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Abstract approved:

The compressive behavior of continuous fiber composites is not as well

understood as their tensile behavior because research and industrial applications have until

recently focused on the latter. Furthermore, most theoretical and experimental studies on

the compression of composites have examined the case of unidirectional specimens with

fibers along the loading direction (0° fibers). While this is a logical approach since it

isolates the failure mode specific to this geometry (kinking), the study of multidirectional

laminates is essential because these are used in all practical applications. Few theories

model the compressive behavior of multidirectional laminates. None of the theories

account for the stress field or the sequence and interaction of the various observed failure

modes (kinking, delamination, matrix failure) specific to the multidirectional configuration.

The principal objective of this investigation is to construct a realistic theory to

model the compressive behavior of multidirectional composites. Compression

experiments have repeatedly shown that the initial failure mode was in-plane kinking of 0°

fibers initiated at the edges of the specimens. We decided to base our compressive failure

theory upon interlaminar stresses because in multidirectional laminates these are known to

exist in a boundary layer along the edges. This required development of an analytical
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theory giving the amplitude of these stresses at the free edges. We then incorporated these 

stresses into a new general microbuckling equation for 0° fibers. The global laminate 

failure strain was determined through several fiber and matrix failure criteria. Theoretical 

predictions were compared with experimental results obtained from compression testing of 

graphite/thermoplastic laminates with the same ply sequence but different off-axis ply 

angles. The theory correlated well with experiments and confirmed that in-plane kinking 

was the critical failure mode at low and medium angles, while revealing that out-of-plane 

buckling was responsible for failure at high angles. Furthermore, the theory correctly 

predicted the sequence of various fiber and matrix failure modes. 
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Chapters. It does not apply to the literature review (Chapter 2), in which the original 

nomenclature from the various articles was kept. 

A00 Algebraic coefficients corresponding to ply (k) 

A(k), A(k) Algebraic coefficients corresponding to ply (k) and root (i) 

Af Fiber cross-section area 

B(k) Algebraic coefficients corresponding to ply (k) 

B(k), B; k) Algebraic coefficients corresponding to ply (k) and root (i) 

c Boundary condition coefficient for a beam varying from 1 (simply 
supported) to 4 (clamped) 

Coon- Correction coefficient (between 0 and 1) 

Cred Reduction coefficient (between 0 and 1) 

e Half thickness of the matrix layers between plies 

E Stiffness 

Ef Fiber stiffness 

Em Matrix stiffness 

Longitudinal stiffness of the (0/-0) beamEb 

Ei Ply longitudinal stiffness 

E2 Ply tranverse stiffness 

FacA;k) Algebraic factor corresponding to ply (k) and root (i) 

Fac13(,k) Algebraic factor corresponding to ply (k) and root (i) 

g Gage-length 



NOMENCLATURE (continued) 

G Ply shear stiffness 

Gm Matrix shear stiffness 

h Thickness of a single ply 

hk Thickness of ply (k) 

i Index for the number of roots p 

I Fiber moment of inertia 

Ib Moment of inertia of the (0/-0) beam 

k Index for the number of plies in the laminate 

L Specimen length 

m Distributed moment 

M Moment 

NINV) Algebraic coefficients corresponding to ply (k) and root (i) 

Unit vector normal to a surface 

N Half of the total number of plies in the laminate 

NN;k) Algebraic coefficients corresponding to ply (k) and root (i) 

p Distributed axial force 

Pk Boundary stress (normal) on ply (k) 

P Buckling load 

q, q' Distributed normal force 

Q Shear force 

Q(k) On-axis stiffness matrix for ply (k) 

0(k) Off-axis stiffness matrix for ply (k) 

r Root of the determinant matrix 

rf Fiber radius 



NOMENCLATURE (continued) 

RR(k) Algebraic coefficients corresponding to ply (k) 

SS(k) Algebraic coefficients corresponding to ply (k) 

t Specimen thickness 

tk Boundary stress (tangential) on ply (k) 

T Stress tensor 

u Applied displacementa 

uk Displacement in the x direction in ply number (k) 

v Amplitude of the buckling fiber in the y direction 

vk Displacement in the y direction in ply number (k) 

v0 Initial amplitude of the buckling fiber in the y direction 

V Maximum amplitude of the buckling fiber in the y direction 

VD Maximum initial amplitude of the buckling fiber in the y direction 

Vf Fiber volume fraction 

w Amplitude of the buckling fiber in the y direction 

w0 Initial amplitude of the buckling fiber in the y direction 

W Maximum amplitude of the buckling fiber in the y direction 

WD Maximum initial amplitude of the buckling fiber in the y direction 

Wi Specimen width 

x, y, z Cartesian coordinates 

Kink band boundary angle 

8 Bending amplitude of the (0/-0) beam 

Ex Strain in the x direction 

Ey Strain in the y direction 

Ef Fiber tensile strain 



NOMENCLATURE (continued) 

Fiber failure strain in tensionEtf 

Initial fiber misalignment angle 

cp Angle between the z direction and the direction of the unit normal ii 

Shear strain in the (x,y) planeYxy 

X	 Half wavelength of fiber microbuckling 

Half wavelength of fiber microbuckling (measured)X0 

Poisson's ratiosV12, V21 

0 Angle between the fibers and the loading direction 

Angle between the fibers and the loading direction in ply (k)ek 

p Root of the determinant matrix 

Pi Root number (i) of the determinant matrix 

a Compressive strength 

a Euler buckling strengthe 

af Tensile failure stress of the matrix 

ax Normal stress in the x direction 

a Normal stress in the y direction 

a Inter laminar normal stress 

Compressive stress in a 0° ply150°ply 

if Shear failure stress of the matrix 

xy Shear stress in the (x,y) plane 

Inter laminar shear stress in the (x,z) planezx
 

Inter laminar shear stress in the (y,z) plane

zY 

cu	 Slope of the deflected fiber axis 



Ce travail est dedie a mes parents, 
Jean et Catherine Berbinau 

... en memoire des longues heures 
passees a la table du salon... 



A Study of Compression Loading 
of Composite Laminates 

(1) INTRODUCTION 

1.1 Review 

Historically, as composite materials were being developed, and new fiber and 

matrices with improved mechanical properties were being used, the guiding principle was 

achieving better tensile properties for the overall laminate. Only fairly recently has 

attention broadened to include compression performance. It was found that compression 

strength of continuous fiber composites was clearly the limiting factor for failure [1], 

partly due to the fact that improvement in the tensile strength and modulus of the matrix 

were detrimental to the overall compressive strength of the composite [2]. Hence a 

thorough understanding of the compressive fracture process in multidirectional 

composites is essential for the prediction of the failure of these materials. Several 

investigators have studied experimentally the behavior of unidirectional, cross-ply and 

multidirectional composites in compression. For the high fiber volume fractions used in 

composites, kinking was found to be the universal failure mode [2-11]. But theoretical 

modeling of the compressive failure of composites has almost exclusively examined the 

case of unidirectional composites and, to our knowledge, only five attempts have been 

made to model the compression behavior of non-unidirectional composites: cross-ply 

composite [12], angle-ply composite [13], multidirectional composites [14-16]. 
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However, none of these theories takes into account the so-called free-edge stresses which 

exist at the edges of composite specimens. We contend that these stresses play a role in 

the in-plane kinking of 0° fibers since experiments show that in-plane kinking starts at the 

edges [9,17 -19]. Free-edge delamination has until now mostly examined the case of 

tensile loading but experiments on multidirectional composites indicate that interlaminar 

edge stresses play a role in compression failure by promoting delamination, as will be 

seen in the literature review section. 

1.2 Scope of this investigation 

It is our belief that a comprehensive understanding of the compression failure 

process hinges on a thorough modeling of the initiation of the failure modes arising during 

static compressive loading, namely kinking and free-edge delamination. To this end, we 

first developed a theory that predicts analytically interlaminar shear stresses tzx and tzy. 

Constructing an analytical theory for interlaminar stresses for any layup was a necessary 

step in order to create such a comprehensive model. We then incorporated these 

interlaminar shear stresses into an analytical model of the influence of the angle 0 of 

adjacent plies onto the kinking of fibers in the 0° plies. Our final prediction for the 

compressive failure of a multidirectional composite comes as a general microbuckling 

equation for the 0° fibers that includes interlaminar stresses. Indeed, in line with main 

stream thinking among researchers, kinking is considered as an immediate outcome of 

microbuckling. While our theory is only valid in the case of symmetric composites, since 

it does not take into account warping effects, this is hardly a restriction because 

unsymmetric laminates are rarely used, and only for very specific applications. Derivation 

of the above theory is undertaken in Chapter 3, after a comprehensive literature review 

covering the various aspects of compression failure of composites in Chapter 2. To check 
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our predictions, and especially the influence of the supporting plies angle 0 on the 

microbuckling strain, we performed experiments on a carbon/thermoplastic composite 

with the generic layup [0/-0/02/0/-0/0]s with 0 varying between 10° and 90°. The fibers 

were AS4 carbon fibers, and the matrix a polyphenylene sulfide (PPS). To study the 

propensity for out-of-plane microbuckling, we performed additional experiments on 

specimens made up of a single 0° ply embedded in a thermoplastic. The test methodology 

and experimental setup are described in Chapter 4. Experimental results are then 

presented in Chapter 5. In Chapter 6 we compare our theoretical predictions for the above 

layup to the results from the experiments conducted in Chapter 4. Results from tests on 

the single embedded 0° ply are also discussed in the light of the study of the [0/-0/02/0/ 

0/0]s laminate. In Chapter 7 we summarize and conclude this work, and we give 

recommendations for further studies based on the present work. 
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( 2 ) LITERATURE REVIEW 

2.1 Overview 

Experiments on compression of unidirectional composites show that failure takes 

place by the creation of a kink band [2-11], while for multidirectional composites, it is the 

initial failure mode [17-19]. This kink band is oriented at an angle 13 which for carbon 

fibers reinforced plastics takes the following values: 3 = 15° [2,3,11], p = 10°-30° [4], 

[5-8,17], R = 20°-30° [10]. Figure 1 shows the geometry and kinematics of an in-plane 

kink band. The fibers in the kink band make an angle a with their initial direction. 

Experiments consistently showed a - 213. The kink band width is W. In the case of an 

out-of-plane kink, the global movement of the fibers is perpendicular to the ply plane. 

The difference between in-plane and out-of-plane kinking of a 0° ply is illustrated in 

Figure 2. While there is no full consensus among researchers about the exact mechanism 

leading to the formation of a kink band [20,21], it is acknowledged that kinking is 

eventually the end-result of microbuckling of 0° fibers and their subsequent failure in 

bending accompanied by large plastic rotation of the matrix. In view of experimental 

observations, theories for fiber microbuckling on foundation favor a gradual amplitude 

increase of initially wavy fibers versus an instability bifurcation of straight fibers. Indeed, 

an initial angle of axial fibers around 2°-3° is typical of hand-laid composite specimens 

[22], and gives a good agreement between the theoretical and experimental failure stresses 

for unidirectional composites [6,19]. This justifies the modeling of fiber alignment 

imperfections by the use of a microbuckling theory with fibers that are initially wavy in 
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INITIAL POSITION
 

Figure 1. In-plane kink band formation 

the ply plane. This will also be the approach used in this work. It is useful at this stage to 

review the existing theories for compression failure of composites. The three main 

categories of composite layups (unidirectional, cross-ply, and multidirectional) will be 

covered, and a separate section will be dedicated to the phenomenon of free-edge 

delamination. 
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Figure 2. Comparison between in-plane kink and out-of-plane kink 

2.2 0° specimens 

Theoretical models for predicting failure loads are almost all for 0° specimens. 

They may be classified into two groups: microbuckling theories, which consider the 

microbuckling of a fiber on foundation with a fiber bending failure criterion, and kinking 

theories, which assume a-priori the existence of a kink band, and then study its stability. 

These various theories predict some or all of the following quantities: the applied stress ac 

or displacement Lic that triggers microbuckling/kinking, the kink band angle 13, and the 

kink band width W. 

2.2.1 Existing microbuckling theories: 

The referenced theories are based on the microbuckling of a fiber on foundation 

(i.e. surrounded by a continuum), with various assumptions regarding the loading. For 
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reference purposes we show in Figure 3 the most general case of such microbuckling. 

When necessary we have changed the notation of the original article so that it corresponds 

to the one on Figure 3. P is the buckling load, p is the distributed axial load, q is the 

distributed transverse load, and m is the distributed couple. Q and M are respectively the 

shear force and moment induced in the fiber. The quantities u and v refer to displacements 

in the x and y directions respectively. 

Figure 3. Fiber equilibrium 

Rosen [23] was the first to investigate the microbuckling of fibers in composites. 

Using an energy method, he found the compressive stress ac for the shear mode (see 

Figure 10, Chapter 3) as: 

Gma = 
1 Vf 

where Vf is the fiber volume fraction and Gm is the matrix shear modulus. Microbuckling 

was elastic and the fibers were initially straight. The problem with this model is that it 

over predicts the compressive stress, and it contradicts experiments that show that the 

compressive stress is proportional to the fiber volume fraction [24, 25]. In addition, it 
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predicts a compressive stress independent of the fiber stiffness, contrary to experiments 

[26]. 

Hermann et al [27] considered the case p=0 (see Figure 3) and derived 

expressions for q and m from the elasticity solution of a foundation subjected to loads 

applied at the surface of a cylindrical cavity. Expressions for q and m depended on the 

buckling wavelength. The simplified case of m=0 was also considered. 

Darby and Kanellopoulos [28] considered the buckling of a circular fiber with 

m=p=0 and q = q'v. It gave the same result as [29] for the buckling load: 

PC = 2VEfIq' 

or equivalently for the critical stress: 

sac = A/Efq7.7c 

where q' is related to the matrix stiffness. Alternatively, by assuming that the deformation 

of the foundation is of exponential decay type, and by minimizing the total elastic strain 

energy, they obtained another expression for the critical stress (Em is the matrix modulus): 

ac = VEdic 4[Enpm /2]4 

thus finding q'. The predicted critical stress was however higher than the Rosen 

compressive stress in shear mode [23]. 

http:A/Efq7.7c
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Lagoudas, Saleh and Tadsbakhsh [30-32] chose to model the composite as an 

inhomogeneous material by expressing mechanical properties as spatial Fourier series, 

and considering nonlinear strain measures. Solving equations up to the second order and 

assuming initial fiber waviness of varying wavelength lead them to a range of predictions 

for the compressive strength. The upper bound (straight initial fibers) is Rosen's model, 

and the lower bound (fibers with zero initial wavelength) is: 

sin(TEV f)r
[cos(iV f) Vcos2(TcVf) + 81 

G 27EN/f 
when Em << Efac = 1 Vf sin(icV f)[2 sin(nV f)]

1+ cos(7cV f) 4 
2nVf nVf 

The lower bound was close to experimental values for a boron/epoxy composite. 

Taggart [29] considered the buckling of a single fiber on foundation with p=m=0. 

He obtained the buckling load: 

Pc = 211EflEs 

where L is the fiber length, Ef is the fiber stiffness, Es is the stiffness of the surrounding 

material, and I is the moment of inertia. His FEA (Finite Elements Analysis) results 

showed that considering the foundation as orthotropic homogeneous with the effective 

properties of the composite gave a compressive strain an order of magnitude higher than 

experiments (made on glass/epoxy composite). Stress strain curves for various composite 

systems are all nonlinear. FEA also showed that matrix foundation support was less at 

free edges, not surprisingly. 
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Hahn and Williams [6] modeled microbuckling as a fiber on foundation submitted 

to a couple stress m, a distributed shear force p, and a distributed normal force q. For a 

single fiber in an infinite matrix (low fiber volume content), m=p=0 and q=Kv with K 

proportional to Em. This gave a buckling load: 

PC = 2VICEfI 

and a half buckling wavelength X: 

= n(-E Iy
1 

K
. 

For higher volume fractions where fibers buckle in-phase, they chose p=q=0 with m due 

to the shearing of the matrix. Considering the equilibrium of a rectangular fiber with the 

surrounding matrix gave m = hf tur and the same buckling stress as Rosen [23].
Vf 

Considering the equilibrium of a single circular fiber with an initial amplitude f0 gave 

m = Af 'tLT and q=Kv. They obtained then the buckling stress: 

2 oK X 2 f
Gc = V f [GLT ± EI ( TIC ) ++) 1(1-7)

A &

Minimizing with respect to X gave: 

Gm
a, = Vf [GLT ± 

2 VEIK1(1 Dt. ) and ac = Vf 
A f 1 Vf 

with no initial deflection, in better agreement with [24] and [25]. 
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Hahn [33] extended the microbuckling analysis of [6] to the final fracture of the 

fiber. The matrix was considered perfectly plastic, and failure was assumed to happen in 

3 stages: 1- Fibers elastic microbuckling, 2- Matrix plastic yielding, 3- Fibers breaking. 

Because fibers buckle in phase, it assumes p=q=0 and m=-Aty. The fiber breaking 

occurred at the location of maximum fiber curvature. This allowed a prediction for the 

kink width W as the distance between two maximum curvature points: 

Ef I 
W = IC 

crfA 

This expression is in agreement with experimental data. The kink angle a could also be 

calculated, as equal to the maximum slope at the time of fiber fracture. It was however 

less than experimentally observed kink angles, which suggests that further fiber rotation 

occurs after fiber breaking, since predictions were made for the onset of fiber breaking. 

Steif [34] considers the buckling of fibers in the shear mode, and thus takes 

p=q=0, and m=at due to shear stresses ti from the matrix at the fiber interface, where a is 

the fiber thickness. The main feature of this article is to take into account the weakness of 

the interface by requiring that ti be less than the interface shear strength 're. It thus can 

consider slipped and unslipped portions of the interface and their relative influence on the 

buckling load. A weak interface is found to give failure strains lower than the classical 

microbuckling strains. 

Waas, Babcock and Knauss [35] studied the microbuckling of a fiber at a free 

edge. They first consider a single fiber bonded to a half-plane matrix foundation. Hence 

they took p#0, q#0, m.p(h/2) where h is the fiber thickness. They found p and q from 

the elastic solution for the matrix, and then applied boundary conditions at the fiber/matrix 
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interface. They finally obtained the buckling strain and wavelength as the minimum of the 

strain with respect to the wavelength. They then studied the case where the matrix 

foundation is replaced by a composite. The predicted buckling strain remained higher 

than the shear mode from Rosen [23], while experimental buckling strain are lower. 

However, for low fiber volume fraction, the decay mode was preferred and a short 

wavelength predicted. 

Steif [36] considered the buckling of a fiber of radius r with p=q=0 and m=42T 

due to a shear couple around the fiber. Taking the load P as along x gave Q=-Psin(0), 

and the following equilibrium equation in 0, angle of the fiber with the loading axis: 

dM 
sin(0) 4r2T = 0 

ds + P 

This is the nonlinear equivalent of the buckling equation in [34]. The constitutive 

relations were: 

dO GO)M = EI and = 'Cc tank 
ds 

where G is the shear modulus of the elastic perfectly plastic composite with yielding at 'cc. 

The nonlinear constitutive equation was solved numerically. Failure was found to occur 

when the critical tensile strain of the fiber was reached. If a fiber offset of r was assumed, 

it was found that if one equates the half wavelength of the initial imperfection to the 

observed kink width, then the theoretical fiber-breaking strain agreed with the observed 

failure strain. This indicates that fiber breaking is a critical step in the formation of the 

kink band. The second part of [36] dealt with the kink formation. The first condition for 

the kink formation is the kink equilibrium. This equilibrium equation is the same equation 
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as the kink equilibrium equation in [4]. The second condition states that the energy of the 

kink configuration is less than the energy of the unkinked one. Plastic shearing in the kink 

was taken into account. This analysis predicted that a was slightly more than 13. 

Frost [37] used nonlinear strains and an energy method to find the buckling stress 

for fibers with initial curvature, along with a matrix shear strength failure criterion. The 

buckling equation was solved numerically. Nonlinear effects were significant only at short 

initial wavelengths. 

Lo and Shim [26] predicted the compressive strength ac using the Timoshenko 

beam theory, thus taking into account shear effects. They used an energy method with 

p=q=m=0, and included the shear correction factor k'. The reference volume was a 

portion of buckled fibers of length 1. Minimization of the total potential energy lead to the 

following expression for CYc: 

k'Gi2 
ac = 

1 )VAG12)
l + 1 )

ocic) EIII 

where G12 was the composite shear modulus, E11 the composite longitudinal modulus, 

a a coefficient that allows for the boundary conditions on the portion of the fiber in the 

reference volume. For a rectangular reference volume element of length L, width w and 

thickness h, k'=2/3 and the authors obtained: 

G12 
= 

6c 3+121 L 1 
2 ouch ) En 
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The only unknown was the ratio (L/ah). It should be determined from experiments, and 

must be independent of the materials. A ratio of 6 was arbitrarily chosen. It gave results 

below Rosen's [23], and agreed very well with experiments. When fiber misalignment is 

taken into account in E11, the compressive strength also agrees with experiments. 

Wilczynski [38] modeled the microbuckling of a single fiber on foundation 

submitted to a distributed normal force q=Kv. This gave a buckling load: 

PC = 2VI(Ef I 

By modeling elastic deformation of the matrix due to the fiber movement, he found: 

87t 1 v E.K = E. for plane stress, and: K = 8n for plane strain.
(l+v)

2 

1 +v 

This gave the fiber buckling stress: 

1 v Ef 
= 8E,Efa( where Efa = 

1 +v 1+ 8(a/d 

is the apparent modulus of the buckled fiber, ai its initial amplitude and d its diameter. 

Xu and Reifsnider [39] modeled the microbuckling of a single square fiber of side 

b on foundation submitted to a distributed normal force q=Kv, and a couple m due to 

shear forces t: m = Tb2. This gave a buckling load: 

Pc = 2A/KEJ + Gmb2 
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and a half buckling wavelength: 

E I y
1 

= ic(--L-­
K 

which is the same as in [6]. The coefficient K was found by calculating the elastic 

stresses in the composite in the transverse direction under a transverse sinusoidal 

displacement (due to the bending of the fibers). This gave: 

2nET 

1+ Vur 

and ultimately the fiber buckling stress: 

2n ETEf + G 
3 1+ vur m 

Chung and Weitsmann [24,40] modeled the microbuckling of a representative 

volume of width (2c) made of a fiber and the matrix between fibers (layered medium) 

[24]. Fibers had initial waviness and deformed in the shear mode. The normal force 

q=q(x,c) was due to the matrix and the distributed moment m=-2ctm due to the shear 

stress 'cm in the matrix. They obtained Rosen's result when the matrix was linear in 

shear. When the matrix was bilinear in shear, the critical load was found numerically. In 

[40] the theory was extended to the case of a Timoshenko beam instead of a Euler beam. 

The Timoshenko beam includes shear deformations of the fiber 1=v xv, where y is the 

independent cross-section rotation (for a Euler beam 1 =0) and v, is the derivative of v 

with respect to x. The coupled nonlinear differential equations in w and v were solved 
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numerically. Numerical results showed that yf becomes discontinuous at some points 

along the fiber past the buckling load. This approach had therefore the capability to model 

kink formation. 

Haber le and Matthews [41] considered the microbuckling of plies with initial 

waviness f0 with p=q=0 and m=2AyT where (Ay) is the width of a fiber and the 

surrounding nonlinear matrix. This gave an equation similar to [6] for the buckling stress 

but without the Vf coefficient and with K =O: 

r
6c [GLT + EATtl 11z 1(1--1'if 

Neglecting the bending term and the initial waviness, 

yG LT 

Y 00 

where y is the shear strain and :1:0 the maximum initial fiber angle. This is the Budiansky 

result [47] if 'y is the shear yield strain. If f0 = 0, we get Rosen's result [23]. 

Zhang and Latour [42] studied the microbuckling of two fibers of radius r in a 

matrix with p=0, q=2ay, and m=2rcxy. The stresses ay and were found by solving 

the problem of an elastic matrix between two fibers. The new aspect of this work was to 

allow for different deformation amplitudes of the two fibers: A and (kA) with -1 k 

1. The compressive stress ac was an involved expression of the buckling wavelength a 

and was minimized with respect to a. It is interesting to note that the compressive stress 

decreased from k=-1 (extension mode) to k=1 (shear mode), thus predicting that the shear 

mode is preferred. This is consistent with kink band failure. Results also showed that the 
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microbuckling half-wavelength was infinite when k=1 (as in Rosen analysis [23]), but 

decreased very fast to the experimentally observed kink band widths at k=0.999. This is 

consistent with kink band formation since in a real composite, we will never have k=1, 

due to nonuniform fiber distribution and edge effects. A finite element analysis was also 

performed on two fibers, and gave similar results. These results were consistent with [6], 

at least for low fiber volume fractions. 

Effendi, Barrau and Guedra [10] modeled the microbuckling of a rectangular fiber 

of height hf on foundation. Experiments showed that the compressive stress-strain curves 

were elastic nonlinear almost up to failure. They also showed that the width of the kink 

band that ultimately formed was half the buckling wavelength. The microbuckling was 

modeled with m = tLT hf /Vf 1LT = (v vo), G./(1 Vf), p = 0, and q = k(v­

v0), where v and v0 are the final and initial deflections of amplitudes f and f0 

respectively. The critical stress was given by letting f go to infinity: 

G'" V ( )2 V ( )2
= + EIf­

1- Vf hf hf n1 

If one neglects the second and third terms, Rosen's results [23] are obtained. 

Sadowsky, Pu and Hussain [43] considered the microbuckling of a single fiber in 

a 3-D matrix. The approach was thus similar to [27], but more general since p, q, and m 

were all non-zero. Displacements were assumed continuous at the fiber/matrix interface. 

Eventually p, q, and m were connected to the elasticity solution (expressed in terms of 

Bessel functions) and the buckling equation was solved to come up with an expression for 

the buckling load. No comparison was made with experiments. 
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Davis [44] considered the microbuckling of fibers in the shear mode. He assumed 

that the fibers had an initial deflection and modeled the composite as a Timoshenko beam 

made up of alternating fiber and matrix layers. Since nonlinear behavior of the layers was 

considered, equations were solved incrementally. They allow the calculation of in-plane 

shear stresses in between fibers (which lead to delamination), as well as the critical 

buckling load for shear instability. Predictions agreed with experiments on boron/epoxy 

tubes. 

Karayaka and Setihoglu [45] found experimentally that for unidirectional 

composites, a more ductile matrix favors failure by kinking. This is in agreement with 

common belief that the matrix plays a central role in the kinking process owing to the large 

fiber rotation. 

Mueller et al. [46] made an interesting investigation of the influence of the relative 

position of fibers on the compression mode by studying the compression of two model 

polyamide fibers embedded in a transparent silicone matrix. They found that co-operative 

(in the same plane) microbuckling in the shear mode occurred below a certain distance 

(equal in this case to 10 fiber diameters), thus confirming the essential role played by fiber 

stress field interactions. 

2.2.2 Existing kinking theories: 

Budiansky [47] modeled the formation of a kink band using a plastic 

microbuckling theory (elastic perfectly plastic body) with no fiber bending. He obtained 

the compressive stress: 
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k* 
with k* = k1Jl + (6T /k)2 tan2 (13) 

where k is the composite shear yield strength, GT is the tensile transverse composite 

yield strength, yy is the composite shear yield strain, and 00 is the initial fiber 

misalignment angle. is the kink band angle. However k* is minimum (and then equal 

to k) for p=0, which is not the experimentally observed kink band angle. Then, when 

taking into account the elastic inextensible deformation of a fiber, he obtained the 

following partial differential equation for the transverse displacements v: 

(G 0)v, + ETv,yy = avo,x 

where G is the composite shear modulus and v0 the initial imperfection. Considering the 

extreme cases of a short-wave and a long-wave imperfection along the edge of a half-

plane, the direction of maximum curvature gives in each case the angle 13. The domain of 

13 thus obtained was: 

G (1 ac
(1 tani3 < 

ET G E G )ET 

This gave 12° 27° for ET=2G and 15° 35° for ET=4G. All observed
 

experimental values for 13 fell within this range.
 

Budiansky then predicted the kink band width W (see also Soutis [2]) using a couple
 

stress theory. The relation giving W was:
 

f y+Ef()2 (df) 2k (4y -0 
LW) Lir) LW) VfEf LIc) 
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where Ef is the strain to failure, df is the fiber diameter and Ef is the fiber modulus. For 

perfectly brittle fibers he obtained: 

W IC (VfEf 1113 

df 4 2k ) 

This gave typical value for W on the order of (10df), in agreement with experimental 

values. 

Fleck and Budiansky [4] first derived equilibrium equations for a kink band in 

order to calculate the shear strain-kink angle relationship, and the buckling load in the case 

of elastic microbuckling. The predicted kink boundary angle, 13, was still 0°, in 

disagreement with experimental observations. This ruled out elastic microbuckling in 

favor of irreversible plastic microbuckling[20]. An elastic perfectly plastic matrix was 

then assumed. The buckling load was found using an arbitrary quadratic yield criterion, 

and the equation for the buckling stress derived in [47] was obtained. An energy balance 

was then used to model the steady-state propagation of the existing kink band. The energy 

balance contained a toughness term representing the energy dissipated in delamination 

with off-axis plies. It predicted a kink band angle 13 in the range 45°-75°, much larger 

than the 10°-30° experimental values. Fiber bending was not included in the theory, so 

the kink band width W could not be predicted. 

Budiansky and Fleck [48] extended the analysis of [4] by considering an elastic-

plastic matrix with strain hardening. A scheme similar to [4] (equilibrium of the kink 

band and quadratic yield criterion) was used, combined with the deformation theory of 

plasticity, a plastic strain hardening law, and the Ramberg-Osgood relation. They found 

that strain-hardening hardly modified the value of the kinking stress compared to perfect 



21 

plasticity. Fiber bending was still not included in the theory. Neglecting fiber 

extensibility in the theory had little effect upon the kinking response. 

Slaughter and Fleck [49] improved the analysis of [48] thanks to the use of a 

couple stress model, which takes into account fiber bending stiffness. Their theory uses 

kinematics closely related to those in [50]. Couple stresses (distributed moments m in the 

fiber due to bending stiffness) appeared in the equilibrium relations. Assuming that the 

fibers were linear elastic inextensible circular beams, they obtained a linear constitutive 

law linking m and 4 The other constitutive equation linked the effective shear stress 

and strain through a Ramberg-Osgood relation that also contained the composite shear 

yield stress and strain. The same quadratic yield criterion and effective stress as in [48] 

were used. These equations lead to a second-order nonlinear differential equation for 4) 

with the applied compressive stress as a parameter. The maximum value of the stress 

when 4) varies was interpreted as the microbuckling stress. They found values 10% to 

50% higher than the kinking stress (where fiber bending stiffness is neglected). 

Fleck, Deng and Budiansky [51] extended the analysis of [49] with the aim to 

predict the kink band width by taking into account the fiber bending stiffness through the 

couple stress theory. They obtained the same differential equation in 4) as in [49] and 

solved it numerically. The fiber fracture criterion was then formulated assuming that 

fibers on the kink band boundaries fail in bending. The kink band width W was given 

by the fiber fracture criteria and calculated numerically by iteration. The amplitude or the 

wavelength of the initial imperfection had little influence on W, but the fiber bending 

resistance had a significant influence. Prediction of W was between 10 and 15 fiber 

diameters, in agreement with experimental values [20]. 
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Fleck and Shu [52] extended the analysis done in [51] by considering kinks of 

finite length. They did so within the framework of a polar theory (Cosserat theory) which 

allowed for the modeling of a kink band microrotation. A FEA code based on this theory 

was developed. The theory yields values for the predicted strength between those of 

Rosen [23] and Fleck, Deng and Budiansky [51]. 

Slaughter and Fleck [53] extended the analysis of [48] to the case of a viscoelastic 

matrix. The matrix outside the kink band behaved elastically. Both the standard linear 

viscoelastic case and the logarithmically creeping cases were considered. Depending on 

the ratio of the composite shear modulus to the shear viscosity, it was found that 

viscoelastic microbuckling may occur before or after plastic microbuckling. 

Moran and Shih [8], Liu and Shih [54], and Moran, Liu and Shih [55] used a 

video coupled to a microscope to film the initiation and propagation of a kink band in a 

notched unidirectional graphite/thermoplastic composite. Only in-plane deformation 

occurred because the specimen was fully clamped between two plates, one of which had a 

transparent window for the video. This approach allowed them to observe in real time the 

formation process of a kink. They observed that the kink first formed by instability, with 

fiber rotation and plastic shearing of the matrix (incipient kinking). The kink then 

propagated while fibers in the kink kept on rotating. At large matrix shear strains, the 

fibers locked-up at a given angle, allegedly due to stiffening of the matrix. Further 

compression of the specimen occurred then by steady broadening of the kink band, as the 

bends in the fibers moved away from each other. This band broadening was believed to 

be the most energy favorable deformation mode at this stage. The final band width was 

set when the fibers snapped. Energy balance during steady state band broadening lead to 

the following relation between the applied stress a and the kink band angle 0: 
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= 1 by (2 tan (3 -Y-L) + 102 tan 13 ys )2]
2 sin (3 2 2 

The shape of the shear stress-strain relation was based on PEEK data which is linear from 

zero to Ty with slope G, constant up to ys, and linear beyond ys with slope Gs. 

Minimizing a with respect to 13 gave 13 and a. The theory predicted a kink band boundary 

angle 13 between 18° and 24° in agreement with experiments. Using 13 in the equation 

above gives the kink band broadening stress a. Assuming that initial kinking occurred 

when the resolved shear stress in the fiber direction reached the composite shear yield 

stress lead to the same equation as [47] for the kinking stress. 

Kyriakides et al. [56] studied kinking in graphite/thermoplastic composite tubes. 

Failure was catastrophic, with the formation of multiple kink bands at 13 around 15°. A 

FEA modeling of a composite was done assuming initial fiber imperfections and using the 

deformation theory of plasticity. It showed rotation and broadening of the kink band, this 

being defined as the region between points of maximum curvature. The FEA study was 

therefore in agreement with results of [8,54,55] and supported the hypothesis that kinking 

is ultimately a localization process initiated by microbuckling instability. FEA predictions 

for the compressive stress were in agreement with experiments, but predictions for r3 were 

lower than experimental results. 

Shapery [50] chose to model a single composite ply using damage mechanics. He 

introduced an internal state variable (ISV) S, defined as the tangent area under the ply 

stress-strain curve. Nonlinearity of the matrix was included in the model. One empirical 

relation linking two material coefficients was used. Equilibrium equations for the kink 

band were then expressed using large strain kinematics of wavy fibers. The waviness 

was due either to initial misalignment or to microbuckling. Boundary conditions were 
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formulated and equations solved numerically. He concluded that owing to kinked fibers 

inducing rotation of fibers at the tip of the kink band, the kink propagation stress was 

lower than the kink initiation stress. A kink boundary angle 3 of 17° was predicted using 

the criterion of maximum shear strain in the kink band. His calculations showed that kink 

bands would form less easily at free surfaces because local stresses (along wavy fibers) 

were lower at free surfaces, hence 13 higher, and the fiber fracture stress also higher. This 

was, however, in contradiction with the experimental fact that fiber fractures initiate at free 

edges. 

The damage mechanics approach was also used by Barbero and Tomblin [57]. 

The shear response of the composite (obtained from torsion experiments on glass fiber 

reinforced rods) was modeled by a hyperbolic tangent. This, and an adequate 

representative volume element, served as the basis for the derivation of an imperfection 

sensitivity curve that linked buckling stress and initial fiber misalignment. This analytical 

relation was obtained from the principle of total potential energy. Fiber misalignments 

were observed experimentally and fitted with a Gaussian distribution, and the damage 

variable was defined as the area of buckled fibers at a given load level. There was 

reasonably good agreement between theoretical predictions and test data. 

Lankford [21] claimed that the fiber-matrix interface plays a key role in kinking 

initiation. Indeed, experiments by Madhukar and Drzal [58] had shown that the 

compressive stress increased with interface strength, and surmised that experimentally 

observed broomed fracture surfaces was a sign of extensive fiber matrix debonding. 

Lankford then concluded that debonding had to occur before buckling instability, 

otherwise the fiber-matrix interface would have no influence upon kinking. He then 

asserted that debonding was due to fiber fracture in bending, since acoustic emission 

started well before catastrophic failure, thus indicating that fiber fractures had occurred. 
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This pre-kinking fiber fracture hypothesis was also supported by SEM pictures showing 

fibers breaking ahead of kink tips. This theory contradicts plastic buckling as preceding 

kink formation. It also suggests that the kink propagates like a crack and that the crack-

bridging model developed by Sutcliffe and Fleck [59] was relevant. 

Chaudhuri, Xie and Garala [60] investigated kink propagation in a different way. 

They modeled kink instability by considering in a classical fracture mechanics framework 

the propagation of the tip of a fiber wedge into a matrix medium. The wedge angle was 

therefore the kink orientation angle, a. 

2.3 Cross-ply specimens 

Kominar et al. [61] performed experiments on unidirectional and cross-ply 

(0/90)8s carbon/thermoplastic composites to investigate the occurrence of in-plane and 

out-of-plane kinking. Microscopic examination revealed out-of-plane kinking of the 0° 

plies in cross-ply laminates. Failure by out-of-plane kinking was most likely favored by 

the location of 0° plies as surface plies. Fiber fracture by bending was clearly displayed, 

as in [2]. Failure of the 0° plies in the cross-ply laminate occurred at higher ply 

compression stress than in the unidirectional composite, indicating support of the 0° plies 

by the 90° plies. 

Tadjbakhsh and Wang [12] modeled each lamina in the cross-ply composite as 

alternating layers of fibers and matrix, each fiber being a rectangular strip of the same 

width as the ply and of the same area as the total fibers area in the ply. Within each ply, 

the stiffness variation between fibers and matrix was modeled by Fourier series with a 

half-wavelength equal to the distance between fibers. Their approach was thus similar to 
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[32]. The variations of the stiffness through the thickness were modeled by Fourier series 

with a half-wavelength equal to the ply thickness. The composite was subjected to a 

biaxial compression. 

Even though it deals with a tube and not a plate, the work of Chaudhuri [62] has 

its place in our review of the kinking process. He studied the compressive failure of 

cross-ply thick section tubes with N axial (0°) plies and one transversal (90°) ply, both 

experimentally and analytically. Initial out-of-plane imperfections in the 0° ply were 

assumed. The main interest of this work lies in its improvement of the analysis of [47]. 

By using the same partial differential equation for the elastic inextensible deformation of a 

fiber but by considering a half-sine imperfection (which models a kink band), Chaudhuri 

obtained a relation between 13 and the critical compressive stress ac. By combining this 

relation with a minimum energy principle (giving 6c), he derived the following expression 

for 0, where yfu is the ultimate shear strain of a fiber and 00 the initial misalignment angle: 

G (tan p = Osc, 

ET (1)0 ± Yfu'\ 

For (1)0 on the order of 2°-3°, the above relation gave 13 = 30°±2°, in agreement with 

experimental data. 

2.4 Multidirectional specimens 

Previous experiments show that the topology of fracture surfaces is complex [2], 

[63] and obviously involves several failure mechanisms. A review of articles on 

compression fracture is surveyed below. While the present work deals only with static 

fracture, we have also included in this section a review of the few existing studies on 
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compression fatigue. The sequence of failure mechanisms is likely to be different for 

static loading and fatigue, especially due to the different response of the matrix, but it 

appeared relevant to cover here the fatigue of multidirectional specimens because the 

present work could serve as the basis for a theory of fatigue failure. 

2.4.1 Static loading 

Hong and Kim performed experiments and FEA studies on multidirectional 

laminates without [64] and with [65] 0° plies. They concluded that the shear components 

of interlaminar stresses played a prominent role in the delamination process. 

Soutis et al. [66] and Soutis and Fleck [67] performed experiments on 

unidirectional and [(±45/02)3]s graphite/epoxy composites with a central hole. The stress-

strain curves exhibited nonlinearity. Scanning electron microscope pictures clearly 

showed that the initial failure mode was fibers microbuckling at the edge of the hole, as in 

[9,18], followed by delamination. Because of the stress gradient (due to the presence of 

the hole), the kink propagated initially in a stable manner. The kink propagation was 

modeled in the framework of fracture mechanics (see also [59]). The strain to failure for 

0° specimens and quasi-isotropic specimens was found to be the same, which suggested 

that the mechanism of failure in axial plies was not affected by neighboring plies. Other 

experiments however revealed a difference [14,17,18]. 

Sohi, Hahn and Williams [17] obtained higher failure strains for quasi-isotropic 

composites [45/0/-45/90]3s than for unidirectional composites. They surmised that this 

was due to a better lateral support of the 0° plies by the off-axis plies. Experiments 

indicated that in-plane kinking in 0° plies occurs first, as in [19]. In some instances, 
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several kinks occurred simultaneously. They suggested that delamination occurred then 

due to the movement of the 0° plies during kinking and their subsequent failure, which 

reduced their support to neighboring plies. Compressive stress-strain curves were elastic 

nonlinear, as in [10]. Compressive strength was found to increase with matrix modulus. 

Swanson [14] proposed a theory for microbuckling in multidirectional laminates 

taking into account the interlaminar stresses due to neighboring plies. An initial fiber 

waviness v0 was assumed. The in-plane microbuckling induced an in-plane shear txy 

which results in a distributed moment m on the fibers. The interlaminar shear resultedyz 

in a distributed normal force q = A.Tyzz where A is the fiber area, eryzz is the derivative 

of yz with respect to z, and where GyZ has been linearized with respect to z. The variation 

of yz with z was found by minimizing the total strain energy. The beam equilibrium 

equation for the fiber was then: 

EId2(v vo)+q+ dm +P d2v 
= 0 

dx2 ds dx 

Ultimately, Swanson obtained a relation between the axial compressive force P and the 

amplitude v of the in-plane displacement. A failure criterion, either the bending of the 

fibers or the shear of the matrix then gave the critical failure load. However this model 

allowed for the effect of angled-plies on in-plane kinking only in a global manner through 

the extension stiffness matrix. In addition, edge-effects were not incorporated in the 

model. Tests were performed on tubular specimens. The compressive strain was found to 

be higher for multidirectional specimens than for unidirectional specimens, in agreement 

with the theory. Delamination failure was not included in the failure criteria. 
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Waas et al. [9] did an experimental study of multidirectional specimens with a hole 

in compression. In-plane kinking of 0° plies was the initial failure mode and occurred at 

the hole surface. Real time photography showed that once kinking has occurred, it 

triggered delamination in neighboring plies when the load was increased. In specimens 

with a proportion of 0° plies 40% or higher, the final failure load was about 5% higher 

than the microbuckling initiation load. This finding was in agreement with [18]. 

Guynn, Bradley and Ochoa [18] did an experimental study of the influence of 

neighboring plies on the microbuckling of 0° plies. Specimens with two circular notches 

on the sides and layups [(±0/02)3/±0/0]s with 0 = 15°, 45°, 75°, or 90° were tested. In 

order to investigate the influence of the free surface on the microbuckling of the 0° plies, 

the layup [(02/±45°)310/±451, where 0° and 45° plies have been inverted, was also tested. 

Results show that the microbuckling strain £ as a function of 0 is, from lowest to highest: 

E(15°), £(90 °), E(75°), and E(45°). The least support was therefore provided by the 15° 

plies, and the most support by the 45° plies. Results also showed a 10% decrease in £ 

when the 0° are shifted from an interior to a surface position. When the global strain 

concentration factors were taken into account in order to allow for the influence of the 

notch, microbuckling strains all became of the same range. 

Shuart [15] proposed a theory to predict the compressive stress of multidirectional 

and angle-ply laminates based on the out-of-plane buckling of plies of various orientations 

in a laminate. He modeled a ply of arbitrary orientation as a central fiber-plate surrounded 

by two matrix-foundations whose respective thicknesses match the actual fiber and matrix 

volume fractions. The fiber-plate obeyed the Kirchoff plate assumptions, i.e. the 

transverse normal strains Ez, transverse shear strains ix, and ix, and the transverse normal 

stresses az were neglected. The matrix-foundations were linear elastic and carried the 

interlaminar strains. The total potential energy for a ply was minimized to obtain the ply 
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equations. These equations were then solved numerically in two cases: linear analysis (no 

initial waviness of the fiber-plates) and nonlinear analysis (initial waviness of the fiber-

plates and non-linear strain measures). Several failure criteria were then applied to predict 

laminate failure: interlaminar failure of the matrix, and matrix shearing between fibers 

within a ply. Inter laminar failure was found to occur in angle-ply laminates [+0/-0]ns for 

fiber angles 0 below 15°. 

Shuart [13] extended the study of angle-ply laminates done in [15] by including a 

third failure mode, matrix compression, which would be relevant at fiber angles 0 above 

75°. Predictions for the compressive stress over the whole range of 0 were in agreement 

with experiments on [+0/-0]ns laminates. 

Drapier et al. [16] proposed a global approach in an attempt to model the 

deformation-structure coupling by taking into account the loading induced boundary 

conditions and the stacking sequence. Plies were oriented at either 0°, 90°, or ±45°. 

2.4.2 Fatigue loading 

Harris and Morris [68] tested quasi-isotropic notched and unnotched specimens in 

compression at a stress ratio R=-10 and a frequency f=10 Hz. Two different layups with 

the same ply distribution were investigated, one with tensile interlaminar normal stresses 

az when in compression (layup (1): [90/45/01-45]ns), the other one with compressive 

interlaminar normal stresses (layup (2) :[45/01-45/90]ns). Unnotched specimens were 

tested around 400 MPa in fatigue. Edge delamination was observed and it was found that 

specimens with layup (1) delaminated faster than laminates with layup (2). The 

interlaminar shear stress tzx seemed to be the dominant interlaminar stress, as 
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delaminations formed where it was maximum, i.e. at the (0/-45) interface. Failure 

occurred before 5.104 cycles for 16-ply specimens. 

Schulte [69] performed fatigue tests on unidirectional, cross-ply, and 

multidirectional [02/±45/02/±45/90]s composites at various stress ratios R equal to 0.1, 

-1, -0.5, and 10. Only the last case was therefore compression-compression fatigue. The 

observed damage modes were kinking in 0° plies followed by delamination. There was no 

evidence of edge delamination in compression-compression fatigue. Stiffness variation 

with the number of cycles in symmetric tension-compression fatigue showed an initial 

drop for Etensile followed by a plateau, while Ecompressive showed no initial drop but 

remained at a plateau. Both stiffnesses then dropped dramatically at about the same 

number of cycles. 

Komorowski et al. [70] performed experiments in fatigue that suggested 

interaction between out-of-plane kinking and edge delamination. Indeed, delamination 

appeared in the last 10% of the fatigue life, and then triggered out-of-plane microbuckling 

of the fibers in the delaminated areas. Edge delamination had also been observed in a 

similar study by Komorowski et al. [71]. For two laminates with identical ply 

composition but different layups ([45/-45/02/90/021-45/45]ns and [90/0/45/0/45/0/-45/0/­

45]ns), the laminate with the 0° plies closer to the surface had a much lower fatigue life. 

This fact had also been observed at high-temperature fatigue [63]. The authors surmised 

that the position of the 0° plies closer to the surface triggered an earlier delamination. 

Inter laminar stresses were calculated by FEA and a failure code (MRLife6TM [70]) was 

used to predict fatigue failure: it used a Paris law and an approximate equation linking the 

strain energy release rate and the elastic moduli of intact and delaminated composites [72]. 

The code correctly predicted that delamination in fatigue occurred in the interfaces where 

the interlaminar stress tzx was maximum, in agreement with [68]. 
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2.5 Free-edge delamination 

Free-edge delamination phenomenon under tensile loading has been studied since 

the 1970's, thanks to the pioneering work of Pagano [53], Pagano and Pipes [73,74], 

Pagano and Soni [75]. The existence of interlaminar strains (and consequently stresses) 

had been proven experimentally by Herakovich, Post and co-workers using Moire 

interferometry [76]. Classical laminated plate theory (CLT) cannot take into account the 

interlaminar stresses (a ) since the Kirchoff assumptions imply that each layer isz, zx, "C 

in a state of plane stress [77]. Interlaminar stresses are clearly an edge phenomenon and 

arise from stress free requirements at the laminate edges. They are restricted to a 

boundary layer. If x is the loading direction, y the width direction and z the thickness 

direction, then equilibrium of top or bottom plies requires interlaminar shear stresses Tzx 

to balance the shear stresses Cxy, interlaminar shear stresses zy to balance the normal 

stresses ay, and interlaminar normal stresses az to balance the shear stresses t , 
(moment 

equilibrium), as shown in Figure 4. The curve in Figure 4 shows the variation of a'z as a 

function of y. The change of sign of az results in a moment that balances the moment due 

to the shear stress Even assuming that stresses and strains are independent of thezy 

axial coordinate x (a reasonable assumption based on Saint-Venant principle), the partial 

differential equations of elasticity for the free-edge problem do not have a closed form 

[73]. Hence all the above articles from Pagano and co-authors calculated interlaminar 

stresses numerically, either by finite differences of the elasticity equations, or by FEA. In 

the following works by other authors, interlaminar stresses are also obtained by various 

numerical methods: Galerkin's method with Legendre's polynomial [78], modified 

Rayleigh-Ritz method [79], nonlinear FEA [80,81], 3-D FEA with the so-called slice 

method [82], and complex stress potentials [83]. The effectiveness of finite elements is 
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however impaired by a mesh sensitivity of the interlaminar stresses at the free edges [82]. 

Herakovich [84] and Joo and Sun [85] predicted the propensity for delamination by 

linking phenomenologically the mismatches in Poisson's ratios and coefficients of mutual 

influence between plies, but this method only gave qualitative results. Therefore, coming 

Figure 4. Inter laminar stresses 

up with an analytical solution to the free-edge problem in laminates required 

approximations. Hsu and Herakovich [86] propose a perturbation solution 

(homogenization procedure) with an interior solution and a boundary layer, but their 

procedure is practically applicable only to bidirectional laminates. Tang's boundary layer 

theory [87] gave all three interlaminar stresses, but his solution did not fully satisfy the 

displacement continuity conditions. Whitney [88] used a phenomenological method, and 
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matched in-plane and interlaminar stresses computed numerically with mathematical 

expressions that satisfy equilibrium equations and boundary conditions but not the 

compatibility equations. Puppo and Evensen [89] modeled a two-layer laminate by two 

anisotropic layers separated by an isotropic layer where interlaminar shear stresses 

developed. A state of generalized plane stress is assumed for each anisotropic layer, and 

consequently there is no interlaminar normal stress. As formulated in their paper, the 

theory could only model a four-layer symmetrical laminate. They apply it to a [0,-e]s 

laminate. Their choice of the isotropic layer thickness was somewhat arbitrary. 

The issue of the singularity of two of the interlaminar stresses (-tzx and az) at the 

free-edge is ubiquitous throughout most of the above articles, since FEA indicates infinite 

interlaminar stresses at the free-edge. The existence of a singularity originates from the 

solution to the problem of two bonded dissimilar layers. Indeed, the elasticity solution 

obtained using Lekhnitskii's stress potential [90] gave a weakly singular stress field at the 

intersection of the interlayer plane and the free-edge [91,92,93]. The alleged singularity 

does not, of course, exist. That this is the case is obvious on purely physical grounds: a 

stress singularity implies either a zero geometrical length or infinite displacements. The 

singularity is a mathematical artifact that arises from the artificial discontinuity in material 

constants at the layer interface introduced in the modeling process. This fact was 

recognized by Herakovich et al [76], Pagano [94], and Loo [95]. 

All of the above references dealt with laminate strips in tensile loading. The 

solution is analogous under compressive loading by performing a mere sign reversal of 

the stresses. Indeed free edge delamination in compression loading has been observed 

experimentally [64,65,96,97]. In [64], a 3-D FEA study of edge delamination in 

compression was also undertaken, and agreed with experiments. 
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(3) THEORY
 

3.1 Overview 

The focus of this work is to develop a theory that predicts the failure strain of 

multidirectional composites in compression. Tackling this problem requires making 

several assumptions based on previous experimental studies and problem familiarity. 

The laminates are assumed to be symmetrical. This allows the set-up of 

equilibrium equations (1), as explained later. This assumption is not a restricting one since 

laminates used in structural components are always symmetrical, except in a few very 

specific applications. 

All previous experiments [17-19] on multidirectional composites with 0° plies have 

shown that in-plane microbuckling of 0° fibers is the initial failure mode. Out-of-plane 

microbuckling seems also to play a role in the failure of cross-ply specimens (made up of 

0° and 90° plies) [61]. In addition, it is reasonable to assume that for un-notched 

laminates under static loading the failure of a 0° ply will trigger a failure chain reaction in 

remaining plies that will be catastrophic and that will lead to final failure of the whole 

laminate instantaneously. This would be especially true for laminates containing a 

significant percentage of 0° plies, such as the ones that were tested in this work (43%). 

These considerations lead us to formulate a failure theory for laminates that hinges on in-

plane microbuckling failure of 0° fibers. 
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Previous experiments have also hinted at an influence of the initial angle 0 of the 

plies adjacent to the 0° plies [18]. The only way the angle 0 could have an influence on 

the microbuckling strain of 0° fibers is through interactions at the interface between these 

angled-plies and the 0° plies. It is therefore reasonable to incorporate in the theory the 

interlaminar stresses that will be created at these interfaces. These stresses will indeed 

depend on the angle 0. Now among the interlaminar stresses az , t and tzx , only shear 

stresses t and t could influence the in-plane movement of the 0° fibers.zy zx 

Finally, the above experiments have also shown that the microbuckling of 0° fibers 

always starts at the edges of the specimens. This is intuitive because fiber foundation 

support is reduced there. But furthermore FEA studies on straight composite specimens 

under tension clearly show that interlaminar stresses are close to zero in the central portion 

of the specimen and become significant only in a thin boundary layer near the edges where 

they display an exponential behavior [80-82]. Under compressive loading, these stresses 

would be equal but opposite. It is therefore physically sound that in the theory we will 

develop, interlaminar stresses should be maximum at (or very near) the edges of the 

specimen. We note that none of the previous theories for compression failure of 

multidirectional composites, while they considered interlaminar stresses, incorporated 

free-edge effects [12,14,15]. Instead, interlaminar stresses were calculated to be 

maximum in the center of the laminate [15]. This fact tends to distance these theories 

from physical observations. 

The first part of our theory will therefore be the calculation of the interlaminar 

shear stresses "Czy and tzx for any layup. The second part will incorporate these stresses 

into a general microbuckling equation for a 0° fiber located at the edge of a 0° ply. In 

order to complete the theory, it remains to formulate a failure criterion that governs fiber 
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failure. In parallel, we will also investigate matrix failure, either interlaminar, or in-

between fibers inside a 0° ply. The third part of the theory will cover these topics. 

3.2 Inter laminar edge stresses 

3.2.1 General case (0 # 90°) 

The assessment of interlaminar stresses is indeed beyond the scope of classical 

laminated plate theory (CLT) since this is based on the Kirchoff plate assumptions. 

Ideally, the full 3-D problem should be solved. Unfortunately, as mentioned in Chapter 2, 

the partial differential equations giving the 3-D stress field in a laminate submitted to 

uniform traction (or compression) do not have a closed-form solution, even for a 

displacement field independent of x (the loading direction). In order to develop a 

comprehensive analytical theory for the compression failure of laminates, it was desirable 

to be able to calculate analytically the interlaminar stresses, and especially their magnitude 

at the free-edge. This could not be done by FEA analysis owing to the mesh sensitivity 

[82]. Based on the assumptions outlined above, we note that we are however only 

interested in the interlaminar shear stresses and zx . This leads us then to base ourzy 

theory on the work done by Puppo and Evensen [89], whose theory gave interlaminar 

shear stresses. An additional reason behind this choice is the following argument based 

on physical grounds: we have seen in Chapter 2 that the free-edge interlaminar stress 

singularity was a mathematical outcome due to the artificial discontinuity in mechanical 

properties. In fact, a fiber at an angle Ok in ply (k) will be separated from a fiber at an 

angle Ok+i in ply (k+1) by a thin layer of matrix. It is therefore rational in our theory to 
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incorporate the thickness of these inter-ply matrix layers. This modeling approach is 

indeed the one used in [89], as it was in [15]. 

As formulated in [89], the theory could however only be applied to symmetrical 

laminates comprised of a total of 4 layers. Extending it to laminates with any number of 

layers required modifying the equilibrium equations. We will now detail this first step, as 

well as cover the kinematics of the problem. 

Any ply in the laminate is replaced by an equivalent ply made up of a two parts: a 

central anisotropic plate that has the mechanical properties of the original ply, and two 

layers of thickness e that surround this plate. The two layers are made of the matrix 

material and are isotropic. The total thickness of a ply is, in each case, equal to h. The 

thickness e would typically be on the order of a fiber diameter, as estimated from 

microscopic observation. Figure 5 illustrates this modeling. The matrix layers between 

the anisotropic plates will carry the interlaminar stresses. While considering that only 

Figure 5. Modeling of a laminate ply 

these matrix layers (and not the anisotropic plates) carry the interlaminar stresses is a 

simplifying assumption (in fact the interlaminar shear stresses vary accross the thickness 

[76]), it renders the boundary value problem mathematically tractable. Furthermore we 
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note that when applying this theory to a 4 layer (±45°) angle-ply laminate, Puppo and 

Evensen obtained results in agreement with FEA results [89]. 

Let us consider a symmetrical laminate made up of 2N plies. A given ply k (1 5._ k 

N) has a thickness hk and its fibers make an angle Ok with the loading direction x. The 

width direction is y and the thickness direction is z, as shown in Figure 6. The plate has a 

width equal to Wi and a length L. The interlaminar normal stress a, is neglected. This is a 

Figure 6. Laminate dimensions 

fairly reasonable assumption because normal stresses are normal to the movement of the 

0° fibers when they buckle in-plane. They should therefore not have an influence upon the 

in-plane microbuckling of the 0° fibers. The matrix layers will thus develop only shear 

stresses as illustrated in Figure 7. 
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Figure 7. Inter-ply matrix layer and interlaminar shear stresses 

Furthermore we consider that the displacements uk, vk (in the x and y directions 

respectively) of each plate k are the thickness averages of the actual values. Therefore, in 

the general case of a laminate with 2N plies, we modify the equilibrium equations of [89] 

as follows: 
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{aa(1) at(I) TO) 
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For the ply k = 1 (top ply): (la)
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ax ay hi 
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aa(k) t(k) r(k-1)at(k) zy wzy+
 

OX ay hk hk 0 

at(N)
± Y zx 0 

ax ay hN 
For the ply k = N (middle ply): (1c)

aexN ) aa(N) 1.(N -I) 

+ Y + Y = 0 
ax ay hN 

In (la), (lb), (1c) and all the equations that follow, subscripts refer to the ply 

number. The shear stresses in the matrix layer (k) between plies (k) and (k+1) are -ezkx) and 

t(zky), 1 k N-1. When N=2, only equilibrium equations (la) and (1c) remain, and 

they are identical to equations (1) in the Puppo and Evensen paper. When N is equal or 

greater than 3, the new equilibrium equations (lb), which include the action of both top 

and bottom matrix layers on a given ply, must be used. Now the laminate being 

symmetrical, we only need to treat the upper half (layers 1 to N). We point out here that 

laminate symmetry is a necessary assumption for the validity of equations (1). Indeed, 

equations (1) imply that interlaminar shear stresses are acting on the middle of each ply, 

whereas in fact they act on the top and bottom faces of the plies. This is an acceptable 

approximation as long as warping of the laminate is prevented, as will be the case for a 

symmetrical laminate. The shear stresses in the matrix layer (k) are then: 
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a U G[ m uk+1) zyaz ax 2e 
where Gm is the matrix shear stiffness. (2) 

() f-± OV al Gm 
= [ kVk V+iGm 

Y aZ a 2 e 

The stresses ay, andand LXy in a ply k, k N-1 are related to the strains EX' Ey' and1 

yxy by the constitutive equations from the CLT theory [77]: 

Q12 016 Ex 

= Q12 
Q22 026 Cy (3) 

QQ 16 Q26 Q66 (k) YxY (k) 

with the transformation formulas [77]: 

011 = Q11 cos4 0 + 2(Q22Q66 ) sin2 0 cos2 0 + Q22 sin4 0 (4a)+
 

) sin2 0 cos2 0 + Q2 (sin4 0 + cos4 0) (4b)
012 = (Q11 + Q22 4Q66
 

Q22 = Q11 sin4 cos2 0 + Q22 COS4 0 (4c)
+2(Q12 +2Q66)sin2 0 

016 =(Q11 Q12 2Q66 )sin cos3 0 + (Q 12 Q22 + 2Q66 )sin3 0 cos° (4d) 

2Q66 )sin3 e COS 0 + (Q12 Q22 ± 2Q66 )sine cos3 0 (4e)026 = (Q11 Q12 

2Q66 )Sine 0 COS2 0 ± Q66 (sin4 0 + cos4 0) (4f)Q66 = (Q11 + Q22 2Q12 

where the index k was dropped for simplicity. 

The ply stiffness matrix in the principal directions Q in plane stress is linked to the fiber 

and matrix elastic constants by [77]: 
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E1 E2v12 
0 EI = EfVf +Eiji Vf)11 v12v21 

E2 V12 EfEm 
Q E2 0 with E2 = (5) 

1 Vi2V2i E mVf Ef (1 Vf )V12V21 
0 0 

E2
G = Gm and V21 = V12

1 Vf El 

where Ef is the fiber stiffness, Em is the matrix stiffness, and v12 is Poisson's ratio. 

Replacing equations (2) and (3) into the equilibrium equations (1) leads to the following 

equilibrium equations for the displacements: 

[0(k)a2 +20(k) + 066 (k) /-211 ax2 16 1 Uk 
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a2 

a2 ,_n(k) a2 ±-0-(k) Gm , 
-,- Q6(6 k) -1- A, -<-26 22 v +k ork+1-2vk +vk_i)=0axay ay 2 
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Equations (6a) and (6b) are valid for 2 k < N-1.
 

For k = 1 and k = N, we have instead the equilibrium equations:
 

For k = 1:
 

a2 a2 a2
 
Q ± 2Q16 5x, + Q66 ] U l
 

(7a) 
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and for k = N: 
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(8a)
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' sZ66 ax2 12 -F \Z2 VN ± -n kVN-1 VN ) = °
ay 2ehN 

We first solve the problem in the case of an infinitely wide laminate, that is Wi 

tends to infinity. For an applied uniform compression of amplitude ua (ua < 0) in the x 

direction, the boundary conditions are: 

Uk = Vk = 0 at x = +L 
2 2 Vk/15.kN (9) 
ua 

uk Vk = 0 at x = --L
 
2 2
 

It is straightforward to verify that the displacements uk = ua x, vk = 0 satisfy the 

boundary conditions (9) and the equilibrium equations (6a), (6b), (7a), (7b), (8a), (8b). 

The solution is therefore, for any ply k: 

http:Vk/15.kN
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{cy(ck) Q(1)( (Ua ) 
{0c(k) -0(k) (Ua )

11 L xy 
16 L 1 < k < N (10) 

_(k) -1.--)(k) (Ua ) T(k) r(k) 0 
UY 4e12 t(k) = T(k)zy 

Now actually the laminate has a finite width Wi. In the above solution, valid for 

an infinite laminate, normal stresses pk and shear stresses tk exist on the cross-sections 

located at y = ±Wi/2 as illustrated in Figure 8: 

Figure 8. Boundary stresses 

The stresses created are, from solution (10): 

Pk = Q12`) and tk =072;6k) (1-L) on ply (k).() 

In order to obtain the solution for a finite laminate of width Wi, we then have to 

apply the opposite of stresses pk and tk at y = ±Wi/2 to cancel these. The final solution 

for a laminate of width Wi under uniform compression will therefore be the superposition 
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of the solution for an infinitely wide laminate under uniform compression (solution (10)) 

and the solution for a laminate under no compression but subjected to stresses (-Pk) and 

(-tk) at y = ±Wi/2 as given by equation (11). Let us now solve this latter problem. The 

boundary conditions are then: 

Wi ( )
At y = : a, 'k" = -pk and t() - -tk for 15_1(5N (12a) 

2
xy
 

Wi (k) t(k)
At y = --: a = Pk and tk for 2 5k5N (12b) 
2 Y 

At y = 0: ul = 0 and vi = 0 (12c) 

We note that we have added condition (12c) on the displacements in order to eliminate 

rigid translations of the laminate. 

We are therefore looking for a solution to equilibrium equations (6a), (6b), (7a), (7b), 

(8a) and (8b) with the boundary conditions (12a), (12b) and (12c). Since the solution is 

independent of x, we choose a displacement solution of the form: 

fuk(y)= A(k) e' forlicl\T (13) 
lvk(y) =13(k) eu 

The number e in equations (13), (18), (19), (45) and (46) is Neper's number. In all 

other equations, it is the thickness of the matrix interlayer. 

Replacing (13) into the equilibrium equations (6a), (6b), (7a), (7b), (8a) and (8b) gives us 

a system of 2N equations for the 2N unknowns { A(k), BOO } , 1 < k < N. These 

equations are the following: 
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For k = 1: 

Ec(6i) Gm ] +[ Gm ±[0(216) r21 B(0 0 (14a)A(')
2ehl 2ehl
 

[ 1:112) r2 Gm B(') Gm
 
[-0-116) r21 A(') (14b)= 2ehl 2ehl 

For 2 1c5.N-1: 

Gm A(k) 4.[ Gm A(,1) [ Gm A(k-0 r2] B(k) 02- (66k ) (14c)r2 2ehk 2ehk 2ehk
 

7-,(k) r2 Gm ] R(k) + [ Gm ] (") [
 Gm ] B(") = 0 (14d)Pi6) r2} A(') +' [ \/22 ehk 2ehk B + 2ehk 

For k = N: 

[5(N) r2 Gm A(N) ±[ Gm A(N-0 +[Q6N) r21B(N) 0 (14e) 
'<.66 2ehN 2ehN 

[Q6) r21A(N) + [W) r 2 Gm B(N) + Gm i'[2eiN 1B (N-0 0 (140 
2ehN 

The system made up of the 2N homogeneous equations (14a), (14b), (14c), (14d), (14e) 

and (140 has a non-trivial solution if and only if its determinant is zero. This condition 

will give us the 4N roots r. Since only squares of the roots r1 appear in the determinant, 

we will use from now on the notation: 

p= r2 (15) 

The 2N roots p are the solution to equation (16): 



48
 

Q (616)P 

Gm 

2eh1 

Q2.(11) 

Gm 

2eh1 
0 0 0 0 0 

Q(2113 

Q(2121) 

Gm 

2eh1 

0 
Gm 

2eh1 
0 0 0 0 

Gm 

2eh2 
0 

Q(2)P 

Gm 
eh2 

Q(226$ 
Gm 

2eh2 
0 0 0 

0 

0 

0 

0 

0 

Gm 

2eh2 

0 

0 

Q(226)P 

0 

Q(222)13 

G . 
eh2 

0 

0 

Gm 

2ehN_I 

0 

Gm 

2eh2 

0 

Gm 

2ehN_I 

0 

0 

Q(61:- .0p 

Gm 

ehN_I 

(2N-1)121 

Gm 

2ehN 

(2N 1)13 

Q(2N2 1)13 

Gm 

ehN_I 

0 

Gm 

2ehN_I 

0 

Q(6164 )p 

Gm 

2ehN 

0 

0 

0 

Gm 

2ehN_i 

Q(2VP 

=0 

0 0 0 0 0 
Gm 

2ehN 
Q(2N6)13 

Q(2121 ) P 

Gm 

2ehN 

Two of the 2N roots are zero and correspond to solutions of the form: 

fuk = A(221_1 y + A212, 

tvk = B(21;21_1 y + B(22, 
for 15.k_N (17) 
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The presence of a double zero root was to be expected since it corresponds to a rigid 

translation and rotation of a ply. 

We recall that from the definition of p, to each root p correspond two conjugate roots 

(A/1), VI)). The remaining (2N-2) roots are real and correspond then to solutions of the 

form: 
2N-2
 

Uk = X (ik;k) &WY ± Alc) e-V1Y)
 
1=1 for 15k5N (18)

2N-2
 
Vk = y (1311c) elfP7Y + 1-3-1() e-Y)
 

i=i
 

where the new coefficients A; k), E,(k) correspond to the negative roots. 

Combining solutions (17) and (18), the total solution to the problem is therefore: 

2N-2
 

= X (Alk) e'/IY + A;k) e- Pi + A21,L1 y + A(211,;
 
i=1 for 1 k 5 N (19)

2N-2 
v pit(k)Vk = (W) + 1731c) e-VPY)+B(k)2N-1 .7
 

i=1
 

For later convenience, we can rewrite solution (19) as a sum of hyperbolic functions, 
1731c), 1-3-pc).while keeping the same notation for the coefficients A;)°, We have 

therefore: 

2N-2
 

Uk = Binh( pi y)+ Aik) cosh( p; y))+ A;21)1_, y + Mt'
 
1=1 

2N-2 
for 1 k N (20) 

Vk = (13;k) Sinh(VPi y) + TIP') cosh( y))+1321,)/_, y +132r,),Pi 

For each root pi, 1 5 i 2N-2, we can express the coefficients A;k) (for 2 5 k N) and 

13;k) (for 1 < k < N) as a function of A;') using any (2N-1) equations of the 2N equations 
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(14a), (14b), (14c), (14d), (14e) and (140. The relations between these coefficients are 

then of the form: 

{Pik) = (FacAk)) A1') for 25k5N 
for 1 5 i 5 2N-2 (21) 

13;(k) = (Facl3k))- Pi!') for 15k5N 

which defines the factors (Facik;k), FacB,(k)). 

Similarly, we can express the coefficients A;k) (for 2 .5 k N) and B; k) (for 1 < k < N) 

as a function of AT) using the same (2N-1) equations among the 2N equations (14a), 

(14b), (14c), (14d), (14e) and (140. These relations will of course be identical to 

relations (21), and are given below: 

{A(k) .(FacACk)).-Ao) for 25k5N 
for 1 5 i 5 2N-2 (22) 

1370 = (FaallAlo for 15k5N 

We now have (8N-4) unknowns: 

for 1 5. i 2N-2,(A(') 

and (A(2kTL, A21(N)T, B(21(NLI, B21,) for 1 k 5 N. 

Now replacing uk and vk into the partial differential equations (6a), (6b), (7a), (7b), (8a) 

and (8b), we see that, for the double zero roots, we have: 

{(A(221,),-1 y + A(221,),) (A(2'4_, y + A(214) = 0 

For 1: (23a) 
(B(22-1 y +13(2N), ) (B(21),1_1 y +13(214) = 0 
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{(A(2NI y + A(2kN-")) 2(k2ILI y + A(2i,) + (A(2;1)1 y + A(2kN-1)) = 0 
For 2 N-1: (23b) 

(B(2N1 y +13(2Ni1 2(B(21,_1 y +13(2N) + (B(211,T1; y +13(2N')) = 0 

(A(2V)I y + A(2N)) (A(27,1111) y + A.(2N-')) = 0 
For k = N: (23c) 

(B(2V)1 y + B(2N)) (B(2n y +13(2N11= 0 

which gives: 

A(2L_1 = A(214_1, A2N = A(2'4, B2,,-1 =13(214-1, B(2' =13(2'4 for 2 < k < N (24) 

We therefore end up with 4N unknowns for 4N boundary conditions (12a), (12b), (12c): 

(A'), AN for 1 < i < 2N-2, and (A(2'4-1, A(2'4, B(2'1),_,, B(2'4) 

We can rearrange these boundary conditions as follows: 

{a(k)( WI+ a(k)(- Wi ) 
Y 2 Y 2 

for 2 1(Isl (25a) 

t(k)(Wi)± ^C(k)(- Wi) = -2tk 
xY Y2 2 

{_(k)( Wi ) a(k)(- Wi ) 0 
° Y 

Y2 2 for 2 <k<N (25b) 
,i(k)(Wij_ ,r(k)(_ Wi) 0 

Y 

xy
2 2 

(I) Wi (1)(Wi (25c)a 2) -PI, "C" )= ti 
Y 2 
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ui(0) = 0, vi(0) = 0 (25d) 

The coefficients (A(2'4, B(2'0 are given by the boundary conditions (25d) and do not 

appear in the other boundary conditions which contain only derivatives of the 

displacements. Hence we have (4N-2) unknowns: 

(A;(1), AN for 1 < i < 2N-2, and (A(214_1, B(214-1) 

for (4N-2) boundary conditions (25a), (25b), (25c). 

Now from the constitutive equations (3), we have: 

au(k) ,,(k) aVk (k)-y = 22 ay 
+ Q26 ayk 

for 1 kls1 (26) 
7(k) avk ,(k) aukt(k).xy = \Z26 + V66 

ay ay 

Replacing (26) into the boundary conditions (25b) gives: 

aV k aV k auk aUk =0+ 0216) (T2') ay 1Wi ay i_Wi ay ]Wi ay 1Wi 
2 2 2 2 

(27) 

n(k) aVk aVk auk aU k+ 076'60`<26 
ay WI ay Li ay Wi ay _Wi 

=0 
2 2 2 2 

Replacing the solutions (20) for the displacements uk and vk into (27) gives: 
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2N-2 
-7(()Q2k)( i Wi))+Q6) AT); ikk) sinh(Arp7 Wi))= 0 

2 2i=1 i=1 
(28) 

Q6k) (12 sinh(-017 Wi))+ (16) \171T sinh(Vpi Wi))= 0 
2 2i=1 i=1 

which are valid for 2 k N. Now using the relations (23) we can replace the 

coefficients A;k) and 173,(k) by their expressions as a functions of the sole coefficients Al') 

into the equations (28). We obtain: 

(Q22) Facl3k) + ITZ6k) FacAlk)),W sinh(11-137 W2i) A4') = 0 
1=1 

for 2 N (29)
2N-2 

I (s:X6k) Factilk) + -0(66k) FacAk))Arpi Binh(-1- Wi) A(') 0Pi i
 

i=1
 

Hence we end up with a system of (2N-2) homogeneous equations for the (2N-2) 

unknowns A;'). Therefore these coefficients are identically zero, and we have: 

7i-;`) =o Vi (30) 

Using equations (30) and (21) into the equations (20) for the displacements uk and vk we 

obtain the new expressions for the displacements: 

2N-2
 

Uk = / (FaCAi(k)) sinh(-\117; y) Pi1) + A(214-1 y + A(214
 
1=1 

2N-2 
forl (31) 

Vk = I(FacEik))sinh( rp, y) + B(214_1 y +13(214 
1=-1 
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We note that there now remains only the 2N unknowns A;') for 1 i 2N-2, and 

(A(214_1, B(4_1). The set of 2N equations (25a) and (25c) will allow us to find these 

remaining unknowns. Replacing (31), (26) and (21) into (25a), we obtain: 

2N-2 Wi)

I (012k) FaC0k) ± 016k) FaCAll-W Cosh(-Wi AM
 
i=1 

(TZ) B(214-1 + Tn) A(211V-1 = Pk for 2 < k < N (32)
2N-2A0I 6) Fac0k) + (4T Wi)6) FacAlk)W coshA, 

i=1 

+ Q(k) B(214_1+ Q(k) A(2I4-1 = tk 

Now replacing (31), (26) and (21) into (25c), we obtain the coefficients (A(2'4-1, ): 

2N-2 

I Vpi cosh( 22tAI 1_wi) Ao) 01'6)
A(214_,
 

i=1 2
 
Q22 Q66 ((g6))2 

(33) 
2N-2 

P10(616) t1Q61)B214-I = - FaC01) cosh) - 1[37 Wi 
0(1)0(1) ((T6))2

1=1 2 
22 66 k 

Replacing (33) into (32) leads to the following system of (2N-2) equations for the (2N-2) 

unknowns A;') with 1 i < 2N-2: 

2N-2 

[k2) (Faalk)OiX Fac01)) + (FacAi(k) 1)] p; cosh wi) A(1) 
=1 

(n(k)n(1) Ti(k)7.(16) ( T1(1) (k) (1)
\422 "466 s'426 Y22 026k)22 `.22 w226= Pk + pl + (1)--,(1) ti 

A16))ifZ0(616) 40119 Q2 k4-6 j 
2N-2 

[Q 6k) (FaCBi(k) FaC01)) 0(66k) (FaCAi(k) 1)RIST cosh) Wi) (34) 
i=1 2 ) 

(_f0(2M16) 0(616()Q16) 
Q(6'6')Q12) Q`6`)Q16)= t k + + ti
00)0(1) (Cg6))2

0.12)0(616) (021612 22 66 \ 



55 

valid for 2 k N. Now using relations (11), we can rewrite equations (34) under the 

following form: 

I IVINV) A;1) = RR(k) (1211
L..i 

2N-2 
for 2 Ic.NT (35) 

NN1k) A;') =SS(k) (1.1., 

i=1 

with 

mmi(k) =[-(12k) (Factik) Fac131))+01k) (FacAi(k) 1)1\11); cosh(-6: W2i) (36) 

NN!,k) = [Q6k) (Fack) Fack)) + ITi6V (FacAlk) cosh(A[157, Wi) (37) 

(k) (1) (k) (1)

RR(k) Q22 066122 N466 Q26 `,C26 n(1) 4_ Q22 Q26 (38)2 sC12 ' 

0112Q(616) (QT -(W2)Q(616) CO(21612 

Q(k)Q(1) 
T2(61`)QT (5t)Q12) QT016) (SS(k) = -Q(6 k) + (39)Qg) + '<161)

(72(1)-0-0) (0(1) \ 2 
22 66 k 26 / 0(')0(') (06) )2 

valid for 2 k < N.
 

Solving the system (35) gives us the coefficients A.
 

The shear stresses tzx and zy are then obtained by replacing the displacements uk and vk 

as given by (31) into equations (2). We obtain: 
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= G " 2i2e(FacAlk) FacAk+1)) sinh(AliT, y)
2e j=1 

forl (40)
G2N-2 

tzy)(y) = ---L-11 I i6i FacAl")) sinh(F, y)

2e i=i
 

From (10), we recall that and were zero in the case of a laminate infinitely wide.zx zy 

The interlaminar shear stresses at an interface (k) between plies (k) and (k+1) in a laminate 

of width Wi submitted to a uniform compression are therefore given by equations (40). 

We note that tzx and tzy are directly proportional to the amplitude ua of the applied 

compressive displacement, since the coefficients {A;1)} are (see equations (35)). The 

stresses depend only upon the following parameters: 

The fiber and matrix elastic constants Ef, Em, Gm, and V12.
 

Geometrical lengths: the ply thicknesses hk, the matrix layers thickness e, the
 

specimen width (Wi).
 

Angles: the ply angles Ok.
 

The fiber volume fraction Vf.
 

Indeed, the Qij } are given by (4) and (5) and depend only upon the elastic constants Ef, 

Em, Gm, v12, fiber volume fraction Vf, and the angles { Ok } . The roots { pi } are a 

solution of the determinant (16), hence a sole function of the { Qij } , of Gm, of { hk } , and 

of e. The coefficients {FacA4k), Facl3;1, defined by (21) and (14), depend only upon 

the coefficients of equations (14), or equivalently the coefficients of matrix (16). These 

coefficients are a sole function of the { Qij , of Gm, of { hk } , of e, and of the roots { pi } . 

The coefficients {A;1)} are a solution of equations (35), hence a function of the 

coefficients {FacAk), Facl3;k)}, of the roots { pi }, and of the width (Wi). Ultimately, the 

interlaminar stresses depend then upon Ef, Em, Gm, v12, Vf, { Ok } , {Ilk } , e, and Wi. 
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At any given interface, the shear stresses are indeed also a function of the laminate layup, 

and of the total number of plies 2N. 

The various coefficients appearing in the above equations can be calculated by using 

mathematical computer packages (Maple V, Mathematica). 

3.2.2 Special case of cross-ply laminates 

Laminates that contains only 0° and 90° plies have to be treated separately. Indeed, 

in that case we have: 

Q6 k) (g6k) Vk 

Equations (14a), (14b), (14c), (14d), (14e) and (140 become then completely decoupled 

into N equations containing only coefficients A(k) and N equations containing only 

coefficients BOO. 

The N equations containing coefficients A(k) are: 

Gm Gm
Fork= 1: Q() (41a)

2ehl 2ehl 

Gm
For 2 N-1: (41b)

[411) r2 2Ghk A(k) [2Ghk A(k+i) [2Ghk A(k 1) 

[0(660 r2 Gm A(N) [ Gm A(N-1)For k = N: (41c)
2ehN 2ehN 
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and the N equations containing coefficients B(k) are: 

[ITT212) Gm Gm 113(2)
For k= 1: (42a)

2eh, 2eh, 

[02k) r2 Gm Boo ±[ Gm 113(k+i) [ Gm ]B(k-1) 0For 2 N-1: (42b)
ehk 2ehk 2ehk 

[072 ) r2 Gm B(N) 1B(N-1)For k = N: (42c)
2ehN 2ehN 

After equations (13), we see that the solution to equations (41a), (41b), (41c) will 

give us the displacements uk, and the solution to equations (42a), (42b), (42c) will give 

us the displacements vk. We note that equations (41a), (41b), (41c) are identical to 

equations (42a), (42b), (42c) except for the OLk) which are replaced by the Q. We can 

thus solve these two systems of equations separately. Each of them will have a non-trivial 

solution if and only if its determinant is zero. This will give us two sets of 2N roots r. 

Defining p as in equation (15), the N roots p corresponding to equations (41a), (41b), 

(41c) are then solutions to the following equation: 

Gm 
0 0 0 

IQ(6'6)P 2hm,G 2eh, 
Gm G Gm
 

Q(2) 0 0
 
2eh2 eh

2 
2eh2
 

0
 =0 
0 (43) 

GmGm0 0 N GmQ(66)P
2ehN_, ehN_, 2ehN_, 

Gm Gm
0 0 0 Q(N)

2ehN 2ehN 
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The N roots p corresponding to equations (42a), (42b), (42c) are solutions to the 

following equation: 

Gm 
0 0 0 

Q(21213 Gm2eh1 2eh1 
Gm Q(222)13 Gm 

0 0 
2eh2 eh2 2eh2 

0 

0 
=0 

(44) 

0 0 
G Gm Gm 

2ehN_I ehN_I 2ehN_I 

0 0 0 
Gm Gm 

2ehN Q(211)P 

As expected, one of the roots of both (43) and (44) will be zero. The remaining 2 sets of 

(N-1) roots are real and correspond to solutions of the form: 

N-1 

Uk = I (Alk) e'llY +-A--k) e-VI7'Y) 
i=1 

N-1 
for 1 kN (45) 

(*k) eVPi+N-1 Y E.00 CVPi+N-I YVk = 
i=1 

where the new coefficients A;°, IT3k) correspond to the negative roots as discussed 

previously. We have designated the set { o 1, ...,pN_1 } as the (N-1) non-zero roots of 

(43), and the set In } as the (N-1) non-zero roots of (44).crINI, ,P2N 2 

Combining zero and non-zero roots the total solution to the problem is therefore: 

N-1 

Uk = / (i6ik) e'fY ± AC, k) e'llY)+ A(Nk) v 4_ A(k) 
., N+1 

1=1 for 1 <_k <_N (46)
N-1 

n(kVk = y(W) eVP''' Y + RP') e-VP"-' Y) + BN
) 

1
(k) y 1-'N+ 

1=1 
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We note that even though each system (41a), (41b), (41c) and (42a), (42b), (42c) 

has only one zero root, the solution to the actual initial problem must be obtained by 

solving the complete set of equations (41a), (41b), (41c), (42a), (42b), (42c). The 

determinant corresponding to this complete set, just like (16), has a double zero root. 

This double zero root gives us the linear solution for each of the displacement 

components. In fact, by permutation of the lines and columns in the determinant (16) 

where all the 016) have been set to zero, it is easy to see that this determinant is the 

product of the two determinants (43) and (44). 

As discussed previously, we can rewrite solution (46) as a sum of hyperbolic 
Ei(k).functions, while keeping the same notation for the coefficients A;k), l3;k), 

We have therefore: 

Uk = I Binh( pi y) + Ai(k) cosh( Pi y)) + A(1,;`) y + A(Nk)+, 

N1 
for 1 k N (47) 

Vk = 1(W) sinh(VN_N_, y)+T3i(k) cosh(Alpi+N_, y))+13(Nk) y +13(Nk)+1 

i=1 

For each root pi, 1 i N-1, we can express the coefficients A;k) (for 2 k < N) as a 

function of A;') using any (N-1) equations of the N equations (41a), (41b), (41c). 

Similarly, for each root pi, N i 2N-2, we can express the coefficients 13;k) (for 2 < k 

N) as a function of l3;1) using any (N-1) equations of the N equations (42a), (42b), 

(42c). The relationships between these coefficients are then of the form: 

{Ak) = (FacAlkl- Al') 
for 2 ..1( N and for 1 i N-1 (48) 

Bi(k) = (Fac131 *I) 
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which defines the factors (FacAk), Fac0k)). 

Similarly, we can express the coefficients Ti;k) and 173k) (for 2 k S N) as a function of 

A;') and if3,(1) respectively using the same equations as in the case of A;k) and B. 

These relationships will of course be identical to (48), and are given below: 

{Tik) = (FaCA1k)) T6i1) 
for 2 and for 1 < i __N -1 (49) 

B(k) = (FaCB(111 13(1) 

We now have (8N-4) unknowns: 

T3;(1)) for 1 <_i <_N -1, 

and (A(/;;), A4,1,21, B(1;;), B(/,;(_),1) for 1 k N. 

Now substituting uk and vk into the partial differential equations (6a), (6b), (7a), (7b), 

(8a) and (8b), we see that, for the double zero roots, we have: 

{(A(N2) y + A(N2)+1) (M) y + A(12+1) = 0 
For 1: (50a)

(K) y +13(N2)+1) (k1) y +C_I)= 0 

y + At1)) 2(A(Nk) y + A(Nk_1)+(A1,;-') y + M;;11)) = 0 
For 2 11\1-1: (50b)

(B(Nk+i) 2(B(Nk) B(No+1) (B(Nk-i) +B(Nk-.1)= 

+ A(NN+10) 0
{(ANN) + A(NN)1) (ANN -1) 

For k = N: (50c)
(B(NN) +B(Nr?_1)_ (B(NN-1) +B(NN+11)) 



62 

which gives: 

A(Nk) = A2), A(X1 = A2)+1, B(/V = B(/,1), = B(1,+1 for 2 < k < N (51) 

We therefore end up with (4N) unknowns: 

(k), A1), 13;(1), EP)) for 1 i N-1, and (4, A2)+1, B2), kl) ) 

for 4N boundary conditions (12a), (12b), (12c). As discussed previously, we can 

rearrange these boundary conditions as in (25a), (25b), (25c), (25d), and we note that 

coefficients (A2),,, ) are given by the boundary conditions (25d) and do not appear in 

the other boundary conditions which contain only derivatives of the displacements. 

Hence we have (4N-2) unknowns: 

(A,(1), A;1), 13;1), 11°)) for 1 < i < N-1, and (k;), B2)). 

for (4N-2) boundary conditions (25a), (25b), (25c). 

Substituting (26) into the boundary conditions (25b) and using the fact that the i:26) are 

zero for any k, we obtain: 

avk avkl =0 
ay iwi ay j_wi 

2 2 
(52)( 

aUk aUk 
0(66k) ay Wi ay Li =0 

2 2 
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Substituting the solutions (47) for the displacements uk and vk into (52) gives: 

N-1
(5)(E1'pi+N-I RP') Sinh(VR-FN-1 

Wi 
))= 0 

1=1 
for 2 (53)

N-1 Wi 
-0 (6 I6() E sinh(-W 21=0 

1=1 

Now using the relationships (49) we can substitute into the equations (53) the coefficients 

iV) and B(k) by their expressions as a function of the coefficients A41)and A(1) 

respectively. We obtain: 

Isinh(AlPi+N-1 2Wi) BH 0i
 

i=.1
 

N-1
for 2 (54) 

E FacAlk)W sinh(-vpi/ Wi ) Ai(1) =0 
1=1 

Hence, we end up with a system of (N-1) homogeneous equations for the (N-1) 

unknowns A;1), and a system of (N-1) homogeneous equations for the (N-1) unknowns 

FP). Therefore these coefficients are identically zero, and we have: 

Ti;') = 11,(1) = 0 Vi (55) 

Using equations (55) and (48) into the equations (47) for the displacements uk and vk we 

obtain the new expressions for the displacements: 

N-1 

uk = E(FacAll sinh(Vpi y) + MI) y +A(N1)+1 

for 1 k < N (56)
N-1 

Vk = E(Facl3k))sinh(-0;+N_I y)- *1) +13,1) y +1V+1 
1=1 
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We note that there now remain only the 2N unknowns (A;1),B;1)) for 1 < i < N-1, and 

(A(N1), B(N1)). The set of 2N equations (25a) and (25c) will allow us to find these remaining 

unknowns. Replacing (56), (26) and (48) into (25a), and using the fact that the 06) are 

zero for any k, we obtain: 

N -I 

A;) FaCO kWpi+N_I COSh(Vpi+N_I Wi) +022) IV = Pk
2i=i for 2 5 k N (57)

N-1 

(Q(61,) FacAi(k)w cosh(Arp7 TWi) Ail) ANW 

, i=1 

Now substituting (56), (26) and (48) into (25c), and using again the fact that the O26) are 

zero for any k, we obtain the coefficients (A(N1), *,?): 

tA = Alp; cosh(1p7 2 Al') 
1=1 -066) 

(58)
N-1 Wi ) (1) PI 

13(N1) = cosh(VPi+N-1 B;
 
1=1 Q22
 

Substituting (58) into (57) leads to the following system of (2N-2) equations for the (2N­

2) unknowns (A;'), B;')) with 1 i 5 N-1: 

If`X2) n{Tio2k) (FacBi(o_ ovpi+N_i cosh(vpi+N_. w2i ) B(ii) = rk + r 1 
1=1 

(59)
N-1 Wi (1)
Ii7X6) (FacAlk) cosh( Pi 2) A; + [1-6-66i) tl 
i=1 

valid for 2 5 k 5 N. Now using relations (11) and the fact that the QV are zero for any 

k, we can rewrite equations (59) in the following form: 
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IMMi(k) I311 = RR(k) (IA) 
i=1 

N-1 
for 2 111 (60) 

INI%11c) 26i11 = 0 
i=1 

with 

MMIk) = 02k) (Facl3i(k) 1)Ajpi+N_I cosh(VPi+N-i 
Wi 

) (61) 

NNTC,k) = 0(66k) (FacAC,k) cosh(Vp; W2i) (62) 

01(2k)0(1)02k)T12)RR(k) (63) 
(T2 

valid for 2 k < N. 

We see from the second set of equations (60) that all coefficients A;') are zero. Solving 

the first set of equations (60) gives us the coefficients 13;1). 

The shear stresses Tzx and are then obtained by substituting the displacements uk and 

vk as given by (56) into equations (2). We obtain: 

t(zc)(Y) 0 

G N-1 forl<kN-1 (64) 
Tz(ky)(y) _ m IB(1)(FacBlk) Facl3,(k+1)) sinh(VPH-N-1 )2e ,=, 1 

From (10), we recall that and LZy were zero in the case of a laminate infinitelyzx 

wide. The interlaminar shear stresses at an interface (k) between plies (k) and (k+1) in a 
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laminate of width Wi submitted to a uniform compression are therefore given by equations 

(64). We immediately notice that for a cross-ply laminate, the interlaminar shear stresses 

are identically zero.zx 

The shear stresses and along the width of a specimen can now be calculatedzx zy 

at any interface by the method outlined above. The numerical procedure used to obtain 

these will be detailed in Chapter 6, when we treat the case of the [0/-0/02/0/-0/0]s 

laminate. 

The second part of our theoretical work consists of incorporating the action of the 

adjacent angled-plies (by means of interlaminar shear stresses) on the 0° plies to come up 

with a general microbuckling equation for the 0° fibers. The next section is devoted to the 

derivation of this equation. 

3.3 Microbuckling of 0° fibers 

To derive an equation governing the microbuckling of the 0° fiber in a 

multidirectional laminate, we start from the general buckling equation for a beam on 

foundation. This equation was mentioned at the beginning of the literature review. The 

fiber is submitted to a buckling load P. The medium surrounding the fiber may act on it in 

three possible ways: through a distributed couple m, through a distributed axial force p in 

the fiber direction, and through a distributed transverse force q normal to the fiber. For 

convenience, we reproduce below (Figure 9) Figure 3 showing a fiber element and the 

various efforts acting on it. Q and M are respectively the shear force and moment acting at 

the fiber element sections. The fiber is initially along the x axis. 
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M+dM 

Q+dQ 

q 

x 

Figure 9. Fiber equilibrium 

Both the fiber and the foundation are modeled as linear elastic isotropic materials. 

Assuming small deflections, the equilibrium equations for the fiber portion are: 

cico 
Force equilibrium along y: q+ dQ + P =0 

dx dx 

Force equilibrium along x: p dP + Qdco =O (65)
dx dx 

Moment equilibrium:	 dM 
Q + m = 0


dx
 

where v is the amplitude of the fiber movement in the y direction, and co is the slope of the 

deflected fiber axis defined by: 

dv 
=	 (66)

dx 

Differentiating the third equation (65) with respect to x and replacing it in the first equation 

to eliminate the shear, Q, we obtain: 
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2dM2x dm 

± + P dv =0 (67) 

It will be assumed throughout this work that the fiber has, prior to loading, the shape of a 

sine function v0(x) of amplitude V0. Now if the effect of shearing deformation is 

neglected, the expression for the curvature of the axis of the beam is: 

d2 (v v 0)EfI (68)
dx2 

where Ef is the fiber Young's modulus, and I the moment of inertia of the fiber. The 

carbon fibers are considered as circular and of constant radius rf, in which case we have 

for the fiber area Af and its moment of inertia I: 

r4
Af = It rt2 and I =n --L (69)

4 

Substituting equation (68) into equation (67), we obtain: 

m +Pd2v = 0EfId4(vv0) +q+ (70)
dx4 dx dx2 

The next step consists now in assessing the quantities m and q. For composites with a 

high volume fraction of fibers Vf (above 0.3), it is more energetically favorable for the 

fibers to deform in the shear mode rather than in the extension mode [23,46]. In the so-

called extension mode the fibers deform out-of-phase, while they deform in-phase in the 

shear mode. Figure 10 illustrates these modes. 
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SHEAR MODE EXTENSION MODE 

Figure 10. Fiber microbuckling: shear mode and extension mode 

High performance composites have a fiber volume fraction well above 30%, 

typically around 55% 70%. Hence we can assume that microbuckling of carbon fibers 

will always occur in the shear mode, as observed experimentally [8]. In this case, the 

rotation of the fibers that occurs when their amplitude increases is resisted by deformation 

of the surrounding matrix in shear. This resistance, therefore, may be adequately 

modeled as a distributed couple. We therefore seek to express the distributed couple m as 

a function of the fiber rotation and the matrix mechanical properties. The tensor 

representing the action of the matrix between the fibers is: 

( 0 txy oN 

'T. txy 0 0 (71) 

o 0 0, 

= 
The effort due to T on the fiber surface is therefore the vector parallel to the fiber surface: 
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( 0 txy 0\ I 0 \ (Txy sin (p` 

T n = t xy 0 0 sing) = 0 (72) 

\ 0 0 ) cos9 j 0 

where fi is the normal to the fiber surface, as illustrated on Figure 11. A circle with a dot 

Figure 11. Tensor representing the action of the distributed couple m 

indicates a vector out of the page, a circle with a cross indicates a vector into the page. 

The moment m about the z axis due to T on the fiber is therefore: 

m = 2 fr fi (rf sin (p)- rf dy (73)
0 

Replacing (72) into (73) and integrating, we obtain [14]: 

(74) 
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Now the shear stress t is the shear strain yxy times the composite shear modulus 

G. Using G instead of the matrix shear modulus Gm allows us to incorporate the 

influence of the neighboring fibers. The shear strain yxy is the derivative of the amplitude 

v with respect to x. We thus finally obtain from (74): 

d(v vo) Gm d(v vo)
m = Af G (75)

dx f 1 Vf dx 

Replacing (75) into (70) gives us the microbuckling equation: 

d4(v vo) +q A G. d2 (v vo ) d2v 0EfI ± P (76) 
dx 4 1 Vf dx2 dx2 

We recall that the distributed force q represents the effect normal to the fiber. 

We now go back to the study of interlaminar stresses completed in the previous 

section. Interlaminar shear stresses tzy will develop at the interface between a 0° ply and 

an adjacent angled-ply, in the interlaminar matrix region of thickness 2e. They will tend to 

push the fiber along the y direction. Figure 12 illustrates the case where tzy pushes 

toward y increasing. 
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Figure 12. Inter laminar shear stress tzy 

The interlaminar stress theory developed in the previous section calculates the 

average of displacements u and v in a given ply over the thickness of that ply. Therefore 

the actual shear stress distribution through the thickness of a ply is not known. It would 

however be unreasonable to expect to solve the actual stress distribution owing to the 

circular geometry of the fibers, and the fact that the spatial distribution of fibers in a 0° ply 

is not uniform. We will consider that 0° fibers at the ply interface experience the 

distributed force { tzy(2rf)} . Let us now consider a 0° fiber located at the edge of the ply 

as shown on Figure 13. Because tzy varies with y, the half of the fibers closest to the 

edge will be exposed to a distributed force different from the one experienced by the half 

of the fiber further away from the edge. 
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Figure 13. Edge fiber in a 0° ply 

If the fiber waviness amplitude V is small enough, it is reasonable to assume that over the 

distance 2V the shear stress "Czy will not change sign. The normal force q on the fiber 

therefore has a magnitude: 

2rf rzy Wi) ( Wi 2vk.- 2r {['d Y (77)t (y = 2 tzy Y = 2 d, lvi1 

Y --2­

The load P on one fiber is related to the stress 60 ply on a 0° ply by: 

Af
 
(78)P Af lawfiber I l60° plyV 

Substituting (77) and (78) into (76) and recognizing that q will help the buckling process 

when the derivative of zy is positive, we obtain a microbuckling equation for a 0° fiber 

located in a given 0° ply that takes into account the action from the angled-plies 

surrounding this 0° ply: 
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di G mEfi d4 (V v°) 2(2rf v A ao. (79)Gm d2(v v°) 1d2v = 
dx4 dy w. f 1 Vf dx 2 V f PlY dX2 

2 

As a first approximation, we may consider that the shear stress tzx has no significant 

effect on the microbuckling of 0° fibers. Indeed, this stress is uniformly distributed on the 

fiber but in the loading direction, so its effect cancels out globally. 

The solution to the homogeneous differential equation (79) is of the form: 

v(x) = V sin(n-Z-) (80) 

with v °(x) = V° sin(itx) as previously assumed. (81) 

The length X is the half-wavelength.
 

Replacing (80) and (81) into (79) gives us a non-linear relationship between the stress on
 

a 0° ply and the amplitude V of buckling of a 0° fiber:
 

V= vo 
(82)

Af 2(2rf (IT"
Vf P Y dy w. 7C 

2 
1 2 

Gm
E +A 

f X f 1 Vf 

Equation (82) shows that the interlaminar shear stress tzy has the same effect as 

an increase in the applied stress aooply, thus resulting in a smaller denominator and 

consequently a larger microbuckling amplitude V. We note that the assumption that fibers 

have an initial waviness results in a continuous variation of the amplitude with the applied 
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stress rather than a bifurcation instability criterion. This assumption is physically justified 

since 0° fibers in a ply are never perfectly aligned with the loading direction. Angles 

measured in unidirectional plies before loading are typically in the range 2°-3° for various 

carbon fiber reinforced plastics [22]. 

In virtually all previous studies on microbuckling (Chapter 2) the buckling load 

was found as being the load at which X = 'critical' where Xcritical is the wavelength that 

minimizes the buckling load. This approach however does not take into account the value 

of the initial wavelength X0 of the fiber, which nevertheless reflects the fiber and matrix 

properties. We thus propose a more physical approach by considering that the fiber 

buckling wavelength will be equal to Xo. This is a reasonable assumption since a typical 

failure strain of less than 1% will result in an equivalent change in X. The initial 

wavelength X0 will be measured before testing by microscopic observation of the 

specimens. The initial amplitude V0 is related to X0 by the following equation: 

max( ). tan(0) Vo = ) tan(4) (83)
axo) V° 

X0dx 

where 4 is the initial fiber misalignment angle. 

The stress in a 0° ply is identical for all the 0° plies in the laminate and is related to 

the applied displacement ua by the CLT theory as ((3) and (5)): 

Ua 
with u a< 0 (84)= 

Eventually the 0° fiber buckling amplitude V in a given 0° ply in a laminate is 

therefore a function of the applied displacement through aooply and . tzy is a linearr 
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function of ua since after (40) they are a linear function of the coefficients A;1) and 13;1) 

(equations (40) and (64) respectively) which themselves are solutions of linear systems 

with left-hand side proportional to ua (equations (35) and (60) respectively). The 

amplitude V depends also upon the initial angles of all the angled-plies in the composite, 

and especially upon the angles of the two plies adjacent to the considered 0° ply. Indeed 

the amplitude V of a 0° fiber should be maximum at one of the two interfaces of the 0° ply 

where the slope of tzy is maximum . Finally it depends, through tzy , upon the general 

layup of the laminate. 

Now because the fibers that buckle first are located at the edge of the specimen, 

the support provided to these fibers by the surrounding matrix will be less than in the case 

of interior fibers. Theoretical investigations of the influence of free surfaces upon 

buckling fibers show that the critical shortening for a fiber located close to the free surface 

(on the order of a few fiber diameters) is about 40% below the critical shortening for a 

fiber located away from the free surface [46]. Hence we choose to reduce the support 

provided by the matrix by 40%, which means multiplying the couple-stress term 

{Af Gm /(1 Vf )} by (0.6). The equation giving the microbuckling amplitude for an 

edge fiber is therefore, from equation (82): 

v(ua, ek) = 
A Tzy(ua,
 

Vf pooply (ua )1+ 2(2rf) [ 
dy 

(85)
 

1 2 

Ef + (0.6) A Gm 
Xo f 1 Vf 

where the index (k) refers to the ply number. 
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One possible objection to the above model is the fact that from equilibrium 

considerations, the interlaminar shear stress tzy is zero at the free-edge, and reaches a 

maximum very close to it (see for instance [80]). The present approximate theory puts 

this maximum exactly at the free edge. It is however reasonable to consider that these 

surface fibers have only a negligible effect upon the general buckling of the fibers that are 

located behind them and that they are under the influence of the wider interlaminar stress 

field given by equations (40) and (64). This validates our approach. 

This concludes the derivation of our general microbuckling equation. In order to 

predict the failure of the laminate, it remains to formulate a fiber failure criterion. 

Actually, the present theory will be shown to allow us to investigate the propensity for 

laminate failure by delamination. 

3.4 Failure criteria 

3.4.1 Fiber failure 

As mentioned in Chapter 2, experiments on multidirectional laminates indicate that 

in-plane kinking of 0° fibers is the initial failure mode and it leads to catastrophic failure of 

the whole laminate immediately or very shortly afterwards. A relevant laminate failure 

criterion that hinges on this observation is fiber failure in bending. Failure will occur 

when the tensile strain in the fiber Ef reaches the fiber failure strain in tension Et f. The 

maximum tensile strain in the fiber occurs at the fiber surface and is the sum of a 

compressive component and a bending component. We have: 
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GO'fiber I + rf 
(d2V

Ef = (86)
Ef dX 2 

Replacing equations (78) and (80) into (86), we obtain the criterion for fiber failure: 

2 

GO° P1Y
Ef rf (-I) (V) = cif (87)

VfEf X0 

where V(ua,0k) is given by (85). Equation (87) will yield a value for the critical applied 

displacement ua. Dividing ua by L will then give us the failure strain Efailure 

3.4.2 Matrix failure (interlaminar failure) 

Failure of the matrix may occur in two modes: the first one is interlaminar failure 

due to the interlaminar stresses. We choose a quadratic failure criterion: 

\ 2 
(88)Vktzy ltzx )2 = "cf. 

where of is the shear failure stress of the matrix. Since tzx and tzy depend upon the 

applied displacement ua (see equations (35), (40), (60), (64)), equation (88) will yield a 

value for the critical applied displacement ua. Dividing ua by L will then give us the 

failure strain, Efailure 

It must be kept in mind that this failure criterion is not conservative because it does 

not include the interlaminar normal stress which could play a role if the layup sequence 

is such that az > 0 : would then tend to peel off 0° plies from their neighboring plies. 



79 

3.4.3 Matrix failure (in-ply failure) 

The second matrix failure mode is failure within a 0° ply due to shear stresses that 

develop in-between 0° fibers as a result of their in-phase buckling. The acting stress is 

then Tx), , which is given by the relation: 

max{txy} = max{yy} = Gm max{[d(vdxv°) (89) 

Using equations (89) and (80), the failure criterion will then be: 

Gm( (V V0) = tf (90) 

where V(ua,ek) is given by (85). Equation (90) will yield a value for the critical applied 

displacement ua. Dividing ua by L will then give us the failure strain, Efailure We are now 

able to investigate analytically the failure in compression of a given laminate. In Chapter 6 

we will apply the above theory to the case of the laminate [9/-9/02/9/-0/0]s, then compare 

theoretical predictions with the results from compressive tests conducted on this laminate, 

for various values of the angle O. These tests will now be covered in Chapter 4. 
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(4) EXPERIMENTS 

4.1 Overview 

For the same fiber and matrix, the interlaminar shear stresses depend upon various 

factors such as the ply angles, thicknesses, and layup. We chose to test our theory with a 

laminate whose only variable would be the angle of the off-axis plies. Varying the ply 

sequence would have resulted in highly discontinuous data not easily comparable owing 

to possible confounding variables (for example the position of the 0° plies with respect to 

the free surfaces). Varying the ply thicknesses (by stacking two or more plies together at 

each angle) would have resulted in different structure-deformation couplings and 

consequently would have affected the test results in a different manner. The easiest option 

to implement and test, and the one with the most wide-ranging and practical potential, was 

to vary the angles of the off-axis plies. For simplicity, all the off-axis plies had the same 

angle 0. The laminate [0/- 0/02/0/ -0/0]S was finally chosen to test the theory developed in 

Chapter 3 because its layup was identical (with two less (0/-0/02) groups) to the one used 

in [18], which is to our knowledge the only systematic experimental study of the off-axis 

plies angle influence on the compressive failure strain. This would, therefore, give us an 

additional experimental reference point with which to compare qualitatively our own 

theoretical predictions and tests results. In order to have a set of data as complete as 

possible, the angle 0 was varied from 10° to 90° in 10° intervals. The choice of a 

composite with 14 plies was a compromise between a specimen thick enough to prevent 

Euler buckling (see below) and with a number of plies as low as possible to minimize the 

computation time for theoretical predictions. 
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An additional series of tests was performed with a single 0° ply sandwiched 

between a transparent plastic. These tests were intended to observe the kinking process in 

a 0° ply as well as to provide extra insight into the propensity for out-of-plane buckling in 

specimens with a high angle 0. We will elaborate on these tests later in this chapter. 

4.2 [0/-0/02/0/-0/0]s laminate 

4.2.1 Specimens manufacturing 

Composite plates were manufactured from a roll of AS4 fibers pre-impregnated 

with a thermoplastic (polyphenylene sulfide PPS). Plies were cut from the roll with a 

razor blade at the desired orientation. The plies (dimensions: 80mm x 100 mm) were then 

stacked in the sequence: [0/- 0/02/0/ -0/0]S with the angle 0 varying from 10° to 90° in 10° 

intervals. The stacking sequence was the same for all the plates, only the value of the 

angle 0 varied from one plate to another. The fourteen plies were then placed in a specially 

designed aluminum mold as shown on Figure 14. The mold was made of two plates, a 

male part and a female part. The purpose of the mold was to prevent flowing of the 

matrix to the sides during the high temperature phase of the processing. In order to allow 

for a limited amount of flowing and to accommodate the different coefficients of thermal 

expansion of the composite and the aluminum, a gap of 1 mm was left between each edge 

of the plate and the inside walls of the mold. The mold was placed between two 

aluminum plates containing internal heaters. The plates in turn were put between the 

platens of a press. A composite plate (dimensions: 82 mm x 100 mm) was then 

manufactured using the following process: 
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Heating of the aluminum plates up to 320°C in 15 minutes with no pressure applied. 

Pressure applied (0.85 MPa) at 320°C for 15 minutes. 

Cooling of the aluminum plates down to room temperature under pressure. 

Manufacturing of 
a composite plate 
with 14 plies 

Figure 14. Ply stacking sequence in [0/-0/02/0/-0/0]s and plate manufacturing 
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Five specimens were then cut out of the center of the composite plate using a diamond-

coated wheel. The specimen dimensions were the following: 

Length: L = 80 mm Width: Wi = 12.7 mm Thickness: t = 1.7 mm 

The fiber volume fraction Vf of the composite was 60%. Testing methodology is 

summarized in Figure 15. 

Figure 15. Testing methodology 
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4.2.2 Compression testing 

Compression tests of composite materials are intrinsically more difficult to 

implement than tension tests. Compressive strength has been shown to be sensitive to the 

loading mechanism [99]. In addition, gross Euler buckling and crushing of the ends of 

the specimen must be avoided during loading. For these reasons, tabs must be glued at 

the top and bottom on each side of the specimen. They leave a central section of the 

specimen free, and failure should occur in this central region. Due to the large number of 

specimens prepared for testing (6 specimens for each of the 9 angles = 54 specimens) we 

chose to use two pairs of jigs to clamp the top and bottom of the specimen. Figure 16 is 

Figure 16. Jigs used to clamp the top and bottom ends of specimens 
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a detailed drawing of one of the four jigs used. Using jigs allowed fast and convenient 

replacement of a specimen just tested by the next specimen without having to manufacture 

fiberglass tabs for each specimen. The jigs were made out of steel for adequate restraint of 

the specimen during loading. Their design was similar but not identical to the design of 

jigs used in [61]. The major modification was the use of non-protruding screws to fasten 

the jigs together. This was necessary owing to the fact that the jigs had to slide freely in 

the compression test fixture. Indeed, special fixtures must be used for compression tests 

in order to obtain proper axial loading of the specimen. The Boeing modified ASTM 

D695 compression fixture was used for this purpose. The jigs were all identical except 

for the fact that two jigs had four partly conical holes to accommodate the screws heads 

(as on Figure 16), and two jigs had four threaded through-holes for the screws. Figure 17 

shows the positioning of the specimen in the jigs, and Figure 18 the global positioning of 

the specimen plus jigs in the compression fixture. 

Figure 17. Positioning of the specimen in the jigs 
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Figure 18. Positioning of the specimen in the compression fixture 

The gage-length, g, was chosen small enough to avoid Euler buckling of the central 

section of the specimen, yet large enough to allow for strain-gages to be placed in the 

central section. In order to avoid Euler buckling, the compressive strength of the material 

ae must be less than the Euler buckling stress ae: 

(2) ci2E2 
(91)6e 

3 )12(g) 
t 

where E is the material's stiffness 

g is the gage-length 

t is the thickness of the specimen 

c is a coefficient varying from 1 (simply supported) to 4 (clamped) 

the coefficient (2/3) is to allow for shear effect due to anisotropy. 
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In our case we obtain (for a 0° specimen and with c=2.5) a value of ae around 3 

GPa, which is more than twice the compressive strength. Euler buckling was therefore 

avoided. 

In order to obtain a good axial loading, two steel plates with spherical dimples and 

a steel ball in between them were placed on the top of the jigs and specimen. Strain-gages 

were glued on both sides of each specimen in order to monitor possible bending during 

loading. The strain-gages were connected to strain indicators and the strain read in real 

time. All tests were performed on a Instron 4505 at the speed of 0.05 mm/min., and data 

(load and cross-head displacement) were acquired using the "Labview" software on a 

Macintosh SE. The very low test speed was chosen in an attempt to observe in-plane 

microbuckling of fibers at the edge of the specimens in real time using a stereo microscope 

in a manner similar to [18]. Because specimens were unnotched, the location of fracture 

along the gage-length could not be predicted, unlike in [18] where notched specimens 

were used. It was therefore necessary to have the whole gage-length in the field of view, 

and the magnification was consequently limited to X15. However examination of the 

edge of three of the specimens in real time did not reveal any damage up to final failure, 

which happened catastrophically. 

The jigs were clamped manually on the specimens using an Allen wrench. Tight 

clamping was necessary in order to prevent failure out of the gage section. Most 

specimens then broke in the middle. 

We considered that the microbuckling strain and the final failure strain were 

identical. This assumption is justified by the fact that for straight specimens, failure is 

catastrophic. In [9] and [18], final failure was occurring about 5% above the 

microbuckling initiation strain. This was due to the presence of the hole. Failure was not 
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catastrophic because the kink propagates from the high stress hole/notch surface to a 

lower stress region. Its propagation is therefore stable, and load must be further increased 

to drive the kink through the whole width. In the case of a straight specimen, the stress 

field across the width is almost uniform, and therefore the kink propagates almost 

instantly. 

Results from the these tests will be presented in Chapter 5. 

4.3 Single-ply specimens 

In order to study further the mechanism of in-plane kinking and out-of-plane 

kinking in AS4/PPS, we performed additional experiments on specimens made up of a 

single 0° ply embedded in a transparent acrylic thermoplastic (acrylic). The purpose of 

these tests was two-fold: first to verify that a 0° ply of AS4/PPS failed in compression by 

kinking, and second to study the propensity for out-of-plane kinking versus in-plane 

kinking. The use of a transparent material allowed direct observation of the failure 

process. Acrylic was chosen over polycarbonate because its modulus of elasticity was 

slightly higher, and because microscopic view of the 0° ply through the acrylic was 

clearer. 

Samples were prepared by gluing a single ply of AS4/PPS in between two acrylic 

specimens with an acrylic cement. Dimensions of an acrylic specimen were 81 mm x 12.7 

mm x 2.8 mm. A first set of three samples was manufactured by letting them cure under a 

10 kg weight for 24 hours. The bonding was found to be poor, with gaps before loading 

between the plastic and the ply. A second set of three samples was prepared by pressing 

each sample at 1 Mpa (higher pressure cracked the acrylic) for 30 seconds, and then 
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leaving the three samples under a 20 kg weight for 24 hours. The bonding was then 

satisfactory, with no gaps between the plastic and the ply. Tests showed that the fibers 

adhered well to the plastic, because broken fibers stuck to the plastic upon strain recovery 

after testing. 

To avoid gross Euler buckling, the specimen was slightly clamped in the same 

compression fixture as used previously (tighter clamping resulted in undesirable friction 

between the specimen and the fixture). Figure 19 shows this set up. The loading speed 

was lmm/min. 

AS4/PPS ply between two plastic samples 

Figure 19. Single-ply sandwich specimen in compression fixture 

We also performed compression tests on unidirectional 90° AS4/PPS samples. 

The purpose of these tests was to correlate the propensity for out-of-plane microbuckling 

with the stiffness of the medium surrounding the 0° ply. These last samples were 
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manufactured from 8 hand-laid plies of pre-impregnated roll at a temperature of 320°C and 

a pressure of 0.5 Mpa for 10 minutes, using the same aluminum mold as for the 

multidirectional laminate. Three samples were cut from this plate and tested. Their width 

and length were the same as for the acrylic/(AS4/PPS)/acrylic sandwich specimens. 
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( 5 ) EXPERIMENTAL RESULTS 

5.1 [01-0102/81-0/0]S laminate 

The results obtained are presented in Figure 20 as a graph of the failure strain as a 

function of the angle 0. Each cross-hair corresponds to a specimen successfully tested. 
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Figure 20. Failure strains obtained from experiments 

Most of the samples broke as expected in the central gage section in a catastrophic 

manner. The stress-strain curves exhibited similar features at all angles. There was little 
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sign of non-linearity, except possibly just before fracture. Selected stress-strain curves are 

shown in Appendix A. On some specimens microscopic examination of the edge revealed 

broken fibers protruding in the y direction. This was an indication of the occurrence of 

in-plane kinking. However the catastrophic nature of the failure and subsequent 

interpenetrating of plies prevented us from concluding whether in-plane kinking had 

occurred first. It is nonetheless relevant to note that in some instances the specimens 

failed non-catastrophically out of the gage section: when this happened, failure was by in-

plane kinking. A crack was heard, corresponding to the breaking of fibers, and the test 

was stopped immediately. Because of the restraint from the jigs, further failure was 

prevented and microscopic examination was possible. Figure 21 clearly displays this 

event in the side 02 ply (plies 3 and 4). It shows 0° fibers that had buckled in-plane. The 

dark zone corresponds to a region of the 0° ply that is out of focus owing to fibers having 

buckled in-plane (out of the page). Similar pictures may be found in [9]. A few 

specimens broke prematurely by global ply delamination. We surmise that this was due to 

non-uniform flowing of the matrix and consequently improper bonding of the plies during 

the manufacturing process. When such a premature failure happened, the results were 

discarded. It was necessary to manufacture a second plate at 0 = 50° because all 

specimens from the initial plate at 0 = 50° broke prematurely. 
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60° -60° 0° 0° 60° -60° 0° 

specimen surface 

Figure 21. Edge view of an in-plane kink (dark zone) (sample with 0=60°, X50) 

5.2 Single-ply specimens 

Upon loading, samples failed by catastrophic propagation of a crack across the 

width. Subsequent increase of the load resulted in appearance of other cracks at various 

locations on the sample, either totally or partially through the width. Microscopic 

examination of the samples revealed that near the edges these cracks had inclined portions, 

which were in-plane kinks, at an angle of 13 = 20°. This value of 13 was in agreement with 

previous studies [4-8,17]. The rest of the cracks were made of fibers that broke by 

bending out of the ply plane. Figure 22 shows the various failure mechanisms. 
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OUT-OF­
PLANE 
CRACKIN-PLANE 

KINK I I " 

4.\\' 

(a) (b) (c) 

Figure 22. Failure mechanism in single-ply sandwich specimen. (a) Typical crack 
Thick lines indicate location of breakage of fibers. (b) Out-of-plane crack. (c) In-plane 
kink and kink band angle Q. (Gray lines in (b) and (c) are the fibers initial positions). 

Figure 23 is a photograph of an in-plane kink in one of the AS4/PPS plies. The 

kink band boundaries, where fibers are broken, are clearly visible. The angle J3 of the 

kink boundaries relative to the perpendicular to the loading axis is about 20°. On the right 

of the photograph one sees that only the top kink boundary is defined. The bottom right 

kink boundary is not formed because fibers there have not yet broken. The observed 

failure cracks are therefore a combination of out-of-plane and in-plane kinks. In all cases, 

the cracks initiate at the edges. This confirms the critical role played by edges in the 

compressive behavior of composites. It also shows that in-plane kinking is typically an 

edge phenomenon, and will tend to occur before out-of-plane kinking. Only one previous 

study of a single ply embedded in transparent plastic had, to our knowledge, been 

conducted [100]. A single ply was cast in epoxy and tested in compression. It revealed 

out-of-plane bending and kinking of the fibers. However the authors did not mention in-

plane kinks at all or report whether they had observed in-plane kinks. 
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Figure 23. In-plane kink (acrylic/AS4-PPS sample, X100) 

In theory, buckling should occur in the plane having the lowest bending stiffness 

[22]. In-plane buckling will be favored at the edges of the specimen owing to the lesser 

support at the free-edge. In the central section of the specimen, the out-of-plane bending 

of the fibers will be favored owing to the lower stiffness of the acrylic compared to that of 

the adjacent fibers within the ply. This through-the-thickness motion is therefore 

correlated with the stiffness of the medium surrounding the ply and the fibers. In the case 

of the Acrylic/AS4-PPS/Acrylic sample, it is the stiffness of the plastic itself. In the case 

of a AS4-PPS 0° ply inside a laminate, it is the transverse stiffness of the composite. In 

order to test this assumption, we performed compressive tests on the acrylic alone and on 

a unidirectional 90° AS4/PPS specimen and measured their compressive moduli. The 

compressive stress-strain curves of the acrylic are given in Figure 24. 
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Figure 24. Compressive stiffness of the acrylic 

The transverse compressive stress-strain curves of the composite are given in Figure 25. 

The respective moduli are compared in Figure 26. We note that the acrylic has indeed a 

compressive stiffness lower (43%) than the transverse compressive stiffness of the 

composite. This is an indication that our modeling of the high angle behavior based on the 

bending stiffnesses of the outer plies is correct. 
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Figure 25. Transverse compressive stiffness of the composite 
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(6) ANALYSIS 

6.1 Theoretical predictions for the [0/-0102/01-0/0]S laminate 

We apply the theory of Chapter 3 to the laminate [8/-9/02/0/-8/0]s made up of 

AS4/PPS plies. The properties of the AS4 fibers were taken from [14]: 

Ef = 214 GPa 

Etf = 0.014 (tensile strain to failure) 

rf = 3.5.10-6 m 

The properties of the PPS matrix were obtained directly from the manufacturer: 

Em = 3.4 GPa 

Gm = 1.3 GPa 

tf. = 80 GPa (shear failure stress) 

Because the shear failure stress was not available, the tensile strength was used as an
 

estimate. The Poisson's ratio was taken as v12 = 0.3.
 

The dimensions of each specimen were:
 

Length: L = 80 mm Thickness: t = 1.7 mm 

Width: Wi = 12.7 mm Ply thickness: h = t/14 = 0.123 mm 
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The thickness, e, of the matrix layer was chosen equal to h/10, that is between one and 

two fiber diameters. 

The calculation of the interlaminar stresses was done using the symbolic software 

package "Maple V" (Release 3). A high numerical accuracy turned out to be essential in 

order to obtain correct results. For the above laminate we had N = 6 (the 02 ply was 

counted as one), and therefore ten non-zero roots pi (equation (16)) These were on the 

order of 108 m 1 with slopes at the roots on the order of 10100. Owing to the factors 

{cosh(A/F), Wi/2)} in the system of simultaneous algebraic equations (system (35)), a 

high number of significant figures (30) was required in order to come up with accurate 

and converging numerical results. 

The computer program written in "Maple V" is self explanatory and is given in 

Appendix B, both for the multidirectional and the cross-ply laminates. The running time 

on PC (Pentium 100MHz) was less than 15 minutes. For a given angle 0, the program 

calculates the shear stresses and as a function of y and of the appliedzx zy 

displacement ua at any interface. Because the 02 ply is counted as a single ply of double 

thickness, the interfaces were numbered as follows (corresponding interfaces are in dark 

on the layup): 

Interface 1 [0/-0/02/0/-0/0]s 

Interface 2 [01-0/02/91-9/015 

Interface 3 [0/-0/02/01 -0/0]s 

Interface 4 8/02/0/-0/0]s 

Interface 5 [0/-0/02/0/-0/0] s 
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The interfaces we are interested in are the ones bordering a 0° ply, that is interfaces 2, 3, 

and 5. The curves T,x(y) and tz),(y) are given in Appendix C for selected values of 0, 

and for ua equal to 10-3 m. Only a half laminate is shown since the shear stresses are odd 

in y. The chosen value of ua gives a strain on the order of the failure strain of the 

composite. Because the shear stresses are directly proportional to ua, a different value of 

ua will only affect the amplitude of the curves, not their shape. The curves show that the 

shear stresses are very small in the central region and increase sharply in a boundary 

region near the edge of the laminate, as expected. Ultimately we are interested in the value 

of t and t at the edge (y = Wi/2). Figure 27 summarizes the results and gives thezx zy 
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Figure 27. Maximum interlaminar shear stresses tzx and tzy at (Wi/2) as a function of 0 
(at interfaces 2, 3 and 5) 

values of t and T at the edge for the three interfaces 2, 3 and 5. When 0 tends to 90°,zx zy 

the shear stresses given by equations (40) tend to the shear stresses given by equations 
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(64) for the special case 0 = 90°, as they should. We note that the amplitude of the shear 

stresses is maximum around 0 = 20°, and minimum around 0 = 60°. This finding 

suggests that for any laminate there is a theoretical range of angles (here between 55° and 

70°) for which shear stresses are almost zero. The microbuckling amplitude V should 

therefore be minimum in this range, for a given applied displacement ua. Consequently 

the strain to failure should be maximum in this range, as verified on Figure (20). It is 

interesting to note that FEA studies of angle-ply [0/-0]s laminates had shown that the 

interlaminar stress tzx was also minimum around 0 = 60° [73]. 

It is useful at this point to investigate the kinematics of interlaminar displacements. 

Equation (2) shows that shear stresses tzx and tzy at any interface (k) are proportional to 

and have the same sign as the difference in displacements between ply (k) and ply (k+1). 

(Shear stress) oc {[Displacement ply #(k)] [Displacement ply #(k +1)[} (92) 

Figure 28 shows the displacements corresponding to the angles 0 below 60°, based on the 

signs of the shear stresses and equation (92). 

We see that a positive tz), at interfaces 2 and 5 (and a negative tzy at interface 3) 

corresponds to an effort from angled-plies to push the 0° fibers towards the edge of the 

ply. Since -czy and its derivative have the same sign, we see that below 0 = 60°, the 

interlaminar shear stresses tzy promote the microbuckling of all 0° fibers (Equation (85)). 

Above 0 = 60° the signs in Figure 28 are reversed, hence the derivative of tzy is negative, 

and consequently the interlaminar shear stresses Tzy hinder the microbuckling of all 0° 

fibers. 
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Figure 28. Interlaminar shear stresses and ply kinematics (for 0 < 60°) 

The 0° fiber buckling amplitude, V, and of the fiber maximum tensile strain, Ef , 

were then calculated using equations (85) and (87) respectively. The composite predicted 

failure strain was evaluated as the ratio of the applied displacement ua corresponding to 

the fiber maximum tensile strain Ef being equal to the fiber failure tensile strain Etf, divided 

by L. These calculations were done with the mathematical software "Mathcad 5+". The 

calculations were done at interface 2 since it is the interface where zy (and its derivative) 

are maximum. 

The predicted curves are given in the next section and compared with the experimental 

results. 

In the present form, our theory could be applied to any laminate for the prediction 

of microbuckling failure. The "Maple V" program could be easily modified for this 

purpose. As an example, we include in Appendix D a "Maple V" program that calculates 

the failure strain for any 8 ply symmetrical laminate [01, 02, 03, OA. The angles 
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Oi } i=1..4 are specified as inputs. The program gives numerical values for the case [45/­

45/0/90]4. The program could also be used to estimate interlaminar shear stresses at any 

interface, in compression as well as in tension, simply by specifying in the program the 

interface k and the applied displacement ua. 

6.2 Comparison between experimental results and theoretical predictions 

Results from experiments on the multidirectional samples are shown in Figure 29, 

along with predictions from our theory. The graph also displays the curves for matrix 

failure, both within a 0° ply and at the interface. We recall that the in-plane kinking 

failure, interlaminar matrix failure and in-ply matrix failure were governed by criteria (86), 

(87), and (88) respectively. Only predictions corresponding to interface 2 are shown, 

since interlaminar stresses are maximum there. We notice that there is a good agreement 

between the theory and the experiments below 0 = 60°. In particular, the theory correctly 

predicts the presence of a minimum failure strain around 0 = 25°. This shows that shear 

stresses are the central mechanism involved in the in-plane kinking of the edge fibers 

below 0 = 60°, and it validates our theoretical approach. We further note that these results 

are qualitatively and quantitatively in agreement with experimental results obtained in [18] 

with the same layup, the same fibers and a thermoplastic matrix with similar properties. 

The study of the curves showing matrix failure give some additional insight into the 

failure mechanisms taking place. We note that the curve predicting interlaminar failure is 

well above both the curve predicting fiber microbuckling and the tests results. This 

implies that the microbuckling of the 0° fibers located at the edge, and consequently of the 

other 0° fibers, precedes interlaminar failure. We recall that interlaminar normal stresses 

az were not taken into account in the failure criterion (equation (88)), and consequently 
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Figure 29. Failure strains: theoretical predictions and experimental results 

the strain for interlaminar failure predicted by our theory would in general be 

conservative. However the interlaminar failure strain must still be higher than the 

microbuckling failure strain because curves on Figure 29 are in agreement with 

experiments with a similar layup [18], the latter showing that microbuckling was the initial 

failure mode. 
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The curve predicting shear failure of the matrix between fibers inside a 0° ply is, 

on the contrary, below the curve predicting fiber microbuckling and the tests results 

(except possibly above 0 = 80° for the tests). This indicates that the matrix fails in shear 

in-between the 0° fibers before the fibers fail in bending. This is in agreement with 

previous experimental results which showed matrix cracking in between 0° fibers [59]. In 

fact, the significant fiber rotations that occur during microbuckling and kinking [8] will 

cause plastic yielding of the matrix. Plasticity and non-linear shear behavior were not 

considered in this work because the matrix was modeled as linear elastic. 

There remains however a discrepancy between the predictions from the theory and 

experimental results at high angles, 0 > 60°. While the theory predicts a failure strain that 

keeps on increasing with 0, tests show a decrease in failure strain beyond 0 = 70°. We 

will see later in this chapter that our theory provides nevertheless a physical insight into 

this phenomenon. We will indicate what is then the most likely mechanism at work, and 

we will show how our theory could then be succinctly modified to give an estimate of the 

failure strain in good agreement with the test data. 

6.3 Parametric study 

In order to investigate the influence of variations in the stiffness of the composite 

upon the failure strain, we performed two parametric analyses. In the first one the fiber 

modulus Ef is varied from (Ef-10 %) to (Ef +10%) and the other parameters are left 

constant. In the second one the matrix moduli Em and Gm are varied from (Em-10%) and 

(Gm-10%) to (Em+10%) and (Gm+10%) respectively, and the other parameters are left 

constant. The corresponding strain to failure variations are shown on Figures 30 and 31 

respectively. 
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Figure 30. Failure strain intervals (based on in-plane kinking model) corresponding to a 
±10% variation in the fiber modulus Ef 
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Figure 31. Failure strain intervals (based on in-plane kinking model) corresponding to a 
±10% variation in the matrix moduli Em and Gm 

We note that the failure strain variations are of the same magnitude in both cases. 

This indicates that fiber properties and matrix properties have a similar influence upon the 

failure process, at least in the elastic regime. The variations are between ±7% and ±10% 

for angles 0 below 60°, where the theory is in agreement with experiments. The intrinsic 

statistical distribution of fiber and matrix mechanical properties should therefore give a 

correlated statistical distribution for the failure strain. Only beyond 0=70° do the stiffness 

variations yield failure strain variations in excess of 10%. These variations increase with 

0 and reach (+21%; -27%) at 0=90°. 
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6.4 Statistical study
 

A specimen with off-axis plies at a given angle 0 cannot strictly be considered 

statistically independent from another specimen at the same angle because they come from 

the same plate. In addition, the manufacturing process of the plates introduces 

confounding variables such as the position of the specimen in the plate (closer to the plate 

edges or to the plate center). Therefore we limit our statistical analysis to a curve fitting 

procedure on the experimental data. It turns out that the best fit is given by a fourth 

degree polynomial in 0, as shown on Figure 32. 

Figure 32. Curve fitting of experimental data 

This fourth degree polynomial is: 

(0.001436)04 - (0.3299)03 + (24.257)02 (590.64)0 + (9243.3) 
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The coefficient of determination R2 (equal to the ratio of the residuals sum of squares to 

the corrected sum of squares) is equal to 0.88. Almost 90% of the variation in the 

experimental data could therefore be accounted for by the model (fitting curve). This is an 

informal indication of the presence of a minimum strain around 0 = 20° and a maximum 

around 0 = 60°. 

6.5 The high angle case (0 > 60°) 

We recall from our theoretical predictions in Chapter 6 that above 0 = 60° the 

interlaminar shear stress and the derivative of with respect to y are negative (seezy zy 

Figure 28). Hence the interlaminar shear stresses tzy tend to push the fibers toward the 

center of the specimen, and consequently to hinder the microbuckling of 0° fibers over the 

whole specimen width, the effect being more severe at the edges. We will therefore 

assume that the 0° fibers may then buckle out-of-plane, that is through the thickness (z 

direction). The intuitive argument behind this assumption is the following: the out-of­

plane movement of the 0° fibers will cause bending of the surface (0/-0) plies. The 

resistance to the movement of the 0° fibers will thus be proportional to the bending 

stiffness of the surface (0/-0) plies. Because the bending stiffness of (0/-0) plies is 

minimum at 0=90° and increases as 0 decreases to 0°, the out-of-plane buckling amplitude 

of a 0° fiber should decrease with 0 and consequently the strain to failure Efailure should 

increase as 0 decreases from 90°. Physically, we will also recall that out-of-plane kinking 

of 0° fibers had been observed in cross-ply composites [61], which is a clue that out-of­

plane buckling could occur at angles 0 close to 90°. In order to give a quantitative aspect 

to this analysis and prove that out-of-plane buckling is the favored failure mode at high 

angles 0, an estimation of the strain to failure due to out-of-plane buckling of the 0° fibers 

may be quantified as follows: 



110 

We model the surface plies (0/-0) as a cantilever beam of thickness (2.h) and 

width (Wi). that is subjected to a distributed lateral load q'. From the geometry of the 

loading and the top and bottom jigs, we consider that this beam is a cantilever beam of 

length g. This is illustrated on Figure 33. 

Figure 33. Modeling of out-of-plane buckling of 0° plies 

From Timoshenko [101], the middle (maximum) bending amplitude 8 of the beam is: 

t g4 
8 = q' (93)

384 Eb Ib 

where Eb is the longitudinal stiffness of the (0/-0) beam and Ib its moment of inertia. The 

stiffness Eb depends on 0 and is given by: 

QM' 11+ Qii(-0) h
Eb (0) = = (94)

2h 

with 011(0) given by equation (4a). 
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The moment of inertia Ib is: 

(WO 2 3
Ib = 

(2h)3 = (WO h (95)
12 3 

Now the deflection 8 is the maximum W of the out-of-plane buckling amplitude w of the 

0° fibers given by: 

w(x) = Wsin(ic (96) 
2Lo 

The initial amplitude w0 will be: 

wo(x)=Wosin(71x) (97) 

with WD equal to Vo given by equation (83). For mathematical simplicity, we will assume 

that the load q' is actually proportional to the amplitude w and distributed along the 0° 

fiber. Using equations (93), (94) and the above assumption, we have therefore: 

384 Q (A) Ib
q'(0) = (98)g4 

Owing to experimentally observed out-of-plane kinking, we can assume that out-

of-plane microbuckling occurs in the shear mode. Hence we may use equation (79), 

substituting w and w0 for v and v0, and replacing q by q' as given by equation (98). We 

thus obtain the following out-of-plane microbuckling equation: 

d4(w wo) 384 Q,4(A) Ib
EfI + d2(w wo) Af d2w = 0 (99) 

dx4 1 Vf dX2 Vf PYI

I 

dX2I 
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We note that the sign in front of the normal load q' in equation (99) is opposite to 

the one in front of q in equation (79). This is because the normal loads are now hindering 

the buckling of the 0° fibers. Replacing equations (96) and (97) into (99), we then derive 

the following relationship between W, ua, and 0, in the same way equation (85) for 

V(ua,0) had been obtained: 

Wow(ua, e) = (100)Af 1 I \I 384 01, (0) Ib ( X0 )2 
law 1 lua)I g4Vf P Y 

1 2 

EfI(n + A Gm 
X.0 f l Vf 

Now the actual distributed force q' on one 0° fiber is less than q' given by 

equation (98). Indeed, we may expect that several and possibly all fibers along the width 

will buckle out-of-plane. The distributed force q' should therefore be divided by the 

number of rows of fibers buckling out-of-plane. On the other hand, we have not taken 

into account the additional resistance to buckling that arises from the fact that the (0/-0) 

surface plies are not isolated, but bound to the remaining plies by the matrix interlayers. 

This would contribute to increase the value of q'. We therefore introduce a correction 

coefficient in in the expression for q', with 0 < Ccon. < 1. Equation (100) becomes 

then: 

Wow(ua, e) = (101)Af \I con(384 Q11(8) II, j ( xo )2
(ua g4v I PY 11 IC 

1 f ,N2 

E let + A Gm 
f X0) f 1Vf 

For a correction coefficient equal to 0.25, equation (101) yields predictions for the 

buckling strain (using equation (27) with W instead of V) which are well above 



113 

experimental values in the angle range 0 > 60°, as shown on Figure 34. This indicates 

that the matrix offers actually a less than ideal support to the buckling fibers. We may 

therefore model the reduced matrix support by introducing a coefficient of reduction Cred 

smaller than 1 and modifying equation (101) as follows: 

w(ua, El) = 
A l 

Wo 
(384 ,4(0)IbQ X0 ) 

2 (102) 

V P Y a mi it 
1 

+ Af 
Gm 

C red 
1 Vf 

Arbitrarily choosing Cred equal to 1/3 yields results in agreement with experimental 

values, as shown on Figure 34. The rationale behind this choice is the fact that matrix 

failure (by yielding or microcracking) around the buckling fibers occurs before fiber 

breakage (see Figure 29). Consequently, the support provided by the matrix to the fibers 

is increasingly reduced, thus suggesting a coefficient Cred closer to zero. Estimating the 

actual value of Cred would require calculating the three dimensional stress field around the 

fibers, a task obviously quite complex owing to the geometry and the non-uniform 

packing of the fibers. Figure 35 summarizes experimental results and theoretical 

predictions for in-plane and out-of-plane fiber microbuckling. 
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Figure 34. Out-of-plane buckling theoretical predictions and experimental results 
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Figure 35. In-plane buckling and out-of-plane buckling theoretical predictions and 
experimental results 

Our series of tests on single ply specimens show that 0° AS4/PPS plies fail in 

compression by kinking, and thus indicates that kinking is indeed the failure mechanism 

of 0° plies in the multidirectional specimens. Moreover, results from these tests shed some 
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additional light on the behavior of our multidirectional specimens when the angle 8 is 

greater than 60° 

We first note that experimental results support the claim that buckling occurs in the 

direction with the lowest compressive stiffness. Indeed the acrylic is half as stiff as the 

transverse composite and out-of-plane buckling, toward the acrylic, is favored over in-

plane buckling, in the transverse direction of the composite. This is in qualitative 

agreement with our theoretical predictions which show that out-of-plane buckling occurs 

more easily when the surrounding medium has a lower bending stiffness. 

Second, experiments show the critical role played by the free-edge in the 

promotion of in-plane kinking. Indeed, in the vicinity of the edges of the specimens, in-

plane kinking becomes energetically more favorable than out-of-plane kinking, and occurs 

with an angle 0 around 20°. 
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( 7 ) CONCLUSIONS 

7.1 Summary 

The present investigation has focused on the development of a new theory for the 

prediction of compressive failure strains in multidirectional GFRP laminates, and its 

experimental validation. In order to summarize this body of theoretical and experimental 

work, the essential features of this investigation and the results obtained will be 

highlighted below, as well as the relevant conclusions that may be inferred from these 

results. 

The theory comprised two stages: in the first stage a new theory is developed for the 

determination of interlaminar shear stresses at the free-edge of a multidirectional 

composite. This theory is based on the concept of matrix layers in between plies. It 

could be applied to any layup, with reasonable computation times. As such it 

constituted an enticing alternative to the FEA calculation of interlaminar stresses, since 

FEA results are prone to mesh sensitivity. The interlaminar stresses depend upon the 

fiber and matrix properties, specimen geometry, ply sequences, and ply orientation. 

In a second stage a new analytical solution is developed for the strain to failure of 0° 

fibers in a multidirectional composite. It is derived from a general buckling equation 

for a fiber on foundation in the plane of the 0° ply. This solution incorporates the 

interlaminar stresses determined in the first stage of the theory, namely the transverse 

shear stresses Tu. The developed solution is thus the first one to take into account 
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interlaminar edge stresses. The physical justification behind this approach is the 

observed experimental fact that in-plane microbuckling of 0° fibers starts at the edges 

of specimens. 

The theory allowed calculation of the 0° fibers strain to failure using the fiber tensile 

failure strain as a criterion. The composite strain to failure is taken as the 0° fibers 

strain to failure. This is a reasonable assumption for straight specimens based on the 

fact that failure is then catastrophic or almost catastrophic after the onset of edge 0° 

fibers microbuckling. The strain to failure of 0° fibers is therefore ultimately a 

function of the fiber and matrix properties, specimen geometry, ply sequences, and 

ply orientations. 

In addition, the theory allows direct calculation of the applied strains that cause matrix 

shear failure either in between plies (interlaminar matrix failure) or in between fibers 

within a 0° ply (in-ply matrix failure). It predicts that 0° fiber failure in bending 

precedes interlaminar matrix failure. Even though the interlaminar matrix failure 

criterion was possibly conservative (owing to its not taking into account interlaminar 

normal stresses), this prediction is in agreement with experimental observations 

showing fiber microbuckling preceding interlaminar failure. The theory also predicts 

that in-ply matrix failure preceded 0° fiber failure, again in agreement with large matrix 

shear strains accompanying observed fiber rotations in kink bands. 

Specimens with the layup [0/-0/02/0/-0/0]s with various values of the angle 0 

between 10° and 90° were manufactured, and compression tests were performed. The 

strain to failure of each specimen was recorded and compared with experimental 

predictions as a function of the angle 0. The experimental strain to failure is found to 

decrease from 0=10° to 0=20°, increase between 0=20° and 0=60°, and decrease again 
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up to 0=90°. There is a very good qualitative and quantitative agreement between 

theory and experiments for angles 0 between 10° and 60°. 

In an attempt to explain experimental data above 0=60°, the above theory is then 

modified to model out-of-plane buckling of 0° fibers by evaluating the restraint due to 

adjacent plies on the through-the-thickness movement of 0° fibers. Theoretical 

predictions are then in good agreement with experimental data. 

Further compression tests are conducted on single 0° ply embedded in acrylic. They 

reveal that in-plane kink bands of 0° fibers formed at the specimen edges, and that out-

of-plane microbuckling of 0° fibers occurs in the central region of the specimens. This 

confirmed that in a laminate in-plane kinking was the failure mechanism of 0° fibers 

located at the edge, and that out-of-plane microbuckling would be promoted when the 

laminate had off-axis plies with higher angle fibers. 

In conclusion, we have proposed and built a new comprehensive theory for 

predicting compression failure in multidirectional laminates. Contrary to existing theories, 

our theory is physically sound because it incorporates previous experimental 

observations, and focuses on fiber failure at the specimen edges. It is also in agreement 

with observed features of compression failure in multidirectional laminates. Experiments 

validate our theoretical approach, and confirm the critical role played by interlaminar shear 

stresses at the free-edges. In addition, our theory explains the propensity for out-of-plane 

buckling of 0° fibers when surrounded with high-angle off-axis plies, phenomena that had 

been observed in cross-ply laminates. 
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7.2 Recommendations for further studies
 

The theory laid out in the present work could serve as a stepping stone for 

numerous further investigations into the compression behavior of multidirectional 

laminates. Below are suggested directions for future research which we believe would 

shed light on this topic. 

Improve the theory to include a calculation of the normal interlaminar stresses az. 

This would allow incorporation of the normal stresses in the interlaminar matrix 

failure criterion (88), for instance as follows (where af is the matrix failure strain in 

tension): 

2 2 2

(tzy H,zxj +(cyz) =1 
tf Gf'Et' 

It would ultimately yield better estimates for the applied strain at which interlaminar 

failure occurs. In the case of layups with high positive normal interlaminar stresses, 

interlaminar matrix failure could occur prior to in-plane kinking of 0° fibers. 

Incorporate in the theory a more systematic and comprehensive model for the 

propensity for out-of-plane kinking, including the case where 0° plies are outside 

plies. 

Model fibers as Timoshenko beams, thereby taking into account shear effects. This 

would allow the modeling of the formation of kink bands because strain 

discontinuities could then be directly incorporated in the theory. 
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Incorporate in the theory the fiber/matrix interface. This would allow including in the 

theory the possibility of regions of fiber/matrix relative slipping by considering 

strength of the fiber/matrix interface and an associated slipping criteria. 

Include in the theory the plastic behavior of the matrix. 

Improve the assessment of the onset of microbuckling/kinking by taking into account 

stress concentrations due to the 3-D nature of the stress field around the 0° fibers. A 

study of hexagonal arrays of fibers revealed significant stress concentrations [102]. 

Extend the present theory to incorporate the influence of the temperature upon the 

compression behavior of multidirectional laminates. High temperature studies in 

compression are still rare, even though state-of-the-art practical applications of 

composites will require high temperature resistance. Such a theoretical approach 

could usefully be complemented by tests at elevated temperature on specimens. 

Improve upon the theory by taking into account the fact that in-ply matrix failure (by 

yielding or microcracking) around the buckling fibers occurs before fiber breakage 

(see Figure 29). At the onset of matrix failure, the support from the matrix to the 

fibers would be correspondingly reduced. A further increase of the compressive 

strain would then yield a larger increase in the fiber curvature, further damaging the 

matrix and therefore reducing its support to the fibers, until final fiber failure. 

The present theory, valid for static loading, could serve as a guide for the build-up of 

a theory to model compressive fatigue behavior of multidirectional composites, an 

active area of research. The incorporation of interlaminar stresses in a theoretical 

model, as done herein, should be an essential feature of any fatigue theory owing to 
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the fatigue behavior of the matrix. The weakening support of the matrix to 0° fibers as 

the number of cycles increases could be incorporated in the in-plane microbuckling 

equation. This would lead to a criterion for in-plane kinking where the number of 

cycles would be a parameter. 
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APPENDIX A 

Compressive stress-strain curves 

for the laminate [0/-0/02/0/-0/0]s 

for selected values of O. 
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Figure A.1: Experimental stress-strain curve (0 = 10°) 



600 

130 

1 000 2000 3000 4000 5000 6000 
Strain (1E-6 m/m) 

0 

Figure A.2: Experimental stress-strain curve (0 = 20°) 
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Figure A.3: Experimental stress-strain curve (0 = 30°) 
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Figure A.4: Experimental stress-strain curve (0= 40°) 
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Figure A.5: Experimental stress-strain curve (0 = 50°) 
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Figure A.6: Experimental stress-strain curve (0 = 60°) 
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Figure A.7: Experimental stress-strain curve (0 = 70°) 
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Figure A.8: Experimental stress-strain curve (0 = 80°) 
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Figure A.9: Experimental stress-strain curve (0 = 90°)
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APPENDIX B 

Program "Maple V" for the calculation 

of interlaminar stresses 't tzx( zy 

for the laminate [0/-0/02a-0/01s 
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CALCULATION OF INTERLAMINAR SHEAR STRESSES 
FOR [theta/-theta/0/0/theta/-theta/0]s. 

All quantities are in S.I. units, except stiffnesses which are in GPa. Final shear 
stresses are in Pa. 

> Ef:=214: 

> Em:=34*10^(-1): 

> Gm:=13*10^(-1): 

> nu12:=3*10^(-1): 

> Vf:=6*10^(-1): 

> El:=Ef*Vf + Em*(1-Vf): 

> E2:=Ef*Em/(Vf*Em + (1-Vf)*Ef): 

> G:=Gm/(1-VO: 

> nu21:=nu12*E2/E1: 

> e:=123*10^(-7): 

> h:=123*10^(-6): 

> L:=8*10^(-2): 

> Wi:=127*10^(-4): 

All calculations performed with an accuracy of "Digits" given below: 
> Digits:=30:
 

> Q:=array([ [E1/(1-nu1l*nu21), E2*nu12/(1-nu12*nu21),01, [E2 *nu12/(1-nulren
 
> u21), E2/(1-nu12*nu21),01, 10,0,G11):
 

> Qb:=array(1..3,1..3): 

> Qb[1,1] :=Q[1,11*((cos(the/180*Pi))^4)+(2*Q[1,2] +4*Q[3,3])*((cos(the/180*Pi))A
 
> 2)*((sin(the/180*Pi))^2)+Q[2,21*((sin(the/180*Pi)) A 4):
 

> Qb[1,2] :=(Q[1,1] +Q[2,2]- 4*Q[3,3])*((cos(the/180*Pi))^2)*((sin(the/180*Pi))^2)+
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> Q [1 ,21 *(((sin(the/1 80*Pi))^4)+((cos(the/180*Pi))^4)): 

> Qb [2,2]:=Q [1 ,1] *((sin(the/180*Pi))^4)+(2*Q [1,2] +4*Q [3,3])*((cos(the/1 80*Pi))^ 
> 2)*((sin(the/180*Pi))^2)+Q[2,21*((cos(the/180*Pi))^4): 

> Qb[1,3]:=(Q[1,1]- Q[1,2]- 2*Q[3,3])*(sin(the/180*Pi))*((cos(the/180*Pi))^3)+(Q[ 
> 1,2]- Q[2,2] +2*Q[3,3])*((sin(the/180*Pi))^3)*(cos(the/180*Pi)): 

> Qb[2,3]:=(Q[1,11- Q[1,21- 2*Q[3,3])*((sin(the/180*Pi))^3)*(cos(the/180*Pi))+(QI 
> 1,21- Q[2,2] +2*Q[3,3])*(sin(the/180*P0)*((cos(the/180*Pi))^3): 

> Qb[3,3]:=(Q[1,1] +Q[2,2]- 2*Q[1,2]- 2*Q[3,3])*((sin(the/180*Pi))^2)*((cos(the/18 
> 0*Pi))^2)+Q[3,31*(((sin(the/180*Pi))^4)+((cos(the/180*Pi))^4)): 

> H:=array(IGIn/(2*e*h),Gm/(2*e*h),Gm/(4*e*h),Gm/(2*e*h),Gm/(2*e*h),Gm/(2 
> *e*h)1): 

> AA:=array([ [Qb[3,3] *rho-H[1], Qb[2,3]*rho, H[1], 0, 0, 0, 0, 0, 0, 0, 0, 0], [Qb[2 
> ,3] *rho, Qb[2,2] *rho-H[1], 0, H[1], 0, 0, 0, 0, 0, 0, 0, 0], [H[2], 0, Qb[3,3]*rho-2* 
> H[2], -Qb[2,3] *rho, H[2], 0, 0, 0, 0, 0, 0, 01, [0, H[2], -Qb[2,3] *rho, Qb[2,2]*rho-2 
> *H[2], 0, H[2], 0, 0, 0, 0, 0, 0], [0, 0, H[3], 0, Q[3,3]*rho-2*H [3], 0, H[3], 0, 0, 0, 0 
> , 01, [0, 0, 0, H[3], 0, Q[2,2]*rho-2*H[3], 0, H[3], 0, 0, 0, 0], [0, 0, 0, 0, H[4], 0, Qb[ 
> 3,3] *rho-2*H[4], Qb[2,3] *rho, H[4], 0, 0, 0], [0, 0, 0, 0, 0, H[4], Qb[2,3]*rho, Qb[ 
> 2,2] *rho-2*H[4], 0, H[4], 0, 0], [0, 0, 0, 0, 0, 0, H[5], 0, Qb[3,3]*rho-2*H[5], -Qb[ 
> 2,3]*rho, H[5], 0], [0, 0, 0, 0, 0, 0, 0, H[5], -Qb[2,3] *rho, Qb[2,2] *rho-2*H[5], 0, 
> H[5]1, [0, 0, 0, 0, 0, 0, 0, 0, H[6], 0, Q[3,3]*rho-H[6], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, H[6 
> ], 0, Q[2,2] *rho-H[6]] ]): 

> with(linalg): 
Warning: new definition for norm 
Warning: new definition for trace 

> detAA:=det(AA): 

Calculation of all roots and coefficients for a given theta given below by 
"angletheta" 

> angletheta:=50: 

> detAAang:=subs(the=angletheta,detAA): 

> rang := fsolve(detAAang=0,rho,fulldigits): 
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> rhos:=vector( [ rang[3], rang[4], rang[5], rang[6], rang[7], rang[8], rang[9], ran 
> g[10], rang[11], rang[12] ):
 

> Identity:=array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] 1):
 

> Qb[2,1]:=Qb[1,2]:
 

> Qb[3,1]:=Qb[1,3]:
 

> Qb[3,2]:=Qb[2,3]:
 

> Qbm[1,1]:=Qb[1,1]: 

> Qbm[1,2]:=Qb[1,2]: 

> Qbm[2,2]:=Qb[2,2]: 

> Qbm[3,3]:=Qb[3,3]: 

> Qbm[1,3]:=- Qb[1,3]: 

> Qbm[2,3]:=- Qb[2,3]: 

> Qbm[2,1]:=Qbm[1,2]: 

> Qbm[3,1]:=Qbm[1,3]: 

> Qbm[3,2]:=Qbm[2,3]: 

> the:=angletheta: 

> R1:=array(1..3,1..3): for m to 3 do for n to 3 do Rl[m,n]:=evalf(Qb[m,n] *rhos[i] 
> - H[1]*Identity[m,n]) od od: 

> R2:=array(1..3,1..3): for m to 3 do for n to 3 do R2Im,n1:=evalf(Qbm[m,n] *rhos[ 
> i] - 2*H[2]*Identity[m,n]) od od: 

> R3:=array(1..3,1..3): for m to 3 do for n to 3 do R3[m,n]:=evalf(Q[m,n]*rhos[i] ­
> 2*H[3]*Identitylm,n1) od od: 

> R4:=array(1..3,1..3): for m to 3 do for n to 3 do R4[m,n]:=evalf(Qb[m,n] *rhos[i] 
> - 2*H[4] *Identitylm,n1) od od: 
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> R5:=array(1..3,1..3): for m to 3 do for n to 3 do R5[m,n]:=evalf(Qbm[m,n] *rhos[ 
> i] - 2*H[5]*Identitylm,n1) od od: 

> R6:=array(1..3,1..3): for m to 3 do for n to 3 do R6Ini,n1:=evalf(Q[m,n]*rhos[i] ­
> H[6]*Identitylm,n1) od od:
 

> eql:=R133*A1 +H[1]*A2+R123*B1=0:
 

> eq2:=R123*A1 +R122*B1+H111*B2=0:
 

> eq3 :=R233 *A2+H [2] *A3+H [2] *A1+R223* B2=0:
 

> eq4:=R223*A2+R222*B2+H [2] *B3+H [2] *B1=0: 

> eq5:=R333*A3+H [3] *A4+H [3] *A2+R323*B3=0: 

> eq6 :=R323*A3+R322 *B3+H131*B4+H [3] *B2=0: 

> eq7:=R433*A4+H [4] *A5+H [4] *A3+R423 *B4=0: 

> eq8:=R423*A4+R422*B4+H[4] *B5+H [4] *B3=0: 

> eq9:=R533*A5+H [5] *A6+H [5] *A4+R523*B5=0: 

> eq10:=R523*A5+R522*B5+H[5]*B6+H[5]*B4=0: 

> eq11:=R633*A6+H[6]*A5+R623*B6=0: 

> Al:='Al': A2:='A2': A3:='A3': A4: ='A4': A5:='A5': A6:='A6': B1:='Bl': B2 
> :='B2': B3:='B3': B4:='B4': B5:='B5': B6:='B6': 

> Z:=solve( {eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9,eq10,eq11), {A2,A3,A4,A5,A6,B 
> 1,B2,B3,B4,B5,B6} ): 

> assign (Z): 

> FacA2:=subs(R122=R1[2,2], R222=R2 [2,2], R322=R3 [2,2], R422=R4[2,2], R522 
> =R5 [2,21, R123=R1 [2,3], R223=R2 [2,3], R323=R3 [2,3], R423=R4 [2,3],R523=R5 [ 
> 2,3], R623=R6[2,31, R133=R1[3,3], R233=R2[3,3], R333=R313,31,R433=R4[3,31, 
> R533=R5[3,3], R633=R613,31, Al=1, A2): 

> FacA3:=subs(R122=R1[2,21, R222=R2[2,2], R322=R3 [2,2], R422=R412,21,R522= 
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> R5[2,21, R123=R1[2,3], R223=R2[2,3], R323=R3[2,31, R423=R412,31,R523=R5[2,
 
> 3], R623=R6[2,3], R133=R1[3,3], R233=R2[3,3], R333=R3[3,3],R433=R413,31, R
 
> 533=R5[3,3], R633= R6[3,3], Al=1, A3): 

> FacA4:=subs(R122=R1 [2,2], R222=R2 [2,2], R322=IR3 [2,2], R422=R412,21,R522= 
> R5 [2,2], R123=R1 [2,3] , R223=R2 [2,3], R323=R3[2,31, R423=R412,31,R523=R5 [2, 
> 3], R623=R6[2,3], R133=R1[3,3], R233= R2[3,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], Al=1, A4): 

> FacA5:=subs(R122=R1 [2,2], R222=R2 [2,2], R322=R312,21, R422=R412,21,R522= 
> R5[2,21, R123=R112,31, R223=R2[2,31, R323=R3[2,31, R423=R4[2,3],R523=R5[2, 
> 3], R623= R6[2,3], R133=R113,31, R233=R2[3,31, R333=R313,31,R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], A1=1, A5): 

> FacA6:=subs(R122=R1[2,2], R222=R2[2,2], R322=R3[2,2], R422=R4[2,2],R522= 
> R5[2,2], R123=R1 [2,3 ], R223=R2 [2,4 R323=R3 [2,3] , R423=R4 [2,3],R523=R5 [2, 
> 3], R623=R6[2,3], R133=R1[3,3], R233=R213,31, R333=R313,31,R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], A1=1, A6): 

> FacB1 :=su bs(R122=R1 [2,2], R222=R2 [2,21, R322=R3 [2,2], R422=R4[2,21,R522= 
> R5[2,21, R123=R1[2,3], R223=R2[2,3], R323=R3[2,31, R423=R4[2,3],R523=R5[2, 
> 3], R623= R6[2,3], R133=R1[3,3], R233= R2[3,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], A1=1, B1): 

> FacB2:=subs(R122=R112,21, R222=R2 [2,2], R322=R3 [2,2], R422=R4[2,2],R522= 
> R5[2,2], R123=R1[2,3], R223=R2 [2,3], R323=R3[2,3], R423=R412,31,R523=R5[2, 
> 3], R623=R6[2,3], R133=R113,31, R233=R2[3,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], A1=1, B2): 

> FacB3:=subs(R122=R1 [2,2], R222=R2 [2,21, R322=R312,21, R422=R4 [2,21,R522= 
> R5[2,21, R123=R112,31, R223=R2[2,3], R323=R3[2,3], R423=R4[2,31,R523=R5[2, 
> 3], R623= R6[2,3], R133=R1[3,3], R233=R2 [3,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], A1=1, B3): 

> FacB4:=subs(R122=R1 [2,2], R222=R212,21, R322=R3 [2,2], R422=R4 [2,21,R522= 
> R5 [2,21, R123=R1 [2,3], R223=R2 [2,3], R323=R3 [2,3], R423=R4 [2,3] ,R523=R5 [2, 
> 3], R623= R6[2,3], R133=R1[3,3], R233=R2[3,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3], R633=R6[3,3], A1=1, B4): 

> FacB5:=subs(R122=R112,21, R222=R2 [2,2], R322=R3 [2,2], R422=R4[2,2],R522= 
> R5[2,2], R123=R1[2,3], R223=R212,3], R323=R312,3], R423=R4[2,3],R523=R5[2, 
> 3], R623= R6[2,3], R133=R1[3,3], R233= R2[3,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3], R633= R6[3,3], A1=1, B5): 
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> FacB6:=subs(R122=R112,21, R222=R212,21, R322=R3 [2,4 R422=R412,21,R522= 
> R512,21, R123=R1[2,3], R223=R2[2,3], R323=R3[2,3], R423=R412,31,R523=R5[2, 
> 3], R623=R6[2,3], R133=R1[3,3], R233=R213,3], R333=R3[3,3],R433=R4[3,3], R 
> 533=R5[3,3), R633=R613,31, Al=1, B6): 

> eq12:=R122*A1-R122=0: 

> ZZ:=solve( (eq12), (Al) ): 

> assign (ZZ): 

> FacAl:=subs(R122=R1 [2,2], Al): 

> MM21:=subs(1=1, ( Qbm12,21*(FacB2-FacB1)+Qbm[2,3]*(FacA2-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM31:=subs( 1=1, ( Q12,21*(FacB3-FacB1)+Q[2,3] *(FacA3-FacAl) )*sqrt( rhos[ 
> 1] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM41:=subs( 1=1, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,3]*(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM51:=subs(i=1, ( Qbm[2,2] *(FacB5-FacB1)+Qin[2,3] *(FacA5-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM61:=subs( i =1, ( Q12,21*(FacB6-FacB1)+Q[2,31*(FacA6-FacAl) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM22:=subs(1=2, ( Qbm[2,2]*(FacB2-FacB1)+Qhm[2,3] *(FacA2-FacA1) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM32:=subs( i=2, ( Q[2,2]*(FacB3-FacB1)+Q[2,3] *(FacA3-FacA1) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM42:=subs( 1=2, ( Qb[2,21*(FacB4-FacB1)+Qb[2,3] *(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM52:=subs( i=2, ( Qbm12,21*(FacB5-FacB1)+Qbm[2,3]*(FacA5-FacA1) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM62:=subs( i=2, ( Q[2,21*(FacB6-FacB1)+Q[2,3] *(FacA6-FacA1) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[1] )*W1/2 )): 
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> MM23:=subs( i=3, ( Qbm[2,2]*(FacB2-FacB1)+Qhm[2,3]*(FacA2-FacAl) ) *sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM33:=subs( i=3, ( Q[2,2]*(FacB3-FacB1)+Q[2,3] *(FacA3-FacAl) )*sqrt( rhos[ 
) *cosh( sqrt( rhos[i] )*W1/2 )):>
 

> MM43:=subs( i=3, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,3]*(FacA4-FacA1) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM53:=subs( i=3, ( Qbm[2,2]*(FacB5-FacB1)+Qhm[2,3] *(FacA5-FacA1) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM63:=subs( i=3, ( Q[2,2]*(FacB6-FacB1)+Q[2,3] *(FacA6-FacAl) )*sqrt( rhos[ 
> 1] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM24: =subs( 1=4, ( Qbm[2,2]*(FacB2-FacB1)+Qbm[2,3] *(FacA2-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM34:=subs( 1=4, ( Q[2,2]*(FacB3-FacB1)+Q[2,3]*(FacA3-FacAl) )*sqrt( rhos' 
> 1] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM44:=subs( 1=4, ( Qb[2,21*(FacB4-FacB1)+Qb[2,3] *(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM54:=subs( 1=4, ( Qbm[2,2] *(FacB5-FacB1)+Qhm[2,3]*(FacA5-FacAl))*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM64:=subs( i=4, ( Q12,21*(FacB6-FacB1)+Q[2,31*(FacA6-FacAl) )*sqrt( rhos[ 
> 1] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM25:=subs( i=5, ( Qbm[2,2] *(FacB2-FacB1)+Qhm[2,3] *(FacA2-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM35:=subs( i=5, ( Q[2,2]*(FacB3-FacB1)+Q[2,3] *(FacA3-FacAl) )*sqrt( rhos[ 
> )*cosh( sqrt( rhos[i] )*WiJ2 )): 

> MM45:=subs( i=5, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,31*(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM55:=subs( i=5, ( Qbm[2,2] *(FacB5-FacB1)+Qhm[2,31*(FacA5-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[1] )*Wi/2 )): 

> MM65:=subs( i=5, ( Q12,21*(FacB6-FacB1)+Q[2,31*(FacA6-FacAl) )*sqrt( rhos[ 
> 1] )*cosh( sqrt( rhos[i] )*Wi/2 )): 
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> MM26:=subs( i=6, ( Qbm[2,2]*(FacB2-FacB1)+Qhm[2,3]*(FacA2-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM36:=subs( 1=6, ( Q12,21*(FacB3-FacB1)+Q[2,3] *(FacA3-FacAl) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM46:=subs( i=6, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,3]*(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[1] )*Wi/2 )): 

> MM56:=subs( i=6, ( Qbm[2,2]*(FacB5-FacB1)+Qhm[2,3]*(FacA5-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM66:=subs( i=6, ( Q12,21*(FacB6-FacB1)+Q[2,3] *(FacA6-FacA1) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM27:=subs(1=7, ( Qbm[2,2]*(FacB2-FacB1)+Qhm[2,3]*(FacA2-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM37:=subs( i=7, ( Q[2,2]*(FacB3-FacB1)+Q[2,3] *(FacA3-FacA1) )*sqrt( rhos' 
> i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM47:=subs( i=7, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,3] *(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM57:=subs( i=7, ( Qbm[2,2]*(FacB5-FacB1)+Qhm[2,3]*(FacA5-FacA1) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM67:=subs( i=7, ( Q12,21*(FacB6-FacB1)+Q[2,31*(FacA6-FacAl) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[i] )*WiJ2 )): 

> MM28:=subs(1=8, ( Qbm[2,2]*(FacB2-FacB1)+Qbm[2,3] *(FacA2-FacA1) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM38:=subs( i=8, ( Q[2,2]*(FacB3-FacB1)+Q[2,3]*(FacA3-FacA1) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[1] )*Wi/2 )): 

> MM48:=subs( i=8, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,3] *(FacA4-FacA1) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM58:=subs( i=8, ( Qbm[2,2]*(Fac135-FacB1)+Qbm[2,3] *(FacA5-FacA1) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM68:=subs( i=8, ( Q12,21*(FacB6-FacB1)+Q[2,3] *(FacA6-FacA1) )*sqrt( rhos[ 
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> i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> MM29:=subs( i=9, ( Qbm[2,2]*(FacB2-FacB1)+Qhm[2,3]*(FacA2-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM39:=subs( i=9, ( Q12,21*(FacB3-FacB1)+Q[2,3]*(FacA3-FacAl) )*sqrt( rhos[ 
> i] )*cosh( sqrt( rhos[i] ) *Wi/2 )): 

> MM49:=subs( i=9, ( Qb[2,2]*(FacB4-FacB1)+Qb[2,3] *(FacA4-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM59:=subs( i=9, ( Qbm[2,2]*(FacB5-FacB1)+Qhm[2,3] *(FacA5-FacAl) )*sqrt 
> ( rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM69:=subs( i=9, ( Q[2,2] *(FacB6-FacB1)+Q[2,31*(FacA6-FacAl) )*sqrt( rhos( 
> )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM210:=subs( 1=10, ( Qbm[2,2] *(FacB2-FacB1)+Qhm[2,3]*(FacA2-FacAl) )*s 
> qrt( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MIVI310:=subs( i=10, ( Q12,21*(FacB3-FacB1)+Q[2,3]*(FacA3-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM410:=subs( i=10, ( Qb[2,2] *(FacB4-FacB1)+Qb[2,31*(FacA4-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM510:=subs( i=10, ( Qbm[2,2]*(FacB5-FacB1)+Qhm[2,3] *(FacA5-FacAl) )*s 
> qrt( rhos[i] ) *cosh( sqrt( rhos[i] )*Wi/2 )):
 

> MM610:=subs( i=10, ( Q[2,2]*(FacB6-FacB1)+Q[2,31*(FacA6-FacAl) )*sqrt( rh 
> os[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN21:=subs( i=1, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,31*(FacA2-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN31:=subs( 1=1, ( Q[ 2,3]*(FacB3-FacB1)+Q[3,3] *(FacA3-FacAl) )*sqrt( rhos[i 
> ] ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN41:=subs( i=1, ( Qb[2,31*(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) )*sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN51:=subs( i=1, ( Qbm[2,31*(FacB5-FacB1)+Qhm[3,3] *(FacA5-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 
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> NN61:=subs( 1=1, ( Q12,31*(FacB6-FacB1)+Q[3,31*(FacA6-FacAl) )*sqrt( rhos[i 
> J )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN22:=subs( i=2, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,3] *(FacA2-FacA1) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN32:=subs( i=2, ( Q[2,3]*(FacB3-FacB1)+Q[3,3] *(FacA3-FacAl) )*sqrt( rhos[i 
> )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN42:=subs( i=2, ( Qb[2,3]*(FacB4-FacB1)+Qb[3,3] *(FacA4-FacAl) )*sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN52:=subs( 1=2, ( Qbm[2,3]*(FacB5-FacB1)+Qbm[3,3] *(FacA5-FacAl) ) *sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN62:=subs( i=2, ( Q12,31*(FacB6-FacB1)+Q[3,31*(FacA6-FacAl) )*sqrt( rhos[i 
> ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN23:=subs( 1=3, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,3] *(FacA2-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN33:=subs( i=3, ( Q[2,3] *(FacB3-FacB1)+Q[3,31*(FacA3-FacAl) )*sqrt( rhos[i 
> ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN43:=subs( i=3, ( Qb[2,3] *(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) )*sqrt( rho 
> )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN53:=subs( i=3, ( Qbm[2,3]*(FacB5-FacB1)+Qbm[3,3] *(FacA5-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN63:=subs(1=3, ( Q[2,3] *(FacB6-FacB1)+Q[3,31*(FacA6-FacAl) )*sqrt( rhos[i 
> 1 )*cosh( sqrt( rhos[i] ) *W1/2 )): 

> NN24:=subs( i=4, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,3] *(FacA2-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN34:=subs( i=4, ( Q[2,3] *(FacB3-FacB1)+Q[3,3]*(FacA3-FacAl) )*sqrt( rhos[i 
> ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN44:=subs( i=4, ( Qb[2,3] *(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) )*sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN54:=subs( 1=4, ( Qbm[2,3]*(FacB5-FacB1)+Qhm[3,3] *(FacA5-FacAl) ) *sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 
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> NN64:=subs( 1=4, ( Q[2,3]*(FacB6-FacB1)+Q[3,3] *(FacA6-FacAl) )*sqrt( rhos[i 
> I )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN25:=subs( i=5, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,3] *(FacA2-FacAl) )*sqrt(
 
> rhos[i] )*cosh( sqrt( rhos[i] ) *Wi/2 )):
 

> NN35:=subs( i=5, ( Q12,31*(FacB3-FacB1)+Q[3,3] *(FacA3-FacAl) )*sqrt( rhos[i
 
> I )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN45:=subs( i=5, ( Qb[2,3] *(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) )*sqrt( rho
 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> NN55:=subs( i=5, ( Qbm[2,3]*(FacB5-FacB1)+Qbm[3,3] *(FacA5-FacAl) )*sqrt(
 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN65:=subs( i=5, ( Q[2,3]*(FacB6-FacB1)+Q[3,31*(FacA6-FacAl) )*sqrt( rhos[i
 
> ) *cosh( sqrt( rhos[1] )*Wi/2 )):
 

> NN26:=subs( i=6, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,3] *(FacA2-FacAl) )*sqrt(
 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN36:=subs(1=6, ( Q12,31*(FacB3-FacB1)+Q[3,3] *(FacA3-FacAl) )*sqrt( rhos[i 
> ] ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN46:=subs( i=6, ( Qb[2,3]*(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) ) *sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN56:=subs( i=6, ( Qbm[2,3]*(FacB5-FacB1)+Qbm[3,31*(FacA5-FacAl) )*sqrt(
 
> rhos[i] ) *cosh( sqrt( rhos[i] )*Wi/2 )):
 

> NN66:=subs( i=6, ( Q12,31*(FacB6-FacB1)+Q[3,3]*(FacA6-FacAl) )*sqrt( rhos[i
 
> ] ) *cosh( sqrt( rhos[i] )*W1/2 )): 

> NN27:=subs( i=7, ( Qbm[2,3]*(FacB2-FacB1)+Qbm[3,3] *(FacA2-FacAl) )*sqrt(
 
> rhos[i] ) *cosh( sqrt( rhos[i] )*Wi/2 )):
 

> NN37:=subs( i=7, ( Q[ 2,3]*(FacB3-FacB1)+Q[3,3] *(FacA3-FacAl) )*sqrt( rhos[i
 
> ] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN47:=subs( i=7, ( Qb[2,3]*(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) )*sqrt( rho
 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> NN57:=subs( i=7, ( Qbm[2,3]*(FacB5-FacB1)+Qbm[3,3] *(FacA5-FacA1) ) *sqrt(
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> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN67:=subs( i=7, ( Q[2,3]*(FacB6-FacB1)+Q[3,3] *(FacA6-FacAl) )*sqrt( rhos[i 
> ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN28:=subs(i=8, ( Qbm [2,3] *(FacB2-FacB1)+Qbm 13,31*(FacA2-FacA1) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN38:=subs( i=8, ( Q12,31*(FacB3-FacB1)+Q[3,31*(FacA3-FacAl) )*sqrt( rhos[i 
> ] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN48:=subs(1=8, ( Qb[2,3] *(FacB4-FacB1)+Qb[3,31*(FacA4-FacAl) )*sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN58:=subs( i=8, ( Qbm[2,3]*(FacB5-FacB1)+Qhm[3,3] *(FacA5-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN68:=subs( i=8, ( Q12,31*(FacB6-FacB1)+Q[3,3] *(FacA6-FacAl) )*sqrt( rhos[i 
> I ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN29:=subs(i=9, ( Qbm[2,3]*(FacB2-FacB1)+Qbm13,31*(FacA2-FacA1) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN39:=subs(i=9, ( Q12,31*(FacB3-FacB1)+Q[3,31*(FacA3-FacAl) )*sqrt( rhos[i] 
> )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN49:=subs(1=9, ( Qb[2,3]*(FacB4-FacB1)+Qb[3,3] *(FacA4-FacAl) )*sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] ) *Wi/2 )): 

> NN59:=subs( i=9, ( Qbm[2,3]*(FacB5-FacB1)+Qbm[3,31*(FacA5-FacAl) )*sqrt( 
> rhos[i] ) *cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN69:=subs( i=9, ( Q12,31*(FacB6-FacB1)+Q[3,31*(FacA6-FacAl) )*sqrt( rhos[i 
> I )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN210:=subs( i=10, ( Qbm[2,3]*(FacB2-FacB1)+Qhm[3,3] *(FacA2-FacAl) )*sq 
> rt( rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN310:=subs( i=10, ( Q[2,3]*(FacB3-FacB1)+Q[3,3] *(FacA3-FacAl) )*sqrt( rho 
> s[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN410:=subs( i=10, ( Qb[2,3]*(FacB4-FacB1)+Qb[3,3] *(FacA4-FacAl) )*sqrt( r 
> hos[i] ) *cosh( sqrt( rhos[i] )*Wi/2 )): 
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> b[2,31*Qb[2,31): 

> eq21:=MM21*Atl+MM22*At2+MM23*At3+MM24*At4+MM25*At5+MM26* 
> At6+MM27*At7+MM28*At8+MM29*At9+MM210*At10=RR2: 

> eq22:=MM31*Atl+MM32*At2+MM33*At3+MM34*At4+MM35*At5+MM36* 
> At6+MM37*At7+MM38*At8+MM39*At9+MM310*At10=RR3: 

> eq23:=MM41*Atl+MM42*At2+MM43*At3+MM44*At4+MM45*At5+MM46* 
> At6+MM47*At7+MM48*At8+MM49*At9+MM410*At10=RR4: 

> eq24:=MM51*Atl+MM52*At2+MM53*At3+MM54*At4+MM55*At5+MM56* 
> At6+MM57*At7+MM58*At8+MM59*At9+MM510*At10=RR5: 

> eq25:=MM61*Atl+MM62*At2+MM63*At3+MM64*At4+MM65*At5+MM66* 
> At6+MM67*At7+MM68*At8+MM69*At9+MM610*At10=RR6: 

> eq26:=NN21*Atl+NN22*At2+NN23*At3+NN24*At4+NN25*At5+NN26*At6+N 
> N27*At7+NN28*At8+NN29*At9+NN210*At1 0=SS2: 

> eq27:=NN31*Atl +NN32*At2+NN33*At3+NN34*At4+NN35*At5+NN36*At6+N 
> N37*At7+NN38*At8+NN39*At9+NN310*At10=SS3: 

> eq28:=NN41*Atl+NN42*At2+NN43*At3+NN44*At4+NN45*At5+NN46*At6+N 
> N47*At7+NN48*At8+NN49*At9+NN410*At10=SS4: 

> eq29:=NN51*Atl+NN52*At2+NN53*At3+NN54*At4+NN55*At5+NN56*At6+N 
> N57*At7+NN58*At8+NN59*At9+NN510*At10=SS5: 

> eq30:=NN61*Atl+NN62*At2+NN63*At3+NN64*At4+NN65*At5+NN66*At6+N 
> N67*At7+NN68*At8+NN69*At9+NN610*At10=SS6: 

> Atl:='Atl': At2:='At2': At3:=eAt3': At4:='At4': At5:='At5': At6:='At6': At7:='A 
> t7': At8:='At8': At9:='At9': At10:='At10':
 

> At:=solve( (eq21,eq22,eq23,eq24,eq25,eq26,eq27,eq28,eq29,eq30),{Atl,At2,At3,
 
> At4,At5,At6,At7,At8,At9,At10} ):
 

> assign (At):
 

> Atf:=vector( [Atl,At2,At3,At4,At5,At6,At7,At8,At9,At10] ):
 

> FacA:=vector( [1, FacA2, FacA3, FacA4, FacA5, FacA6] ):
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> FacB:=vector( [FacB1, FacB2, FacB3, FacB4, FacB5, FacB6] ): 

Definition of shear stresses at the interface k (between ply 'k' and ply `k+11): 

> k:=2: 

> ua:=-1*10^(-3): 

> Tauzx:=(ua/L)*(Gm/(2*e))*( Atf[1]*(subs(i=1, FacA[k]-FacA[k+1]))*sinh( sqrt( 
> rhos[1] )*y ) +Atf[2]*(subs(i=2, FacA[k]-FacAlk+11))*sinh( sqrt( rhos[2] )*y ) + 
> Atf[3]*(subs(i=3, FacA[k]-FacA[k+1]))*sinh( sqrt( rhos[3] )*y ) +Atf[4]*(subs(i= 
> 4, FacA[k]-FacA[k+1]))*sinh( sqrt( rhos[4] )*y ) +Atf[5]*(subs(i=5, FacA[k] -Fac 
> Alk+11))*sinh( sqrt( rhos[5] )*y ) +Atf[6]*(subs(i=6, FacAlkl-FacA[k+1]))*sinh( 
> sqrt( rhos[6] )*y ) +At1171*(subs(i=7, FacA[k]-FacAlk+11))*sinh( sqrt( rhos[7] )* 
> y ) +Atf[8]*(subs(i=8, FacA[k]-FacA[k+1]))*sinh( sqrt( rhos[8] )*y ) +Atf[9]*(su 
> bs(i=9, FacA[k]-FacAlk+11))*sinh( sqrt( rhos[9] )*y ) +Atf[10] *(subs(i=10, FacA 
> 1k1-FacA[k+1]))*sinh( sqrt( rhos[10] )*y ) ); 

> Tauzy:=(ua/L)*(Gm/(2*e))*( Atf[11*(subs(i=1, FacB[k]-FacB[k+1]))*sinh( sqrt( 
> rhos[1] )*y ) +Atf[2]*(subs(i=2, Fac1311(1-FacB[k+1]))*sinh( sqrt( rhos[2] ) +A 
> tf[3] *(subs(i=3, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[3] )*y ) +Atf[4]*(subs(i=4, 
> FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[4] )*y ) +Atf[5] *(subs(i=5, FacB[k]-FacB[ 
> k+1]))*sinh( sqrt( rhos[5] )*y ) +Atf[6]*(subs(i=6, FacB[k]-FacB[k+1]))*sinh( sq 
> rt( rhos[6] )*y ) +Atf[7]*(subs(i=7, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[7] )*y ) 
> +Atf[8]*(subs(i=8, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[8] )*y ) +Atf[9]*(subs(i 
> =9, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[9] ) *y) +Atf[10]*(subs(i=10, FacB[k]­
> FacB[k+1]))*sinh( sqrt( rhos[10] )*y ) ): 

> val:=subs(y=Wi/2,Tauzy*10^9): 

> Digits:=10: 

> val; 

-.2431958723 108 
> plot({Tauzx*10^9,Tauzy*10^9},y=0..WiJ2); 

> the; 

50
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SPECIAL CASE OF theta=90*. 

> Ef:=214: 

> Em:=34*10^(-1): 

> Gm:=13*10^(-1): 

> nu12:=3*10^(-1): 

> Vf:=6*10^(-1): 

> El:=Ef*Vf + Em*(1-Vt): 

> E2:=Ef*Em/(Vf*Em + (1-Vf)*Ef): 

> G:=Gm/(1-V1): 

> nu21:=nu12*E2/E1: 

> e:=123*10^(-7): 

> h:=123*10^(-6): 

> L:=8*10^(-2): 

> Wi:=127*10^(-4): 

> Q:=array([ [E1/(1-nu12*nu21), E2*nu12/(1-nu1.2*nu21),0], [E2*nu12/(1-nu12*n 
> u21), E2/(1-nu12*nu21),01, [0,0,G] 1): 

> Qb:=array(1..3,1..3): 

> Qb[1,1]:=Q[2,2]: 

> Qb[1,2]:=Q[1,2]: 

> Qb[2,2]:=Q[1,1]: 

> Qb[1,3]:=0: 

> Qb[2,3]:=0: 
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> Qb[3,3]:=Q[3,3]: 

> H:=array([ Gm/(4*e*h),Gm/(4*e*h),Gm/(4*e*h),Gm/(2*e*h) 1): 

> f:'f': f:=rho-> ((Qb[2,2] *Q12,21)^2)*(rho^3) ( Qb12,21*(11141+2*H121)+Qt2,21*( 
> H[1] +2*H[3]) rQb[2,21*Q [2,2] *(rho^2) + (Qb [2,21*Q [2,21*(H 111*H[2] +H[3] *H1 
> 41+H[1]*H[4]+3*H[2]*H[31)+2*H[2]*H141*(Qb[2,21^2)+2*H[1]*H[3]*(Q[2,2] ^2 
> ) r rho - ( Qb [2,21*(H[2] *H[3]*11141+H [ 1] *H[2]*H 141)+Q [2,2] *(H11 1*H [31*H[4] 
> +H[1]*H[2]*H[3]) ): 

> plot(f(rho), rho=5.1*10^7..5.5*10^7): 

> Digits:=30: 

> eql:= aQb[2,2]*Q[2,2])^2)*(rho^3) - ( Qb[2,21*(H[41+2*H[2])+Q[2,2] *(H[11+2* 
> H[3]) rQb[2,21*Q[2,2]*(rho^2)+( Qb[2,21*Q12,21*(H[11*H[21+H[3]*H[4] +H[1]* 
> H[4]+3*H[2] *H [3])+2*H [2]*H[4]*(Qb 12,21^2)+2*H 11*H[3] *(Q [2,2[1\2) )*rho - ( 
> Qb[2,2]*(H[2]*H[3]*H[41+H[1]*H[2]*H[4])+Q[2,21*(H[1]*H[3]*H141+H[1]*H[ 
> 2]*H[3]) )=0: 

> with(linalg): 
Warning: new definition for norm 
Warning: new definition for trace 

> rhos:=fsolve(eql,rho,fulldigits):
 

> Identity:=array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] 1):
 

> Qb[2,1]:=Qb[1,2]:
 

> Qb[3,1]:=Qb[1,3]:
 

> Qb[3,2]:=Qb[2,3]:
 

> R1:=array(1..3,1..3): for m to 3 do for n to 3 do Rl[m,n]:=evalf(Qb[m,n] *rhos[i] 
> - H[1]*Identity[m,n]) od od: 

> R2:=array(1..3,1..3): for m to 3 do for n to 3 do R2Im,n1:=evalf(Q[m,n]*rhos[i] ­
> 2*H[2]*Identitylm,n1) od od: 

> R3:=array(1..3,1..3): for m to 3 do for n to 3 do R31m,n]:=evalf(Qb[m,n] *rhos[i] 
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> - 2*H[3]*Identity[m,n]) od od: 

> FacB2:= -R1 [2,2] /H111:
 

> FacB3:= -1 + R2[2,2] *R1[2,21/(H[1]*H121):
 

> FacB4:=R112,21/H[1] + R3 [2,2]/H[3] - R312,21*R2[2,2]*R1[2,2]/(H[1]*H[2]*H[3]
 
> ); 

> MM21:=subs(i=1, (FacB2-1)*sqrt(rhos[i]rcosh( sqrt(rhos[i])*Win )): 

> MM31:=subs(i=1, (FacB3-1)*sqrt(rhos[1])*cosh( sqrt(rhos[i])*Win )): 

> MM41:=subs(i=1, (FacB4-1)*sqrt(rhos[i]) cosh( sqrt(rhos[i])*Wi/2 )): 

> MM22:=subs(i=2, (FacB2-1)*sqrt(rhos[i]) *cosh( sqrt(rhos[i])*WiJ2 )): 

> MM32:=subs(i=2, (FacB3-1)*sqrt(rhos[i]) *cosh( sqrt(rhos[i])*Wi/2 )): 

> MM42:=subs(i=2, (FacB4-1)*sqrt(rhos[i]rcosh( sqrt(rhos[i])*Wi/2 )): 

> MM23:=subs(i=3, (FacB2-1)*sqrt(rhos[i]) *cosh( sqrt(rhos[i])*Wi/2 )): 

> MM33:=subs(i=3, (FacB3-1)*sqrt(rhos[i]rcosh( sqrt(rhos[i])*Wi/2 )): 

> MM43:=subs(i=3, (FacB4-1)*sqrt(rhos[i]) *cosh( sqrt(rhos[i])*Wi/2 )): 

> RR2:=(Q [2,2] *Qb [1,2] - Qb12,21*Q [1,2])/(Q[2,2] *Qb[2,2]): 

> RR3:=(Qb [2,2 j*Qb [1,2] - Qb[2,2]*Qb [1,2])/(Q[2,2] *Qb[2,2]): 

> RR4:=(() [2,2] *Qb [1,2] - Qb [2,2] *Q [1,2])/(Q[2,21*Qb[2,2]): 

> eq21:=MM21*Btl+MM22*Bt2+MM23*Bt3=RR2:
 

> eq22:=MM31*Btl+MM32*Bt2+MM33*Bt3=RR3:
 

> eq23:=MM41*Btl+MM42*Bt2+MM43*Bt3=RR4:
 

> Btl:='Btl': Bt2:='Bt2': Bt3:='Bt3':
 

> Bt:=solve( (eq21,eq22,eq23), {Btl,Bt2,Bt3} ):
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> assign (Bt):
 

> Btf:=vector( [Bt1,Bt2,Bt3] ):
 

> FacB:=vector( [1, FacB2, FacB3,FacB4] ):
 

Definition of shear stresses at the interface k 
(for the angle defined in "angletheta"): 

> k:=1: 

> ua:=-1*10^(-3):
 

> Tauzy:=(ua/L)*(Gm/(2*e))*( Btf[1] *(subs(i=1, FacB[k]-FacB[k+1]))*sinh( sqrt(
 
> rhos[1] ) + Btf[2]*(subs(i=2, FacB[k]-FacBlk+11))*sinh( sqrt( rhos[2] )*y ) +
 
> Btf[3]*(subs(i=3, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[3] ) ):
 

> Digits:=10: 

> val:=subs(y=WiJ2,Tauzy*10^ 9): 

> val; 

- .271.3002983 108 
> plot({0,Tauzy*10^9},y=0..Wi/2); 
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APPENDIX C 

Curves Tzx and Tzy as a function of y
 

at interfaces 2,3, and 5
 

for the laminate [0/-0/02/0/-0/01s
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Figure C.1: Plots of tz and tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 1°, Interface 2) 
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Figure C.2: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 5°, Interface 2) 
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Figure C.3: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 9 = 10°, Interface 2) 

Pa 
4 e+007 

TzY 

2e+007
 

0
 

-2e+007
 

- 4e4007
 

-6e-E007
 

-8e+007
 

-1 e+008
 

1.2e+008 

Figure C.4: Plots of tz and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 15°, Interface 2) 
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Figure C.5: Plots of tz. and ;), as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 20°, Interface 2) 

Pa 
6e+007 

4 e 4-007 

2e+007 

0 

-2e+007 

-4e+007 

-6 e +007 

-8e-F007 

-1 e+008 

Figure C.6: Plots of Tz and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 25°, Interface 2) 
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Figure C.7: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 30°, Interface 2) 

Figure C.8: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 35°, Interface 2) 
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Figure C.9: Plots of tz. and Tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 40°, Interface 2) 
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Figure C.10: Plots of ti and tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 45°, Interface 2) 
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Figure C.11: Plots of Tz. and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 50°, Interface 2) 
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Figure C.12: Plots of tzx and 'Czy as a function of y (0 < y < Wi/2) for ua=-10-3m. 

(Angle 0 = 55°, Interface 2) 
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Figure C.13: Plots of Tzx and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 60°, Interface 2) 
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Figure C.14: Plots of -Cm and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 65°, Interface 2) 
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Figure C.15: Plots of Tzx and ;y as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 70°, Interface 2) 
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Figure C.16: Plots of tzx and Tzy as a function of y (0 < y < Wi/2) for ua=-1	 m. 

(Angle 0 = 75°, Interface 2) 
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Figure C.17: Plots of "C. and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 80°, Interface 2) 
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Figure C.18: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 85°, Interface 2) 
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Figure C.19: Plots of Tz and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 90°, Interface 2) 
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Figure C.20: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 1°, Interface 3) 
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Figure C.21: Plots of tm and Tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 5°, Interface 3) 
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Figure C.22: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10.3m. 
(Angle 0 = 10°, Interface 3) 
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Figure C.23: Plots of "C y (0 < y < Wi/2) for ua-10-3 m. 
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Figure C.24: Plots of; and; as afunction ofy (0 <y < Wi/2) for 0-3 in. 

=(Angle 0 20°, Interface 3) 
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Figure C.25: Plots of tzx and Tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 25°, Interface 3) 
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Figure C.26: Plots of tii, and Tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 30°, Interface 3) 
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Figure C.27: Plots of tz, and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 35°, Interface 3) 
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Figure C.28: Plots of tz. and 'czy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 40°, Interface 3) 
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Figure C.29: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 8 = 45°, Interface 3) 
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Figure C.30: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 50°, Interface 3) 
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Figure C.31: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u.=-10-im. 
(Angle 0 = 55°, Interface 3) 
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Figure C.32: Plots of ti;, and Tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 60°, Interface 3) 
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Figure C.33: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 65°, Interface 3) 
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Figure C.34: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 70°, Interface 3) 
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Figure C.35: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 75°, Interface 3) 
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Figure C.36: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 80°, Interface 3) 
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Figure C.37: Plots of Tz. and Tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 85°, Interface 3) 
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Figure C.38: Plots of Tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 90°, Interface 3) 
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Figure C.39: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u-1113m. 
(Angle 0 = 1°, Interface 5) 
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Figure C.40: Plots of Tzx and Tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 

(Angle 0 = 5°, Interface 5) 
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Figure C.41: Plots of Tza and tzy as a function of y (0 < y < Wi/2) for ua -10 3 m. 
(Angle 0 = 10°, Interface 5) 

Figure C.42: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 15°, Interface 5) 
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Figure C.43: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 20°, Interface 5) 

Figure C.44: Plots of tz and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 25°, Interface 5) 
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Figure C.45: Plots of tz and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 30°, Interface 5) 
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Figure C.46: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 35°, Interface 5) 
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Figure C.47: Plots of Tz. and ;y as a function of y (0 < y < Win) for ua=-10-3m. 
(Angle 0 = 40°, Interface 5) 
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Figure C.48: Plots of Tax and Tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 450, Interface 5) 
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Figure C.49: Plots of Tz, and .;), as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 9 = 50°, Interface 5) 
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Figure C.50: Plots of tz. and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 9 = 55°, Interface 5) 
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Figure C.51: Plots of tza and "Cu as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 60°, Interface 5) 
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Figure C.52: Plots of 'cza and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 65°, Interface 5) 



185 

Pa 
ZX 

-2e+006 

-4 e +006 

-6e+006 

-88+006 

-1 e+007 tzy 

1.2e+007 

0.001 0.002 0.003 0.004 0.005 0.006 

Figure C.53: Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 8 = 70°, Interface 5) 
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Figure C.54: Plots of tz, and tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 75°, Interface 5) 
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Figure C.55: Plots of Tzx and tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. 
(Angle 0 = 80°, Interface 5) 
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Figure C.56: Plots of tzx and Tzy as a function of y (0 < y < Wi/2) for u-10-3m. 
(Angle 0 = 85°, Interface 5) 
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Figure C.57: Plots of tza and tzy as a function of y (0 < y < Wi/2) for ua=-10-3m. 
(Angle 0 = 90°, Interface 5) 



188 

APPENDIX D
 

Program "Maple V" for the calculation 

of interlaminar stresses zx and Tr2 zy 

and failure strain of for the laminate [01/02/03/04 

with application to the laminate [45/-45/0/90]s 
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EXAMPLE: CALCULATION OF INTERLAMINAR SHEAR STRESSES FOR: 
[thetal, theta2, theta3, theta4]s. 

All quantities are in S.I. units, except stiffnesses which are in GPa. Final shear 
stresses are in Pa. 

> Ef:=214: 

> Em:=34*10^(-1): 

> Gm:=13*10^(-1): 

> nu12:=3*10^(-1): 

> Vf:=6*10^(-1): 

> El:=Ef*Vf + Em*(1-VO: 

> E2:=Ef*Em/(Vf*Em + (1-Vf)*Ef): 

> G:=Gm/(1-Vf): 

> nu21:=nu12*E2/E1: 

> e:=123*10^(-7): 

> h:=123*10^(-6): 

> L:=8*10^(-2): 

> Wi:=127*10^(-4): 

All calculations performed with an accuracy of "Digits" given below: 
> Digits:=30:
 

> Q:=array([ [E1/(1-nu12*nu21), E2*nu12/(1-nu12*nu21),01, [E2*nu12/(1-nu12*n
 
> u21), E2/(1-nu12*nu21),01, [0,0,G] 1):
 

> Qb:=array(1..3,1..3): 

> Qb[1,1]:=Q[1,1]*((cos(the/180*Pi))^4)+(2*Q[1,2]+4*Q[3,3])*((cos(the/180*Pi))^ 
> 2)*((sin(the/180*Pi))^2)+Q[2,21*((sin(the/180*Pi))^4): 
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> Qb[1,2]:=(Q[1,1]+Q[2,2]- 4*Q[3,3])*((cos(the/180*Pi))^2)*((sin(the/180*Pi))^2)+ 
> Q11,21*(((sin(the/180*Pi))^4)+((cos(the/180*Pi))^4)): 

> Qb[2,2]:=Q[1,1] *((sin(the/180*Pi))^4)-1-(2*Q[1,2] +4*Q[3,3])*((cos(the/180*Pi))^ 
> 2)*((sin(the/180*Pi))^2)+Q[2,2] *((cos(the/180*Pi))^4): 

> Qb[1,3]:=0[1,1]- Q11,2]- 2*Q[3,3])*(sin(the/180*Pi))*((cos(the/180*Pi))^3)-1-(Q[ 
> 1,2]- Q12,21-1-2*Q[3,3])*((sin(the/180*Pi))^3)*(cos(the/180*PW: 

> Qb[2,3]:=(Q[1,1]- Q[1,2]- 2*Q[3,3])*((sin(the/180*Pi))^3)*(cos(the/180*Pi))+(Q[ 
> 1,2]- Q[2,2]+2*Q[3,3])*(sin(the/180*Pi))*((cos(the/180*Pi))^3): 

> Qb[3,3]:=(Q[1,1] -1-Q[2,2]- 2*Q11,21- 2*Q[3,3])*((sin(the/180*Pi))^2)*((cos(the/18 
> 0*Pi))^2)+Q[3,3] *(((sin(the/180*Pi))^4)+((cos(the/180*Pi))^4)): 

> Qb[2,1]:=Qb[1,2]: Qb[3,1]:=Qb[1,3]: Qb[3,2]:=Qb[2,3]: 

> Qb1:=array(1..3,1..3): for m to 3 do for n to 3 do Qbl[m,n ]:=evalf(subs(the=th 
> etal,Qb[m,n])) od od: 

> Qb2:=array(1..3,1..3): for m to 3 do for n to 3 do Qb2[m,n]:=evalf(subs(the=th 
> eta2,Qb[m,n])) od od: 

> Qb3:=array(1..3,1..3): for m to 3 do for n to 3 do Qb3[m,n]:=evalf(subs(the=th 
> eta3,Qb[m,n])) od od: 

> Qb4:=array(1..3,1..3): for m to 3 do for n to 3 do Qb4[m,n]:=evalf(subs(the=th 
> eta4,Qb[m,n])) od od: 

> H:= array([ Gm/( 2* e* h), Gm/( 2 *e *h),Gm /(2 *e *h),Gm /(2 *e *h)]): 

> AA:=array([ [Qb1[3,3]*rho-H[1], Qb1[2,3]*rho, H[1], 0, 0, 0, 0, 0], [Qb1[2,3]*rh 
> o, Qb1[2,2]*rho-H[1], 0, H[1], 0, 0, 0, 0], [H[2], 0, Qb2[3,3]*rho-2*H[2], Qb2[2,3] 
> *rho, H[2], 0, 0, 0], [0, H[2], Qb2[2,3] *rho, Qb2[2,2]*rho-2*H[2], 0, H[2], 0, 0], [ 

> 0, 0, H[3], 0, Qb3[3,3]*rho-2*H[3], Qb3[2,3]*rho, H[3], 0], [0, 0, 0, H[3], Qb3[2,3 
> ]*rho, Qb3[2,2]*rho-2*H[3], 0, H[3]], [0, 0, 0, 0, H[4], 0, Qb4[3,3] *rho-H[4], Qb4 
> 12,31*rhol, [0, 0, 0, 0, 0, H[4], Qb4[2,3] *rho, Qb4[2,2]*rho-H[4]] ]): 

> with(linalg): 
Warning: new definition for norm
 
Warning: new definition for trace
 

> detAA:=det(AA): 
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Input of the 4 angles (thetal , theta2, theta3, theta4): 

> thetal:=45: theta2:=-45: theta3:=0: theta4:=90: 

> rang := fsolve(detAA=0,rho,fulldigits): 

> rhos:=vector( [ rang[3], rang[4], rang[5], rang[6], rang[7], rang[8] ] ):
 

> Identity:=array([ [1, 0, 0], [0, 1, 0], [0, 0,1] 1):
 

> R1:=array(1..3,1..3): for m to 3 do for n to 3 do Rl[m,n]:=evalf(QblIm,n1*rhos[i
 
> ] - H[1]*Identity[m,n]) od od: 

> R2:=array(1..3,1..3): for m to 3 do for n to 3 do R2[m,n]:=evalf(Qb2Im,nrrhos[i 
> ] - 2*H[2]*Identity[m,n]) od od: 

> R3:=array(1..3,1..3): for m to 3 do for n to 3 do R3[m,n]:=evalf(Qb3[m,n] *rhos[i 
> ] - 2 *H[3] *Identity[m,n]) od od:
 

> R4:=array(1..3,1..3): for m to 3 do for n to 3 do R4[m,n]:=evalf(Qb41m,nrrhos[i
 
> ] - 11141*Identity[m,n]) od od:
 

> eq1:=R133*A1 +H[1]*A2+R123*B1=0:
 

> eq2:=R123*A1 +R122*B1+H[1]*B2=0:
 

> eq3:=R233*A2+H[2]*A3+H[2]*A1 +R223*B2=0:
 

> eq4:=R223*A2+R222*B2+H[2]*B3+H[2]*B1=0:
 

> eq5:=R333*A3+H[3] *A4+H[3]*A2+R323*B3=0:
 

> eq6:=R323*A3+R322*B3+H[3]*B4+H[3] *B2=0:
 

> eq7:=R433*A4+H[4]*A3+R423*B4=0:
 

> A2:='A2': A3:='A3': A4:='A4': B1:='B1': B2:='B2': B3:='B3': B4:
 
> ='B4': 

> Z:=solve( {eql,eq2,eq3,eq4,eq5,eq6,eq7}, {A2,A3,A4,B1,B2,B3,B4} ): 
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> assign (Z): 

> FacA2 :=subs(R122=R1 [2,2], R222=R2 [2,2], R322=R3 [2,2], R123=R1 [2,3], R223 
> =R2[2,3], R323= R3[2,3], R423=R4[2,3], R133=R1[3,3], R233=R2 [3,3], R333=R3[ 
> 3,3],R433=R4[3,3], Al=1, A2): 

> FacA3:=subs(R122=R1 [2,2] , R222=R2 [2,2] , R322=R3 [2,2], R123=R1 [2,3], R223 
> =R2 [2,3], R323=R3 [2,3], R423=R4 [2,3],R133=R1 [3,3], R233=R2 [3,3], R333=R3 [ 
> 3,3],R433=R4[3,3], Al=1, A3): 

> FacA4:=subs(R122=R1 [2,2], R222=R2 [2,2], R322=R3 [2,2], R123=R1 [2,3], R223 
> =R2[2,3], R323=R3[2,3], R423=R4[2,3],R133=R1[3,3], R233=R2[3,3], R333=R3[ 
> 3,3],R433=R4[3,3], Al=1, A4): 

> FacB1:=subs(R122=R1[2,2], R222=R2[2,2], R322=R3[2,2], R123=R1[2,3], R223 
> =R2[2,3], R323=R3[2,3], R423=R4[2,3],R133=R1[3,3], R233=R2[3,3], R333=R3[ 
> 3,3],R433=R4[3,3], Al=1, B1): 

> FacB2 :=subs(R122=R1 [2,2] , R222=R2 [2,2], R322=R3 [2,2], R123=R1 [2,3], R223 
> =R2 [2,3], R323=R3 [2,3], R423=R4 [2,3] ,R133=R1 [3,3] , R233=R2 [3,4 R333=R3 [ 
> 3,3],R433= R4[3,3], Al=1, B2): 

> FacB3:=subs(R122=R1[2,2], R222=R2[2,2], R322=R3[2,2], R123=R1[2,3], R223 
> =R2[2,3], R323=R3 [2,3], R423=R4 [2,3] ,R133=R1 [3,3], R233=R2 [3,3], R333=R3 [ 
> 3,3],R433=R4[3,3], Al=1, B3): 

> FacB4:=subs(R122=R1[2,2], R222=R2 [2,2], R322=R3[2,21, R123=R1[2,3], R223 
> =R2 [2,3], R323=R3 [2,3], R423=R4 [2,31,R133=R1 [3,3], R233=R2 [3,3], R333=R3 [ 
> 3,3],R433= R4[3,3J, Al=1, B4): 

> eq8:=R122*A1-R122=0: 

> ZZ:=solve( {eq8 }, {Al} ): 

> assign (ZZ): 

> FacAl:=subs(R122=R1[2,2], Al): 

> MM21:=subs( i=1, ( Qb2[2,2] *(FacB2-FacB1)+Qb2[2,3]*(FacA2-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 
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> MM31:=subs( i=1, ( Qb3[2,2]*(FacB3-FacB1)+Qb312,31*(FacA3-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM41:=subs( i=1, ( Qb4[2,2] *(FacB4-FacB1)+Qb4[2,3]*(FacA4-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM22:=subs( i=2, ( Qb2[2,2]*(FacB2-FacB1)+Qb2[2,3]*(FacA2-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM32:=subs( i=2, ( Qb3[2,2]*(FacB3-FacB1)+Qb3[2,3] *(FacA3-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM42:=subs( i=2, ( Qb4[2,2]*(FacB4-FacB1)+Qb4[2,31*(FacA4-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM23:=subs( i=3, ( Qb2[2,2] *(FacB2-FacB1)+Qb2[2,3]*(FacA2-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM33:=subs( i=3, ( Qb3[2,2]*(FacB3-FacB1)+Qb3[2,3]*(FacA3-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM43:=subs( 1=3, ( Qb4[ 2,2]*(FacB4-FacB1)+Qb4[2,3] *(FacA4-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM24:=subs( i=4, ( Qb2[2,2]*(FacB2-FacB1)+Qb2[2,3]*(FacA2-FacA1) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM34:=subs( 1=4, ( Qb3[2,2]*(FacB3-FacB1)+Qb3[2,3]*(FacA3-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )):
 

> MM44:=subs( i=4, ( Qb4[2,2]*(FacB4-FacB1)+Qb4[2,3]*(FacA4-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> MM25:=subs( i=5, ( Qb2[2,2]*(FacB2-FacB1)+Qb2[2,3]*(FacA2-FacA1) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM35:=subs( i=5, ( Qb3[2,2]*(FacB3-FacB1)+Qb3[2,3] *(FacA3-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> MM45:=subs( i=5, ( Qb4[2,2]*(FacB4-FacB1)+Qb4[2,3]*(FacA4-FacA1) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM26:=subs(1=6, ( Qb2[2,2]*(FacB2-FacB1)+Qb2[2,3] *(FacA2-FacA1) )*sqrt( 
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> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> MM36:=subs( i=6, ( Qb3[2,2]*(FacB3-FacB1)+Qb3[2,3] *(FacA3-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> MM46:=subs( i=6, ( Qb4[2,2]*(FacB4-FacB1)+Qb4[2,3] *(FacA4-FacAl) )*sqrt( 
> rhos[i] )*cosh( sqrt( rhos[i] )*W1/2 )): 

> NN21:=subs( i=1, ( Qb2[2,3]*(FacB2-FacB1)+Qb213,31*(FacA2-FacAl) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN31:=subs( i=1, ( Qb3[2,3]*(FacB3-FacB1)+Qb3[3,3] *(FacA3-FacAl) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN41:=subs( i=1, ( Qb4[2,3]*(FacB4-FacB1)+Qb4[3,3] *(FacA4-FacAl) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> NN22:=subs( i=2, ( Qb212,31*(FacB2-FacB1)+Qb2[3,3]*(FacA2-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN32:=subs( i=2, ( Qb312,31*(FacB3-FacB1)+Qb3[3,3]*(FacA3-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN42:=subs( i=2, ( Qb4[2,3]*(FacB4-FacB1)+Qb4[3,3]*(FacA4-FacAl) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN23:=subs( i=3, ( Qb2[2,3]*(FacB2-FacB1)+Qb2[3,3]*(FacA2-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN33:=subs( i=3, ( Qb3[2,3]*(FacB3-FacB1)+Qb3[3,3] *(FacA3-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN43:=subs( i=3, ( Qb4[2,3]*(FacB4-FacB1)+Qb4[3,31*(FacA4-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN24:=subs( i=4, ( Qb2[2,3]*(FacB2-FacB1)+Qb2[3,3] *(FacA2-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )): 

> NN34:=subs( i=4, ( Qb3[ 2,3]*(FacB3-FacB1)+Qb3[3,3] *(FacA3-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
 

> NN44:=subs( i=4, ( Qb4[2,3]*(FacB4-FacB1)+Qb4[3,3]*(FacA4-FacA1) )*sqrt( r 
> hos[i] )*cosh( sqrt( rhos[i] )*Wi/2 )):
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> eq21:=MM21*At1+MM22*At2+MM23*At3+MM24*At4+MM25*At5+MM26* 
> At6=RR2: 

> eq22:=MM31*Atl+MM32*At2+MM33*At3+MM34*At4+MM35*At5+MM36* 
> At6=RR3: 

> eq23:=MM41*Atl+MM42*At2+MM43*At3+MM44*At4+MM45*At5+MM46* 
> At6=RR4: 

> eq24:=NN21*Atl+NN22*At2+NN23*At3+NN24*At4+NN25*At5+NN26*At6=S 
> S2: 

> eq25:=NN31*Atl+NN32*At2+NN33*At3+NN34*At4+NN35*At5+NN36*At6=S 
> S3: 

> eq26:=NN41*Atl+NN42*At2+NN43*At3+NN44*At4+NN45*At5+NN46*At6=S 
> S4: 

> Atl:='Atl': At2:='At2': At3:='At3': At4:='At4': At5:='At5': At6:='At6':
 

> At:= solve( {eq21,eq22,eq23,eq24,eq25,eq26},{Atl,At2,At3,At4,At5,At6} ):
 

> assign (At):
 

> Ath=vector( [Atl,At2,At3,At4,At5,At6] ):
 

> FacA:=vector( [1, FacA2, FacA3, FacA4] ):
 

> FacB:=vector( [FacBl, FacB2, FacB3, FacB4] ):
 

Definition of shear stresses at the interface k (between ply 'k' and ply1+ V): 

> k:=3: 

> ua:=-1*10^(-3): 

> Tauzx:=(ua/L)*(Gm/(2*e))*( Atf[1]*(subs(i=1, FacA[k]-FacA[k+1]))*sinh( sqrt( 
> rhos[1] )*y ) +Atf[2] *(subs(i=2, FacA[11-FacA[k+1]))*sinh( sqrt( rhos[2] ) *y) + 
> Atf[3]*(subs(i=3, FacA[k]-FacA[k+1]))*sinh( sqrt( rhos[3] )*y ) +Atf[4] *(subs(i= 
> 4, FacA[k]-FacA[k+1]))*sinh( sqrt( rhos[4] ) +Atf[5]*(subs(i=5, FacA[k] -Fac 
> A[k+1]))*sinh( sqrt( rhos[5] )*y ) +Atf[6]*(subs(i=6, FacA[k]-FacA[k+1]))*sinh( 
> sqrt( rhos[6] ) ): 
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> Tauzy:=(ua/L)*(Gm/(2*e))*( Atf[1]*(subs(i=1, FacB[k]-FacB[k+1]))*sinh( sqrt( 
> rhos[1] ) +Atf[2]*(subs(i=2, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[2] )*y ) +A 
> tf[3]*(subs(i=3, FacB[k]-FacB[k+1]))*sinh( sqrt( rhos[3] )*y ) +Atf[4]*(subs(i=4, 
> FacB[11-FacB[k+1]))*sinh( sqrt( rhos[4] ) +Atf[5] *(subs(i=5, FacB[k] -FacB[ 
> k+1]))*sinh( sqrt( rhos[5] )*y ) +Atf[6]*(subs(i=6, FacB[k]-FacB[k+11))*sinh( sq 
> rt( rhos[6] )*y ) ): 

> Tauzxedge:=subs(y=Wi/2,Tauzx*10^9):
 

> Tauzyedge:=subs(y=Wi/2,Tauzy*10^9):
 

> Digits:=10:
 

> Tauzxedge; Tauzyedge;
 

-.475198438 107 

.1112215302 109 
> plot({Tauzx*10^9,Tauzy*10^9},y=0..Wi/2); 

Calculation of the amplitude of microbuckling V and fiber maximum tensile strain 
epsfiber (at the interface of the 0* ply where Tauzy is maximum). 

> Digits:=20: 

> lambda0:=5*10^(-4): 

> VO:=(lambda0/Pi) *tan(3*Pi/180): 

(a positive u displacement indicates compression) 

> slopeTauzy:=(-u/ua)*(subs(y=Wi/2,Tauzy*10 A 9)-subs(y=(Wi/2)-2*evalf(V0),Tau
 
> zy*10^9))/(2*evalf(V0)):
 

> sigma0:=Q[1,1]*(10^9) *abs(u)/L:
 

> rf:=35*10^(-7): Af:=Pi*rf^2: Ifib:=Pi*(rfA4)/4:
 

> V:=V0/(1-((sigmaO*Af/V0+2*2*rf*slopeTauzy*(lambda0/Pi) A 2)/(Ef*(10A9)*Ifib
 
> *((Pi/lambda0)^2)+(6*10^(-1))*Gm*(10^9)*Af/(1-V0)):
 

> epsfiber:=-(sigma0)/(Vf*Ef*(10^9))+rf*((Pi/lambda0)^2)*V:
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Calculation of the strain (epsfailure) which cause fiber failure (in microstrains). 

> epstf:=14*10^(-3): 

> dispfailure:=fsolve(epsfiber-epstf=0, u): epsfailure:=dispfailure/L: 

> Digits:=5: 

> abs(epsfailure)*10^6; 

5272.4 
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Figure D.1: Laminate [45/-45/0/90]s: Laminate [45/-45/0/90]s:
 

Plots of tzx and Tzy as a function of y (0 < y < Wi/2) for u.=-10-3m. (Interface 1)
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Figure D.2: Laminate [45/-45/0/90]s:
 

Plots of tzx and tzy as a function of y (0 < y < Wi/2) for u-10-3m. (Interface 2)
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Figure D.3: Laminate [45/-45/0/90]s:
 

Plots of tz), and tzy as a function of y (0 < y < Wi/2) for u-10-3m. (Interface 3)
 




