component and y variable were different, yet when trying
to take a partial derivative with respect to x, Bailey did not know whether to hold the y
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component or the y variable constant (see Quote B9). Alex, on the other hand, had difficul-
ties conceptualizing a derivative with direction. He initially defined a vector-valued partial
derivative (Figure 7), but expressed uncertainty about what a derivative that is a vector
would mean physically. Instead, he considered what it would mean to hold y constant, and
decided to only take the partial derivative of the x component with respect to x. Moreover,
when Alex began to consider the partial derivative of the y component with respect to x, he
initially claimed the derivative would be 0, because he was holding y constant (Quote A10).

Cam differed from both Alex and Bailey in that his difficulties with confounding were
not related to holding y constant, but rather what taking a partial derivative “in the x
direction” meant. Cam repeatedly said “you can’t take a basic derivative” throughout his
interview, meaning simply differentiating with respect to each variable (Quote C14), and
emphasized the idea of direction. He eventually clarified that he interpreted “the partial
derivative in the x direction” to mean “a partial derivative of the x component,” which
could be with respect to either x or y. Therefore, Cam’s difficulties with confounding were
not with variable and component, like Bailey and Alex, but rather were with variable and
direction.

Despite some differences in what specifically Alex, Bailey, and Cam were confounding
and why, they each took a similar approach to differentiating the vector field as a result.
All three students used projections to isolate the magnitude of each component, and con-
sidered the change in the magnitude of just the x component of the vector. Alex and
Bailey attempted to separate the y variable and y component to find something they could
reasonably differentiate (Quotes A8, A13, and Quote B7), whereas Cam’s interpretation of
the prompt required him to only differentiate one component at a time.

Confounding naturally leads to an idea of “unconfounding,” where students begin to
recognize the previously confounded objects as distinct and/or unrelated in order to com-
pute a partial or ordinary derivative. Alex and Cam displayed an obvious process of
unconfounding, whereas Bailey was unable to complete the unconfounding process during
his interview.

Alex struggled with finding the partial derivative of the y component of the vector
field with respect to x, initially saying it should be zero. Upon further consideration, Alex
noticed that the y component of the vector field was negative for x < 0 and positive for
x > 0 (Quote A14). He had previously defined a function that output the magnitude of
the x component with respect to x (Figure 12) and defined a similar function that output
the magnitude of the y component with respect to x (Figure 13). This process of defining
a function and drawing a linear graph helped Alex recognize the relationship between the
y component and the x variable, and recognize that the y component and y variable are
distinct objects.
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An interesting aspect of Alex’s interview was that Alex initially did not confound the
x and y variable, but his doubts about a derivative being a vector object appeared to
cause him to begin confounding. By defining a function that clearly showed the presence
of change (Figure 13), Alex was able to accept his original idea, despite his discomfort with
a vector-valued derivative. In this sense, Alex first did not confound variable and compo-
nent, then began to confound, then finally unconfounded the two objects, as opposed to
beginning confounded and unconfounding throughout the interview, as Cam appeared to
do.

Cam’s process of unconfounding took a different direction. Both Alex and Cam strug-
gled with the idea of a derivative having direction. Alex did not understand why a derivative
would be a vector, and Cam claimed having a directional element made it impossible to
take a “basic” derivative. Cam’s approach was to remove the directional element from the
derivative by only considering one component at a time, and noting the dependence of
each component on each variable. Cam eventually found four different partial derivatives
that one could take of a vector field (Quotes C17 and C18), but did not conclude that the
derivative itself had a direction as Alex and Bailey did.

5.2 Confusion of Types of Derivatives

The three students interviewed each struggled with using the correct language to describe
the mathematical objects they were working with. The most common misnomer used by
Alex, Bailey, and Cam was referring to the derivative of a vector field as a “gradient.”
All three students referred to a general derivative as a gradient at some point during their
interview. This is likely either due to misremembering the definition, which is most likely
the case for Bailey and Cam, or misspeaking, which is possibly the case for Alex. As a
gradient is not actually a derivative operation on a vector field, but is rather an operation
on a scalar field that results in a vector field. As the gradient is related to vector fields and
is a derivative operation, the students appear to be conflating the ideas and believe that
the “gradient” is the derivative of a vector field.

5.3 Use of Zandieh’s Framework

All of the concept images in Zandieh’s framework, as well as Emigh’s extension, were used
by at least one of the three students interviewed at some point in the interview process.

Narrowing was prevalent throughout all three interviews. The students each spent a
significant amount of time determining what to hold constant and what to differentiate.
The narrowing process seemed to overlap with the unconfounding process quite often. For
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example, as Bailey was attempting to determine what to hold constant, which would be
considered “narrowing,” he realized that he had “two different y” values (Quote B9). Al-
though Bailey was not able to fully separate the y component and the y variable, he seemed
to recognize that y was used to represent two distinct objects as a result of the narrowing
process.

Cam and Alex had similar approaches to narrowing as Bailey. All three of the students
had to consider not only what it meant to hold a variable constant, but also which vari-
able/component to hold constant. In this sense, the process-object of narrowing appears
to have some connection to confounding variable and component in vector fields. All three
students opted to break the vector into components, and had some difficulty deciding what
exactly they needed to hold constant. It is possible that confounding blocks students from
beginning the narrowing process, or is an extra element that students need to narrow when
attempting a vector field derivative.

The three interviewees also frequently used the ratio layer to understand how to take a
vector field derivative. Alex spent a significant amount of time searching for a slope as he
was finding a derivative. Moreover, the lack of a clear “slope” frequently caused Alex to
doubt that his ideas were leading him on a correct path, such as when he initially defined
the vector-valued partial derivative. Alex said he was looking for “what a slope would
mean” for a vector field, and presumably a vector did not match his idea of a slope.

Later in the interview, Alex drew a linear approximation of the magnitude of the x-
component (See Figure 12) which gave a graphical representation of a slope, which he
could then estimate numerically. This process overlaps with the function process-object
layer in Zandieh’s framework. This shows that more than one process-object layer can
be implemented at one time. The students in Zandieh’s study also used more than one
process-object layer at a given time (Zandieh, 2001). However, Alex’s combination of the
function layer and ratio layer is unique to multivariable functions, particularly vector fields,
because Alex created a new function that would allow him to find the slope. This approach
would neither be necessary nor feasible with a single-variable function.

Alex also showed the strongest preference toward graphical representations of the three.
Not only did he choose to draw graphs of the functions he defined to estimate the slope
(Figures 12, 13), but drawing a simple vector field graph was one of the first things he
did after receiving the prompt (Figure 5). Neither Bailey nor Cam attempted to create a
graphical representation of a vector field prior to being provided one. Bailey also primarily
used graphical representations in the sense that he did all of his work from looking at the
graph itself. He did not attempt to create his own graphs, as Alex did.

Cam used the verbal representation “rate of change” explicitly in his approach (Quotes
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C3, C4), and described the rate of change as how much less the vector points in a certain
direction given a certain amount of variable change. Cam and Alex both attempted a nu-
merical approximation. Alex found an explicit number for his estimate. Cam and Bailey
each referenced estimating the rate of change numerically (Quote C11 and Quote B4) by
estimating the change in magnitudes of components, but neither were ultimately able find
an explicit numerical value for a derivative.

Cam was the only of the three to include a discussion of infinitesimals, which would be
considered the limit process-object layer of the framework as he attempted to understand
the general behavior of the derivative of a vector field. Cam recognized that the change in
the x component depended on both the x and y variable, and attempted to define a differ-
ential form using dx, dy to represent the infinitesimal change in each variable (Figure 18).
Though his definition was ultimately incorrect, as Cam realized prior to scribbling out the
expression he wrote, Cam made a distinction between “rate of change” and “derivative”
that neither Alex nor Bailey considered, namely that a derivative involves an infinitesimal
change.

Overall, Alex, Cam, and Bailey each used process-object layers and representations de-
tailed in Zandieh’s framework and its extensions, so it appears Zandieh’s framework with
Emigh’s extension is useful in describing student understanding of vector field derivatives.
However, Emigh’s extension alone is not entirely sufficient to describe student understand-
ing of vector fields. The idea of confounding appears to be largely connected to the process
of narrowing ; a small extension to the narrowing layer to include the confounding and
unconfounding processes might make the framework sufficient to describe confounding and
unconfounding in student understanding of vector field derivatives.

6 Discussion

6.1 Limitations of the Study

Many of the limitations of this work are due to the small sample size of students inter-
viewed. Only three interviews were given, and the students were all male physics majors
at Oregon State University in the same class. A larger, more diverse pool of subjects, par-
ticularly including other genders, minority students, and/or students from other schools
and disciplines, might include different approaches and difficulties that did not come up
in these interviews. Additionally, the Paradigms program is a unique approach to junior
level physics curriculum, so the difficulties students from Oregon State University have
may differ from the difficulties of students from other schools.

Another limitation in this work was due to the time constraint in the interview. The
interview data used was the last phase of a two phase interview, and the interviewees may
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have been tired or under a time limit. It is possible that if the entire interview had been
devoted to vector fields, the students may have had different answers or been able to devote
more time to thinking about the prompts.

6.2 Suggestions for Future Work

This work focused primarily on confounding variable and component, but the students
interviewed used other techniques and ideas that were not analyzed in detail. For instance,
more analysis can be done on the students’ process in determining what to differentiate,
or on the graphical techniques used by the students.

Additionally, the limitations of this study outlined in Section 6.1 are possible subjects
of future study. Conducting similar interviews with a larger, more diverse pool of subjects
may have interesting results that were not evident in this work. Students from other
disciplines, such as mathematics or engineering, may think about the prompts differently.

6.3 Implications for Instruction

Because the number of students interviewed is low, the conclusions this study draws and
the implications thereof may not be indicative of the entire student body. That said, given
the strong evidence that students confound variable and component in this study, greater
emphasis should be placed on distinguishing between component and variable. In fact,
it may need to be explicitly stated during instruction that the two objects are not inter-
changeable, despite similar names. The three students interviewed did not show evidence
of confounding magnitude and direction, although given the small sample size, magnitude
and direction should not be ruled out as a possible source of confusion.

Additionally, Alex, Bailey, and Cam appeared to struggle with the concept that the
components of a vector field are themselves functions of two variables. This is possibly
a cause of the confounding of variable and component, or possibly a result thereof, but
further shows that instructors may need to be more explicit about the relationship be-
tween a vector field and the independent variables. The students appeared to consciously
acknowledge that each component depended on both the x and y variables, but did not
know what to do with that knowledge when attempting to differentiate, and the students
gravitated toward only considering the x component of the vector field. Prompts from
the interviewer to the effect of “could you do [the same operation] to the y component?”
appeared to help the students recognize that the y component is an independent object
that can also be differentiated.

Both Alex and Cam had difficulties with the idea that a derivative can itself be a vector
with direction, despite acknowledging the existence of curl as an operation. Alex and Cam
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demonstrated that students may not consider the divergence and curl to be derivatives,
but rather “arrangements” of derivatives. This is likely a problem other students in vector
calculus have, and may be evidence that vector calculus classes do not explain what diver-
gence and curl are in a way that students retain. These students appear to understand that
divergence and curl show how the vector field is changing, but do not make the connection
between “description of change” and “derivative.” Placing emphasis not only on the fact
that the curl is a derivative, but also that the curl is a vector field itself may help students
with the unfamiliar idea that a derivative can itself be a vector.

Overall, the areas of confusion brought up in these studies show that students have
difficulty understanding what the components in a vector field are, and what the derivative
operations divergence, curl, and gradient do. Though further studies are needed to make
general conclusions, it would likely benefit students’ understanding if both mathematics
and physics classes placed strong emphasis on what a vector field is, rather than primarily
focusing on calculations on and applications of vector fields. Such an approach may alleviate
some of the confusion that these three students showed in their interviews, particularly the
difficulties with confounding variable and component.
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