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Probability-based reliability methods have placed an increased emphasis on

realistic simulation of structural behavior in bridge engineering. Uncertainty is

present in every aspect of structural analysis. Aleatory uncertainties in the loading

and load-carrying capacities, and epistemic uncertainties in mathematical idealiza-

tion of bridge systems are the major contributors to uncertain structural response.

However, the range of possible response and resistance of bridge components can

be predicted in probabilistic means.

The objective of this study is to develop efficient reliability analysis methods

for bridge components using existing concepts of probability, structural reliability

and finite element analysis. A finite element reliability procedure is proposed to

evaluate the probability of failure while accounting for both aleatory and epistemic

uncertainties in bridge girders subjected to live loads as well as columns to extreme

seismic loadings. OpenSees, the Open System for Earthquake Engineering Simula-

tion, an object-oriented open source framework for finite element analysis, is used

to implement in the proposed methodology.



For this probabilistic analysis approach, a gradient based first order reliability

method (FORM) that provides importance measures of uncertain parameters is

used instead of approximate integral solutions such as Monte-Carlo simulations.

The uncertain parameters are treated as random variables with continuous prob-

ability density functions. The random variables are ranked to determine which

parameters have the most influence on the structural response to applied loadings.

Force-based elements whose integration points coincide with critical locations

are ideal for moving load simulations of bridge girders. Moving vehicle loads are

taken into account as the part of the element, rather than nodal, equilibrium equa-

tions and it is straightforward to link section forces to a constitutive model rather

than relying on rigid body equilibrium. However, FORM requires explicit formu-

lations for the derivative of the structural response to be obtained with respect

to each uncertain parameter. For sensitivity formulations in force-based finite

elements, the direct differentiation method (DDM) is adopted in the framework

for evaluating the function and its gradient at the same precision. The numeri-

cal examples verify DDM response sensitivity equations are correct and reliability

analysis setup is prepared for continuous reinforced concrete bridge girders.

As a unique contribution to the reliability assessments of bridge girders, the in-

teraction of moment and shear is considered on both the demand and resisting sides

of the limit state function. A new material model based on Modified Compression

Field Theory (MCFT) is implemented in OpenSees to represent moment-shear in-

teraction. For performance limits placed on girder members, the moment-shear

capacity is defined using a multi-line closed curve adapted from the AASHTO

design code implementation of MCFT.

To contribute safety measurements of bridge girders, the framework runs fully



probabilistic reliability analyses while treating aleatory and epistemic uncertain-

ties simultaneously. Sensitivity formulations for new implementations in the pro-

posed methodology is another important contribution to reliability analysis of

bridge components with force-based elements. The numerical examples indicate

the moment-shear interaction is significantly high in most probable failure modes

of bridge girders. The limit state definitions in the proposed methodology is rec-

ommended to use instead of uncoupled shear and moment capacity that can lead to

non-conservative estimates of reliability. The importance measures highlights the

axle loads and distribution factors have significant influence on the most probable

failure mode.

Another important source of uncertainty in bridge systems is due to model-

ing approaches of column members subjected to extreme load cases such as seis-

mic. The methodology provides an approach for the reliability analysis of bridge

columns using the formulated response sensitivity of force-based elements. One

force-based element represents bridge columns under lateral loading to avoid dis-

cretization uncertainty of meshing displacement-based elements. However, the

choice of an integration method in the state determination of force- based finite

elements has a significant influence on the computed element response.

Recent advances in the literature regularize the strain-softening response of

force-based frame elements by either modifying the constitutive parameters or

scaling selected integration weights. While the former case maintains numerical

accuracy for strain-hardening behavior, the regularization requires a tight coupling

of the element constitutive properties and the numerical integration method. In the

latter case, objectivity is maintained for strain-softening problems; however, there

is a lack of convergence for strain-hardening response. To resolve the dichotomy



between strain-hardening and strain-softening solutions, a numerically consistent

regularization technique is developed for force-based frame elements using interpo-

latory quadrature with two integration points of prescribed characteristic lengths

at the element ends.

To assess the modeling uncertainty associated with integration methods in

force-based elements, analytical sensitivity of one-dimensional interpolatory quadra-

ture is developed via direct differentiation of the locations and weights of integra-

tion points. Using the analytical sensitivity formulations, the additional integra-

tion parameters in the new regularization technique are considered as epistemic

uncertainty in reliability analysis of bridge columns. The numerical examples quan-

tify the epistemic uncertainty of selecting a force-based integration method as well

as permitting integration points and weights to be treated as random variables in

a probabilistic structural analysis.
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Chapter 1 – Background

Uncertainties are inevitable in any estimate of structural engineering problems.

Properties of the structural system such as fabrication and material parameters,

external stimuli such as loads, imperfect modeling, lack of experience and human

factors are uncertain and cannot be determined exactly. In the presence of un-

certainties, neither loadings acting on systems nor component resistance can be

treated as deterministic when simulating structural response. The probability of

failure is always greater than zero and absolute safety for structures is impossible

to achieve. However, the possible range of demand and resistance can be predicted

and idealized. Consequently, a probabilistic design philosophy can ensure a level

of safety for engineered structures by predicting the probability of failure.

The study of reliability is concerned with prediction of the probability of fail-

ure in any stage of a structure’s lifetime. In the last quarter century, conventional

structural design procedures have been replaced with risk- and reliability-based

approaches that have found acceptance throughout the world. By combining sta-

tistical knowledge with engineering procedures, reliability analysis has become a

popular area of interest in structural engineering. Ensuing research studies have

given birth to new design codes and have started to replace deterministic design

concepts with novel reliability-based design. Probabilistic structural analysis treats

system properties and external stimuli as uncertain random variables [32]. Early

research led to the adoption of load combination factors in the current generation

of structural design codes. American Institute of Steel Construction Load and Re-



2

sistance Factor Design (LRFD) [7], Eurocode 3 [20] and Ontario Highway Bridge

Design Code (OHBDC) [110] are design codes in different stages of reliability-based

development.

Uncertain strength and load parameters may show statistically regular behav-

ior; so that probability theory should be considered for specifying limits of accept-

able structural performance. Reliability analysis must account for a number of

uncertainties to predict probability of failure under prescribed limit states. Hack-

ing [50] classified the source of uncertainties in probability approaches as either

aleatory or epistemic.

Aleatory uncertainty is due to the natural randomness and inherent variabil-

ity of complex phenomena. As a result, these are uncertainties that can not be

reduced. Repeated measurements of a physical quantity may not yield the same

value due to fluctuations in the environment, test procedures and instruments.

Structural parameters such as material properties, geometry and loads are treated

as aleatory uncertainties.

Conversely, epistemic uncertainty is due to limitations in knowledge or data

and can be reduced with improved mathematical modeling or increased data col-

lection. Structural analysis models are idealized representations of systems using

mathematical solutions and numerical approximations. The model uncertainty

within the mathematical formulation of the relevant limit state is considered as

epistemic uncertainty.

The finite element method (FEM) has become a widely used tool to simulate

structural response with non-linear behavior. In the presence of uncertainties,

structural response can be predicted by a methodology that combines probabilistic

approaches and finite element modeling. Finite element reliability analysis (FERA)
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provides such opportunity by tracking variation of structural response when every

quantity during the deterministic analysis is uncertain. [51].

The objective of this study is to develop efficient probabilistic analysis ap-

proaches for bridge components using existing concepts of probability, structural

reliability and finite element analysis. The sensitivity to uncertain parameters is

computed in order to investigate their influence on possible failure modes. Live

load reliability of bridge components such as girders will be investigated using the

proposed methodology. In addition, the modeling uncertainty associated with nu-

merical evaluations of finite element formulations will be investigated on bridge

columns subjected to excessive load cases such as seismic loading.
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Chapter 2 – Literature Review

The current literature on probabilistic approaches and bridge engineering proce-

dures is reviewed to build up efficient finite element reliability analysis methods

for bridge members.

2.1 Probability-Based Engineering Applications

Allowable Stress Design (ASD) is the conventional design procedure in structural

engineering. The uncertainty in demand and resistance is represented by a single

safety factor and the material behavior is limited to the elastic region. On the other

hand, Load and Resistance Factor Design (LRFD) incorporates a methodology

with multiple load and resistance factors based on known variability of applied

loads and material properties. These factors are calibrated using probabilistic

approaches and statistical data to ensure a uniform level of safety.

The first examples concerning probabilistic approaches in design codes were

the code calibrations and the selections of load and resistance factors for the new

edition of the Ontario Highway Bridge Design Code (OHBDC) [108]. Ellingwood

et al. [36] presented code calibrations using reliability-based partial factors on load

and resistance instead of conventional safety factors. Tabsh and Nowak [139] inves-

tigated the reliability of girder bridge systems considering the two extreme cases of

full correlation and no correlation between girder strengths. Their results indicated

that reliability of bridges designed according to American Association of State

Highway and Transportation Officials (AASHTO) specifications vary depending
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on span and type of material. Mori and Ellingwood [101] presented a probability-

based method to evaluate time-dependent reliability of components and systems

and the sensitivity of the reliability index to various parameters describing load

occurrence and strength degradation. Moses [102] presented fundamental aspects

of design specifications based on reliability modeling that concerns highway bridge

applications.

The basic philosophy in searching the optimum safety of structures was ac-

cepted in structural engineering area. However, until the last decade there has

been no standard adopted to comprise all of the available information for the pur-

poses of developing reliability-based criteria for design. AASHTO presented load

and resistance factors in design specifications for highway bridges that introduced

a limit state design philosophy in order to achieve a uniform level of reliability

throughout the system [1].

Optimum safety is the ultimate goal not only in the design of new bridge struc-

tures but also in assessments of existing bridges designed under previous design

standards. A considerable number of existing bridges in the United States has

required repair or replacement [109]. Thus, accurate assessment techniques are

also needed to evaluate the current load-carrying capacity of existing bridges. In

particular, National Cooperative Highway Research Program (NCHRP) project

12-46 was initiated in 1997 to develop a new AASHTO load and resistance factor

rating (LRFR) manual that introduces reliability-based evaluation methods [79]

for highways. The objective of this evaluation is not to build a new bridge but to

use an existing bridge safely and economically. Minervino et al. [96] introduced

the AASHTO New Guide Manual for Condition Evaluation and LRFR of High-

way Bridges. This manual extends the provisions of the LRFD specifications to
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the areas of the inspections, load rating, permit rules, fatigue evaluation and load

testing of existing bridges.

In reliability-based study of bridge structures, the aim has been to assemble

a statistical database and to evaluate the probable bridge loads and the strength

of system components. Attempts to develop assessments out of traditional deter-

ministic safety evaluations such as load-ratings were necessary because the current

approaches were insufficient to account for uncertainties. Stewart et al. [135] pre-

sented a practical application of reliability-based safety assessment which relates

the effects of bridge age, current and future traffic volume and loads, and deteri-

oration on the reliability and safety of aging reinforced concrete bridges. Higgins

et al. [60] have used risk-based approaches to rank bridges for repair or retrofit

decision making, where girder capacities were defined by a multi-linear limit state

function based on Modified Compression Field Theory (MCFT) [152].

For reliability of bridges under seismic loading, the Transportation Research

Board published a report concerning design of highway bridges for extreme events

[44]. The recommended load combinations for extreme cases such as earthquake,

vessel collision effect and hydraulic extremities have been implemented in the new

edition of the AASHTO LRFD bridge design specifications [3]. For the extreme

event case, live load factors were calibrated in the presence of seismic loads. Fran-

gopol et al. [40] proposed reliability estimation of short and slender columns under

random loads formulated by Monte Carlo simulation in the load space. Lupoi et

al. [85] developed a seismic fragility method based on simulation involving non-

linear dynamic analyses and general system reliability with correlated demands

and capacities. Nielson and DesRoches [105] provided an analytical methodol-

ogy for developing seismic fragility curves for highway bridges. The methodology
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considered the uncertain response of all major bridge components in assessing seis-

mic vulnerabilities. Kim et al. [75] provided a seismic performance assessment of

reinforced concrete bridge columns under variable axial load.

2.2 Reliability Methods

In all probabilistic efforts, the essential output is the probability of failure of a

structure relative to a limit-state criterion that divides the structural performance

space into safe and failure states. Thoft-Christensen and Baker [144] defined struc-

tural reliability as the probability that a structure will not attain each specified

limit state during a reference period. The limit state is the boundary between

safety and failure. Statistical models have been established on the basis of experi-

ments, measurements, analyses and judgment while structural safety is quantified

by mathematical formulations such as limit states.

For a structural component, the load carrying capacity, R, and the load effect,

S, formulate the basic limit state function, g (performance function):

g(R, S) = R− S (2.1)

where g > 0 denotes that the structure is safe and the boundary limit state occurs

for g = 0. The probability of failure, PF , can be expressed in terms of the

performance function:

PF = P (R− S < 0) (2.2)

Both R and S contain a set random variables and the occurrence of these vari-

ables is defined using the basic statistical distribution functions such as probability
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density function (PDF). The limit state function g(X) < 0 is checked regarding to

the model distribution of random variables, X. The probability of failure, PF , is

formulated as the multi-fold integral:

PF =

∫

. . .

∫

g<0

fx(X)dX (2.3)

where fx(X) is the joint probability density function for the basic random vari-

ables and the integration is evaluated over the failure region as shown in Fig. 2.1.

However, the integral is cumbersome to evaluate and various methods have been

developed to compute the probability of failure. The diversity of statistical dis-

tributions to model randomness and the number of random variables can make

Eq. (2.3) complex to evaluate using integration methods. On the other hand, sim-

ulation techniques and second-moment methods are favorable to use in structural

reliability problems.

PDFPDF

S − Load R− Strength g = R− S

X g(X)

Probability

of Failure

Figure 2.1: Limit state definition with probability density function.

Early applications of structural reliability use sampling and trial methods such

as Monte Carlo Simulation (MCS) that consists of the direct realization of events.

For N number of trials, the approximate probability of failure is calculated:

PF ≈ n(g < 0)

N
(2.4)
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where the ratio of the number of failure trials, n, to the total trials, N , gives the

probability of failure.

The key feature in MCS is the generation of random variables with specified

probability distributions. The common method for generating random variables

is to create numerical values in the interval [0, 1] and use the inverse cumulative

distribution function (CDF) of the variable while assuming a uniformly distributed

number. The random number generator produces discrete numbers in the interval

based on arbitrarily selected seed values. However, the generator algorithms based

on a recursive mathematical formula are completely deterministic. In addition,

a drawback for this method can be the high number of simulations which must

be carried out to obtain meaningful results. For the case that the probability of

failure is relatively small, MCS loses accuracy using the same number of runs.

Several researchers have used reliability methods based on MCS as an assess-

ment tool for highway bridges [8, 37, 109, 135]. In addition, several techniques

have been developed to improve the efficiency of MCS such as importance sampling,

Latin Hypercube sampling and directional simulation. McKay et. al [92] presented

the Latin Hypercube sampling method which generates multivariate samples of sta-

tistical distributions. The directional simulation method defines a set of directions

forming a unit hyper-sphere to evaluate the probability integral and reduces the

dimension of the limit state [17, 73, 94, 100, 104].

Second-moment methods consider the special case of reliability estimation in

which variables are represented by their first two moments: mean value and stan-

dard deviation. Higher order moments such as skewness and flatness are ig-

nored. The simple reliability analysis based on second-moment representations

leads to effective calculation methods applicable in reliability analyses that use
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fully-probabilistic information [32]. The method has been attractive with its math-

ematical formulations defining uncertain parameters as continuous random vari-

ables in structural engineering.

For the case that quantities are normally distributed and statistically indepen-

dent, the limit state function, g, is also normally distributed as shown in Fig. 2.1.

The characteristic properties, mean value µ and standard deviation σ of the limit

state distribution can be obtained in terms of load S and resistance R parameters.

µg = µR − µS (2.5)

σ2
g = σ2

R − σ2
S (2.6)

The probability of failure is expressed in the form

Φ

[−µg

σg

]

= Φ(−β) (2.7)

where Φ is the inverse normal cumulative density function. The reliability index,

β, is simply the number of standard deviations from the mean of the safety margin

to the failure state [26]. Indices below the target level are not acceptable while the

higher ones are not practically feasible. The selection of target reliability index

is a multi-disciplinary task that comprises structural, statistical and economical

analyses.

In structural reliability problems, variations in parameters can be in non-normal

distributions. Moreover, the limit state function is generally non-linear and con-

tains more than two basic random variables. To overcome these problems, tech-

niques incorporating transformation, linearization and iterative approaches have
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been developed. For non-linear limit state functions, a linear approximation can

be obtained applying Taylor expansion around a linearization point. Since first-

order derivatives are used in Taylor series expansion, the method is known as the

first-order reliability method (FORM). For the case that the mean values of the

random variables is selected as linearization point, the method takes the name

First-Order Second-Moment (FOSM) reliability and the limit state has the form:

g(x1, . . . , xn) ≈ g(µx1
, . . . , µxn

) +
n
∑

i=1

(xi − µxi
)

∂g

∂xi

∣

∣

∣

∣

µX

(2.8)

The reliability index expressed in terms of mean values has the form:

β =
g(µx1

, . . . , µxn
)

√

∑n

i=1

[

∂g

∂xi

∣

∣

∣

µX

σxi

]2
(2.9)

However, FOSM method has an invariance problem that the reliability index

values depend on the specific form of the limit state function. Hasofer and Lind

[54] presented a reliability method (HL) that did not suffer from ambiguity prob-

lems. The approach was based on the linearization of the limit state function at

a design point on failure surface. The limit state surface was approximated with

a tangent hyperplane using first-order gradients in Taylor expansion. The dis-

tance between the limit state function linearized at design point and the origin of

reduced variables is analytically calculated. The design point is the solution to a

constrained optimization problem where gradient-based iterative search algorithms

are suggested to find the design point. HL method proposed a mapping of random
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variables, X, into a standard space of uncorrelated reduced variables, Y.

g(Y) = g(σx1
y1 + µx1

, . . . , σxn
yn + µxn

) = 0 (2.10)

The most probable failure point is the one that minimizes the distance from

the origin of standard space of random variables to the limit state surface. Having

the same formulation as given in Eq. (2.9), the reliability index is described as the

minimum distance from the origin of the random variables to the design point as

shown in Fig. 2.2. However, this point is not a priori; so that an iterative method

needs to be used to locate the design point and to solve for the reliability index.

Y1

Y2

y∗
1

y∗
2

β

DesignPoint

FORM tangent

g(y1, y1) = 0

Figure 2.2: Hasofer and Lind (1974) reliability index

The distance between the limit state function linearized at design point and

the origin of reduced variables is analytically calculated. The design point is the
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solution to the constrained optimization problem [58]:

Y∗ = argmin{‖ Y ‖| g(Y) = 0} (2.11)

where Y∗ is the design point and argmin denotes the argument of a minimum of

a function.

In the HL method, random variables are assumed to be normally distributed.

Rackwitz and Fiessler [124] modified HL method by incorporating the transfor-

mation of non-Gaussian random variables into normally distributed equivalent

variables (HLRF Method). The HLRF algorithm is similar to the HL iteration

method except the transformation steps need to be implemented to calculate the

mean and standard deviation of the equivalent normal variables using transfor-

mation techniques. Liu and Der Kiureghian [81] proposed a multi-variable Nataf

distribution model consistent with prescribed covariance and capable of describing

a wide range of correlation coefficients. Rosenblatt [127], Gurley et al. [49] and

Isukapalli [66] provided other techniques to transform non-Gaussian variables into

standard normal random variables.

FORM has been the most popular second-moment reliability method in struc-

tural engineering; however, the accuracy of FORM has been examined for limit

states with high-nonlinearity, [29]. The second-order reliability method, SORM,

improves the approximation of failure space using a quadratic limit state surface

at the design point. Recent studies have helped in the development of higher

order moment assessments for structural reliability [156, 158, 56, 157]. When com-

pared to the high computational effort of MCS, second-moment method which

directly propagates parameter uncertainty into the result is an alternative and

computationally efficient approach. On the other hand, this method requires ex-
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plicit formulations of probability problem in order to obtain first- and second-order

gradients of the limit state formulated in terms of structural response. Thus, a re-

sponse sensitivity analysis is required to compute the gradients in second-moment

methods.

2.3 Uncertainty Modeling

Reliability analysis requires information about uncertain parameters in the struc-

tural system. Defining sources of uncertainties and variety of quantities is impor-

tant. Many researchers have studied both aleatory and epistemic uncertainties in

reliability problems.

2.3.1 Aleatory Uncertainty

Statistical models have been established on the basis of measurements, surveys,

tests, analysis and judgment. Mirza [98] measured the variations in depth and

width of beam elements due to construction. The variation of mechanical and

material properties of reinforcement and concrete such as area of reinforcing steel

and concrete compressive strength has been detected [99, 97]. Using available test

data, Ellingwood et al. [36] provided statistical parameters such as bias factors,

coefficient of variation for steel, concrete modulus of elasticity and dimensions.

Euro-International Committee for Concrete (CEB) [33] provided empirical equa-

tions to compute mean value and coefficient of variation of concrete material prop-

erties. Haukaas and Der Kiureghian [57] treated nodal coordinates as aleatory

uncertainty due to fabrication and modeled these parameters as random variables.

Quantifying live loads used in design procedure is difficult because load model
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to represent critical demand is a combination of relative positions of vehicles on

the bridge. Usually as a result of field observations or weight-in-motion (WIM)

studies, a large number of bridge live load models have been proposed. ASTM

(2002) described WIM, the process of measuring the dynamic forces of a mov-

ing vehicle and estimating the loads of the static vehicle. WIM measuring systems

are classified according to the performance levels and device setups. Since required

performance is indicated in terms of tolerance of measurements, WIM systems cre-

ate uncertainty on load measurements. Consequently, required performance level

can be considered as coefficient of variation. For example, the standard indicates

that Type I,II and III WIM data collecting systems provide single axle weight

measurement with the performance of ±20%, ±30% and ±15%, respectively, in a

tolerance of 95% conformity. Variance of the applied traffic load must be based on

a statistical model obtained from a WIM study.

Nowak and Lind [108] proposed statistical parameters of live loads using heavy

commercial survey results while developing a reliability-based code calibration for

Ontario highways. Ghosn and Moses [43] proposed a random truck loading based

on generalizations of renewal processes where axle weights, axle spacings, speed

and can be accounted for as random variable.

Nowak [106] proposed a live load model from truck surveys and weigh-in-motion

measurements. The model contained the mean value and coefficient of variation of

bending moments and shear forces for each truck in terms of HS20 truck for var-

ious span lengths. Extrapolating the short-term observations, 75 year loads were

determined in the model. However, since HS20 truck provides a conservative and

deterministic representation of typical truck on the highway, it does not account

for the cumulative effect of a large number of trucks passing over a bridge over a
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period of time [38]. Nowak [107] calibrated the nominal HL93 design truck loading

model to match a projected expected 75-year maximum live load effect for all span

ranges. All these previous studies have been essential for development of live load

models and a rational bridge evaluation code.

2.3.2 Epistemic Uncertainties

The structural analysis is based on idealization of reality in a form of mathematical

problem and the finite element model analysis is an approximate numerical analysis

technique employed to solve the problem. Since idealizations and approximations

are used to model the reality, uncertainties in the representation is inevitable.

Koduru and Haukaas [77] considered the finite element discretization of meshing

displacement-based formulations to be epistemic uncertainty in reliability analysis.

For the case that force-based elements are used, numerical integration of element

compatibility equations converges to a unique solution as high-order integration

methods such as Gauss-quadratures are employed or the number of integration

points is increased. The analysis results can be sensitive to weight and location

of element integration points. Therefore, the accuracy of numerical integration

methods can be treated as analysis uncertainty in finite element reliability. In

FORM analysis, locations and weight of the integration points can be modeled as

random variables.

Simulating localized response of structural systems using strain-softening con-

stitutive model causes several computational challenges since the equilibrium so-

lution becomes ill-posed and the results are mesh-dependent. This is important

for evaluating the resistance of the bridge components that show highly inelastic
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behavior due to extreme loadings such as earthquakes. In particular, methods

suitable for spread plasticity of hardening are not sufficient to ensure localized

deformations observed in experiments can be simulated objectively. The differ-

ence between two behaviors makes the selection of integration rule dependent to

the type of behavior. The analyst must know a priori on which method to use

when the answer may not be obvious based on the material properties and load-

ing. Consequently, a regularization for force-based frame elements is needed to

evaluate the compatibility equations regardless of the section constitutive behav-

ior. Several studies have provided integration rules and regularization methods to

accurately integrate spread plasticity under hardening or localized deformations

under softening; but not a method that can represent both cases.

Bazant and Oh [14] proposed the crack band theory for strain-softening behav-

ior of heterogeneous aggregate material where properties were defined by fracture

energy, uniaxial strength limit and width of the crack band. The method was

implemented in solid finite element codes and has received successfully matching

analysis results for various experimental data. In addition, Bazant et al. [15] pre-

sented an efficient discretization procedure by layered finite element approach and

a direct iteration method for step-by-step loading. This approach provided well-

behaved convergent solution for beam and frame element with strain-softening.

However, numerical solutions were highly sensitive to the finite element mesh size

so that, the problem leads the analysis to non-objective global response output. In

order to overcome the drawback of strain-softening in finite element analysis, De

Borst and Muhlhaus [27] proposed a plasticity theory based on higher-order spatial

gradients of plastic strains. Wells et al. [155] presented a regularized continuum

method comprising discontinuous displacement functions implemented in standard



18

finite element procedure. This method represented highly localized deformations

due to strain-softening behavior, independent of the finite element mesh structure.

Using the concept of strong discontinuities in displacement field for beam elements,

Armero and Ehrlich [12] presented a localized model incorporating hinge theory.

Several approaches to simulating the localized response of frame members have

been proposed in literature [22, 35, 45, 65, 68, 88, 118, 122].

For force-based beam-column elements, Coleman and Spacone [23] provided a

regularization method to predict objective local and global responses applying the

constant fracture energy criterion for compression behavior of concrete. However,

this approach required modification in material properties and tied significantly

modified parameters to the integration rule. Addessi and Ciampi [6] proposed

a regularized Gauss-Lobatto (GL) quadrature for force-based finite elements in

order to simulate localized plasticity by mapping locations of two- and three-point

GL rules over prescribed plastic hinge lengths at the element ends. Scott and

Fenves [129] apply two-point Gauss-Radau quadrature [5] over the plastic hinge

regions and scale the integration weights by four in order to regularize the element

response. While this approach ensures regularized response for strain-softening

behavior without modifying the element constitutive properties, the response is

too flexible when these integration methods are used to simulate strain-hardening

response. As a result, an analyst must know a priori whether to use a standard or

a regularized integration approach when the answer may not be obvious from the

given material properties and loading conditions.
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2.4 Sensitivity Analysis

The computation of response sensitivities is an essential component to various

engineering problems such as optimization, system identification, reliability appli-

cations, system health monitoring, and finite element model updating procedures

[67, 147, 160]. Tabsh and Nowak [139] developed sensitivity functions relating

the reliability with nominal values of load components and resistance parameters.

To obtain accurate reliability assessments, response sensitivity is required to rank

the parameters according to their importance on structural performance [59]. Fur-

thermore, as a stand-alone product, response sensitivity can be useful in structural

design by indicating the sensitivity of structural response to changes in the design

parameters. Patrick et al. [114] performed a set of sensitivity analyses to measure

uncertainty in load properties and to determine the influence of live load parame-

ters on force distributions. Padgett and Des Roches [113] assessed the sensitivity

of seismic demand to varying parameters in a range of structural systems.

There are several techniques to compute response sensitivity. Finite difference

methods (FDMs) consist of repeated system analyses with perturbed parameters.

The FDM procedure can easily be performed in any finite element analysis pro-

gram. Since it requires full re-analysis for each parameter, the FDM procedure

can be computationally inefficient and the accuracy depends on size of perturba-

tions. The direct differentiation method (DDM) is based on the differentiation of

structural equilibrium, compatibility and constitution equations with respect to

the uncertain parameters [76]. For the case that response sensitivity equations

are implemented alongside the ordinary finite element response equations, DDM

provides accuracy, efficiency and consistency by computing the response and the

response sensitivity at the same precision rate without repeated analyses. Due to
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its efficiency, the DDM has been the ideal tool to compute required gradients in

several finite element reliability efforts [59, 30, 57].

2.5 Finite Element Reliability

FERA merges finite element methods with reliability analysis. However, the major

shortcoming is that the computational time can be extremely high since the struc-

tural analysis needs to be repeated many times to obtain the gradient of the limit

state equation to random variables while computing gradients with FDM. Thus,

the formulation of gradients of performance function provides the foundation of

FERA.

For deterministic evaluation, various finite element software is available in the

structural engineering community, including ABAQUS [4], ANSYS [10], DIANA

[145], FEAP [140], LS-DYNA [83], OpenSees [93], SAP [24] and STAAD [126].

On the other hand, a limited number of software having reliability analysis mod-

ule has been developed. Regarding the adopted reliability analysis method, several

researchers performed FERA in software frameworks using the second-moment ap-

proach because simulation methods require more evaluations of limit state function

and more executions of finite element analysis when compared the gradient-based

methods.

Der Kiureghian and Ke [31] were among the first to combine FEM and proba-

bilistic structural parameters. A finite element procedure for first-order reliability

analysis structures having uncertain properties and subjected to random static

loads was presented in this study. Furthermore, Liu and Der Kiureghian [82] pro-

posed a general framework for finite element reliability analysis for geometrically
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nonlinear uncertain structures in which the limit surface was approximated using

FORM and SORM. Teigen et al. [143] presented the theory and application of

probabilistic FEM for nonlinear structures under random loads. Val et al. [148]

adopted a finite element model in which material properties are random variables

and a basic form of model uncertainty was implemented. Borri and Speranzini [19]

provided a numerical procedure that could be implemented in any finite element

code having an internal optimization rule. Since the design point in structural

problems was determined by calculating the minimum distance from the origin to

the failure surface in a set of normalized problems by using a minimization routine

of the code in use. In the numerical examples, the minimization function of AN-

SYS was used to minimize reliability index. Other FE programs such as Cosmos

[138] and Nastran [133] have also optimization modules.

2.6 OpenSees Software Framework

The work of Haukaas and Der Kiureghian [58] was important in the context of

FERA. The authors provided a detailed reliability analysis manual for OpenSees

in a report for performance-based earthquake engineering. The C++ language

[28, 137] was employed in the development of OpenSees framework that contained

a wide range of structural simulation components including material and geometric

nonlinear beam-column elements and solid elements.

First- and second-order finite element reliability analysis methods have been

implemented in OpenSees where several algorithms are available such as improved

HLRF [56] and Polak-He [119] iterative methods that utilize the gradient of the

limit state function. For bridge structures, the OpenSees framework is suitable to
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the repetitive nature of moving load analysis since users build and analyze models

via commands added to the fully programmable Tcl scripting language [112, 154].

Several researchers made contributions OpenSees providing sensitivity and reli-

ability modules. Scott et al. [131] implemented the DDM sensitivity formulations

for force- and displacement-based elements in OpenSees to compute the response

gradients with respect to constitutive and geometry parameters. The response gra-

dients provide information needed in structural engineering applications such as

optimization, finite element model updating and reliability. Haukaas and Der Ki-

ureghian [55] obtained the response sensitivities with respect to nodal coordinates

and global shape parameters in the presence of material and geometric nonlin-

earity. Employing the sensitivity results, example applications were presented to

enable the investigation of the relative importance of uncertainty in the parameters

of a finite element model. Haukaas and Scott [59] provided response sensitivity

gradients with respect to the dimensions and reinforcing details of fiber-discretized

cross-sections of frame members. The implemented gradient formulations yielded

parameters such as depth and width of beams, location and area of reinforcement

to be characterized by random variables in reliability analysis of reinforced con-

crete beam-column structures. Koduru and Haukaas [77] investigated the quantifi-

cation, representation and propagation of epistemic uncertainty by the Bayesian

probabilistic approach and explored the fuzzy randomness approach. The pro-

posed novelty was the implementations in rapidly advancing OpenSees software

that could produce an uncertain reliability index from which point estimates or

confidence bounds are extracted.

OpenSees provides the analyst several formulation options, force-, displacement-

based and mixed elements to model beam-column members in FERA. In general
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finite element setting of bridge girders, the common approach is to subdivide each

span into multiple finite elements with node placed at critical locations. Moving

loads are considered as statically equivalent nodal forces. On the other hand, an

alternative approach can be that the span was considered as one force-based ele-

ment whose integration points coincide with critical locations. Using integration

approaches, it is straightforward to link bending moment and shear forces to a

constitutive model rather than relying on rigid body equilibrium [71].

A displacement-based beam-column element model that includes flexure and

shear interaction was incorporated in OpenSees [90]. The original element based

on linear interpolation of the curvature and constant axial strain was modified

with a third strain component included to account for shear flexibility. However,

a similar flexure-shear interaction model is not available for force-based elements.

To overcome this problem, the framework can combine several uniaxial materials

to increase the number of stress resultants including shear in the element [91]. Re-

gardless of axial behavior of the element, a linear elastic shear constitution model

can be applied to the element to monitor shear stress-strain in the section. How-

ever, a coupled shear and flexural strain in constitution has not been implemented

to establish a non-linear constitutive model for concrete.

2.7 Flexural-Shear Interaction Material Models

Simulating the response of reinforced concrete members subjected to significant

shear is not a straightforward task in finite element analysis. The formation and

propagation of cracks, stress variations along the vertical and horizontal reinforcing

steel, and transmission of forces along the contact locations complicate modeling
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and prediction. For shear critical members, uniaxial materials with uncoupled

shear- flexural models at the constitution level are not capable of providing a shear

dominant behavior accurately and anticipated strength level stays non-conservative

in finite element simulations [39].

Timoshenko formulations providing the shear-flexural interaction requires cor-

rection factors regarding the shape of sections. However, the interaction is limited

in the equilibrium level and the strain fields are not coupled in the constitution

for nonlinear-inelastic material cases. Recent studies have developed simulation

models that are able to predict shear behavior when compared to the classic Euler-

Bernoulli and Timoshenko formulations.

The Modified Compression Field Theory (MCFT) [151] was proposed as a

new approach capable of predicting the response of reinforced concrete elements

to in-plane shear and axial stresses by considering equilibrium conditions, com-

patibility requirements, and stress-strain relationships. The concepts of MCFT

was incorporated into an analytical model in finite element analysis of reinforced

and prestressed concrete beams subjected to combined axial, flexural and shear

loads [152]. The original formulations for two dimensional membrane elements

are adapted to fiber representation of beam cross sections and an iterative algo-

rithm was developed to predict the lateral and shear strains while establishing

force equilibrium of two adjacent sections.

Bentz [16] coded the software framework Vector for the nonlinear analysis of

two-dimensional reinforced concrete membrane structures incorporating a finite

element algorithm based on a smeared, rotating crack model and a secant stiff-

ness approach. Aquino and Erdem [11] implemented the MCFT using a tangential

stiffness formulation into a finite element software and verified the analytical so-
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lutions using experimental data in literature. In addition, a new material model

was proposed to represent post-cracked concrete behavior easily programmed into

finite element analysis [63].

However, beam-column elements have been more practical rather than solid

finite elements due to computational efforts. Petrangeli et al. [117] proposed a

new model that presents a local constitutive behavior for concrete a macromodel

developed for fracture mechanics applications while still using a new methodology

for fiber section model in beam-column elements. Mixed formulations for beam

and frame element has been developed to couple shear and flexure while using

variational strain and stress fields [141].
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Chapter 3 – Methodology

To assemble the reliability analysis of the bridge components, methods adopted in

the proposed procedure are detailed in this section.

3.1 Limitations and Objectives

Based on the literature review, several limitations in different disciplines are iden-

tified. The following objectives to remove these limitations define the aim of the

study.� Simulation methods require more evaluations of the performance function

and more executions of finite element analysis when compared to FORM

analysis. In addition, FORM is advantageous with importance measures of

random variables in reliability analysis of bridge components. Therefore, a

FORM analysis method will be considered to assess the effect of uncertain

component properties and loads in reliability analysis of bridge components.� FDM can lead to inaccurate search directions depending on the size of the

parameter perturbations and cause computational effort while computing

gradients in FORM. In order to provide accuracy and consistency in calcula-

tions, the DDM sensitivity, which does not require repetitive finite element

analyses, will be adopted in the framework evaluating the limit state and its

gradient at the same precision.
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perform reliability applications. However, the DDM sensitivity formulations

need to be verified for aleatory uncertainties in material, geometry and mov-

ing load parameters and epistemic uncertainties in integration methods.� Meshing displacement-based elements yield discretization uncertainty in FERA.

In addition, the moving load simulations on the coarse mesh of force-based

finite elements is straightforward using integration approaches rather than

relying on rigid body equilibrium in displacement-based elements. Thus,

force-based frame element that ensures the force equilibrium without dis-

cretization error is chosen in reliability assessments. The objective is to use

one force-based element whose integration points coincide with critical loca-

tions.� OpenSees material library is currently limited to represent shear and flexu-

ral interaction in finite element analysis with forced-based elements. Existing

models such as linear elastic or non-linear uniaxial materials can not represent

the behavior of shear dominant reinforced concrete bridge girders. Thus, a

new simplified material model based on Modified Compression Field Theory

will be implemented in the framework to couple axial and shear deforma-

tions in reinforced concrete girders. Material properties such as compressive

strength of concrete will be treated as uncertain in finite element response

and the derivative of constitutive equations will be implemented to OpenSees.� While conservative in design, treating moment and shear separately can

lead to non-conservative estimates of reliability. In order to define coupled

moment-shear resistance boundaries for live loads, MCFT interaction surface
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will be adopted in analyses.� In force-based column elements, a single integration method is inadequate

to represent both strain-softening and -hardening behavior of reinforced con-

crete columns subjected to extreme load cases. The existing integration

methods and regularization methods needs a priori on the type of behav-

ior. A new regularization technique will be proposed in order to represent

strain-softening and -hardening behaviors without knowing a priori whether

plasticity is localized or spread. However, the method introduces additional

parameters to standard integration rules and contributes to modeling uncer-

tainty. To assess the importance of the integration parameters relative to

common sources of aleatory uncertainty, additional parameters will be con-

sidered as epistemic uncertainties in the reliability analysis of bridge columns.

3.2 Bridge Member Modeling in OpenSees

In finite element analysis, there are several formulations for frame elements such

as displacement-based element [159], force-based element [21, 134], and the mixed

formulations [9]. Comparisons by Hjelmstad and Taciroglu [62] show there is no

clear winner among the three formulations; however, each has distinct advantages

and disadvantages. Displacement-based formulation requires mesh refinement to

maintain accuracy while using approximate displacement field along the element.

However, since the length of a single element depends on the mesh geometry,

discretization errors may lead to non-objective results. On the contrary, the force-

based element does not require mesh refinement while interpolating section forces

in terms of basic element forces. The element equilibrium equations are satisfied
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even in nonlinear problems exactly and discretization errors are prevented in this

approach [103].

The formulation of the force-based element implementations is given in [103]

and the modeling hierarchy from general structure to fiber level in OpenSees Soft-

ware Framework is shown in Fig. 3.1.
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SECTION
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Global System

Transformation

Basic System

Force−Deformation
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Figure 3.1: Modeling hierarchy for structural analysis in OpenSees [130]

The equilibrium and kinematic equations flow from the global system level to

the fiber level through elements and sections. The resisting forces and nodal dis-
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placements of elements in global system are contained in vectors p and u, respec-

tively. In a basic system of beam-column elements, free of rigid body displacement

modes, the element forces and corresponding deformations are contained in vec-

tors q and v, respectively. The transformation of forces and displacements between

basic and global systems are defined by the matrix a of each element. The ma-

trix a represents the linear compatibility relationship between nodal displacements

and basic system deformations when small displacement approach is assumed. At

element level, the matrix b describes the equilibrium relationship within the ba-

sic system. The compatibility relationship is obtained by integration of section

deformations over the element. The section forces and deformations require the

assembly of fiber constitution relationship. As the basic calculation order is sum-

marized, the attention turns to the details of formulation in force-based elements

subjected to moving loads.

In a general finite element setting, the most common approach to compute the

moment and shear response of bridge girders is to subdivide each span into multiple

elements with nodes corresponding to critical locations defined as sections where

the failure due to moment-shear interaction may possibly occur and the response

should be monitored. Using meshing displacement- based elements, moving loads

are taken into account as statically equivalent nodal forces and the bending moment

and shear force at each critical location are determined from rigid body equilibrium

at the element ends. An alternative approach will be taken in this study, where each

span is considered as one force-based element whose integration points coincide

with critical locations. Furthermore, moving loads are taken into account as parts

of the element, rather than nodal, equilibrium equations.

Force-based beam elements are formulated in terms of vectors, q = [N MI MJ ]T
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and v = [δθI θJ ]T , that represent the end forces and end deformations, respectively,

of the beam, as shown in Fig. 3.2. At every section along the element, there is

an axial force, bending moment and shear force, s(x) = [N(x) M(x) V (x)]T , and

the corresponding axial deformation, curvature and shear deformation, e(x) =

[ε(x) κ(x) γ(x)]T .

L

x

M(x)

V (x)

N(x)

MI MJ N

δθJ

θI

Figure 3.2: Simply-supported basic system for beam finite elements

Equilibrium between section forces, basic forces, and moving loads is satisfied

in strong form:

s(x) = b(x)q + sp(x) (3.1)

The matrix, b, contains interpolation functions for the moment and shear forces

along the beam.

b(x) =











1 0 0

0 x/L− 1 x/L

0 1/L 1/L











(3.2)

The vector, sp, in Eq. (3.1) describes the section forces due to member loads. For

the case of a moving point load, this vector is described in terms of the location

and magnitude of the load in the basic system, as shown in Fig. 3.3.

Based on the principle of virtual forces, the element deformations, v, are ob-
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Figure 3.3: Bending moment and shear force developed in the basic system due to
a moving transverse point load.
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tained in terms of section deformations, e, along the element.

v =

Np
∑

j=1

bT
j ejwj (3.3)

where bj ≡ b(xj) and ej ≡ e(xj) are the interpolation function and the de-

formation evaluated at the jth section along the element, with location, xj , and

integration weight, wj.

The element flexibility matrix is obtained by linearization of Eq. (3.3) with

respect to basic forces:

f =
∂v

∂q
=

Np
∑

j=1

bT
j fsjbjwj (3.4)

where fs is the section flexibility matrix. The flexibility matrix in Eq. (3.4) is

inverted to give the element stiffness matrix, k = f−1, for subsequent assembly in

the tangent stiffness matrix, KT . Eqs. (3.3) and (3.4) require numerical evaluations

of integrals.

Several high order integration methods such as Gauss-Lobatto quadrature are

available to evaluate the integrations. However, constructing integration methods

via interpolatory quadrature [46] allows an analyst to control the location of sample

points in force-based elements, which is advantageous for moving load analysis

[72] and regularization [52]. For interpolatory quadrature, all integration point

locations are specified and the corresponding integration weights are obtained from

the following system of Vandermonde equations

N
∑

i=1

xj−1
i wi =

Lj

j
(j = 1, . . . , N) (3.5)
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where [0, L] is the interval of integration.

In addition to specifying all integration point locations, it is possible to specify

the integration weights at selected points, e.g., to correspond to prescribed plastic

hinge lengths. These Nc weights and their associated sample points are denoted wci

and xci, respectively. The Nf = N −Nc remaining integration points and weights

are denoted xfi and wfi. Splitting the summation in Eq. (3.5) in to separate sums

over the Nc points with specified weights and the Nf points with unknown weights,

then moving the known values to the right-hand side, leads to the following system

of equations

Nf
∑

i=1

xj−1
fi wfi =

Lj

j
−

Nc
∑

i=1

xj−1
ci wci (j = 1, . . . , Nf) (3.6)

This reduced system of Vandermonde equations gives the remaining Nf weights

required for evaluation of Eq. (3.3).

3.3 Reliability Method: FORM

A first-order reliability analysis will be carried out to assess the effect of uncertain

girder properties and moving loads on the interaction of moment and shear force

at critical girder locations.

The probability of failure, PF , in Eq. (2.3) is reformulated in terms of the

uncertain parameters of finite element response [58]:

PF =

∫

. . .

∫

g<0

f(Φ)dΦ (3.7)

where f(Φ) is the joint probability density function for the random variables con-
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tained in the vector Φ. The finite element response of bridge girders is contained in

a response vector U = U(Φ). The limit state is defined in terms of the resistance

R and the demand S that consist of uncertain parameters and structural response

as:

g = R(Φ)− S(U(Φ),Φ) (3.8)

Once mapping of random variables, Φ, having non-normal distributions and cor-

relations, into a standard space of uncorrelated reduced variables, Y(Φ) using the

Nataf transformation [81], the integral is approximated by a hyperplane in the

transformed space Y = Y(Φ) of uncorrelated and normally distributed random

variables.

To compute the probability integral, the HLRF method [82] providing a line

search scheme with a step size while optimizing design point will be used in the

reliability analysis. The HLRF algorithm does not assume the trial point is located

on the limit state surface. The distance between two successive iteration steps was

defined in terms of directional cosines of the previous step [58]:

Yk+1 = Yk + sdk (3.9)

dk =

[

g(Yk)

‖ ∇g(Yk) ‖
+ αkYk

]

α
T
k −Yk (3.10)

where Yk = {yi}; αk is the direction cosine vector; and g

‖∇g‖
is the gradient norm

vector. The factor, s, adjusts the step size at each iteration in the analysis where

the Armijo rule can be employed to select a step size minimizing the value of a

merit function along the search direction [84]. The iteration continues until a the

step size converges to zero while the design point satisfies the limit state equation

with enough tolerance.
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For linearization of limit state and using the gradient-based search algorithms,

the gradient of limit state functions, ∇g(Φ) = ∂Φ/∂Y, needs to be computed.

Using the chain rule of derivation is applied, the required gradient required in the

improved HLRF algorithm [82] has the form:

∂g

∂Y
=

∂g

∂U

∂U

∂Φ

∂Φ

∂Y
. (3.11)

The derivative of limit state function with respect to response quantities, ∂g/∂U is

easy to compute algebraically. The gradient of uncertain parameters with respect

to transformed variables is calculated as the Jacobian of Nataf transformation,

∂Φ/∂Y and the computational tools are already installed in OpenSees [81]. The

gradient, ∂U/∂ϕ, is the response sensitivity and needs to be computed in the finite

element analysis. The sensitivity formulation in element, section and fiber level of

OpenSees needs to be implemented.

The optimization problem given in Eq. (2.11) will be taken care of using the

design point search iteration solver already installed in OpenSees [58]. Once the

design point is obtained the reliability index in the hyperplane of Y is the defined

as:

β =‖ Y∗ ‖ (3.12)

where the probability of failure is calculated by the standard normal CDF for −β.

The gradient projection-based iterations continue until the reliability index, β,

converges. In general, the mean value of original random variables are appropriate

to start the first step. Using the gradient of limit state function, directional cosines,

αi, are evaluated for each variable at each step iteration of design point [58]; so

that the first step of the iteration is concluded with the updated design point
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coordinates. The alpha vector has the form:

αi = −
∂g(Y∗)

∂yi

‖ ∇g(Y∗) ‖ (3.13)

and at design point reliability index can be written in terms of this vector:

β = αY∗ (3.14)

The alpha vector contains the contribution of each random variable on β, how-

ever Y contents are uncorrelated and normally distributed. For the correlated

non-normal random variables, Haukaas and Der Kiureghian [58] computes the im-

portance ranks as:

γ = − ∂g

∂Y
JY∗,Φ∗

√

diag(JY∗,Φ∗

−1JY∗,Φ∗

−T ) (3.15)

where JY∗,Φ∗ is the Jacobian of transformation at design point. The total of each

vector is scaled to one, i.e. ‖ α ‖= 1 and ‖ γ ‖= 1. In addition, the negative value

of importance rank γ indicates the resistance variable.

The random variables in resistance and demand portion of limit state function

is investigated according to the source of uncertainty and the importance ranks

will be obtained. Eventually, a discussion on the influence of uncertainties on

probability of failure will be started in the light of the output data from numerical

examples.
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3.3.1 Aleatory Uncertainty

In FERA of bridge structures, the characterization of uncertain parameters is an

important task. As in the early sections of the proposed study, the uncertainty

is divided into two groups according to its source. Since the major problem in

non-seismic bridge safety applications occurs due to live loads, the safety of bridge

components against the heavy truck loading will be considered. Aleatory uncer-

tainty in bridge structures will be considered as geometry and material parameters

and additionally the variation in axle weights is taken as uncertainty.

The proposed method of reliability analysis allows the analyst to use continu-

ous probability density functions formulated by the mean value and the standard

deviation of the uncertain variable. As listed in Table 3.1, the documented mea-

surements will be the base to define second-moment parameters of variation while

undocumented properties such as effective width, shear modulus and concrete

tensile strength are assumed similar variations with related material and shape

parameters. The influence of uncertain parameters on both finite element analy-

sis demand and resisting side of performance function will be investigated. The

model for uncertainty due to measurement and fabrication error is implemented

as user-defined variations to OpenSees framework so that the random variables on

parameters can be assigned to use in custom variations to represent conditions in

deterioration, fatigue and retrofit analyses.

3.3.2 Epistemic Uncertainty

Since the force-based beam-column element is proposed to model bridge compo-

nents, the numerical procedures to evaluate idealized mathematical relationship
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Table 3.1: Parameter variations in documented measurements

Parameter Distribution C.O.V Reference
Concrete
Young’s modulus Ec lognormal 0.08 [36]
Compressive strength fc normal 0.15 [97]
Steel
Young’s modulus Es lognormal 0.06 [98]
Yield strength fy lognormal 0.12 [98]
Geometry
Section depth d normal 0.015 [99]
Section width bw normal 0.015 [99]
Deck thickness hf normal 0.015 [99]
Neg. r/f steel area A−

s normal 0.024 [99]
Pos. r/f steel area A+

s normal 0.024 [99]
Transverse steel area Av normal 0.024 [99]
Stirrup spacing s normal 0.10 [146]
Loads
Axle weight Pi lognormal 0.20 [13]
Dead load DL lognormal 0.10 [106]
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will generate the major modeling uncertainty in the proposed study. The global

response of bridge components is dependent on the numerical integration param-

eters, weight w and location x of each Gauss point. This study develops analytic

sensitivity by DDM for one dimensional interpolatory quadrature, which is a gen-

eralization of most integration methods proposed for force-based frame elements.

These developments allow modeling uncertainty associated with numerical inte-

gration in force-based elements to be assessed via stand-alone sensitivity analysis.

For the reliability analysis of the bridge columns, a regularized integration method

that will be proposed in following sections treats plastic hinge length and point

locations as uncertain parameters.

Furthermore, for the bridge girders, the integration points coincide with the

user-defined critical girder sections so that, the point locations are selected as

deterministic quantities. However, bending moment and shear force from the two

dimensional finite element analysis modified by the impact factor, IF , the moment

distribution factor DFM and the shear distribution factor DFV . These factors

are treated as a modeling uncertainty represented by using random variables with

normal distribution and mean values from LRFR specifications [2].

Using the importance measures, the epistemic and aleatory uncertainty param-

eters will be distinguished with respect to their influence on probability of failure.

The uncertain parameters having negligible influence on the most probable fail-

ure mode can be ignored to decrease the computational effort. As a result, the

measurement will help reducing the number of random variables.
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3.3.3 Performance Function

The live load reliability software provides two performance function options in

bridge girder analysis. The first approach for the limit state consists of multi-

linear interaction diagram obtained by AASHTO-MCFT formulations [3]. The

AASHTO code provides an accurate method to compute component resistance.

The ultimate moment-shear couple that can be carried by a section is computed

using the general procedure in AASHTO-LRFD Article (5.8.3.4.2). The shear-

moment capacity of AASHTO-MCFT is represented by 6 critical points and a

linear interpolation connecting these points. Each linearized portion of the closed

curve will be considered as the limit values of moment and shear interaction as

shown in Fig. 3.4.

V

M
g1

g2

g3

g4

g5

Six− point Representation of AASHTO −MCFT

Figure 3.4: MB performance functions

This approach requires computation of multi reliability indices and conse-

quently, the minimum index will be considered as the critical index that gives
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the analyst information whether the failure mode is shear, flexural or combined.

Using the Multi-Beta (MB) approach, five linear equations are considered as 5

limit states in reliability analysis. Each line analytically describes the limit state

in a form:

gi = cfmiM + cfviV + cfni (3.16)

where cfm, cfv and cfn are coefficients of line equations in moment (M) - shear

(V) space. The failure occurs when a moment-shear demand stays outside of the

capacity curve so that, the safety is ensured with a analytical inequality:

gi < 0 (3.17)

To compute the line coefficients, the ultimate shear-moment values are calcu-

lated in AASHTO as:

Mn = Asfyldv (3.18a)

Vn = β∗
√

f ′
cbwdv +

Avfyvdv

s tan(θ∗)
(3.18b)

where two important parameters are introduced by the code to calculate shear re-

sistance of a reinforced concrete section. The factor, β∗, indicates the ability of di-

agonally cracked concrete to transmit tension stress while the diagonal compressive

stresses are inclined with the angle θ∗. The computation steps and β∗−θ∗ interac-

tions are detailed in a coded procedure, AASHTO MCFT Capacity Function

given in Appendix section (A.1). The MB approach is implemented to OpenSees

in this function where the MCFT parameters β∗ and θ∗ are interpolated for every

realization of the uncertain material and geometry parameters.The MB function
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is employed as the section resistance in limit state to represent the probabilistic

variation of line equation parameters, slope and constant, in M-V space for each

portion.

The second approach in live load reliability examples will be the representation

of the limit state using a Lamé curve (LC) that has a continuous closed form.

Hamutcuoglu and Scott [52] proposed this capacity function for the live load re-

liability analysis of bridge girders considering coupled shear and moment. The

approach taken herein is to define the limit state as a smooth Lamé curve [48]:

g = 1−
∣

∣

∣

∣

M

Mn

∣

∣

∣

∣

3

−
∣

∣

∣

∣

V

Vn

∣

∣

∣

∣

3

(3.19)

LC approach represents the simplified procedure for non-prestressed section

given in AASHTO-MCFT Article (5.8.3.4.1). This procedure is recommended for

concrete sections not subjected to axial tension and containing at least minimum

amount of transverse reinforcement [3]. The nominal capacities, Mn and Vn, that

describe the shape of the Lamé curve are given by peak values from MCFT analysis

where β∗ and θ∗ are taken as 2.0 and 45◦.

As shown in Fig. 3.5, the smooth Lamé curve approximates the general shape

of a multi-linear MCFT interaction surface. The exponent in Eq. (3.19) can be

adjusted to change the shape of the curve. All parameters that define Mn and Vn

are treated as random variables with their distribution properties. For the mean

values of material properties and reinforcing details of girder sections, the MCFT

parameters β∗−θ∗ in Eq. (3.18b) remain deterministic during the analysis; however,

the moment and shear capacities, and accordingly the shape of the Lamé curve,

will change during the analysis for every realization of the uncertain parameters
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Figure 3.5: LC performance function

in Eq. (3.18).

LC approach simplifies the live load reliability analysis procedure reducing the

total number of performance functions to be solved in FERA of reinforced concrete

girders. When compared to MB approach using multi-line equations, LC reduces

the computation effort using the closed form approximation.

3.4 Response Sensitivity: DDM

Several algorithms are available to solve reliability problems and their common

characteristic is the need to compute the gradient of the structural response, or

response sensitivity, in order to find the failure point. When finite element analysis

is used to evaluate the performance function for reliability methods, it is often dif-

ficult to implement necessary gradient computations of the finite element response.

In this section of the methodology, the use of well-established response sensi-

tivity modules of OpenSees will be proposed to obtain gradients in the reliability
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assessments. Following the hierarchy of system equations, the response sensitivity

will be derived in global, basic system and section level formulations.

3.4.1 Global Response Sensitivity

Response sensitivity calculations by the DDM consist of analytical differentiation

of the equations that govern the structural response. In this study, the structural

response is found by solving the equations of static equilibrium. Impact factors

approximate dynamic load effects. The equilibrium equations are described in

terms of the vector, Φ, which contains the uncertain material, geometric and load

parameters of a structural model.

Pr(U(Φ),Φ) = Pf(Φ) (3.20)

The nodal displacement vector, U(Φ), depends on the parameters, Φ, and

load history. The resisting force vector, Pr, which is assembled from element

contributions by standard finite element procedures, depends on the structural

parameters explicitly, as well as implicitly via the nodal displacements. The vector,

Pf , contains nodal loads, which also may depend on the parameters in Φ which

evolve as a function of time for moving loads.

Considering the chain rule of differentiation, the derivative of Eq. (3.20) with

respect to a single parameter, ϕ, in Φ, is:

KT

∂U

∂ϕ
+

∂Pr

∂ϕ

∣

∣

∣

∣

U

=
∂Pf

∂ϕ
(3.21)

where the tangent stiffness matrix, KT = ∂Pr/∂U, is the partial derivative of the
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resisting force vector with respect to the nodal displacements. The derivative of

the nodal load vector, ∂Pf/∂ϕ, is nonzero only if the parameter, ϕ, represents a

nodal load. The vector, ∂Pr/∂ϕ|
U

, is the conditional derivative of the resisting

force vector under the condition that the nodal displacements U are held fixed.

This vector is assembled from the conditional derivative of local forces, ∂q/∂ϕ|
v
,

from each element in the structural model in the same manner as the resisting

force vector itself.

The nodal response sensitivity is then found by solving the following system of

linear equations:
∂U

∂ϕ
= K−1

T

(

∂Pf

∂ϕ
− ∂Pr

∂ϕ

∣

∣

∣

∣

U

)

(3.22)

This solution is repeated for each parameter in the vector Φ, reusing the fac-

torization of KT . The assembly of element force sensitivity, ∂Pr

∂ϕ

∣

∣

∣

U

, requires the

derivative of force vector p of each element.

∂Pr

∂ϕ

∣

∣

∣

∣

U

=
⋃

Nele

∂p

∂ϕ

∣

∣

∣

∣

u

(3.23)

where the operation ∪ is the assembly over elements and u is the displacement

vector of each element. The global element forces and displacements are derived

through the transformation matrix:

∂p

∂ϕ
= aT ∂q

∂ϕ
+

∂aT

∂ϕ
q (3.24)

∂v

∂ϕ
= a

∂u

∂ϕ
+

∂a

∂ϕ
u (3.25)
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The derivatives are completed when the conditional derivatives are calculated:

∂p

∂ϕ
=

∂p

∂u

∂u

∂ϕ
+

∂p

∂ϕ

∣

∣

∣

∣

u

(3.26)

∂q

∂ϕ
=

∂q

∂v

∂v

∂ϕ
+

∂q

∂ϕ

∣

∣

∣

∣

v

(3.27)

To reduce the unknowns, Eqs. (3.26) and (3.27) are inserted in the derivative

of global element forces Eq. (3.24) and then combined with Eq. (3.25):

kg

∂u

∂ϕ
+

∂p

∂ϕ

∣

∣

∣

∣

u

= aT kba
∂u

∂ϕ
+ aTkb

∂a

∂ϕ
u + aT ∂q

∂ϕ

∣

∣

∣

∣

v

+
∂aT

∂ϕ
q (3.28)

where kg = ∂p/∂u and kb = ∂q/∂v are global and basic system stiffness ma-

trices, respectively. Considering kg = aT kba, Eq. (3.28) is simplified by canceling

the terms with ∂u/∂ϕ and the expression takes the form:

∂p

∂ϕ

∣

∣

∣

∣

u

= aT kb

∂a

∂ϕ
u + aT ∂q

∂ϕ

∣

∣

∣

∣

v

+
∂aT

∂ϕ
q (3.29)

The sensitivity of transformation matrix is equal to zero when ϕ is any pa-

rameter other than a nodal coordinate. The conditional derivative ∂q/∂ϕ|
v

is

calculated through sections of basic system for material and sectional geometry

parameters.

3.4.2 Force-Based Element Response Sensitivity

The DDM formulations will cover the gradient of section forces, fixed-end forces,

force interpolation functions and integration weights. The section equilibrium



48

relationship of Eq. (3.1) will be differentiated with respect to a single parameter,

ϕ:
∂s

∂ϕ
=

∂b

∂ϕ
q + b

∂q

∂ϕ
+

∂sp

∂ϕ
(3.30)

Eq. (3.30) is expanded in terms of the derivatives ∂q/∂ϕ = k∂v/∂ϕ + ∂q/∂ϕ|
v

and ∂s/∂ϕ = ks∂e/∂ϕ + ∂s/∂ϕ|
e

of the basic and section forces, respectively:

ks

∂e

∂ϕ
+

∂s

∂ϕ

∣

∣

∣

∣

e

=
∂b

∂ϕ
q + b

(

k
∂v

∂ϕ
+

∂q

∂ϕ

∣

∣

∣

∣

v

)

+
∂sp

∂ϕ
(3.31)

where ks = ∂s/∂e and k = ∂q/∂v define the section and element stiffness matrix,

respectively. The conditional derivative ∂q/∂ϕ|
v

cannot be obtained directly from

Eq. (3.31). To circumvent this restriction, the derivative of the element compati-

bility relationship in Eq. (3.3) is differentiated with respect to ϕ:

∂v

∂ϕ
=

Np
∑

j=1

bT
j

∂ej

∂ϕ
wj (3.32)

Then, the derivative of the section deformations is obtained from Eq. (3.31)

∂e

∂ϕ
= fsbk

∂v

∂ϕ
+ fs

(

b
∂q

∂ϕ

∣

∣

∣

∣

v

+
∂sp

∂ϕ
− ∂s

∂ϕ

∣

∣

∣

∣

e

)

(3.33)

and combined with Eq. (3.32) to give the following expression:

∂v

∂ϕ
=

Np
∑

j=1

bT
j fsj

(

bjk
∂v

∂ϕ
+ bj

∂q

∂ϕ

∣

∣

∣

∣

v

+
∂spj

∂ϕ
− ∂sj

∂ϕ

∣

∣

∣

∣

e

)

wj (3.34)

From the definition of the element flexibility matrix in Eq. (3.4), the expression

(
∑

bT fsbw)k is equal to the identity, and the conditional derivative of the basic
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forces can be reduced to

∂q

∂ϕ

∣

∣

∣

∣

v

= k

Np
∑

i=1

bT fs

(

∂s

∂ϕ

∣

∣

∣

∣

e

− ∂spi

∂ϕ
− ∂b

∂ϕ
q

)

wi − k

Np
∑

i=1

(

∂bT

∂ϕ
ewi + bTe

∂wi

∂ϕ

)

(3.35)

where ∂spi
/∂ϕ contains the derivative of the axial force, bending moment and shear

with respect to ith point load parameter. The axial force sensitivity is equal to zero

and the derivative of moment and shear functions in terms of section locations ξ0

is shown in Fig. 3.6.

L

x0

x

∂M(x)
∂P

∂V (x)
∂P

x

x

M(x)

V (x)

ξ0 = x0/L

P

L(1− ξ0)ξ0

(1− ξ0)

−ξ0

Figure 3.6: Derivative of bending moment and shear force in the basic system with
respect to point load.

The target gradient ∂q/∂ϕ|
v

is formulated in terms of section force derivative
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vector ∂s/∂ϕ|
e
. In addition, to compute the gradient at element level, the DDM

formulation requires the numerical integration of forces at sections along the ele-

ment. In the context of this study, the section force derivative vector, ∂s/∂ϕ|
e
,

is crucial to formulate analytical response sensitivity of aleatory uncertainties in

bridge girder components.

Interpolatory quadrature sensitivity needs to be formulated to consider a sig-

nificant modeling uncertainty in force-based column elements subjected to extreme

loadings. The required response sensitivity formulations will be derived at section

level for bridge girders in Chapter 4 and interpolatory quadrature sensitivity will

be formulated in bridge columns in Chapter 5.
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Chapter 4 – Reinforced Concrete Bridge Girder Sensitivity and

Reliability

The finite element response sensitivity formulation is continued for aleatory un-

certainties considered in live-load reliability analysis of bridge girders. The section

force vector ∂s/∂ϕ|
e

is quantified for material and geometric parameters. Im-

plementations of new objects to OpenSees and the commanding scripts for the

proposed live-load reliability analysis framework in Tcl will be detailed in this sec-

tion. Verification of DDM sensitivity is followed by live-load reliability examples

to present features of new reliability analysis software framework.

4.1 Section Response Sensitivity

The conditional derivative, ∂s/∂ϕ|
e
, depends on how the section forces are com-

puted by assembling fiber forces. There is a variety of approaches to compute the

forces at each girder cross-section: elastic constants, closed-form solutions for a

particular reinforcing pattern, and fiber discretization. To facilitate DDM compu-

tations for a wide array of longitudinal reinforcing details and material properties,

a fiber discretization is employed to compute the section bending moment and

shear force. The numerical integral is evaluated over a user-defined number of

fibers, Nf , with area, Ak, and distance, yk, from a reference axis:

s = Σ
Nf

k=1a
T
s σkAk (4.1)



52

where the matrix as relates the section deformations to fiber deformations in com-

patibility equation:

εk = ase (4.2)

where e = [ε κ γ]T is the section deformation vector and ε = [εk γk]
T is the vector

holding strains at fiber k.

The fiber stress vector, σk, which contains axial σk and shear τk stresses is com-

puted from the fiber strains, which is a function of the section curvature and axial

deformation, εk = ε0 − ykκ, and shear deformation, γk, so that the compatibility

matrix has the form:

as =





1 −y 0

0 0 1



 (4.3)

The axial force, bending moment and shear force are combined to form the

section force vector using uni- or bi-axial material models.

4.1.1 Uniaxial Section Model Sensitivity

In this approach, axial-flexural behavior is represented by uniaxial material models

in section stress-strain relationships. The material model can be chosen either

elastic or inelastic. The section force vector with aggregated shear has the form:

s =











N(x)

M(x)

V (x)











=











∑Nf

k=1σkAk

∑Nf

k=1ykσkAk

G(x)F (x)γ(x)











(4.4)

where the section shear force is assumed to be linear-elastic, as described by the

shear modulus, G, and shear area, F .
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The aggregation of section forces in Eq. (4.4) highlights the ease with which

shear deformation is included in force-based elements [125, 89]. Approximate dis-

placement fields are not necessary, as is the case with a Timoshenko formulation

of combined flexural and shear response. The derivative of Eq. (4.4) under the

condition of fixed section deformations is equal to:

∂s

∂ϕ

∣

∣

∣

∣

e

=















∑Nf

k=1

[

∂σk

∂ϕ

∣

∣

∣

εk

Ak + σk
∂Ak

∂ϕ

]

∑Nf

k=1

[

∂yk

∂ϕ
σkAk + yk

∂σk

∂ϕ

∣

∣

∣

εk

Ak + ykσk
∂Ak

∂ϕ

]

(∂G
∂ϕ

F + G∂F
∂ϕ

)γ















(4.5)

For each fiber k, the axial stress gradient, ∂σk/∂ϕ|εk
, is calculated for the

constant strains in constitution formulations in terms of material parameters of

the concrete and reinforcing steel materials. In order to compute the gradients

∂Ak/∂ϕ and ∂yk/∂ϕ, the fiber areas and locations are derived with respect to the

shape parameters that define the section geometry.

4.1.2 Biaxial Section Model Sensitivity

In this section model, a biaxial material with coupled axial-shear behavior will

be applied for each fibers. In contrast to aggregated shear stiffness, axial-shear

interaction is obtained in fiber level; however, an approximate shear displacement

field is necessary. The section force vector has the form:

s =











N(x)

M(x)

V (x)











=











∑Nf

k=1σkAk

∑Nf

k=1ykσkAk

∑Nf

k=1γkAk











(4.6)
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It can easily be shown that the derivative of Eq. (4.6) under the condition of fixed

section deformations is equal to:

∂s

∂ϕ

∣

∣

∣

∣

e

=

















∑Nf

k=1

[

∂σk

∂ϕ

∣

∣

∣

εk

Ak + σk
∂Ak

∂ϕ

]

∑Nf

k=1

[

∂yk

∂ϕ
σkAk + yk

∂σk

∂ϕ

∣

∣

∣

εk

Ak + ykσk
∂Ak

∂ϕ

]

∑Nf

k=1

[

∂τk

∂ϕ

∣

∣

∣

γk

Ak + τ k
∂Ak

∂ϕ

]

















(4.7)

The shear stress is calculated on each fiber k, both axial and shear stress

gradients, ∂σk/∂ϕ|εk
and ∂τk/∂ϕ|εk

, are obtained for the constrained strains in

constitution formulations. The computation of the shape gradients ∂Ak/∂ϕ and

∂yk/∂ϕ is required for each fiber.

A biaxial material considering axial-shear interaction and a T-beam section in-

tegration model are detailed and the required section force sensitivity is obtained

in following sections. Implementations of the gradient computations will be per-

formed for material, geometry, load and integration parameters that are applied

as ϕ in Eqs. (4.5) and (4.7).

4.2 Biaxial MCFT Material Model

Currently, for force-based elements in OpenSees, shear stress and deformations

can be monitored by only using a uniaxial section model so that axial-flexural

deformations do not interact with shear deformations. The concepts of MCFT are

implemented to OpenSees in a biaxial material model and details of a new fiber

mechanism that can couple shear and moment deformation fields are proposed in

this section.
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The new material incorporates one additional strain field to be monitored at

fiber-discretized cross section. As shown in Fig. 4.1, the shear deformations are

formulated in the section mechanics while the lateral strain field εy is obtained

implicitly by imposing vertical force equilibrium between transverse reinforcement

and concrete in each fiber [117]. The section deformation field is given as

e =











ε

κ

γ











(4.8)

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

longitudinal

reinforcement

reinforcement

stirrups

fibers

εx

εx

εxy

εxy

εy

εy

transverse

ConcreteF iber

Figure 4.1: Section mechanics and strain fields
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For the longitudinal strain field (parallel to the beam axis), the plane section

hypothesis has been retained, whereas several shear shape functions can be used

for the shear strain field. Vecchio and Collins [152] compared the accuracy of

different shape functions with constant and parabolic shear flows in typical beam

sections and obtained fairly similar results. However, their predictions tend to

diverge somewhat with the constant shear flow as the flexural moments increases.

In this study a constant shear flow will be tested so that the section compatibility

matrix that distributes deformations along the section has the form as given in

Eq. (4.3). The fiber strains will be calculated using Eq. (4.2).

In fiber level, the material constitutive model will be adapted from MCFT for-

mulations in terms of principal strain-stress conditions. This approach maintains

a compatibility between the shear and axial deformations to compute principal

stresses using one material constitutive model. In solving this problem, the follow-

ing assumptions are considered:

1. Longitudinal reinforcing steel is treated as an independent uniaxial material

and its influence on vertical shear resistance is neglected.

2. A reasonable simplification is to assume the directions of principal strain and

stress axes in concrete fibers coincide [151]:

θε = θσ = θ (4.9)

3. A perfect bond comprises the strain compatibility between vertical reinforce-

ment and concrete.

4. Principal angle θ, can be obtained with an iterative algorithm while main-
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taining vertical force equilibrium.

4.2.1 Strain Compatibility

The vertical and longitudinal reinforcement is anchored to the concrete and com-

patibility requires that any strain condition acting on concrete fibers matches the

condition on steel reinforcement fibers:

εxs = εxc = εx (4.10)

εys
= εyc

= εy (4.11)

When the strain components εx, εy and γxy, are known and the strain in prin-

cipal directions ε1 and ε2 can be calculated using the Mohr’s circle of strain. The

typical compatibility equations used in the section deformation model are given as

[151]:

ε2 = εx +
γxy

2
tan(θ) (4.12)

ε1 =
εx − ε2

tan2(θ)
+ εx (4.13)

εy = ε1 + ε2 − εx (4.14)

Once the principal strains are obtained, stress-strain relationships are required

to link the principal stresses to strains.
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4.2.2 Constitutive Behaviors

Stress-strain relationships are required to link fiber stresses to strains for both

concrete and reinforcement. The principal tension σ1 = σ1(ε1) and principal com-

pression σ2 = σ2(ε2) stress-strain behaviors are adapted from related studies. For

the constitutive model of concrete in compression, the model proposed by Popovics

[120] for normal strength concrete is adapted to the material class Fig. 4.2.

σ

ε

σcr

εcu

E0
εcr

σcu

Figure 4.2: Principal strain-stress model

σ2 = −
(

εc

εcu

)

σcu

nE

nE − 1 +
(

εc

εcu

)nE
(4.15)

where

nE =
E0

E0 − σcu

εcu

(4.16)

The tension behavior of concrete is taken as linear elastic until critical stress

level. For tension softening in concrete, the model by Vecchio and Collins [151]
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will be considered. The relationship after cracking has the form,

σ1 =
σcr

1 +
√

500ε1

(4.17)

Then, the principal stresses in concrete and the stress in the vertical reinforcing

steel are computed while satisfying the vertical equilibrium.

4.2.3 Equilibrium Condition

The computation of shear strain distribution requires complex algorithms and

heavy computational effort [152]. Thus, a predefined shear strain field that ap-

plies constant shear strain along the section was assumed to implement explicitly

in the section deformation calculations. The lateral strain field εy is statically

evaluated at each fiber separately by imposing the equilibrium between transverse

steel and concrete [117]:

σi
yc

Ay
i
c
+ σi

ys
Ay

i
s

= 0 (4.18)

where σi
yc

= σi
yc

(εi
x, ε

i
y, γ

i
xy) and σi

ys
= σi

ys
(εi

y) at ith fiber. The transverse steel

strain-stress relationship is taken as linear- elastic, σi
ys

= Esε
i
y. The quantities

Ayc
and Ays

is concrete and transverse steel areas respectively. In terms of the

transverse steel ratio ρv, the equilibrium has the form:

σi
yc

+ σi
ys

ρv = 0 (4.19)

The transverse steel ratio is the ratio of stirrup area to concrete area along a

stirrup spacing, ρv = Ays
/Ayc

.

Lateral stress in concrete can be obtained using the relationships from Mohr’s
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circle for stress condition. Regarding Eq. (4.9), the concrete stresses are calculated:

τxyc
=

sin(2θ)

2
(σ1 − σ2) (4.20)

σxc = σ2 − τxyc
tan(θ) (4.21)

σyc
= σ1 + τxyc

tan(θ) (4.22)

However, neither the principal axis direction, θ, nor the vertical elongation, εy,

is known to start computations. An iterative search needs to be performed for a

strain state in fibers.

4.2.4 Angle Search Algorithm

To start calculating the fiber axial and shear stresses for a strain condition, the

lateral strain εy or crack angle θ must be known for when lateral force equilibrium is

satisfied. Therefore, an iterative angle search procedure is required. The proposed

computation procedure of fiber stresses in terms of fiber strains via principal strain-

stress constitution is summarized in the flow chart of Fig. 4.3.

The iterative procedure scans the Mohr’s stress and strain circles with small

angle increments along the interval [0◦, 90◦] in the direction of shear strain. Using

the Mohr’s circle of strain equations, principal strains ε1 and ε2 are obtained. The

constitutive model computes the principal stresses using Eqs. (4.15) and (4.17).

Finally, shear, axial and lateral stresses are computed on the Mohr’s stress circle

and the lateral equilibrium condition is checked. The iterative angle search contin-

ues until the lateral equilibrium condition in Eq. (4.19) satisfies and the procedure

eventually extracts shear and axial stresses in each fiber.
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N

Y

Input Strains : [εx γxy]

θ : Estimate Principal Strain− Stress Angle

ε1, ε2 : Compute Principal Strains

σ1, σ2 : Compute Principal Stress using

implemented constitution model

σxc, τxyc
, σyc

: Compute Principal Stresses
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σyc
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σys
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]
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(εx, γxy)

(σyc
, τxyc

)

(σ2, 0.0) (σ1, 0.0)

(σxc, τxyc
)

ε

2θ

2θ

τ

σ

Figure 4.3: Angle search procedure
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As a consequence of moving vehicle load, the stress conditions on fibers sim-

ulate a hysteretic response. Thus, a cyclic behavior model needs to describe how

concrete reloads to and unloads from the monotonic concrete strain-stress curve.

To keep the programming of the material model at a basic level for the simplicity of

response sensitivity formulations, the plastic offsets are not recorded. As a result,

the concrete linearly reloads from and unloads to the point of zero strain and zero

stress of the monotonic behavior curve.

σ2 =



















σ2(ε2) ← ε2 < ε2min
< 0

ε2

ε2min

σε2min
← ε2min

< ε2 < 0

0 ← 0 < ε2

(4.23)

where ε2min
is the minimum compressive strain and σε2min

is the corresponding

minimum stress. The function σ2(ε2) defines the monotonic compression stress-

strain relationships as given in Eq. (4.15). For the principal tension, reload and

unload functions have the form:

σ1 =



















σ1(ε1) ← ε1max
< ε1

ε1

ε1max
σε1max

← 0 < ε1 < ε1max

0 ← 0 > ε1

(4.24)

where ε1max
is the maximum compressive strain and σε1max

is the corresponding

stress. The monotonic tensile stress-strain relationship in Eq. (4.17) is plugged in

as the function σ2(ε2) once the tensile stress exceeds the critical level σcr.

However, the knowledge of previously attained maximum, εmax = [εxmax
, εymax

,

γxymax
], and minimum, εmin =

[

εxmin
, εymin

, γxymin

]

, concrete strain condition is

required to define reloading and unloading slopes. Vecchio [149] recommended a
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Mohr’s circle approach to approximate the maximum strains corresponding to an

arbitrary direction and obtained successful test verifications. The approximated

maximum strain envelopes for principal directions are used to compute max-min

principal stress at every trial principal direction:

ε1max
=

εxmax
− εymax

2
+

εxmax
− εymax

2
cos(2θ)− γxymax

2
sin(2θ) (4.25)

ε2min
=

εxmin
− εymin

2
+

εxmin
− εymin

2
cos(2θ)− γxymin

2
sin(2θ) (4.26)

However, these strain values do not represent a compatible strain condition

at one time and the approximated ultimate strain envelope might be recorded

at different time steps. On the other hand, recording ultimate strains at every

principal angle direction for each fiber is inefficient from the programming aspects.

4.2.5 Tangent Stiffness

For the implementation to OpenSees, the new material class needs to compute

the tangent stiffness matrix corresponding to increments in fiber strain and stress.

The stiffness matrix should represent the composite behavior of concrete fiber and

transverse reinforcement.

The angle search procedure will use εx, γxy and the estimated angle value θ as

three independent input data in the stress-strain computations. The vertical strain

εy and stresses will be computed in terms of independent variable θ. Strain-stress
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relationship in concrete and vertical reinforcement are obtained in terms of their

distinguished stiffness matrices, Tc and Tv:











∆σxc

∆σyc

∆τxyc











=











∂σx

∂εx

∂σx

∂θ
∂σx

∂γxy

∂σy

∂εx

∂σy

∂θ

∂σy

∂γxy

∂τxy

∂εx

∂τxy

∂θ

∂τxy

∂γxy





















∆εx

∆θ

∆γxy











(4.27)











∆σxv

∆σyv

∆τxyv











=











0 0 0

∂σyv

∂εx

∂σyv

∂θ

∂σyv

∂γxy

0 0 0





















∆εx

∆θ

∆γxy











(4.28)

Total fiber stiffness is the sum of contributions from concrete and reinforcement

and has the form:

Tfiber = Tc + Tv =











T11 T12 T13

T21 T22 T23

T31 T32 T33











(4.29)

Recalling the assumption that there is no total stress in transverse direction, the

total fiber stiffness matrix is reduced to T′
fiber by a simple algebraic rearrangement

[16] that will define the fiber behavior in terms of εx and γxy.

T′
fiber =





T11 − T12T21

T22
T13 − T12T23

T22

T31 − T32T12

T22
T33 − T32T23

T22



 (4.30)

For coding procedure in C++, the new material requires peak compression

strength σcu, strain at peak strength εcu, initial stiffness E0, critical tension stress

σcr, vertical reinforcement modulus of elasticity Es and stirrup ratio at gauss points

ρv.
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4.2.6 Sensitivity Formulations

The response sensitivity formulations require the derivative of fiber stress to com-

pute Eqs. (4.5) and (4.7). The DDM formulations are established through the

strain compatibility, the equilibrium condition and the material constitution of

each fiber. In reliability analysis examples, the compressive strength, σcu, ultimate

concrete tensile strength, σcr, and initial elastic modulus of concrete, E0, will be

considered for differentiation.

The derivation starts with stress-strain constitution on principal axis directions.

For the principal compression Eq. (4.15) is derived with respect to the sensitivity

parameter, ϕ:

∂σ2

∂ϕ
= −

1
εcu

nE − 1 +
(

ε2

εcu

)nE

[

∂ε2

∂ϕ
σcunE + ε2

∂σcu

∂ϕ
nE + ε2σcu

∂nE

∂ϕ

]

+

(

ε2

εcu

)

σcunE

(

nE − 1 +
(

ε2

εcu

)nE
)2

[

∂nE

∂ϕ
+

(

ε2

εcu

)nE
(

∂nE

∂ϕ
ln(ε2) + nE

∂ε2

∂ϕ

)]

(4.31)

where the derivative of nE is:

∂nE

∂ϕ
=

∂E0

∂ϕ

E0 − σcu

εcu

− E0
(

E0 − σcu

εcu

)2

(

∂E0

∂ϕ
−

∂σcu

∂ϕ

εcu

)

(4.32)

For the derivative of principal tension stress, pre- and post-peak formulations

are differentiated:
∂σ1

∂ϕ
=

∂E0

∂ϕ
ε1 + E0

∂ε1

∂ϕ
(4.33)
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∂σ1

∂ϕ
=

∂σcr

∂ϕ

1 +
√

500ε1

− σcu
(

1 +
√

500ε1

)2

(√
500ε1

2

)(

500
∂ε1

∂ϕ

)

(4.34)

For the linear unloading/reloading branch in principal tension (ε1 < ε1max
) and

compression (ε2 > ε2min
), the stress sensitivity is obtained as:

∂σ1

∂ϕ
=

∂σε1max

∂ϕ

ε1

ε1max

+ σε1max

(

∂ε1

∂ϕ

ε1max

− ε1

∂ε1max

∂ϕ

ε2
1max

)

(4.35)

∂σ2

∂ϕ
=

∂σε2min

∂ϕ

ε2

ε2min

+ σε2min

(

∂ε2

∂ϕ

ε2min

− ε2

∂ε2min

∂ϕ

ε2
2min

)

(4.36)

There are four sensitivity history variables to track the path-dependent behav-

ior, ε1max
, σε1max

, ε2min
and σε2min

. The principal tension and compression stresses

at the maximum and minimum strain values need to be recorded. The sensitivity

of history variable requires the gradients of strain envelope εxmax, εxmin, γxymax
,

γxymin
, εymax

and εymin
that are obtained in terms of section derivatives ∂e/∂ϕ

differentiating Eq. (4.2) along load increment steps where maximum and minimum

strains are committed. When principal strains are in unloading/reloading branch,

the minimum-maximum strain and stress values do not change, so that the sensi-

tivity history variables are not updated during the fiber is reloading or unloading

in principal axis directions.

The derivative of maximum principal tension strain is:

∂ε1max

∂ϕ
=

1

2

(

∂εxmax

∂ϕ
− ∂εymax

∂ϕ

)

+
cos(2θ)

2

(

∂εxmax

∂ϕ
− ∂εymax

∂ϕ

)

− sin(2θ)
∂θ

∂ϕ
(εxmax

− εymax
)− sin(2θ)

2

∂γxymax

∂ϕ
− cos(2θ)γxymax

∂θ

∂ϕ
(4.37)
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The derivative of minimum principal compression strain has the form:

∂ε2min

∂ϕ
=

1

2

(

∂εxmin

∂ϕ
− ∂εymin

∂ϕ

)

+
cos(2θ)

2

(

∂εxmin

∂ϕ
− ∂εymin

∂ϕ

)

− sin(2θ)
∂θ

∂ϕ
(εxmin

− εymin
)− sin(2θ)

2

∂γxymin

∂ϕ
− cos(2θ)γxymin

∂θ

∂ϕ
(4.38)

The compressive stress gradient ∂σε2min
/∂ϕ is calculated at recorded minimum

compressive strain using Eq. (4.31). The tension stress gradient ∂σε2min
/∂ϕ is

calculated by Eqs. (4.33) and (4.34) whether the corresponding maximum tensile

is in linear elastic or softening region.

The concrete stresses given in Eqs. (4.20), (4.21), and (4.22) are derived with

respect to the sensitivity parameter:

∂τxyc

∂ϕ
=

sin(2θ)

2

(

∂σ1

∂ϕ
− ∂σ2

∂ϕ

)

+ 2cos(2θ)
∂θ

∂ϕ
(σ1 − σ2) (4.39)

∂σxc

∂ϕ
=

∂σ2

∂ϕ
− ∂τxyc

∂ϕ
tan(θ)− τxyc

sec2(θ)
∂θ

∂ϕ
(4.40)

∂σyc

∂ϕ
=

∂σ1

∂ϕ
+

∂τxyc

∂ϕ
tan(θ) + τxyc

sec2(θ)
∂θ

∂ϕ
(4.41)

The strains [εx, γxy] with θ iterated to compute εy vertical strain defines the

strain state at a fiber. At fixed strain state, the gradients ∂εx/∂ϕ|ε, ∂γxy/∂ϕ|
ε
,

∂θ/∂ϕ|ε, ∂ε1/∂ϕ|ε and ∂ε2/∂ϕ|ε are equal to zero so that the conditional deriva-

tives of fiber strains have the form:

∂τxyc

∂ϕ

∣

∣

∣

∣

ε

=
sin(2θ)

2

(

∂σ1

∂ϕ
− ∂σ2

∂ϕ

)

(4.42)

∂σxc

∂ϕ

∣

∣

∣

∣

ε

=
∂σ2

∂ϕ
− ∂τxyc

∂ϕ
tan(θ) (4.43)
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∂σyc

∂ϕ

∣

∣

∣

∣

ε

=
∂σ1

∂ϕ
+

∂τxyc

∂ϕ
tan(θ) (4.44)

The stress-strain relations and their sensitivity computations are completed for

the biaxial material model. The implementation to OpenSees continues with the

fiber section integration class compatible with the new material model.

4.3 T-Beam Section

To consider the contribution of deck to the section stiffness, a new section model

should be defined in terms of deck thickness hf and effective flange width beff .

One other implementation in OpenSees is the template for T-shape beam section

as shown in Fig. 4.4. The new model compatible with proposed MCFT mate-

rial is based on a fiber discretization in both web and flange sides. To consider

the confinement of concrete in the section, different concrete materials can be de-

fined separately as cover and core in the web and flange. For the constitution

of longitudinal reinforcement, the template will be available with current uniaxial

steel materials in OpenSees library. Finally, the shape sensitivities with respect to

each parameter defining the T-beam configuration will be formulated to consider

geometric uncertainty.

4.3.1 T-Beam Fiber Discretization

T-section is defined by the parameters: overall section depth, d; web thickness, bw;

effective width, beff ; and deck thickness, hf . The number of web fibers is Nw and

Nf is the number of flange fibers. The indices cover and core defines the number

of fibers in cover and core region of the section flange and web. The reference axis
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beff

d

hf

Ai

Asi

yi

Yg

bw

Reference Axis

Nfcover

Nfcore

Nwcover

Nwcore

Figure 4.4: T-beam fiber section

from the bottom of the section web is computed:

Yg =
0.5(d− hf )bw(d− hf ) + beffhf(d− 0.5hf)

beffhf + (d− hf )bw

(4.45)

The location of the ith web core fiber is calculated for i = 1, ..., Nwcore
in terms of

web cover, wcover:

yi = −Yg + wcover + 0.5
d− hf − wcover

Nwcore

+
d− hf − wcover

Nwcore

i (4.46)

The location of a flange core fiber is calculated for i = 1, ..., Nfcore
in terms of

flange cover, fcover:

yi = d− Yg − hf + 0.5
hf − fcover

Nfcore

+
hf − fcover

Nfcover

i (4.47)
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The location of a web cover fiber is calculated for i = 1, ..., Nwcover
:

yi = −Yg + 0.5
wcover

Nwcover

+
wcover

Nwcover

i (4.48)

Finally, the location of a flange cover fiber is calculated for i = 1, ..., Nfcover
:

yi = d− Yg − fcover + 0.5
fcover

Nfcover

+
fcover

Nfcover

i (4.49)

Once the concrete fibers are located, reinforcing steel fibers i = 1, ..., Nstop
, are

located at yi = d − Yg − fcover on top of the section. For the bottom steel fibers

i = 1, ..., Nsbottom
, the location is computed as yi = wcover − Yg.

From the section dimensions and the number of fibers at each region, the area

of web core fibers are:

Awcore
= bw

d− hf − wcover

Nwcore

(4.50)

The size of each flange core fibers is calculated as:

Afcore
= beff

hf − fcover

Nfcore

(4.51)

At the web cover region, a concrete fiber has the area:

Awcover
=

bw − wcover

Nwcover

(4.52)

Finally, the area of each concrete fiber at the flange cover region is:

Afcover
=

beff − fcover

Nfcover

(4.53)
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while the area of top and bottom steel fiber is directly assigned as Astop
and Asbottom

,

respectively.

4.3.2 T-Beam Section Shape Sensitivity Equations

The shape sensitivity of T-beam formulations is required to compute section force

gradients as indicated in Eqs. (4.5) and (4.7). The gradients of fiber locations

∂yi/∂ϕ and areas ∂Ai/∂ϕ are calculated at the ith fiber by direct differentiation of

formulations from Eq. (4.45) to Eq. (4.53)

Once the derivative of the reference axis location, ∂Yg/∂ϕ is obtained, the

computation of shape sensitivity is straightforward for deterministic values of Nw

and Nf . The sensitivity of ith fiber of we core region for i = 1, ..., Nwcore
:

∂yi

∂ϕ
= −∂Yg

∂ϕ
+

∂wcover

∂ϕ
+

0.5

Nwcore

(

∂d

∂ϕ
− ∂hf

∂ϕ
− ∂wcover

∂ϕ

)

+
i

Nwcore

(
∂d

∂ϕ
−∂hf

∂ϕ
−∂wcover

∂ϕ
)

(4.54)

For the sensitivity of flange core fibers, the gradient of centroid, i = 1, ..., Nfcore
:

∂yi

∂ϕ
=

∂d

∂ϕ
− ∂Yg

∂ϕ
− ∂hf

∂ϕ
+

0.5

Nfcore

(

∂hf

∂ϕ
− ∂fcover

∂ϕ

)

+
i

Nfcover

(

∂hf

∂ϕ
− ∂fcover

∂ϕ

)

(4.55)

The sensitivity of web cover fibers, i = 1, ..., Nwcover
, is:

∂yi

∂ϕ
= −∂Yg

∂ϕ
+

0.5

Nwcover

∂wcover

∂ϕ
+

i

Nwcover

∂wcover

∂ϕ
(4.56)

Finally, for i = 1, ..., Nfcover
flange cover fibers, the location gradient is calculated

as:
∂yi

∂ϕ
=

∂d

∂ϕ
− ∂Yg

∂ϕ
− ∂fcover

∂ϕ
+

0.5

Nfcover

∂fcover

∂ϕ
+

i

Nfcover

∂fcover

∂ϕ
(4.57)
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The sensitivity of size of a web core fiber is:

∂Awcore

∂ϕ
=

1

Nwcore

∂bw

∂ϕ
(
∂d

∂ϕ
− ∂hf

∂ϕ
− ∂wcover

∂ϕ
) (4.58)

For each flange core fiber, the gradient of the size is calculated as:

∂Afcore

∂ϕ
=

1

Nfcore

∂beff

∂ϕ

(

∂hf

∂ϕ
− ∂fcover

∂ϕ

)

(4.59)

At the web cover region, the gradient of fiber area is:

∂Awcover

∂ϕ
=

1

Nwcover

(

∂bw

∂ϕ
− ∂wcover

∂ϕ

)

(4.60)

Finally, the sensitivity of area for each concrete fiber at the flange cover region is:

∂Afcover

∂ϕ
=

1

Nfcover

(

∂beff

∂ϕ
− ∂fcover

∂ϕ

)

(4.61)

The each derivative, ∂d/∂ϕ, ∂bw/∂ϕ, ∂hf/∂ϕ, ∂beff/∂ϕ, ∂wcover/∂ϕ, ∂fcover/∂ϕ,

∂A−
s /∂ϕ and ∂A+

s /∂ϕ is equal to either one or zero depending on the parameter

ϕ represents in the section model. The formulations are derived and implemented

in OpenSees for the parameters listed in Table 4.1.

4.4 Software Design for The Methodology Tools

OpenSees as an object-oriented software frameworks provides the user an open

source code to implement new objects in the program. Objects are structures that

encapsulate data algorithms and perform operations requested by the user. An

object do not exist unless an instance of the class has been created where internal
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Table 4.1: Shape Sensitivity Parameters for T-Beam Section

Geometry: T-Beam
Section depth d
Section width bw

Effective width beff

Deck thickness hf

Neg. r/f steel area A−
s

Pos. r/f steel area A+
s

data and procedures are contained. As an object-oriented programming technique,

abstraction provides a common interface to subclasses where such abstract classes

give the partial implementation and leave subclasses the rest of the procedure to

complete. In this section, the implementation of proposed material model and

section shape is explained.

Once the methodology tools are implemented in the software framework, the

user needs to define the finite element models and analysis procedures. Tcl script-

ing language provides an interface with its control structures, programmable op-

erations and procedures. The user is able to customize applications assembling

the software blocks. Tcl scripts program OpenSees with provided finite element

analysis setup such as nodes, boundary conditions, finite elements, and moving

axle loads that represent truck loading along the bridge girders in pseudo-time

steps. The input arrays of axle weights and spaces will define the user-specified

multi-axle permit truck whose motion will be monitored at time steps.
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4.4.1 Implementation of Fiber Section

The force-based element formulation is based on the interpolation of forces at sec-

tions along the element. The internal section forces, s, are defined in terms of cor-

responding section deformations, e. In general architecture of OpenSees, computa-

tion of section forces and stress resultant are controlled by the abstract class called

ForceDeformation providing an interface to conduct the operations in subclasses.

The computation of section stress resultant and committing the stress state to save

the history variables are performed through subclasses of ForceDeformation.

A UML diagram [18] of the subclass implementations to OpenSees is shown in

Fig. 4.5. The new subclass, McftF iberSection, is implemented to obtain stress

resultants by evaluating the numerical integration at each fiber level over the sec-

tion as given in Eq. (4.3). To obtain stress resultant from each fiber, the con-

stitutive relationships need to be implemented within a subclass. In OpenSees,

the current multi-axial material models are implemented under the subclass name

nDMaterial. The proposed biaxial constitutive model is encapsulated in a sub-

class, ConcreteMcftNonlinear, assigned to each concrete fiber to carry out the

shear-flexural operations. For the longitudinal reinforcing steel material, the con-

stitution formulations are evaluated within the subclass UniaxialMaterial as-

signed on each steel fiber.

The fiber section subclass contains the compatibility matrix, as, carrying the

characteristics of axial, flexural and shear deformation distributions in the proposed

section model as given in Eq. (4.3). However, the integration of fiber stress requires

the locations and the area of fibers in the proposed T-shape girder section. As

shown in Fig. 4.6, the new section integration subclass, RCTbeamSectionIntegration

is implemented to supply the required geometrical data, each fiber location, yi, and
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getStressResultant()

getStressResultant() getStressResultant()

getStressResultant()

getStressResultantSensitivity()

getStressResultantSensitivity() getStressResultantSensitivity()

getStressResultantSensitivity()

commitState()

commitState() commitState()

commitState()

getF iberLocations()

getF iberWeights()

getF iberLocationSensitivity()

getfiberWeightSensitivity()

SectionIntegration

ForceDeformation

McftFiberSection

nDMaterial UniaxialMaterial

Nconc

Nsteel

for i = 1 : (Ns + Nc)

materials[i]− > commitState()

return s

s = 0

(y, z) = integr− > getF iberLocations()

A = integr− > getF iberWeights()

fori = 1 : (Ns + Nc)

σ = materials[i]− > getStressResultant()

as =
1 − yi 0

0 0 1

s + = as
T
σAi

Other Subclasses

Figure 4.5: Design strategy for MCFT fiber section class.
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fiber area, Ai in terms of the parameters, d, bw, beff , hf and number of fibers in

core-cover regions of flange and the web of the section.

SectionIntegration

getF iberLocations() getF iberLocations()

getF iberLocations()

getF iberWeights() getF iberWeights()

getF iberWeights()

getF iberLocationSensitivity() getF iberLocationSensitivity()

getF iberLocationSensitivity()

getfiberWeightSensitivity() getfiberWeightSensitivity()

getfiberWeightSensitivity()

RCSectionIntegration RCTbeamSectionIntegration

d, b, As, Nc, Ns
d, bw, beff , hf , As, Nfs, Nfc, Nwc, Nws

y y

z
z

Ns = 1

Ns = 1

Nc = 5

Nfs = 1

Nfc = 2

Nwc = 9

Nws = 1

Other Subclasses

Figure 4.6: Design strategy for section integration class.
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Moving Load Reliability Analysis

Set Parameters

Analysis SETUP

Model Builder

Moving Load Procedure for i=1:Nsteps

Sensitivity Parameters

Reliability Setup-Analysis

Data Recordings

Post Production Process

Figure 4.7: Tcl procedure for moving load reliability analysis.
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4.4.2 Analysis Setup

The generic script format for reliability analysis of bridge girders is programmed in

Tcl using the strategy conducting finite element and reliability analysis modules

as shown in Fig. 4.7. The first script carries the data input covering material

geometry and loading parameters. The generic bridge model is coded by user

defined variables for the number of the spans and corresponding span lengths.

The truck loads, axle spaces, concrete and steel material parameters are contained

in SetParameter script given in Fig. 4.8. Sections are defined using simple data

array and the content is indexed with the number corresponding to the order in

the array.

The Tcl script AnalysisSETUP contains user-defined analysis options that

customize moving load reliability procedure as shown in Fig. 4.9. The entry,

Nsteps, is the total number of moving load simulation steps and defines the in-

crement in load along the bridge. The user specifies the target sections in the

array, CrSections so that the limit state functions are built only at given sections.

The variable, MCFTLines, is the number of performance functions to be used in

reliability analysis.

The capacity will be calculated for critical sections where the performance

functions are imposed to run reliability analysis. For user-defined critical sections,

moment-shear reliability indices will be calculated at every pseudo-time step using

Tcl procedures defined in AnalysisSETUP . The script provides capacity cal-

culations for two user defined limit state approaches, LC and MB, as shown in

Fig. 4.10.

Using MB procedure, the limit state functions will be defined as five line equa-

tions in terms of nominal moment and shear capacity. The Tcl script is made
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set Lspan { $La $Lb $Lc }
set Nspan 3

set nIP 3 ;#number of integration points

# Material Properties

set fcu [expr −4000*$psi]
#concrete

set fy [expr 60*$ksi]
set Es [expr 200000*$MPa]

set Naxle 8

#steel

set P_1 [expr −8*$kip]

#  Axle Truck Loads and Axle Spaces

set s_1 [expr 4300*$mm]
set s_2 [expr 4300*$mm]

set P_2 [expr −32*$kip]
set P_3 [expr −32*$kip]

# Span definitions

set Section_13 {48 13.0 19.0 12.48 0.40 0.40 13.0 6.0} 

for {set ie 1} {$ie <= $Nele} {incr ie} {

}
  }

#Label variables

  for {set inp 1} {$inp <= $nIP} {incr inp} {

set ecu −0.003

#section_ij    {$d $bw  $Ss  $Ast $Asb $Av  $beff $hf}

set Section_12 {48 13.0 19.0  9.36 0.40 0.40 13.0 6.0}
set Section_11 {48 13.0 12.0  7.15 0.40 0.40 13.0 6.0}

  set "d$ie$inp"  [expr [lindex [expr $\Section_$ie$inp] 1]*$in]
  set "bw$ie$inp" [expr [lindex [expr $\Section_$ie$inp] 2]*$in]

#Section Properties

Figure 4.8: Parameter entries in reliability analysis scripts

# Number of Moving Load Steps

#Critical Sections to investigate
set CrSections {16 17 21 .. .. ..}

set MCFTLines 5
# Numberof lines making MCFT curve 

set Nsteps 50

Figure 4.9: Custom setup parameters
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Mn−

Vn

V

M

pf5pf1

pf4

MB

pf2

pf3

Mn+

Mn− Mn+

Vn

V

M

LC

    

#where y = V−Shear, x = M−Moment            

set BetaArray "$m $n $v"

}

#returns  5 beta line equation "v.y = m.x + n "

#returns 6 point represantation of MV capacitiy curve

    set MVpos [AASHTO_MCFT $fc $fylong $dv $bw $As $Av $fytrans $s]

    set MVneg [AASHTO_MCFT $fc $fylong $dv $bw $As $Av $fytrans $s]

    #Combine + and − Moment capacity 

#foreach MCFTline "pf"

proc getMV {fc fylong dvneg bw Asneg Av fytrans s dvpos Aspos pf} {

#AASHTO_MCFT LameCurve (LC)

#Shear

proc getVy {fc d bw Av fytrans s} {

#Moment

proc getMy {fc  fylong bw d beff As Es} {

#compute dv

set Mu [expr $fylong*$dv*$As]

    return $Mu

}

    #going into the AASHTO_MCFT funtion

#AASHTO_MCFT  Multi−Beta (MB)

    return $BetaArray

    set Vu [expr ("Beta"*pow($fc,0.5)*$bw*$d) 

}

    return  $Vu

    + $Av*$fytrans*$d/($s*tan("Theta"))]

d

hf

beff

bw

As(+)

As(−)

Figure 4.10: Tcl capacity procedures
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up of two nested functions. The procedure getMV calculates the coefficients of

moment and shear demand in each line equation, once the nominal capacity curve

calculated by the embedded OpenSees function AASHTO MCFT .

The Tcl and C++ codes for these procedures are given in Appendices A and B.

The calculation of LC nominal shear and moment capacity is coded in getV y and

getMy procedures, respectively. The nominal capacities, Mn and Vn, that describe

the shape of the Lamé curve are given by peak values from MCFT analysis using

Eq. (3.18).

4.4.3 Model Builder

The mesh generation of nodes and force-based beam elements for the model build-

ing and moving load analysis is described by Tcl interpreter commands in OpenSees

as shown in Fig. 4.11. Tcl code locates a node at each coordinate corresponding

to the end point of each span. The interpreter command line Element assigns one

force-based element for each span. In addition, the command line contains the

information about the integration method and the section properties. Eventually,

the customization of moving load analysis can easily be coded while investigating

bridges with various number and length of spans.

The moving load analysis is based on the repetition of finite element analysis

while the position and the combination of loads are changing from one pseudo-time

step to another one. The truck loads are represented by the element point loads

and the vehicle path is defined as TrackLength equal to the sum of twice of the

truck length and the total span length so that the analysis will be performed with

the step of first axle load until the last axle weight steps off the last span. As the
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vehicle moves along the bridge, Tcl code locates the span and the relative distance

of the axle weight from the element end and assign a load pattern for each axle.

4.4.4 Reliability Analysis Setup

In FORM analysis of girders in the methodology, random variables on selected

parameters need to be assigned to define uncertainties in both demand and re-

sistance side of the limit state. The interaction between finite element modules

and reliability addresses the random variable definition of the finite element pa-

rameters considered uncertain in the analysis. The Tcl script RelRV interprets

the command line randomV ariable as a definition of a uncertainty with a speci-

fied probabilistic distribution. The command parameter holds the identity of the

uncertain parameter so that the limit state function gradients will be calculated

in terms of each parameter identified. The Tcl syntax for the random variable

and the performance function is shown in Fig. 4.12. To specify the limit state

function the required shear and moment coefficients are called in the function us-

ing the capacity procedures given in AnalysisSETUP . The interpreter command

performanceFunction indexes the closed form of five limit state equation in a

simple loop for each MCFTline.

4.5 Material Modeling Verifications

To verify the proposed biaxial material model represents the behavior of shear

critical concrete components correctly, a set of pushover analysis has been carried

out on several beam specimens having flexural, shear and combined failure modes.

First two numerical analyses of hypothetical beam examples are performed to
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# Assign node coordinates by array
node 1 0.0 0.0 

for {set i 1} {$i <= $Span} {incr i} {
node [expr $i+1] [lindex $Ltotal $i] 0.0

}
element forceBeamColumn $i $i [expr $i+1] 1 $integration $sections

# Node Coordinate Array
set Ltotal {0.0}
set sum 0.0
for {set i 0} {$i < $Span} {incr i} {
set sum [expr $sum + [lindex $Lspan $i]]
lappend Ltotal $sum

   pattern Plain $jj Constant {

# Check the location and assign the load
    for {set k 1} {$k <= $Span} {incr k} {

      continue
       }

     }     

        }
      }

   }             

#Step size − dx
set dx [expr $TrackLength / ($Nsteps)]

# Moving Loads
  for {set q 0} {$q <= $Nsteps} {incr q} {
     set x [expr $q*$dx]

# Locate axles

      for {set jj 1} {$jj <= $Naxle} {incr jj} {

      set Load [lindex $axleLoad [expr $jj−1]]

 set Loc [expr $x − [lindex $axleLoc [expr $jj−1]]]

 set k1 [lindex $Ltotal [expr $k−1]]

set k2 [lindex $Ltotal $k]

            if { $Loc  > $k1 && $Loc < $k2  } {

   #Relative Distance of Load on Element

    set Reltvdist [expr ($Loc − $k1)/($k2 − $k1)]

   eleLoad −ele $k −type −beamPoint [expr 1*$Load] $Reltvdist

 } else {

}

    

             

             

 

   

   

             

             

 

   

Node.1 Node.Nn

Step.NstepStep.1

PNl
PNl

P1P1

Ele.1 Ele.Ne

Figure 4.11: Tcl codes for model builder and moving load simulation
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     performanceFunction $p "($cfn) + ($cfm)*(df*IM*[expr $$moment]) + ($cfv)*(abs(df*IM*[expr $$shear]))" 

    set cfv "\[lindex \[getMV rvfc $rvfylong $rvd $rvb $rvAst $rvAv $rvfytrans $rvSs $rvAs $rvEs $rvb) $p] 0 ] "

    set cfn "\[lindex \[getMV rvfc $rvfylong $rvd $rvb $rvAst $rvAv $rvfytrans $rvSs $rvAs $rvEs $rvb) $p] 0 ] "

    set cfm "\[lindex \[getMV rvfc $rvfylong $rvd $rvb $rvAst $rvAv $rvfytrans $rvSs $rvAs $rvEs $rvb) $p] 0 ] "

   }

 for {set p  1} {$p <= $MCFTLines} {incr p} {

randomVariablePositioner $i −rvNum $i −parameter $parameter 

randomVariable $i lognormal $mean $variance

parameter $i −element $e −section $s −section $parameter

Figure 4.12: Tcl code to assign random variables and performance functions

compare the new model with the uniaxial material models of current OpenSees

material library. Then, simulations on real test specimens will follow in this section.

4.5.1 Simply-Supported Beams with Flexure and Shear Failure Modes

Two simply-supported beams have been analyzed to indicate the accuracy of bi-

axial material model over uniaxial concrete models in OpenSees Fig. 4.13. The

analysis results are checked against the solution by non-linear finite element pro-

gram, VecTor2 [153]. The framework is a non-commercial package for the anal-

ysis of two-dimensional reinforced concrete membrane. The theoretical solution

method of the program is based on the MCFT and the Disturbed Stress Field

Model (DSFM) [150].

The longitudinal reinforcement is modeled by Steel02 (Fig. D.1) uniaxial ma-

terial class in OpenSees. For uniaxial representation of concrete fibers Concrete02

[70] material model (Fig. C.1) with tensile strength and linear tension softening is

used in analysis where the shear strains are uncoupled. One force based element
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L

A−
s

d

b

A+
s

P

Beam No. 1 2
Failure Flexure Shear

L 5000mm 3660mm
d 500mm 550mm
b 200mm 305mm

A−
s 1500mm2 200mm2

A+
s 3500mm2 2400mm2

fc
′ 35.0MPa 22.6MPa

εc
′ -0.002 -0.002

fcr
2.0MPa 1.7MPa

Ecinit 30.6GPa 23.7GPa
Esv 200GPa 200GPa
ρv 0.005 0.001
fy 413MPa 436MPa
Es 200GPa 200GPa

Figure 4.13: Simply-supported beams: Material and geometry configurations.
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is not adequate to record critical vertical displacements so that, two force-based

elements are employed in OpenSees analysis where nodal displacement is captured

in the mid-span. On each element, integration point weights and locations coincide

with integration properties of 5 point Gauss-Lobatto quadrature on one force-based

element of entire span. Accordingly, a force-displacement behavior of one force-

based element is demonstrated while the critical bending moment at point load

location is represented with the weight of a higher order integration method in

numerical evaluation of nodal displacement.
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Figure 4.14: Load-displacement behavior of Beam No.1 with flexural failure mode

The beam no.1 has the strength level at P = 500.0(kN) and the failure mode

is flexural dominant. The longitudinal reinforcement yields until failure before

critical shear deformations occur on the element. The simulations with uniaxial
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Figure 4.15: Load-displacement behavior of Beam No.2 with shear failure mode



88

Concrete02 and biaxial model provide flexural representations consistent with each

other. The strength and displacement results with biaxial material coincides with

the MCFT based VecToR solution.

Meanwhile, a slight difference appears in the analysis of the beam no. 2 when

uniaxial and biaxial materials are compared. The VecToR solution indicates a

shear crack initiation causes shear dominant failure in shell elements at lower

moment-shear ratios. Similarly, biaxial material model subjected to significant

shear strain causes a strength reduction. While uniaxial material represents the

flexural failure mode of the beam, biaxial material provides a path of strength

envelope of a shear dominant behavior in the presence of shear strains. The dif-

ference between simulation with uniaxial and biaxial material model is significant,

200(kN).

4.5.2 Cantilever Test Specimens with Axial Loading

Three test specimens have been analyzed to demonstrate the accuracy of the pro-

posed biaxial material model in simulating the failure mode of shear critical column

elements subjected to axial loading. The setup of specimens is shown in Fig. 4.16

and the related reinforcement configurations are tabulated in Table 4.2. In ad-

dition, the stress-strain behavior of concrete fibers is also modeled by a uniaxial

Concrete02 material with a parabolic ascending branch and linear descending brain

in compression. For the steel reinforcement, the modulus of elasticity is E=200000

MPa, hardening ratio is α=0.01 in all specimens and yield stress is taken as listed

for each test. A compressive axial load, P=νf ′
cAg, is applied to each specimen.

The global response is given for each column in Fig. 4.17 using one force-based
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Figure 4.16: Double-cantilever test setup and reinforcement details

Table 4.2: Material and Geometry Properties of Test Specimens

Specimens 1 2 3
Reference [86] [111] [132]
Test No. 3CLH18 4D13RS 2

L 1473.2mm 400.0mm 1473.2mm
d 457.2mm 200.0mm 457.2mm
b 457.2mm 200.0mm 457.2mm
As 794.2mm2 132.7mm2 645.0mm2

fc
′ 26.9MPa 29.9MPa 21.1MPa

ρv 0.001 0.006 0.002
fy 331MPa 370MPa 434MPa

P-LoadRatio (ν) 0.089 0.153 0.605
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element with a high-order Gauss-Lobatto quadrature with seven points providing

a sufficient detail of the response. As seen in the figures, uniaxial material that

couples only the axial and flexural strain can not detect the global shear strength

and represent only the flexural response envelope of test specimens. On the other

hand, the proposed material model provides more accurate results. The results

show that new biaxial material is able to capture critical shear loading and the ac-

curacy of coupled shear-flexural stiffness of the element on global load-displacement

is unquestionable when compared to the uniaxial material.

4.5.3 Simply-Supported T-Beam Girder Specimen

The reinforced concrete T-section girder, the specimen 2T12 in the tests of Higgins

et al. [61] is analyzed in this example. Dimensions of the specimen and the

reinforcement configuration are given in Fig. 4.18 and Fig. 4.19, respectively. In

addition, the crack propagation at the end of the test is also given in the same

figure. As in the previous examples, the same constitutive material for the steel

are used in this example taking the elastic modulus is E = 200000MPa and the

yield stress is fy = 413MPa. In this case, the concrete compressive strength is

fc
′ = 30.06MPa and the strain at ultimate stress ec

′ = 0.0038.

The global response of the beam is calculated using two five-point Gauss-

Lobatto quadrature and a nine-point low-order integration, x = {0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9}, with mid-distance integration weights and the simulated

behavior is shown in Fig. 4.20. The proposed biaxial model extracts informa-

tion on principal stress-strain directions and rotating crack as shown in Fig. 4.21.

However, since the entire beam is represented by only one force-based element,
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Figure 4.17: Load-displacement behavior of test specimens



92

p2 p2

#4 / 305mm#4 / 305mm 533mm

1219.2mm

7315.2mm

Figure 4.18: T-beam specimen setup and crack propagation map

914.4mm

152.4mm

1066.8mm

355.6mm

cover 38mm

cover 38mm

#4 Grade 60

#4 / 305mm

#11 Grade 60

Figure 4.19: T-beam specimen section details
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the mid-span displacement is not available, the global response is derived using a

linear approximation calculating the displacement by the support rotation.
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Figure 4.20: Load-displacement behavior of T-beam girder

The simulated global load-displacement response using biaxial material reaches

an identical strength level. The recorded displacements are improved when high-

order integration quadrature is used. On the other hand, at the lower load, P =

267kN where the initial flexural cracks occurs, the simulated behavior is exact

when compared to the test results. In Fig. 4.21, where the cracked fibers are

marked in red, the flexure cracks occur at θ = 84◦ ∼ 89◦. From support to

mid-span, the crack angles decreases to θ = 45◦ ∼ 80◦ as the influence of shear

deformations starts to overcome axial strains and flexural cracks form into diagonal
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Figure 4.21: Fiber principal axes compression directions
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cracks at these locations. The new material extracts crack directions matching with

the real test crack propagation and provides the analyst additional information by

improving simulations of shear dominant members in OpenSees.

4.6 Verification of DDM Equations

To demonstrate the application of response sensitivity analysis in assessing uncer-

tainty, numerical examples are presented for an interior girder of the McKenzie

River Bridge, which carries the northbound lanes of Interstate-5 just north of Eu-

gene, OR. Each span of this reinforced concrete deck girder (RCDG) bridge is 15.2

m long, as shown in Fig. 4.22. The depth, d, of the interior girder is uniform at

122 cm while the girder width, b, is tapered from 33 cm at quarter spans to 50 cm

at the continuous supports.

For the two-dimensional analyses presented herein, each span is described as

a single force-based element with integration points that correspond to critical

locations at midspan and at distances d, 2d, and 3d from the supports:

x = {1.22, 2.44, 3.66, 7.60, 11.6, 12.8, 14.0}m (4.62)

These locations dictate where section forces, s, and the corresponding response

sensitivity, ∂s/∂ϕ|
e
, are evaluated during the analysis. The associated integra-

tion weights are computed from the average distance between adjacent integration

points:

w = {1.83, 1.22, 2.58, 4.00, 2.58, 1.22, 1.83}m (4.63)

To verify the DDM equations for section force response sensitivity are correctly
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Figure 4.22: Span lengths and critical locations for an interior girder of the McKen-
zie River Bridge.
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implemented in OpenSees, finite difference calculations are carried out with succes-

sively smaller parameter perturbations. As the perturbation decreases, the finite

difference approximation should converge to the analytic derivative:

lim
ε→0

s(ϕ + εϕ)− s(ϕ)

εϕ
=

∂s

∂ϕ
(4.64)

For the DDM solution, ∂s/∂ϕ is recovered from terms on the right-hand side of

Eq. (3.31), each of which is known after the DDM equations have been solved

during the analysis.

Two numerical examples will present the verification of DDM formulations

in this section. First example is the verification of section force sensitivity with

respect to material geometry and load parameters when rectangular sections are

represented by linear elastic uniaxial concrete and steel material for the axial-

flexural behavior at fiber level while an elastic shear stiffness is aggregated for

computation of shear strain at section level as given in Eq. (4.5). The second

example will verify the sensitivity formulations of proposed biaxial material and

the T-beam section geometry under vehicle loading. In both examples The three

axle AASHTO HS-20 design truck [3] shown in Fig. 4.23(a) moves across the bridge

in load increments and the FDM-DDM sensitivities of section bending moment and

shear force will be compared at each load increment step.

4.6.1 Elastic Section Sensitivity Verifications

Section dimensions, reinforcing details, and material properties for the critical

sections are listed in Fig. 4.24 where the labels, ij, indicate the span number, i,

and the section number, j. The derivatives of bending moment and shear force at
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Length = 8.6 m

GVW = 320.2 kN

Figure 4.23: Axle weights and spacings of vehicles used in sensitivity and reliability
analyses: (a) HS-20 truck; (b) OR-STP-4D single trip permit truck.
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section 17 with respect to concrete material properties, section dimensions, area

of reinforcement, axle spacing and load magnitudes are presented in Fig. 4.25 and

Fig. 4.26, respectively. As anticipated, the results obtained by the FDM converge

to those obtained by the DDM at every load increment of the analysis.

fyl = 276 MPa

Es = 200 GPa

fyv = 276 MPa

Av = 2.58 cm2

f ′
c = 22.8 MPa

Ec = 22.6 GPa
ε

Ec

σ
Concrete

σ

ε

Es

Steel

Section d b A−
s A+

s s

Label (cm) (cm) (cm2) (cm2) (cm)
11 122 33 2.58 46.1 30.5
12 122 33 2.58 60.4 48.3

13,14 122 33 2.58 80.5 48.3
15 122 33 20.3 47.4 23.0
16 122 39 40.3 30.2 23.0

17,21 122 45 60.4 30.2 23.0
22 122 39 55.0 30.2 23.0
23 122 33 40.3 30.2 30.5
24 122 33 2.58 46.6 48.3

f ′
c

A+
s , fyl

A−
s , fyl

Av, fyv, s

b

d

beff

Figure 4.24: Typical reinforcing layout and details for an interior girder of the
McKenzie River Bridge.

The sensitivities are multiplied by the initial value of the corresponding param-

eter such that absolute changes in response can be estimated from Fig. 4.25 for a

relative (%) parameter change. The moment of section 17 is much more sensitive

to the load parameters than to the material and geometric parameters; however,

the section moment is nearly as sensitive to relative changes in section depth as it
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is to the axle load. Similar analyses indicate that the shear force response is much

less sensitive to the chosen parameters than that for bending moment.

4.6.2 MCFT Material Sensitivity Verifications

The DDM response sensitivity to parameters of the biaxial material is verified

using FDM results in this section. The sensitivity formulations have been im-

plemented for initial modulus of elasticity, E0, the compression strength, σcu and

the tensile strength, σcr of the proposed biaxial material. In the analysis, E0 is

taken as 27.5GPA. The compressive and tensile strength of the concrete fibers

are σcu = 27.6MPa and σcr = 3.24MPa, respectively. The strain at ultimate

compressive stress is taken as εcu = −0.003. The current and the following ex-

amples verifying DDM formulations for the biaxial material, t-beam shape and

interpolation parameters are performed with the proposed material.

For the section 17, the moment and shear gradients multiplied by the initial

value of the corresponding parameter are shown in Fig. 4.29. The moment of

section 17 is much more sensitive to the modulus of elasticity and the tensile

strength of the concrete than to the compressive strength; however, the section

shear is significantly less sensitive when compared to the section moment. In

FDM perturbations, the occurrence of numerical round off errors causes inaccurate

results at several time steps. Inaccurate results of FDM encourage usage of DDM

sensitivities for the material properties of proposed material model.
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Figure 4.25: Verification of DDM moment response sensitivity computations for
moving load analysis of an interior girder of the McKenzie River Bridge with elastic
materials and rectangular sections.
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Figure 4.26: Verification of DDM shear response sensitivity computations for mov-
ing load analysis of an interior girder of the McKenzie River Bridge for elastic
material and rectangular section parameters.
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Figure 4.27: Verification of DDM moment response sensitivity computations for
moving load analysis of an interior girder of the McKenzie River Bridge for vehicle
load parameters.
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Figure 4.28: Verification of DDM shear response sensitivity computations for mov-
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Figure 4.29: Verification of DDM moment-shear response sensitivity computations
for moving load analysis of an interior girder of the McKenzie River Bridge for
biaxial material parameters.
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4.6.3 T-beam Geometry Sensitivity Verifications

The moment and shear sensitivities of section 17 to the shape parameters of T-

beam girders are given in Figs. 4.30 and 4.31, respectively. The girder depth, d, the

girder web width, bw, the effective flange width, beff , the deck thickness, hf , the

negative moment reinforcing steel Ast and the positive moment reinforcing steel Asb

are considered as sensitivity parameters in this example. The DDM sensitivities

show that the section moment is more sensitive to depth, web and the effective

flange width when compared to the other shape parameters. However, section

shear sensitivities are significantly lower than the moment gradients.

4.7 Reliability Analysis Examples

A set of first-order reliability (FORM) analyses is carried out to assess the effect of

parametric uncertainty on the interaction of moment and shear force at the critical

locations. The girder investigated in the verification examples is selected and live

load reliability analyses are performed using several material-section configurations

and the capacity functions implemented to OpenSees framework.

While conservative in design, treating moment and shear separately can lead to

non-conservative estimates of reliability. This approach is accounted for applying

MB and LC capacity functions in OpenSees. For the demand in finite element

reliability, the biaxial material model considers the influence of coupled moment

and shear behavior on the demand side of the limit state. The analysis results are

compared with examples using uniaxial material model. In addition, the new sec-

tion shape class is used in examples and compared with the results by rectangular

reinforced concrete section. The parameter importance factors are calculated at
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Figure 4.30: Verification of DDM moment response sensitivity computations for
moving load analysis of an interior girder of the McKenzie River Bridge for T-beam
section parameters.
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Figure 4.31: Verification of DDM shear response sensitivity computations for mov-
ing load analysis of an interior girder of the McKenzie River Bridge for T-beam
sections parameters.
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critical load increments.

LC performance functions considered in all reliability analysis is formulated in

terms of random finite element response M , V and ultimate moment and shear

capacity Mn, Vn:

g− = 1−
∣
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∣

∣
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The performance functions of MB are formulated in terms of coefficients that

define line equations connecting 6 points of AASHTO-MCFT representations:

g1 = M−
n + M (4.66a)

g2 = cfm2(Vn, M
−
n )M + cfv2(Vn, M

−
n )V + cfn2(Vn, M

−
n ) (4.66b)

g3 = Vn − V (4.66c)

g4 = cfm4(Vn, M
+
n )M + cfv4(Vn, M

+
n )V + cfn4(Vn, M

+
n ) (4.66d)

g5 = M+
n −M (4.66e)

In the limit state expressions, M = IF∗DFM∗MFE is the bending moment from

the finite element analysis, MFE, modified by the impact factor, IF , and moment

distribution factor, DFM . Similarly, the shear, V = IF ∗DFV ∗ VFE, is obtained

from the finite element analysis, impact factor, and shear distribution factor, DFV .

The impact and moment and shear distribution factors are treated as random

variables with mean values 1.1, 0.854, and 0.884, respectively, obtained from LRFR

specifications [2]. Field testing and three-dimensional analysis of the McKenzie

River Bridge [121] offer more realistic estimates of the impact and distribution
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factors; however, the use of LRFR values does not affect the analysis methodology

presented herein.

To display forms of limit state formulations, MB and LC capacity functions

are quantified at mean values of all resistance variables and shown in Fig. 4.32 for

sections 17 and 14. The LC approach provides conservative shear strength while

the flexural capacities are same in negative and positive directions. In reliability

analysis, more conservative reliability indices are anticipated for shear critical sec-

tion 17 while moment- critical section 14 is expected to converge the similar values.

The combined moment- shear behavior in closed form of LC will be compared to

linearly interpolated resistance in MB.
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Figure 4.32: MB and LC capacities at mean values of resistance variables

4.7.1 Bridge Girder with Uniaxial and Biaxial Material Models

In the first set of reliability analyses, the interior girder of McKenzie Bridge is

modeled using a uniaxial and biaxial concrete material with rectangular sections.

The material configurations for two cases is defined in Table 4.3. The reliability
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analysis is performed for the two limit state cases, LC and MB at two critical

sections 14 and 17. The section 14 is considered as a moment dominant location

while section 17 at d distance away from the support is critical due to higher

interaction of shear and bending moment expected.

Table 4.3: Material models used in live load reliability of girders.

Fibers Case 1 Case 2
Concrete Uniaxial: ElasticENT nDMaterial:

ConcreteMCFTNonlinear
Steel Uniaxial: LinearElastic Uniaxial: Steel01
Shear Aggregator Uniaxial: LinearElastic N/A

An eight-axle single-trip permit truck, type OR-STP-4D given in Fig. 4.23(b),

moves across the bridge in 100 load increments. All axle weights are assumed to

be correlated lognormal random variables, with descriptors based on WIM specifi-

cations [13]. The correlation between all axle weights is 0.4, while the correlation

between axles in the tandem and triple groups (axles 2-3, 4-5-6, and 7-8) is 0.8 [69].

Mixed lognormal distributions for tandem axle configurations are given by Prozzi

and Hong [123]. Coefficients of variation for the impact and distribution factors

are available in the literature [64, 74] and used in the analysis. All parameters

that define M − V and M−
n Vn are treated as random variables with distribution

properties shown in Tables 4.4 and 4.5.

The reliability index at each load increment step is shown in Figs. 4.33 and

4.34 for section 17 and 14, respectively. Using the DDM to evaluate sensitivity

gradients, the reliability analyses with uniaxial and biaxial material configurations

converge to the minimum reliability index, βcr = 2.00 at section 17, when the limit

state is defined by conservative LC approximation. Using MB approach where
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Table 4.4: Random variable descriptions for the finite element reliability analysis
of an interior girder of the McKenzie River Bridge using uniaxial materials and
rectangular sections

Case 1: Uniaxial Elastic
RV no. Param. Distribution Mean C.O.V.

17 14

1 d Normal 122 cm 0.015
2 b Normal 45 cm 0.015
3 A−

s Normal 60.4 cm2 2.6 cm2 0.024
4 A+

s Normal 30.2 cm2 80.5 cm2 0.024
5 Ec Lognormal 22.6 GPa 0.08
6 G Lognormal 9.41 GPa 0.08
7 Es Lognormal 200 GPa 0.06
8 f ′

c Normal 22.8 MPa 0.15
9 Av Normal 2.58 cm2 0.024
10 fyv Lognormal 276 MPa 0.12
11 s Normal 23 cm 48 cm 0.10
12 fyl Lognormal 276 MPa 0.12
13 DFM Normal 0.854 0.10
14 DFV Normal 0.884 0.10
15 IF Normal 1.10 0.08
16 P1 Lognormal 53 kN 0.20

17-23 P2-P8 Lognormal 96 kN 0.20
24 beff Normal 227 cm 215 cm 0.015
25 DL Lognormal 2.26 kNm 0.10
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Table 4.5: Random variable descriptions for the finite element reliability analysis
of an interior girder of the McKenzie River Bridge using biaxial concrete material
and rectangular sections

Case 2: Biaxial Nonlinear
RV no. Param. Distribution Mean C.O.V.

17 14

1 d Normal 122 cm 0.015
2 b Normal 45 cm 0.015
3 A−

s Normal 60.4 cm2 2.6 cm2 0.024
4 A+

s Normal 30.2 cm2 80.5 cm2 0.024
5 Ec Lognormal 22.6 GPa 0.08
6 f ′

c Normal 22.8 MPa 0.15
7 fcr Normal 3.3 MPa 0.15
8 Es Lognormal 200 GPa 0.06
9 fyl Lognormal 276 MPa 0.12
10 Av Normal 2.58 cm2 0.024
11 fyv Lognormal 276 MPa 0.12
12 s Normal 23 cm 48 cm 0.10
13 DFM Normal 0.854 0.10
14 DFV Normal 0.884 0.10
15 IF Normal 1.10 0.08
16 P1 Lognormal 53 kN 0.20

17-23 P2-P8 Lognormal 96 kN 0.20
24 beff Normal 227 cm 215 cm 0.015
25 DL Lognormal 2.26 kNm 0.10
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MCFT parameters, β∗ − θ∗, are not deterministic, the critical reliability index is

computed βcr = 2.59 as shown in Fig. 4.33(b) for g2 representing the negative

bending moment and shear interaction. Regardless of the specified performance

function, the linear elastic material case (Case 1) converges to the same critical

value with the biaxial material case (Case 2) for the section 17 where high shear-

moment interaction occurs. However, LC approximation provides conservative

results when compared to MB approach at critical load increment.

At section 14, where the most probable failure mode is due to the moment limit

state, the critical reliability index is converged to βcr = 3.40 at the load increment

step 27. As the influence of MCFT parameters on ultimate moment capacity

is not significant, the LC approximation converges to MB approach as shown in

Fig. 4.34(c). Meanwhile, Case 1 provides conservative results when compared to

the nonlinear Case 2.

For the critical load increment, the ranking of the RVs according to the im-

portance measures (γ-values) is shown in Tables 4.6 and 4.7 for Case 1 and 2,

respectively. The random variables that characterize the impact factor and shear

distribution factor rank highest in importance, which reflects the large amount

of epistemic uncertainty in estimating dynamic effects and three-dimensional load

distribution for this type of bridge analysis. Moreover, the vehicle axle loads have

significant γ-values in demand. Due to the strong correlation assigned to axle loads

4 through 6, each random variable assigned to these axles has similar importance

factors on the limit state function for the section 17. On the other hand, the axle

loads causing maximum moment demand at step 27 take the higher importance

factors for section 14. In addition, the variation in dead load is another important

parameter with the γ-value over 0.1 for all cases.
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The longitudinal steel yield stress, fyl, is the most important resistance variable

in the analysis for section 14. The most probable failure is due to excessive bending

moment for LC and MB limit state so that, the importance factors of resistance

parameters are similar in both cases.

At section 17, the high ranking of both moment and shear distribution factors

highlights the interaction of moment and shear at the failure point in MB. The

most probable failure mode is calculated on g2 and the influence of DFV and DFM

is similar on the reliability index. The most important resistance parameter is fyl

with the γ-value of −0.577 for Case 1 and −0.583 for Case 2.

The nominal shear capacity in LC is smaller than the shear cap of MB approach.

The limit state considering deterministic values of beta = 2.0 and theta = 45◦

converges to a conservative reliability index. The shear and moment capacity

parameters, fyv, f ′
c, fyl, fyv have shared high influence on the reliability index in

LC. On the demand side , shear influence is highlighted with γ-value for DFV

higher than DFM .
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Table 4.6: Importance measures (γ-values) of the random variables for uniaxial
elastic material at the critical load increment.

Material: Uniaxial Elastic
Section: Rectangular 14 - 17

14 17
RVno. LC MB LC MB

1 d -0.075 -0.061 -0.085 -0.052
2 b -0.014 -0.001 -0.038 -0.008
3 A−

s 0.001 0.001 -0.026 -0.111
4 A+

s -0.082 -0.099 -0.001 -0.015
5 Ec 0.006 0.007 0.004 0.008
6 G -0.001 -0.001 0.001 0.001
7 Es 0.005 0.007 0.011 0.022
8 f ′

c -0.092 -0.044 -0.212 -0.025
9 Av -0.013 0.003 -0.051 -0.018
10 fyv -0.063 -0.057 -0.252 -0.078
11 s 0.008 0.004 0.031 0.056
12 fyl -0.415 -0.390 -0.157 -0.577
13 DFM 0.318 0.341 0.134 0.294
14 DFV 0.147 0.133 0.430 0.215
15 IF 0.369 0.377 0.451 0.402
16 P1 -0.012 -0.016 0.026 0.054
17 P2 0.006 0.007 0.058 0.101
18 P3 0.020 0.024 0.058 0.095
19 P4 0.319 0.323 0.150 0.092
20 P5 0.261 0.264 0.159 0.110
21 P6 0.176 0.177 0.155 0.114
22 P7 0.000 0.000 0.099 0.075
23 P8 0.000 0.000 0.080 0.057
24 beff -0.001 0.000 0.000 0.000
25 DL 0.121 0.125 0.204 0.191
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Table 4.7: Importance measures (γ-values) of the random variables for nonlinear
nDMaterial at the critical load increment.

Material: Biaxial Nonlinear
Section: Rectangular 14 - 17

14 17
RVno. LC MB LC MB

1 d -0.073 -0.054 -0.080 -0.040
2 b -0.009 -0.001 -0.034 -0.007
3 A−

s 0.000 0.000 -0.038 -0.111
4 A+

s -0.077 -0.098 -0.000 0.000
5 Ec 0.006 0.007 0.010 0.040
6 f ′

c -0.096 -0.037 -0.189 -0.016
7 fcr 0.005 0.005 0.020 0.024
8 Es 0.009 0.009 0.011 0.017
9 fyl -0.421 -0.375 -0.217 -0.583
10 Av -0.013 -0.003 -0.044 -0.015
11 fyv -0.065 -0.058 -0.221 -0.083
12 s 0.008 0.022 0.028 0.071
13 DFM 0.321 0.335 0.181 0.309
14 DFV 0.162 0.144 0.397 0.220
15 IF 0.381 0.380 0.459 0.417
16 P1 0.011 0.012 0.026 0.042
17 P2 0.005 0.007 0.054 0.081
18 P3 0.020 0.023 0.054 0.078
19 P4 0.329 0.326 0.147 0.088
20 P5 0.270 0.265 0.156 0.092
21 P6 0.138 0.176 0.154 0.113
22 P7 0.000 0.000 0.101 0.091
23 P8 0.000 0.000 0.081 0.070
24 beff 0.000 -0.003 0.000 0.000
25 DL 0.131 0.135 0.206 0.190
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4.7.2 Bridge Girder with T-Section Model

In the second set of reliability analyses, the same interior girder of McKenzie River

Bridge is represented with T-beam in FEA using the section integration class,

RCTBeamSectionIntegration. The reliability analysis is repeated with two ma-

terial cases for two limit state functions, LC and MB. Additional shape sensitivity

parameters, beff and hf , are accounted for in both demand and resistance side of

the limit state function. The updated random variables are shown in Tables 4.8

and 4.9 for Case 1 and 2, respectively. For the same truck loading FORM analysis

has been carried out at sections 14 and 17 for each load increment step.

The reliability index at each load step is displayed with the results from the first

analysis set for section 17 and 14 in Figs. 4.35 and 4.36, respectively. At section

17, the critical beta value for Case 2, is not significantly sensitive to T-shape pa-

rameters the reliability index and converges to the same critical value whether the

limit state definition is LC or MB. The LC approximation again presents a conser-

vative result, βcr = 2.01, while MB extracts βcr = 2.18. However, for zero-tension

and linear elastic-compression case of concrete (Case 1), the probability of failure

decreases with T-shape section when compared to the rectangular shape. Since

the negative moment demand decreases with the change in shape, the reliability

index for interaction line g2 of MB increases.

The contribution of effective width is considered in both demand and resistance

side of the limit state function. The critical reliability index converges to the same

value in LC and MB approach at flexural dominant section 14. The reliability

indices are computed as βcr = 3.44 for LC and βcr = 3.69 for MB in Case 1.

Meanwhile, in nonlinear Case 2 demand on sections decreases so that LC and MB

analyses extract higher reliability indices, βcr = 3.86 and βcr = 4.10, respectively.
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Table 4.8: Random variable descriptions for the finite element reliability analysis
of an interior girder of the McKenzie River Bridge using uniaxial material and
T-sections.

Case 1: Uniaxial Elastic
RV no. Param. Distribution Mean C.O.V.

17 14

1 d Normal 122 cm 0.015
2 b Normal 45 cm 0.015
3 beff Normal 227 cm 215 cm 0.015
4 hf Normal 15 cm 0.015
5 A−

s Normal 60.4 cm2 2.6 cm2 0.024
6 A+

s Normal 30.2 cm2 80.5 cm2 0.024
7 Ec Lognormal 22.6 GPa 0.08
8 G Lognormal 9.41 GPa 0.08
9 Es Lognormal 200 GPa 0.06
10 f ′

c Normal 22.8 MPa 0.15
11 Av Normal 2.58 cm2 0.024
12 fyv Lognormal 276 MPa 0.12
13 s Normal 23 cm 48 cm 0.10
14 fyl Lognormal 276 MPa 0.12
15 DFM Normal 0.854 0.10
16 DFV Normal 0.884 0.10
17 IF Normal 1.10 0.08
18 P1 Lognormal 53 kN 0.20

19-25 P2-P8 Lognormal 96 kN 0.20
26 DL Lognormal 2.26 kNm 0.10
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Table 4.9: Random variable descriptions for the finite element reliability analysis
of an interior girder of the McKenzie River Bridge biaxial material and T-sections.

Case 2: Biaxial Nonlinear
RV no. Param. Distribution Mean C.O.V.

17 14

1 d Normal 122 cm 0.015
2 b Normal 45 cm 0.015
3 beff Normal 227 cm 215 cm 0.015
4 hf Normal 15 cm 0.015
5 A−

s Normal 60.4 cm2 2.6 cm2 0.024
6 A+

s Normal 30.2 cm2 80.6 cm2 0.024
7 Ec Lognormal 22.6 GPa 0.08
8 f ′

c Normal 22.8 MPa 0.15
9 fcr Normal 3.3 MPa 0.15
10 Es Lognormal 200 GPa 0.06
11 fyv Lognormal 276 MPa 0.12
12 Av Normal 2.58 cm2 0.024
13 fyl Lognormal 276 MPa 0.12
14 s Normal 23 cm 48 cm 0.10
15 DFM Normal 0.854 0.10
16 DFV Normal 0.884 0.10
17 IF Normal 1.10 0.08
18 P1 Lognormal 53 kN 0.20

19-25 P2-P8 Lognormal 96 kN 0.20
26 DL Lognormal 2.26 kNm 0.10
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For the critical load position, the ranking of the RVs according to the impor-

tance measures (γ-values) is shown in Tables 4.10 and 4.11, for Case 1 and 2,

respectively. The longitudinal steel yield stress, fyl, is the most important re-

sistance variable in the analysis for section 14 in all cases. For section 17, the

interaction line g2 is still the most probable failure mode in MB and fyl is placed

at the top of the resistance parameters. For section 17, the T-shape section model

reflects the difference in response with Case 1 and 2. However, the influence of

shape parameters on design point stay at a negligibly small in the second set of

analyses.
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Table 4.10: Importance measures of the random variables for Uniaxial elastic ma-
terial at the critical load increment

Material: Uniaxial Elastic
Section: T-shape 14 - 17

14 17
RVno. LC MB LC MB

1 d -0.077 -0.059 -0.084 -0.045
2 b -0.014 0.001 -0.041 0.007
3 beff -0.001 -0.001 0.000 0.000
4 hf 0.001 0.001 0.000 0.000
5 A−

s 0.000 0.000 -0.017 -0.117
6 A+

s -0.084 -0.105 -0.001 0.001
7 Ec 0.002 0.003 0.003 0.007
8 G -0.001 -0.001 0.000 0.003
9 Es 0.007 0.011 0.010 0.024
10 f ′

c -0.082 -0.011 -0.226 -0.010
11 Av -0.011 -0.001 -0.054 -0.016
12 fyv -0.055 -0.022 -0.269 -0.087
13 s 0.008 0.012 0.034 0.069
14 fyl -0.439 -0.541 -0.110 -0.598
15 DFM 0.336 0.367 0.095 0.269
16 DFV 0.130 0.065 0.452 0.229
17 IF 0.371 0.350 0.440 0.393
18 P1 0.011 0.015 0.022 0.055
19 P2 0.005 0.008 0.051 0.110
20 P3 0.019 0.028 0.052 0.105
21 P4 0.311 0.283 0.166 0.090
22 P5 0.255 0.231 0.168 0.103
23 P6 0.171 0.154 0.156 0.103
24 P7 0.000 0.000 0.091 0.063
25 P8 0.000 0.000 0.073 0.048
26 DL 0.132 0.135 0.196 0.190
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Table 4.11: Importance measures of the random variables for Nonlinear nDMaterial
at the critical load increment

Material: Biaxial Nonlinear
Section: T-shape 14 - 17

14 17
RVno. LC MB LC MB

1 d -0.072 -0.061 -0.081 -0.048
2 b -0.017 0.002 -0.036 0.007
3 beff 0.001 -0.001 0.001 0.002
4 hf 0.001 0.001 0.001 0.001
5 A−

s 0.001 -0.000 -0.035 -0.113
6 A+

s -0.078 -0.103 -0.001 0.000
7 Ec 0.006 0.001 0.018 0.030
8 f ′

c 0.104 0.010 0.208 0.009
9 fcr 0.011 0.017 0.003 0.002
10 Es 0.012 0.019 0.003 0.005
11 fyl -0.407 -0.549 -0.183 -0.557
12 Av -0.013 -0.012 -0.046 -0.017
13 fyv -0.067 -0.034 -0.226 -0.072
14 s 0.008 0.001 0.028 0.053
15 DFM 0.309 0.354 0.154 0.298
16 DFV 0.165 0.077 0.405 0.204
17 IF 0.375 0.349 0.446 0.397
18 P1 0.008 0.014 0.023 0.042
19 P2 0.004 0.008 0.052 0.080
20 P3 0.016 0.027 0.052 0.076
21 P4 0.320 0.285 0.142 0.096
22 P5 0.260 0.229 0.155 0.119
23 P6 0.172 0.149 0.160 0.136
24 P7 0.000 0.000 0.115 0.100
25 P8 0.000 0.000 0.095 0.077
26 DL 0.124 0.126 0.212 0.203
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4.7.3 The Framework for Live Load Reliability Analysis of Bridge

Girders

To demonstrate the features of the live load finite-element reliability methodology,

a numerical example involving multiple sections of a reinforced concrete bridge

girder is analyzed using the proposed framework. The analysis is carried out with

the previously presented TCL scripts programming OpenSees for a probabilistic

evaluation. The primary purpose of this framework is to estimate the probability

of achieving structural performance criteria specified in code requirements and to

obtain importance measures to identify the uncertain parameters.

The interior girder of McKenzie River Bridge girder is selected to perform a

multi section live load reliability analysis in the framework. The critical section

array, Cr = {11, · · · , 37} (Fig. 4.22) indicates all locations where the specified

performance function is investigated. To reduce the computational effort FERA of

girders, the Case 1 material model and rectangular section integration are selected

in analyses. Albeit the LC approximation provides conservative results for shear

critical sections, MB approach is adapted in the framework to demonstrate the

resistance specified by AASHTO-LRFD in the limit state function. The random

variables are geometry and material parameters of each section in Cr array. The

analysis is not treated as a system reliability evaluation so that the limit state

function at each section is investigated individually.

The section arrays containing properties are given in (Fig. E.1.1) and all random

variables in 21 sections are listed in Table 4.12. The section geometry of each

section is a considered as random variable in structural analysis. Concrete Young’s

modulus Ec, shear modulus G, and reinforcing steel Young’s modulus Es are taken
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as three random variables for each of three force-based elements. Ec, G and f ′
c are

highly correlated with a coefficient of correlation 80%. The parameters with Rv

no. bigger than 94 are taken as the resistance variables of only the corresponding

critical section.

Table 4.12: Random variable descriptions in the multiple section FERA.

RV no. Param. Distribution Mean C.O.V.
1-21 d Normal Fig. E.1 0.015
22-42 b Normal Fig. E.1 0.015
43-45 Ec Lognormal 22.6 GPa 0.08
46-48 Es Lognormal 200 GPa 0.06
49-51 G Lognormal 9.41 GPa 0.08
52-72 A−

s Normal Fig. E.1 0.024
73-93 A+

s Normal Fig. E.1 0.024
94 DL Lognormal 2.26kNm 0.10
95 f ′

c Normal 22.8 MPa 0.15
96 fyl Lognormal 276 MPa 0.12
97 fyv Lognormal 276 MPa 0.12
98 Av Normal Fig. E.1 0.024
99 s Normal Fig. E.1 0.10
100 beff Lognormal Fig. E.1 0.024
101 DFM Normal 0.854 0.10
102 DFV Normal 0.884 0.10
103 IF Normal 1.10 0.08
104 P1 Lognormal 53 kN 0.20

105-111 P2-P8 Lognormal 96 kN 0.20

The typical output of the live load reliability framework is extracted after a

post-procedure by TCL scripts. The reliability index of each section is given for

load increments 0-100 in Fig. 4.38. At load increment step 36, the evaluations

converge to the minimum reliability index, βcr = 2.11 for section 16, shown in

Fig. 4.38 (a). This critical reliability index corresponds to a 1.74% probability of
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failure due to exceeding shear capacity at section 16.

For the critical load position, the ranking of the RVs according to the impor-

tance measures (γ-values) presented by labels indicate the random variables whose

γ-value exceeds 0.10, and these variables are ranked in Table 4.13. The random

variables that characterize the impact factor and shear distribution factor rank

highest in importance. The longitudinal steel yield stress, fyl, is the most impor-

tant resistance variable in the analysis, followed by the reinforcing steel area, A−
s .

The stirrup spacing, s, acting as a demand parameter has also the γ-value that

exceeds 0.10.

AAHSTO-LRFD formulations indicates the significant influence of flexural pa-

rameters due to a regulation limiting the ultimate shear strength. The code re-

stricts the shear cap to satisfy Vu = Mu/dv condition while interpolating Mu values

on interaction diagram. The procedure determining AASHTO-LRFD moment-

shear interaction diagrams is detailed in Appendix (A.1). At section 16, the shear

cap at converged design point is formulated by the linear interpolation between

two controlling points heavily affected by longitudinal yield. Thus, the γ-values

for longitudinal parameters are significant for this section.
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Table 4.13: Ranking of random variables with importance measure exceeding 0.1
in the McKenzie Bridge girder example.

RVno. Parameter γ-Value
103 IF 0.585
96 fyl -0.501
102 DFV 0.362
107 P4 0.262
108 P5 0.241
109 P6 0.202
78 A−

s -0.168
94 DL 0.125
99 s 0.104
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Chapter 5 – Reinforced Concrete Bridge Column Sensitivity and

Reliability

In this section of the study, the attention turns to a significant modeling uncer-

tainty in force-based column elements. First, the direct differentiation of force-

based element formulations is continued and the analytic response sensitivity for

interpolatory quadrature is obtained. Then, a discussion on integration methods

to represent both strain-softening and -hardening behavior of reinforced concrete

columns leads to a new regularization technique that represents both types of

behavior without needing a priori. The features of the response sensitivity in relia-

bility analysis are demonstrated on force-based column members while parameters

of regularization technique are considered as epistemic uncertainties counted in

finite element modeling of bridge piers.

5.1 Interpolatory Quadrature Sensitivity

To quantify the response sensitivity to interpolatory quadrature considered as mod-

eling uncertainty, finite element formulations need to be differentiated in terms of

weights and locations of integration points. This section continues formulating

target gradient ∂q/∂ϕ|
v

of response sensitivity.

As the derivation of the response gradient begins by differentiation of the equi-

librium in Eq. (3.1), the derivative of the force interpolation matrix is
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(5.1)

where ∂xi/∂ϕ is the derivative of the ith integration point location. In obtaining

Eq. (5.1), it is assumed the element length, L, is deterministic, i.e., that ∂L/∂ϕ =

0.

Differentiation of Eq. (3.3) gives the derivative of the element deformations in

terms of the derivatives of the section deformations, the force interpolation matrix,

and the integration weights:

∂v

∂ϕ
=

N
∑

i=1

(

bT ∂e

∂ϕ
+

∂bT

∂ϕ
e

)

wi +

N
∑

i=1

bT e
∂wi

∂ϕ
(5.2)

After manipulation and combination of Eqs. (3.30) and (5.2) by a process identical

to that outlined in [131], the conditional derivative of the basic forces is
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(5.3)

The term ∂s/∂ϕ|
e

represents the contribution of the section constitutive response

to the element sensitivity, whereas the derivatives ∂b/∂ϕ and ∂wi/∂ϕ depend on

the locations and weights of the element integration points, as described in the

following section.

To evaluate the conditional derivative of the basic forces in Eq. (5.3), it is

necessary to differentiate Eq. (3.6) with respect to ϕ, which may correspond to the

location or weight of an integration point. Under the assumption that the interval
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of integration is held fixed, the sensitivity of the computed integration weights to

ϕ is obtained by the differentiation of Eq. (3.6) and the subsequent solution to the

linear system of equations:

Nf
∑

i=1

xj−1
fi

∂wfi

∂ϕ
= −

Nc
∑

i=1

(

(j − 1)xj−2
ci

∂xci

∂ϕ
wci + xj−1

ci

∂wci

∂ϕ

)

− (j−1)

Nf
∑

i=1

xj−2
fi

∂xfi

∂ϕ
wfi

(5.4)

For a single parameter, ϕ, at most one derivative on the right-hand side of Eq. (5.4)

will be non-zero. When ϕ corresponds to an integration point location, one of

∂xci/∂ϕ or ∂xfi/∂ϕ will be equal to one and all other derivatives on the right-

hand side of Eq. (5.4) will be zero. Similarly, when ϕ corresponds to a specified

integration weight, ∂wci/∂ϕ will be equal to one while all other derivatives are

equal to zero. The resulting solution of Eq. (5.4) for ∂wfi/∂ϕ gives the sensitivity

of the free integration weights to changes in the specified integration point locations

and weights. These derivatives, along with the binary values for the derivatives

of wci, xci, and xfi are incorporated in Eq. (5.3) for subsequent calculation of the

element response sensitivity to uncertain integration parameters.

5.2 Regularization Approaches

Recent advances in the literature regularize the strain-softening response of force-

based frame elements by either modifying the constitutive parameters or scaling

selected integration weights. While the former case maintains numerical accuracy

for strain-hardening behavior, the regularization requires a tight coupling of the

element constitutive properties and the numerical integration method. In the

latter case, objectivity is maintained for strain-softening problems; however, there
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is a lack of convergence for strain-hardening response. Unlike displacement-based

formulations where localization occurs over the length of an entire element, strain-

softening behavior causes deformations to localize at a single integration point in

a force-based element.

The most common integration approach to evaluate Eqs. (3.3) and (3.4) is

Gauss-Lobatto quadrature [5], which places sample points at the element ends

where bending moments are largest in the absence of member loads. The order of

accuracy, i.e., the highest monomial integrated exactly, for Gauss-Lobatto quadra-

ture is 2N − 3. Thus, to obtain the exact solution for a linear-elastic, prismatic

frame element, e.g., during a patch test [142], at least three Gauss-Lobatto points

are required since quadratic polynomials appear in the integrand of Eq. (3.3) in this

case. A unique solution is obtained for strain-hardening problems by increasing

the number of integration points in a single force-based element. Four to six points

are typically sufficient to represent the spread of plasticity along an element [103].

In the presence of strain-softening section response where deformations localize

at a single integration point, the solution depends on the characteristic length im-

plied by the Gauss-Lobatto integration weights. This leads to a loss of objectivity

since the force-based element response will change as a function of the number

of integration points selected by the analyst. Coleman and Spacone [23] regular-

ize the element response using a criterion of constant energy release based on the

number of Gauss-Lobatto points and a characteristic length. The advantage of this

approach is it does not alter the integration weights of the Gauss-Lobatto rule and

thus maintains numerical accuracy for strain-hardening response. However, the

main drawback is the regularization ties the section material model to the element

integration method, leading to a loss of objectivity of the section response.
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5.2.1 Regularization Based on Scaling Integration Weights

An alternative force-based element regularization method is to scale the element

integration weights to match prescribed characteristic lengths. This approach is

based on dividing an element in to three regions (one plastic hinge region at each

end and one interior region) then applying separate integration rules over each

region.

Addessi and Ciampi [6] use Gauss-Lobatto integration over each region, e.g.,

a two-point rule over the plastic hinge regions and a three-point rule over the

interior. To regularize the element response, the integration rules over the plastic

hinge regions are scaled by a factor of two in order to make the integration weights

at the element ends equal to the characteristic lengths, lpI and lpJ , specified by the

analyst. As shown in Fig. 5.1 (a), the integration point locations are

x = {0, 2lpI , 2lpI , Lint/2, L− 2lpJ , L− 2lpJ , L} (5.5)

and associated weights are

w = {lpI , lpI , Lint/6, 2Lint/3, Lint/6, lpJ , lpJ} (5.6)

where Lint = L−2lpI−2lpJ is the length of the element interior. It is noted that the

coincident Gauss-Lobatto integration points in Eq. (5.5), and their corresponding

weights in Eq. (5.6), at the interfaces between the plastic hinge regions and the

element interior can be combined in order to reduce the number of sample points.

Addessi and Ciampi [6] also propose three-point Gauss-Lobatto integration over

the plastic hinge regions, in which case quadratic polynomials are represented
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exactly over the entire element length.

Scott and Fenves [129] apply two-point Gauss-Radau quadrature [5] over the

plastic hinge regions and scale the integration weights by four in order to regularize

the element response. In this case, the length of the element interior is Lint =

L−4lpI−4lpJ , over which two-point Gauss-Legendre quadrature is applied, giving

the following integration point locations

x = {0, 8lpI/3, x3, x4, L− 8lpJ/3, L} (5.7)

where x3(4) = 4lpI + Lint(±1/
√

3 + 1)/2. The associated weights are

w = {lpI , 3lpI , Lint/2, Lint/2, 3lpJ , lpJ} (5.8)

The mixture of Gauss-Radau and Gauss-Legendre quadrature ensures a sufficient

level of integration accuracy while placing sample points at the element ends. The

locations and weights of the integration points for this approach are shown in

Fig. 5.1 (b).

The numerical behavior of regularization methods based on scaling integration

weights is demonstrated via the moment-rotation response of a simply-supported

beam under anti-symmetric bending. As shown in Fig. 5.2, the section moment-

curvature relationship is bilinear with hardening ratio α. To investigate strain-

hardening section behavior, α is set equal to 0.02; while this parameter is set to

-0.02 in order to produce localized response at the element ends. The characteristic

plastic hinge lengths are lpI = lpJ = 0.15L.

The solutions obtained by using the integration points and weights in Equa-

tions (5.5)-(5.6) and (5.7)-(5.8) are shown in Fig. 5.3 and compared to that ob-
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Figure 5.1: Force-based element regularization methods based on scaling integra-
tion weights in the plastic hinge regions: (a) Gauss-Lobatto over the plastic hinge
and interior regions; and (b) Gauss-Radau in the plastic hinge regions and Gauss-
Legendre over the interior.
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Figure 5.2: Simply-supported beam in a state of anti-symmetric bending and with
a bilinear moment-curvature relationship.
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tained for a non-regularized five-point Gauss-Lobatto rule applied over the element

length. For strain-softening behavior that causes localization at the element ends,

both regularized integration methods unload at an identical rate, as shown in

Fig. 5.3 (b). The beam unloads at a higher rate for five-point Gauss-Lobatto

integration since the implied characteristic length is 0.05L. On the other hand,

five-point Gauss-Lobatto integration gives the best solution for strain-hardening

behavior (Fig. 5.3 (a)), while the post-yield response of the regularized methods is

too flexible compared to the exact solution. This example demonstrates the need

to find a single integration method that can accommodate both strain-softening

and strain-hardening behavior. To arrive at such a solution, it is worth turning

attention to a regularization approach based on interpolatory quadrature.

5.2.2 Regularization Based on Interpolatory Quadrature

An equivalent approach to regularize the element response is to set the integration

weights at the element ends equal to characteristic values then solve a system

of equations for the remaining integration point locations and weights to ensure

numerical accuracy. In the case where all integration point locations and weights

are unknown over the interval [a, b] except for end points of weight lpI and lpJ ,

there are 2N − 4 unknown locations and weights of N − 2 integration points.

These unknowns can be found by solving the following system of equations

N−1
∑

i=2

xj
iwi + ajlpI + bjlpJ −

bj+1 − aj+1

j + 1
= 0 j = 0, 1, . . . , 2N − 5 (5.9)
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Lobatto rule for (a) strain-hardening and (b) strain-softening section behavior.
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The most common choice to solve Eq. (5.9) is Newton’s method [136]; however,

its convergence is highly dependent on the initial guess for the unknown locations

and weights. The resulting quadrature rule has an order of accuracy of 2N − 5;

thus, at least four integration points (two interior points in addition to the two end

points) are required to ensure the element passes a patch test. In the absence of

constraints on the end weights, the solution to Eq. (5.9) gives the Gauss-Lobatto

locations and weights with accuracy 2N−3; while in the absence of any constraints

on the locations and weights of the integration points, the solution gives Gauss-

Legendre quadrature of accuracy 2N − 1.

Interpolatory quadrature, where the locations of all the integration points are

fixed, gives a more stable solution procedure, albeit with a lower order of accuracy.

Specifying all N integration point locations, in addition to setting the integration

weights at the element ends to lpI and lpJ reduces the order of accuracy to N − 3

and turns Eq. (5.9) into a linear system of N−2 equations for the unknown weights
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b− a− lpI − lpJ

(b2 − a2)/2− alpI − blpJ

...

(bN−2 − aN−2)/(N − 2)− aN−3lpI − bN−3lpJ

















(5.10)

To integrate quadratic polynomials exactly, at least five integration points (three

interior points plus two end points) must be used. To prevent poor conditioning of
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the Vandermonde matrix in Eq. (5.10), the integration point locations should be

well-spaced and symmetric on the interval of integration and the order of integra-

tion, N , should be kept low [46]. Better conditioning for interpolatory quadrature

rules can be obtained using least squares theory [53].

While the solutions provided by Eqs. (5.9) and (5.10) regularize the element

response for strain-softening section behavior, they suffer from the same short-

comings for strain-hardening behavior as the methods based on scaling integration

weights and will thus lead to the same results shown in Fig. 5.3. A further modi-

fication is required in order for a single integration method to provide regularized

response while maintaining a convergent solution for strain-hardening behavior.

5.2.3 Proposed Regularization Method

As seen in the foregoing discussion, regularizing force-based element response for

strain-softening behavior comes at the price of losing numerical accuracy when

simulating strain-hardening behavior. This forces an analyst to decide a priori

which integration method to use when modeling frame structures with force-based

finite elements. For simulations such as reinforced concrete columns with heavy

axial loads using fiber models, the answer may not be clear.

To avoid complicated phenomenological rules that couple the integration rule

to the section constitutive model, a standard quadrature rule is modified with two

additional integration points. These points are placed small distances, ξI and ξJ ,

from the element ends, as shown in Fig. 5.4(a).

x = {(x1 = 0), ξI , x2, . . . , xN−1, L− ξJ , (xN = L)} (5.11)
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From this juxtaposition of integration points, the element response is regularized

by setting the weights of the integration points at the element ends equal to lpI

and lpJ , as was the case in the previous regularization methods. Then, the weights

of the integration points at ξI and L− ξJ are set equal to w1 − lpI and wN − lpJ ,

respectively, where w1 and wN are the end weights of the standard quadrature

rule.

w = {lpI , w1 − lpI , w2, . . . , wN−1, wN − lpJ , lpJ} (5.12)

(b)

(a)

x1 = 0 x5 = Lx3 = 0.5Lx2 = 0.1727L x4 = 0.8273L

w2 = 0.2722L w4 = 0.2722Lw3 = 0.3556L

w1 = 0.05L w5 = 0.05L

ξI x2 x3 x4 x5L− ξJx1

0.05L− lpI 0.05L− lpJ

wξI
= wξJ

=

w1 = lpI w5 = lpJw2, w3, w4 from solution to Eq. (5.13)

Locations x1–x5 same as above

Figure 5.4: (a) Standard five-point Gauss-Lobatto integration rule; (b) Five-point
Gauss-Lobatto rule regularized by addition of two integration points just inside
the element ends.

This arrangement of integration points at the element ends, demonstrated in

Fig. 5.4 (b) for a standard five-point Gauss-Lobatto rule, ensures a convergent

strain-hardening solution is maintained; however, manipulating the locations and

weights of the integration points will compromise the accuracy of the underlying
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Gauss-Lobatto quadrature rule. Only constant polynomials can be represented

exactly since the sum of the integration weights in Eq. (5.12) remains equal to

the element length. For frame analysis; however, quadratic polynomials must

be represented exactly in order to capture the exact solution for a linear-elastic,

prismatic element. To this end, the integration weights of the element interior can

be re-computed using interpolatory quadrature in order to ensure a sufficient level

of accuracy for structural engineering applications.
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(5.13)

For an underlying N -point Gauss-Lobatto rule, the order of accuracy will be re-

duced from 2N−3 to N−3 after re-computing the integration weights. As a result,

there must be at least five integration points of the underlying quadrature method

in order for the regularized integration rule to capture the exact solution for a

linear-elastic, prismatic element. The underlying quadrature method can provide

as few as three integration points while maintaining the exact linear-elastic solu-

tion if the constraints on (w1− lpI) and (wN− lpJ) are removed; however, using this

few integration points will lead to a poor representation of the spread of plasticity

in strain-hardening problems.
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It is emphasized that the proposed regularization method is not restricted to an

underlying Gauss-Lobatto quadrature rule. Any N point quadrature method can

be used, including Newton-Cotes, which spaces integration points equally along

the element [5]. In fact, N arbitrarily located integration points can be used;

however, this may lead to ill-conditioning of the Vandermonde equations used for

interpolatory quadrature. The only restriction is that the underlying quadrature

rule place integration points at the element ends.

Condition Number

An additional consideration in constructing numerical integration rules is the con-

dition number [47, 42], which is the sum of the absolute values of the integration

weights:

K =
N
∑

i=1

|wi| (5.14)

For beam-column elements, a well-conditioned quadrature rule has a condition

number equal to the element length, L. However, for the regularized integration

method described in this paper, negative integration weights will appear when

lpI > w1 or lpJ > wN . When it is the case that there are negative weights at each

end of the element, it can be shown that the condition number of the regularized

integration method is

K = 2(lpI − w1) + 2(lpJ − wN) + K̃ (5.15)

where K̃ is the condition number of the underlying quadrature rule. For values of

lpI and lpJ that satisfy lpI + lpJ < L, the condition number of the proposed regular-
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ization method remains bounded by 2L + K̃. Thus, for an underlying quadrature

rule that is well-conditioned, which is guaranteed for Gauss-Lobatto quadrature

with any value of N and Newton-Cotes quadrature for any N except odd values

greater than or equal to nine [5], the proposed method will be numerically stable.

This arrangement of integration points at the element ends ensures a convergent

strain-hardening solution is maintained; however, manipulating the locations and

weights of the integration points will compromise the accuracy of the underlying

Gauss-Lobatto quadrature rule. To validate the proposed regularization method,

the static, cyclic response of two reinforced concrete specimens is simulated.

The most significant source of uncertainty in the proposed regularization method

is the values of the parameters lp and ξ at both ends. For strain-hardening prob-

lems, these parameters should be relatively small in order to maintain the con-

vergent behavior offered by the underlying quadrature method. The effect of in-

creasing ξ for the strain-hardening example will be demonstrated in a numerical

example that covers seismic reliability analysis of bridge pier columns.

5.2.4 Software Design of Regularized Integration Method

The implementation of the proposed regularization technique to OpenSees need

a software design strategy providing the user ability to apply the method on any

N point underlying quadrature. To emphasize the loose coupling of the proposed

regularization method from both the underlying quadrature method and the ele-

ment constitutive behavior, a UML diagram of its implementation in an object-

oriented finite element framework is shown in Fig. 5.5. The force-based frame

element state determination is encapsulated in a class that contains N instances of
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a section force-deformation object and one instance of a beam integration object.

This implementation follows the Strategy design pattern of offering an object inter-

changeable algorithms to define its behavior [41, 130]. The proposed regularization

method is implemented by recursive composition of an object of the same type but

different class, e.g., using an implementation of a Gauss-Lobatto or Newton-Cotes

quadrature rule. The encapsulation of the regularized integration method in an

object separate from the element makes the proposed method applicable to the

wide range of force-based element state determination algorithms available in the

literature [134, 116, 103, 80].

5.3 Regularized Integration Verifications

To verify the proposed regularization method is mathematically correct, the re-

sponse of the simply-supported beam in Fig. 5.2 is demonstrated with a five-

point Gauss-Lobatto rule regularized with parameters ξI = ξJ = 0.001L and

lpI = lpJ = 0.15L. The location and weight of the regularized integration points

are given in Fig. 5.4(b). After the solution to Eq. (5.13), the interior integration

weights are w2 = w4 = 0.2718L and w3 = 0.3563L, which differ only slightly

from the corresponding weights of the underlying five-point Gauss-Lobatto rule,

w2 = w4 = 0.2722L and w3 = 0.3556L. This difference increases with increasing

values of ξI and ξJ and would be zero when these parameters are zero; however,

this change in integration weights is essential to ensure the element response is

correct in the linear-elastic range of response.

The moment-rotation response with the original and regularized five-point

Gauss-Lobatto integration is presented in Fig. 5.6 for strain-hardening section be-
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<<interface>>

<<interface>> BA
“A contains B”

A B
“A implements B”

return [x1 ξI . . . (1− ξJ ) xN ]

x = mBeamInt->getSectionLocations()

x = this->getSectionLocations()

solve Vandermonde system for w2 . . . wN−1

return w

w = this->getSectionWeights()

w = [lpI (w1 − lpI) (wN − lpJ ) lpJ ]

+getSectionLocations()

lpI , lpJ , ξI , ξJ

BeamIntegration

1

-mBeamInt

SectionForceDeformation

1

N
ForceBeamColumn

RegularizedHingeIntegrationGaussLobattoIntegration

NewtonCotesIntegration

+getSectionWeights()

+getSectionLocations()

+getSectionWeights()

Figure 5.5: UML diagram for implementation of proposed regularization method
in an object-oriented finite element framework.
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havior. As shown in Fig. 5.6 (a), there is a slight difference between the response

computed with the regularized and non-regularized integration rules. This dis-

crepancy occurs as yielding spreads over distances ξI and ξJ at the element ends.

After these integration points plastify, the regularized solution returns to that ob-

tained by the unmodified Gauss-Lobatto rule. Thus, the proposed regularization

method maintains a convergent solution for strain-hardening problems. This was

not possible using the previous regularization methods [6, 129].

For the case of localization at the element ends due to strain-softening section

behavior, Fig. 5.7 (a) shows the regularized five-point Gauss-Lobatto rule unloads

at an identical rate to the solution obtained by scaling Gauss-Radau integration

weights in the plastic hinge regions [129]. In addition, the response of the unmod-

ified five-point Gauss-Lobatto rule is repeated in Fig. 5.7 (a) for comparison. This

idealized example shows the proposed regularization method is suitable for simu-

lating both strain-hardening and strain-softening section response. Comparisons

with published experimental data in the following section will show the method is

applicable to simulating the response of reinforced concrete structural members.

5.3.1 Sensitivity of ξ Parameters

The most significant source of uncertainty in the proposed regularization method

is the values of the parameters ξI and ξJ . For strain-hardening problems, these

parameters should be relatively small in order to maintain the convergent behavior

offered by the underlying quadrature method. The effect of increasing ξI and ξJ for

the strain-hardening example is demonstrated in Fig. 5.8. The computed solution

deviates slightly from the standard Gauss-Lobatto solution when ξI = ξJ = 0.01L;
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however, there is a large error for ξI = ξJ = 0.1L, which places the additional

integration points outside the 0.05L region associated with the end points of the

underlying five-point Gauss-Lobatto rule.
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Figure 5.9: Sensitivity of beam response for various combinations of parameters
ξI and ξJ and load steps for regularized five-point Gauss-Lobatto integration and
strain-softening section behavior.

On the other hand, for strain-softening problems, the ξI and ξJ parameters

should be large enough to ensure that localization only occurs at the element ends

under discrete load steps. For large load steps and small values of ξI and ξJ , it

is possible for these additional integration points to yield simultaneously with the

integration points at the element ends. This simultaneous yielding is demonstrated

in Fig. 5.9 for relatively small integration parameters ξI = ξJ = 0.001L and the

larger load step values of ∆M=0.01My. It is noted that the likelihood of simulta-

neous yielding is reduced for more complex constitutive models, e.g., the reinforced
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concrete fiber sections presented in the following example, where the stiffnesses of

the adjacent sections at the element ends differ due to axial-moment interaction.

Based on numerous simulations conducted by the authors, values of ξI and ξJ

equal to 0.1w1 and 0.1wN , respectively, are ideal for the regularization method

to detect the correct behavior for a wide range of constitutive behavior and load

increments. The weights w1 and wN represent the end weights of the underlying

quadrature rule, e.g., for the five-point Gauss-Lobatto rule with end weights w1 =

wN = 0.05L, the optimal parameter values are ξI = ξJ = 0.005L.

5.3.2 Reinforced Concrete Columns With Hardening and Softening

Behavior

To validate the proposed regularization method, the static, cyclic response of two

reinforced concrete specimens is simulated. The response of each specimen is

computed using a single force-based element with a regularized five-point Gauss-

Lobatto rule with ξI = ξJ = 0.005L. The plastic hinge lengths are determined from

the individual specimen properties. The numerical examples are performed in the

OpenSees (Open System for Earthquake Engineering Simulation) software frame-

work developed as the computational platform for research in performance-based

earthquake engineering at the Pacific Earthquake Engineering Research Center

(PEER) [93].
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5.3.2.1 Strain-Hardening

A spirally reinforced concrete column, specimen 430 in the tests of Lehman and

Moehle [78], is modeled to demonstrate the accuracy of the regularized integration

method under strain-hardening behavior. The reinforcing details of the column are

shown in Fig. 5.10 and a fiber discretization of the cross-section is used to compute

the section stress resultants and account for axial-moment interaction. The stress-

strain behavior of concrete fibers is modeled by a parabolic ascending branch and

linear descending branch in compression [70]. The concrete compressive strength

is f ′
c=31 MPa. Confining effects of transverse reinforcement are estimated using

the Mander model [87]. Using this model, the confined concrete has a compressive

strength of f ′
cc=43.4 MPa reached at a strain of εcc=0.006, and ultimate strain

εccu=0.028. The reinforcing steel is modeled using the Giuffre-Menegotto-Pinto

constitutive model [95]. The elastic modulus, yield stress, and hardening ratio

of the steel are assumed to E=200000 MPa, fy=462 MPa, and α=0.01. The

compressive axial load applied to the specimen is 7.2% of the axial capacity, f ′
cAg, a

relatively light axial load. For the plastic hinge length, an experimentally validated

empirical formula that takes in to account the effects of bar pullout and strain

penetration [115] is used

lp = 0.08L + 0.022fydb(MPa, mm) (5.16)

where L, fy and db are the member length, steel yield stress and bar diameter,

respectively. Using the column properties, the plastic hinge length is equal to

0.15L according to Eq. (5.16). In using this equation to determine the plastic

hinge length, it is implicitly assumed that if localization occurs, the region of
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fracture will be large compared to the individual cracks that contribute to the

overall energy dissipation.

The computed load-displacement response of the column is shown in Fig. 5.11

(a) and Fig. 5.11 (b) for standard and regularized five-point Gauss-Lobatto in-

tegration, respectively. As seen in the figures, the methods give nearly identical

results as yielding spreads from the base of the column under the light axial load.

Further evidence of the strong agreement between the standard and regularized

integration methods is shown in Fig. 5.11 (c) with the moment-curvature response

at the base. The results of this example show the regularized method is able to

find a unique solution for strain-hardening cyclic response without any spurious

behavior arising from the negative integration weight a small distance from the

base of the column.

5.3.2.2 Strain-Softening

The reinforced concrete column, specimen BG-8 in the tests of Saatcioglu and

Grira [128], is analyzed in this example. The geometry and reinforcing details of

the column are given in Fig. 5.12. As in the previous example, a fiber discretization

of the cross-section accounts for axial moment-interaction. The same constitutive

models for the steel and concrete stress-strain relationships are used in this exam-

ple. In this case, the concrete compressive strength is f ′
c=34 MPa. In the core

region, f ′
cc is 49.3 MPa due to confining effects of the transverse steel. The strain

at the ultimate strength and the ultimate strain of core concrete are εcc=0.007

and εccu=0.029, respectively. For the steel reinforcement, the elastic modulus is

E=200000 MPa, yield stress is fy=455.6 MPa, and hardening ratio is α=0.01. A
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Figure 5.10: Dimensions of specimen 430 in the test of Lehman and Moehle [78].
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the support section of specimen 430.



160

relatively large compressive axial load, P=0.231f ′
cAg, is applied to the specimen.

Using Eq. (5.16), the plastic hinge length is calculated as lp = 0.20L.

The global response of the member using standard and regularized five-point

Gauss-Lobatto are given in Fig. 5.13(a) and Fig. 5.13(b), respectively. As seen

in the figures, the cyclic response envelope of the cantilever with the regularized

integration matches the test data for strain-softening behavior. On the other hand,

using standard integration, there is a significant discrepancy in the base shear en-

velope after the plastic hinge forms and damage localizes. Since the numerical so-

lution is obtained by displacement control of the cantilever free end, the computed

moment-curvature response in Fig. 5.13 (c) shows the increased demands imposed

at the fixed end as the response localizes over the small plastic hinge length, 0.05L,

implied by the standard five-point Gauss-Lobatto integration. Upon inspection of

the computed results, it is noted that the negative integration weight just above

the column base does not lead to spurious behavior during cyclic loading with

strain-softening section response.

5.4 Reliability Analysis of Bridge Column with Regularized Method

Numerical examples on the one degree indeterminate beam shown in Fig. 5.14

demonstrate the essential features of analytic response sensitivity for interpolatory

quadrature in force-based elements. The first example verifies that the sensitivity

equations are correct via comparison with finite difference computations. This is

followed by an example highlighting the differences in sensitivity to regularization

parameters for strain-hardening and strain-softening behavior. The final example

shows the efficiency of the analytic derivatives in a first-order reliability analy-
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sis, as well as demonstrating the importance of integration parameters on system

reliability.

5.4.1 Verification of DDM Equations

The five-point regularized Gauss-Lobatto integration is applied in the element state

determination, with lpI = lpJ = 15.0 and ξI = ξJ = 1.0. The moment-curvature

response at each integration point is bilinear with α=2% strain-hardening. A

concentrated moment is applied at the right end of the beam.

XX X X X XX

M

My

EI

0.02EI

I L = 100 U

Mo

J

x1 ξI x2 x3 x4 x5L− ξJ

wξI
=

w1 = lpI

0.05L− lpI

wξJ
=

0.05L− lpJ

w5 = lpJ

x = {0, ξI , 0.1727L, 0.5L, 0.8273L, L− ξJ , L}
w = {0.05L, (0.05L− lpI), 0.2722L, 0.3556L, 0.2722L, (0.05L− lpJ), 0.05L}

Figure 5.14: One degree indeterminate beam and the integration parameters
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The sensitivity of the end rotation, U , with respect to the four integration

parameters (lpI , lpJ , ξI , and ξJ) is shown in Fig. 5.15 for monotonic increase in

the applied moment to a rotation ductility (U normalized by yield value Uy =

MyL/(4EI)) of 20. As expected, there is zero sensitivity prior to yield at the

free end of the beam. After yield, the sensitivity with respect to lpI and ξI be-

comes non-zero and continues to increase until the fixed end of the beam yields

and the sensitivity with respect to lpJ and ξJ becomes active. Discrete jumps in

the response sensitivity occur as the constitutive model at each integration point

switches from an elastic to yielding state [25]. The sensitivity of the internal bend-

ing moment at the fixed end of the beam [Fig. 5.16] shows similar trends to that

for the end rotation. In both cases, the DDM results matches that obtained by

finite differences with a perturbation of 0.01 times the nominal parameter value.

5.4.2 Column Reliability Example

With the DDM implementation verified, attention now turns to the difference in

response sensitivity for strain-hardening and strain-softening moment-curvature

response of the beam. For strain-hardening response, plasticity spreads along the

beam; however, deformations localize at a single section under strain-softening re-

sponse, causing the remaining portions of the beam to unload in order to maintain

equilibrium.

The calculation of response sensitivity confirms that the plastic hinge length

associated with the section where localized deformations occur controls the beam

response under strain-softening behavior. As shown in Fig. 5.17, the sensitivity

of the end rotation to lpJ increases indefinitely for strain-softening behavior, as
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compared to that for strain-hardening, which remains relatively low as yielding is

able to spread across the beam and activate the sensitivity to other constitutive

and integration parameters.
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Figure 5.17: Comparison of end rotation sensitivity to plastic hinge length for
strain-hardening and strain-softening behavior.

To assess the importance of the integration parameters relative to common

sources of aleatory uncertainty, a first-order reliability (FORM) analysis is con-

ducted in this example. The distribution, mean value, and coefficient of variation

for each random variable are shown in Table 5.1. The plastic hinge lengths and

integration parameters are each treated as pairs of correlated normal random vari-

ables, while the section yield moments at the corresponding locations are modeled

as lognormal random variables with strong correlation at each end of the beam.

The performance function defines failure as the end rotation ductility exceeding
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Table 5.1: Random variable distributions assigned to the uncertain parameters
in reliability analysis and their values and importance measures at most probable
failure point (MPP).

Parameter Distribution COV Mean Correlation MPP Importance

Plastic hinge length, lpI Normal 0.20 15.0 0.3
15.71 0.00039

Plastic hinge length, lpJ 17.36 0.2275
Distance, ξI Normal 0.20 1.0 0.3

1.005 -0.00178
Distance, ξJ 1.020 0.02947

Yield Moment @ x=0
Lognormal 0.1 1000.0 0.7

943.1 -0.1632
Yield Moment @ x=ξI 960.2 0

Yield Moment @ x=L− ξJ Lognormal 0.1 1000.0 0.7
1001.0 0.5519

Yield Moment @ x=L 860.6 -0.7850

15 at a load of Mo=1500.

g = 15θy − θ (5.17)

At the mean values of the random variables, the computed end rotation ductility

is 10 at the specified load level. Thus, the performance function defines failure

as the end rotation exceeding its nominal value by 50%. Using the DDM, the

solution point is found in eight iterations to a reliability index of β=2.193, which

corresponds to a 1.43% probability of failure.

The parameter values at the most probable failure point are shown in Table 5.1,

along with importance measures that account for the prescribed correlation be-

tween the random variables (γ-values). The importance measures show that the

yield moments at the free end of the beam have the most influence on the re-

sponse at the failure point, followed by the yield moment at the beam’s fixed end.

Of the four integration parameters, the plastic hinge length at the free end, lpJ ,

ranks highest in importance, while the others have relatively low importance. This

quantification of uncertainty confirms the expected result that the integration pa-
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rameters for the sections with the largest bending moment have the highest relative

ranking.

Using analytic gradients (DDM) of the performance function to determine

search directions, the FORM analysis requires 22 function evaluations to reach

the solution point. On the other hand, gradients computed by finite differences

require 94 function evaluations in order to converge to the same solution. Although

this is a small problem for which computational cost is negligible, the reduction in

function evaluations indicates the potential for significant computational savings

in the finite element reliability analysis of larger systems where parameters such

as plastic hinge lengths are treated as uncertain random variables.
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Chapter 6 – Conclusions

FORM Analysis and Uncertainty Modeling� The study provided a methodology for live-load finite element reliability anal-

ysis of RC bridge girders in a probabilistic software framework while treating

aleatory and epistemic uncertainties simultaneously. The framework allowed

analyst to use various configurations in modeling girders and combined shear-

moment resistance of sections.� A solution for bridge reliability was achieved by first-order reliability ap-

proach based on sensitivity gradients. The probability of failure due to vehi-

cle loads was evaluated in a finite element reliability approach. The reliability

index was the primary output in design and inspection procedures of bridge

girders and in permit load analysis.� As a by-product of FORM analysis, importance measures of uncertainties

were obtained to distinguish parameters with respect to their influence on

the failure modes. To perform accurate reliability assessments, response

sensitivity was required to rank the parameters according to their importance

on structural performance.� An alternative to meshing displacement-based elements was taken in this

study, where each span was considered as one force-based element where

integration points coincide with critical locations of girders. It was straight-

forward to distribute bending moment and shear forces a coarse mesh and
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link to a constitutive model while the force equilibrium was satisfied without

discretization error.� A unique contribution was the treatment of moment-shear interaction using

MCFT capacity equations. The approach was to prevent non-conservative es-

timates of reliability when treating moment and shear separately. AASHTO-

LRFD code specifications were used to calculate the capacity of the selected

sections with random properties using the probabilistic model where material

and geometry parameters were considered as random variables.� To support finite element reliability analysis, analytical response sensitivities

were derived with respect to uncertain material properties, girder dimensions,

reinforcing details and moving loads using DDM. Consequently, the response

sensitivity equations were implemented alongside the ordinary finite element

response equation and computed at the same precision rate without repeated

analysis. Response sensitivity modules of OpenSees to assess the reliability

of bridge girders subjected to moving loads were important in computation

of response gradients with respect to uncertain parameters.� Live-load reliability analysis software provided sensitivity parameters to be

treated as uncertainty. The numerical examples in this study modeled the

variation of uncertainties due to measurement and fabrication errors. How-

ever, the random variables are available to modify with user-defined variation

parameters so that, the Tcl scripts can command the framework to collabo-

rate with other applications analyzing particular cases such as deterioration

in material and shape, the fatigue condition and the retrofit analysis.
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Finite Element Analysis with Force-Based Elements� In finite element analysis with force-based elements, a material model com-

prising shear and flexural interaction was not available in OpenSees. The

implementation of a fiber discretization of beam sections with coupled axial,

flexural and shear deformation was a unique contribution to the analysis of

bridge girders with force-based elements.� The new material model detected the shear effect on the global behavior of

the test specimens using finite element analysis with OpenSees that was not

able to provide such output with current material library. Crack mapping for

beam sections subjected to static loadings were available and the strain dis-

tribution along the vertical reinforcing steel was important in finite element

analysis of shear dominant components.� The definition of T-beam sections in terms of effective width and deck thick-

ness was not available for sensitivity calculations in OpenSees. The imple-

mentation of T-beam fiber discretization and the derivation of shape sensitiv-

ity equations allowed the analyst to consider the shape parameters uncertain

in reliability analysis of bridge girders.� The Tcl scripts to program OpenSees simulated the motion of user-defined

multi-axle trucks and performed a reliability analysis using proposed method-

ology. The framework provided moment-shear reliability indices of bridge

girders and furnished a reliability assessment for special permit vehicle loads.� While simulating the time-steps of static moving loads along the bridge com-

ponent, the sensitivity modules to be implemented in the framework provided
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the selected response sensitivities as a stand-alone output of finite element

analysis in design procedures.

Reinforced Concrete Bridge Column Sensitivity and Reliability� In the reliability analyses of McKenzie River Bridge girder, the reliability

indices at load increments were obtained for various configurations of analysis

setup. The selection of demand and resistance models caused a variation

in critical reliability index. In the numerical examples, critical reliability

indices converged to the same values when the biaxial and uniaxial material

models were used. Uncertain moment and shear distribution factors and

dynamic effects placed at highest ranks in the importance measures as well

as axle weights. Albeit the mean values and variation do not affect the

analysis methodology presented in the study, a further study is recommended

to determine improved variations on these parameters.� When compared to the rectangular section analysis, the T-shape provided

the importance measure of two parameters beff and hf in both resistance

and finite element demand side of the performance function. However, these

shape parameters were ranked significantly low. Low γ-values for these pa-

rameters indicated that the small variation of effective width and deck thick-

ness was not influent on the design point. On the other hand the reliability

index showed a variation when rectangular sections were replaced with T-

shape. The difference between reliability indices with linear-elastic uniaxial

and nonlinear- biaxial material models was highlighted when the contribution

of deck was accounted for in the analysis.
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load parameters. Accordingly, these parameters showed lower importance

in rankings. The moment- shear- controlled analysis at prismatic members

converged to matching reliability indices whether the sections were modeled

as rectangular or T-shape. However, the analytical sensitivity formulations

allowed uncertainties in shape parameters to be quantified whether the sec-

tions were prismatic or non-prismatic in the proposed reliability software

framework.� The resistance models LC and MB were two options providing shear-moment

interaction diagrams given in AASHTO-LRFD specifications. LC approach

having relatively small shear strength gave conservative reliability indices for

sections at shear critical locations. LC converging to the same index with MB

for moment critical sections reduced the number of performance functions to

evaluate in the analysis providing a continuous approximation of the capacity

curve.� MB demonstrated the general procedure of AASHTO-LRFD calculating shear-

moment interaction. Simulating MCFT parameters β∗ − θ∗ for each realiza-

tion of the limit state, MB provided a statistical model at the resistance

side of the performance function. The five-line capacity curve was sufficient

to capture critical points of MV interaction for both positive and negative

bending moment.

Reinforced Concrete Bridge Column Sensitivity and Reliability� A numerically consistent regularization method was developed to mitigate

the uncertainty of selecting an integration method to use with force-based
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frame elements. The integration points at the element ends took on char-

acteristic lengths specified by an analyst in order to regularize localized re-

sponse in the presence of strain-softening behavior. At the same time, a

convergent solution was maintained for the spread of plasticity due to strain-

hardening behavior.� For interpolation quadrature, finite difference computations verified the im-

plementation of the analytic sensitivity equations was correct and a first

order reliability analysis demonstrated that fewer limit state function evalu-

ations were required when using analytic gradients in the search for the most

probable point of failure.� Rankings showed integration parameters had relatively low importance in re-

liability analysis when compared to material constitutive parameters. These

developments allowed the epistemic uncertainty of selecting a force-based

integration to be quantified, as well as permitting integration points and

weights to be treated as random variables in a probabilistic structural anal-

ysis.
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Appendix A – AASHTO-MCFT Capacity Function

The sectional shear-moment interaction diagram in MB is calculated using the

spreadsheets [16] and implemented within AASHTO MCFT function to OpenSees

framework. This function calculates the shear strength for a beam having at least

minimum amount of vertical reinforcement in it.

The nominal shear resistance of conventionally reinforced concrete members in

AASHTO-LRFD is determined as the lesser of:

Vn = Vc + Vs (A.1a)

Vn = 0.25f ′
cbwdv (A.1b)

The concrete and steel contributions are formulated as:

Vc = β∗
√

f ′
cbwdv (A.2a)

Vs =
Avfydvcot(θ

∗)

s
(A.2b)

while dv is the effective shear depth; β∗ is the factor indicating ability of diag-

onally cracked concrete to transmit tension and θ∗ is the inclination of diagonal

compressive stresses.

For sections with at least minimum stirrups, an MCFT based approach is

adopted in in Article 5.8.3.4 of AASHTO-LRFD. Values of β∗ and θ∗ are ob-

tained for the corresponding longitudinal strain at the mid-depth of the member

when the section is subjected to ultimate section forces Mu, Vu and Nu as shown
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in Fig. A.1. The method computes these forces for various values of the longitudi-

nal strain, εx, to determine the shear-moment interaction diagram. The idealized

section consists of three regions, flexural tension, flexural compression and web.

Once the diagonal cracks occur in the web at the crack angle θ∗, the diagonal

compression force causes a longitudinal force on the web Vucotθ
∗. Equilibrium is

maintained with tension forces distributed on flanges equally. Table (5.8.3.4.2-1)

of AASHTO-LRFD displaying the values of β∗ and θ∗ for corresponding shear

stress and longitudinal strain is applied to the AASHTO MCFT function code

as shown in Fig. A.2.

0.5h

0.5h
Flexural

Flexural

Flexural

tension
tension
side

bvbv

Actual Section

de dv
dv

Asp

As

Idealized Section

compression

flange

flange Vu
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Nu

External Sectional Forces

−Mu/dv + 0.5Nu + 0.5Vucot(θ
∗)

Mu/dv + 0.5Nu + 0.5Vucot(θ
∗)

Forces in Flanges

εx

εt

εc

Vucot(θ
∗)

θ∗

Figure A.1: AASHTO ultimate shear-moment calculation procedure

The arrays, sxe ex and v fpc ex, contain the longitudinal strain values multi-

plied by 1000 and the shear stress ratio Vu/f
′
c. The next step is computing the

level of stirrups that would be required for each cell of the β∗ − θ∗ chart.

Once the required values are obtained, each β∗− θ∗ couple is interpolated from

the code charts based on the level of stirrups provided and the required level. The

provided (input) stirrup is calculated in the form:

stirrups =
Avfyv

bws
(A.3)
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  const float sxe_ex[11] = {−0.2f, −0.1f, −0.05f, 0.0f, 0.125f, 0.25f, 0.5f, 0.75f, 1.0f, 1.5f, 2.0f};
  const float v_fpc_ex[8] = {0.075f, 0.1f, 0.125f, 0.15f, 0.175f, 0.2f, 0.225f, 0.25f};

  const float Theta[8][11] = {
    {22.3f, 20.4f, 21.0f,21.8f,24.3f,26.6f,30.5f,33.7f,36.4f,40.8f,43.9f},
    {18.1f, 20.4f, 21.4f,22.5f,24.9f,27.1f,30.8f,34.0f,36.7f,40.8f,43.1f},
    {19.9f, 21.9f, 22.8f,23.7f,25.9f,27.9f,31.4f,34.4f,37.0f,41.0f,43.2f},
    {21.6f, 23.3f, 24.2f,25.0f,26.9f,28.8f,32.1f,34.9f,37.3f,40.5f,42.8f},
    {23.2f, 24.7f, 25.5f,26.2f,28.0f,29.7f,32.7f,35.2f,36.8f,39.7f,42.2f},
    {24.7f, 26.1f, 26.7f,27.4f,29.0f,30.6f,32.8f,34.5f,36.1f,39.2f,41.7f},
    {26.1f, 27.3f, 27.9f,28.5f,30.0f,30.8f,32.3f,34.0f,35.7f,38.8f,41.4f},
    {27.5f, 28.6f, 29.1f,29.7f,30.6f,31.3f,32.8f,34.3f,35.8f,38.6f,41.2f} };

  const float Beta[8][11] = {
    {6.32f,4.75f,4.10f,3.75f,3.24f,2.94f,2.59f,2.38f,2.23f,1.95f,1.67f},
    {3.79f,3.38f,3.24f,3.14f,2.91f,2.75f,2.50f,2.32f,2.18f,1.93f,1.69f},
    {3.18f,2.99f,2.94f,2.87f,2.74f,2.62f,2.42f,2.26f,2.13f,1.90f,1.67f},
    {2.88f,2.79f,2.78f,2.72f,2.60f,2.52f,2.36f,2.21f,2.08f,1.82f,1.61f},
    {2.73f,2.66f,2.65f,2.60f,2.52f,2.44f,2.28f,2.14f,1.96f,1.71f,1.54f},
    {2.63f,2.59f,2.52f,2.51f,2.43f,2.37f,2.14f,1.94f,1.79f,1.61f,1.47f},
    {2.53f,2.45f,2.42f,2.40f,2.34f,2.14f,1.86f,1.73f,1.64f,1.51f,1.39f},
    {2.39f,2.39f,2.33f,2.33f,2.12f,1.93f,1.70f,1.58f,1.50f,1.38f,1.29f} };

  

  

  

Figure A.2: β∗ − θ∗ values for longitudinal strain εx

  for (int i = 0; i < 8; i++)
    Vtable[i] = v_fpc_ex[i]*fpc;

  float RequiredStirrups[8][11];
  for (int i = 0; i < 8; i++)
    for (int j = 0; j < 11; j++)
      RequiredStirrups[i][j] = (Vtable[i]−Beta[i][j]*sqrt(fpc))*tan(Theta[i][j]/57.3f);

  float Vtable[8];

Figure A.3: The level of required Stirrups for each β∗ − θ∗ cell
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  float finalTheta[11];
  float yieldTheta = 0.0;
  for (int i = 0; i < 11; i++) {
    // Initialize
    finalTheta[i] = 0.0;
    
    // Minimum value
    if (stirrups < RequiredStirrups[0][i])
      finalTheta[i] = Theta[0][i];
    
    // Normal values
    for (int j = 0; j < 7; j++)
      if (stirrups >= RequiredStirrups[j][i] && stirrups < RequiredStirrups[j+1][i])

    // Maximum value
    if (stirrups > RequiredStirrups[7][i])
      finalTheta[i] = Theta[7][i];
    
    if (finalTheta[i] > yieldTheta)
      yieldTheta = finalTheta[i];
  }
  
  float finalBeta[11];
  for (int i = 0; i < 11; i++) {
    // Initialize
    finalBeta[i] = 0.0;
    
    // Minimum value
    if (stirrups < RequiredStirrups[0][i])
      finalBeta[i] = Beta[0][i];
    
    // Normal values
    for (int j = 0; j < 7; j++)
      if (stirrups >= RequiredStirrups[j][i] && stirrups < RequiredStirrups[j+1][i])

    
    // Maximum value
    if (stirrups > RequiredStirrups[7][i])
      finalBeta[i] = Beta[7][i];
  }

    
finalTheta[i] = Theta[j+1][i]−(Theta[j+1][i]−Theta[j][i])*(RequiredStirrups[j+1][i]−stirrups)

/(RequiredStirrups[j+1][i]−RequiredStirrups[j][i]);

finalBeta[i] = Beta[j+1][i]−(Beta[j+1][i]−Beta[j][i])*(RequiredStirrups[j+1][i]−stirrups)

/(RequiredStirrups[j+1][i]−RequiredStirrups[j][i]);

Figure A.4: The interpolation of β∗ − θ∗ values

For each εx level, the new β∗−θ∗ values are interpolated regarding the location

of provided stirrup level in the required stirrups table. The procedure interpolating

β∗−θ∗ values are shown in Fig. A.4. The concrete and steel contributions in shear

strength, Vu, are calculated using the final β∗− θ∗ values, Eqs. (A.2a) and (A.2b).

The shear strength, Vu is controlled with the limit value given in Eq. (A.1b). The

corresponding moment strength, Mu is determined using the longitudinal strain
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approximation in Article 5.8.3.4.2 of AASHTO-LRFD having the form:

εx =
Mu

dv
+ 0.5Nu + 0.5Vucot(θ

∗)

EsAs

(A.4)

The extracted moment values are controlled with the moment value if the strain

causes the longitudinal reinforcement yield having the form:

My =

(

Asfyl − (Vu−0.5Vs)
tan(θ∗y)

)

dv

(A.5)

The calculation of moment strength considers three controlling points when the

longitudinal yield is dominant:� The maximum moment sustained at the shear associated with εx > 0.002.

Mu = My (A.6)� The maximum moment sustained at a shear of Vs/2 is equal to the the pure

flexural capacity.

Mu =
Asfy

dv

(A.7)� The pure flexural capacity at zero shear using the same equation Eq. (A.7).

The procedure for the computation of calculated M-V points and the extraction

as an output in an array is shown in Fig. A.5. However, AASHTO has a limit that

the Mu in equations not be taken as less than Vudv. In particular, at locations

of low moment, only shear is providing a force in the tension and compression

flange to resist. If the flexural tension demands resulting from shear are larger
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than the flexural compression demands from the bending, the flexural compression

side of the section can crack. This can result in the wrong flange cracking and thus

the epsilon-x equation will underestimate the expected straining. To avoid this

problem AASHTO limits the shear strength with a cap value where Vu = Mu/dv.

  
  }

  float Vc, Vs;
  float Vlim = 0.25f*fpc*bw*dv/1000.0f;
  float moment, longYield, tmpFe;
  float M[14];
  float V[14];
  float MoverV[14];
  for (int i = 0; i < 11; i++) {
    Vc = finalBeta[i]*sqrt(fpc)*dv*bw/1000.0f;
    Vs = (stirrups/tan(finalTheta[i]/57.32f))*dv*bw/1000.0f;
    V[i] = (Vc+Vs < Vlim) ? Vc+Vs : Vlim;
    tmpFe = (sxe_ex[i] < 0.0f) ? 0.5f*Fe : 0.5f;
    moment =(sxe_ex[i]*EsAs/1000.0f/tmpFe−0.5f*V[i]/tan(finalTheta[i]/57.3f))*dv/12.0f;
    longYield = (Asfy−(V[i]−0.5f*Vs)/tan(yieldTheta/57.3f))*dv/12.0f;   
    M[i] = (moment < longYield) ? moment : longYield;    
    MoverV[i] = M[i]/V[i];

  V[11] = V[10];
  M[11] = longYield;
  V[12] = Vs/2.0f + 0.1f;
  M[12] = (Asfy−(0.1f)/tan(finalTheta[10]/57.3f))*dv/12.0f;
  V[13] = 0.2f;
  M[13] = Asfy*dv/12.0f;

Figure A.5: Computation of M-V points of interaction diagram

However, the shear cap value may not coincide with any computed points of

the interaction diagram; thus an interpolation is needed to compute ultimate shear

and moment. A procedure interpolates β∗, θ∗ and εx values between two intervals

of M/V ratio as shown in Fig. A.6. The β∗− θ∗ values in AASHTO provide corre-

sponding strains in shear dominant region where θ does not exceed 45◦. However,

M/V ratio may match dv out of this β∗ − θ∗ interval where the behavior is con-

trolled by yielding of longitudinal reinforcement and the interpolation of β∗ − θ∗

is not available. Thus, the procedure uses an analytical formulation that com-

putes shear cap value in terms of the ultimate moment value and the lowest shear
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strength obtained using Eq. (A.2).

betastep = (finalBeta[i]−finalBeta[1+i])/50; //beta increment
thetastep = (finalTheta[i+1]−finalTheta[i])/50; //theta increment
exstep = (sxe_ex[i+1]−sxe_ex[i])/50; //strain increment
cbeta = finalBeta[i]; //beta start
ctheta = finalTheta[i]; //theta start
cex = sxe_ex[i]; //strain start

for (int j = 1; j < 50; j++) {
Bp =  cbeta  − betastep*j; //trial beta
Tp =  ctheta + thetastep*j; //trial theta
ep =  cex + exstep*j; //trial strain
Vcinter = Bp*sqrt(fpc)*dv*bw/1000.0f; //Vc  
Vsinter = (stirrups/tan(Tp/57.32f))*dv*bw/1000.0f; //Vs
shear = Vcinter + Vsinter;  //total shear strength
shear = (Vcinter+Vsinter < Vlim) ? Vcinter+Vsinter : Vlim;

tmpFe = (ep < 0.0f) ? 0.5f*Fe : 0.5f;

clongYield = (Asfy−(shear−0.5f*Vsinter)/tan(yieldTheta/57.3f))*dv/12.0f;
//yielding moment at Vu
moment = (moment < clongYield) ? moment : clongYield;
//check Mu agains Myielding
float ratt = moment/shear;
if (moment / shear > dv12){
break; // stop if MoverV > dv
}
}
  }

  } else {
 
  if (MoverV[i] < dv12 && MoverV[i+1] > dv12) {
m = (V[i]−V[i+1])/(M[i]−M[i+1]); // slope MV line
b = ((V[i]+V[i+1])−m*(M[i]+M[i+1]))/2.0f; // interpolation step
moment = b/(1/dv12−m); //Mu at shear cap

}
  }
  }
 

  for (int i = 0; i < 13; i++) {

  if (i <10) {

//check maximum shear strenght

  if (MoverV[i] < dv12 && MoverV[i+1] > dv12) {

moment =(ep*EsAs/1000.0f/tmpFe−0.5f*shear/tan(Tp/57.3f))*dv/12.0f; //Mu

shear = moment/dv12; //Vu at shear cap

Figure A.6: Shear cap computation: Interpolation of M-V points
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Appendix B – Multi-Beta (MB) Capacity Function

Five-line representation of AASHTO-MCFT interaction diagram is implemented in

reliability analysis using using a Tcl procedure. The function AASHTO MCFT

computes the coordinates of interaction diagram of section for one direction of

bending moment. The proposed Tcl procedure getMV employs AASTO MCFT

function with two given longitudinal reinforcements, A+
s and A−

s to compute nom-

inal flexural resistance in both directions. The input variables and the output line

equation are shown in Fig. B.1. The extracted parameters, cm, cn and cv are the

coefficient of moment, the constant value and the coefficient of shear in M-V space

line equation.

proc getMV {fc0 fylong0 d0 bw0 Asneg0 Av0 fytrans0 s0 Aspos0 Es0 beff0 pf} {
        :
        :
      set BetaArray "$cm $cn $cv"
    return $BetaArray
}   
  

Figure B.1: The body of function getMV

In procedure, the operations start the with the effective depth, dv, calculations

for positive and negative moment. The distance is defined as the length between

reinforcing steel and the center of rectangular concrete compression zone. However,

the AASHTO code [3] requires that the value need not be taken less than 90% of

the distance from the edge of the section to the location of reinforcing steel or

72% of the total depth. The procedure code for the positive and negative moment
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effective depth is shown in Fig. B.2.

After the effective depth operation is completed, the Tcl procedure calls the

AASHTO MCFT function for negative and positive bending moment. However,

two shear strength is calculated for the same section. For a logical solution the

higher shear strength is considered as the shear limit. All coordinates of M-V

diagram points are saved in the array MV as shown in Fig. B.3.

The number of points in MV array varies from eleven to fourteen points. MB

limit state demonstrates the interaction diagram with five critical lines to reduce

the computation effort of high order representation, so that a reduction in points

array needs to be coded. The reduced array contain the M-V point location in

critical shear and flexural points. The performance functions g1 and g5 are equal

to positive and negative moment capacity while the shear cap is the horizontal line

equation g3. The line g4 connects the shear cap to the pure moment limit at Vu/2

where Mu is equal to the ultimate moment. The location of shear cap is decided

whether it is on negative or positive x-axis regarding to the sign of strong bending

moment capacity. The procedure for five line representation and extraction of the

line equation parameters are shown in Fig. B.4.
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    #DvPos − Effective depth − positive moment
    set ds [expr $d0−$dflange]
    set a1 [expr $Aspos0*$fylong0/$beta/$fc0/$beff0]
      if {$a1 > $hf} {
    set a1  [expr ($Aspos0*$fylong0−($beff0−$bw0)*$hf*$fc0*$beta)/$bw0/$fc0/$beta ]
    set dvposA [expr $ds − ($beff0*$hf0*$hf0+($a1*$a1−$hf0*$hf0)*$bw0)/($beff0*$hf0+($a1−$hf0)*$bw0)]
    } else {
      set dvposA [expr $ds − $a1 /2 ]; }
    if { $yrebar >= $a1 } { 
       set dvposB [expr 0.90*$ds]; set dvposC [expr 0.72*$d0]
            if {$dvposA > $dvposB && $dvposA > $dvposC} {
              set dvpos $dvposA
             } elseif {$dvposB > $dvposA && $dvposB > $dvposC} {
             set dvpos $dvposB
             } elseif {$dvposC > $dvposB && $dvposC > $dvposA} {
             set dvpos $dvnegC
             }
     } else {
    set Acs $Asneg0
    #check stress on compressed rebar
        set EpsAcs [ expr 0.003* ( $a1/$beta−$yrebar ) /( $a1/$beta ) ]
              if {$fylong0 / $Es0} {
                set fAcs $fylong0
                 } else {
                set fAcs [expr $EpsAcs*$Es0]]
             }
      set a2 [expr ($Asneg0*$fylong0−$Acs*$fAcs )/($beta*$fc0*$beff0)]
      if {$a2 > $hf} {
        set a2  [expr ($Aspos0*$fylong0−($beff0−$bw0)*$hf*$fc0*$beta)/$bw0/$fc0/$beta ]
        set dvposA [expr $ds − ($beff0*$hf0*$hf0+($a1*$a1−$hf0*$hf0)*$bw0)/($beff0*$hf0+($a1−$hf0)*$bw0)]
      } else {
          set dvposA [expr $ds − $a2 /2 ]; 
      }
          set dvnegB [expr 0.90*$ds]; set dvnegC [expr 0.72*$d0]
              if {$dvposA > $dvposB && $dvposA > $dvposC} {
                set dvpos $dvposA
              } elseif {$dvposB > $dvposA && $dvposB > $dvposC} {
                set dvpos $dvposB
              } elseif {$dvposC > $dvposB && $dvposC > $dvposA} {
                set dvpos $dvposC
              }
    }
    #DvNeg − Effective depth − negative moment
    set ds [expr $d0−$yrebar]
    set a1 [expr $Asneg0*$fylong0/$beta/$fc0/$bw0]
    if { $dflange >= $a1 } {
       set dvnegA [expr $ds − $a1 /2 ]; set dvnegB [expr 0.90*$ds]; set dvnegC [expr 0.72*$d0]
            if {$dvnegA > $dvnegB && $dvnegA > $dvnegC} {
              set dvneg $dvnegA
             } elseif {$dvnegB > $dvnegA && $dvnegB > $dvnegC} {
             set dvneg $dvposB
             } elseif {$dvnegC > $dvnegB && $dvnegC > $dvnegA} {
             set dvneg $dvnegC
             }
     } else {
    set Acs $Aspos0
    #check stress on compressed rebar
        set EpsAcs [ expr 0.003* ( $a1/$beta−$yrebar ) /( $a1/$beta ) ]
              if {$fylong0 / $Es0} {
              set fAcs $fylong0
               } else {
               set fAcs [expr $EpsAcs*$Es0]]
              }
       set a2 [expr ($Aspos0*$fylong0−$Acs*$fAcs )/($beta*$fc0*$bw0)]
       set dvposA [expr $ds − $a2 /2 ]; set dvposB [expr 0.90*$ds]; set dvposC [expr 0.72*$d0]
           if {$dvposA > $dvposB && $dvposA > $dvposC} {
              set dvpos $dvposA
           } elseif {$dvposB > $dvposA && $dvposB > $dvposC} {
              set dvpos $dvposB
           } elseif {$dvposC > $dvposB && $dvposC > $dvposA} {
              set dvpos $dvposC
           }
    } 

Figure B.2: Calculation of the effective depth for positive and negative moment
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    #Combine + and − Moment capacity 
    set MVpos [AASHTO_MCFT $fc1 $fylong1 $dv1 $bw1 $As1 $Av1 $fytrans1 $s1]
        set Npos [expr [llength $MVpos]/2]     
        set posStart 0 
        set negStart 0 
    set dv2 [expr $dvneg/$in]
    set As2 [expr $Asneg0/$in/$in]
    
    set MVneg [AASHTO_MCFT $fc1 $fylong1 $dv2 $bw1 $As2 $Av1 $fytrans1 $s1]
    set Nneg [expr [llength $MVneg]/2] 
    
    set Vpos [lindex $MVpos 1]
    set Vneg [lindex $MVneg 1]
    
       if {$Vpos > $Vneg} {   
         incr negStart        
        } else {               
         incr posStart        
       }                      
    set MV {}
  for {set i $negStart; set j $Nneg} {$i < $Nneg} {incr i; incr j −1} {
 set M [lindex $MVneg [expr 2*$j−2]]
 set V [lindex $MVneg [expr 2*$j−1]]
 lappend MV [expr −1*$M] $V
    }  
  for {set i $posStart} {$i < $Npos} {incr i} {
 set M [lindex $MVpos [expr 2*$i]]
 set V [lindex $MVpos [expr 2*$i+1]]
 lappend MV $M $V
    }  

Figure B.3: The Tcl code combining M+V and M−V capacity
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    set AAA {}
    set length [llength $MV]
  for {set z 0} {$z < 4} {incr z} {
   lappend AAA [lindex $MV $z]
  }
  for {set z 3} {$z < [expr $length −2]} {incr z 2} {
    set temp1 [lindex $MV [expr $z−3]]    
    set temp2 [lindex $MV [expr $z−2]]
    set temp3 [lindex $MV [expr $z−1]]
    set temp4 [lindex $MV [expr $z]]    
      if {($temp3 == 0.0) && ($temp4 == $temp2) } {
       lappend AAA $temp1 $temp2 $temp3 $temp4
      }    
    }
   for {set z 3} {$z < [expr $length−2]} {incr z 2} {    
    set temp1 [lindex $MV [expr $z−3]]
    set temp2 [lindex $MV [expr $z−2]]
    set temp3 [lindex $MV [expr $z−1]]
    set temp4 [lindex $MV [expr $z]]
      if {($temp1 == 0.0) && ($temp4 == $temp2) } {
       lappend AAA $temp1 $temp2 $temp3 $temp4
      }
    }
    for {set z 4} {$z >= 1} {incr z −1} {
   lappend AAA [lindex $MV [expr $length − $z]]
  } 
   set MV $AAA
 
    set pointNo  [expr [llength $MV]/2]
    set betaNo   [expr $pointNo−1]
    #figure 2 points
    set xx1 [expr $kip*$ft*[lindex $MV [expr 2*$pf−2]]]
    set yy1 [expr $kip*[lindex $MV [expr 2*$pf−1]]]
    set xx2 [expr $kip*$ft*[lindex $MV [expr 2*$pf]]]
    set yy2 [expr $kip*[lindex $MV [expr 2*$pf+1]]]
    #compute m−slope of the line
    if {$xx1 == $xx2} {
       if {$xx1 < 0.0} {
       set cm 1.0
       set cv 0.0
       set cn [expr −1*$xx1]
       } else {
       set cm −1.0
       set cv 0.0
       set cn $xx1
       }
    } elseif {$yy1 == $yy2} {
       set cm 0.0
       set cv −1.0
       set cn $yy1
    } else {
       set cm [expr ($yy2−$yy1)/($xx2−$xx1)]
       set cn [expr $yy2 − $cm * $xx2]
       set cv −1.0
    } 
    set BetaArray "$cm $cn $cv"
    return $BetaArray

# Reduce MV array to 6 points 

Figure B.4: The Tcl code computing parameters of limit state line equations
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Appendix C – OpenSees Uniaxial Material: Concrete02

OpenSees library presents the hysteretic concrete material with a linear tension

softening [93]. The constitutive model of uniaxial Concrete02 material is shown

in Fig. C.1. The characteristic parameters are compressive strength fpc, strain

at peak stress epsc0, crushing strength fpcU , strain at crushing epsU , λ ratio

between unloading slope at epsU and initial slope E0, tensile strength ft and

tension softening stiffness Ets. The initial slope for this model is taken as E0 =

2fpc/epsc0.

Stress

Strain

λE0

(epsU, fpcU)

ft

Ets

(epsc0, fpc)
E0 = 2fpc/epsc0

Figure C.1: Constitutive model of uniaxial Concrete02 material



189

Appendix D – OpenSees Uniaxial Material: Steel02

A uniaxial Giuffre-Menegotto-Pinto steel material model [34] with isotropic strain

hardening is presented in OpenSees material library. The constitutive model of

the uniaxial Steel02 material is shown in Fig. D.1. The characteristic parameters

are yield strength fy, initial elastic tangent Es, post-yield tangent Ep, the factor

R controlling the transition from elastic to plastic branches. The recommended

values are between 10 and 20. The value is taken as 15 in cyclic loading analysis

of this study.

Stress

Strain

Es

Epfy

R = 20

R = 5

Figure D.1: Constitutive model of uniaxial Steel02 material
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Appendix E – McKenzie River Bridge Girder Section Properties

In the live load reliability analysis of the McKenzie River Bridge girder, the section

parameters of the interior girder are treated as uncertainties. The nominal values

are taken as the mean values of variations in parameters. The section arrays shown

in Fig. E.1 contains the mean values of parameter variations.

# Sections Properties       fc     d   bw    fyl    s     As+     As−   fyv   Av    beff   hf
#                         (psi)  (in) (in)  (ksi) (in)  (in^2)  (in^2) (ksi) (in^2) (in)  (in)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  
set Array_11             {3300.0  48  13.0    40   12    7.15    0.40   40    0.40  85.0  6.0 }
set Array_12             {3300.0  48  13.0    40   19    9.36    0.40   40    0.40  85.0  6.0 }
set Array_13             {3300.0  48  13.0    40   19   12.48    0.40   40    0.40  85.0  6.0 } 
set Array_14             {3300.0  48  13.0    40   19   12.48    0.40   40    0.40  85.0  6.0 } 
set Array_15             {3300.0  48  13.0    40    9    7.34    3.12   40    0.40  85.0  6.0 }
set Array_16             {3300.0  48  15.5    40    9    4.68    6.24   40    0.40  87.5  6.0 }
set Array_17             {3300.0  48  17.7    40    9    4.68    9.36   40    0.40  89.7  6.0 }
set Array_21             {3300.0  48  17.7    40    9    4.68    9.36   40    0.40  89.7  6.0 }
set Array_22             {3300.0  48  15.5    40    9    4.68    8.52   40    0.40  87.5  6.0 }
set Array_23             {3300.0  48  13.0    40   12    4.68    6.24   40    0.40  85.0  6.0 }
set Array_24             {3300.0  48  13.0    40   19    7.22    0.40   40    0.40  85.0  6.0 }
set Array_25             {3300.0  48  13.0    40   12    4.68    6.24   40    0.40  85.0  6.0 }
set Array_26             {3300.0  48  15.5    40    9    4.68    8.52   40    0.40  87.5  6.0 }
set Array_27             {3300.0  48  17.7    40    9    4.68    9.36   40    0.40  89.7  6.0 }
set Array_31             {3300.0  48  17.7    40    9    4.68    9.36   40    0.40  89.7  6.0 }
set Array_32             {3300.0  48  15.5    40    9    4.68    6.24   40    0.40  87.5  6.0 }
set Array_33             {3300.0  48  13.0    40    9    7.34    3.12   40    0.40  85.0  6.0 }
set Array_34             {3300.0  48  13.0    40   19   12.48    0.40   40    0.40  85.0  6.0 }
set Array_35             {3300.0  48  13.0    40   19   12.48    0.40   40    0.40  85.0  6.0 }
set Array_36             {3300.0  48  13.0    40   19    9.36    0.40   40    0.40  85.0  6.0 } 
set Array_37             {3300.0  48  13.0    40   12    7.15    0.40   40    0.40  85.0  6.0 }

Figure E.1: Tcl arrays containing section properties
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