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The growing use of light-frame wood trusses in the

residential and commercial construction has generated the

need for general analysis procedures for predicting

deformations and ultimate load of truss-plate joints, which

are the basis for accurate evaluation of structural

performance and design of complete truss assemblies. This

dissertation was aimed at developing such a model.

The developed model incorporates mechanisms of load

transfer from one wood member through the truss plate and

into another wood member and predicts the load-deflection

trace and ultimate load. It treats plate teeth as beams on

elastic foundation and applies Runge-Kutta numerical

analysis to solve the governing differential equations.

The nonlinear response of the foundation is accounted for

by a linear step-by-step procedure. Additional theoretical

investigation consisted of using an existing program to

perform finite element analysis of plate joints to

determine the interaction of plate teeth arranged in
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columns or in rows. This analysis showed some interaction

among teeth in columns and none among teeth in rows.

To develop data for model verification, tests were

performed on joints made of Douglas-fir lumber and 20-gauge

truss plates with die-punched teeth -for various grain and

plate orientations. Foundation moduli of test joints were

obtained by embedment testing under compression loads.

Comparisons between theoretical and experimental load-

deflection traces show acceptable agreement. Ultimate load

was accurately predicted for specimens which failed as a

result of tooth withdrawal, but not for either plate

failure or wood failure perpendicular-to-grain, neither of

which was included in the model. Possible future model

improvements should consist of incorporating these two

failure modes and a mechanism associated with moment

transfer through plate joints.
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MODELING OF TRUSS-PLATE JOINTS USING NONLINEAR

STIFFNESS AND RUNGE-KUTTA NUMERICAL ANALYSIS

I. INTRODUCTION

Light-frame wood trusses are extensively used for

supporting roofs and floors in the construction of

residential, commercial, and farm buildings. Hundreds of

millions of trusses have been built in the United States

during the past 25 years (29). Roof trusses with pitched

top chords have spans that vary from about 20 feet in

residential to about 70 feet in commercial construction.

The use of floor trusses with parallel chords has recently

shown a strong upward trend and constitutes about 20% of

the present wood floor market (22). In all-wood trusses,

light-gauge steel plates with die-punched teeth or holes

for nailing are the most common fasteners for constructing

truss joints. Although there are many patented plates and

assembly processes and new plate types continue to be

introduced, all the plates exhibit similar structural

behavior. A general analysis procedure that predicts

deformation and ultimate load of existing and newly

introduced plate joints would offer an efficient way to

evaluate the structural performance of and design complete

truss assemblies and their joints.



1.1. Justification

In trusses, joints are structurally as important as

wood elements. A major reason for failure is stress

concentrations at joints. Even small deformations in

joints can often cause disproportionally large truss

deflections. Therefore, strength and stiffness of truss

joints are extremely important parameters in truss design.

Stress transfer and resulting deformations within

truss-plate joints are very complex structurally. Such

joints should be visualized as structural systems to better

model this complexity. Once a model accurately represents

all the mechanisms in the system, loading that simulates

actual loads can be applied to the model. Solving the

interaction equations between the loading and mathematical

representation of the model results in parameters, such as

critical stresses and deformations, which can be used as

design guidelines.

Roof trusses were among one of the eight research

areas that were evaluated at a recent workshop on

structural wood research (22, 29). Representatives from

universities, federal laboratories, wood industry, and

engineering consultants decided that the behavior of truss-

plate joints subjected to combinations of loads was a topic

of high research priority. To improve the understanding of

this behavior, the mechanism of stress transfer from one

wood member through the plate into another wood member has

2



to be identified. To be able to apply this knowledge in

the design of trusses and joints, this mechanism should be

modeled theoretically by a computer-based procedure that

should be efficient and economical. This dissertation

involves theoretical and experimental studies that lead to

such a mechanism and procedure.

Allowable design loads for truss-plate joints are not

available in codes and specifications because of the

proprietary nature of the plates (29). Therefore,

procedures for evaluating design properties of the plates

vary in details (2, 11, 39), but the same general

considerations apply to all, joint strength usually

governs the design and the joints are supposed to transfer

full tensile load with provisions made for bending or

compression loads (29). The allowable loads are purely

empirical, based on testing of tension specimens with

plates acting in double shear. Testing procedures vary,

because no universally accepted testing standard exists.

This study was aimed at developing a theoretical model

to improve existing design methods for trusses. This model

provides a procedure for evaluating plate connections

constructed of traditional structural materials and a means

for developing technical data that should assist with

acceptance of domestic truss systems by overseas building

codes. Applications of the model should also provide data

for the limit-state design of trusses, which is expected to

3



improve structural reliability and economy in truss

manufacturing.

1.2. Objectives

The overall objective was to develop a theoretical

procedure that predicts stress transfer through and

associated deformations in truss-plate joints. The

specific objectives were:

To theoretically model mechanisms of load transfer and

develop a close-form solution for the strength and

stiffness analysis of truss-plate joints;

To experimentally assess the accuracy of the

theoretical models by physical testing of typical joints;

and

To define the effect of material properties on joint

behavior by performing a sensitivity analysis.

4



II. LITERATURE REVIEW

The overall strength and stiffness of truss systems

are directly proportional to the strength and stiffness

properties of the truss-plate joints. Thus the modeling of

joints has been the main focus in the past decade among

researchers attempting to define truss behavior and improve

its design. The models were theoretical and empirical.

2.1. Theoretical Modeling

The light-gauge steel plates with die-punched teeth

are currently the most common truss-plate, but they have

only been used in construction for the past few decades.

The precursor to the die-punched plates were plates with

evenly spaced holes for nailing. For this reason, most of

the models developed for truss-plates have concepts which

utilize or originate from nail theory.

The earliest models designed to show the interaction

between nail and wood involved solutions for a beam on an

elastic foundation. Winkler (47), in 1867, first

introduced the concept and mathematical solutions of a

bending beam on an elastic foundation. The principle,

originally prompted by a need to analyze railroad tracks

and ties, was based on the assumption that reaction forces

of the elastic foundation are proportional to the

deflection of the beam.

5



Winkler's concept and its modification by H. Zimmerman

(50) assume that the foundation deflects only directly

under the beam when the load is applied, so that the

adjacent foundation material is unaffected (Figure 2.1).

This assumption introduces some error since, in actuality,

deflections of elastic foundations diminish continuously

with increasing distance from the beam. However, this

error is minimal when the foundation exhibits a nonlinear

response (10).

It should be noted that there is a limitation to the

Winkler solution: The contact area between the beam and

the foundation must remain continuous (10). This results

in a downward pressure when the beam deflects upward.

Without this assumption, the response of the beam would

become nonlinear as the contact zone would be dependent on

the beam deflection. Fortunately for fasteners embedded in

wood, this restriction of a continuous contact area causes

no problem since the tooth is pushed under pressure into

the wood, which creates equal pressure on the upper and

lower part of the tooth.

Hetenyi (18), in 1946, expanded the solutions of

Winkler and Zimmerman to include beams of finite length and

varying stiffness. He also presented solutions for

deflection, slope, moment, and shear for variables such as

beam length, boundary conditions, and loading.

Kuenzi (24) was the first to use beam-on-elastic-

6
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Figure 2.1. Deflection pattern under uniform load for: (a)

Winkler foundation, and (b) elastic foundation.
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foundation theory to model laterally loaded nail or bolt

joints. He applied solutions of Hetenyi in treating a nail

or bolt as a beam which rested on wood visualized as an

elastic foundation. His development starts with the

following governing differential equation for the

deflection of the nail/bolt bearing on wood:

EIc-LY4 - - ky (2.1)
dx4

-

where: E = nail/bolt modulus of elasticity;
I = nail/bolt moment of inertia;
y = deflection at point x; and
k = foundation modulus of wood.

The solution of eq. (2.1) results in expressions

containing the following character:

k

=
(2.2)4E1

Kuenzi developed expressions for deflections, slopes,

moments, and shears at any point along the length of the

nail or bolt which depend upon . The total joint slip

was the sum of the nail or bolt deflection in each

connected member at their contact area.

This model is limited to the elastic behavior of a

wood foundation. Although wood does behavior linearly when

compressed by small loads, it behaves nonlinearly in joints

due to the crushing of the wood during nail penetration.

Under large loads both nail and bolt joint behave

nonlinearly. Therefore, Kuenzi's methods had to be

8



modified to represent the actual joint behavior more

accurately.

In 1962, Noren (32) developed a nonlinear equation to

define the load-slip relationship for nailed joints. He

expanded upon Kuenzi's methods to define a slip modulus

which relates foundation modulus, nail diameter, and (eq.

(2.2)).

In the first of 5 publications, Wilkinson (43)

presented a theoretical analysis based on Kuenzi's work and

derived the following expression which relates single shear

load and joint slip:

P = 0.1667 E1/4k03/4d7/4y (2.3)

where: P = lateral load;
E = nail modulus of elasticity;
ko = elastic bearing constant;
d = nail diameter; and
y = joint slip.

Wilkinson defined the elastic bearing constant as the

foundation modulus divided by the nail width. He determined

the elastic bearing constant by cyclic loading of joints to

an initial slip of 0.015 in., a point at which two

successive cycles of load-slip traces coincided. Wilkinson

assumed a linear relationship between elastic bearing

constant and specific gravity, and used it to determine

regression relations for foundation moduli for varying

specific gravity; relations are valid only at slip levels

below 0.011-in.

9



Wilkinson (45) expanded upon his previous research to

include joints constructed of wooden members with

dissimilar properties by adding a term to eq. (2.3). He

determined elastic bearing constants by relating them to

specific gravity of wooden members and to three nail types.

As in the case of similar members, Wilkinson limited the

validity range of his expressions to regions below 0.011-

in. slip.

Wilkinson continued his work on dissimilar members

with three papers which dealt with determination of the

elastic bearing constant. He (44) demonstrated the effect

of deformed shanks, prebored lead holes, and grain

orientation on the elastic bearing constant. The second

study of this series (47) showed the effect of moisture

content on the elastic bearing constant as it pertained to

assembled joints. In the final study of this series, he

(46) developed material properties that enable the use of

eq. (2.3) for joints with various sheathing materials such

as plywood, hardboard, insulation board, particleboard, and

gypsum board.

Foschi (12), in 1974, used a finite element approach

to successfully model the load-slip characteristics of

"Glulam Rivets". Glulam Rivets, also called Griplam nails,

were commonly used in the 1970's with predrilled steel

plates. This combination was an early precursor to truss-

plates with die-punched teeth commonly used today.

10



Foschi's model included yielding of the nail in

bending and a nonlinear bearing behavior of the wood under

the nail. He developed the following exponential form:

-kw

P = (P0 P1w)(1 - ePo ) (2.4)

where: p = load;
w = nail penetration;
k = initial tangent modulus;

pc) = constant; and
pl = constant.

The initial tangent modulus and constants 1,0 and pi were

determined by nonlinear least squares fitting of

experimental data. By combining eq. (2.4) with the finite

element analysis, Foschi could predict both linear and

nonlinear joint deformations.

In a subsequent paper, Foschi (16) expanded his

earlier theory by including pressure that wood exerts on a

driven nail, which he accomplished by loading and unloading

the nail-embedment specimens before determination of k, pc),

and pi. This resulted in an altered load-deformation trace

and modified constants for eq. (2.4). The resulting

procedure yielded a good estimate of both initial stiffness

of the connection and ultimate load, but substantially

deviate from experimental data at intermediate slips.

Foschi and Longworth (17) postulated and verified an

analysis technique which for the first time applied

procedures for nail joints to predict metal-plate-fastener

11



strength. For Griplam nails and predrilled steel side

plates, they used a semi-analytical finite element approach

(49) to determine the maximum stresses in the wood member

for parallel to grain loading. Failure mode was governed

by either shear stresses around the nail or by nail

yielding. This approach was verified by testing fasteners

with nail penetration lengths of 3.0-in, while varying nail

spacing, number of nails, and nail end distance. Results

showed that close nail spacing produces wood failure,

usually by shear around the nail group, while a larger

spacing produces nail yielding.

Foschi (13, 14) continued his work on truss-plates

with die-punched teeth by applying the computer program

SADT, that had been developed at the Western Forest

Products Laboratory in Vancouver, B.C. The program treats

connections as continuous systems and calculates slip

values by the method of virtual work as follows:

[K](x) = Ro + Ri((x)) (2.5)

where: [K] = stiffness matrix in linear region;
(x) = global vector of unknown displacements;
Ro = load vector; and
Ri = nonlinear vector, function of (x)

which is solved by iteration. In references (13) and (14),

the constants po and pl were substituted by mo and ml.

These constants and k were determined empirically rather

than from statistical correlation equations (Figure 2.2).

The modulus was modified for grain and plate angle using

12
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Figure 2.2. Typical load-displacement trace that Foschi

found in testing embedment specimens.
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the Hankinson's formula. Other parameters in the model

included gaps between connected members, the buckling

capacity of the plate, and plate yielding in tension or

shear. The model was experimentally verified using elbow

joints with specified gaps among the connected components.

The verification was carried out at low load levels, but

poor agreement was observed following the gap closure when

wood failure occurred that was not accounted for in the

model.

McCarthy and Wolfe (28) used Foschi's model to assess

truss-plate performance in trusses made with southern pine

lumber. Using four standard and two nonstandard joint

configurations, they found that modulus of elasticity has

no effect on the parameters of eq. (2.4). McCarthy and

Wolfe also reported that the strain in the truss-plate

itself was less than 0.001 in. at or near the maximum load,

thus concluding that the elastic strain in the plate did

not have a measurable influence on joint deformation

curves.

Foschi (15) modified his earlier version of SADT to

analyze entire truss systems. The modified program, called

SAT, incorporates the main features of SADT to predict the

deformation and ultimate load of the truss system.

Maraghechi and Itani (27) modeled truss-plate

connectors in light-frame wood buildings. They considered

the truss-plate joint as a two-dimensional element with

14



axial linear springs, shear, and rotational degrees of

freedom. No full scale tests were conducted to verify the

model, but comparison of theoretical displacements with

published data suggested a reasonable agreement.

Hirai (19, 20) and Tsujino and Hirai (40) introduced

numerical methods to solve eq. (2.1). Their work,

concerned with bolted wood joints with steel side-members,

separated the curvilinear load-embedment curve (Fig. 2.2)

into several equivalent linear sections. Harai (19) then

solved eq. (2.2) numerically using a stepwise linear

analysis. The general solution of eq. (2.2) was divided

into segments to account for different layer properties and

then solved simultaneously. The numerical analysis seemed

to somewhat overestimate the joint stiffness because the

bolt displacement in the steel side plate was neglected.

Hirai (20) investigated this effect experimentally and

incorporated the results into the original model to

characterize joint behavior more closely.

Aune and Patton-Mallory (5) have recently reported on

the theoretical procedure for predicting load-bearing

capacities of two- and three-member nailed joints. They

applied European-based yield theory which assumes that the

nail is embedded into the wood foundation until the yield

stress of the nail is reached. Nails enter the plastic

region at one or more points depending on the joint type.

Nail embedment can be simulated either by plastic behavior

15



beyond the nail-yield moment, or by a fourth-root curve to

describe the wood embedment curve. Use of the fourth-root

curve, obtained through virtual work, also produced joint

deformation in the model. In a companion research report,

Aune and Patton-Mallory (6) verified their theoretical

model. Although the yield-theory model included neither

the effects of friction between members nor axial forces in

the nail, accurate prediction of yield load was observed.

2.2. Empirical modeling

In 1966, Mack (26) showed that the load-slip curve of

a nailed joint up to 0.1-in, slip can be described by the

empirical exponential equation:

0P = (Aw + B)(1 - e-Cw) (2.6)

where: P = applied load;
w = slip; and

A,B,C,D = nonlinear constants obtained by
testing.

This equation, while similar in nature to eq. (2.4)

described by Foschi (12), seemed to be too complicated.

Mack (26) attempted to derive an empirical equation of

simpler form to fit data up to 0.1-in. slip but was

unsuccessful. He did, however, find a simpler and

reasonably accurate equation for joint slip less than 0.02

in.:

R = AdB (2.7)
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where: d = slip;
A,B = nonlinear regression constants; and

R = reduced load, defined as ww ;

rd

where: Pw = load at slip w; and
Pd = load at slip d, 0 < d < 0.02 in.

Beineke and Suddarth (8) used an empirical model that

replaced actual die-punched truss-plate connections with an

equivalent single solid piece of wood with identical

stiffness properties. This model, which was used to

estimate stiffness only, used axial stiffness indexes for

plate length classes as determined by linear regression.

Although experimental results were used to determine the

axial stiffness indexes, no verification of the joint

stiffness prediction was presented.

Suddarth et al. (38) tension tested 322 truss-plate

joints to failure and used multiple regression to correlate

joint strength and stiffness with specific gravity and

moisture content. Regression results showed that specific

gravity is definitely related to joint stiffness and

strength. Moisture content was also found to be a

significant variable in the regression analysis. The

authors also reported coefficients of variation between 10

and 15 percent, indicating that variations in joint

properties are less important in probabilistic engineering

than corresponding lumber characteristics.

In a similar study, Palka (33) tested 360 truss-plate-

joint specimens in tension to determine and model the

17



effect of relative density on load-slip behavior. Using

different grades, species, and plate orientations, he used

multiple regression techniques to determine different

regression models for each of the 12 treatment conditions.

The empirical function used in the analysis was of the

form:

Pi = (Ai + Bi + Ciw2) [1 - e(-Diw) ] (2.8)

where: P = applied load,
w = joint slip, and

= empirically fitted parameters for the
ith treatment cell.

Noguchi (31) tested truss-plate butt joints in pure

bending and found that the maximum bending moment was

insensitive to variation in wood strength. However, the

maximum bending moment could be approximated by a linear

function of the distance from the compressive face of wood

members to the extreme tensile edge of a plate. Noguchi

also reported that the neutral axis, although appearing at

first in the center of the truss-plate, shifted toward the

compressive face of the joint as the load was increased.

This shift was accentuated upon closure of a small initial

gap between butt joints.

18



III. THEORETICAL PROCEDURE

There are many factors affecting the behavior of

truss-plate joints (36). The most significant factor is

the interaction between the truss-plate tooth and the wood

member. Of all the models used to describe this

interaction, beam-on-elastic-foundation theory has been the

most successful and appears the most promising. Therefore,

the model used in this study will be based upon beam-on-

elastic-foundation theory. However, three modifications

will be introduced in this study: the wood foundation will

be considered to behave nonlinearly (14), the moment of

inertia of the tooth will change along its length, and

nonlinear terms in the governing differential equation

relating tooth withdrawal resistance to axial tooth loading

will be included in the solution.

3.1. Modeling Principles

Figure 3.1 illustrates the flow of tasks performed in

this investigation. The beam-on-elastic-foundation theory

applied in this investigation is based on the model

described by Hetenyi (18). Because of an inelastic

foundation and friction, nonlinear terms are introduced

into the governing differential equations. The inelastic

foundation modulus is determined by nonlinear regression of

data obtained in tests of duplicated plate tooth bearing

19
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on wood. The nonlinearity is included by a linear step-by-

step procedure, while the differential equation defining

conditions in each step were solved by a Runge-Kutta

technique. Interaction between teeth was determined in a

separate, nonlinear finite element analysis.

3.2. Beam-On-Elastic-Foundation Concept

3.2.1. Nonlinear Differential Equation Governing Tooth-

Wood Interaction

Figure 3.2 illustrates the simplest case for an

elastic beam of finite length on an elastic foundation,

which neglects the effect of axial force and friction

between the beam and foundation. Kuenzi (24) showed that

this configuration is governed by eq. (2.1). The general

solution of eq. (2.1) is of the form

y = e (Cicos Ax + C2sin Ax)

-xx+ e (C3cos Xx + C4sin Xx) (3.1)

where X is defined by eq. (2.2) and constants C1 through

C4 are determined by loading and boundary conditions.

Derivatives of eq. (3.3) can be used to determine slope,

moment, and shear at any point, x, along

the length of the beam.

The loading regime for truss-plate teeth is more

complicated than that illustrated in Fig. 3.2. Three

loading conditions are present in all teeth: lateral

21
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shear, moment, and axial (Fig. 3.3). The lateral shear

load, generally the only load considered in analyzing

nailed joints, has been studied in detail by other

researchers (24, 12, 5). The moment is caused by the

resistance of the tooth to rotate about the point of its

attachment to the plate. The axial load is a withdrawal

force that appears after load is applied and the tooth

deforms, which alters the governing differential equation

from eq. (2.1) to the form (18):

EIcA - + ky = 0
dx' dx2

where all the symbols are defined in Fig. 3.3.

The general solution of eq. (3.2) takes the form of

-axy = (C1ea + C2e )cos fix

ax -ax
+ (C3e + C4e )sin fix

(3.2)

(3.3)

23

where

a = 2

4E1
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2

4E1

The particular solution is dependent upon loading and

boundary conditions. Solutions exist for cases with axial

and shear load and for axial load and moment. Overall

closed-form solutions could then be obtained by
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superposition (18). Although the superimposed solution

more closely approximates the behavior of a tooth than does

the first model with only lateral shear load, adding axial

load as shown in Fig. 3.3 does not result in an accurate

model. This is because the axial load only exists at the

tooth head but not at the tooth end. The axial load is

transferred along the tooth length by friction between the

tooth and wood (Fig. 3.4).

The governing differential equations for the system

shown in Fig. 3.4 are derived next. Beginning with summing

forces in the x-and y-direction, the following is obtained:

dV = k y dx (3.4)

dN =Aky dx (3.5)

where A is the friction coefficient between the tooth and

wood. Differentiation of eq. (3.5) gives:

d2N
= A kc-II

dx2
dx

(3.6)

Summing moments about the center of the right side of the

free-body diagram in Fig. 3.4 gives:

v . k /
-dM - N dy + Vdx +

ukb
a---i-- x + 2 (dx)2 = 0 (3.7)

Division of eq. (3.7) by dx and using the known

differential equation, EI(d2y/dx2) = -M gives

25
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3

EI - N V+
ki

dx 2 Y
2dx = 0

dx3

Differentiation of eq. (3.8) results in

2
dN di d_i dV gilt di A

El

dx2
' dx ' 2 dxdx4 dx dx "

Substitution of eqs. (3.4), (3.5), and (3.6) into eq. (3.9)

gives

El - PJ -
k Ai N

ct-Y-224 dx
dx dx

3.2.2. Runge-Kutta Technique

b d2N
ky + I dx2 0 (3.10)

Resubstitution of eq. (3.6) into eq. (3.10) and rearranging

gives the final governing differential equation:

4 2
N d_y (b/2 - v) d2N

dx4
El dx2 ' EI El

dx2
=

0 (3.11)

(3.8)

(3.9)

Eqs. (3.6) and (3.11) are the two differential

equations which govern the behavior of the system. The

variables k and N are functions of y which makes eq. (3.11)

nonlinear, and thus a closed-form solution is not possible.

As an alternative, a Runge-Kutta numerical analysis was

employed.
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(1+1) (i) 1 (i) (i) 1 (i+ 0+ )
94

= q + h (f(q ,x ) + f( q ,x
4 6 4 3 1-

1 (i+ ) 0+ ) 1 (1+1) 0+1)+ f(ci ,X ) ,x )]
3 2

where: (i+ )(I)
+

h f(q0)KO) );a
1

=
'4 2 4

(i+ ) (i)
+ f (q(i+

) (i+ )

92
= a ,x ); and

2 1

(1+1)
f(q(i+

) (1+ )

93
= q4 + h

(3.14a)

(3.14b)

(3.14c)

(3.14d)
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The Runge-Kutta technique is useful for solving

initial-value, first-order linear or nonlinear differential

equations of the form (21):

4,f1 = f(y,x) (3.12)

Y(x0) = Yo (3.13)

The general technique is illustrated in Figure 3.5.

It is assumed that the solution to eq. (3.12) is known in

the interval 0 < x < xi. The objective is to advance the

solution by interval h to xi+1 = xi + h. The desired

solution yi+1 is then obtained in terms of yi, f(yi,xi),

and f(y,x) which are evaluated for various estimates of y

between xi and

3.2.2.1. Basic Concept

Formulas of the Runge-Kutta type have been

successfully used in solving many types of ordinary

differential equations (21). The type used in this study

is usually referred to as the fourth-order Runge-Kutta

coefficients:



Figure 3.5. Graphic representation of Runge-Kutta technique for initial-value, first-

order differential equation.

1+1
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Coefficient calculations proceed from the previous

estimate, (i), along the interval h until the current

estimate is calculated at (i+1). The intermediate

(i+ ) (coefficients q' q2i+ )
, and q3(1+1) must be

computed in the order given since they are interdependent.

There are two shortcomings with the use of the Runge-

Kutta technique in this study. First, the technique

requires that the differential equations be of first order

while this study has governing differential equations of

second (eqs. (3.6)) and fourth order and (eq. (3.12)). This

shortcoming can be corrected by breaking the two equations

into six equivalent first order differential equations.

Second, the technique is applicable to initial-value

problems whereas the problem used in this study is a

boundary-value problem. However, the boundary-value

problem can be transformed into an initial-value problem

through the use of derivatives.

To illustrate changing the boundary- to the initial-

value problem, consider the following:

y" + Ay = B
(3.15)

y(0) = 0, and y(1) = 0.

where: d2y
Y = dx2

This can be transformed to the initial value problem:

y" + Ay = B

(3.16)
y(0) = 0 and y'(0) = a

30



where a is unknown, and must be chosen such that y(1) = 0

and thus the boundary values of eq. (3.15) remain intact

(21). If a value is arbitrarily chosen for a and eq.

(3.16) is solved by a Runge-Kutta technique, the solution

might appear graphically as shown in Figure 3.6. Since

y(1) is not zero, the original boundary value of eq. (3.15)

has not been reproduced. (As y(1) is a function of the

chosen value of a, it will be denoted as yi(a).) To bring

y1(a) closer to the boundary value of 0, the strategy is to

reduce a. Seeking the correct value of a such that the

boundary condition at x=1 is satisfied can be stated as

searching for a such that:

y1(a) = Y(1) = 0 (3.17)

As this is a root solving problem, only two estimates of

the root of eq. (3.17) are needed. These two estimates,

say a° and al, are used to solve the initial value problem

(3.16), yielding y1 (a°) and y1(a1). A new estimate of a

could then be obtained using a Newton-Raphson technique:

a =
2 Yl(a°)
a

[Y1(0)-Y1(a1)]/(en - c1e)
(3.18)

This process is then continued until convergence.

3.2.2.2. Application of Runge-Kutta Technique to Higher

Order Differential Equations
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Figure 3.6. Graphical representation for solution of second order differential equation with boundary

conditions using Runge-EUtta technique.



The technique described in the previous section was

expanded to solve the differential equations which govern

truss-plate joints. The first step consisted of making the

following substitution in eqs. (3.6) and (3.11):

z = x / L (3.19)

which transformed x into the dimensionless variable z.

Thus, Eqs. (3.6) and (3.11) became

12
iv NL2 kL4 b ,

Y =
yll

Y - ( - Y) NI/
El El 2 El

N" =AkL y'

si = y

s2 = y'
S3 = y"
S4 = y'"

S5 = N

S6 = N'

The resulting first-order differential equations

representing eqs. (3.20) and (3.21) are

This can be set up as a series of first order equations by

letting

(3.22)
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Y' "(0) = -EP1 y"'(1) = 0

N(0) = N N(1) = 0



S' =s
3 4

, L2
sA =, -- Ecs3 - kL2si - (12. - sl)s6]EI4 4 2 4

sF = s
5 6

S' =AkLs26

(3.23)

The reduction of eqs. (3.20) and (3.21) to a set of first-

order differential equations with initial conditions

allowed the use of a Runge-Kutta technique. The estimates

of the roots al, a2, and a3 must be chosen such that the

boundary conditions are satisfied. If the newly calculated

roots do not equal the boundary conditions:

then a Newton-Raphson method analagous to eq. (3.18) is

applied to modify the estimates of the roots. This process

is continued to convergence.

However, the three root estimates of s3, s4, and s5

are now a function of not only distance along the length of

34

al =

a2 =

a3 =

s3(1)

s4(1)

s5(1)

=

=

=

0

0

0

(3.24)

s2(0)
= 0 s(0)1= al

s4(0) = -P/El s(0)3= a2

s5(0)
= N s(0)6= a3



the tooth but also the choices of the three root estimates:

53
= s3 (z, al, a2, a3)

54
= s4 (z, al, a2, a3) (3.25)

s5
= 55 (z, al, a2, a3)

To solve for eq. (3.23), partial derivatives must be taken

with respect to al, a2, and a3. If we let:

6s
u4 = __i
'

6a1

6s.
V4 = __1
4

Sa2

6s.
w4 = 1
4

6a3

(3.26)

in which j = 1, 2, 3, 4, 5, or 6.

By following the procedure used for eq. (3.22), we can

obtain an additional 18 first order differential equations

in terms of u, v, and w:

L.1 = t2

t' = t
2 3

t =t4 (3.27)
3
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L2
t' = Es3 +t3 s5 - kL4 ti - (_b - tOs6
4 5

2

- (! - s1)t61]
2

t' =t
5 6

t =AkL
t26

where t = u, v, or w.

In solving eq. (3.23), the initial conditions for a

tooth embedded in a wood foundation (Fig. 3.4) are:

Ss.

T"1
z1(0) = u.(0) = aj

"

Ssi
(0) = v.(0) = b.

"'2

Ssi
sce (0) =w .(0) = c.

3

j

(3.28)

where j = 1, 2, 3, 4, 5, or 6; and aj = 0 for all i's

except al = 1; bi = 0 for all i's except b3 = 1; and cj = 0

for all j's except c6 = 1.

Eqs. (3.23) through (3.28) are summarized in Tables

3.1 and 3.2. The system of 24 first-order differential

equations (Table 3.1) with initial conditions (Table 3.2)

can be solved using Runge-Kutta technique directly by using

the interval i to estimate the values for interval i+1.

The following three steps need to be completed to reach the
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final solution: determination of Runge-Kutta coefficients,

summation of these coefficients, and iteration until the

process converges.

There are four Runge-Kutta coefficients for each

equation shown in Table 3.1, making a total of 96

coefficients. These coefficients are determined by the

(1+ ) (j+ ) 1 (1+1)
z0+1)+ f(ci ) + Tsf(CI3,n

'

)] (3.29a)
3 2,n 'zt,n t,n
1

where: m = Runge-Kutta coefficients 1, 2, 3, and 4;

n = 1,2,3,4,5,6 when t = s;

n = 7,8,9,10,11,12 t = u (z evaluated for al);

n = 13,14,15,16,17,18 t = v (z evaluated for a2);

n = 19,20,21,22,23,24 t = w (z evaluated for a3);

h = interval length; and

(1)
zn,t = value of z differentiated with respect to aj

(j=1,2,3), at 1th interval location (i =

interval origin, i+ = interval midpoint, and

i+1 = interval terminus).

Now that the Runge-Kutta coefficients have been calculated

for a particular interval, the values for all 24 first

37

same procedure outlined in section 3.2.2.1. and are

analagous to eq. (3.14). They are denoted as qm,n:

where: (i+ ) (i) h (1) (i)

q1,n
. q +

f(q4,n,zt,n);4,n 2
(3.29b)

CI2,n
= q4 +

(i+ ) (i) 0h f (q+ ) 0+ )

,n 2 1,n ,zt,n
); and (3.29c)

q3 = q4,n
(1+1) (i)

+ h f(q(i+
) 01+ )

,n 2,n ,zt,n ) (3.29d)

(i+1) (i) 1 (i) (i) 1 (i+ ) 0+ )

q4,n
= q + h ( 1(q ,z ) + f( ,z )

4,n 6 4,n t,n 3 1,n t,n



Table 3.1 First-order differential equations equivalent to
higher-order equations (3.20) and (3.21).

d

dz

Si

s2

S3

S4

S5

S6

U1

u2

U3

U4

U5

U6

v1

V2

V3

V4

V5

V6

w1

W2

W3

W4

W5

W6

s2

S3

S4

21/rT e 12,1
, / L. J. F5a3- I% L.

s1

U2

U3

U4

21/rT H c .1. c II 12,1, fL.LEA543-r z5u3) - mL
U1

- (b/2 - u0s5 - (b/2 - si)ui]

u6
il k L u2

V2

v3

V4

21 PT ., c _i_ c up 12,1im iLL Ev5a3-r a5v3) - r%L.

v1

- (b/2 - v1)s6 - (b/2 - s1)v61]

v6
A k L v2

W2

W3

w4

L2/EIliw5s3+ s5w3) - kL2 wi

- (b/2 - w1)s5 - (b/2 - si)i]

W6

A k L w2

- (b/2 - si)sj

38



39

Table 3.2. Initial conditions for the first-order differential

equations representing the behavior of a tooth embedded in wood.

s1(0) a1 a1
s (0) 0 0

2

s3(0)
s4(0)
s5(0)
s6(0)

51
(0)

s2al(0)
sal

3
(0)

sal
4

(0)

sal
5

(0)

sal
6

(0)
al

s1 (0) .

s22
2

(0)

sa2
3

(0)

sa2
4

(0)

sa2
5

(0)

s6a2(0)
a2

s1(0)a3

s2 (0)
a3

53
(0)

a3
S4 (0)

a3

s5 (0)
a3

s6 (0)
a3

a2
-P/El

N

a3

a2
-P/El

N

a3

u1(0) 0

u2(0) 0

u3(0) 1

u4(0) 0

u5(0) 0

u6(0) 0

.v1(0) 0

v2(0) 0

v3(0) 0

v4(0) 0

v5(0) 0

v6(0) 1

w1(0) 1

w2") 0

w3(0) 0

w4") 0

w5(0) 0

w6") 0



order differential equations can be calculated as follows:

i+1 i h [10+1) - (i+1) , 9n(i+1) , r,(i+1):1
(3.30)t'

tj + 6 qm,j I- 4qm,j+6 -1- "m,j+12 4m,j+18

where: j = 1,2,3,4,5,6; and
m = 1 when t = s;
m = 2 t = u;
m = 3 t = v; and
m = 4 t = w.

3.2.2.3. Procedure for Evaluating Displacements and Forces

for Complete Tooth

A set of 24 equations defined by eq. (3.30) is developed

for each interval along the tooth length. The size of h

affects the accuracy of the final results (23). Too small

or too large an interval may result in erroneous solutions

due to round-off error or lack of precision. To determine

an appropriate h for this study, a preliminary study was

conducted in which h was varied between 5% to 15% of tooth

length; the results showed little variation between the

solutions.

Equations defined by eq. (3.30) are evaluated for each

iteration cycle. The results are then checked whether

convergence has been attained. This is done by comparing

the known boundary conditions with variables calculated in

the last cycle for variables s3(1, al, a2, a3), s4(1, al,

a2,a3), and s5(1, al, a2, a3). These variables were chosen

because they were the original known boundary conditions.
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The difference between the current solutions and the

variables is calculated as follows:

where: = difference between boundary condition
and Runge-Kutta variables at end of
iteration cycle due to root estimate
i = 1,2,3; and

u3 - s5 = Runge-Kutta variables evaluated at
(1, al' a2' a3).

If the differences between the Runge-Kutta variables at the

end of the iteration cycle and their accompanying boundary

conditions are less than a prescribed tolerance, the system

has converged. If the differences are greater than the

tolerance, then new root estimates are calculated. These

new root estimates then replace the original root estimates

in eq. (3.23) for a new iteration cycle. The entire Runge-

Kutta process is then repeated until convergence.

New root estimates are calculated from the differences

between the Runge-Kutta variables obtained at the end of

the last iteration cycle and the boundary conditions:
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U3
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where: = new root estimate for i = 1,2,3.

In analyzing test joints, each tooth was divided into

10 intervals. The initial root estimates were chosen

arbitrarily as 0.0, but were automatically updated during

the iterative process. The tolerances, based on

preliminary runs, were chosen such as to maximize accuracy

while minimizing computer time.

3.2.2.4. Options for Varying Tooth Cross-Section and

Nonlinear Foundation Modulus

The Runge-Kutta technique demonstrated in Section

3.2.2.2 is very versatile and has many advantages over

other numerical analysis techniques. Runge-Kutta analysis

moves along the tooth length in intervals until the entire

length has been traversed. This allows for material

property values to change in each interval while retaining

compatibility since the solution for each interval is

dependent upon the previous segment.

Although all other material properties along the tooth

length were kept constant, an option in the procedure in

this study provides for changes in the moment of inertia

along the length of the tooth, which allows for modeling

which more closely simulates actual tooth stiffness.

Another option accounting for the plastic behavior of

the tooth during loading is also included in this model.
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Since the loading is applied in constant increments, the

loading and boundary conditions for each iteration can be

altered. When the moment in the head of the tooth,

calculated from the summation of s3(0, al , a2 , a3 ) for

each iteration exceeds the yield moment of the tooth, the

boundary conditions of eq. (3.20) were then modified to

simulate the plastic behavior. This was accomplished by

allowing the tooth to rotate while applying a constant

moment, which was accomplished by changing appropriate

boundary conditions.

3.2.3. Equations for Nonlinear Foundation Modulus

Two techniques, dependent on tooth orientation with

respect to loading, were used in this study to determine

the foundation modulus of wood. When tooth embedment

caused the wood to bear on the wide face of the tooth, the

resulting load-embedment trace generally had two linear

regions joined by a small curvilinear section. These

overall traces could best be approximated using 4 linear

regions.

When wood bears on the edge face of the tooth,

constant curvilinear traces were produced. These traces

are best approximated by a nonlinear least squares routine.

The subroutine RNSSQ in the IMSL software package was

helpful in developing appropriate equations in this study.
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3.3. Computer Program for Runge-Kutta Solution

The beam-on-elastic-foundation concepts discussed in

the previous sections requires a great deal of

computations. To facilitate with these computations, a

program was written using Microsoft Fortran for the IBM-AT

microcomputer. This program, called TRUSSCON, is shown in

Appendix A and is summarized in Figure 3.7.

Pertinent material properties are first entered into

the program as well as Runge-Kutta parameters such as step

size and criteria for convergence. The program conducts

some preliminary computations before going into the actual

analysis.

The loading scheme used in TRUSSCON was a standard

step-by-step procedure to account for nonlinearity, which

involves subdividing the load acting on the tooth or teeth

into small increments during which the joint is assumed to

behavior linearly. For each increment, these linear

responses are calculated and accumulated. The foundation

modulus is based on the current load and not the

incremental load.

There were two sets of initial conditions used in

TRUSSCON which were dependent on the stress level in the

teeth. The first set of initial conditions assumes that

the tooth acts as a cantilever beam and thus the slope

equals zero at the tooth-plate interface. The

corresponding moment at the tooth head can be calculated
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Figure 3.7. Flow chart of the program TRUSSCON used in

this study to determine joint response using beam-on-

elastic-foundation theory solved with Runge-Kutta
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from s3 of eq. (3.22) during the Runge-Kutta calculations.

This condition remains until the stress in the tooth,

determined from the calculated moment, exceeds 1.5 times

the yield stress of the tooth. The plastic hinge effect

caused by yielding is the basis of the second set of

initial conditions, which keeps a constant restraining

moment applied at the tooth-plate interface while allowing

tooth rotation. The value of 1.5 times the yield stress

was chosen as the plastic hinge origin because the plastic

modulus of rectangular beams in bending is 1.5 (7). Thus

although yielding begins in the tooth at the yield stress

on the tooth surfaces, the plastic hinge develops

throughout the tooth thickness while the moments become 1.5

times larger.

Termination of the program depends on the accuracy of

the root estimates and the convergence of the solution. If

the difference between the root estimates and the original

boundary conditions exceeds certain tolerances, then the

Runge-Kutta technique is repeated with newly calculated

root estimates. However for the program to proceed with

the next loading step there must also be deflection

convergence. This convergence can be determined by

comparing the displacement at the tooth head from one

complete computer run to the previous run. If the

difference between these two displacements is below a

46



prescribed tolerance and converging toward zero, then the

second convergence criterion is reached.

The theoretical maximum load a joint can withstand was

determined by tooth withdrawal. Tooth withdrawal occurs

when the load normal to the tooth exceeds the withdrawal

resistance. The normal load was taken as the product of

the slope at the tooth-plate interface and the lateral

load. The withdrawal resistance was the frictional

resistance, as calculated from the Runge-Kutta analysis,

integrated over the tooth length.

3.4. Evaluation of Interaction among Teeth

It is necessary for this study to determine if an

isolated truss-plate tooth behaves identically to a tooth

that is within a matrix of other teeth, so as to determine

if simple addition of effects of individual teeth, as is

currently used (14, 28), accounts for the overall plate

behavior. Therefore, data were needed on stresses in the

wood under each tooth. These stresses could not be

determined using the beam-on-elastic-foundation model that

is shown in the previous section, because this model only

gives values for deflection, slope, moment, and shear of a

single tooth. Therefore, a nonlinear finite element

program was employed to determine stress contours under

truss-plate teeth using various grain orientations and

loading regimes.
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The finite element program used in this study is a

nonlinear, 2-dimensional, plane stress analysis. The

program, COMCNIB1, was originally developed by White (42)

for the CYBER main-frame computer using routines by

Zienkiewicz (49). The microcomputer option of the final

version of this program, named COMPCON (34), was used to

evaluate the effect of multiple teeth in this study.

The nonlinear analysis in COMPCON is based on using three

discrete moduli of elasticity to describe material

properties in a step-by-step analysis. The modulus of

elasticity for each loading step is accomplished within the

program depending on the current stresses in each finite

element.

Figure 3.8 shows the three types of joints that were

modeled by finite element analysis to obtain the stress

contour under each tooth. The thickness of each wood

finite element for joint types 1(a), 2(a), and 3(a) were

based on the tooth bearing area since a preliminary

analysis showed stresses act vertically. Joint types 1(a),

2(a), and 3(a) were necessary to determine the stresses

acting directly under the tooth at discrete 0.05-in.

segments. The amount of force acting on each 0.05 in.

tooth segment could then be determined by multiplying each
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stress by its appropriate area. Joint types 1(b), 2(b),

and 3(b) utilized these forces to determine the stress

distribution of each 0.05 in. segment of the Y-Z plane.
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IV. EXPERIMENTAL PROCEDURE

The solution for the beam-on-elastic-foundation by

Runge-Kutta technique was verified by testing truss-plate

joints. Seven joint types with varying number of teeth,

plate angle, and grain angle were constructed and tested to

obtain the data needed to assess the model accuracy.

Additional tests included those to determine foundation

modulus for tooth bearing, specific gravity and moisture

content tests which provided the input data for the model

analysis. The materials used, specimen types, and testing

procedures are described in this section.

4.1. Joint Specimens

4.1.1. Material Selection

Studs: A survey of Oregon truss manufacturers,

summarized in Appendix B, showed that the predominant

lumber grade and species used in the construction of

trusses in the upper Willamette Valley, Oregon is No. 1 and

Better Douglas-fir. Therefore, two lumber samples of 30

kiln-dried, Douglas-fir No. 1 and Better grade and nominal

2- by 4-in, size were sampled from two lumber

manufacturers. This lumber was kiln-dried to an average

. moisture content of 19 percent. The wood supply for both

mills came from the Willamette Valley.
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The lumber was brought to the Forest Research

Laboratory where a rough estimate of specific gravity for

the sampled lumber was determined by measuring overall

weight and volume of each piece. Two groups of five

boards, representative of the specific gravity distribution

of the sampled lumber from the original group of 60, were

then selected for testing.

The selected lumber was cut into 16 in. long sections

with no visual defects. These sections were then placed in

a Standard Room for 5 months for conditioning at a

constant temperature of 70°F and relative humidity of 65

percent. These conditions provide for an equilibrium

moisture content of about 12 percent.

Plates: The steel truss-plates used in this study,

supplied by Gang-Nail Inc., were made of 20-gauge sheet

metal, 3 in. wide and 4.5 in. long, with an average tooth

density of 7.1 teeth per square in. The spacing between

main columns was 0.50 in., with teeth from offset columns

0.25 in. apart (Figure 4.1). Row spacing was staggered at

0.42 in. and 0.14 in. apart. Average tooth width,

thickness, and length were 0.050, 0.087, and 0.393 in.,

respectively.

4.1.2. Specimen construction

Figures 4.2 and 4.3 show the seven joint types tested.

Joint types 1-3 were constructed to discern multiple tooth
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complete behavior of typical truss-plate joints. The

specimens for joint types 1-3 were constructed from the

first group of 5 boards selected on the basis of specific

gravity while joint types 4-7 were constructed from the

second group.

An epoxy adhesive was applied to the teeth of the

upper member of each specimen before joint assembly, thus

ensuring failure in the desired lower member. The adhesive

was applied to reduce slippage in the adhered portion of

the joint which allowed a more precise measurement of

displacements in joints tested.

In accordance with CSA S347-M1980 (9), all teeth were

removed within a lumber end distance of 0.5 in. and within

a lumber edge distance of 0.25 in. The teeth were removed

with a milling machine which cut the teeth at the plate

surface.

Joints were constructed using the apparatus shown in

Figure 4.4 and in accordance with the specification

prescribed by GSA 5347-M1980 (9). The Canadian standard

was chosen instead of ASTM 01761 (2) due to the increased

flexibility regarding plate and grain geometry.

Truss-plates were pressed into the lumber at a constant

rate of 1.5 in./min until no gap was present between the

plate and wooden members. This generally occurred at a

load of about 140 lbs/tooth. The specimens were placed in

a Standards room after construction for at least 72 hours
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before testing to allow for relaxation of stresses induced

by pressing and to reduce the resulting variability.

4.1.3. Testing Procedure

Figure 4.5 illustrates an assembled specimen during

testing. The load was applied in tension by a 60,000-lb

capacity, Tinius-Olsen, screw-driven crosshead testing

machine. A constant displacement rate of 0.025 in./min was

used, which produced failure in 5 to 20 minutes. A

universal joint was placed between the machine and each

wood member to eliminate moments imposed on joints by

specimen misalignment.

Displacements were monitored by linear variable

differential transducers (LVDT), and the load was monitored

by a load cell. For all joints, the average of four LVDT

readings located in pairs at the wood-wood juncture

provided the average overall displacement between wood and

plate (Fig. 4.4). The average was chosen to avoid any

errors due to asymmetric specimen deflections. Load and

deflection readings were acquired at a rate of 2

readings/second by an IBM-XT microcomputer with a data

acquisition system.

4.2. Evaluation of Material Properties

Material properties for the joint members were

necessary to model and analyze the joint behavior. This
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section discusses the specimen sampling and testing

procedures carried out to determine these properties.

4.2.1. Material Selection

Two 1.5- by 1.5- by 1.5-in, samples were removed

from the lower member of all joint types upon failure.

These samples, taken between the plate and the grip, were

then labeled and stored in an impermeable package to

prevent any change in moisture content.

4.2.2. Testing Procedure

The properties tested included tooth embedment,

specific gravity, and moisture content.

4.2.2.1. Specific Gravity and Moisture Content

Specific gravity and moisture content were determined

for each 1.5-in, specimen cube in accordance with ASTM

standards 0-143 (1) and 0-2016 (3), respectively. Specific

gravity was based on specimen weight at approximately 12

percent moisture content divided by the oven-dry volume.

Moisture content was based on oven-dry weight.

4.2.2.2. Tooth embedment

There were four combinations of this test type

depending on tooth and grain orientation with respect to

bearing load. The tooth could either be oriented flat or
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on edge while the grain orientation was either parallel or

perpendicular to the applied embedment load.

The test apparatus for tooth embedment in wood is

shown in Figure 4.6. A 1.5-in, metal cube, with two

grooves for different tooth orientations, was clamped to

one of the cube surfaces. The shape of the metal and

specimen cube was dictated by the desired test type and

determined as follows. An individual tooth cut from a

truss-plate was driven in completely between the metal and

specimen cube. The metal cube and the tooth were then

removed, leaving only the specimen with a slight embedment

mark made by the tooth removed. The 0.3-in, long

corresponding loading head, depending on tooth orientation,

was then forced into the embedded portion of the specimen

at a rate of 0.035 in./min until failure. Load and

deflection were monitored by a data acquisition system

controlled by an IBM-XT microcomputer.

Joint types 1-3 were tested only with the wide tooth

face bearing on the end grain. The load-embedment curve of

joint types 1-3 were then averaged for each of the 5

boards. This provided a single foundation modulus for the

entire board.

A similar procedure was used in evaluating moduli for

joint types 4-7. Four orientations were tested and

averaged, representing all possible tooth and grain

orientations. Since in actual trusses, the bearing
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stress transmitted to radial or tangential grain is a

random event, no control was exercised in regard to bearing

on tangential or radial grain for perpendicular to grain

bearing loads. The average load-embedment curves for these

joints were again averaged for each of the five boards from

which they originated, resulting at the end in one average

load-embedment curve for each of four tooth and grain

orientations.

4.2.2.3. Tooth Withdrawal

The apparatus used for the tooth withdrawal tests is

shown in Figure 4.7. A 2- by 2-in. section of truss-plate

was attached to the back of an internal bond plate using

hot melt adhesive. This section, consisting of 4 centrally

located teeth with all other teeth removed with a milling

machine, was driven a 1.5-in, specimen block until no gap

was present between the wood and plate section. Another

internal bond plate was then attached to the wood specimen

with hot melt adhesive. The specimen with the 4-tooth

section and internal bond plates was transferred to the

Standards room.

Upon conditioning in the Standard room for a minimum

of 24 hours, the specimen was tested at a withdrawal strain

rate of 0.06 in./min. Load and deflection were monitored

with a strip chart and the secant modulus and ultimate

withdrawal load per tooth determined. These 4-tooth
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withdrawal test.
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Figure 4.7. Apparatus used to (a) assemble tooth withdrawal specimen, and (b) conduct
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were coated with an epoxy adhesive and redriven into the

same wood specimen. These specimens were again conditioned

in the Standards room for 24 hours and tested in

withdrawal. Results of the withdrawal tests are summarized

in Appendix F.
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V. RESULTS AND DISCUSSION

This chapter discusses the inputs and outputs of the

model developed and evaluates the accuracy of the model

prediction to observations obtained in testing full scale

joint specimens of type 1-7.

5.1. Specific Model for Specimens Tested

This section describes the results of the finite

element analysis which provided the information needed to

account for effects of rows and columns of teeth that act

in groups.

5.1.1. Multiple Tooth Effect

Three finite-element joint types were modeled by

finite element analysis (Fig. 3.7) to determine stress

fields in the wood under the tooth pressure. The results

lead to a decision about extending a single-tooth analysis

to the analysis of the whole plate.

5.1.1.1. Material Data Base

Figure 5.1 shows the stiffness properties used in the

2-dimensional finite element analysis. The modulus of

elasticity of wood, MOE, in the y-direction was equivalent

to the average longitudinal MOE estimated from National

Design Specifications (30) for No. 1 and Better Douglas-
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fir lumber. A single MOE value, estimated from the ratio

of longitudinal MOE to radial and tangential MOE (ET, ER)

for Douglas-fir from the Wood Handbook (41), was chosen for

the x- and z-directions since a specimen had an equal

probability of being oriented radially or tangentially.

The meshes used in each analysis consisted of

approximately 350 rectangular elements and 25 spring

elements. The spring elements (35) were necessary to

account for potential gaps and to connect the tooth

elements to wood elements.

5.1.1.2. Stress Distribution under a Single Tooth

Resulting stress distributions for face and edge of

the tooth are shown in Figure 5.2 for a shear load of 100

lbs acting on the tooth at the wood surface. It is

apparent that although the edge orientation has a smaller

tooth-bearing area, the stresses under the tooth are less

than those of face orientation. This is due to the

increased moment of inertia and stiffness for edge

orientation.

The larger stiffness for edge orientation is also

evident from the patterns of stress distribution. The more

flexible flat orientation has stresses which do not rapidly

spread in the x-direction. However, since the edge

orientation is very stiff at the tooth head, the

deflections and stresses are directed further along the
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Figure 5.2. Stress distributions for (a) tooth face

bearing on end grain and (b) tooth edge bearing on end

grain determined by nonlinear finite element analysis

(Stresses shown are in kips/in2).
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tooth resulting in a more even stress distribution.

The force distribution along each tooth illustrates

this observation. Figure 5.3. shows the percent load

distribution for the eight 0.05-in. sections along the

tooth length. The distribution depends on the tooth

orientation; the teeth bearing on edge are stiffer than on

face and a greater portion of the load are carried by the

ends of the tooth.

These load distributions, based on stresses directly

under each corresponding 0.05-in. section, were then used

to determine the applied load for second part of each

multiple tooth finite-element analysis. This was done to

determine how the stresses dissipate in the y-z plane and

to see if and by how much these stresses among teeth

overlap. This type of analysis also allows for a more

detailed analysis in the areas of highest stress.

5.1.1.3. Stress Distribution among Multiple Teeth

Arranged in Columns

The second part of the finite-element analysis was

conducted for only the outermost 0.05-in, of tooth

penetration as the stresses were the largest within that

thickness. Figure 5.4 shows the stress contours in this

outermost layer of the wood for teeth arranged in a column

with faces bearing on end grain. The same loads were

applied to each tooth. The assumption was made that each
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tooth of an actual plate carries the same load due to the

relatively large stiffness of the plate in comparison with

wood. Appendix C shows these stiffness differences and the

justification for using the same load for each tooth.

Loads shown in Figure 5.4, which are actually the 60%

of the total load carried by the outermost 0.05-in, thick

layer of wood (Fig. 5.3), vary from typical prefailure

loads (40 lbs + 60% = 67 lbs/tooth) to typical postfailure

loads (60 lbs + 60% = 100 lbs/tooth).

The sequential contours of Figure 5.4 show how

stresses accumulate under increasing load, and that the

highest compressive stresses are concentrated around the

tooth. Stresses dissipate rapidly in wood around teeth

while stresses away from the teeth dissipate slower and

almost at an even rate. These stresses begin to overlap as

the loads approach collapse (Fig. 5.4(c)). This indicates

only a minor interaction between teeth. Each tooth

introduces approximately 1 ksi stress for every 10 lbs

applied, which is due to the linear behavior of the high-

quality wood used in the analysis.

A column arrangement of teeth which bear on edges

exhibits a pattern similar to that of teeth that bear on

faces (Figure 5.5). The analysis was performed for only

the outermost 0.05-in. section where maximum stresses occur

and 40% of the total load is transferred into the wood

(Fig. 5.3). The applied loads ranged from typical
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lbs per tooth.
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near-failure loads of 75 lbs per tooth to an overload of

125 lbs per tooth. The smaller bearing area of the tooth

results in a higher proportion of stresses located directly

under the teeth. These stresses do not dissipate as

quickly as those of the face orientation, which results in

more stress interaction between teeth as load levels

increase. The stress levels in the wood are of low

magnitude, generally 2 ksi except directly under the teeth

at typical failure and post-failure loads, at which the

wood under the third and fourth teeth received higher

stresses than the teeth above them. This is because of the

small bearing area of the teeth which directs the stresses

downward rather than radiating outward, compounding the

stresses under the lower teeth. Therefore, although

interaction between teeth is minimal at low load levels,

interaction may be prevalent at collapse loads.

Interaction among the four teeth arranged in a row is

much less pronounced than interaction among teeth arranged

in a column. Figure 5.6 shows the results of the finite-

element analysis in a row of a set of teeth bearing on edge

and arranged in a row under 125 lbs per tooth, which

exceeds the collapse load considerably. There is no

interaction between teeth as demonstrated by the same

stress patterns under each tooth. The reason is the

transfer of stresses primarily in the direction of the

applied load. It can be concluded that the teeth bearing
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Figure 5.6. Stress pattern obtained in the finite-element analysis of four teeth in a row embedded in

wood with face bearing on end grain at a load of 125 lbs/tooth.



on edge would also show no interaction as the stresses in

that joint type radiate outward to an even lesser extent.

For these reasons, teeth in a row are expected to carry the

same load per tooth as that of a single tooth.

5.1.2. Analogy of Beam-on-Elastic-Foundation

5.1.2.1. Evaluation of Material Properties

This section discusses the existing material

properties and input parameters used for the truss-plate

model of this study as it relates to analyzing a plate

tooth as a beam-on-elastic-foundation, and then discusses

the foundation moduli used in assessing model accuracy.

Table 5.1 shows the input properties for the

theoretical analysis of plate joints tested in this study.

The MOE and yield stress were taken from a report by

McCarthy and Wolfe (28) who used the plate gauge and type

identical to the one in testing. The friction coefficient

of 0.385 for nail embedment in wood was reported by

Atherton (4). He determined the friction coefficient

between 6d common nails on the wide and narrow face of

Douglas-fir lumber. The foundation modulus, plate angle,

and grain angle vary depending on test type and specimen.

Two types of teeth were found in the truss-plates used

in this study; similar features except for a slight

difference in length and shape. However, the differences

were small enough to use the average of their

77



Table 5.1. Input parameters used in the theoretical analysis of
experimental plate joints of this study.
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MATERIAL PROPERTIES

Steel: MOE = 29.0 * 106 psi
Yield stress = 39,850 psi
Plastic stress = 59,775 psi

Wood: Friction coefficient = 0.385
Foundation modulus = varies
Plate and Grain angle = varies

TOOTH CHARACTERISTICS

Geometry: Overall length = 0.393 in.
No. of segments = 4

Segment #1: Length = 0.050 in.
Height = 0.0395 in.
Width = 0.113 in.

Segment #2: Length = 0.041 in.
Height = 0.044 in.
Width = 0.100 in.

Segment #3: Length = 0.241 in.
Height = 0.044 in.
Width = 0.087 in.

Segment #4: Length = 0.041 in.
Height = 0.044 in.
Width = 0.0435 in.

PROGRAM RUNNING CONSTRAINTS

Load increment = 5 lbs/tooth
No. of intervals = 10
Initial root estimates: al = 0.0

a2 = 0.0

Tolerances:
a3 = 0.0

Runge-Kutta root estimates = 0.05
Deflection at tooth head = 0.0005 in.



dimensions in the analysis. The average tooth had a length

of 0.393 in. and was divided into 4 distinct segments due

to variances in length, height, and width. The height of

the rectangular segment 1, which is the segment adjacent to

the plate, is basically the thickness of the plate from

which the teeth were punched out. Although segments 2, 3,

and 4 were punched out from the same plate thickness, their

dimension was increased due to the nonrectangular shape of

the tooth formed as a result of the die-punch.

5.1.2.2. Foundation Modulus of Wood

Twenty five values of foundation moduli were evaluated

from test specimens. Types 1, 2, and 3 of experimental

joints changed only the number and position of teeth while

keeping a plate angle of 0 degrees and loading parallel to

grain. Thus the five boards from which these test types

originated needed only to be tested for one type of

foundation modulus: tooth with its face bearing on end

grain. Joint types 4, 5, 6, and 7 varied in both grain and

plate orientation. Thus the 5 boards used for these test

types needed all four foundation moduli: tooth face bearing

on end grain, tooth edge bearing on end grain, tooth face

bearing on side grain, and tooth edge bearing on side

grain.

Four steps were followed to obtain the final

foundation moduli. The first step involved collecting the
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raw data for the load-embedment traces. Figure 5.7 shows

examples of the original experimental traces for tooth flat

bearing on end grain foundation moduli for two different

boards. The second step was to average these traces on the

basis of deflection (Figure 5.8). Deflection was the

common base for averaging since the embedment tests used a

constant strain rate. This constant strain rate resulted

in varying embedment loads of each specimen for known

deflections.

The third step involved smoothing the load-embedment

traces and standardizing the traces so that the foundation

moduli are based on a 1-inch tooth length. The smoothing

of the traces was done by removing the initial alignment

portion and extending the elastic portion of the traces to

the axes origin. The initial alignment portion was removed

because it was curvilinear and was due to settling of the

embedment head onto the specimen and apparatus alignment,

and thus not reflective of actual tooth behavior.

Standardization to a 1-inch basis was done by dividing the

load-embedment data by 0.30 in., which was the length of

the embedment loading head used to obtain the traces. The

reduced data are shown as standardized load-embedment

traces in Figures 5.9 through 5.13. All original load-

embedment traces are shown in Appendix D.

The fourth step involved applying the traces of Figs.

5.9 through 5.13 to evaluate numerical values which could
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y' = k = A + 2Bx (5.2)
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be used by program TRUSSCON. Two methods were employed to

accomplish this, linearization and nonlinear regression.

The load-embedment traces with tooth faces bearing on end

grain have 2 linear regions and only a small curvilinear

region. Nonlinear curve fitting techniques were originally

used to define the traces, but no exponential or polynomial

equations were found which could reduce the sums of squares

to an acceptable level. Therefore, traces were visually

divided into linear regions with corresponding deflection

limits that defined the extent of their validity. An

example of this technique is illustrated in Figure 5.14.

Load-embedment traces with teeth bearing on side grain

demonstrated a curvilinear behavior throughout the test.

For these traces, nonlinear regression analysis was

performed with exponential and polynomial functions. The

following polynomial equation, based upon least sums of

squares, provided the best fit:

y Ax + Bx2 (5.1)

where: y = load,
x = deflection, and

A,B = nonlinear regression coefficients.

Figure 5.15 shows a typical perpendicular to grain

load-embedment trace along with the regression equation.

The foundation modulus could be determined easily by taking

the derivative of equation (5.1):
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Regression equation coefficients along with the

linearized foundation moduli and deflection limits are

summarized in Table 5.2.

5.2. Evaluation of the Accuracy of Theoretical Model

This section compares the theoretical prediction to

experimental observations of joints with plates having one

tooth, four teeth in a column, four teeth in a row, and a

complete set of teeth.

5.2.1. Joints with Four Teeth in a Row or Column

Figures 5.16 through 5.18, compare theoretical and

experimental traces of individual specimens. Working

stresses were calculated on the basis of the average

ultimate load for each joint (39). Although the model

somewhat underestimates joint stiffness below the working

stress, and overestimates at high loads, the general shapes

and magnitudes are similar. In modeling nonlinear behavior

of wood systems, the correspondence of theoretical and

empirical results shown in Figs. 5.16 through 5.18 are

considered acceptable.

The underestimation of the joint stiffness at low

loads is probably due to difficulties with testing in

evaluating the foundation modulus. Tooth length, size, and

geometry vary considerably within the truss-plate. A truly

accurate representation of the foundation modulus would
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Table 5.2. Summary of parameters defining foundation modulus.

*k.. : foundation modulus for i = 0, tooth bearing on face; i = 90, tooth bearing on edge; j = A, loading
parallel to grain; and j = E, loading perpendicular to grain.

JOINT
TYPES

FOUNE11TON
TYPE

BOARD
NO. A B lc, k2 k3

k4 d1
d2

1 36000. 23200. 8100. 1200. 0.015 0.018 0.0235
2 45800. 34800. 11700. 960. 0.015 0.0185 0.024

1,2,3
*]ç

49000. 35500. 10800. 1750. 0.015 0.019 0.024
4 46900. 29800. 6100. 1840. 0.016 0.019 0.026
5 46900. 31400. 8500. 2160. 0.016 0.019 0.0255

1 42600. 28800. 10100. 1750. 0.0145 0.019 0.0265
2 42600. 34000. 11600. 2020. 0.0145 0.019 0.027

k0A 3 47800. 36800. 11600. 1000. 0.0135 0.0205 0.027
4 51200. 33400. 7600. 1270. 0.016 0.022 0.031
5 50000. 31200. 7600. 1270. 0.016 0.022 0.031

1 11200. 7150. 4000. 1330. 0.021 0.029 0.038
2 10600. 6830. 4100. 550. 0.026 0.031 0.0365

k90A 3 11200. 8220. 3680. 820. 0.0215 0.034 0.041
4 13200. 9200. 5030. 900. 0.018 0.0255 0.0365

4,5,6,

and 7

5

1 28300. -138400.

12500. 8660. 4160. 1060. 0.019 0.029 0.048

2 30000. -112400.

kOE 3 35900. -224600.
4 38000. -176300.
5 36000. -149200.

1 16400. -118600.
2 15700. -79500.

k9OE 3 16600. -94660.
4 16000. -117700.
5 19300. -111500.
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bearing on end grain.
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require removal of a statistical sample of individual teeth

from a truss-plate and attaching these single teeth to a

testing machine crosshead. The representative foundation

modulus would then be the average of the individually

tested teeth. If the predictions based on the average

modulus were used in theoretical prediction, the results

would be very close to the mean experimental observations.

It should be noted that this reasoning applies to the

entire trace length at all load levels.

No apparent difference seems to exist in the general

shape of the experimental data in Figs. 5.16 through 5.18,

which suggests a similar mode of failure in all 15

specimens. This failure mode can be characterized by joint

failure resulting from tooth withdrawal.

Table 5.3 shows the predicted withdrawal failure loads

along with the experimental ultimate loads for joint types

1, 2, and 3. The tooth furthest from the wood-wood contact

in the columnar arrangement began withdrawing at

approximately 80% of the ultimate load. Consequently, as

the load approached failure, the same tooth withdrew first.

The tooth next to it followed and then the next one

resulting in a gradual withdrawal of all teeth at failure.

The multiple teeth in a row which were equidistant from the

wood-wood contact withdrew all at the same time when the

ultimate load was reached. However, a paired t-test at the

5% significance level showed that no difference in ultimate
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Table 5.3. Comparison between the theoretical and experimental

ultimate loads characterized by tooth withdrawal for tooth face bearing

on end grain.

97

SPECIMEN NO.

AVERAGE LOAD/TOOTH (lbs)

THEORETICAL
EXPERIMENTAL

TYPE 1 TYPE 2 TYPE 3
(single) (row) (column)

1 69.5 66.6 82.3 68.9

2 88.5 91.9 89.0 99.1

3 93.0 75.0 88.6 83.4

4 91.5 93.9 105.4 102.3

5 95.0 84.7 96.4 106.5

average 87.5 82.4 92.3 92.0



load existed between the teeth in rows and in columns

despite the different failure mechanism.

The ultimate loads for column and row arrangement

(Table 5.3) were averaged and tested against the loads of

the single tooth showing no significant difference at the

5% signifi-cance level. However, all but one single tooth

were below the failure load of specimens with teeth in rows

and columns, suggesting a possibility of a smaller

withdrawal load for single tooth specimens. Perhaps a

larger sample size would detect this difference. The

smaller ultimate load of single-tooth joints is due to

their fragility. The single tooth joints were so fragile

that a small but observable gap between the wood and plate

developed before testing, in spite of careful handling and

placement of specimens in the testing apparatus.

5.2.2. Complete Truss-Plate Joints

Figures 5.19, 5.20, 5.21, and 5.22 summarize the

theoretical and experimental load-deflection traces for

each specimen of the complete joint types 4, 5, 6, and 7,

respectively. Tooth and grain orientation for joint type 4

was identical to types 1, 2, and 3, which permitted a

further statistical comparison on the nature of load

sharing in fully-toothed plates.

Traces for type 4 show a more consistent pattern than

those for types 1, 2, and 3. This is because the variation
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face bearing on side grain (joint type 6).
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in tooth size and local changes in wood foundation modulus

are averaged for joints tested with fully-toothed plates.

However, the general shape of the experimental and

theoretical traces for test types 4 are consistent with

types 1, 2, and 3 except for a sizeable decrease in the

deflection at failure for type 4. The probable reason is

the difference in the mode of failure. Specimens 1 and 2

exhibited wood failure by tooth withdrawal, specimens 3 and

5 failed by truss plate tensile rupture (Fig. 5.23), and

testing of specimen 4 was terminated because the testing

apparatus failed. Thus, the full strength of the wood in

specimens 3, 4, and 5 was never reached.

Figure 5.20 shows that the theoretical model

underestimates initial joint stiffness for teeth edge

bearing on end grain. Although the theoretical and

experimental ultimate loads are close, the shape of the

curves differ. The main reason for this difference lies in

the determination of the foundation modulus. The loading

head used for testing specimens with tooth edge bearing was

of rectangular shape with one dimension plate thickness and

another tooth length. However, the die-punch process used

to form the teeth substantially increases tooth thickness

and thus the amount of tooth area bearing on the wood. In

addition, the geometry and nonrectangular shape of the

tooth in edgewise orientation also increases the bearing

area especially at high load levels. As a result, the
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Figure 5.23. Typical failure of joint type 4 with teeth

face bearing on end grain.
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undersized loading head used in testing underestimated the

corresponding foundation modulus at low load levels. At

high load levels, sharp edges of actual teeth start cutting

into wood fibers before wood crushing occurs, so that the

actual joints rapidly lose their stiffness as compared to

theoretical traces based on smooth edges.

The teeth bearing edgewise on end grain (type 5

specimens) had a greater resistance to rotation at their

junction to the plate than the teeth bearing on face.

Thus, as the loading approached ultimate loads, the moment

at the tooth junction was transferred into the less stiff

plate causing the plate to deform and rotate (Fig. 5.24).

During this rotation, the teeth furthest from the wood-wood

contact withdrew first, so that the entire load was carried

by fewer teeth. This increased the moment at the remaining

teeth which caused the plate to rotate more, perpetuating a

chain reaction that culminated in failure.

Combined wood failure perpendicular-to-grain and plate

withdrawal were the failure mechanisms for joint types 6

and 7 (Fig. 5.24). Although plate withdrawal began at

about 95% of failure load, joint failure was determined by

the bearing strength of the wood foundation.

The traces for joint type 6 (Fig. 2.21) show trends

similar to those of type 7 (Fig. 5.22). However, the

smaller difference between the theoretical and experimental

traces for joint type 7 indicates that the determination of
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Figure 5.24. Typical failure of joint type 5 specimen with

teeth edge bearing on end grain.
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Figure 5.25. Typical failure of joint types 6 and 7
illustrating wood failure.
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foundation modulus to edgewise oriented teeth is less

sensitive for edge bearing on side grain than on end grain.

The reason is splitting of wood fibers occurs under tooth

edges bearing on end grain, but splitting is absent in

tooth edge bearing on side grain.

Table 5.4 compares the theoretical and experimental

failure loads for joint types 4, 5, 6, and 7. The

theoretical failure was based on joints reaching their

withdrawal load; the tooth was assumed to withdraw where

the normal component at the tooth attachment to the plate

reached the frictional resistance between the wood and

tooth. The failure load for specimen 4, joint type 4 was

never reached due to apparatus failure. Specimen 3, joint

type 6 was discarded due to equipment malfunctions.

The failure of joint type 4 was generally governed by

the withdrawal strength; the model predicts the failure

load of specimens 1 and 2 with sufficient accuracy, but

less accurate for specimens 3 and 5 due to plate failure.

Part of a problem was the selection of the coefficient of

friction between the tooth and collapsed wood from tooth

penetration. This coefficient is the mean value selected

from a study on nailed joints; the use of the mean value

did not account for variability and the collapsed wood

around the tooth may differ from that around the nail.

Tooth and grain orientation for joint type 4 are same

as for types 1, 2, and 3, which allows for comparison



Table 5.4. Theoretical and experimental failure loads (lbs/tooth) and mode of failure for joint types 4, 5,
6, and 7.

1: WD = plate withdrawal, PF = plate failure, and WF = wood failure perpendicular to grain.

SPECIMEN
NO.

JOINT TYPE 4
1

Theor. Exp. Mode

JOINT TYPE 5

Theor. Exp. Mode

JOINT TYPE 6

Theor. Exp. . Mode

JOINT TYPE 7

Theor. Exp. Mode

1 82.5 80.5 WD 59.2 60.4 WD 90.3 45.5 WT/WD 72.9 43.5 WF/WD

2 89.6 79.7 WD 56.3 73.0 WD 109.7 48.0 WT/WD 78.1 47.2 WT/WD

3 . 95.4 82.3 PF 56.3 86.6 WD - - 80.2 58.7 WT/WD

4 102.7 - 76.3 69.7 WD 127.7 48.5 WT/WD 70.8 47.1 WT/WD

5 99.4 81.2 PF 71.7 84.8 WD 129.3 58.0 WT/WD 94.2 58.3 WT/WD

average 93.9 80.9 64.0 74.9 114.3 50.0 79.2 51.0



between the test types. Joint type 1 is not included in

the comparison because of the gap observed between the

plate and wood member. When comparing joint type 4 to

those of types 2 and 3, the following observation was made.

Although the foundation modulus for joint type 4 was higher

than that for joint types 2 and 3, the experimental

withdrawal loads were less. This indicates a possible

interaction between the teeth, which may be the result of

two factors. First, the small interactive stresses that

were shown by the finite element analysis to be present

among the teeth arranged in columns, may be significant.

Second, the possible effects of failure in wood or in steel

were not included in the theoretical modeling, a point

discussed in detail when evaluating the accuracy for joints

6 and 7.

Specimens of joint type 5 with teeth edges bearing on

side grain all failed in withdrawal. Although a paired t-

test showed no difference between the theoretical and

experimental withdrawal loads at the 5% significance level,

the model appears to slightly underestimate the ultimate

withdrawal load. This may be due to support fixity moment

at the tooth base, which caused large deformations in the

plate. However, other factors may be involved, such as

inaccurate estimate and large variability in the foundation

modulus.
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The failures of joint types 6 and 7 were characterized

by wood failure in tension perpendicular-to-grain prior to

tooth withdrawal or excessive wood-bearing deformation.

Because failure load was based on tooth withdrawal rather

than wood failure, the theoretical failure load was

overestimated. Tooth withdrawal did occur, but only after

wood failure.

5.3. Proposed Modifications for the Theoretical Model

5.3.1. Inclusion of Additional Failure Mechanisms

The failure criterion for the model used in this study

was based on tooth withdrawal. While this is satisfactory

for several teeth, it is not representative of fully-

toothed plates.

A mechanism to compensate for steel failure should be

included into the model to accomodate the high stresses

which accumulate in the truss plate. This mechanism should

address: tensile rupture of the plate, evident in some

teeth face bearing on end grain specimens (joint type 4),

and plate rotation, present in teeth edge bearing on end

grain specimens (joint type 5).

Wood failure in tension perpendicular-to-grain was the

failure mechanism for joint types 6 and 7 and should be

included in the model.

5.3.2. Option for Combined Loading
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A typical elbow joint showing location of loading,

truss-plate, and truss-plate teeth is illustrated in Figure

5.26. Preliminary testing of these joints indicates that

the theoretical model of this joint should include three

distinct phases during loading. The first phase takes

place when the load is first applied to the elbow joint,

the wooden members rotate independently about a point on

the truss plate. Under increasing load, this behavior

continues until the gap separating the wooden members

closes, at which time the second phase takes effect, the

point of rotation starts to gradually move from the plate

to the contact area between the wooden members. The third

phase is characterized by joint rotation around the point

in the contact area between the connected wood members.

During the first phase, the members each rotate about

their own centers of rotation: determination of the

centers of rotation for each member is analogous to the

analysis commonly used in riveted joints (37). The center

of rotation is a function of the number of teeth, the

bearing area of each tooth, and the distance of these teeth

from a common reference point. The contact area between

members is the rotation point for the third loading phase.

Interpolation can be utilized to determine the center of

rotation for the second phase as it shifts between the

first and third loading phases.

The total load acting on each tooth in each of the



Figure 5.26. Typical elbow joint showing location of truss

plate, teeth, and load application. Centers of rotation

determined from shear and couple loading and resultant

loads on selected teeth also shown.
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three loading phases can be calculated in three steps. In

the first step the shear can be divided equally among the

teeth. It should be noted that the truss plate can be

considered a rigid diaphragm in this analysis, allowing for

an equal distribution of the shear load.

The second step involves evaluation of couple forces

for each tooth that replace the moment. The force taken by

each tooth depends upon its distance to the center of

rotation; that is, the tooth farthest from the center of

rotation takes the greatest load while the nearest tooth

takes the smallest. For a nonlinear analysis, the load

carried by each tooth due to the couple forces is also

dependent on the current value of the foundation modulus.

Nonlinear effects can be included by a linear step-by-step

approach and iteration.

The third step adds the shear and couple loads

vectorially to obtain the resultant load on each tooth

(Fig. 5.26).

The displacements of several teeth (Fig. 5.26) with

their resultant loads, could be calculated using beam-on-

elastic-foundation theory described in Section 3.2. These

deflections could then used to calculate the relative slip

between the wooden members near the load application. A

technique using Hankinson's formula, originally used by

Foschi (12), can be adapted to determine the foundation

modulus for teeth at various grain and plate angles. The
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moment of inertia for the teeth at various angles could be

transformed using Mohr's circle techniques.

5.4. Sensitivity Analysis: Effects of Material Properties

The shape of the theoretical load-displacement traces

and the failure load due to withdrawal are primarily

dependent on foundation modulus and friction coefficient.

This section deals with the effect of these properties on

the theoretical model.

5.4.1. Effect of Foundation Modulus on Theoretical Model

The foundation modulus in this study was determined

from embedding simulated teeth into wood. These embedment

tests demonstrated wide variability for foundation moduli

among identical boards (Appendix D). In addition, the

foundation moduli represent only one tooth shape and

length, whereas in actuality several tooth shapes and

lengths exist in each plate. These conditions make an

accurate determination of foundation modulus for each tooth

difficult at best. Therefore, a sensitivity study

concerning the effect of foundation modulus on the

theoretical model was conducted.

The sensitivity study for tooth face bearing on end

grain was carried out for joint types 4, 5, 6, and 7 with

wood used in constructing specimen No. 1 (Fig. 5.10). The

foundation moduli were multiplied by 0.6, 0.7, 0.8, 0.9,
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1.0, 1.1, 1.2, and 1.3 while the limits of linear region's

load-deflection traces remained unchanged. Because

Douglas-fir lumber used in this study has above average

strength and stiffness, the sensitivity analysis was

weighted towards the lower foundation moduli so as to

encompass less dense commercial species such as western

hemlock, spruce, and firs.

Results from the sensitivity analysis show that the

foundation modulus alters the shape of the load-

displacement traces for the same load, resulting in

increased deflections for decreased foundation moduli (Fig.

5.27). These larger deflections for a given load equate to

larger rotations at the tooth-plate interface, which in

turn cause larger withdrawal loads.

Figures 5.28 and 5.29 show the effect of foundation

modulus on complete tooth displacement and rotation. Large

rotations at constant load levels result in increased

withdrawal loads, explaining why the foundation modulus has

a proportional effect on the theoretical failure load (Fig.

5.30).

Displacement at the theoretical failure load shows a

similar proportional trend (Fig. 5.31). Smaller

displacements at failure are present from these decreased

foundation moduli, the result of decreased failure loads.
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Figure 5.27. Effect of foundation modulus on the

theoretical displacement at 75 lb. load per tooth for a

truss-plate joint with teeth face bearing on end grain.



0.04
0.02

0'".
c 0.02:-..-

0 0.04<0 0.06_.1

9 0.08
It) 0.1
r,
1-- 0.12
< 0.14
I-,-it 0.16
M
Ll.i 0.180
5 0.2
a.
v) 0.22
5 0.24

0.26
0.28

T

EFFECT OF FOUNDATION MODULUS

1

0 0.0786

CI FRACTION OF k .= 0.6
+ FRACTION OF k =. 0.8
A FRACTION OF k 1.= 1.0
x FRACTION OF k = 1.2

DISTANCE FROM TOOTH HEAD (in.)
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Figure 5.29. Effect of foundation modulus on the deflected

tooth shape at failure load. The tooth is embedded in wood

with face bearing on the end grain and displacements are

given along tooth length from tooth head (tooth-plate

juncture) to the tooth end (0.393 in.).
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Figure 5.30. Effect of foundation modulus on the joint
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Figure 5.31. Effect of foundation modulus on joint

displacement at failure for tooth face bearing on end

grain.
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5.4.2. Effect of Friction Coefficient

The friction coefficient used in the theoretical model

was obtained from the work done by Atherton (4). He

derived his friction coefficient value of 0.385 using 6d

smooth common nails and Douglas-fir. He found no

difference in friction coefficient between radial or

tangential grain and a coefficient of variance of about

nine percent, suggesting that friction coefficient does not

vary much with grain orientation or between specimens.

This dissertation used the value reported by Atherton

because of a similar steel-on-wood friction arrangement.

However, the surface and shape between smooth, common nails

and truss-plate teeth are not identical. In addition,

truss plates are a proprietary item with the tooth

construction varying among manufacturers. The complexity

of tooth-wood friction is complicated further by the

addition of epoxy to the tooth which binds with the wood

during pressing (25). The results from tooth withdrawal

tests (Appendix F) show that the withdrawal stiffness

increases approximately 25% and the withdrawal strength

increases approximately 75%. Thus a sensitivity study was

conducted to determine the effect of friction coefficient

on the theoretical load-displacement traces.

Figure 5.32 shows that the friction coefficient has

very little effect on the shape of the tooth under a given

load. That is because the friction coefficient determines
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Figure 5.32. Effect of friction coefficient on the

deflected tooth shape for a tooth embedded in wood with

face bearing on the end grain at a constant load of 75 lb.

Displacement values are given along tooth length from tooth

head (tooth-plate juncture) to the tooth end (0.393 in.).
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the withdrawal resistance of the tooth and has no effect on

the foundation. However, when withdrawal resistance

governs failure mode, the failure load is altered because

of the change in withdrawal resistance (Fig. 5.33). As

friction coefficient increases, the load required to

overcome the frictional resistance decreases, resulting in

a lower theoretical failure load.

It should be noted that the deflected tooth shape of

Figure 5.32 illustrates the tooth stiffness. The vast

majority of the tooth strain occur within the 25% of the

tooth length closest to the plate. The deflected tooth

shape in this region is concave up due to the fixity moment

restricting tooth rotation. The deflected shape without

the restraining moment would be concave down due to its

unrestrained rotation (28).

A decrease in deflection at failure load is also

present with a decrease in friction coefficient (Figs. 5.34

and 5.35). As was the case with foundation modulus, this

decrease is because of the decreased load required to

overcome frictional resistance.

5.4.3. Interaction Between Effects of Changes in

Foundation Moduli and Friction Coefficients

The influence of foundation modulus and friction

coefficient on truss-plate joint performance is difficult

to identify directly from failure load and displacement at
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Figure 5.35. Effect of friction coefficient on the

deflected tooth shape at failure load. The tooth is

embedded in wood with face bearing on the end grain.

Displacement values are given along tooth length from tooth

head (tooth-plate juncture) to the tooth end (0.393 in.).



failure. Therefore, load and deflection factors are

introduced:

Load factor =

displacement factor -

Load
k.,

i

, or k. .

1 1

Load

k1.0 1.0

displacement ki,or k. .i' 1 1

displacement
k1.0 1.0

(5.3)

(5.4)

in which load and displacement are at joint failure and

subscripts ki and Ai identify the fraction of the modified

parameter.

Table 5.5 illustrates changes in failure load and

displacement at failure of truss-plate joints when one or

both parameters are modified. Factors identified as

"direct" are based on Eqs. (5.3) and (5.4) and the results

of joint analysis. Factors identified as "product" are the

product of the appropriate factors for single

modifications. When a pair of "direct" or "product"

factors is of almost the same magnitude, the modified

parametets have no or negligible coupling or influence on

one another.

Table 5.5 shows little difference between factors for

two parameter changes and for individual parameter changes.

This suggests that a negligible interaction results from

coupling effects of foundation modulus and friction

coefficient. This is because both parameters engage
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Table 5.5. Effects of single- and multiple-parameter

changes of foundation modulus, k, and friction coefficient,

g, for failure load and deflection at failure for tooth

faces bearing on end grain.

aComputed from theoretical tooth load and deflection.
bProduct of corresponding factors for single modification.

Case

SINGLE PARAMETER FACTORS

..

k

1.3 0.6 1.3 0.6

LOAD

DEFLECTION

1.28

1.10

0.63 1.05

0.82 1.34

0.91

0.55

Case

MULTIPLE PARAMETER FACTORS

k1.3 k0.6

1.3 0.6 1.3 0.6

LOAD (Direct)a

(Product)b

DEFL (Direct)

(Product)

1.35

1.34

1.46

1.47

1.15 0.66

1.16 0.67

0.62 1.10

0.60 1.09

0.57

0.58

0.44

0.45
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independent mechanisms; foundation modulus controls the

wood and tooth displacement, whereas friction coefficient

dictates the force resisting tooth withdrawal.

Table 5.5 and Figure 5.36 demonstrate that foundation

modulus affects the failure load considerably more than

friction coefficient. Changing the friction coefficient in

the range from 0.6 to 1.3 results in only a 10% increase in

the failure load, whereas this same change in foundation

modulus results in an increase of more than 100%.

Tooth displacement at theoretical failure is affected

more by friction coefficient than foundation modulus (Fig.

5.37). This is due to the inability of the friction

coefficient to alter the deflected shape of the tooth (Fig.

5.32). The friction coefficient thus affects the failure

load which indirectly alters the deflection at failure.

The foundation modulus has an even greater effect on the

failure load, but in addition affects the deflected tooth

shape. This deflection due to the altered tooth shape

nullifies the sizable deflection changes due to the failure

load.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

The conclusions drawn from this investigation pertain

to the theoretical and experimental findings. The

conclusions derived on the basis of the theoretical

investigation are:

The developed theoretical model based on the

beam-on-elastic-foundation analogy accurately

predicts ultimate load in tooth-withdrawal mode,

but overestimates ultimate load for plate and

wood rupture modes. When a joint fails due to

plate rupture or rotation, the model accurately

predicts joint stiffness until the plate ruptures

or rotates, but not the failure load. Similarly,

when failure is caused in wood rupture (in tension

perpendicular-to-grain), the model predicts the

experimental load-deflection traces until the wood

fails.

The Runge-Kutta numerical technique can be

successfully used to solve differential equations

governing the interaction between the plate tooth

and wood.

The finite element model of plate joints with

teeth faces bearing on end grain showed that higher

stresses are produced in wood than those produced
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by edges bearing on end grain.

For stresses close to collapse loads, the finite

element analysis showed that when teeth in

columns bear with their faces on end grain,

stresses develop at a higher rate than when teeth

bear on edges. This results in more stress

overlapping among teeth for edge- than face-bearing

teeth.

Finite element analysis also showed that teeth in

rows display no interaction regardless of tooth

orientation.

In the analysis based on the analogy of beam on

elastic foundation, tooth withdrawal can be

predicted by monitoring the developing frictional

forces between the tooth and wood under stepwise

loading.

The Runge-Kutta technique allows the analysis of

teeth bearing on wood when the foundation modulus

and the tooth moment of inertia vary along the

tooth length.

A sensitivity study showed that an increase in

foundation modulus: (a) decreases the amount of

deflection for a given load; (b) increases the

failure load; (c) increases the deflection

at failure; and (d) changes the shape of the

deflected tooth.



A sensitivity study showed that an increase in

the friction coefficient: (a) has little effect on

the deflection for a given load; (b) increases the

failure load; (c) increases the deflection at

failure; and (d) has little effect on the

deflected tooth shape.

A sensitivity study indicated than a negligible

interaction is present between foundation modulus

and friction coefficient. However, foundation

modulus has a much greater effect on failure load

and deflection for a given load than the friction

coefficient.

The following conclusions were derived on the basis of

the experimental investigation:

Embedment tests show that teeth which bear on end

grain behave linearly up to 90% of failure load,

whereas teeth that bear on side grain behave

entirely nonlinearly throughout the loading range.

When tooth faces bear on end grain, joints

consisting of four teeth in a row have the same

failure load as those arranged in a column,

although their failure mechanism differs.

Testing single-tooth truss-plate joints is

difficult because of the fragile nature of the

joint specimens.
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IMPLICIT DOUBLE PRECISION (A-H2O-Z)
REAL LOAD,XLNGTH,TEMPL,TEMPL1,TEMPL2,TEMPL3,TEMPL4,TEMPL5,RKL,XL
1,CRNTP,DPSNGL,DPPAIR,K1,K2,K3,K4,LOADPR
DIMENSION XJAC(3,3),B(3),DLTALP(3),DLTAA1(20),DLTAA2(20),
1DLTAA3(20),ALPHA1(51,21),ALPHA2(51,21),ALPHA3(51,21),INEXT(51),
1DLEFT(51),DRIGHT(51)
COMMON / BLOCK / S1(21),S2(21),S3(21),S4(21),S5(21),S6(21),
1U1(21),U2(21),U3(21),U4(21),U5(21),U6(21),V1(21),V2(21),
1V3(21),V4(21),V5(21),V6(21),W1(21),W2(21),W3(21),W4(21),
1W5(21),W6(21),NUMIN,H,E,FNDMOD,XMOMIN,HEIGHT,LOAD,XLNGTH,
1FRCMOD,FRLOAD,ICOUNT,NUMEND,TLRNCE,XH(5),XW(5),XI(5),XL(5),
1NUMSEG,XMOM(21),SHEAR(21),FND(51),DIFFAL(51),PREVK(51),DELTA1(51),
1DELTA2(51),DELTA3(51),DELTA4(51),DELTA5(51),DELTA6(51),CRNTP,
1TEMPS1(51,51),LCOUNT,KCOUNT

$DEBUG
OPEN(4,FILE='LONG17.PRN',STATUS='NEW')
OPEN(5,FILE='SYM17.PRN',STATUS='NEW')
OPEN(7,FILE='LD17.PRN',STATUS='NEW')

C

C
************************************************************************

C

C PROGRAM RUNGA-KUTTA PLUS NON-LINEAR K
C

C This program solves a set of 6 first order nonlinear differential
C equations via the fourth-order Runga-Kutta/Newton method. This
C program inputs the data one variable at a time and is a step-by-step
C linear approach to account for nonlinear foundation modulus.
C

C Given: 6 first order o.d.e. with 3 pair of boundary conditions.
C

C Solution: Since Runga-Kutta(RK) needs all initial conditions,
C the boundary conditions must be transformed into
C initial conditions. This is done using a shooting
C method, which results in a set of 24 o.d.e. with
C 24 initial conditions. This can now be solved using
C ordinary RK methods.
C
************************************************************************

C

WRITE(*,*)' WELCOME TO THE WORLD OF RUNGA-KUTTA ANALYSIS!'
WRITE(*,*)"
WRITE(*,*)' ENTER 3-DIGIT SPECIMEN ID NUMBER (ex. 301)'
READ(*,70) SPECID

70 FORMAT(A4)
WRITE(*,*)' ENTER THE NUMBER OF TEETH FOR PLATE UNDER STUDY'
WRITE(*,*)' (Note: generally 1, 4, 24, or 48)'
READ(*,72) NTEETH

72 FORMAT(I2)
NTOTLT = NTEETH*2
WRITE(*,*)' ENTER PLATE ANGLE IN DEGREES'
WRITE(*,*)' (Note: 0.0 = parallel, 90.0 = perpendicular)'
READ(*,74) PANGLE
WRITE(*,*)' ENTER GRAIN ANGLE IN DEGREES'
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WRITE(*,*)' (Note: 0.0 = parallel, 90.0 = perpendicular)'
READ(*,74) GANGLE

74 FORMAT(F4.1)
IF (GANGLE .LT. .1) GO TO 85

C

C *** ENTER THE VALUES FOR THE FOUNDATION MODULUS. ALL VALUES
C SHOULD BE CALCULATED FOR A STANDARD ONE-INCH EMBEDMENT
C LENGTH. * * *

C

WRITE(*,*)' ENTER THE TWO NONLINEAR REGRESSION PARAMETERS'
WRITE(*,*)' (y = Ax + Bx**2)'
WRITE(*,*)"
WRITE(*,*)' A =
READ(*MVARA
WRITE(*,*)' B =

READ(*,*)VARB
GO TO 86

85 WRITE(*,*)' ENTER THE 3 LINEAR FOUNDATION MODULI OF EMBEDMENT CURV
1ES'

WRITE(*,*)"
WRITE(*,*)' K1 = (generally 46500.)'
READ(*,76)K1
WRITE(*,*)' K2 = (generally 30000.)'
READ(*,76)K2
WRITE(*,*)' K3 = (generally 10000.)'
READ(*, 76)K3

WRITE(*,*)' K4 = (generally 1400.)'
READ(*, 76)K4

76 FORMAT(F10.1)
WRITE(*,*)' ENTER THE 2 DEFLECTION LIMITS WHICH DEFINE THE THREE L
liNEAR K VALUES'
WRITE(*,*)"
WRITE(*,*)' DLIM1 = (generally 0.016)'
READ(*,77)DLIM1
WRITE(*,*)' DLIM2 = (generally 0.019)'
READ(*,77)DLIM2
WRITE(*,*)' DLIM3 = (generally 0.024)'
READ(*,77)DLIM3

77 FORMAT(F10.6)
C

C *** ENTER SOME INITIAL DATA (DEFAULT VALUES) ***
C

86 E = 29000000.
YLDSTR = 39850.
FNLSTR = YLDSTR * 1.5
XMOMIN = 0.00000080466
HEIGHT = 0.046875
WIDTH = 0.09375
NUMSEG = 4
ZERO = 0.0
IF (PANGLE .EQ. 0.0) THEN

= .0395
= .044
= .044



= .044
= .044
= .113
= .100
= .087
= .0435
= .0435

ELSE
= .0395
= .044
= .044
= .044
= .044
= .113
= .100
= .087
= .0435
= .0435

ENDIF
= .050
= .041
= .241
= .061
= .000
= .000
= .000
= .000
= .000
= .000

LOAD = 100.0
XLNGTH = .393
FRCMOD = 0.385
FRLOAD = 1.
DPPAIR = 5.0
NUMIN = 10
ITERAT = 0
TLRNCE = 0.05
CRNTP = 0.0

C WRITE(*,*)' ENTER TOOTH MOD OF ELASTICITY (USUALLY 29000000.)'
C READ(*,10)E
C10 FORMAT(F14.4)
C WRITE(*,*)' ENTER TOOTH LENGTH (USUALLY 0.5)'
C READ(*,11)XLNGTH
C11 FORMAT(F6.3)
C WRITE(*,*)' ENTER THE NUMBER OF DISCRETE TOOTH SEGMENTS (USUALLY 4
C 1, BUT MAX = 5)'
C READ(*,12)NUMSEG
C12 FORMAT(I1)
C WRITE(*,*)' ENTER TOOTH SEGMENT LENGTHS, USUALLY.125, .125, .125 A
C 1ND .125 (5F6.2)'
C READ(*,13)XL(1),XL(2),XL(3),XL(4),XL(5)
C13 FORMAT(5F6.2)
C WRITE(*,*)' ENTER TOOTH HEIGHTS, USUALLY .05, .045, .045, AND .04
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C 1 (5F6.2)'
C READ(*,14)XH(1),XH(2),XH(3),XH(4),XH(5)
C14 FORMAT(5F6.2)
C WRITE(*,*)' ENTER TOOTH SEGMENT WIDTHS, USUALLY .12, .10, .08, AND

C 1 .06 (5F6.2)'
C READ(*,15)XW(1),XW(2),XW(3),XW(4),XW(5)
C15 FORMAT(5F6.2)

WRITE(*,*)' ENTER APPLIED LOAD PER TOOTH PAIR (USUALLY 150.)'
READ(*,16) LOAD

16 FORMAT(F10.4)
C WRITE(*,*)' ENTER WITHDRAWAL LOAD (USUALLY 150.)'
C READ(*,18) FRLOAD
C18 FORMAT(F10.4)
C WRITE(*,*)' ENTER FOUNDATION MODULUS (USUALLY 50000.)'
C READ(*,20) FNDMOD
C20 FORMAT(F10.2)
C WRITE(*,*)' ENTER FRICTION MODULUS (USUALLY 0.4, ALWAYS < 1.0)'
C READ(*,22) FRCMOD
C22 FORMAT(F6.4)
C WRITE(*,*)' ENTER YIELD STRESS IN PSI ( USUALLY 39850.)'

C READ(*,24) YLDSTR
C24 FORMAT(F6.0)
C

TEMPL = O.
DO 150 J=1,NUMSEG
TEMPL = TEMPL + XL(J)

150 XI(J) = XW(J)/12.*XH(J)**3
XMOMIN = XI(1)

C

C *** SET TOLERANCE LIMIT AND INTERVAL LENGTH ***
C

C WRITE(*,*)' ENTER TOLERANCE FOR GUESSES (USUALLY 0.05)'
C READ(*,28)TLRNCE
C28 FORMAT(F10.7)

WRITE(*,*)' ENTER NO. OF INTERVALS (UP TO 20 INTERVALS)'
READ(*,40) NUMIN

40 FORMAT(I3)
DO 48 J=1,NUMIN
FND(J) = FNDMOD

48 CONTINUE
WRITE(*,29)XW(1),XH(1)

29 FORMAT(' XW(1) = ',F20.15,/,' XH(1) =' ,F20.15)
41 H = XLNGTH/NUMIN

NUMEND = NUMIN + 1
C

C *** GUESS THREE INITIAL CONDITIONS WHICH WILL REPLACE BOUNDARY
C CONDITIONS. THESE IC's WILL CHANGE USING RK AND NEWTON
C METHODS. THE ITERATION PROCESS WILL STOP WHEN THE UPDATED
C IC's VARY LESS THAN THE PRESTATED TOLERANCE OR IF THE NUMBER
C OF ITERATIONS EXCEEDS 100.
C

C WRITE(*,*)' ENTER 3 INITIAL GUESSES, SEPARATED BY BLANKS (3F6.2)'
C WRITE(*,*)' NOTE: USUAL GUESSES ARE 0.001,-.044, AND -40.0'
C READ(*,50)0RIGA1,0RIGA2,0RIGA3
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C50 FORMAT(3F6.2)
C

C *** BEGIN STEP-BY-STEP ANALYSIS (NON-LINEAR k) ***
C

PLSTCM = YLDSTR * XW(1) * XH(1)**2.0 / 6.0
HINGEM = PLSTCM * 1.5
WRITE(*,*)' ENTER LOAD INCREMENT SIZE PER PAIR (USUALLY 5 LBS)'
READ(*,55) DPPAIR

55 FORMAT(F5.2)
DPSNGL = DPPAIR/2
NUMPIN = INT(LOAD/DPPAIR)
FRFCTR = 0.5

C WRITE(*,*)' ENTER FRICTION FACTOR, WHICH DETERMINES WITHDRAWAL LOA
C 10 (USUALLY 0.5)'
C READ(*,*)FRFCTR

DO 315 I=1,NUMPIN
ALPHA1(I,1) = ORIGA1
ALPHA2(I,1) = ORIGA2
ALPHA3(I,1) = ORIGA3

315 INEXT(I) = 1
C WRITE(4,90)SPECID,NTEETH,PANGLE,GANGLE,VARA,VARB,VARC
C WRITE(7,90)SPECID,NTEETH,PANGLE,GANGLE,VARA,VARB,VARC
C90 FORMAT(//, SPECIMEN ID NO. ',A4,//,' NO. OF TEETH = ',I2,//,
C 1' PLATE ANGLE (degrees) = ',F5.1,//,' GRAIN ANGLE (degrees) = ',
C 1F5.1,//,' A = ,F12.2,//,' B = ',F12.2,//,' C = ',F12.5,///)

IF(GANGLE .GT. .1) GO TO 94

WRITE(4,91)SPECID,NTEETH,PANGLE,GANGLE,K1,DLIM1,K2,DLIM2,K3,DLIM3,
1K4

WRITE(7,91)SPECID,NTEETH,PANGLE,GANGLE,K1,DLIM1,K2,DLIM2,K3,DLIM3,
1K4

91 FORMAT(//,' SPECIMEN ID NO. ',A4,//,' NO. OF TEETH (pairs) = ',I2,
1//,' PLATE ANGLE (degrees) = ',F5.1,//,' GRAIN ANGLE (degrees) = '
1,F5.1,//,' K1 = ',F12.2,10X,' DEFL. LIMIT1 = ',F8.5,//,' K2 =

1,F12.2,10X,' DEFL. LIMIT2 = ',F8.5,//,' K3 = ',F12.2,10X,
1' DEFL. LIMIT3 = ',F8.5,//,' K4 = ',F12.2,///)
GO TO 115

94 WRITE(4,92)SPECID,NTEETH,PANGLE,GANGLE,VARA,VARB
WRITE(7,92)SPECID,NTEETH,PANGLE,GANGLE,VARA,VARB

92 FORMAT(//, SPECIMEN ID NO. ',A4,//,' NO. OF TEETH (pairs) = ',I2,
1//,' PLATE ANGLE (degrees) = ',F5.1,//,' GRAIN ANGLE (degrees) = '
1,F5.1,//,' A = ',F12.2,//,' B = ',F12.2,///)

C

C *** THE MAIN SECTION OF THE PROGRAM. THIS IS THE BEGINNING OF
C TRIPLE NESTED DO LOOP SECTION:
C (1) INNERMOST LOOP (500); DETERMINES VALUES OF EACH TOOTH
C SEGMENT FOR A GIVEN LOAD,
C (2) CENTRAL LOOP (310); INCREASES CURRENT LOAD BY A SMALL
C LOAD (DELTA LOAD) UNTIL THE FULL LOAD HAS BEEN
C APPLIED; AND
C (3) OUTERMOST LOOP (300); REPEATS (1) AND (2) TILL ERRORS
C ASSOCIATED WITH ITERATIVE PROCESS ARE LESS THAN
C A SPECIFIED TOLERANCE. ***
C

C *** REDO ENTIRE RK PROCEDURE, BUT ALTER k VALUES FOR NEWLY
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C CALCULATED DEFLECTIONS (i.e. k is function of defl.) * * *

C

115 DO 300 K=1,20
KCOUNT = K
WRITE(*,403)KCOUNT

403 FORMAT(' KCOUNT = ',I4)
PREVDE = DELTA1(1)
FLOAD1 = 0.0
FLOAD2 = 0.0
DSLOPE = 0.0
CRNTP = 0.0
DO 302 M=1,NUMEND
DELTAl(M) = 0.0
DELTA2(M) = 0.0
DELTA3(M) = 0.0
DELTA4(M) = 0.0
DELTA5(M) = 0.0
DELTA6(M) = 0.0
DLEFT(M) = 0.0

302 DRIGHT(M) = 0.0
C

C *** INCREASE CURRENT LOAD BY DELTA LOAD ***

C

WRITE(7,*)'LOAD DEFLECTION SLOPE MOMENT SHEAR
1 FR-LOAD FR-SHEAR'
WRITE(7,342)ZERO,ZERO,ZERO,ZERO,ZERO,ZERO,ZERO
DO 310 L=1,NUMPIN
LCOUNT = L
WRITE(*,402)LCOUNT

402 FORMAT(' LCOUNT = ',I4)
CRNTP = CRNTP + DPSNGL
CRNTTP = CRNTP * NTOTLT
LPREV = L - 1

TRUEDP = DPSNGL * COS(DSLOPE)
TRUEDF = 0.0
TEMPDF = 0.0
IF (PANGLE .GT. 89.) THEN

TEMPDF = -DPLSTM / 0.5 * XI(1) * E / 10.
TRUEDF = TEMPDF + (DPSNGL * SIN(DSLOPE))

ELSE

TEMPDF = -DPLSTM / 0.5 * XI(1) * E / 10.
TRUEDF = TEMPDF + (DPSNGL * SIN(DSLOPE))

ENDIF
FRLOAD = TRUEDF
IF (KCOUNT .NE. 1) GO TO 180
DO 320 M=1,NUMIN

IF (GANGLE .GT. 89.) THEN
TEMPX = (-VARA + (VARA**2. + 4.0*VARB*DPSNGL)**.5)/2./VARB
FND(M) = (VARA + 2.0*VARB*TEMPX) * XLNGTH

ELSE
FND(M) = K1 * XLNGTH

ENDIF
320 CONTINUE

C WRITE(*,*)FND(1)



GO TO 185
180 DO 151 M=1,NUMIN

NEXTM = M + 1
DLEFT(M) = DLEFT(M) + TEMPS1(LCOUNT,M)

151 DRIGHT(M) = DRIGHT(M) + TEMPS1(LCOUNT,NEXTM)
DO 330 M=1,NUMIN
TEMPX = DABS((DLEFT(M) + DRIGHT(M))/2.0)
IF (GANGLE .LT. .1) GO TO 172
FND(M) = (VARA + 2.0 * VARB * TEMPX) * XLNGTH

C WRITE(*,*)FND(1)
GO TO 330

172 IF (TEMPX .LT. DLIM1) THEN
FND(M) = K1 * XLNGTH

ELSEIF (TEMPX .GE. DLIM1 .AND. TEMPX .LT. DLIM2) THEN
FND(M) = K2 * XLNGTH

ELSEIF (TEMPX .GE. DLIM2 .AND. TEMPX .LT. DLIM3) THEN
FND(M) = K3 * XLNGTH

ELSE
FND(M) = K4 * XLNGTH

ENDIF
C WRITE(*,811)FRLOAD,FND(M)
810 FORMAT(1X,4F10.7)
811 FORMAT(1X,F10.1)
330 CONTINUE

C *** END STEP-BY-STEP INPUT ***

C *** ENTER INITIAL CONDITIONS FOR ALL 24 O.D.E. ***

185 ALPHA1(LCOUNT,1) = ALPHAl(LCOUNT,INEXT(LCOUNT))
ALPHA2(LCOUNT,1) = ALPHA2(LCOUNT,INEXT(LCOUNT))
ALPHA3(LCOUNT,1) = ALPHA3(LCOUNT,INEXT(LCOUNT))
DO 500 1=1,20
ICOUNT = I
INEXT(LCOUNT) = I+1
S1(1) = ALPHAl(LCOUNT,I)
TEMPS1(LCOUNT,1) = S1(1)

C *** THE NEXT PAIR OF IF STATEMENTS ARE NECESSARY TO ACCOUNT
FOR PLASTIC HINGE

IF(LCOUNT .EQ. 1) THEN
S2(1) = 0.0
S3(1) = ALPHA2(1,I)
V2(1) = 0.0
V3(1) = 1.0
GO TO 242

ENDIF
IF (DELTA3(1) .LT. HINGEM) THEN

S2(1) = 0.0
S3(1) = ALPHA2(LCOUNT,I)
V2(1) = 0.0
V3(1) = 1.0
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TEMPDM = XMOM(1)
ELSE

S2(1) = ALPHA2(LCOUNT,I)
S3(1) = DPLSTM
V2(1) = 1.0
V3(1) = 0.0

ENDIF

242 S4(1) = TRUEDP/E/XI(1)
S5(1) = FRLOAD
S6(1) = ALPHA3(LCOUNT,I)
U1(1) = 1.0
U2(1) = 0.0
U3(1) = 0.0
U4(1) = 0.0
U5(1) = 0.0
U6(1) = 0.0
V1(1) = 0.0
V4(1) = 0.0
V5(1) = 0.0
V6(1) = 0.0
W1(1) = 0.0
W2(1) = 0.0
W3(1) = 0.0
W4(1) = 0.0
W5(1) = 0.0
W6(1) = 1.0

C *** CALL THE SUBROUTINE RKALGO TO DETERMINE HOW ACCURATELY THE
INITIAL GUESSES SIMULATED THE BOUNDARY CONDITIONS. ***

CALL RKALGO

C *** SET UP AND INVERT JACOBIAN MATRIX. THIS IS DONE TO DETERMINE
HOW FAR OFF THE INITIAL GUESSES WERE. ***

C WRITE(*,401)I
C401 FORMAT(' VALUE AFTER CALL RKALGO. ICOUNT = ',I4)

XJAC(1,1) = U3(NUMEND)
XJAC(1,2) = V3(NUMEND)
XJAC(1,3) = W3(NUMEND)
XJAC(2,1) = U4(NUMEND)
XJAC(2,2) = V4(NUMEND)
XJAC(2,3) = W4(NUMEND)
XJAC(3,1) = U5(NUMEND)
XJAC(3,2) = V5(NUMEND)
XJAC(3,3) = W5(NUMEND)
NSIZE = 3
NCOL = 1

= S3(NUMEND)
= S4(NUMEND)
= S5(NUMEND)
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CALL MATINV (XJAC,NSIZE,DET,INVERR)
CALL MATMUL (XJAC,B,DLTALP,NSIZE,NSIZE,NSIZE,NCOL,MULERR)

DLTAA1(I) = DLTALP(1)
DLTAA2(I) = DLTALP(2)
DLTAA3(I) = DLTALP(3)
NEXTI = I+1
ALPHAl(LCOUNT,NEXTI) = ALPHAl(LCOUNT,I) - DLTAA1(I)
ALPHA2(LCOUNT,NEXTI) = ALPHA2(LCOUNT,I) - DLTAA2(I)
ALPHA3(LCOUNT,NEXTI) = ALPHA3(LCOUNT,I) - DLTAA3(I)
DUM1 = DABS(DLTALP(1))
DUM2 = DABS(DLTALP(2))
DUM3 = DABS(DLTALP(3))

C WRITE(*,276)DLTALP(1),DLTALP(2),DLTALP(3)
C276 FORMAT(' DELTA-ALPHAl = ',F14.7,/,' DELTA-ALPHA2 = ',F14.7,/,' DEL
C 1TA-ALPHA3 = ',F14.7)
C WRITE(*,278)ALPHA1(LCOUNT,INEXT(LCOUNT)),
C 1ALPHA2(LCOUNT,INEXT(LCOUNT)),ALPHA3(LCOUNT,INEXT(LCOUNT))
C278 FORMAT(' ALPHAl = ',F14.7,/,' ALPHA2 = ',F14.7,/,' ALPHA3 = ',F14.
C 17,/)

IF (DUM1 .GT. TLRNCE) GO TO 500
IF (DUM2 .GT. TLRNCE) GO TO 500
IF (DUM3 .GT. TLRNCE) GO TO 500
ICOUNT = I
GO TO 200

500 CONTINUE

*** RK/NEWTON METHOD COMPLETE. NOW UPDATE FOUNDATION MODULUS
AND THEN RETURN FOR ANOTHER RK/NEWTON ITERATION. ***

*** ADD SOME MORE INFO FOR STEP-BY-STEP ANALYSIS ***

200 DO 340 I=1,NUMEND
DELTA1(I) = DELTA1(I) + S1(I)
DELTA2(I) = DELTA2(I) + S2(I)
DELTA3(I) = DELTA3(I) + XMOM(I)
DELTA4(I) = DELTA4(I) + SHEAR(I)
DELTA5(I) = DELTA5(I) + S5(I)

340 DELTA6(I) = DELTA6(I) + S6(I)
C ** OUTPUT LOAD-DEFL VALUES AT TOOTH HEAD. IF OTHER LOCATIONS ARE

DESIRED, CHANGE (1) TO (DESIRED) IN STATEMENT BELOW. **
FSHEAR = O.
D6AVE = O.
DO 233 I=1,NUMIN

233 D6AVE = D6AVE + DELTA6(I)
IF (GANGLE .LT. 1.)THEN
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TEMPK = K2*XLNGTH
ELSEIF (GANGLE .GT. 89. .AND. PANGLE .GT. 89.)THEN
TEMPK = (VARA + 2.0 * VARB * XH(3) / 4.0) * XLNGTH

ELSE
TEMPK = (VARA + 2.0 * VARB * XH(3)) * XLNGTH

ENDIF
D6AVE2 = TEMPK * XH(3) / 2. * FRCMOD * XLNGTH / 4.0
FSHEAR = (D6AVE * H) + D6AVE2

C WRITE(*,813)TEMPK,XH(3),FRCMOD,XLNGTH,D6AVE2,D6AVE
C813 FORMAT(F7.0,5(2X,F9.5))

DSLOPE = DELTA2(1)
FLOAD = 0.0
IF (PANGLE .GT. 89.) THEN
FLOAD1 = -DPLSTM / 0.5 * XI(1) * E / 10. * LCOUNT
FLOAD2 = -CRNTP * SIN(DSLOPE)

ELSE
FLOAD1 = -DPLSTM / 0.5 * XI(1) * E / 10. * LCOUNT
FLOAD2 = -CRNTP * SIN(DSLOPE)

ENDIF
FLOADF = FLOAD1 + FLOAD2

C WRITE(*,813)FLOAD1,FLOAD2,FLOADF
C813 FORMAT(3(2X,F12.5))
C FLOADF = FRLOAD

WRITE(7,342)CRNTTP,DELTA1(1),DELTA2(1),DELTA3(1),DELTA4(1),FLOADF,
1FSHEAR

342 FORMAT(F7.1,F11.7,3(F12.7),2F12.4)

IF (LCOUNT .NE. 1) GO TO 310
IF (PANGLE .LT. 1.) THEN
DPLSTM = -1.0 * XMOM(1)/XI(1)/E/1.15
ELSE
DPLSTM = -1.0 * XMOM(1)/XI(1)/E/1.15
ENDIF

310 CONTINUE

C *** END ADDITIONAL STEP-BY-STEP ANALYSIS INFO ***

IF(ITERAT .EQ. 20) GO TO 220
ITERAT = ITERAT + 1
IF(ITERAT .EQ. 1) GO TO 207
ITOTAL = 0
DO 108 I=1,NUMIN
DIFFAL(I) = DABS(PREVK(I)-FND(I))
IF (DIFFAL(I) .LT. 200.)THEN
ITOTAL=ITOTAL+1

ELSE
ITOTAL=ITOTAL

ENDIF
108 CONTINUE

01ST = H/2.
DO 110 I=1,NUMIN
NEXTI = I + 1
PREVK(I) = FND(I)
AVEY = -(S1(I)+S1(NEXTI))/2.
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WRITE(4,234)DIST,AVEY,FND(I)
01ST = 01ST + H

234 FORMAT(3F20.7)
110 CONTINUE
207 WRITE(*,307)ITERAT
307 FORMAT(' *** END ITERAT = ***')

DIST = O.
DO 236 I=1,NUMEND
DEFLEC = -1.0*DELTA1(I)
WRITE(4,238)0IST,DEFLEC,CRNTTP
DIST = 01ST + H

238 FORMAT(3F13.8)
236 CONTENUE

DIFFER = ABS(DELTA1(1) - PREVDE)
IF (DIFFER .LT. .0005) GO TO 220

300 CONTINUE

220 WRITE(5,*)KCOUNT
WRITE(*,777)ICOUNT

777 FORMAT(' VALUE RIGHT BEFORE FINAL OUTPUT. ICOUNT = ',I4)
WRITE(5,*)DPPAIR,LOAD,PLSTCM,HINGEM
DIST = O.
DO 710 I=1,NUMEND
DEFLEC = -1.0*DELTA1(I)
WRITE(5,708)0IST,DEFLEC
01ST = 01ST + H

708 FORMAT(2F15.6)
710 CONTINUE

WRITE(5,*)' DISTANCE DEFLECTION SLOPE MOMENT SHEAR F

1RICTION-FORCE dN/dZ'
DSTNCE = O.
DO 601 J=1,NUMEND

WRITE(5,305)DSTNCE,DELTA1(J),DELTA2(J),DELTA3(j),DELTA4(J),
1DELTA5(J),DELTA6(J)

305 FORMAT(F8.4,F10.7,F13.6,F13.5,3F11.5)
DSTNCE = DSTNCE + H

601 CONTINUE

CLOSE (4)

CLOSE(5)
CLOSE(7)
STOP
END

SUBROUTINE RKALGO
IMPLICIT DOUBLE PRECISION(A-H2O-Z)
REAL LOAD,XLNGTH,TEMPL,TEMPL1,TEMPL2,TEMPL3,TEMPL4,TEMPL5,RKL,XL
1,CRNTP,DPSNGL,DPPAIR
DIMENSION XJAC(3,3),B(3),DLTALP(3),DLTAA1(21),DLTAA2(21),
1DLTAA3(21),ALPHA1(51),ALPHA2(51),ALPHA3(51)
COMMON / BLOCK / S1(21),S2(21),S3(21),S4(21),S5(21),S6(21),

1U1(21),U2(21),U3(21),U4(21),U5(21),U6(21),V1(21),V2(21),
1V3(21),V4(21),V5(21),V6(21),W1(21),W2(21),W3(21),W4(21),
1W5(21),W6(21),NUMIN,H,E,FNDMOD,XMOMIN,HEIGHT,LOAD,XLNGTH,
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1FRCMOD,FRLOAD,ICOUNT,NUMEND,TLRNCE,XH(5),XW(5),XI(5),XL(5),
1NUMSEG,XMOM(21),SHEAR(21),FND(51),DIFFAL(51),PREVK(51),DELTA1(51),
1DELTA2(51),DELTA3(51),DELTA4(51),DELTA5(51),DELTA6(51),CRNTP,
1TEMPS1(51,51),LCOUNT,KCOUNT

C
************************************************************************

C

C THIS SUBROUTINE CALCULATES THE COEFFICIENTS FOR THE RK NUMERICAL
C METHOD. THIS ALGORITHM THEN CALCULATES THE VALUES OF ALL 24
C O.D.E. AT EACH INTERVAL STEP.
C

C VARIABLE DESCRIPTION:
C

C XK101 - XK124 = FIRST RK COEFFICIENT FOR Si THROUGH W6
C XK201 - XK224 = SECOND RK COEFFICIENT FOR Si THROUGH W6
C XK301 - XK324 = THIRD RK COEFFICIENT FOR Si THROUGH W6
C XK401 - XK424 = FOURTH RK COEFFICIENT FOR Si THROUGH W6
C Si(I) - S6(I) = ORIGINAL SIX DIFFERENTIAL EQUATIONS TO BE
C SOLVED FOR iTH ITERATION
C Ul(I) - U6(I) = SIX PARTIAL DIFFERENTIAL EQUATIONS W/ RESPECT
C TO ALPHAl FOR iTH ITERATION
C V1(I) - V6(I) = SIX PARTIAL DIFFERENTIAL EQUATIONS W/ RESPECT
C TO ALPHA2 FOR iTH ITERATION
C Wl(I) - W6(I) = SIX PARTIAL DIFFERENTIAL EQUATIONS W/ RESPECT
C TO ALPHA3 FOR iTH ITERATION
C

C
************************************************************************

RKL = 0.
JCOUNT = 0

DO 700 I=1,NUMIN
JCOUNT = JCOUNT+1

H = XLNGTH/NUMIN
RKL = RKL + H
TEMPL1 = XL(1)
TEMPL2 = TEMPL1 + XL(2)
TEMPL3 = TEMPL2 + XL(3)
TEMPL4 = TEMPL3 + XL(4)
TEMPL5 = TEMPL4 + XL(5)

IF (RKL .LE. TEMPL1) THEN
WIDTH = XW(1)
HEIGHT = XH(1)
XMOMIN = XI(1)
GO TO 185

ELSEIF (RKL .LE. TEMPL2) THEN
WIDTH = XW(2)
HEIGHT = XH(2)
XMOMIN = XI(2)
GO TO 185

ELSEIF (RKL .LE. TEMPL3) THEN
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WIDTH = XW(3)
HEIGHT = XH(3)
XMOMIN = XI(3)
GO TO 185

ELSEIF (RKL .LE. TEMPL4) THEN
WIDTH = XW(4)
HEIGHT = XH(4)
XMOMIN = XI(4)
GO TO 185

ELSE
WIDTH = XW(5)
HEIGHT = XH(5)
XMOMIN = XI(5)

ENDIF

185 NEXTI = I + 1
FNDMOD = FND(I)
TEMPI = Sl(I)
TEMP2 = S2(I)
TEMP3 = 53(I)
TEMP4 = 54(I)
TEMP5 = S5(I)
TEMP6 = S6(I)
TEMP7 = U1(I)
TEMP8 = U2(I)
TEMP9 = U3(I)
TEMPI° = U4(I)
TEMP11 = U5(I)
TEMP12 = U6(I)
TEMP13 = V1(I)
TEMP14 = V2(I)
TEMP15 = V3(I)
TEMP16 = V4(I)
TEMP17 = V5(I)
TEMP18 = V6(I)
TEMP19 = W1(I)
TEMP20 = W2(I)
TEMP21 = W3(I)
TEMP22 = W4(I)
TEMP23 = W5(I)
TEMP24 = W6(I)

* * * CALCULATE FIRST SET OF RK COEFFICIENTS * * *

XK101 = TEMP2
XK102 = TEMP3
XK103 = TEMP4
XK104 = 1./E/XMOMIN*TEMP5*TEMP3-FNDMOD/E/XMOMIN*TEMP1
1 (HEIGHT/2.-TEMP1)/E/XMOMIN*TEMP6
XK105 = TEMP6
XK106 = FRCMOD*FNDMOD*TEMP2
XK107 = TEMPS
XK108 = TEMP9
XK109 = TEMP10



XK110 = 1./E/XMOMIN*(TEMP11*TEMP3 + TEMP5*TEMP9) - FNDMOD
1/E/XMOMIN*TEMP7 - (HEIGHT/2.-TEMP7)*TEMP6/E/XMOMIN -
1 (HEIGHT/2.-TEMP1)*TEMP12/E/XMOMIN
XK111 = TEMP12
XK112 = FRCMOD*FNDMOD*TEMP8
XK113 = TEMP14
XK114 = TEMP15
XK115 = TEMP16
XK116 = 1./E/XMOMIN*(TEMP17*TEMP3 + TEMP5*TEMP15) - FNDMOD
1/E/XMOMIN*TEMP13 - (HEIGHT/2.-TEMP13)*TEMP6/E/XMOMIN -
1 (HEIGHT/2.-TEMP1)*TEMP18/E/XMOMIN
XK117 = TEMP18
XK118 = FRCMOD*FNDMOD*TEMP14
XK119 = TEMP20
XK120 = TEMP21
XK121 = TEMP22
XK122 1./E/XMOMIN*(TEMP23*TEMP3 + TEMP5*TEMP21) - FNDMOD
1/E/XMOMIN*TEMP19 - (HEIGHT/2.-TEMP19)*TEMP6/E/XMOMIN -
1 (HEIGHT/2.-TEMP1)*TEMP24/E/XMOMIN
XK123 = TEMP24
XK124 = FRCMOD*FNDMOD*TEMP20

C *** CALCULATE SECOND SET OF RK COEFFICIENTS ***

TEMPI = S1(I) + H/2.0*XK101
TEMP2 = 52(I) + H/2.0*XK102
TEMP3 = S3(I) + H/2.0*XK103
TEMP4 = S4(I) + H/2.0*XK104
TEMP5 = S5(I) + H/2.0*XK105
TEMP6 = S6(I) + H/2.0*XK106
TEMP7 = U1(I) + H/2.0*XK107
TEMP8 = U2(I) + H/2.0*XK108
TEMP9 = U3(I) + H/2.0*XK109
TEMP10 = U4(I) + H/2.0*XK110
TEMP11 = U5(I) + H/2.0*XK111
TEMP12 = U6(I) + H/2.0*XK112
TEMP13 = V1(I) + H/2.0*XK113
TEMP14 = V2(I) + H/2.0*XK114
TEMP15 = V3(I) + H/2.0*XK115
TEMP16 = V4(I) + H/2.0*XK116
TEMP17 = V5(I) + H/2.0*XK117
TEMP18 = V6(I) + H/2.0*XK118
TEMP19 = W1(I) + H/2.0*XK119
TEMP20 = W2(I) + H/2.0*XK120
TEMP21 = W3(I) + H/2.0*XK121
TEMP22 = W4(I) + H/2.0*XK122
TEMP23 = W5(I) + H/2.0*XK123
TEMP24 = W6(I) + H/2.0*XK124
XK201 = TEMP2
XK202 = TEMP3
XK203 = TEMP4
XK204 = 1./E/XMOMIN*TEMP5*TEMP3 -FNDMOD/E/XMOMIN*TEMP1 -
1 (HEIGHT/2.-TEMP1)/E/XMOMIN*TEMP6
XK205 = TEMP6
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8ST 

EdW31 = ZOENX 
ZdW31 = TOENX 

tZZNX*0.Z/H + (I)9M = tZdW31 
EZZNX*0.Z/H + (I)SM = EZdW31 
ZZZNX*0.Z/H + (I)tM = ZZdW31 
IZZNX*0.Z/H + (I)EM = HdW31 
OZZNX401Z/H + (I)ZM = OZdW31 
6IZNX*OWH + = 6IdW31 
8IZNX*0.Z/H + (I)9A 

= 8IdW31 
LIZNX*0.Z/H + (I)SA = LIdW31 
9IZNX*0.Z/H + (I)tA 

= 9IdW31 
SIZ)IX40.Z/H + (I)EA = SIdW31 
tIZNX*0.Z/H + (I)ZA = tIdW31 
ETZNX*0.Z/H + (I)IA = EIdW31 
ZIZNX*0.Z/H + (I)9n = ZIdW31. 
ITZNX*0.Z/H + cosn = IIdW31 
OTZNX*0.Z/H + (nig] = OIdW31 
60ZNX*0.Z/H + (I)En 

= 6dW3.1. 

80ZNX*0.Z/H + ow = 8dW31 
LOZNX*0.Z/H + (I)in = LdW31 
90ZNX*0.Z/H + (I)95 = 9dW31 
SOZNX*0.Z/H + (I)SS = SdW3l 
tOZNX*0.Z/H + (I)tS = tdW31 
EOZNX*0.Z/H + (I)ES = EdW31 
ZOZNX*0.Z/H + (I)ZS = ZdW31 
TOZNX40.Z/H + (MS = IdW31 

0 

*A,* S1N3I0IJJ300 NU JO 13S Man 3[11 3iv1n31vo *** 3 

OZdW3100WONJ*00W3UJ = tZZNX 
t3dW31 = EZZNX 

NIWOWX/3/tZdW31*(IdW31-.Z/1H9I3H) I 

- NIWOWX/3/9dW31*(6IdW31-.Z/10I3H) - 6IdW31*NIWOWX/3/I 

00WONJ - (TZdW31*SdW31 + EdW314EZdW31)*NIWOWX/3PT = ZZZNX 
ZZdW31 = IZZNX 
TZdW31 = OZZNX 
OZdW31 = 6TZNX 
tIdW3140WONJ*00W3ld = SIZNX 
8IdW31 = LIZNX 

NIWOWX/3/8IdW31*(IdW31-.ZAHDI3H) I 

- NIWOWX/3/9dW31*(EIdW31-.Z/1119I3H) - EIdW31*NIW0WX/3/I 

00WONJ - (SIdW31*SdW31 + EdW31*LIdW31)*NIWOWX/3PI = 9IZNX 
9IdW31 = SIZNX 
SIdW31 = tIZNX 
tIdW31 = ETZNX 

8dW3140WONJ*00W3HJ = ZIZNX 
ZIdW31 = ITZNX 

NIWOWX/3/ZIdW31*(IdW31-.Z/11-10I3H) I 

-NIWOWX/3/9dW31*(LdW31-.Z/1H9I3H) - LdW31*NIWOWX/3/I 

clowau - (6dW31AdW31 + EdW3l4IIdW31)*NIWOWX/3PI = OIZNX 
OIdW31 = 60ZNX 
6dW31 = 80ZNX 
8dW31 = LOZNX 
ZdW3.1.40140N140WOUd = 90ZNX 



XK303 = TEMP4
XK304 = 1./E/XMOMIN*TEMP5*TEMP3 -FNDMOD/E/XMOMIN*TEMP1 -

1 (HEIGHT/2.-TEMP1)/E/XMOMIN*TEMP6
XK305 = TEMP6
XK306 = FRCMOD*FNDMOD*TEMP2
XK307 = TEMPS
XK308 = TEMP9
XK309 = TEMP10
XK310 = 1./E/XMOMIN*(TEMP11*TEMP3 + TEMP5*TEMP9) - FNDMOD
1/E/XMOMIN*TEMP7 - (HEIGHT/2.-TEMP7)*TEMP6/E/XMOMIN -

1 (HEIGHT/2.-TEMP1)*TEMP12/E/XMOMIN
XK311 = TEMP12
XK312 = FRCMOD*FNDMOD*TEMP8
XK313 = TEMP14
XK314 = TEMP15
XK315 = TEMP16
XK316 = 1./E/XMOMIN*(TEMP17*TEMP3 + TEMP5*TEMP15) - FNDMOD
1/E/XMOMIN*TEMP13 - (HEIGHT/2.-TEMP13)*TEMP6/E/XMOMIN -

1 (HEIGHT/2.-TEMP1)*TEMP18/E/XMOMIN
XK317 = TEMP18
XK318 = FRCMOD*FNDMOD*TEMP14
XK319 = TEMP20
XK320 = TEMP21
XK321 = TEMP22
XK322 = 1./E/XMOMIN*(TEMP23*TEMP3 + TEMP5*TEMP21) - FNDMOD
1/E/XMOMIN*TEMP19 - (HEIGHT/2.-TEMP19)*TEMP6/E/XMOMIN -

1 (HEIGHT/2.-TEMP1)*TEMP24/E/XMOMIN
XK323 = TEMP24
XK324 = FRCMOD*FNDMOD*TEMP20

C *** CALCULATE THE FOURTH SET OF RK COEFFICIENTS ***

TEMPI = S1(I) + H*XK301
TEMP2 = 52(I) + H*XK302
TEMP3 = S3(I) + H*XK303
TEMP4 = S4(I) + H*XK304
TEMP5 = S5(I) + H*XK305
TEMP6 = S6(I) + H*XK306
TEMP7 = U1(I) + H*XK307
TEMP8 = U2(I) + H*XK308
TEMP9 = U3(I) + H*XK309
TEMP10 = U4(I) + H*XK310
TEMP11 = U5(I) + H*XK311
TEMP12 = U6(I) + H*XK312
TEMP13 = V1(I) + H*XK313
TEMP14 = V2(I) + H*XK314
TEMP15 = V3(I) + H*XK315
TEMP16 = V4(I) + H*XK316
TEMP17 = V5(I) + PXK317
TEMP18 = V6(I) + H*XK318
TEMP19 = W1(I) + H*XK319
TEMP20 = W2(I) + H*XK320
TEMP21 = W3(I) + H*XK321
TEMP22 = W4(I) + H*XK322
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TEMP23 = W5(I) + H*XK323
TEMP24 = W6(I) + H*XK324
XK401 = TEMP2
XK402 = TEMP3
XK403 = TEMP4
XK404 = 1./E/XMOMIN*TEMP5*TEMP3 -FNDMOD/E/XMOMIN*TEMP1
1 (HEIGHT/2.-TEMP1)/E/XMOMIN*TEMP6
XK405 = TEMP6
XK406 = FRCMOD*FNDMOD*TEMP2
XK407 = TEMP8
XK408 = TEMP9
XK409 = TEMP10
XK410 = 1./E/XMOMIN*(TEMP11*TEMP3 + TEMP5*TEMP9) - FNDMOD
1/E/XMOMIN*TEMP7 - (HEIGHT/2.-TEMP7)*TEMP6/E/XMOMIN -

1 (HEIGHT/2.-TEMP1)*TEMP12/E/XMOMIN
XK411 = TEMP12
XK412 = FRCMOD*FNDMOD*TEMP8
XK413 = TEMP14
XK414 = TEMP15
XK415 = TEMP16
XK416 = 1./E/XMOMIN*(TEMP17*TEMP3 + TEMP5*TEMP15) - FNDMOD
1/E/XMOMIN*TEMP13 - (HEIGHT/2.-TEMP13)*TEMP6/E/XMOMIN -

1 (HEIGHT/2.-TEMP1)*TEMP18/E/XMOMIN
XK417 = TEMP18
XK418 = FRCMOD*FNDMOD*TEMP14
XK419 = TEMP20
XK420 = TEMP21
XK421 = TEMP22
XK422 = 1./E/XMOMIN*(TEMP23*TEMP3 + TEMP5*TEMP21) - FNDMOD
1/E/XMOMIN*TEMP19 - (HEIGHT/2.-TEMP19)*TEMP6/E/XMOMIN -

1 (HEIGHT/2.-TEMP1)*TEMP24/E/XMOMIN
XK423 = TEMP24
XK424 = FRCMOD*FNDMOD*TEMP20

* * * CALCULATE THE NEXT ITERATIVE VALUE FOR THE 24 RK VALUES

Sl(NEXTI) = S1(I) + H/6.*(XK101 + 2*XK201 + 2*XK301 + XK401)
S2(NEXTI) = S2(I) + H/6.*(XK102 + 2*XK202 + 2*XK302 + XK402)
S3(NEXTI) = S3(I) + H/6.*(XK103 + 2*XK203 + 2*XK303 + XK403)
S4(NEXTI) = S4(I) + H/6.*(XK104 + 2*XK204 + 2*XK304 + XK404)
S5(NEXTI) = 55(I) + H/6.*(XK105 + 2*XK205 + 2*XK305 + XK405)
S6(NEXTI) = S6(I) + H/6.*(XK106 + 2*XK206 + 2*XK306 + XK406)
Ul(NEXTI) = U1(I) + H/6.*(XK107 + 2*XK207 + 2*XK307 + XK407)
U2(NEXTI) = U2(I) + H/6.*(XK108 + 2*XK208 + 2*XK308 + XK408)
U3(NEXTI) = U3(I) + H/6.*(XK109 + 2*XK209 + 2*XK309 + XK409)
U4(NEXTI) = U4(I) + H/6.*(XK110 + 2*XK210 + 2*XK310 + XK410)
U5(NEXTI) = U5(I) + H/6.*(XK111 + 2*XK211 + 2*XK311 + XK411)
U6(NEXTI) = U6(I) + H/6.*(XK112 + 2*XK212 + 2*XK312 + XK412)
V1(NEXTI) = V1(I) + H/6.*(XK113 + 2*XK213 + 2*XK313 + XK413)
V2(NEXTI) = V2(I) + H/6.*(XK114 + 2*XK214 + 2*XK314 + XK414)
V3(NEXTI) = V3(I) + H/6.*(XK115 + 2*XK215 + 2*XK315 + XK415)
V4(NEXTI) = V4(I) + H/6.*(XK116 + 2*XK216 + 2*XK316 + XK416)
V5(NEXTI) = V5(I) + H/6.*(XK117 + 2*XK217 + 2*XK317 + XK417)
V6(NEXTI) = V6(I) + H/6.*(XK118 + 2*XK218 + 2*XK318 + XK418)

* * *
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C

Wl(NEXTI) = W1(I) + H/6.*(XK119 + 2*XK219 + 2*XK319 + XK419)
W2(NEXTI) = W2(I) + H/6.*(XK120 + 2*XK220 + 2*XK320 + XK420)
W3(NEXTI) = W3(I) + H/6.*(XK121 + 2*XK221 + 2*XK321 + XK421)
W4(NEXTI) = W4(I) + H/6.*(XK122 + 2*XK222 + 2*XK322 + XK422)
W5(NEXTI) = W5(I) + H/6.*(XK123 + 2*XK223 + 2*XK323 + XK423)
W6(NEXTI) = W6(I) + H/6.*(XK124 + 2*XK224 + 2*XK324 + XK424)

TEMPS1(LCOUNT,NEXTI) = Sl(NEXTI)
XMOM(NEXTI) = -S3(NEXTI) * E * XMOMIN
SHEAR(NEXTI) = -S4(NEXTI) * E * XMOMIN

C

700 CONTINUE
C

DSTNCE = 0.
DO 601 J=1,NUMEND
XMOM(1) = -S3(1) * E * XI(1)
SHEAR(1) = -S4(1) * E * XI(1)
DSTNCE = DSTNCE + H

601 CONTINUE
C

RETURN
END

C

*MATINV
$NODEBUG
$N0FLOATCALLS
$T1TLE:'Matrix Inversion Routine'

SUBROUTINE MATINV( ARRAY, NORDER, DET, INVERR )
CP The precision of this routine may be changed by changing the REAL
CP declaration to REAL*8, and/or using the IMPLICIT declaration below.

IMPLICIT DOUBLE PRECISION ( A-H, O-Z )
PARAMETER ( MAXORD = 100, EPS = 0.0001 )
DIMENSION ARRAY(NORDER,NORDER)
INTEGER IK(MAXORD), JK(MAXORD), PROW, PCOL
EQUIVALENCE ( PROW, PCOL ), ( NROW, NCOL )
LOGICAL INVERR************************************************************************

*
Routine to invert square matrix "ARRAY" (of order "NORDER") by a *

modified Gauss-Jordan elimination. The inverse matrix is *

accumulated in the space vacated by the input matrix during *

computation rather than using the traditional two matrices. *

The determinant "DET" is also calculated. The method is described *

in Philip R. Bevington's "Data Reduction and Error Analysis for the *
Physical Sciences"; McGraw-Hill; 1969. In fact, this routine is an *
updated version of one that appears in Appendex B (op-cit). *

*
By convention, PROW and PCOL (which are one and the same) point to *

the "pivot row" and "pivot column". Similiarly, NCOL and NROW point*
to the "max row" and "max col" (order) of the matrix. *

*
D. E. Cawlfield, MCC 124 *
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************************************************************************

IF ( NORDER .GT. MAXORD ) THEN
WRITE(*,*) ' **** ABORT FROM MATINV, CURRENT MAXORD= MAXORD
STOP ' *ERROR* ORDER GT MAXORD (MATINV)'

ENDIF

INVERR = .FALSE.
DET = 1.

NCOL = NORDER

C ********DEBUG*******
C WRITE(*,*)((ARRAY(I,J),J=1,NORDER),I=1,N0RDER)
C OPEN(4,FILE = 'MATINV.OUT',STATUS = 'NEW')
C WRITE(4,6)((ARRAY(I,J),J=1,NORDER),I=1,NORDER)
C6 FORMAT(' TRANSFERRED ARRAY',/,6(1X,F10.7))
C CLOSE(4)
C ******END DEBUG*****

DO 100, PCOL = 1, NCOL

C Find largest element A(IROW,ICOL) in rest of matrix .

AMAX = O.
DO 10, ICOL = PCOL, NCOL
DO 10, IROW = PROW, NROW

DUMMY1 = ARRAY(IROW,ICOL)
DUMMY2 = AMAX

IF ( DABS(DUMMY1) .GT. DABS(DUMMY2) ) THEN
AMAX = ARRAY(IROW,ICOL)
IK(PROW) = IROW
JK(PCOL) ICOL

ENDIF
10 CONTINUE

c***********************************************************************
C *****ABNORMAL EXIT*****
c***********************************************************************

IF ( AMAX .EQ. O. ) THEN
WRITE(*,*) ' *** Error from MATINV, pivot point is zero'
INVERR = .TRUE.
RETURN

ENDIF

c***********************************************************************
WRITE(*,'(A,1X,I2)') ' Pivoting: ', PCOL

C Interchange rows & columns to put AMAX in ARRAY(PROW,PCOL) .

IROW = IK(PROW)
IF ( IROW .GT. PROW ) THEN

DO 20, ICOL = 1, NCOL
SAVE = ARRAY(PROW,ICOL)
ARRAY(PROW,ICOL) = ARRAY(IROW,ICOL)
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C

C

ARRAY(IROW,ICOL) = - SAVE
20 CONTINUE

ENDIF

ICOL = JK(PROW)
IF ( ICOL .GT. PCOL ) THEN

DO 30, IROW = 1, NROW
SAVE = ARRAY(IROW,PCOL)
ARRAY(IROW,PCOL) = ARRAY(IROW,ICOL)
ARRAY(IROW,ICOL) = - SAVE

30 CONTINUE
ENDIF

C Accumulate elements of Inverse matrix . .

DO 40, IROW = 1, NROW
IF ( IROW .NE. PROW ) THEN

ARRAY(IROW,PCOL) = -ARRAY(IROW,PCOL) / AMAX
ENDIF

40 CONTINUE

DO 50, ICOL = 1, NCOL
DO 50, IROW = 1, NROW

IF ( IROW .NE. PROW .AND. ICOL .NE. PCOL ) THEN
ARRAY(IROW,ICOL) = ARRAY(IROW,ICOL)

& + ARRAY(IROW,PCOL) * ARRAY(PROW,ICOL)
ENDIF

50 CONTINUE

DO 60, ICOL = 1, NCOL
IF ( ICOL .NE. PCOL ) THEN

ARRAY(PROW,ICOL) = ARRAY(PROW,ICOL) / AMAX
ENDIF

60 CONTINUE

ARRAY( PROW, PCOL ) = 1. / AMAX

DET = DET * AMAX

100 CONTINUE
C

C Restore ordering of matrix .

DO 200, L = 1, NORDER
PCOL = NORDER - L + 1
ICOL = IK(PCOL)
IF ( ICOL .GT. PCOL ) THEN

DO 110, IROW = 1, NROW
SAVE = ARRAY(IROW,PCOL)
ARRAY(IROW,PCOL) = -ARRAY(IROW,ICOL)
ARRAY(IROW,ICOL) = SAVE

110 CONTINUE
ENDIF
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IROW = JK(PROW)
IF ( IROW .GT. PROW ) THEN

DO 120, ICOL = 1, NCOL
SAVE = ARRAY(PROW,ICOL)
ARRAY(PROW,ICOL) = -ARRAY(EROW,ICOL)
ARRAY(IROW,ICOL) = SAVE

120 CONTINUE
ENDIF

200 CONTINUE
C

C

RETURN

END

$NOLIST
$LIST

SUBROUTINE MATMUL( A, B, C, MROW, MCOL, NROW, NCOL, MULERR )
PARAMETER( MAXORD = 100 )
IMPLICIT DOUBLE PRECISION (A-H2O-Z)
DIMENSION A(MROW,MCOL), B(NROW,NCOL), C(MROW,NCOL)
LOGICAL MULERR************************************************************************

* Your basic matrix-multiplication routine. Multiplies A[mrow by mcol]*
* by B[nrow by ncol] to yield C[mrow,ncol]. *
************************************************************************

C

C MULERR = .FALSE.
IF ( MCOL .NE. NROW ) THEN

WRITE(*,*) ' MATMUL error...MCOL <> NROW ', MCOL, NROW
MULERR = .TRUE.
RETURN

ENDIF

C In Fortran, access the array in row order for efficiency ...

DO 10, JCOL = 1, NCOL
DO 10, IROW = 1, MROW

ZETA = O.
DO 20, KKKK = 1, MCOL

ZETA = ZETA + A(IROW,KKKK) * B(KKKK,JCOL)
20 CONTINUE

C(IROW,JCOL) = ZETA
10 CONTINUE

END
$NOLIST
$L1ST
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TRUSS MANUFACTURER SURVEY
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APPROXIMATE
MANUFACTURER DAILY OUTPUT CONNECTOR LUMBER INFORMATION

AT-Wood Manufacturing 50

Eugene, OR Roof trusses Truss-plates Doug-fir (#1/better and MSR 2100f)
(503)688-8671

Century Truss Co. 40 80% Doug-fir (#1/better)
Dayton, OR Roof trusses Truss-plates 20% Hem/fir (MSR 2100f)(dry)
(503)868-7871

Lakeview Bid. Mat.
Lakeview, OR
(503)947-4071

Moshofsky Enter.
Eugene, OR
(503)461-0880

Norton Lumber Co. 50
Phoenix, OR Roof trusses Truss-plates Doug-fir (#1/better)(90% green : 10% dry)
(503)535-1533

Relco Roof & Floor
Harrisburg, OR
(503)995-6311

Rigid Truss Co.
Amity, OR
(503)835-8373

Roof & Floor
Components, Inc.
Salem, OR
(503)378-0727

Trus-Joist Corp.
Hillsboro, OR
(503)648-6641

Truss Components
Cornelius, OR
(503)357-2118

Tualatin Valley
-Builders Supply
Lake Oswego, OR

150
Roof trusses Truss-plates Doug-fir (mostly #1/better)(green or dry)

70

Roof trusses Truss-plates Doug-fir (mostly #1/better)(green or dry)

110

Roof trusses Truss-plates Doug-fir (#1/better)(90% green : 10% dry)

Truss-plates Hem/fir (dry)
and plywood Doug-fir (#1/better)(green)
gussets web: 2x3 (#1/better),2x4 Doug-fir (stud)(green)

Plywood Doug-fir (MSR)(12% M.C.)
gussets Hem/fir (MSR)(12% M.C.)

Steel pin 60% mix of Hem/fir,Doug-fir (MSR 2400f)(dry)
200 trusses connectors 40% Laminated Veneer Lumber

80% Doug-fir (MSR 1750f)(green)
100 trusses Truss-plates 20% Hem/fir (MSR 1650f)(dry)

200
Roof trusses Truss-plates Doug-fir (MSR)(90% green : 10% dry)

Prec. Roof Trusses 150
Clackamas, OR Roof trusses Truss-plates Doug-fir (mostly #1/better, some MSR)(green)
(503)656-2983

166

400 trusses

35 trusses



APPENDIX C

PLATE-WOOD STIFFNESS COMPARISON
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Load Distribution among Multiple Teeth in a Column:

It is necessary to determine the percentage of the

total load that each tooth in a column supports. A free-

body diagram representation of 4 teeth in a column is shown

in Figure Cl.

There are 3 spring types shown in Fig. Cl. The

rotational spring, krot, represents the resistance to

rotation for each tooth as related to the truss-plate. The

elongation of the plate can be represented by treating the

plate as a series of columns. This elongation can be

characterized by the stiffness, kp late- The ability of the

wood foundation to resist deflections caused by the ith

tooth can be summarized by the stiffness, ki. This

constant is directly related to the foundation modulus of

the wood.

The mechanical system of Fig. Cl can be described by:

(4) = [K](d) (Cl)

where: (Q) = system of applied loads;
[K] = stiffness matrix; and
(d) = resulting displacements.

To create the stiffness matrix for eq. (Cl), the

following relationship can be used (Laursen, 1983):
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node 1

node 3

node 4

7717;

Figure Cl. Stiffness representation of 4 truss-plate teeth

embedded in wood with an applied load.
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4kplate
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kwood
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The overall system stiffness matrix can be assembled

by overlapping the local stiffness matrices of eq. (C2).

The overall system matrix can be reduced to include only

the significant parameters. Since no moment is present at

the applied load (node 1) and the truss-plate is assumed to

remain vertical, M1 and Vi can be eliminated.

The overall stiffness matrix is governed by the

effective stiffness of the truss-plate and wood. The

effective stiffness coefficient is the result of ki and

kplate for each node acting in series. For two springs

acting in series, we get the following equation:

keff=
1

k.
1

1

kplate

(C3)

Comparing the effective stiffness with the wood

stiffness will give us the relative stiffness difference.
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All four tooth and grain geometries are shown in the

examples below. The deflections for the wood are taken

from the complete joint tests. The dimensions of the

truss-plate are used to determine plate stiffness.

1) Tooth = flat : grain = parallel

(29300000)(.2)(.04)_
4.69 * 105 lbs/in.kplate (.5)

75 lbs
- 938 lbs/in.kwood 0.08 in

keff = 936 lbs/in.

difference = 2/938 = 0.2%

Tooth = flat : grain = perpendicular

kplate = 4.69 * 105 lbs/in.

42 lbs
= 1400 lbs/in.kwood 0.03 in.

keff = 1396 lbs/in.

difference = 4/1400 = 0.3%

Tooth = edge : grain = parallel

(29300000)(.2)(.04)_
1.17 * iP lbs/in.kplate - (.2)

83 lbs
- 2083 lbs/in.kwood 0.04 in.

keff = 2079 lbs/in.

difference = 4/2083 = 0.2%

Tooth = edge : grain = perpendicular

plate = 1.17 * 106 lbs/in.
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k
52 lbs

wood - 0.02 in: 2600 lbs

keff = 2594 lbs/in.

difference = 6/2600 = 0.2%

The difference between the effective stiffness and the

wood stiffness is 0.2% in all teeth and grain orientations.

Thus, for the joint types used in this study, it was

justified to assume a rigid plate in comparison to the wood

stiffness.
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LOAD-EMBEDMENT TRACES
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APPENDIX E

SPECIFIC GRAVITY AND MOISTURE CONTENT
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BOARD NO. REPLICATE

12% MOISTURE CONTENT OVEN-DRY

WEIGHT

(9m)

MOISTURE
CONTENT
(percent)

SPECIFIC
GRAVITYWIDTH'

(mm)

WIDTH2
(mm)

WIDTH3
(nn)

WEIGHT
(gm)

MULTIPLE TOOTH JOINTS

1

1

2

3

average

37.83

38.07
38.07

38.05
37.94
37.94

37.95
38.07
37.81

23.68 21.31
24.41 21.89
23.56 21.22

11.1

11.5

11.0

11.2

0.39

0.40
0.39

0.39

2 2

3

average

38.03
37.99
38.01

38.01
37.99
37.90

37.94
37.96
38.00

25.46 23.23
26.88 24.45
26.00 23.66

9.6
9.9

9.9

9.8

0.42
0.45
0.43
0.43

3
1

2

3

average

38.05
38.02
38.02

37.85
37.90
37.85

38.25
38.08
38.10

27.90 25.48
27.71 25.24
27.20 24.84

9.5

9.8
9.5
9.6

0.46
0.46
0.45
0.46

4
1

2

3

average

38.05
38.09
38.09

37.92
37.84

37.83

37.93
37.83
37.80

26.92 24.20
27.36 24.64
26.00 23.37

11.2
11.0

11.3

11.2

0.44
0.45
0.43
0.44

5
1

2

3

average

37.96

38.20
38.06

38.03

37.89
37.87

37.77

37.88
37.74

27.62 24.78
27.82 24.97
27.89 25.01

11.5
11.4

11.5

11.5

0.45

0.46
0.46
0.46

COMPLETE JOINTS

1

1

2

3

4

average

38.07
38.06
38.18
38.05

37.25
37.60
37.71
37.69

37.77
37.90
37.78
37.96

24.89 22.43
24.30 21.85
24.49 22.03
25.20 22.66

11.0

11.2

11.2

11.2

11.2

0.41

0.40
0.41

0.42
0.41

2

2

3
4

average

38.09
38.03
38.03
38.06

37.90
37.86
37.58
37.79

38.03
37.87
37.78
37.89

24.65 22.21
25.32 22.78
25.27 22.78
25.64 23.13

11.0

11.2
10.9

10.9

11.0

0.40
0.42
0.42
0.42
0.42

3

1

2

3

4

average

38.04
38.04
38.16
38.14

37.87
37.91
37.89
37.86

37.95

38.07
38.03
38.06

27.96 25.62
26.95 24.55
27.86 25.32
26.38 24.01

9.1

9.8
10.0
9.9

9.7

0.47

0.45
0.46
0.44

0.46

4

1

2

3

4

average

38.08
38.08
38.06
37.99

37.94
37.97.
37.91
37.92

37.64
37.89
37.97
37.90

30.70 27.80
28.47 25.83
28.26 25.58
28.55 25.87

10.4

10.2
10.5
10.4

11.4

0.51
0.47
0.47
0.47

0.48

5

1

2

3

4

average

37.98
38.07
37.99
38.04

37.89
38.02
37.89
37.65

37.94
37.98
38.07
38.33

28.84 26.01
29.48 26.51
29.34 26.43
28.50 25.67

10.9

11.2

11.0
11.0
11.0

0.48
0.48
0.48
0.47

0.48



APPENDIX F

TOOTH WITHDRAWAL DATA
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Table Fl. Summary of withdrawal tests conducted on truss-plate section containing 4 teeth (values

given in table are on a per tooth basis).

SPECIMEN

WITHOUT EPDXY WITH EPDXY

SECANT MOCULUS
(lbs/in.)

ULTIMATE LOAD
(lbs)

SECANT MCCUIDS
(lbs/in.)

ULTIMATE LOAD
(lbs)

1 250.0 16.0 245.2 25.3
2 272.7 18.3 323.9 30.8
3 369.3 37.5 520.8 51.3
4 250.0 21.0 381.3 38.0
5 262.5 16.8 293.3 33.8
6 289.1 14.3 359.4 38.5
7 197.9 16.0 231.6 33.0
8 267.0 24.3 380.7 43.5
9 342.1 28.8 453.9 39.3

average 277.8 21.4 354.5 37.1

stand. dev. 51.2 7.6 94.0 7.6




