
AN INEQUALITY FOR THE !'!UMBER OF INTEGERS 
IN THE SUM OF TWO SETS OF INTEGERS 

by 

YEAM SENG LIM 

A THESIS 

submitted to 

OREGOEI STATE UNIVERSITY 

in partial fulfillment of 
the requirement for the 

degree of 

MASTE OF SCIE"CE 

June, 1962 



APPROVED: 

Associate Professor of iathernatics 

In Charge of Major 

Chairman of Department of &athematics 

Chairman of School Graduate Gomittee 

Dean of Graduate School 

Date thesis is presented Februr/ &ie 

Typed by Cora Kelaay 



ACKNth. LDGi!T 

The author wishes to thank Professor Robert D. 

Stalley for his su'jgestions and assistance toward the 

completion of this thesis. 



TABLE OF CONTENTS 

Chapter Pafte No. 

i INTRODLCTIGN i 

2 FUNDAENTAL LMMAS 9 

3 MANN'S TRANSFORMATION 12 

4 BAiS ICOVITCH'S COUNTING PRCCLSS 20 

5 DYSU1 'S TRA SiOFthAT IU' 30 

6 STRONGER RESULTS 38 

BIBLIOG:J-\PHY 44 



AN I!'EQUALITY FC* THE NUtbER OF INTEGERS 
IN THE SUM OF TWO SETS OF INTEGERS 

1. INTRODUCTI(. 

:. The main purpose of this paper is to prove 

two theorems, which are stated below, by different 

methods. Before stating the theorems, we shall first 

define some of the notation which will be used later. 

Let A, B, .... denote sets of non-negative 

integers. Define A + B = ta + ba E A, b E B}. Let 

A(n), B(n), .' be the numbers of positive inte- 

gers, which do not exceed n, in A, B, '', re- 
spectively. For n ¿ m, let A(rn,n) = A(n) - 

B(m,rì) = B(n) - B(m), so on. modified 

Besicovitch density is defined as follows: 

í( ) = gib 
n+1 

n>k 

where k is smallest positive integer missing 

from A. A gap of a set is defined as a positive 

integer missing from the set. 

To avoid unnecessary repetition, we shall 

state the two theorems here. 

Theorem 1: If O E A, O B, 1 E B, G i-. + B, 

then C(n) .> 1n + 8(n) for all n C. 
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Theorem 2: If O E A, O B, C = A + B, then 

C(n) x1(n + i) + (n) for all n C. 

Theorem i was first proved by hann L4] in 1951, 

using the same transfornation he used to prove the 

Thèorem in 1942 [5]. Later in 1955, Peter Scherk 93 

proved Theorem i with a slight alteration on i, using 

a modificatirm of a method of Eesicovitch Li]. 

The prorfs of Mann and Scherk will be presented. 

In addition, four oriyinal pr ofs will be presented. 

e shall confine ourselves to proving Theorem 

1, for once iheorem i is established, Theorem 2 can be 

readily obtained. The proof will be presented in the 

next chapter. Conversely, we could derive Theorem 1 

from Theorem 2 by this same method. 

The equalities of the theorems are necessary 

as shown by the following examples: 

Let = tO, 1, 3, 6, 9, 12, .....}, 

and B = Li. , 7, 10, 13, .....J. 

Then C l, 2, 4, 5, 7, 8, 10, 11, '''J. 

Hence 3n C for n = 1, 2, ....e., and C(3n) = 2n. 

Since j = and B(3n) = n, we have 

j(3n) + B(3n) = 2n 

and equality in Theorem i holds. 



Now let A = {c, 1, 4, 8, 12, 16, ....}, 

and B = [0, 1, 4, 5, 8, 9, 12, 13, ''}. 
Then C = [0, 1, 2, , 5, 6, 8, 9, 10, 12, 13, 

14, ....}. 

Hence 4n - 1 C for n = 1, 2, .', and 

C(4n - i) = 3n - 1. Since a1 = and B(4n - i) = 

2n - 1, we have aj(4n) + B(4n - i) = 3n - 1, and 

equality holds in Theorem 2. 

Mann L53 in 192, proved the following theorem 

from which the a3 Theorem follows: 

Theorem A. If C = A + B, O E A, O E B, then 

for any n C, 

(1) 
CLnl >min 

A(n1) + B(n.) 

ni.n flj 
C. 

Mann 16] in 1960, proved the fTllowing theorem 

which is stronger than Theorem A and therefore also 

gives the a Theorem. 

Theorem B. If C = A + B, O E A, O E B, then 

for any n $ C, there exist m and 

m1 such that m < n, m C, m1 < 

max (m, n - m - i), m1 C, and 
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(2) 
C(n) + i > 

Aim) + 13(m) + i ¡C(nj + i C(m1, + i 

n+l cn+l n+l m1+l 

We compare these theorems of Mann vith Theorem 2. 

First let us prove that Theorem B is stronger 

than Theorm A. Mann states this fact without proof. We 

shall begin by proving the following lemma: 

Lemma 1.1. If 

(3) b > d > 1, b > a > O, 

and 

t a C 
!4) 

t hen 

ai>C-1 
b - i-d - i 

Proof. From (4), we get 

a, C 

b d' 
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p 

b-a d-c 
b d 

and v'ith (3), 

b-a .. d-c 
b(b - 1) d(d - 1 

a-b c-d 
b(b - 1) d(d - 1) 

FTence with (4), 

a a-b c c-d 
b(b-1) d(d-]i 

ab-a+a-b cd-c+c-d 
btb - 1) d(d 1) 

ab-h cd-d 
bib - 1) - I) 

a-1 c-1 
- i d - i 

The proof is complete. 

From Theorem B, we have 

C(n. + i jrn) + B(m) + i 

n+l m+l 
Applying Lemma 1.1, we get 

C(n) > A(m) + B() 
n - m 

Since m < n, m r, we get 

A(n.) + B(n.) 
CIn a nR 

i 

ni 

which is Theorem A. Hence, Theorem B is stronger than 
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Theorem A. 

Since Wann claimed that these theorems are very 

strong results and since the ? Theorem can be derived 

from them, we would like to know whether or not Theorem 

2 will also follow from them. The following examples 

show tat Theorem 2 is sornetines stronger, and sometimes 

weaker, than Theorems A and B. Thus it cannot be de- 

rived from these theorems. Let 

Then 

A = B = O, i}. 

C = O, 1, 2). 

Rewriting (1) of Theorem A, ve get 

A(n1) + B(n) 
(5) C(n) > n min 

ni.n 
ni 

Take n = 3. Then the right-hand side of (5) is 

3() = 2 

However, 

+ 1) + B(n) = 0(4) + i = i 
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Hence, in this case, Theorem A, and thus Theorem B, is 

stronger than Theorem 2. 

and 

Then 

Now let 

A [0, 1, 3, 6, 7, 8, 9, 12, 13, '''), 
B - [0, 1, 6, 7, 9, 12, 13, '''''1. 

c - [o, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13,...'). 

Rewriting (2) of Theorem B, we get 

(6) C(n) > t(m) + B(m) + 1. - m+l -(nfl) + 

IC(n) + i C(m1) + 
(n + i)-i. 

I nfl m1+1 

Take n - 11. It follows that m - 5 and m3, 5. 

Then the righthand side of (6) is 

110 5 (12) + j(l2).. i 7. 

However, 

a1(n f i) + B(n) (l2) f 4 8. 
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en'e, in this case, Theorejì 2 is stron.er than Theorem 

3, and thus is also stronger than Theorem A. Therefore 

we conclude that Theoren 2 cannot be derived from Theorem 

A or Theorem B. 

A natural approach for the proof of Theorems 

i and 2 is by induction where the induction hypothesis 

is used by adding a positive integer less than n to 

B or deleting a positive integer less than n from B. 

But this has not proved fruitful. Hence we proceed to 

other methods. 
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2.. FUAiJTAL RESULIS 

Ye shall now derive Theorem 2 from Theorem 1. 
Let O E A, O E 13 and C ì-. + 13. Suppose Theorem i 

has been proved. 

Let B1 = + 1b E b} and C1 = À + 131. It 

is clear that O B1 and i E bj. Hence, applying 

Theorem 1, we have 

(1) C1(m) > 1m 
+ 

for all m Ci 

For any n C, n + i C1, for if n + i E C1, then 

n + i=a + (b+ i, aA, b, and na + b which 

is a contradiction. Hence (1) becomes 

(2) C1(n + 1) > 1(n + 1) + B1(n + i) for all n C. 

But b E b and O < b < n if and only if b + i 

and O < b + i < n + 1. Hence B1(n + 1) B(nj + 1. 

Similarly, C1(n ì i) = C(n) + 1. Hence (2) becomes 

C(n) > 1(n + 1) + 13(n) for all n C 

which is Theorem 2. 

Irorn now on we shall confine ourselves to 

proving Theorem 1. iherefore, in what follovis, it will 
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be assumed that O E A, O B and 1 E b, in order to 

avoid repetitions of this assumption. Also, for the 

same reason, n1 < n2 < 's... will be understood to 

be all the positive gaps in C and K the least 

positive integer missing from A. 

M few lemmas which will be referred to ov:r and 

over again later will be proved here. 

Lemma 2.1. If O < g h < n where n C, then 

(3) h - g > A(n - h - 1, n - g - i) + B(g, h). 

Proof. For each b E B such that g < b < h, we have 

- b A n - i - g Since 

(n - g - i) - (n - h - 1) = h - g, then (3) follows. 

Lemma 2.2. If O < g < h where h + 1 C, then 

h - g > A(h - g) + F3(g.h). 

Proof. Set n = h + i in Lemma 2.1 and Lemma 2.2 follows. 

Lemma 2.3. C(nj) > A(n1 - i) + b(n1). 

±roof. Set h = n1 - i and g = O in Lemma 2.2 to 

obtain 

n1 - i > A(n1 - i) + F(n1).. t 

Hence since B(ni - 1) b(n1) and C(n1) = n1 - i, 

the proof is complete. 
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Lemma 2.4. C(n1) > aj n1, + B(n1). 

Proof. Since n1 C, i and O E A, we have 

n1-lA,n1.l>O and A(nj-l)jn1. Thus 

Lemma 2.4 follows from Lemma 2.3. 

Lemma 2.5. C(nr_j, > A(flr r1 i) 

+ B(flr_i tr) 

= in Lma 2.2 to Proof. Set h 
1r 

- i and g 
r-1 

obtain 

n - n - i A(nr -nrl - i) + B(flri 1'r 
i). r r-i 

Hence since B(flr - i) = B(flr) and C(flrip 

= nr,l - 1, 

the proof is complete. 
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3. MANN'S TRASFORMATICt4 

Part 1. 

This is a rewriting of kann's proofL4J. 

Lemma 3S10 If n - n 
i 

< n,, then there exists 
r r- 

sets and C, with C1 = A 
+ 

such that 

(i) o i 

(ii) n 
r 1' 

(iii) -B(fl) = C1(n) -C(n) > 

Proof, Define d. = - ni, i < r. since 
r - or-1 

< 

we have dr_i < n1 and O < n1 - dr_i < n1 ¶ence 

n1 - dr_i C which implies n1 - dr_i = a0 + b0, 

a A, b C B. Hence 
o 

(i) a +b -fd n. 
o o r-1 i 

Let B* = b0 + d1Ia + b0 + d1 = n. E , i < r, j < rJ, 

B1 = B U B*, and C1 = A 
+ 

B1. The definition of ß* 

ensures that B* is not empty since b0 + dr_i E B* 

as implied by (1). In other v.ords, 

(2) B*(nr) > O. 
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Also B H B* is empty. For if + c is any 

element in B*, then a + + d = ni for some a E M, 

and b0 + d1 = ni - a B. Hence 

(3) B 1) B* is empty 

Proof of (i). Since O B, we have b0 > O and 

Q ß*. Hence O B1. Since i E b, then i E B1. 

Proof of (ii). Assume n E C1. Then n = a + b1, 

a' A, b1 E B1. Since b1 E B1, then b1 C B or 

b1 E ß* But b1 B otherwise 
r 

E C. Hence, 

b1 B*, b1 = b0 + d1, nr = a+ b0 + a + b + n - 

and ni = a + b which is a contradiction. Hence n C1. 

I-roof of (iii). From 

that B1(n) = B(fl) + 

Bi(flr) - °r = B*(n 

To prove that 

it suffices to show th 

B1 = B u j3* and (3) it fo1lo'.s 

B*(flr) Hence with (2) .e have 

) > O. 

C1(n) -C(n) = i°r °r' 

t the number of ni E C1, i < r, 

is equal to the number of elements in B, i.e. there 

is a one-to-one correspondence bet.een 
fl 

E C1, i < r, 

and b0+dEE*. 
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i-or each t < r, if b0 + dt B*, then 

a + b + dt = 
for sorne a E i, s < r. Hence 

a + b0 +n 
t = 

a + b0 + nr ns 

a + b0 + d5 
= 

and E C1. 

Conversely, for each t < r, if 
t 

C1, then 

= a -f b0 + d5 for sorne a E A, s < r. 

Hence 

= a + b0 + 
r 

- 

= a + b + 
1r - 

= a + b0 + dt, 

and b0 + dt E ß*, Thus the one-to-one corres,ondence 

is established. 

Proof of Theorem 1. The theorem is true for the first 

gap of C as has been proved in Lemma 2.4. 

Assume that the theorem is true for all 

gaps, j < r, for all sets A, B and C. 

Case 1. n - n > n1. 
r r-1- 

Ihen n - n 1-l>n1 - i A. Since n1 - i > O, r r 

we have: 
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(4) A(nr '1r.1 i('r 

From Lemma 2.5, we get 

(5) C(n 
1' nr) > A(n 

"r-1 i) + B(flri r' r- 

Combining (4) and (5), we get 

(6) C(flrie n) > aj(nr - + 'r' 

By our induction hypothesis, 

(7) C(n1) ]fl_ + B(flr_i)s 

Adding (6) and (7), we get the theorem. 

Case 2. rr - "r-1 
< 

Then the Lemma 3.1 supplies us with A, B1 

and C1 satisfying the hypothesis of the theorem. 

Since Ci(flr) > C(flr) as implied by (iii), and since 

nr C1 by (ii), then must be some gap of 

C1, j < r. Hence by our induction hypothesis, 

(8) 
Ci(flr) a a1 nr + Bi(flr) 

But (iii) implies 

(9) C(nr) - Ci(n) = B(n1) - Bi(flr) 
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Addinq (8) and (9ì, we get the theorem 

and the proof is complete. 
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-art 2. 

This contains a proof similar to the one in 

Part 1. However, v.e shall use a different transforma- 

tion rf Mafln ilO]. 

Lemma 3.2. If n 
- or-i 

< n1, then there 

exist sets B1 and C1, with C1 = A + 
i' 

such that 

(i) O Bl, i ë B1, 

rr c1, 

(iii) Bj(flI - "r Ci(flr' - ' 

Proof. Define d1 
= 

- i < r. Since 

n - n 
1 

< it follows that d 
-1 

< n1, O < n1 - d 
r-1 r r- r 

< n1, n1 - dr_i C, and n1 - d a + b for some r-1 o o 

a0 A, b0 E B. Hence 

(io) n a +b +d and b +d i o o r-1 o 

Let B* = + d1 b + d1 4 B, i < r}, B1 = B U t*, 

and C1 = A + B1. The definiticn of B* ensures that 

B* is not empty as implied by (10), i.e. 

(ii) B*(n 
) > 0, 

r 
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a nd 

(12) BtB* is empty. 

Proof of (i). Since O B*, then O $ Since 

1B, then 1EB1 

Proof of (ii). Assume C C1. Then 
r 

= a + b1, 

a E A, b1 C B1. Since b1 C B1, then b1 B or 

b1 E B* 3ut b1 B, otherwise G G. Hnece, b1 C B*, 

bibo+di,flr=.bo+di=a+bo+flr_fli, and 

n1 = a + b0 which is a contradiction. Hence C1 

Proof of (iii). Fröc the definitions of B1 and C1, C 

is a subset of C1. From (10), we have n1 C1. Thus 

C1(n) -C(n) > 0. 

If ni C C1, j 

for some a E A, i < r. 

n. = a + b + - 
j O r 

= a + b0 + ! 

n1 = A + b0 + d 

and b0+dB* . lie 

By (12j we have 

B1(n) - B(nr) > C1(n) 

Note that the 

< r, then ni = a + b0 + d1 

ence, 

ni 

nce, > Ci(flr) - C(flr) 

B(nr) + B*(n), and so 

- C(flr) The proof is com1ete. 

main difference in the proofs of 
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Lemmas 3.1 and 3.2 lies in the proof of part (iii) of 

each 1emtia, and that the proof of part (iii) of Lemma 3.2 

is simpler tan the proof of part (iii) of Lemma 3.1. 

Proof of Theorem 1. The proof is exactly the 

sane as in Part 1, except triat for the case 
- or-1 

'. n1, we use Lemma 3.2, noting that (iii) iíalies that 

C(n ) - C (n ) > B(n ) - B (n ) 

r i r - r i r 



4. BESICUVITCH'S COUNTING PRCCESS 

In this chapter, we shall present four proofs 

using Besicovitch's counting process LIJ. 

Part 1. 

This is a re.riting of Scherk's ¡roof L9J uith 

the following revisions. dhereas he performed the in- 

duction on n, considering it as a natural number, we 

perform the induction on the gaps of C, in the proof 

of Theorem 1. í\lso, his definition of 
l 

is slightly 

different from ours. 

Lemma 4.1. If C(n) < A(n-1, + 5(n), n G, then 

there exists n < n - k such that 

(i) c(n,n) A(n - t 
- i) + 13(nt, n). 

Proof. Let b be the largest element in 13 less 

than n. Thon 

(2) B(b0, n) = O 

Now for each a A with O < a < n - b0, we have 

a + b0 C and b0 < a + b0 n. Hence, 

(3) c(b0, n) A(n - b0) > (n - b0 - 1). 



Adding (2) and '' we get 

(4) c(b0, n) > A(n - b0 - i) + b(b0, n). 

Let be the largest gap in C less than b0. Such 

an nt exists. For if not, then C(b0) = b0, and by 

Lemma ,l with y O and h = b0 we hdve 

C(b) > A(n - b0 - 1, n - 1) + 

Adding this and (4), we get 

C(n) > A(n - 1) + 13(n), 

which contradicts our hypothesis. 

Siflce b0 + 1, b0 + 2, s...., b0 -f k - i C, 

vie have 

n > b, + k - i 
n 

+ k, 

and < n - k. 3ince < b < n, from Lemma 2.1 

with h = b0 and g 
= n, we get 

C(n, b0) = b0 - A(n - b0 - 1, n - t 
1) 

+ ¿(nt, b0). 

Adding this nd (4), we obtain (1). The proof is complete. 

¡-rcof of Theorer 1. 

The theorem is true for the first gap of C from Lemma 

2.4. Assume that the theorem is true for all n1, i < r, 
r > 2. 
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Case 1. C(n) a 'r + B(n). 

Since - i A, then A(nr - 1) 'i.. r Hence, 

C(n) a1 + B(nr). 

Case 2. C(n) < A(fl i) + B(nr). 

Set n 
= 

in Lemma 4.1 to obtain 

(5) c(nt, A(flr nt 1) + B(nt, nr), 

wher. t < k. Thus t < r. Since 
t 

< k, 

then - n. i k, Hence A(n rt - 1) ai(nr 

and (s) becomes 

(6) c(n. cLi(flr - + B(rlt. 'r 
By our induction hypothesis, 

(7) C(nt) a1 
n + B(nt). 

Adding (6) and (7), we get 

C(nr) a1 
r + 13(flr) 

The proof is complete. 
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Part 2. 

In this proof we make use of a result of 

Scherk LlO]. 

We first prove Scherk's result. Let n be an 

arbitrary gap of C. Let m0 = n. Let h1 be the 

largest element in B less than m1, j > O, and let 

m11 be the largest integer missing from C less than 

h1, j > O. Since n is a finite number, the sequence 

will terminate. Thus, letting m11 = O, we have 

n = m0 > h0 > in1 > ..... > 
ini > h1 > m1+1 = O. 

From Lemma 2.1 with n m1, h = h1, g = O j i, 

we get 

(5) C(m..f h.) = h - m. > A(m. - h - 1, m -m.1 - i) eJ j j+1 j j 

+ u(m1 h1). 

Since for each a E A with O < a < in. - h., it follows 

that a + h E C ìth h < a + h < m. we have 

(9) C(h, in.) > A(m -h) > A(m - h1 -l. 



..ddiny (8) arid (9), we get 

in.) > 13(r1. - in (io) C(m11, - j j+l - 1) + B(m11, h1) 

in 
j - j+l - i) + I3(m.1, in1). 

This is the result of Scherk. 

Proof of Theorem ).. 

Now m1 -m1 - i > k, O < i < i. For if not, then 

k > m -rn1 - i 

i rn. - (h1 - i) - i 

= - h1 > O. 

Hence m - h1 A and (mj - h1) + h1 = E C which 

is a contradiction. Hence, 

- m1.1.1 - i) çi1(m1 -m1) O . i 
and (io) becomes 

(li) C(m11, m.) > z1(m1 -m.1.1) + B(m11, In1). j - 

Summing (li) from j = O to j = i, and setting 

m = n and m = O, we have 0 1+1 

C(n) x1n + E(n). 

This completes the proof. 
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Part 3. 

in this proof we use Besicovitctk's counting 

process in a different way. 

Proof of Theorem 1. 

Let m0 = O. Let k1 + i be the least integer greater 

than n1, i > O, missing from C. Let m1 + i be 

the smallest element in h greater than k1, i > O. 

Since mi+l + i > k1, then m11 > k1. Since 

+ i + k1 + 1, then m11 > k. Similarly, 

k1 > m1. 

Suppose k1 < x < m1,i > O. Then, since 

for each a A with k1 - m1 - i < a < x - m1 - 1, 

we have m. + a + i C C with k. < m1 + a -f i K x, lt 
i i 

follows that 

(12) C(k1, x) > A(k1 - - 1, x - m. - i) 
i 

- 
m1, x - m1 - i). 

From Lemma 2.2 with h = k1, g m1, we have 

(13) C(m1, k1) = k1 - mj A(k1 - mn) + B(m. k1. 
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Adding (12) and (13), and setting kì(m1, x) = B(m1, k1), 
we get 

(14) C(m., x) > A(x - - 1) + B(m. X). 

Jow k1 - > k. If not, suppose k1 - m1 < k. Then 

k1 -m1= at and k1 + i = a +fflj + lEG which is 

a contradiction to the definition of k1. Hence, 

k1 - m1 k and x - m - i k. ì-Lnce (14) becomes 

(15) C(m1, x) > .1(x - m1) + B(m1, x). 

ifl particular, 

(16) G(mj. in. ) > (m., - m.j + B(m., m. 3+1 3+1 - 1 j-ri 3 j 

Now let n be a gap in C, and let r be 

such that k < n, and if exists then 

k <n<m r - r+1 

If r = O, set I = O and x n in (15) to 
obtain Theorem 1. 

If r > O, sum (16) for j = 0, 1, ..., r - 1, 

and (15) with i = r, x = n to obtain Tieorem 1. The 

proof is complete. 
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Part 4. 

This proof is similar to Scherk's proof L9] 

which appears in Part i of this chapter. it is in effect 

a simplificati-'n of Scherk's proof. Not only do we 

not have to consider the two cases as Scnerk did, but 

also it is a much shorter proof. 

Proof of Theorem 1. 

Frori Lemma 2.4, the theorem is 4rue for the first gap of 

C. Assume that the theorem is true for all 

n1, i < r, r > 2. 

Let b0 be the largest element in B less 

than 

If there is no gap of C less than b0, then 

n1 > b0 and 

(le) B(n) = B(n1) 

Now for each a E A with n1 - i < a < - i , we have 

a + i C C and n < a + i < n , and so 
1 -r 

(19) C(n1, nr) > A(n1 - 
0r 

- i) 

From Lemma 2.3, we get 

(20) C(n1) > A(n1 - i) + B(n1) 



2 c 

Adding (19) and (2c,), and using (18), we get 

(21) 0(n) > A(n -i) + B(n) 

Since 
r 

- i A, then A(n - i) > n Hence (21) - ir 

bec rrnes 

C(nj 1r + B(n) 

If there is a gap of C less than b0, let 

e the J.rgest of these gs. 5ince 
t 

< b < n. 

we may set g 
= t' 

h b0 and n 
= 

in Lemc-a 2.1 to 

obtain 

(22) c(nt, b0) = b0 
- n 

> A(nr - b0 l 
r - t 

- i) 

+ B(nt, b0). Now for each a A with O < a - b0 -1, 

we have a + b0 E C and b0 < a + b0 < n - 1. Hence 

(23) c(b0, 
'r 

((b0, nr - i) > A(nr - b0 - i). 

By the definition of b0, we have B(b0, = O, and 

so (23) may be written 

(24) c(b0, > A(fl - b0 - i) + ß(b, 

Adding (22) and (24), we get 

(25) c(n, n» > A(flr - t 
-i) + B(nt, 
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Now - n - i > k For if not, then 

nì - i < k 0r - n k 
, r - b0 < k 

- b0 C A and C C whicI is a contradiction. 

Pence r - t - j(fl - and (25) becomes 

(26) c(n, ir - + B(nt, 

By our induction hypothesis, we have 

(27) c(n) + B(nt) 

Adding (26) and (27), we get the theorem. This completes 

the proof. 
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5. DYSON'S TRANSFORWATION 

An interesting Question which remains to be 

answered is vhether' or not it Is ossib1e to prove 

Theorem i by using Dyson's transfnrrnation [3). This 

inquiry is perfectly natural in view of the fact that 

both ann's and Dysons transformations have been used 

successfully to prove the a3 Theorem L3,5J and Chowla's 

inequality for cyclic groups 12,7], and in addition, 

Mann's transformation has provided a roof of Theorem 

i V] as presented in Chapter 3. 

A version of Dyson's proof of the Theorem 

may be found in Niven and ¿uckerinan L83. Let A and 

B1 consist of all elements of A and B not exceeding 

g, an arbitrary positive integer. Let C1 A + B,. 

.)yson actually used two transformations, the main one 

being for the case A1 C R1. 

If A1 L, let A' = jaa e-q, a bd. 

Let A2 = A1 - A', b2 = U A' and C2 A + B. 

if A1 C b1, then let b0 be the least posi- 

tive integer in b for hich there is an a A1, such 

that a + b0 b1. Let 

and 

A' = aIa E i-u, a + b0 b1}, 

B' = La + b0ja E A', a 1 b0 < b}. 
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Let A2 ». - A', B2 = U 3' and C2 A2 + B2. 

The following lemma is then proved from which 

te Theorem follows. 

Lemma 4.1. If for some O such that O < e < 1, 

A1(m) + Bj(m) 0m, m = 1, 2, ..., g, 
then Cj(g) > e9. 

uppose we were to try to use this approach in 

a natural way to prove Theorem 1. e would first prove 

the following similar lemma. 

Lemma 4.2. Let A1 and consist of all elements 
of A and B not exceeding n, n C. If for sone 

such that O < O < 1, 

A1(m - 1) + bj(m) ein, m = k + 1, ..., n, 

then Cj(n) > en. 

Suppose we succeeded in proving Lemma 2 by 

means of Dyson's transformation. Then to obtain Theorem 

i from this lemma, we would take 

13j(n) 
e=L1+ 

n 

and need 

B1 (n) 
(1) Aj(m - 1) + Bj(m) .> Lij + Jm, m = k + n. .J_, p n 

However, (1) is not true as shown by the followin example. 



Let 

A = 0, 1, 3, 6, 9, 10, 11, 12, ...J, 

and 

L) = V., 4, 5. 7, 11, 12, ..}. 

T hen 

C = V. 2, , 

Take n = 9. Then 

and C1 = 1, 2, 4 

have u1 
= 4 and 

B1(n) 

n 
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6 7, 8, 10, 11, 12, '}. '.-, , 

= O, 1, 3 6, 9h 8 V. 5, 7} 

5, 6, 7, 8, 10, 11, 13, 14, ió}. e 

Bj(n) -4 - . Hence 

For m 3, we have 

Aj(m - i) + H1(m) = 1 + 1 = 2, 

while 

_____ 21 
+ 

n 
im = 

Pence (1) is not true and Theorem 1 would not follow. 

This does not, by ny means, show that Uyson'S trans- 

formation will not work. It only shows that this approach 

fails. 

Let us try another arcach. Suppose we were 

to try to prove Theorem i by induction on the gaps of C 

as Mann did. Using Dyson's transformation, we would get 

A2, 2, and 02 with C2(nr) C(nr) LB] (set n = nr). 

A natural way to proceed would be to establish the follow- 

ing two inequalities: 
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(i) C2(n) Lj 
r 

(ii) C(nj - 
2(flr) Br 

Then we would add thei; to complete the proof. However, 

our induction hypothesis would be C(n3) > n + B(n) 

for all j < r, for all sets A, B and C. Fence, since 

C2(n) C(n), this induction hypothesis does not give 

us C2(n) -2 r 
B2(n) where 2 may be taken to 

be the modified Besicovitch density of A - A'. Hence, 

since '2 :Ij, a fortiori it would not give us (i). 

So this approach also fails. 

Note that in performing the transformation 

abnve, we take out elements from A1 and add new 

elements to I3.. The reason is that we want to have 

1 E 2 to satisfy the hypothesis of Theorem 1. 

From these attempts, we can see the difficulty 

in trying to use Liyson's transformation to prove Theorem 

1. If we modify the transformation slightly, though not 

successful in proving iheorem 1, we get some interesting 

results as shown below. 

If there is no b E B for vhich there is an 

a E A such that a + b b, a + b < n where n C, 

then i A. For if i E A, let h be the first gap 

in B. Then h - i B and we have 1 + (h - 1) = h B 

with h < n, which contradicts our assumption. rience 



1 A and .j C. Thus Theorem i is true in this 

case. 

If, on the other hand, there is at least one 

b E B for which there is an a E A such that 

a + b B, a + b < n, then let b0 be the sriallest of 

these b's. Let 

and 

A' = (aia E ,, a b0 B, a + b0 < n}, 
i 

B' = ta + b0a E 

3L 

Let A1 = A -A, B1 = B U B' and C1 = A1 + B1. note 
i i 

that this transformation differs from Uyson's transforma- 

tion in that a + b0 < n in our definition of i'. 

Repeat this prrcess until we get t the sets A. B and 

Gp when triere is no b E B for which there is an 

a E A such that a + b B and a + b <n. 

Then the following propositions are true. 

p p 

(i) A'(n) = y B'(nj. 

1=1 1=1 

p 

(ii) A(n) = í«n) - /A'(n). 



(iii) B(n) = B(n) + 

1=1 

(iv) A(n_l) + B(n) A(nu'l) + B(n). 

(y) OA O*B. lEBs 

(vi) If xEC and lxn, 

(vii) C(n) <C(n). 

(viii) n C. 

(ix) C(n) B(n) 

then xEC. 
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(x) If C(n) = G(n), then C(n) A(n-l) + B(n). 

Proof of (i) From the definitions of A and B. 

A'(n) S'Cn) for each i. Hence (i) follows. 
i i 

Proof of (ii). From the definition of A1, we hay. 

A1(n) - A(n) 

Similarly, 

A1(n) = Aj(n) A'(n) 
* . 

s 

A(n) = A_1(n) - A,(n). 
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Adding these, we get (ii). 

he get (iii) by the same argument above. 

Proof (iv). From (i), (ii) and (iii), we get 

¡:( + E(n) í(n) + B(n). 

Lince n A', then n E A if n E A, and n A 
i p p 

if n A. Hence (iv) follows. 

Proof of (y). From the definition of A', O A'. 

Hence O E A1. Similarly, O A. Since b0 > O, we 

have O B', and since C B, then O B3. Similarly, 

O B. Since B C and I E B, then i B 

proof is complete. 

Proof of (vi). If x C1 and i < x < n, then 

x a1 b1, a1 E A1, b1 E I!j. Since b1 z, then 

either b1 E B or b1 E B'. If b1 E b, then, since 

a1 E tt1 C A, X E C. If b1 E b', then bi a + b0, 

a E A, b0 E B, and x a1 + a + b0. But a1 + b0 E b, 

otherwise a1 E A' and a1 A1. Hence x E C. Similarly, 

if x E C2 and i < x n, then x E C1, and so on. 

Hence (vi) follows. 

It is clear that (vii) and (viii) follo 

immediately from (vi). 
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Proof of (ix). Since a + b E B for all a A 
p p p p p 

and b E such that a + b < n, and since n 

as implied by (viii), then (ix) follows. 

Proof of (x). If C(n) C(n), then with (iv) and 

(ix), we get 

C(n) B(n) = A(n - i) + ii(n) -A(n - i). 

Hence (xi follOws. 

The proofs coc.ete. 
One interesting fact is that if A(n - i) = O, 

then from (iv), (vii) and (ix), we get 

C(n) > C(nj = B(n) = A(n - i) + i3(n) .> xjn + ß(n). 

So Theorem i follows if A(n - i) = O. But if 

A(n - i) > O, then it is hard to say hether or not 

Theorem 1 will follow easily. 



6. STRONGER RESULTS 

Pert 1. 

Although equality may hold in Theorem 1, the 

result is by no ieans the best possible one. e can 

actually improve this inequality by adding to its right- 

hand side nr'n-neqat.ive term. 1ann found the following 

stronger result. 

Theorem 6.1. (() ) 1r + b(n) + min LA(n-1.) - jfl1J. 
n 

It can be proved in exactly the same .ay ann pioved 

Theorem i (Part 1, Chapter 3). 

Proof. By Lemma 2.3, we have 

C(ri1) > ,(n3. - l + 3(n1) 

= i1n1 + B(n1) + A(n1 - 1) - 

Hence it is true for n = nL. 

Assume it is true for n ni, i < r, r > 2, for 

all sets A, R aid C. 

Case 1. n - n .a n1. r r-i 

Then n - n 
_ - i nl - i A. r r 

n n - i) nr1). Hence A( 
r r-j. 
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From Lemma 2.5, we get 

C(n1, tr 
. - r-1 - i) + B(.(1ri r' 

Hence, 

(i) C(n n 
. 'r - r-i + ri' r-1 r 

By our induction hypothesis, 

(2) C(nr_i) ar-i + r-i + min LA(fl1 1) - 
n. <n i- r-1 

Adding (i) and (2), we get 

C(n ) > in + B(nr) + min LA(n1 - 1) - r- 
n <n i- r-1 

> n + B(n) + - i) - i1nJ. - r 
n . <n 
1- r 

Case 2. n - n < n1. r r-1 
From Lemma 3.1, we get new sets B1 and C1 with 

A + B1, Ci(nr) > C(nr) and 

(3) C(fl) -C1(n) = B(n) - Bi(nr). 

Thus by our induction hypothesis, 

(4) Cj(n) Jjnr + Bj(n) + min LA(fl. - 1) - 
.L1fliJ. 

n <n i-- r 
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Adding (3) and (4), we get 

C(flr) , 

Uifl + B(nr) + min LA(ni 1) cltflj]. 

n <n i-r 
The proof is complet.. 

We can get another stronger result fox Theorem i 
with the aid of Lemma 4.1. 

Theorem 6.2. C(n) > 1min 
A(m-l) i 

[k<mn a jn+B(n). 

Proof. From Lemma 2.3, we get 

C(n1) > A(n1 - i) + B(n1) 

A(nj P 
J ni + B(nj) 

A(m i) 
a ]fli + (1). 

Hence the theorem is true for n - n1. 

Assume it istruefor nn3, j <r,r2. 
Case 1. C(nr) A(flr - 1) + B(nr) 

A(nr - 1) 
Then C(nr) + B(n) 

> 1min A(m-1 i + B(flr)s 

- Lk<nr a j r 
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Case 2. C(n) < A(n i) + B(n). 

From Lemma 4,1, there exists an t < r, and 

< k, such that 

(s) C(n, > A(flr - 
- 1) + B(nt, r' 

We can change (5) to 

(6) c(n, n ) 

A(n 
t 

- i) 

r- 

[min A(m 

-Lk<1r 
m ](1r - rit) + B(flt, 'r 

By our induction hypothesis, 

(7) C(nt) > -Lt 
Atm i)] 

t + m 

> I A(m 1)] 
t + - [k<Xnr 

in 

Adding (6) and (7), w. get 

C(n) > min Mm 
- 
1)]r 

+ B(flr)s 

1k<m<n 
L 

-r 

The proof is complete. 
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Part 2. 

For Theorem 2, we can et similar stronger in- 

equalities. can derive from Theorem 6.1 the following 

stronger result. 

Theorem 6.3, C(n) > i1(n + i) + B(ri) + min 
n j.fl 

LA(n) - 1(n + 1)]. 

Proof. Let B1 = b1b1 = b + 1, b B} and C1 = A + . 

Now for any n C, n + 1 Cj. For if n + i C1., then 

n + 1 a + b1 = a + b + i and n = a + b which is a 

contradiction. Since O A, O B1 and i E B1, we 

can apply Theorem 6.1 and get 

(8) C1(ri + i) j(n + i) + b1(n + i) + min 
n j.fl 

LA(n) - Li(flj + i)). 

But since O E A and O E B, then Cj(n + i) C(n) + 1, 

B3(n + 1) 8(n) + 1. Hence (8) becomes 

C(n) .ii(n + 1) + 8(n) + [tiin LA(fl1) - i(flj + 1)3. 
n 1<n 

The proof is complete. 

Theorem 6.3 can be rewritten in the form, 
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C(1 cin -t R(n) + min LA(n.) - 1njJ, i 

which Mann obtained L33. 

Using the same proof as above, we can derive 

another stronger inequality from heorem 6.2. 

Theorem 6.4. C(n) > 
A(m) i 

[kn + ij n + i) + B(n). 

Proof. Let B1 b1Ib1 = b + 1, b E B} and Gj = A + ß 

Applying Theorem 6.2, we get 

Cj(n + i) > 1min 
A(m - 1 i 

-Lk<m] m j 
(n + 1) + B11n + 1). 

Hence, 

C(n) > [min J1 (n + 1) + B(n). 
Lk<m<n 

ifi + i 

j 

The proof is complete. 
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