


AN ABSTRACT OF THE DISSERTATION OF

Mingyang Tan for the degree of Doctor of Philosophy in Chemical Engineering

presented on September 6, 2018.

Title: A Study of the Dynamics and Rheology of Passive and Active Suspensions

of Particles with Various Geometries

Abstract approved:

Travis W. Walker

Suspensions of particles in fluids are everywhere in our life, such as paints, phar-

macies, food, etc. Suspensions can exhibit properties that common fluids do not

possess. For example, the paint needs to flow well when brushing so that it can be

smeared on the wall, which is aided by the shear-thinning of the fluid. However,

when brushing stops, paint needs to stay still on the wall, which is aided by the

yield-stress of the paint. These types of behavior depend on the dynamics and

microstructures of the suspensions. Suspensions of particles can serve as precur-

sors of composite materials, for example, a composite can be created by curing

a suspension of particles in a monomer solution. In such case, the properties of

the composite can be affected by the dynamics of the fluid. Investigating the dy-

namics of suspensions of particles can be crucial to the manufacture of composite



materials.

This study covers theoretical, computational, and experimental studies of suspen-

sions of particles in various aspects, such as suspensions of spherical and aspherical

particles, suspensions with or without external fields, and suspensions in Newto-

nian and non-Newtonian fluids.

The theoretical and computational study focuses on a fundamental investigation of

the dynamics of the suspending particles. Under a magnetic field, magnetic disks

can be aligned by a magnetic field. An analytic solution that describes the motion

of a single magnetic disk under a rotating field is derived in this study, and it

has shown good comparison with experimental data. When multiple particles are

present in the fluid, the particles interact with each other hydrodynamically and

magnetically if a magnetic field is applied. Under the influence of the magnetic

field, the microstructures of the material can be altered. The dynamic behavior

depends on hydrodynamic interactions. I discuss the hydrodynamic and magnetic

interactions from a fundamental point of view, and I implement a computational

method called Stokesian dynamics to simulate such systems. Furthermore, I also

discuss a way of simulating aspherical suspensions that is based on the spherical

suspensions.

The experimental study focuses on the characterization of complex fluids by sus-

pending microparticles as the probes that can measure the local properties of fluids,

and the method is called microrheology. The complex fluids that are characterized



in this study serve as an inexpensive substitute of the sputum of cystic fibrosis

(CF) patients. The goal of this part of the study is to explore an efficient drug-

delivery vehicle that can transport through the mucus of CF patients. The formula

of the substituting fluids that are proposed by our lab has shown similar rheological

properties with the sputum from CF patients in the macroscopic lengthscale. I also

characterized the fluids in the microscopic lengthscale and I have seen differences

between the macroscopic and microscopic properties. I deduce that the differences

arise from the heterogeneity of the fluids, which cannot be well detected in the

macroscopic method.

Finally, I combine the knowledge that we obtain from the theoretical study with

the technique that we utilize in the experimental study to obtain a proof-of-concept

study. We have successfully suspended microdisks in a yield-stress fluid so that

the microdisks can be aligned while constrained in the elastic cages of the fluid.

The yield-stress is characterized by a microrheological technique, and we apply the

scalings that we have derived previously to control the parameters to achieve the

goal of aligning microdisks while suppressing the translations of microdisks.
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Chapter 1

Introduction and Background

Suspensions of particles are ubiquitous in both nature and engineering fields, such

as proteins, bacteria, and viruses in biological fluids, precursors of composite ma-

terials, dispersions of pigments in paint, and mixtures of polymer emulsions. The

study of the mechanical properties of such substances requires rheological measure-

ments. A rheological measurement perturbs (slightly or significantly) the substance

out of equilibrium and measures the stress responses. Thus, the study of the dy-

namics of the non-equilibrium state of materials is crucial to understanding the

rheology of these materials.
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This study is divided into two main parts. The first part focuses on the theo-

retical and computational study of the dynamics of suspensions of particles. The

motivation of this part is to fabricate magnetic composites that would be used in

high-frequency applications such as antennae and inductors. The magnetic mi-

croparticles are suspended in a monomer solution, and a magnetic field and a UV

light are applied to the medium to achieve a polymer-metal mixture with differ-

ent microstructures of the magnetic particles, depending on the properties of the

particles and magnetic fields. The equilibrium structure depends on the magnetic

interactions between magnetic particles, while the non-equilibrium dynamics de-

pend on the hydrodynamic interactions. Both interactions are addressed in this

study, and theoretical models are proposed to describe the dynamics and predict

the rheological properties. Although many studies of the dynamic simulations of

suspensions focus on spherical particles, aspherical particles will be investigated

in this study, not only because a limited number of studies of aspherical particles

exist, but also the anisotropic properties caused by the aspherical particles raise

new problems in different fields. Models of spherical particles are also discussed in

this study, since they are the foundations of the method that is used in this study,

and also they are used as benchmarks of the method. The details of the theoretical

studies are presented in Chapters 2 and 3.

The second part investigates the microrheological properties of complex fluids. Al-

though the rheological properties were predicted in the first part as a result of

simulation, the second part focuses on the experimental study of the rheology.
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Microrheology builds the relationship of the motion of probing particles that are

suspended in the complex fluids, driven by the thermal energy of the fluids or

by external fields, with the mechanical properties of the complex fluids. Thus,

mircorheology can measure the mechanical properties of the complex fluids at a

lengthscale of the size of the probing particles. The rheological properties that

are extracted by microrheological measurements can be comparable to the conven-

tional rheological measurements, or the microrheological properties can be very

different from the conventional rheological measurements, relying on the size of

the probing particles relative to the characteristic lengthscales of the microstruc-

tures of the fluids. If the heterogeneity of the fluids needs to be characterized, for

example the motions of microparticles in biological fluids, microrheological study

is preferred. The details of the microrheological study are given in Chapter 4.

Chapter 5 combines the ideas from Chapter 2, 3, and 4. It uses theoretical scal-

ings based on Chapter 2 and 3 and to predict the dynamics of microdisks that

are suspended in a yield-stress fluid, which is characterized by a microrheological

technique introduced in Chapter 4.

An overview of the thesis is given below.

Chapter 2 studies the rotational motion of a magnetic microdisk under

external magnetic fields. In this chapter, the dilute limit is assumed; thus,

no hydrodynamic or magnetic interaction between particles is present. An

analytic model describing the rotational motion of the microdisk is proposed
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and compared to experimental data. Chapter 2 is mainly adapted from a

work published by Tan et al. [3].

Chapter 3 relaxes the dilute limit assumption. Models describing the hy-

drodynamic and magnetic interactions are discussed, and the method we

use to simulate the hydrodynamic interactions is Stokesian dynamics. The

problem is first illustrated in spherical suspensions, and then, the aspherical

suspensions are discussed.

Chapter 4 investigates the microrheological properties of xanthan gum (XG)

solutions. While in Chapter 3 the particles are suspended in a fluid (Newto-

nian fluid) with known rheological properties, and we simulate the change of

the rheological properties caused by the presence of the particles, in Chapter

4 the rheological properties of the fluids are unknown, and they are measured

by the dynamics of the particles. The presence of the particles are assumed to

have no effect on the rheological properties (dilute limit). We use a technique

called multiple particle tracking to characterize the rheological properties of

the XG solutions. Chapter 4 is mainly adapted from a paper that is under

preparation.

Chapter 5 works as a combination of the two main parts of this study.

We have derived several scaling parameters describing the dynamics of the

magnetic microdisks that are shown in Chapters 2 and 3. One practical goal

of the research is to devise a technique of fabricating a well-dispersed, non-



5

contacting suspension of magnetic microdisks with uniform orientation. This

goal is difficult to achieve in a Newtonian fluid; however, it can be achieved in

a fluid with elastic microstructures that are characterized by microrheological

methods that are introduced in Chapter 4. Chapter 5 is mainly adapted from

a paper published by Tan et al. [4]
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Chapter 2

Alignment of a Single Magnetic

Particle — Single Particle

Dynamics

This chapter is mainly adapted from the work I have published on Physics of

Fluids [3].
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2.1 Introduction

Compared to isotropic composites, anisotropic composites can provide direction-

ally dependent bulk properties that are enhanced in certain directions. Anisotropic

composites are found in many natural substances, such as the prismatic layers of

teeth [5] and mollusk shells [6] and the plywood fiber structures in fish scales [7],

insects [8], and plants [9]. Inspired by the anisotropic architectures of the natural

materials, people are committed to developing new materials that contain aligned

anisotropic particles [10–13]. These materials can exhibit enhanced magnetic, me-

chanical, optical, and diffusive (heat and mass) properties. For example, soft

magnetic composites, consisting of magnetic particles embedded in an insulating

matrix, have great potential for a variety of breakthrough applications, including

magneto-optics [14], biological tissue scaffolds [15, 16], drug targeting [17], and

high-frequency applications such as microwave absorption, electromagnetic shield-

ing [18], inductors, and antennae [19,20].

The anisotropic properties of non-spherical particles like rods and disks allow them

to be aligned by an external driving torque that can be generated by several tech-

niques. Examples include optical tweezers that use a strongly focused beam of

light to trap or move particles with sizes ranging from nanometers to microme-

ters [21, 22], electrorotation that generates a rotating electric field to rotate elon-

gated metallic particles [23], and dielectrophoresis that uses alternating electric

field to manipulate and assemble nanowires [24, 25]. Compared to these tech-
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niques, manipulation of ferromagnetic nano- and micro-particles by using mag-

netic fields provides a low-cost, efficient, and non-contact method that is easy to

implement [26]. We denote the particles that can be orientated under magnetic

field by magnetically orientable particle (MOP).

In this study, aligned composites are created by orienting magnetic microdisks.

Since the particles have a high-susceptibility plane (χE⊥) in the radial direction

perpendicular to the orientation vector, p, and a low-susceptibility axis (χE‖ ) that

is parallel to p as shown in Fig. 2.1(a), a planar rotating magnetic field can be

used to align the particles in the plane Fig. 2.1(b). This work presents a theoretical

model that describes the dynamics associated with the orientation of a magnetic

oblate spheroid being aligned by a rotating magnetic field.

Figure 2.1: (a) Magnetic microdisk with in-plane susceptibility, χE⊥, and out-of-plane
susceptibility, χE‖ , where χE⊥ > χE‖ , and with orientation vector, p. (b) Microdisks
aligned by a rotating magnetic field into planar alignment. At first, the microdisks
have a random distribution of orientation in the absence of a magnetic field. Upon
introducing a rotating magnetic field, the microdisks are aligned such that their χE‖ axis

is perpendicular to the magnetic field plane. (c) The setup of the experiment–a three-
axis electromagnetic coil system mounted on an inverted microscope. The z-coil (not
visible) is underneath the x-y coils seen in the picture.

Kimura et al. studied the dynamics of diamagnetic polymer fibers under both static
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and dynamic magnetic fields [27,28]. Since a diamagnetic fiber has a lower magnetic

susceptibility in its long axis than in its radial plane, its magnetic anisotropy is

similar to a ferromagnetic disk, even though the geometries differ. Kimura et al.

provided an analytic model to describe the alignment dynamics of diamagnetic

rods in a constant magnetic field [27]. They also proposed an asymptotic model

that describes the alignment dynamics of diamagnetic rods at the high rotating-

frequency limit [28]. However, a complete analytic model that covers all possible

frequencies is needed to describe the alignment dynamics of oblate spheroids or

disks in a rotating field.

We investigate two types of magnetic fields – constant and rotating – in this study.

A single mathematical representation that covers both types can be constructed by

designating the constant field to have a rotating frequency of zero. In a constant

magnetic field, the low-susceptibility axis (χE‖ ) of the microdisk aligns perpendic-

ular to the field direction, but the disk is still free to rotate within the plane that

is perpendicular to the field direction. However, in a rotating magnetic field, the

high-susceptibility plane of the microdisk is found to seek the shortest opportunity

to be aligned with the magnetic field, which is the short-term response driven by

magnetics. When the microdisk is rotating with the magnetic field, it experiences

a hydrodynamic drag caused by the fluid. To reduce the drag, the microdisk will

find a position where the drag can be minimized. Minimum drag is achieved when

the plane of the microdisk is aligned in the plane where the magnetic field rotates

(i.e., the microdisk reduces the amount of area that the bluff body projects perpen-
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dicular to the flow that is caused by the particle’s rotation). This drag reduction

is the long-term response driven by hydrodyanmics, allowing the orientation of

magnetic microdisk.

If the microdisks can be frozen in place after the alignment, a composite with

uniformly oriented microdisk fillers can be created as shown in previous works

[19, 29]. Driven by the idea of manufacturing magnetic composites, we study the

fundamental physics and provide analytic models in this chapter. The analytic

models cover the complete range of the frequency of the field, from 0 to∞, and are

confirmed by finite difference numerical methods of the systems. The comparison

between the models and experimental results have shown agreement. The models

also enable to predict the dependence of bulk rheological properties of composites

on the orientation distribution of the particles.

2.2 Experimental Methods and Materials

The goal of this chapter is to present mathematical models that are validated by

the experimental results. The experiments follow the work of Song et al. [19, 29].

Ferromagnetic Ni-Fe microdisks with approximately 5 µm diameter and 150 nm

thickness (aspect ratio ≈ 33) are investigated. The Ni-Fe microdisks are fabri-

cated by wet etching photolithographically patterned permalloy thin films. The

microdisks are suspended in a viscosity-standard silicone oil with viscosities of

215 cp and 550 cp (Brookfield Engineering Laboratories, Inc.), which were mea-



11

sured using a rotational rheometer (DHR-3, TA Instruments). The magnetic field

is generated by a three-axis electromagnetic coil system. Initially, an out-of-plane

(1, 3-plane) field is generated to align microdisks perpendicular to the plane of

observation to maximize unalignment (seeFig. 2.1(a)). Then, an in-plane (1, 2-

plane) field is generated to align the microdisks into the plane of observation. To

achieve a rotating magnetic field, the 1 and 2 axis coils are driven in quadrature

with cosinusoidal and sinusoidal current via a function generator. The dynam-

ics are observed using a Nikon Ti-S inverted microscope with a 40×objective and

recorded by a CCD camera (Guppy Pro 125B, Allied Vision). The setup of the

experiments is shown in Fig. 2.1(c).

Ferromagnetic materials, such as the microdisks used in this study, can be mag-

netized by a magnetic field, forming an induced dipole moment, µj. Assuming

the induced dipole moment is below saturation (the saturation field is 100 mT for

Ni-Fe, and the applied field is below 10 mT), the induced moment scales approx-

imately linearly with external field, particle size, and effective susceptibility such

that

µj =
V

µ0

χEjnBn, (2.1)

where µj is the induced dipole moment, V is the particle volume, µ0 is the free-

space permeability, and Bn is the external magnetic field vector. The effective

susceptibility, χEjn, is a second-order tensor that relates the particle geometry and

the induced dipole moment, describing the degree of magnetizing of a material in

response to an external field. Generally for ferromagnetic materials, χEij depends
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on the magnitude of the external magnetic field; however, in the range of working

fields in this study (1—10 mT), χEjn remains constant for the Ni-Fe microdisk, as

determined by vibrating sample magnetometry.

2.3 Layout of Model

In this section, an analytic model is developed to describe the rotational motion

of the magnetic microdisk. Since the aspect ratio of the microdisks used in this

study is high, we use the oblate spheroid as an analytic surface to approximate the

microdisk.

The dynamic study starts with the Langevin equation,

M ··· dU
dt

= FH + FE + FB, (2.2)

where M is the generalized mass/moment of inertia matrix, U is the transla-

tional/rotational velocities of the particle, FH is the hydrodynamic force/torque,

FE is the external (magnetic here) force/torque and FB is the Brownian force/torque.

In this chapter, we assume that the suspension is infinitely dilute, or the volume

fraction φ tends to be null. The particle is assumed to have an induced dipole.

Under a uniform external magnetic field, the magnetic force can be neglected.

Moreover, the sedimentation time is at least 15 times as long as the alignment.

Therefore, the translational motion can be neglected. Thus, we can only focus

on the torque balance part of the Langevin equation. In addition, the Reynolds
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number is trivial (O [10−7]) in this study, so the inertia is neglected. Thus, the

Langevin equation given by the index notation becomes,

THi + TEi + TBi = 0, (2.3)

where THi , TEi , and TBi are hydrodynamic, external, and Brownian torque respec-

tively. Each of the torque is given by

THi = Cij
(
Ω∞j − ωj

)
+HijkE

∞
jk , (2.4a)

TEi = εijkµjBk, and (2.4b)

TBi = −εijkpj
∂ [kBT log Ψ ]

∂pk
, (2.4c)

where Cij and Hijk are hydrodynamic tensors that will be discussed in details

later, Ω∞j and E∞jk are far-field fluid velocity fields, µj is the dipole moment of

the particle, Bk is the external magnetic field, pj is the orientation vector of the

particle, kB is the Boltzmann constant, T is the temperature, Ψ is the probability

density function, and εijk is the permutation tensor. The torque balance equation

yields

Cij
(
Ω∞j − ωj

)
+HijkE

∞
jk + εijkµjBk − εijkpj

∂ [kBT log Ψ ]

∂pk
= 0. (2.5)

In a quiescent fluid, such like this study, Ω∞j and E∞jk are set null. Following Kim

and Karrila [30], the hydrodynamic tensor, Cij, for an axisymmetric particle can
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be written as (Hijk is omitted since the particle is in a quiescent fluid),

Cij = 8πηa3
(
XCpipj + Y C (δij − pipj)

)
, (2.6)

where η is viscosity, a is one-half of the major axis of the particle, and XC and Y C

are hydrodynamic functions depending on the geometry of the particle. Similar

to the hydrodynamic tensor, the induced dipole moment, µj, of an axisymmetric

particle is [31]

µj =
V

µ0

(
χE‖ pjpn + χE⊥ (δjn − pjpn)

)
Bn, (2.7)

where χE‖ and χE⊥ are the susceptibility parallel and perpendicular to the orientation

vector respectively.

The rate-of-change of the orientation vector for an axisymmetric particle is

dpi
dt

= εijkωjpk. (2.8)

If we have an explicit expression for the angular velocity, a direct substitution into

Eq. (2.8) provides a complete form of the particle alignment dynamics. Before pro-

ceeding, we need to make assumptions and clarifications to simplify the equation.

First, we define a “rotational Peclét number” to be the ratio between the magnetic

torque and the Brownian torque(see details in the Appendix A.2). In the exper-

imental system of this study, the rotational Peclét number is very large (O[104]),

so the Brownian contribution is trivial and therefore is neglected. Second, we can
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write the hydrodynamic tensor, Cij, in an isotropic form such as Cij = ζrδij, since

the rotation of an axisymmetric particle is isotropic (see proof and details in Ap-

pendix A.1). Now, with the assumptions and expressions for the hydrodynamic

tensor and induced moment, we have the governing equation as

dpi
dt

= −
V
(
χE⊥ − χE‖

)

µ0ζr
Bnpn (Bi −Bkpkpi) . (2.9)

The leading term on the right-hand-side of Eq. (2.9) contains all the information

regarding the particle and the fluid. Since the parameters are held constant for

any specific experiment, we define the following combined parameter,

A ≡
V
(
χE⊥ − χE‖

)

µ0ζr
. (2.10)

For the magnetic microdisks used in this study, the susceptibility in-plane is greater

than the susceptibility out-of-plane (χE⊥ > χE‖ ). We can now decouple the magnetic

field by setting Bk ≡ Bbk, where B is the magnitude of the magnetic field, and

bk is a unit vector pointing in the direction of the magnetic field. At this point in

the derivation, we have a characteristic timescale which is the intrinsic timescale

that the particle can be aligned in a specific experiment. We can use the intrinsic

timescale to nondimensionalize the time and the dimensionless time, τ , is given by

τ =
t

tR
, 3 tR =

1

AB2
. (2.11)



16

The dimensionless governing equation is then given by

dpi
dτ

= −bnpn (bi − bkpkpi) . (2.12)

In the experimental setup, the magnetic field is rotating in the 1, 2 – plane, bi is

given by

bi = δi1 cosωt+ δi2 sinωt, (2.13)

where ω is the rotating frequency. Now we can define a dimensionless frequency,

ξ, such as,

ξ =
2ω

AB2
. (2.14)

Here, the factor 2 is chosen in the dimensionless frequency for algebraic conve-

nience, which is a result of the symmetry of the disk. The disk “sees” the field

rotate twice as fast, since the disk cannot distinguish the north pole from the south

pole of the field direction.

Note that Eq. (2.12) is set of three ordinary differential equations, each of which

corresponds to each component of p. Since p os restricted to the surface of a unit

sphere, rewriting the equation in spherical coordinates, where p1 = sin θ cosϕ,

p2 = sin θ sinϕ, and p3 = cos θ, reduces the number of differential equations from
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3 to 2. Thus, Eq. (2.12) becomes

dϕ

dτ
=

1

2
sin [2ϕ− ξτ ] , and (2.15a)

dθ

dτ
= −1

2
sin 2θ cos2

[
ϕ− ξτ

2

]
(2.15b)

To ease issues with the oscillatory nature of the problem, we define a new variable

u, which is defined to be the angle between the magnetic field direction and the

projection of the orientation vector p on the 1, 2 – plane, such that

u = ϕ− ξτ

2
. (2.16)

Then the governing equations become

du

dτ
=

1

2
sin 2u− ξ

2
, and (2.17a)

dθ

dτ
= −1

2
sin 2θ cos2 u. (2.17b)

Now we have a fully nondimensionalized set of first-order, nonlinear ordinary dif-

ferential equations. We will show in the next section that it can be solved as a

function of the one governing parameter ξ, and the corresponding initial conditions,

u0 and θ0.



18

2.4 Analytic Solution

The solution depends on the dimensionless frequency ξ as mentioned before, and

we will develop the solution in four cases

1. ξ = 0

2. ξ < 1

3. ξ = 1

4. ξ > 1

The first case corresponds to the constant field, and the rest corresponds to the

rotating field.

2.4.1 Constant Field Solution, ξ = 0

A constant magnetic field is the special case of a rotating field where the frequency

is null (ξ = 0); thus, the direction of bi is constant, and bi = δi1 is chosen for

convenience. In this case, the phase shift u is simply equivalent to the azimuthal

angle ϕ. We can write Eq. (2.17a) and (2.17b) with ξ = 0 as

dϕ

dτ
=

1

2
sin 2ϕ, and (2.18a)

dθ

dτ
= −1

2
sin 2θ cos2 ϕ, (2.18b)
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and the they can be solved analytically such that

tanϕ

tanϕ0

= exp [τ ] , and (2.19a)

tan θ

tan θ0

=

√
tan2 ϕ0 + exp [−2τ ]

1 + tan2 ϕ0

, (2.19b)

where ϕ0 and θ0 are initial azimuthal and polar angles respectively. If we write

the solution in terms of the orientation vector, we have

p1 =

√
1

1 + p̄2 exp [2τ ]
, and (2.20a)

√
p2p2 + p3p3 =

p̄√
p̄2 + exp [−2τ ]

, (2.20b)

where p̄2 = 1−p1p1
p1p1

∣∣∣
τ=0

is the initial orientation of the particle. The solution in

Eq. (2.20a) indicates that as τ → ∞, p1 would vanish (see Fig. 2.2). However,

the steady-state values of p2 and p3 depend on the initial value, which means that

the low-susceptibility axis of the particle is free to rotate within the plane that is

perpendicular to the field direction. Thus, we call this situation one-dimensional

alignment, since only one major axis of the oblate spheroid is aligned with the

magnetic field.
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Figure 2.2: Evolution of p1, p2, and p3 in constant field. The initial value for p is set to
be
(

2
3 ,

2
3 ,

1
3

)
. Thus, p1 goes to zero regardless of its initial value, since the field is pointing

to the direction of 1. The steady-state values of p2 and p3 depend on the initial values.

2.4.2 Rotating Field Solution, ξ > 0

The detailed derivations of the solutions of Eqs. (2.17a) and (2.17b) with ξ > 0

are provided in Appendix A.3.

Case ξ < 1

If ξ < 1, the observed field frequency, 2ω, is smaller than the intrinsic frequency,

AB2, which can be achieved by making the field rotate slowly or by increasing the
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field strength. The solution of Eqs. (2.17a) and (2.17b) for ξ < 1 is

log

[
tan θ

tan θ0

]
= −τ

2
+

1

2
log


 sinh2Π

sinh2Π0



ξ2 +

[√
1− ξ2 cothΠ + 1

]2

ξ2 +
[√

1− ξ2 cothΠ0 + 1
]2





 (2.21)

where

Π =
1

2
log

[
−ξ tanu+ 1−

√
1− ξ2

−ξ tanu+ 1 +
√

1− ξ2

]
, (2.22a)

Π0 =
1

2
log

[
−ξ tanu0 + 1−

√
1− ξ2

−ξ tanu0 + 1 +
√

1− ξ2

]
, and (2.22b)

Π =

√
1− ξ2

2
τ +Π0. (2.22c)

The change of the orientation vector p is shown in Fig. 2.3 for ξ = 0.5 with an

initial orientation of ϕ0 = π
4
, and cos θ0 = 1 × 10−4. Fig. 2.3(a) showing the top

view along the 3-direction which is perpendicular to the plane of the rotating field,

plots the trajectory of the orientation vector, showing that p1 and p2 slowly vanish.

Fig. 2.3(b) and (c) plot the side view (along the 1- and 2- directions, respectively) of

the trajectory, showing that p3 limits to unity while p1 and p2 vanish. Fig. 2.3(d)

plots the change of p3 with respect to time τ , showing that p3 goes to unit at

steady-state, implying that the particle is aligned into the plane of the rotating

field.
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Figure 2.3: Evolution of orientation vector p at ξ = 0.5. (a) View perpendicular to the
rotating field. The spiral trajectory shows that p1 and p2 slowly limit to 0. (b), (c)
View parallel to the rotating field. At steady state, both p1 and p2 vanish, and p3 limits
to 1. (d) Change of p3 with respect to τ . In long time p3 slowly limits to 1.
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Case ξ = 1

If ξ = 1, the observed field frequency, 2ω, is equal to the intrinsic frequency, AB2.

The solution to Eqs. (2.17a) and (2.17b) for ξ = 1 is

log

[
tan θ

tan θ0

]
= −τ

2
+

1

2
log

[
2Λ2 + 2Λ+ 1

2Λ2
0 + 2Λ0 + 1

]
, (2.23)

where

Λ =
1

cotu− 1
, (2.24a)

Λ0 =
1

cotu0 − 1
, and (2.24b)

Λ = −τ
2

+ Λ0. (2.24c)

The ξ = 1 case occurs only when the observed field frequency is identical to the

intrinsic frequency, making it an unstable case.

Case ξ > 1

If ξ > 1, the observed field frequency, 2ω, is larger than the intrinsic frequency.,

AB2, which can be obtained either by making the field rotate faster than that the

particle respond to the field or by decreasing the field strength B. The solution to
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Eqs. (2.17a) and (2.17b) for ξ > 1 is

log

[
tan θ

tan θ0

]
= −τ

2
+

1

2
log


 cos2K

cos2K0



ξ2 +

[√
ξ2 − 1 tanK − 1

]2

ξ2 +
[√

ξ2 − 1 tanK0 − 1
]2





 , (2.25)

where

K = arctan

[
1− ξ tanu√

ξ2 − 1

]
, (2.26a)

K0 = arctan

[
1− ξ tanu0√

ξ2 − 1

]
, and (2.26b)

K =

√
ξ2 − 1

2
τ +K0. (2.26c)

The change of the orientation vector, p, is shown in Fig. 2.4 for ξ = 2 with an initial

orientation of ϕ0 = π
4
, cos θ0 = 1 × 10−4. At ξ = 2, the field rotates faster than

the particle is able to respond. Thus, the particle appreas to “wobble” in response

to the rotating field, and the trajectories of p1 and p2 are not smooth, creating

velocities that appear discontinuous in Fig. 2.4(a) - (c) and plateaus in Fig. 2.4(d).

These characteristics are in direct contrast to the trajectories in Fig. 2.3; however,

the overall trend of p3 in both cases is monotonically limiting to unity.

In each of the three cases, the values of u and θ are calculated using the initial

value of the azimuthal angle, u0 (which is equal to ϕ0). For the case of ξ < 1,

u0 is substituted into Eq. (2.22b) to calculate Π0. Then, at a given time τ , the

value of Π can be found using Eq. (2.22c). With the knowledge of Π, at any given
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Figure 2.4: Evolution of orientation vector p at ξ = 2. (a) View perpendicular to the
rotating field. The shorter trajectory shows that p1 and p2 rapidly limit to 0. (b), (c)
View parallel to the rotating field. At steady state, both p1 and p2 vanish, and p3 limits
to 1. (d) Change of p3 with respect to τ . In long time p3 rapidly limits to 1.
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time, the values of u(ϕ) and θ can be found by solving Eqs. (2.22a) and (2.21)

respectively. Similar processes can be followed to find u and θ for the cases ξ = 1

and ξ > 1.

2.5 Asymptotic Solution

Though complete, the solution derived in Section 2.4 are cumbersome to imple-

ment, disguising the simplicity of the effect of ξ on the alignment time. Simplified

expressions would be more manageable for implementation into industrial settings.

Thus, in an attempt to make the solutions more tractable, asymptotic expressions

are derived for the two limiting cases of ξ as visualized in Fig. 2.5.

2.5.1 Case ξ � 1

The full solution for ξ < 1, Eq. 2.21, can be rewritten in terms of exponentials to

ease the asymptotics, such that

tan θ

tan θ0

= [Γ1 + Γ2 + Γ3]1/2 , (2.27)
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Figure 2.5: The alignment time, ∆τ , chosen from p3 = 0.1 to p3 = 0.9 versus ξ from
both analytics and asymptotics. Asymptotic expansions show that ∆τ scales as ξ−2 at
ξ � 1 and ∆τ scales as ξ0 at ξ � 1.
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where

Γ1 =

(
λ2 + λ0 − 2ξλ1

1− ξ2
+

λ2 − λ0√
1− ξ2

)
exp

[
−τ
(

1−
√

1− ξ2
)]

2
, (2.28a)

Γ2 =

(
λ2 + λ0 − 2ξλ1

1− ξ2
+

λ0 − λ2√
1− ξ2

)
exp

[
−τ
(

1−
√

1 + ξ2
)]

2
, and (2.28b)

Γ3 =

(
2λ1ξ

1− ξ2
− ξ2

1− ξ2

)
exp [−τ ] , (2.28c)

such that

λ0 =
1

1 + tan2 ϕ0

, (2.29a)

λ1 =
tanϕ0

1 + tan2 ϕ0

, and (2.29b)

λ2 =
tan2 ϕ0

1 + tan2 ϕ0

. (2.29c)

As ξ → 1, Γ2 and Γ3 decay much faster than Γ1, and at long time, Γ1 � Γ2, Γ3.

Thus, the leading-order Taylor expansions of each of the Γ -terms results in the

following simplification for Eq. (2.27) (details provided in Appendix A.4), where

tan θ

tan θ0

=

[
λ2 exp

[
−ξ

2τ

2

]]1/2

. (2.30)

By taking the limit of Eq. (2.27) as ξ → 0, the constant field solutions are recovered,

confirming the low-ξ asymptotic solution.
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2.5.2 Case ξ � 1

If the magnetic field rotates much faster than the particle can respond (ξ � 1),

the long-term response dominates. Starting with Eq. (2.17a),

du

dτ
≈ −ξ

2
, (2.31)

since ξ � sin 2u. This equation can be solved easily such that

u = ϕ0 −
ξτ

2
, (2.32)

where ϕ0 (the initial azimuthal angle) is equal to u0 (the initial phase shift) by

Eq. (2.16). Also, from Eq. (2.16), the expression

ϕ = ϕ0 (2.33)

is a straighforward result, which means, at high ξ, the azimuthal angle does not

change. Substituting Eq. (2.32) into Eq. (2.17b) gives the following differential

equation for the alignment

dθ

dτ
= −1

2
sin 2θ cos2

[
ϕ0 −

ξτ

2

]
. (2.34)
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Separating the variables and integrating this expression gives

tan θ

tan θ0

= exp

[
−τ

2
+
ϕ0

ξ
+

sin [2ϕ0 − ξτ ]

ξ

]
(2.35)

which can be further simplified by assuming ξ →∞, such that

tan θ

tan θ0

= exp
[
−τ

2

]
. (2.36)

The solution in Eq. (2.36), derived rigorously here, is consistent with the work of

Kimura [28].

2.6 Results and Discussion

We can analyze the ϕ-motion without solving the Eq. (2.17a) by using the stabil-

ity analysis. The motion of ϕ will have phase-locked and/or phase-ejected states

depending on the value of ξ and initial condition. The details can be found in the

Appendix A.5, while this section will concentrate on analyzing the analytics and

the θ-motion since the full alignment is indicated by the change of θ.

In the constant-field solution, if we shift the dimensionless time by a factor of

(− log p̄), Eq. (2.20a) becomes

p1 =

√
1

1 + exp [2τ ]
, (2.37)
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which is independent of the initial value of p1. This result indicates that the particle

follows the same alignment path for any initial condition, which is consistent with

general Stokes flow principles.

For ξ < 1, separate short-term and long-term responses are noticeable, resulting

from motion of ϕ0 and θ0. If θ0 <
π
2
− ϕ0, the shortest path to alignment is in

the θ-direction, and a separate short-term response is seen as a quick θ-motion, as

visualized in trajectories for ϕ0 = 0 and ϕ0 = π
4

in Fig. 2.6. After the major axis of

spheroid is locked into position with the field, the long-term response proceeds to

align the easy plane over a significantly longer time. If θ0 >
π
2
−ϕ0, the short-term

response will be in the azimuthal ϕ-direction, and no quick alignment motion will

be observed (viz., the
(
ϕ0 = π

2

)
-case in Fig. 2.6).

For ξ > 1, the field rotates so fast that it can be approximated as a planar field,

and only the long-term hydrodynamic response will be present. As derived in

Eq. (2.36), the evolution of p3 becomes independent of ξ and ϕ0 as ξ grows large,

as visualized in Fig. 2.7, where the solutions collapse into a single trajectory. In

Fig. 2.7, when ξ = 10, the particle “wobbles”, as previously discussed, while it

attempts to move with the field. When ξ = 103, the field rotates so fast that the

particle experiences the effects of the field in all directions, making the major axis

always aligned regardless of ϕ0.

To enable comparisons to experiments, an alignment time, ∆τ , is chosen arbitrarily

to be the difference in times as the particle aligns from a starting orientation p
(1)
3
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Figure 2.6: The evolution of p3 at ξ = 0.01 with θ0 = π
4 for φ0 ∈

{
0, π4 ,

π
2

}
. A short-term

response of θ-motion can be observed for the φ0 = 0 and π
4 cases. All cases limit to unity

in long time.
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Figure 2.7: Evolution of p3 in rotating field at different ξ > 1 with φ0 = 0. At ξ = 10 (the
black dotted line), the microdisk wobbles to follow the field. At ξ = 100 and ξ = 1000
(red dashed and blue solid lines, respectively), the microdisk “sees” the field as a planar
field, and the solutions collapse.
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to a final orientation p2
3, where the alignment is considered to be complete, such

that

∆τ = τ
(
p

(2)
3

)
− τ

(
p

(1)
3

)
. (2.38)

From the asymptotic solution for ξ � 1, Eq. (2.30), the alignment time is

∆τ =
−2

ξ2
log

[
tan2 θ2

tan2 θ1

]
, (2.39)

which scales as ξ−2. For the ξ � 1 case, the alignment time is

∆τ = −2 log

[
tan θ2

tan θ1

]
, (2.40)

which is constant for any chosen set of θ1 and θ2.

In this work, p
(1)
3 is chosen to be 0.1, and p

(2)
3 is chosen to be 0.9. A cartoon

representation of this alignment time can be seen in Fig. 2.8. In Fig. 2.9, the align-

ment time is plotted as a function of dimensionless frequency, ξ. The alignment

time obtained from the analytic solution at low-ξ limit appears to scale as ξ−2

and at high-ξ limit appears to scale as ξ0, which is validated by the asymptotic

solutions. Furthermore, we plot the experimental results on top of the analytics

and asymptotics, and the results confirm this theory.

The high-ξ condition (practically larger than a value of 20) can provide a precise

control of the experiments and minimize the control parameters (e.g., ϕ0). Since

τ = AB2t, at high ξ, where ∆τ is a contant, the processing alignment time ∆t
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Figure 2.8: The alignment time, ∆τ , is chosen to be time from p
(1)
3 = 0.1 to p

(2)
3 = 0.9.

scales linearly with 1/B2. Although the model is based on single-particle dynamics,

where the experimental data are collected from very samples (0.001 vol.%), the

high-ξ limit also agrees with higher-volume-fraction (0.1 vol.%) samples shown in

previous work [19].

Beyond predicting single-particle dynamics, the model developed here can be used

as a first-order approximation to predict the probability of alignment in a multi-

particle system where particle-particle interaction is negligible. Suppose that the

initial orientations of the particles follow a uniform probability distribution on the

surface of a unit hemisphere. For a given definition of the alignment time ∆τ , the

probability that the particles are aligned to or beyond the chosen final orientation
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Figure 2.9: The alignment time, ∆τ , chosen from p
(1)
3 = 0.1 to p

(2)
3 = 0.9, versus

dimensionless frequency ξ from both the asymptotic solutions and the experiments. At
high ξ, the experiments show that the dimensionless alignment time is constant. At low ξ,
the dimensionless alignment time grows with decreasing ξ, agreeing with the asymptotic
expansion.
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p
(2)
3 is

P =

∫ ϕ=2π

ϕ=0

∫ θ=arccos p
(1)
3

θ=0
sin θdθdϕ

∫ ϕ=2π

ϕ=0

∫ θ=π/2
θ=0

sin θdθdϕ
= 1− p(1)

3 . (2.41)

Thus, the particles whose initial orientation is smaller than the chosen p
(1)
3 are not

considered to be aligned after ∆τ .

In addition to studying the dynamics, the rheological properties can also be pre-

dicted with the knowledge of the orientation of the particle. For a suspension of

particles without hydrodynamic interactions, we can write the average stress such

as

〈σij〉 = −Pδij + 2ηE∞ij +
1

V

N∑

α=1

Sαij, (2.42)

where 〈σij〉 is the ensemble-averaged stress, P is the pressure, and Sαij is the stresslet

of particle α. We can write the the stresslet, following Kim and Karrila [30], such

that

Sαij =
20

3
πηa3Mα

ijk`E
α
k` +

20

3
πηa3Hα

ijk (Ω∞k − ωk) , (2.43)

where Mα
ijk` and Hα

ijk are the hydrodynamic tensors that depend on the configura-

tion of the particle. At any time, Mα
ijk` and Hα

ijk can be calculated with the known

orientation p. Therefore, the effective viscosity can be calculated by dividing the

average stress by shear rate.

We believe that variations in the experimental data result from the shape of the

particle. In the model, we assumed an axisymmetric disk, but the microdisks

produced for this investigation are not perfectly axisymmetric. If distortion from
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axisymmetry is present, a second axis of orientation exists, and the particle will

have a susceptibility to align this second orientation as well. The effect of an extra

axis of orientation in the plane is observed in the experiments. After the microdisks

are aligned into the field plane, they will continue to wobble in time with the

rotatting field. Other possible sources of errors come from the assumptions of no

random Brownian motion and no translational motion via sedimentation.

2.7 Conclusion

Although the alignment of anisotropic particles has been previously studied exper-

imentally and theoretically, the full analytic solution to predict the orientation of

magnetically susceptible microdisks under a rotating magnetic field is presented

in this work for the first time. Good agreement with experimental results sug-

gests that the model can be extended to composites with higher volume fraction of

particle dispersion and smaller particle size. The model also provides a direction

for optimizing the alignment process. In general, by keeping the dimensionless

frequency, ξ, at a high value, the processing alignment time, ∆t, can be reduced

by increasing the field strength B.
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Chapter 3

Coarsening of Magnetic Particles

— Multiple Particle Dynamics

In Chapter 2, we neglect the magnetic and hydrodynamic interactions between

particles. However, in practice, both interactions exist. The magnetic interaction

prompts the formation of structures, e.g., one-dimensional structure in a constant

field and two-dimensional structure in a dynamic field. The dynamic change of the

structure depends on the hydrodynamic interactions between the particles. In this

chapter, both the hydrodynamic and magnetic interactions will be discussed from
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a fundamental point of view. We start our discussion with spherical suspensions

and then move to aspherical particles.

3.1 Introduction

A suspension of magnetic particles, termed a magnetorheological (MR) fluid, can

respond to an external field, and thus, the rheological properties can change dras-

tically. As observed in our previous studies [29], sheets of magnetic microdisks are

formed under a rotating magnetic field. In our studies, the particles have induced

dipoles under an external magnetic field. The induced dipole, in turn, creates its

own magnetic field that interacts with other dipoles, and this dipole-dipole inter-

action causes the particles to aggregate into different structures, depending on the

volume fraction of the particles and the characteristic applied external field (e.g.,

magnitude, static versus dynamic). The development of these structures results

in significant changes in flow behavior, as they restrict the motion of the fluid,

thereby increasing the apparent viscosity of the complex fluids and transitioning

the properties from a more fluid state to a more solid state.

Equilibrium properties have been investigated extensively in previous studies. A

constant field induces the chaining of particles into one-dimensional structures,

and Mohebi et al. [32] and Martin et al. [33] both reported two timescales in such

a field. Columns of particles are formed parallel to the magnetic field on a short

timescale, and aggregation of columns orthogonal to the magnetic field takes place
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on a long timescale. Martin et al. [33] characterized the structures by studying the

anisotropy of the conductivity. They observed a rise in anisotropy on the short

timescale and a decrease in the anisotropy on the long timescale, and also a de-

crease in the anisotropy when the volume fraction of particles increases. Martin

et al. [34] also reported a formation of hexagonal packing under rotating mag-

netic field, which is consistent with our observations [19]. Melle et al. [35] studied

the formation of optically anisotropic chains under rotating magnetic field. They

reported that the length of chains stays constant at low frequencies, while the

chains break up at high frequencies. In these studies, the hydrodynamic interac-

tions were not considered while modeling the dynamics. Bonnecaze and Brady [36]

modeled the dynamics of electrorheological (ER) fluids, analogs of MR fluids, un-

der static electrical fields. This work accurately simulates both the hydrodynamic

and electrostatic interactions. The method used for modeling the hydrodynamic

interactions is the same with the one used in this study, and we will discuss it in

details later.

In these works, the suspending particles are spherical. In contrast to conventional

MR fluids that contain spherical particles, MR fluids with anisotropic particles,

such as fiber-shape particles, can generate increased rheological properties (e.g.,

yield stress) for the same volume fraction [37–39] and decreased sedimentation

rate [37,40]. Kuzhir et al. [39] attributed the increase of yield stress to the increased

anisotropy of the structure and the solid friction between fibers. Bell et al. [40]

explained that the degree of entanglement of the fibers is the primary factor that is
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responsible for the reduced sedimentation rate. Although these studies investigate

the macrorheology of MR fluids with fibrous colloids, a theoretical investigation of

the aggregation dynamics of anisotropic magnetic particles is very rare. The drag

on an aspherical particle has orientational dependence [30,41–43], and few studies

have investigated their particle-particle interactions. Satoh and coworkers used a

Monte Carlo method to simulate the aggregation of rod-like particles [44] and plate-

like particles [45–48] under a uniform magnetic field. However, an appropriate way

to describe the hydrodynamic interactions between and among anisotropic particles

is lacking in these equilibrium studies.

Further, the effects of different magnetic-field configurations on structures that are

composed of anisotropic particles needs to be investigated [49]. Melle et al. [35]

studied the motion of a chain of particles under a rotating magnetic field. They

reported that the chain length stays constant at low frequency, while the chain

breaks at high frequency. Martin et al. [34] and Jäger and Klapp [50] have studied

the structural evolution of samples with high volume fraction under rotating fields,

finding that two-dimensional structures are formed where spheres are packed into

hexagonal sheets that are periodically positioned in the direction perpendicular

to the field plane. Yet, similar studies on rods and disks are lacking. Since the

anisotropy of these particles also provides the microstructure for many compos-

ites with anisotropic macroscopic properties, a clear need for a micromechanical

description exists as bulk materials will have properties that depend on the orien-

tation of the particles.
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The hydrodynamic interactions between particles depend on the configuration

solely, making the simulations of dynamics of particles with complex geometries

difficult. Because the hydrodynamic interactions among spheres have been well

characterized [51–53], several studies have used methods of decomposing complex

geometries into spheres while keeping them in a rigid or flexible manner. Meng and

Higdon [54, 55] simulated plate-like particles that are composed of spheres under

shear flow and studied the rheology of the suspensions. They used a rigid-body

tensor that forces the spheres to move as a rigid body, and this method is also

adopted in this study, which will be discussed later. Yamamoto and Matsuoka [56]

studied suspension of fiber-like and plate-like particles with far-field hydrodynamic

interactions considered. Yamanoi et al. used a similar method as Yamamoto’s to

simulate rigid [57–59] and flexible fibers [59, 60] and ring-like particles [61]. Kut-

teh [62,63] applied accurate hydrodynamic interactions to study the dynamics and

rheology of particles that are made of spheres and prescribed constraint forces to

keep the spheres in rigid bodies. Bertevas et al. [64] simulated the rheological

properties of suspensions of real oblate spheroids. In this study, only two-particle

interactions are considered, and the method proposed in this study is only able to

simulate spheroids with moderate aspect ratio. They used “equivalent spheres” to

calculate the interparticle distance when calculating the lubrication interactions,

but for spheroids with small or large aspect ratios, the surface fails to be approxi-

mated as spheres.
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3.2 Elements of Hydrodynamic Interactions

The goal of this section is to introduce the fundamentals of hydrodynamic interac-

tions between particles. We start with the classical problem — Stokes flow, and af-

ter a detailed discussion and some mathematical derivations, we will introduce the

method that is used in this study to model the hydrodynamic interactions.

The system that is investigated in this study has a trivial Reynolds number (Re→

0), so we are solving the Stokes equations. We start with Navier-Stokes equations

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ η

∂2ui
∂xk∂xk

. (3.1)

Navier-Stokes equations can be non-dimensionalized by choosing appropriate pa-

rameters, and the dimensionless form of Navier-Stokes equation is

Re

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+

∂2ui
∂xk∂xk

, (3.2)

where Re is the Reynolds number such that

Re =
ρUa

η
. (3.3)

This study focuses on a system microscopically; thus, Reynolds number can be
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assumed to be negligible. Therefore, we will solve the Stokes equations:

η
∂2ui

∂xk∂xk
− ∂p

∂xi
= 0, and (3.4a)

∂ui
∂xi

= 0. (3.4b)

Two main methods of solving Stokes’ equations exist. One solves the problem in

terms of eigenfunction expansions or vector harmonic functions, which is typically

introduced in a graduate-level fluid dynamics class. The other one is based on the

fundamental solution, which will be discussed in details in this study.

First, take a look at the classic problem – a uniform flow past a fixed sphere. It can

be solved by harmonic functions (see details in Leal’s book [65]), and the solution

is

ui − u∞i = −
(

3

4

a

r
+

1

4

a3

r3

)
u∞i −

(
3

4

a

r3
− 3

4

a3

r5

)
xku

∞
k xi, and (3.5a)

p = −3aη

2

u∞k xk
r3

. (3.5b)

The drag, an integral of stress on the surface, on the sphere can be found to be

Fi = 6πaηu∞i , (3.6)

which is the well-known Stokes law. The same result can be derived by a funda-
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mental solution which will be shown later. This study focuses on the fundamental

solution which provides a base for constructing the numerical methods that will

be introduced later.

3.2.1 A Fundamental Solution of Stokes Flow

Suppose that a point force, fi, is imposed on the fluid at the origin. We can write

the Stokes equations such that

η
∂2ui

∂xk∂xk
− ∂p

∂xi
= fiδ (x) . (3.7)

The velocity can be written as the product of a second-order tensor and the point

force, and the pressure can be written as the product of a first-order tensor and

the point force, following Kim and Karrila [30], such that

ui =
1

8πη
Jijfj, and (3.8a)

p =
1

8πη
Pjfj, (3.8b)

where

Jij =
δij
r

+
xixj
r3

, (3.9)

is called the stokeslet, and the corresponding pressure tensor Pj is

Pj = 2η
xj
r3

+ P∞
j . (3.10)
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The corresponding stress tensor σσσ is

σij = −pδij + 2ηEij

= −3fkxkxixj
4πr10

, (3.11)

where Eij is the rate-of-strain tensor such that

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.12)

The rate-of-strain tensor is a symmetric second-order tensor with zero trace, Eii =

0, due to the incompressibility of the fluid.

We will start with this form of the solution and develop the formulas for hydrody-

namic interactions.

3.2.2 Lorentz Reciprocal Theorem

Suppose that u and u′ represent the velocity fields that satisfy the Stokes flow that

pass the same body with surface ∂D; and σσσ and let σσσ′ be the corresponding stress

fields. We calculate the following quantity σσσ : E′ and obtain that

σijE
′
ij = (−pδij + 2ηEij)E

′
ij

= 2ηEijE
′
ij, (3.13)
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since E ′ij is traceless. If we switch the roles of the primed and unprimed terms, we

can obtain that

σijE
′
ij = σ′ijEij. (3.14)

Consider the calculation of σσσ : E′ that

σijE
′
ij =

1

2
σij

∂u′i
∂xj

+
1

2
σij
∂u′j
∂xi

= σij
∂u′i
∂xj

=
∂

∂xj
(σiju

′
i)−

(
∂σij
∂xj

)
u′i. (3.15)

In a similar manner, we can write

σ′ijEij =
∂

∂xj

(
σ′ijui

)
−
(
∂σ′ij
∂xj

)
ui. (3.16)

Substituting into Eq. (3.14), we have

∂

∂xj
(σiju

′
i)−

(
∂σij
∂xj

)
u′i =

∂

∂xj

(
σ′ijui

)
−
(
∂σ′ij
∂xj

)
ui (3.17)

Now integrating Eq. (3.17) over an infinite fluid region with volume V outside the

body ∂D and applying divergence theorem yields the Lorentz reciprocal theorem:

∮

∂D

u′ ·(σσσ · n) dS−
∫

u′ ·(∇∇∇ · σσσ) dV =

∮

∂D

u ·(σσσ′ · n) dS−
∫

u ·(∇∇∇ · σσσ′) dV. (3.18)
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The conditions imposed by the Stokes flow require that ∇∇∇ · σσσ = 0 and ∇∇∇ · σσσ′ = 0,

and we have another form of the Lorentz reciprocal theorem such that

∮

∂D

u′ · (σσσ · n) dS =

∮

∂D

u · (σσσ′ · n) dS. (3.19)

3.2.3 An Integral Representation Solution

The integral representation for the solution of Stokes flow represents the velocity

field at any point in the fluid domain in terms of the force distribution on the

boundaries. The integral representation is the result of a direct application of the

Lorentz reciprocal theorem.

Consider a fluid domain separated by a surface ∂D at position y. Suppose that u

is the solution of the Stokes flow, and u′ is the solution of the Stokes flow subject

to a point force, u′ = 1
8πη

J(x− y) · f . Thus, the stress fields satisfy that ∇∇∇ ·σσσ = 0

and ∇∇∇ · σσσ = fδ(x − y). Substituting the velocity and stress fields into Eq. (3.18)

gives

ui(x)− u∞i (x) = − 1

8πη

∫

∂D

(
δij
r

+
(xi − yi) (xj − yj)

r3

)
fj (y)

+
3

4π

∫

∂D

(xi − yi) (xj − yj) (xk − yk)
r5

ujnk, (3.20)
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and the corresponding pressure field is

p (x) =
1

4π

∫

∂D

(xj − yj)
r3

fj(y)dS

+
1

2π

∫

∂D

{
δij
r
− 3 (xi − yi) (xj − yj)

r3

}
uinjdS. (3.21)

The first integral on the RHS of Eq. (3.20) is termed as the single-layer potential,

and the second integral is termed the double-layer potential by an analogy with the

point charge distribution on a surface in electrostatics. The integral representation

solution provides a base for the method called the boundary-integral method. The

integral representation does not provide solutions to a specific problem unless the

tractions, fj, on the surface are known. However, it provides a flexible method in

numerical studies since the boundary ∂D is an arbitrary surface, rigid or flexible

with any geometry.

If the boundary ∂D represents the surface of a solid-body, then at the boundary the

no-slip boundary condition requires that u(y) = Uα +ΩΩΩα×y. After some deriva-

tions, we can show that for a solid boundary the double-layer potential vanishes,

and the integral representation solution becomes

ui(x)− u∞i (x) = − 1

8πη

∫

∂D

{
δij
r

+
(xi − yi) (xj − yj)

r3

}
fj (y) dS

= − 1

8πη

∫

∂D

Jij (x− y) fj (y) dS. (3.22)
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If more than one particle are suspended in the fluid, we can write the disturbance

velocity field as the summation of the single-layer potential because of the linearity

of Stokes flow such that

ui (x)− u∞i (x) = − 1

8πη

N∑

α=1

∫

∂D

Jij (x− y) fαj (y) dS. (3.23)

We start with Eq. (3.23) to derive the far-field hydrodynamic interactions among

particles.

3.2.4 The Multipole Expansion

Given the exact knowledge of the tractions on the surfaces of the particles, Eq. (3.23)

is an accurate representation of the velocity field. However, the tractions are

not known in most cases, especially for complex geometries. Instead of solving

Eq. (3.22) or (3.23), we expand the stokeslet, Jij, in a Taylor series about the

center, xα, of each particle

Jij (x− y) =
∞∑

n=0

1

n!
[(x− y) · ∇∇∇y]n Jij (x− y)|y=xα

=
∞∑

n=0

(−1)n

n!

(
xαk1 − yk1

)
. . .
(
xαkn − ykn

)
Jij,k1...kn . (3.24)

Substituting the expansion into Eq. (3.23) yields

ui (x)− u∞i (x) =
1

8πη

N∑

α=1

∞∑

n=0

(−1)n

n!
Jij,k1...knQ

α
jk1...kn

, (3.25)
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where Qjk1...kn is the nth multipole moment of particle α such that,

Qα
jk1...kn

= −
∫

∂D

(
yk1 − xαk1

)
. . .
(
ykn − xαkn

)
fαj dS. (3.26)

Substituting the multipole moment into Eq. (3.25) gives

ui (x)− u∞i (x) =
1

8πη

N∑

α=1

{Jij (x− xα)Qα
j

+Jij,k1 (x− xα)Qα
jk1

+
1

2
Jij,k1k2 (x− xα)Qα

jk1k2

+
1

6
Jij,k1k2k3 (x− xα)Qα

jk1k2k3

+ . . . } .

The zeroth moment or monopole, Qj , corresponds to the total force on the particle

such that

Fα
j = Qα

j = −
∫

∂D

fαj dS. (3.27)

The first moment or dipole can be decomposed into symmetric and antisymmetric

parts.

The symmetric part corresponds to the stresslet and the antisymmetric part cor-
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responds to the torque such that,

Sαjk = −1

2

∫

∂D

{(
yj − xαj

)
fαk + (yk − xαk ) fαj −

2

3
δjk (y` − xα` ) fα`

}
dS, and

(3.28a)

Tαjk = −1

2

∫

∂D

{(
yj − xαj

)
fαk − (yk − xαk ) fαj

}
dS, (3.28b)

where the isotropic part is excluded from the stresslet as it has no influence on the

flow of fluids, and the rotlet can be interpreted as the torque on the particle such

as

Tαjk = εjk`L
α
` , (3.29)

where Lα` is the total torque on the particle such that

Lα` =

∫

∂D

ε`mn (ym − xαm) fαn dS. (3.30)

Spherical ParticleWe take a look at a specific case — a suspension of spherical

particles. For spherical particles, the fourth-order tensor Jij,k` must be isotropic for

spheres, so Jij,k` is equivalent to ∇2Jij. But, the simplification cannot be made for

aspherical particles. After some algebra, we can rewrite Eq. (3.25) such like

ui (x)− u∞i (x) =
1

8πη

N∑

α=1

(
1 +

1

6
a2∇2

)
JijF

α
j

+RijL
α
j +

(
1 +

1

10
a2∇2

)
KijkS

α
jk, (3.31)
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where Rij is called rotlet such that

Rij =
1

4
ε`kj

(
∂Ji`
∂xk
− ∂Jik
∂x`

)
(3.32)

and

Kijk =
1

2
(Jij,k + Jik,j) . (3.33)

Now, we assume a single sphere is translating under an external force F. The

torque, stresslet, and higher moments can be neglected. So,

ui (x)− u∞i (x) =
1

8πη

(
1 +

1

6
a2∇2

)
JijFj. (3.34)

With

∇2Jij =
2δij
r3
− 6xixj

r5
(3.35)

substituted, the disturbance velocity field caused by a single sphere subject to a

force F is

ui (x)− u∞i (x) =
1

8πη

[(
1

r
+

a2

3r3

)
Fi +

(
1

r3
− a2

r5

)
xkFkxi

]
, (3.36)

which is essentially identical to Eq. (3.5a) if we make a comparison and note that

Fi = −6πηau∞i , (3.37)

which is Stokes law!
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3.2.5 The Far-Field Mobility Tensor — Faxen’s Formulae

We have seen that by using the multipole expansion we can find the velocity field

disturbed that is by the particles. For a spherical suspension, the moment is usually

truncated at the stresslet level. Higher moments are included in other studies [66],

but they are not in the scope of this study. Starting from here, we will focus on

the discussion of spherical particle, because this study is built upon the knowledge

of spherical suspensions.

We have used the multipole expansion to derive the velocity field of a single sphere

moving under an external force. Now, we solve another problem — a force Fα

(the drag is then −Fα) is applied to a sphere that is immersed in a fluid upon

which a point force f is acted at position ξξξ. We want to calculate the velocity

Uα of the particle. By using the Lorentz reciprocal theorem, we can calculate

Uα while avoiding deriving the flow field. After we derive Uα, we are capable of

obtaining the far-field mobility tensor — one of the most important ingredients in

this chapter.

We look back at Eq. (3.18) and make the following assumptions

• Make u′ the velocity field of a sphere (identical to sphere α) moving with a

velocity U in a quiescent fluid so that the corresponding stress field σσσ′ obeys

that ∇∇∇ · σσσ′ = 0. Note that the drag force on this sphere is −6πηU.
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• Make u the velocity field subject to a point force f at position ξξξ so that the

corresponding stress field σσσ obeys that ∇∇∇ · σσσ = fδ(x− ξξξ).

Then, we substitute these assumptions into Eq. (3.18), and we get

−U · Fα − u′ (ξξξ) · f = −Uα · (6πηaU) . (3.38)

We already know that

u′ (ξξξ) =
1

8πη

(
1 +

1

6
a2∇2

)
J (xα − ξξξ) · F

=
3a

4

(
1 +

1

6
a2∇2

)
J (xα − ξξξ) ·U. (3.39)

Substituting Eq. (3.37 )into Eq. (3.38) and factoring U out, we have

Fα +
3a

4

(
1 +

1

6
a2∇2

)
J (xα − ξξξ) · f = 6πηaUα. (3.40)

Note that the velocity field, v, subject to a point force is

v (xα) =
1

8πη
J (xα − ξξξ) · f . (3.41)

Thus, the velocity of particle α is

Uα =
Fα

6πηa
+

(
1 +

1

6
a2∇2

)
v (xα) . (3.42)
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More generally, if an imposed flow field u∞ exists, and v is the flow field that is

caused by particles other than particle α given by Eq. (3.31), then we have

Uα − u∞ (xα) =
Fα

6πηa
+

(
1 +

1

6
a2∇2

)
v (xα) . (3.43)

The same technique can be applied to derive the angular velocity and rate of strain.

Now, we have the Faxen’s formulae

Uα − u (xα) =
Fα

6πηa
+

(
1 +

1

6
a2∇2

)
v (xα) (3.44a)

ΩΩΩα −ΩΩΩ∞ =
Lα

8πηa3
+

1

2
∇∇∇× v (xα) , and (3.44b)

−E∞ =
Sα

20
3
πηa3

+

(
1 +

1

10
a2∇2

)
e (xα) , (3.44c)

where e = 1
2

(
∇∇∇v +∇∇∇vT

)
.

If we write Eq (3.44) explicitly, we are able to construct a mobility tensorM that

couples the translational and rotational velocity and rate of strain to the force,

torque, and stresslet of all particles such that




U−U∞

−E∞


 =M ·




F

S


 , (3.45)

where

M =




MUF MUS

MEF MES


 . (3.46)
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Here, U contains the translational and rotational velocity (a 6N vector), and F

(a 6N vector), contains the force and torque. Because of the linearity of Stokes

flow, we can reverse the roles of force/stresslet and velocity/rate of strain such

that 


F

S


 = R ·




U−U∞

E∞


 , (3.47)

where R is the so-called resistance tensor, and we can see that M−1 = R. We

term Eq. (3.45) as the mobility problem and Eq. (3.47) as the resistance problem.

In this subsection, we focus on the mobility problem and discuss the resistance

problem later.

Mobility Problem. SinceM is truncated at the level of stresslet and it includes

only far-field interactions, M can be approximated as M∞, the far-field mobility

tensor. We follow the notations of Kim and Mifflin’s paper [52] such that

M∞ =




a b̃ g̃

b c h̃

g h m



.

We will solve the tensor a of a two-particle system. The tensor a is also known as

the Rotne-Prager tensor. We solve this problem as an example, which will later be

an example of discussion of Ewald summation in Appendix B. Also, this example

will be related to a discussion of the equivalence of inverting the mobility tensor
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and the resistance tensor in later time.

We write the mobility problem of two spheres α and β such that




Uα

Uβ


 =




aαα aαβ

aβα aββ


 ·




Fα

Fβ


 (3.48)

By applying Faxen’s formula Eq. (3.44a) and the multipole expansion Eq. (3.31),

we have

Uα
i =

Fα
i

6πηa
+

1

8πη

(
1 +

1

6
a2∇2

)(
1 +

1

6
a2∇2

)
JijF

β
j . (3.49)

If we non-dimensionalize the velocity by 6πηa and any length by sphere’s radius

a, we have the form

Uα
i = Fα

i +
3

4

(
1 +

1

6
∇2

)(
1 +

1

6
∇2

)
JijF

β
j . (3.50)

Obviously, we can make the following statement from a comparison between the

above equation and Eq. (3.48) that

aααij = δij, and (3.51a)

aαβij =
3

4

(
1 +

1

6
∇2

)(
1 +

1

6
∇2

)
Jij (3.51b)

By the symmetry of the equation, we can deduce that aβαij = aαβij and aββij = aααij .
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We can obtain aαβij through some algebra such that (note that ∇2∇2Jij = 0)

aαβij =

(
3

2r
− 1

r3

)
eiej +

(
3

4r
+

1

2r3

)
(δij − eiej) , (3.52)

where ei = xi
r

is the unit vector connecting the two particles. If we adopt the

notation of Kim and Karrila [30] such that

aαβij = xaαβeiej + yaαβ (δij − eiej) (3.53)

and make a comparison, then we obtain that

xaαβ =
3

2r
− 1

r3
, and (3.54a)

yaαβ =
3

4r
+

1

2r3
. (3.54b)

Here, xaαβ represents the interaction along the line of center, and yaαβ represents

the interaction perpendicular to the line of center.

3.2.6 The Method of Reflection

We now look at a new technique that deals with the hydrodynamic interactions

between particles, which may seem to be a bifurcation from our journey, but later,

we will be shown that this technique is crucial to this study.

We suppose that two particles, α and β, are separated widely (much larger than
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their size). Both particles move with a velocity Uα and Uβ respectively in an

unbounded fluid. Let the flow-field disturbed by these two particles to be uα

and uβ. At the surface of these two particles, we have the following boundary

conditions

uα1 = Uα on ∂Dα and (3.55a)

uβ1 = Uβ on ∂Dβ. (3.55b)

We know that the boundary conditions are not accurate because at the vicinity

of particle α, the flow field is also disturbed by particle β, and vice versa. So, we

need to make corrections at the boundaries, and on each particle surface, we have

uα2 = −uβ1 on ∂Dα and (3.56a)

uβ2 = −uα1 on ∂Dβ. (3.56b)

We can make the corrections infinitely. And the resulting flow field becomes

uα = uα1 + uα2 + uα3 + . . . and (3.57a)

uβ = uβ1 + uβ2 + uβ3 + . . . . (3.57b)

Now, we look at an example. Suppose that the two particles are spherical. We

fix α in the fluid and move β at a constant velocity Uβ toward α. We wish to
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calculate the force Fα on α that keeps it fixed. The disturbance velocity that is

caused by sphere β is

u =
3

4

(
1 +

1

6
∇2

)
J
(
x− xβ

)
·Uβ. (3.58)

The force on sphere α given by the Faxen’s formula is then

Fα = −3

4

(
1 +

1

6
∇2

)
J
(
xα − xβ

)
·Uβ. (3.59)

This force is reflected back to the fluid to make the disturbance velocity

u =
3

4

(
1 +

1

6
∇2

)
J
(
x− xβ

)
· Fα

= −3

4

(
1 +

1

6
∇2

)
J
(
x− xβ

)
· 3

4

(
1 +

1

6
∇2

)
J
(
xα − xβ

)
·Uβ. (3.60)

Then, this disturbance velocity is reflected on sphere α again. These reflections

continue infinitely, and the force that fixes α becomes

Fα =− 3

4

(
1 +

1

6
∇2

)2

J
(
xα − xβ

)
·Uβ

−
(

3

4

)3(
1 +

1

6
∇2

)2

J
(
xα − xβ

)
·
(

1 +
1

6
∇2

)2

J
(
xα − xβ

)
·Uβ

− . . . . (3.61)
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Obviously, in this case we are solving a resistance problem such that




Fα

Fβ


 =




Aαα Aαβ

Aβα Aββ


 ·




Uα

Uβ


 , (3.62)

and we are solving the Aαβ is this particular case. We write Aαβ in a similar form

as aαβ such that

Aαβij = XA
αβeiej + Y A

αβ (δij − eiej) . (3.63)

As sphere β moves along the line of center, we can solve for XA
αβ only. By com-

pleting the summation such that

XA
αβ =

∞∑

n=1

(
−3

4

)2n−1
[(

1 +
1

6
∇2

)2

Jij

]2(n−1)

=

(
3
2r
− 1

r3

)
(

3
2r
− 1

r3

)2 − 1
. (3.64)

The same method can be used to derive XA
αα, and XA

αα is

XA
αα =

−1
(

3
2r
− 1

r3

)2 − 1
. (3.65)

Interestingly, if we invert the matrix



xaαα xaαβ

xaβα xaββ


 =




1 3
2r
− 1

r3

3
2r
− 1

r3
1


 , (3.66)
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we will obtain that



xaαα xaαβ

xaβα xaββ




−1

=




−1

( 3
2r
− 1
r3

)
2
−1

( 3
2r
− 1
r3

)
( 3
2r
− 1
r3

)
2
−1

( 3
2r
− 1
r3

)
( 3
2r
− 1
r3

)
2
−1

−1

( 3
2r
− 1
r3

)
2
−1


 =



XA
αα XA

αβ

XA
βα XA

ββ


 , (3.67)

which is not so surprising since it is just a result of the linearity of Stokes flow.

Thus, the inverse of the mobility tensor is proven to be equivalent to the resistance

tensor. Moreover, the resistance problem that we have solved includes an infinite

number of reflections, which are the reflections of all particles. So, the inverse of

the mobility tensor represents the many-body interactions among particles.

3.2.7 Stokesian Dynamics

We have used the method of reflections to solve the resistance problem where the

particles are widely separated so that the point force approximation can be made,

and we have also shown that this resistance problem is equivalent to the inverse

of a far-field mobility problem. However, the lubrication force still lacks. The

lubrication force arises when two boundaries come very close to each other, and as

the boundaries squeeze the fluid, a thin layer of fluid generates a very large stress

that keeps the boundaries from collapsing. To include the lubrication interaction,

all the moments need to be included in the multipole expansion equation, which

is not possible. In this study the multipole expansion is truncated at the level of

stresslets, so we need to make a correction. Our goal is to construct a resistance

tensor that includes both the far-field many-body interactions and the near-field lu-



65

brication interactions. The lubrication interaction is a two-body interaction which

depends on the relative motion between the particles. As proposed by Durlofsky

et al. [53], this two-body interaction can be added to the far-field many-body in-

teraction, and since the far-field two-body interaction is already included in the

inverse of the far-field mobility tensor, it has to be subtracted. Therefore, we have

the resistance tensor R such that

R = [M∞]−1 +R2B −R∞2B, (3.68)

where R2B is the two-body resistance tensor, which is an exact solution of two

spheres (see Jeffrey and Onishi’s work [51] or Kim and Mifflin’s [52] work), and

R∞2B is the far-field two-body interaction that is already included in [M∞]−1. So,

R2B −R∞2B is the lubrication interaction. This idea is the essential part of Stoke-

sian Dynamics, a technique invented Brady [67]. Now, we rewrite the resistance

problem in a form that is analogous to Eq. (3.46) such that




F

S


 =




RFU RFE

RSU RSE


 ·




U−U∞

−E∞


 . (3.69)

Equation (3.69) is the essential part of solving the velocities and stresslets of par-

ticles such that

U = U∞ + R−1
FU · (F + RFE : E∞) , and (3.70a)

S = RSU ·R−1
FU · F +

(
RSU ·R−1

FU ·RFE −RSE

)
: E∞. (3.70b)
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Note that the E∞ (and S) is a symmetric and traceless second-order tensor, so

there are 5 independent components, so is the stresslet S. We usually write E∞

and S in vectorized forms as E∞xx−E∞zz , 2E∞xy, 2E∞xz, 2E∞yz , and E∞yy−E∞zz , and Sxx,

Sxy, Sxz, Syz, and Syy. Now, we are set to model the hydrodynamic interactions

among and between particles, and the flowchart of the simulation is shown in

Appendix C. Equations (3.70a) and (3.70b) enable us to complete the simulation

of dynamics of particles and the computation of the rheological properties of the

fluid.

Once we have obtained the stresslets, we are able to compute the viscosity and

first normal stress difference that is the indicator of elasticity of a fluid. We write

the average stress of the fluid as

〈σij〉 = I.T. + 2ηE∞ij +
1

V

N∑

α=1

Sαij, (3.71)

where I.T. stands for the isotropic part. Therefore, we can write down the effective

shear viscosity, assuming that the shear rate is γ̇ in the direction of xy, such that

ηeff = η +
1

V γ̇

N∑

α=1

Sαxy. (3.72)

Computing the rheological properties of the fluid requires a simulation of an infi-

nite system, an infinite number of particles (N →∞) in an infinitely large space

(V →∞), while keeping the density constant. Periodic boundary conditions are



67

often imposed to such system under the assumption that the system is homoge-

neous. However, due to the slow convergence rate of the hydrodynamic interaction

∼ r−1, interactions are impossible to terminate. This dilemma has been resolved by

using Ewald summation [68,69]. Ewald summation is a commonly used technique

that models the long-range interaction between particles, such as electrostatic in-

teractions and dipole-dipole interactions, in a periodic system. Briefly speaking,

Ewald summation decomposes the interaction into two parts, one converges fast in

the real space and the other one converges fast in the Fourier space. The details

of application of Ewald summation in hydrodynamic interactions can be found in

the Appendix B.

3.3 Elements of Magnetic Interactions

We have discussed the hydrodynamic interactions so far. Because the magnetic

field is the only external field applied in this study, we have to address the magnetic

interactions here.

Under an external magnetic field, B, a magnetic particle with volume V that is

magnetized by the field will have an induced dipole such that

µαi =
V χE

µ0

Bi. (3.73)

The induced dipole of particle α generates a potential vector in the space. At an

arbitrary position x, assuming that particle α is located at the origin for conve-
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nience, in an arbitrary position other than the origin, the potential vector A is

Ak =
µ0

4πr3
εkmnµ

α
mxn. (3.74)

The potential vector generates a magnetic flux density, B̃α
i , which can also be

termed as the magnetic field that is caused by the induced dipole of particle α,

such that

B̃α
i = εijk

∂

∂xj
Ak

=
µ0

4π

(
3xjµ

α
j xi

r5
− µαi
r3

)
. (3.75)

Suppose another magnetic particle β is located at position x with induced dipole

moment µβi , then the potential between α and β, Φ, is

Φ = −µβi B̃α
i

= −µ0

4π

(
3xjµ

α
j xiµ

β
i

r5
− µαi µ

β
i

r3

)
, (3.76)

and the magnetic force, the gradient of the potential, is

FM
i = − ∂Φ

∂xi

=
µ0

4π

(
3µαi xkµ

β
k

r3
+

3µβi xkµ
α
k

r3
− 15xjµ

α
j xkµ

β
kxi

r7
+
µαj µ

β
j xi

r5

)
. (3.77)

Typically, µαi and µβi are identical for spherical particles, but different for oblate
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spheroids, since the induced dipole moment depends on the orientation of the

particle.

For multiple particles (more than 2) the magnetic force on particle α is

F
M,(α)
i =

µ0

4π

N∑

β=1

′
(

3µαi ξkµ
β
k

r3
+

3µβi ξkµ
α
k

r3
− 15ξjµ

α
j ξkµ

β
kξi

r7
+
µαj µ

β
j ξi

r5

)
, (3.78)

where the prime on the summation means that β 6= α, ξi = xαi − xβi , and r2 =

ξiξi.

The magnetic force that is introduced above is based on a model called the fixed

dipole model, which means the induced dipole of each particle is only a result of the

external field. But, in fact, the induced dipole of one particle can further induce

other particles, and this interaction can go on and on infinitely, an idea analogous

with the method of reflections in hydrodynamics. But, due to limited knowledge

of the author in electromagnetics, this simplest model will be used in this study.

An accurate description of the magnetic interactions can be found in [70]. In

Bonnecaze and Brady’s study [36], they used a method that is analogous with

the Stokesian dynamics to model the electrostatic interactions between particles.

They constructed a grand capacitance tensor, which includes both the many-body

far-field interactions and exact two-body near-field interactions.



70

3.4 An Approximated Method to Model Aspherical Parti-

cles

In the previous sections, we focus on the discussions of spherical particles. But the

goal of this study is to model the oblate spheroids as described in Chapter 2. We

have noticed that, during the derivation of the mobility or resistance problem, the

mobility or resistance tensor depends on the configuration of the suspensions only.

If the geometry of the particle becomes complicated, such as ellipsoids or other

non-analytic surfaces, the description of the mobility or resistance tensor becomes

intractable.

However, the hydrodynamic interactions among the spherical particles are well

known. So, if we can configure sets of spheres to the shape that we want to model,

we can approximate the hydrodynamic interactions among spherical particles to

be the hydrodynamic interactions among aspherical particles. For example, we can

approximate a rod as a line of spheres and a disk as a plane of spheres as shown in

Fig. 3.1(a) and 3.1(b). We need to force the constituent spheres to stay in rigid-

bodies. This constraint can be made by imposing a rigid-body tensor [54,55,71] or

a constraint force [63, 72]. We will adopt the former method, and the rigid-body



71

(a) Spherical representation of rod (b) Spherical representation of disk

Figure 3.1: Spherical representations of aspherical shapes.

tensor ΣΣΣ is [71]

ΣΣΣAα =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 rαA3 −rαA2 1 0 0

−rαA3 0 rαA1 0 1 0

rαA2 −rαA1 0 0 0 1




, (3.79)

where A stands for the center of rigid-body A, α stands for sphere α, and rαA =

xα−xA. The total force on a rigid body, given the forces of the constituent spheres,
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is

FA = ΣΣΣAα · Fα. (3.80)

So, rewriting Eq. (3.70a) in the rigid-body manner, we have the velocity, U∞, of

rigid body such that

UA −U∞ =
[
ΣΣΣ ·RFU ·ΣΣΣT

]−1 ·ΣΣΣ · Fα, (3.81)

where
[
ΣΣΣ ·RFU ·ΣΣΣT

]−1
is the “rigid-body resistance tensor” that sums the hydro-

dynamic interactions among spheres while keeping the spheres of each assembly

in a rigid-body fashion. In other words, it includes the hydrodynamic interac-

tions among rigid bodies that are approximated by the hydrodynamic interactions

among spheres, and Fα is the prescribed external force on each sphere. In this

study, magnetic forces are prescribed to disks, and the forces can be distributed

on each sphere by deducing an effective susceptibility of each sphere where the

summation of the susceptibility of the spheres should be equivalent to the effective

susceptibility of the original disk. This part of work is still under investigation.

We are going to use an alternative method.

Suppose that a single disk is moving in an unbounded fluid under an external

magnetic force FMOP and the velocity of the disk is simply a product of the mag-

netic force and a single-disk mobility tensor such that MMOP,∞ · FMOP. We then

distribute this velocity to each sphere by multiplying it by the transpose of ΣΣΣ.

By multiplying a resistance tensor R∞ to the distributed velocity, we obtain the
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drag on each sphere. Because the magnetic force is balanced by the drag on the

disk, the drag on each sphere should be equivalent to the magnetic force that is

distributed on each sphere. In the equation form, we rewrite Eq. (3.81) such that

UA −U∞ =
[
ΣΣΣ ·RFU ·ΣΣΣT

]−1 ·ΣΣΣ · R∞ ·ΣΣΣT · MMOP,∞ · FMOP. (3.82)

Here, R∞ is an approximation of RFU without lubrication interactions since lubri-

cation interactions arise from the relative motion between particles, and no relative

motion exists between spheres that are in the same rigid body.

Now, we have a method to model the dynamics of aspherical particles that have

hydrodynamic interactions included, at least approximately and the precision de-

pends on the resolution of the decomposition. The results of the simulations will

be shown later in the Results and Discussion section (Section 3.6). First, I am

going to derive a parameter that governs the motions of oblate spheroids.

3.5 Derivation of Timescales

We are not able to model the hydrodynamic interactions between true oblate

spheroids, and thus, we are unable to simulate realistic dynamics of true oblate

spheroids. But, we can obtain scalings of timescales that dictate the motions of

oblate spheroids.

We have a look back at the force and torque balance equations, assuming no
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Brownian force or inertia,

FM + FH = 0, and (3.83a)

TM + TH = 0. (3.83b)

In Chapter 2, we have already solved the torque balance part, and we can write

down the angular velocity such that

Ωα
i =

3

32ηa3
εijkµjBk, (3.84)

and we also have derived a characteristic timescale, tR, that is associated with the

rotational motion such that

tR =
32ηa3µ0

3V χE⊥B
2 (1− α)

, (3.85)

where α = χE‖ /χ
E
⊥ which is smaller than 1. Similarly, we can derive a characteristic

timescale, tT , that is associated with the translational motion. First, we write down

the hydrodynamic force of an oblate spheroid from a first-order approximation:

FH
i = AijUj, (3.86)

where [30]

Aij = 6πηa
(
XApipj + Y A (δij − pipj)

)
, (3.87)

where XA and Y A are resistance functions. When the aspect ratio is high, XA ≈
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8
3π

, and Y A ≈ 16
9π

. By combining the magnetic force Eq. (3.77) and assuming

only two particles exist, we have the following equation for the velocity of oblate

spheroid α

(
pαi p

α
j + 2δij

)
Uj =

3µ0

64πηa

(
3µαi xkµ

β
k

r3
+

3µβi xkµ
α
k

r3

− 15xjµ
α
j xkµ

β
kxi

r7
+
µαj µ

β
j xi

r5

)
. (3.88)

We then can obtain tT by choosing the initial separation, r0, between particles as

the characteristic lengthscale such that

tT =
64πηaµ0r

5
0

3 [V χE⊥B]
2 . (3.89)

We do a comparison between Eq. (3.85) and (3.89) and take the ratio, β, between

them:

β =
tR
tT

=
2

3

a2

r2
0

a2c

r3
0

χE⊥
1− α. (3.90)

We can see that this ratio is a function of a planar area function ψ ∼ a2

r20
, a volume

fraction φ ∼ a2c
r30

, and a magnetic property function
χE⊥

1−α . If β � 1, the translational

motion happens much faster than the rotational motion; in contrast, if β � 1, the

rotational motion happens much faster than the translational motion.
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3.6 Results and Discussions

In this section, we discuss the results of simulations. We first show some bench-

marks that validate the methods we have introduced so far and also the programs

that we have developed. Then, we show the results of simulations of spherical

particles and aspherical particles under magnetic fields.

3.6.1 Spherical Suspension

We first show the benchmarks of a finite suspension of spheres. Suppose that seven

spheres initially placed in a line and equally separated. The spheres sediment in

a direction that is perpendicular to the line of center. We calculate the drag

coefficient λ = F/6πηaU of the instantaneous configuration with three different

separations, r = 2.005, r = 2.2, and r = 2.6. Because of the symmetry, only four

spheres are plotted (Fig. 3.2). Comparison with Durlofsky et al. [53] has shown

good agreement. Difference arises from the error of extracting data from the plot

of Durlofsky’s paper [53]. The r = 2.005 data is closer to other data because this

set of data is tabulated in the paper.

We then show the benchmark of infinite suspension of spheres, and we compute

the shear viscosity of such suspension (Fig. 3.3). We compare our result with

Batchelor and Green’s model [73]. It has also shown good agreement.

We now move to dynamic simulations of spheres under external fields. We sim-
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Figure 3.2: A comparison of the drag coefficient λ = F/6πηaU with Durlofsky’s paper.
Three horizontal lines of seven spheres sedimenting in the vertical direction with three
different separation distances, r = 2.005, r = 2.2, and r = 2.6. The drag coefficient is
calculated using the instantaneous configuration.
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Figure 3.3: A benchmark of viscosity compared to Batchelor and Green. The calculation
is completed by simulating a random suspension of 27 spheres in one simulation cell.
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ulated the coarsening of spheres under a rotating magnetic field. The spheres

are initially randomly positioned, and we see that hexagonal packing is formed

(Fig. 3.4) at equilibrium state, which is consistent with other works and the ex-

perimental observations in our previous work.

(a) Initial configuration of spheres be-
fore magnetic is field applied.

(b) Equilibrium configuration of spheres
after magnetic is field applied.

Figure 3.4: A rotating magnetic field that is applied to spheres. Hexagonal packing is
formed at the equilibrium state.

3.6.2 Aspherical Suspension

Again, we first show a benchmark of our result. Suppose a rod is approximated

by a line of spheres. The “rod” is suspended in an unbounded fluid and translates

with a velocity U , along and perpendicular to its orientation vector. We compute

the drag coefficient of each case with different aspect ratio of rods. We compare the

computational results with the drag coefficients from the slender-body theory [75],
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which is

CF1 =
2

3

1

log[2a/b]− 1/2

(
1 +O

[
b

a

]2
)
, and (3.91a)

CF2 =
4

3

1

log[2a/b] + 1/2

(
1 +O

[
b

a

]2
)
, (3.91b)

where CF1 is the drag coefficient for flow that is directed along the orientation

vector, CF2 is the drag coefficient for flow that is directed perpendicular to the

orientation vector, b is half the minor axis (the radius of sphere in our simulation),

and a is half the major axis (the number of spheres in our simulation). The

comparison is shown in Fig. 3.5. We can see that the computational result using

the Stokesian dynamics combined with Eq. (3.81) agree well with the slender-body

theory, and as the aspect ratio increases, the comparison becomes better.

We then simulate the chaining of two “disks” using the assembly of spheres under

two different values of β. The initial and final configurations of two disks can

be found in Fig. 3.6. The magnetic field rotates in the (x, y)-plane. Initially, we

put the right disk out of plane and the left disk in plane. After the magnetic

field is applied, both disks are aligned in the plane, and they are linked up by

magnetic attraction. Figure 3.7 shows the dynamics of rotation (Fig. 3.7(a)) and

translation (Fig. 3.7(b)) at β = 0.1. We see that, at a low value of β, the rotational

motion dominates, and the translational motion is about 3 orders of magnitude

slower. Figure 3.8 shows the dynamics of rotation (Fig. 3.8(a)) and translation

(Fig. 3.8(b)) at β = 10. We see that, at a high value of β, the timescales of both
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Figure 3.5: A comparison of drag coefficients between computation and slender-body
theory. A range of aspect ratios is shown, and computational results agree well with the
slender-body theory.
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the rotational and translational motions are at the same order of magnitude.

(a) Initial configuration of two disks. (b) Final configuration of two disks.

Figure 3.6: Configurations of two disks under a rotating magnetic field. Initially, the
right disk is aligned out of plane and the left disk is aligned in plane. Finally, both disks
are aligned in the plane, and they become linked.

This part is still under investigation. For example, a method of large-scale sim-

ulation needs to be developed to simulate a system of high-aspect-ratio particles

and/or a high-volume-fraction of particles.

3.7 Conclusions

In this chapter, we first introduced the hydrodynamic interactions between par-

ticles. We discussed the elements required for building the code of Stokesian dy-

namics. Then, we compared our results of simulations with the results of other

researchers who used the Stokesian dynamics to validate our method. With con-

fidence of our code, we simulated the dynamics of spherical particles in magnetic
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(a) Orientation vector, p3, as a function
of time at β = 0.1.

(b) Separation between disks as a func-
tion of time at β = 0.1.

Figure 3.7: The change of orientation and separation as a function of time at β = 0.1.
At a low value of β, the rotational motion dominates, and the chaining is much slower
than the alignment.

(a) Orientation vector, p3, as a function
of time at β = 10.

(b) Separation between disks as a func-
tion of time at β = 10.

Figure 3.8: The change of orientation and separation as a function of time at β = 10.
At a high value of β, the translational motion dominates, and the chaining and the
alignment are at about the same timescale.
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fields. Finally, we extend our simulation of spherical suspensions to aspherical sus-

pensions by using spheres as constituting components of other geometries. This

method is validated by comparison with slender-body theory.
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Chapter 4

Microrheological Study of

Artificial Sputum Medium +

Xanthan Gum

4.1 Introduction to Microrheology

In this chapter, we will move to a new topic that focuses on the experimental aspect

of rheology, however, the fundamental physics are the same with the previous
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chapters.

Rheology is a study of the mechanical properties of complex fluids. The conven-

tional rheology usually places the sample between two solid boundaries and steadily

shear or oscillate one boundary, and a responding stress is obtained. For exam-

ple, if a steady shear, γ̇, is applied and the responding stress, σ, is measured, the

viscosity can be obtained such that

η =
σ

γ̇
. (4.1)

Or, an oscillatory strain, γ (t) = γ0e
iωt, is applied and the responding oscillatory

stress, σ (t) = σ0e
i(ωt+δ), is measured, the complex modulus, G∗ (ω), is obtained

such that

G∗ (ω) =
σ

γ
. (4.2)

We can write the complex modulus as a real part plus an imaginary part such that

G∗ (ω) = G′ (ω) + iG′′ (ω) , (4.3)

where G′ (ω) is the elastic or storage modulus that represents the part of stress

that is recoverable in the material, and G′′ (ω) is the viscous or loss modulus that

represents the part of stress that is dissipated in the material. We can write the
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modulus as

G′ (ω) =
σ0

γ0

cos δ (ω) , and (4.4a)

G′′ (ω) =
σ0

γ0

sin δ (ω) , (4.4b)

where δ (ω) is the phase lag. For a Newtonian fluid, δ = π
2
, and for a Hookean

solid, δ = 0. Conventional rheology uses the probe whose lengthscale is of centime-

ters, which is significantly larger than the characteristic lengthscale (ranging from

nanometer to micrometer) of complex fluids’ microstructures. Thus, it probes the

averaged properties. Conventional rheology fails to map out the heterogeneity of

the material therefore. Moreover, conventional rheological measurement usually

requires the sample size to be milliliters, which can be prohibitive to obtain for

expensive materials like biological fluids.

Microrheology, however, is able to probe the heterogenous environment of the ma-

terial, and only requires microliters of sample. Microrheology investigates the

rheological properties of the materials using nano or microparticles that are em-

bedded in the materials. The motion of the probing particles can be driven by the

thermal energy of the fluid, called passive microrheology, or by an external field like

magnetic or optical field, called active microrheology. The motion of the particles

can be related to the rheological properties of the materials by using generalized

Stokes-Einstein relation (GSER) [76] which will be discussed later. The early mi-

crorheological study can date back to about one century ago, when researchers
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applied magnetic field to move magnetic fillings in the material. Heilbronn [77]

measured the viscosity of protoplast by using a magnetic field to drive iron par-

ticles. Seifriz used the similar technique to measure the mechanical responses of

gelatin [78] and sand dollar eggs [79]. The fundamentals of the passive microrhe-

ology, on the other hand, can date back to a even earlier time, when Einstein [80]

published his paper on a theoretical treatment of the Brownian motion, which was

observed by Robert Brown [81]. Einstein’s theory was later confirmed by Jean

Perrin’s painstaking experiments with his students [82], which led to his Nobel

Prize in physics.

4.1.1 Generalized Stokes Einstein Relation

Generalized Stokes Einstein relation (GSER) is an extension of the Stokes Einstein

relation to relating the diffusion of the particles to the viscoelastic properties of the

materials. Before discussing GSER, we start with Einstein’s theory that relates

particles’ Brownian motions to the viscosity of the fluid.

Suppose that a species is concentrated at the origin at time t = 0. After an amount

of time, the paticles will diffuse into the space, and we can build a conservation

equation such that

∂P (x, t)

∂t
+∇∇∇ · jD (x, t) = 0, (4.5)

where P (x, t) is the probability of finding the particle at position x and at time t,

and jD is the flux of mass due to diffusion. We can write the flux as the gradient
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of concentration according to Fick’s law such that

jD = −∇∇∇P , (4.6)

and substituting the flux into the conservation equation yields

∂P (x, t)

∂t
−∇2P (x, t) = 0, (4.7)

with the initial condition P (x, t = 0) = δ (x). The probability can be solved to be

a Guassian distribution such that

P (x, t) =
1

[4πDt]d/2
exp

[
−∆r

2

4Dt

]
, (4.8)

where d is the dimensionality, and ∆r is the displacement such that ∆r = ‖x‖.

Note that the probability is imposed to be normalized such that

∫ +∞

−∞
P (x, t) dx = 1, (4.9)

and the mean displacement is zero,

〈∆r (t)〉 =

∫ +∞

−∞
∆r (t)P (x, t) dx = 0. (4.10)

In fact, the mean squared displacement (MSD) is the quantity that is needed.
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Multiplying Eq. (4.7) by ∆r2(t) and integrating over the whole space gives

∂

∂t

∫ +∞

−∞
∆r2 (t)P (x, t) dx = D

∫ +∞

−∞
∆r2 (t)∇2P (x, t) dx. (4.11)

The LHS of the equation is simply
∂〈∆r2(t)〉

∂t
. Applying partial integration to the

RHS, we can obtain

∂ 〈∆r2 (t)〉
∂t

= 2dD, (4.12)

or,
〈
∆r2 (t)

〉
= 2dDt. (4.13)

The diffusivity D can be found by using the Stokes Einstein relation of Newtonian

fluid,

D =
kBT

6πηa
(4.14)

By relating Eqs. (4.13) and (4.14) we have built a relationship between the motion

of the particle 〈∆r2 (t)〉 and the property of the fluid η.

Now we move to deriving the GSER. We start with the Langevin equation consid-

ering translational motion only,

m
dU

dt
= FH + FB. (4.15)

In an isotropic viscoelastic fluid, we can write the hydrodynamic force FH as [76]
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FH = −
∫ t

0

ζ (t− t′) U (t′) dt′, (4.16)

where ζ (t− t′) is a memory function that describes the local viscoelastic responses

at time t as the stress imposed on the fluid prior to the time t. Then, the Langevin

equation in a viscoelastic fluid becomes,

m
dU

dt
= −−

∫ t

0

ζ (t− t′) U (t′) dt′ + FB. (4.17)

Taking a unilateral Fourier transform to Eq. (4.17) we have

−mU (0) +miωŨ (ω) = F̃B (ω)− ζ̃ (ω) Ũ (ω) . (4.18)

Rearranging the equation and isolating Ũ (ω) gives

Ũ (ω) =
F̃B (ω) +mU (0)

ζ̃ (ω) +miω
. (4.19)

Multiplying the equation by U (0) and taking average, we obtain the Fourier trans-

form of the velocity autocorrelation function (VAC) such that

〈
U (0) · Ũ (ω)

〉
=

〈
F̃B (ω) ·U (0)

〉
+m 〈U (0) ·U (0)〉

ζ̃ (ω) +miω
. (4.20)

Because the Brownian force is assumed to have zero mean and uncorrelated with

the velocity of particle,
〈
F̃B (ω) ·U (0)

〉
= 0. In thermal equilibrium, the equipar-

tition theorem states that the kinetic energy of each independent degree of freedom
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is equal to 1
2
kBT , therefore,

m 〈U (0) U (0)〉 = dkBT. (4.21)

The inertia of the particles can be neglected for small particles and so miω = 0.

The Fourier transform of VAC becomes

〈
U (0) · Ũ (ω)

〉
=

dkBT

ζ̃ (ω)
. (4.22)

Analogous to a spherical particle suspended in a Newtonian fluid, we can define

the memory function of a spherical particle in a viscoelastic fluid to be

ζ̃ (ω) = 6πaη∗ (ω) , (4.23)

where η∗ is the complex viscosity which is related to the complex modulus such

that

G∗ (ω) = iωη∗ (ω) . (4.24)

By substituting Eqs. (4.23) and (4.24) into Eq. (4.22) and isolating the complex

modulus gives

G∗ (ω) =
(iω) dkBT

6πa
〈
U (0) · Ũ (ω)

〉 . (4.25)

The VAC can be expressed in terms of the Fourier transform of MSD such that
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Fu

{〈
∆r2 (t)

〉}
=

2

(iω)2

〈
U (0) · Ũ (ω)

〉
, (4.26)

and substituting it into Eq. (4.25) yields the GSER

G∗ (ω) =
dkBT

3πa (iω) Fu {〈∆r2 (t)〉} . (4.27)

In this study d is chosen to be 2 as the positions of particles are projected on a

two-dimensional image, so that

G∗ (ω) =
2kBT

3πa (iω) Fu {〈∆r2 (t)〉} . (4.28)

Now we need a model for the MSD that can be transformed from the time domain

to the frequency domain. A commonly used model is the power-law function. The

MSD can be expanded locally at a frequency of interest, ω0 [83], such that

〈
∆r2 (t;ω0)

〉
=
〈
∆r2 (ω0)

〉
[ω0t]

α(ω0) , (4.29)

where α is the diffusive exponent [84]. In a Newtonian fluid, α = 1; in a Hookean

solid, α = 0, and in a viscoelastic fluid, 0 < α < 1, as shown in Fig. 4.1. The

unilateral Fourier transform of MSD thus becomes

Fu

{〈
∆r2 (t)

〉}
=
Γ [1 + α(ω0)]

iω

〈
∆r2(t0)

〉
exp

[
iπα(ω0)

2

]
. (4.30)
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Therefore, Eq. (4.28) becomes

G∗(ω0) =
2kBT

3πa 〈∆r2(t0)〉Γ [1 + α(ω0)]
exp

[
iπα(ω0)

2

]
. (4.31)

Figure 4.1: The MSD of different kinds of materials. For a Hookean solid, the diffusive
exponent α is 0. For a Newtonian fluid, the diffusive exponent α is 1. For a viscoelastic
fluid, the diffusive exponent α is between 0 and 1.

The GSER builds a relationship between the rheological property G∗ (ω) and a

experimentally measurable quantity, 〈∆r2 (t)〉. The GSER has been widely used

microrheological studies of viscoelastic materials. However, here are a few things
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need to be noted in using GSER.

First, the assumption underlying the Einstein’s part is that the system is at equi-

librium. If a material is continuously driven out of equilibrium by external force,

by active materials such as molecular motors in biopolymers, or by evolving of the

material itself, Eq. (4.21) may fail. However, if the active changing of the state is

much slower than the sampling window, the system can be treated as quasi-steady,

and the equilibrium state is assumed to be valid during the sampling window.

Second, the assumption underlying the Stokes’ part is that the material behaves

like a continuum relative to the particle. The particle’s size should be much larger

than the lengthscale of the microstructure of the material so the probed prop-

erties are bulk properties (see Fig. 4.2(a)). Many viscoelastic materials are het-

erogeneous, and the microstructures can have different lengthscales. The particle

can probe the heterogeneous properties when the particle’s size is larger than the

lengthscale of any microstructure, but when the particle’s size is smaller than the

lengthscale of the microstructure, the particle may just diffuse through the void

space of the networks (see Fig. 4.2(c)). Beside the effect of particle’s size, the

surface chemistry of the particle can also have an effect on the continuum sur-

rounding the particle. The microstructure can be depleted or accumulated around

the particle, depending on the interactions between the microstructure and the

particle’s surface chemistry. A systematic microrheological study usually requires

using a range of sizes and surface chemistries of particles and comparing the results
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with the bulk rheological measurements. Whether the continuum assumption is

broken down or not, the microrheological measurement can be always useful. In

developing targeting drug-delivery vehicle, the vehicle should be able to diffuse

through the fluid to the desired site. The efficient transport phenomena is for the

vehicle to diffuse through the interstitial space like diffusing in a Newtonian fluid.

Besides, if the material exhibits anisotropic properties, like liquid-crystal, the use

of GSER becomes more complicated. Although the Stokes’ part is still valid, the

construction of the memory function ζ should take the orientation of the material

into account.

(a) Particle size much
greater than mesh size.

(b) Particle size approxi-
mates mesh size.

(c) Particle size much
smaller than mesh size.

Figure 4.2: The relative size of the probe’s size and the size of the mesh.

4.1.2 Techniques of Microrheology

Depending on the driven force on the probing particle, microrheology can be cat-

egorized into two aspects — passive and active, as mentioned before. Passive

microrheology is mainly used in this chapter and active microrheology, or specifi-
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cally magnetic tweezers, is applied in the study in Chapter 5. In this section, we

will discuss the techniques used in microrheological measurements.

We have discussed the fundamental theories underlying the passive microrheology.

A passive microrheological measurement usually tracks the motions of the particles

and obtain the MSD. Several techniques are used in passive microrheology, such

as multiple particle tracking [84,85], diffusing wave spectroscopy [76,86], and laser

tracking [83], the later two of which can have high-frequency (kHz – MHz) mea-

surements. Multiple particle tracking is used in this study and will be introduced

in details later.

The two most widely used active microrheology techniques are magnetic tweezers

and optical tweezers. Magnetic tweezers apply an external magnetic field, which

can be constant, impulsive, or oscillatory, to magnetic microparticles embedded in

the materials. A beam of photons is exerted on the particles and the momentum

carried by the photons can move the particles. The forces generated by the op-

tical tweezers are usually weaker than the magnetic tweezers, while the positions

captured by the optical tweezers can be more precise when combined with inter-

ferometric technique. Magnetic tweezers are used in Chapter 5 to measure the

microscopic yield-stress, and this technique will be discussed in details later.
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Multiple Particle Tracking

A multiple particle tracking setup usually includes a light microscope, a CCD

camera attached to the microscope to record the positions of the particles, and

a computer that stores the captured frames and carries out image analysis (see

Fig. 4.3, reprinted with the permission of Mao [87]). Because of its easy imple-

mentation, multiple particle tracking is widely used in microrheology. Fluorescent

microscopy is preferred to bright-light microscopy because a clearer brightness dis-

tribution can be obtained from fluorescent microscopy and can be easier for image

analysis. Improved techniques such as confocal microscopy or near-field illumina-

tion have been used to obtain the location of particles with higher precision by

reducing the background fluorescence noise. In this study, fluorescent microscopy

is used where microparticles tagged with yellow/green fluorescence are embedded

in the materials.

In a multiple particle tracking measurement, hundreds of particles can be recorded

simultaneously to ensure the statistical accuracy, or the sampling time can be made

longer if fewer particles are located in each frame because of the ergodicity of the

system. After the images are captured, the post-process usually includes image

filtering, centroid locating, and trajectories linking following the methods proposed

by Crocker & Grier [85].

Image Filtering A typical image of captured by the CCD camera on a fluorescent
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Figure 4.3: A typical setup of multiple particle tracking experiment. It includes a mi-
croscope, a camera connected to the microscope, and a computer.

microscope contains bright circles as the fluorescent particles, dark background,

and noise. The sources of noise usually includes the imperfect transfer from photon

to electron of CCD camera’s sensor and independent readout noise [88]. First, a

background image is constructed by convoluting the raw image with a constant

kernel of size 2w1 +1, where w1 is slightly larger than the particle’s radius in pixels

and smaller than the interparticle’s separation. Let Ai,j represent the brightness

value located at (i, j) on the original image matrix, and Bi,j is the background

after the convolution

Bi,j =
1

(2w1 + 1)2

∑

|m|≤w1

∑

|n|≤w1

Ai+m,j+n. (4.32)
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Second, the raw image is convoluted with a Gaussian kernel. The smoothed image

Gi,j after the convolution is

Gi,j =


 ∑

|m|≤w1

e−m
2/4



−2

∑

|m|≤w1

∑

|n|≤w1

Ai+m,j+ne
−(m2+n2)/4. (4.33)

The final image ready for next processing is thus the Gaussian smoothed image

subtraction the background image

Ãi,j = Gi,j −Bi,j. (4.34)

The original and filtered images are shown in Fig. 4.4.

(a) Original picture taken by a CCD
camera.

(b) Image processed by two low-pass fil-
ters.

Figure 4.4: A comparison of two images — original image taken by a CCD camera and
filtered image.

Centroid Locating The local maxima of brightness are assumed to be close to

the centroids of the particles. The location of the estimated centroid is denoted by
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(x0, y0). A pixel is adopted as the centroid if the brightness value of no other pixels

within a distance w2 is larger, where w2 is larger than the radii of the particles

and smaller than the interparticle’s separation. In reality, however, the brightness

distribution is not perfectly symmetric with respect to the local maxima. We

need to carry out a brightness-weighted calculation to refine the centroids of the

particles. The calculated offset (εx, εy) is given by




εx

εy


 =

1
∑

m2+n2≤w2
2
Ãx0+m,y0+n

∑

m2+n2≤w2
2




m

n


 Ãx0+m,y0+n. (4.35)

Then, the refined location (x, y) is the initial estimate (x0, y0) plus the offset

(εx, εy).

Trajectories Linking Next we need to link the located centroids into trajecto-

ries. A located particle is assigned with a label in a frame, and the same label

is assigned to this particle in the next frame, if the particle moves within a dis-

tance w3 relative to the previous frame. The positions of the particle with the

same label will later be linked together. The value of w3 should be chosen smaller

than the interparticle’s separation; otherwise, the labels of two particles may be

exchanged.

In multiple particle tracking experiments, the positions of the particles are pro-

jected on a two-dimensional image and a two dimensional (d = 2) MSD is cal-

culated. With the knowledge of the positions of particles, we are now able to
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calculate the MSD. To increase the statistical accuracy, we calculate the ensemble

average MSD for a time step ∆t such that

〈
∆r2 (∆t; t)

〉
=

1

N

N∑

α=1

[xα (t+∆t)− xα (t)]2 + [yα (t+∆t)− yα (t)]2 . (4.36)

Magnetic Tweezers

The earliest microrheological study utilized the magnetic tweezers [77–79]. While

the modern experiements were carried out by Ziemann [89], who used both con-

stant and oscillatory fields to move the paramagnetic microparticles. A typical

magnetic-tweezers setup includes a coil made of an iron core wrapped with electri-

cal wires, a function generator that generates different signals, an amplifier, para-

magnetic particles, and a microscope setup that observes and records the motions

of particles.

Based on the number of coils, the magnetic tweezers can be categorized into single-

pole, double-pole and higher number of poles. Single-pole magnetic tweezers,

as the name suggests, involves one set of coil. Single-pole coil imposes a con-

stant or impulsive force to the magnetic particle, and the creep compliance can

be measured [90, 91]. The yield stress of a material can also be measured by

gradually increasing the strength of the field until a motion of the particles is ob-

served [4, 92] . Double-pole coils can oscillate the particles with different frequen-
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cies [89]. In opposite with the oscillatory measurement in conventional rheology

and passive microrheology, where an frequency-dependent strain is imposed and

the frequency-dependent stress is measured, oscillatory magnetic tweezers impose

a frequency-dependent stress and the strain is measured. But essentially they are

the same.

A calibration of the magnetic tweezers is usually carried out in a viscosity-standard

Newtonian fluid. The force is calculated by tracking the motion of the particles

and then using the Stokes law. Voltages or currents are changed to obtain the

voltage- or current-dependent magnetic force. The magnetic force also depends

on the positions of the particles relative to the electromagnetic coils, so a map

of force is obtained. After the calibration, the voltage or current and the posi-

tion are the input parameters to get the magnetic forces in a microrheological

measurement.

At this point, we have discussed the fundamental theories underlying the microrhe-

ology and the techniques used to do the experiments. The rest of this chapter

focuses on the application of passive microrheology to study the rheological prop-

erties of artificial sputum medium (ASM) plus xanthan gum (XG). ASM plus XG

is a mixture that our lab developed to be a cheap substitute of mucus of cystic

fibrosis (CF) patients such that their bulk rheological properties are comparable.

The application of magnetic tweezers will be applied in Chapter 5.
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4.2 Introduction to the Rheology of Mucus

Mucus is a biological fluid secreted in different sites of body, such as respiratory,

gastrointestinal, urogenital, visual, and auditory systems of mammals, as well as

the epidermis of amphibians, the gills of fish, and the external coating of snails

and slugs. This complex fluid provides protection by humidifying and lubricating

surfaces and by selectively obstructing transport of particles through a permeable

film. Mucus is often found to be a viscoelastic conglomeration at a macroscopic

lengthscale (> 1 mm). Mucus is composed of water (≥ 95%), mucins (≥ 2%),

salts and cellular debris [93]. Mucins, which contribute to 80% of the dry weight

in mucus [94], are secreted by the goblet cells of the surface epithelium and by

the mucous and serous cells of the submucosal glands [95]. The microstructure

of mucus is formed primarily by the entanglement of mucin fibers and other con-

stituents of mucus [96], along with waker non-cavalent [97] and stronger disulfide

bonds [98], creating a weak hydrogel.

Macroscopic (or bulk) rheological studies of mucus that use measure the properties

at a lengthscale on the order of centimeters have shown that its viscosity is usually

very high at low shear rates, 104- to 106-times larger than the viscosity of water.

At high shear rates near the physiological maximum, the viscosity of mucus was

shown to decrease drastically to a value close to the viscosity of water [98]. Chen

et al. [99] used a double-tube capillary viscoelastometer to characterize the sputa

of bronchitic patients, finding the viscosity to be 100 to 300 Pa·s, and the elastic
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modulus to be 1 to 2.5 Pa [100].

Compared with the bulk rheology of mucus, studies of microrheology have re-

ported significantly different rheological properties. Since mucus has a heteroge-

neous micro- or nano-environment, nanoparticles have shown to diffuse through the

interstitial space that is surrounded by the microstructure of mucin at rates that

are significantly higher than the predictions that are based on the bulk rheology.

For instance, the Norwalk virus (Norovirus) with a size of 38 nm and the human

papillomavirus (HPV) with a size of 55 nm were found to diffuse in human cervical

mucus with the same diffusion rate as in water. It shows that a size on the order

of 10 nm, the continua of the microstructure of mucus break down. In contrast,

the herpes simplex virus (HSV) with a size of 180 nm diffuses 100- to 1000-times

slower in mucus than in water [101]. When the size of the particle is about the

same with the lengthscale of the microstructure, particles were found to be able

to hop between elastic cages [102], which was also observed in this study.

As mentioned in the previous section, beside the effect of the size of probing par-

ticles, the surface chemistry is another important factor that would affect the

measurement. For instance, 200 nm particles of polystyrene that were coated with

low-molecular-weight polyethylene glycol (PEG) were found to diffuse through spu-

tum of a CF patient with a rate 90 times the uncoated particles with the same size.

The viscosity calculated according to the diffusion rate was found to be 0.00005

times the bulk rheological measurement [103]. The result shows that PEG on the



106

surface creates depleted space by pushing the microstructure of mucins away.

Cystic fibrosis is a genetic disease that is caused by mutations in the cystic fibrosis

transmembrane conductance regulator (CFTR) gene, which leads to an improper

regulation of ions and to reduced water content [104].The respiratory mucus of

CF patients has unusually high rheological properties, resulting in the obstruction

of mucociliary clearance, the colonization of bacteria, and finally severe infection

[105,106], which is exacerbated by difficulty of delivering antibiotics to the infected

site or genetic medicine to the epithelium.

The transport of particles to the underlying tissue is largely hindered by the mi-

crostructure of the mucus, which presents rheologically at the macroscopic scale as

a high viscoelastic modulus. However, detailed characterization of the viscoelastic

properties of CF mucus at a microscopic lengthscale should promote the devel-

opment of efficient drug-delivery vehicles. By probing with 100 nm and 200 nm

particles, Dawson et al. [2] found that the viscosity of CF sputum at the microscale

was at least an order of magnitude lower than the bulk viscosity that was measured

by a cone-and-plate rheometer. Using the data from Dawson et al., we compared

the bulk and microscopic rheological properties of CF sputum, as shown in Fig. 4.5.

The discrepancy in diffusivity and subsequent rheology between the bulk rheology

and the microscopic rheology increased to more than two orders of magnitude as

the particle size decreased to 100 nm. Thus, the range in the rates of particle

transport indicated that the mesh size of the CF sputum was not homogeneous.
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Figure 4.5: Comparison of |G∗| between macroscopic and microscopic rheology from
Dawson et al. A torsional rheometer with cone-and-plate geometry was used. Multiple
particle tracking was used for the microrheology.

Interestingly, some researchers have shown that nanoparticles can diffuse more

easily through CF sputum with a higher viscoelastic modulus [107]. The authors

hypothesized that an increased viscoelastic moduli indicated an increase in biopoly-

mer concentration and a subsequent increase in the number of junctions between

the biopolymer chains. Further, they theorized that this structural change in the

biogel could lead to local phase separation in the microstructural environment,

which resulted in porous voids that provided paths for decreased resistance to

diffusion.
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These documented observations provide evidence for the need to design drug-

delivery vehicles that are engineered to efficiently navigate the microstructure.

Unfortunately, samples of CF sputum that are obtained from the pulmonary sys-

tem of patients are difficult to obtain. The invasive collection of CF sputum can be

harmful to the donors, while noninvasive methods of collection can result in con-

tamination of the sample or in altering of the microstructure. To enable continued

research into techniques of delivery while overcoming this inaccessibility of CF spu-

tum, this study investigated a recipe for a synthetic biofluid that had consistent

rheological properties of pulmonary mucus from a patient with CF.

Synthetic biofluids provide a cheaper and less-invasive alternative to real biofluids

for conducting a variety of research activities. However, consistency of critical me-

chanical properties between the synthetic biofluids and the real biofluids is essential

for properly staging a number of biophysical processes.

A variety of recipes for synthetic mucus can be found in the literature. To mimic

tracheal mucus, Hamed et al. [108] used phosphoglycerate mutase (PGM) type III

and a solution of albumin with glutaraldehyde as a cross-linking agent to tune

the viscoelasticity of the synthetic fluid. Hassan et al. [109] crosslinked locust

bean gum (LBG) solution with Borax of two concentrations to make liquid-like

mucus and solid-like mucus. However, since actual mucus is composed primarily of

entangled fibers of mucins with associative bonds instead of cross-linked polymers,

mucus will recover rapidly and reversibly upon shear [96, Chapter 4]. Schenck
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et al. [110] used Carbopol poly(acrylic acid) to create hydrogels that mimic lung

mucus. Dynamic oscillatory shear tests show that both elastic and viscous moduli

have a sharp increase at a frequency of 10 rad/s. This erratic behavior indicates

that the structure of the gel degrades at a high frequency, which is inconsistent

with CF sputum. Sriramulu et al. [1] made artificial sputum medium (ASM) to

emulate CF mucus. In Sriramulu’s study, ASM served as a growth medium for

Pseudomonas aeruginosa to simulate the infected status of CF mucus [1]. However,

the viscoelastic moduli of ASM can easily be shown to be 3 to 4 orders of magnitude

lower than the viscoelastic moduli of the real CF sputum that was reported by

Dawson et al. [2]

In this chapter we investigate both the bulk and microscopic rheological properties

of an enhanced recipe of ASM that includes varying concentrations of xanthan

gum (XG), an exocellular heteropolysaccharide that is produced by the bacterium,

Xanthomonas campestris. The conformation of xanthan gum in solution depends

on the salt concentration and temperature. At low salt concentrations and high

temperatures, the XG has a disordered form with a single-stranded structure [111–

115]. The goal of this study was to develop a standardized protocol for creating

a cheap synthetic biofluid for CF sputum that is rheologically consistent at both

the bulk and the microscopic lengthscales.
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Table 4.1: The ingredients of ASM. Adapted from Sriramulu [1].

Ingredients of ASM
porcin mucin 5 g
fish sperm DNA 4 g
casamino acid 5 g
NaCl 5 g
KCl 2.2 g
Tris 15 ml (1 M)
DTPA 15 ml (1 mM)
egg yolk emul-
sion

5 ml

DI water 1 l

4.3 Experimental Methods and Materials

ASM +XG. Solutions of ASM were made by following Sriramulu et al. [1], which

is reproduced in Table 4.1. All of the ingredients except egg yolk emulsion were

dissolved in DI water and autoclaved for 30 minutes. After the solution cooled to

room temperature, the egg yolk emulsion was added. Xanthan gum (T622, CP

Kelco) in powdered form was added into ASM with concentrations of 0.1%, 0.2%,

0.3%, 0.4%, 0.5.% and 1.0%. These solutions were mixed thoroughly until the

powder was dissolved.

Bulk rheology. We performed the bulk rheological measurements by using a stan-

dard rotational rheometer (DHR-3, TA Instruments) with a 2◦, 40 mm stainless

steel cone-and-plate geometry. We completed dynamic oscillatory strain sweeps at

a frequency of ω0 = 0.16 rad/s for strains of γ ∈ [10−4, 0.5]. The linear viscoelastic

region was found to be below 10% deformation (γ < 1), and all subsequent fre-



111

quency sweeps were completed at a strain of γ0 = 0.01. The frequency-dependent

elastic modulus, G′, and viscous modulus, G′′, were found by performing an os-

cillatory shear sweep with frequencies of ω ∈ [0.01, 50] rad/s. Finally, the shear

viscosity was found by completing steady-shear flow sweeps with shear rates of

γ̇ ∈ [0.01, 100] 1/s.

Microrheology. The microscopic rheological experiments were conducted by sus-

pending one-micron particles of polystyrene in the medium. These particles are

surface modified with carboxylate groups, and they are labeled with yellow/green

fluorescence (F8823, Thermo Fisher). The medium was loaded into a micro-channel

slide (Sticky Slide Luer, Ibidi) with both ends sealed. The Brownian motion of the

fluorescent microparticles was imaged with a 40×/0.6 NA objective using an in-

verted microscope (Eclipse Ti-S, Nikon). The transient positions of approximately

50 in-frame particles were captured for a total of 5,000 frames at 31 frames per

second with a CCD camera (Guppy Pro 125B, Allied Vision).

The MSD is calculated from the recorded frame using the method introduced

previously and the modulus is calculated using the GSER of Eq. (4.31). The

errors associated with the experiments are characterized by the method proposed

by Savin [84]. There are two types of errors, static error and dynamic error. The

static error rises from the experimental system such as vibration of the setup. The

dynamic error arises from the finite acquisition time of the image. The position

that is acquired at a certain time includes the history of successive positions of the
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particles during this time interval that the shutter of the camera is open. Thus, the

acquired position in each frame is the averaged positions over the shutter time. We

characterized the static error in the typical way by fixing particles in an agarose gel

and measuring the subsequent MSD. The dynamic error was minimized by choosing

a smaller shutter time, while ensuring that the particles were visible.

4.4 Results and Discussion

The rheological properties of ASM+XG are tailored by using different concentra-

tions of XG, and they are compared with the properties of CF sputum at the

macroscopic lengthscale. The microscopic rheology focuses on the change in MSD

and on the dependence of the relaxation time, the cage size, and the diffusive ex-

ponent on XG concentrations. A compilation of the macroscopic and microscopic

rheological data can be found in Table 4.2.

4.4.1 Macroscopic Rheology

The macroscopic rheology of solutions of ASM and XG with different concen-

trations of XG were studied using a commercial rotational rheometer. The dy-

namic oscillatory strain-sweep (Fig. 4.6(a)) and frequency-sweep (Fig. 4.6(b)) tests

showed that the ASM+XG mixtures became more elastically dominated with an

increase in concentration of XG. The crossover frequency decreased with increasing

concentration of XG from 0.1% to 0.4%. For 0.5% to 1.0%, the elastic modulus
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dominated over all frequencies. The steady-shear tests showed that ASM+XG

mixtures were shear thinning, as expected for many polymer solutions.
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(b) Frequency sweep.
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(c) Flow sweep.

Figure 4.6: Rheology of ASM+XG for different concentrations of XG, CXG ∈
{0.1, 0.3, 0.5, 1.0}%. (a) The strain-dependent elastic modulus (G′, closed symbols) and
viscous modulus (G′′, open symbols). Strain sweeps were completed at a frequency
ω0 = 0.16 rad/s. (b) The frequency-dependent elastic modulus (G′, closed symbols) and
viscous modulus (G′′, open symbols). Frequency sweeps were completed at a strain of
γ0 = 0.01. (c) The apparent shear viscosities as a function of shear rate.

A comparison with data of CF sputum from Dawson et al. [2] in Fig. 4.7 has shown

that the enhancement of ASM by the addition of XG at a concentration of 0.5%

created a synthetic biofluid with rheological properties that agreed well with the

rheological properties of CF sputum.Fig. 4.7 also shows plots of elastic modulus,

the viscous modulus, and the viscosity of pure ASM, which were approximately

two orders of magnitude smaller than the values of CF sputum in all three sweeps.
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(a) Strain sweep.
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(c) Flow sweep.

Figure 4.7: Comparison of rheological properties of ASM and ASM+XG(0.5%) to CF
sputum from Dawon et al. (a) The strain-dependent elastic modulus (G′, closed symbols)
and viscous modulus (G′′, open symbols). Strain sweeps were completed at a frequency
ω0 = 1 rad/s. (b) The frequency-dependent elastic modulus (G′, closed symbols) and
viscous modulus (G′′, open symbols). Frequency sweeps were completed at a strain of
γ0 = 0.01 for CF sputum and ASM+XG and at a strain of γ0 = 1.0 for ASM. (c) The
apparent shear viscosities as a function of shear rate.

4.4.2 Microscopic Rheology

The microscopic rheological results show that particles that are suspended in

ASM have dramatically different behavior depending on the concentration of XG

(Fig. 4.8). The random trajectory of particles in ASM with no XG demonstrated a

purely diffusive motion (Fig. 4.8(a)), which is indicative of a viscous, inelastic ma-

terial. The MSD of purely diffusive motion scales as t1, as exemplified in Fig. 4.9.

The viscosity of ASM that was obtained by using the Stokes-Einstein relation was

found to be 1.6 × 10−3 Pa·s. Although ASM consists of some macromolecules

(porcine mucin, fish DNA, etc. [1]), the concentrations of these materials are too

low to exhibit any elastic contributions. When XG was added to ASM, the ther-

mal motions of the particles were altered. As shown in Figs. 4.8(b)-(c), particles

that are diffusing in samples of ASM with the addition of 0.1% and 0.2% of XG
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displayed two regions of dynamics. At short times the particles were constrained

inside an elastic “cage”, where a blob of trajectories can be seen. At long times

the particles “hopped” from one elastic cage into another elastic cage, which can

be seen in the trajectories as “blobs” that a re connected to each other. As the

concentration of XG in ASM was increased, the size of the blobs became smaller in

size and more dense in trajectories, and the paths that connect the blobs became

shorter. As shown in Fig. 4.8(d), in a concentration of 1.0%, the particles were

not able to diffuse, and they became trapped in a single environment.

Particles that are suspended in a more concentrated mixture of XG in ASM needed

to expend more energy to escape the cages. The hopping behavior can also be seen

in the plots of MSD versus time (Fig. 4.10(a)-(b)). At short times the diffusive

exponent was less than one, when the particles were constrained inside the elastic

cage, and they exhibited subdiffusive motion. At long times when the particles

escaped their current cage and moved to their next cage, their overall motion again

became random, resulting in an overall diffusive motion. The intersection of the

subdiffusive region and the diffusive region indicated a characteristic relaxation

time, tr, of the polymer and a characteristic cage size, `c. As shown in Fig. 4.10

and plotted explicitly in Fig. 4.11, as the concentration of XG (CXG) was increased,

the relaxation time increased, scaling as C1.40
XG , and the cage decreased, scaling as

C−2.07
XG .

When the concentration of XG was increased above 0.4% to 0.5%, the particles ap-
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(a) ASM. (b) ASM+XG(0.1%).

(c) ASM+XG(0.2%). (d) ASM+XG(1.0%).

Figure 4.8: Trajectories of a single 1-µm particle. (a) In ASM, the particle is diffusive,
traveling over 10µm in 1.0 min. (b) In ASM+XG(0.1%), the particle is subdiffusive at
short times, but the particle is diffusive at long times, traveling over 10µm in 15.0 min.
(c) In ASM+XG(0.2%), again, the particle is subdiffusive at short times, and the particle
is diffusve at long times, traveling over 1µm in 30.0 min. (d) In ASM+XG(1.0%), the
particle is no longer diffusive, as the particle only samples its local environment of ∼
200 nm in 15.0 min.
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Figure 4.9: MSD of particles that were suspended in ASM. The MSD scales as t1, and
the viscosity was measured to be 1.6× 10−3 Pa·s.

peared to become permanently constrained inside the elastic cage, and the resulting

diffusive exponent became approximately zero. This general trend in constrained

motion as a function of concentration of XG can be seen in Fig. 4.11(c), where

the diffusive exponent decreased with an increase of the concentration of XG. The

transition of the motion of the particles from diffusing in a viscous fluid to be-

ing constrained in an elastic gel can be seen in Fig. 4.12. The diffusive exponent

changes from 1 to 0 as the concentration of XG was increased to 0.5%.

From the same plots of MSD (Fig. 4.10), the elastic and viscous moduli were

obtained as a function of frequency by using the GSER. These values are compared

with the bulk moduli that were obtained from standard rotational rheometry in

Fig 4.13. The complex modulus is shown for samples of concentration of XG of

0.5% and 1.0%, as the microscopic rheological data did not provide a measurable
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(a) ASM+XG(0.1%).
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(b) ASM+XG(0.3%).
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(c) ASM+XG(0.5%).

-2 -1 0 1
-4

-3

-2

-1

0

(d) ASM+XG(1.0%).

Figure 4.10: MSD of particles that were suspended in ASM at varying concentrations
of XG, CXG ∈ {0.1, 0.3, 0.5, 1.0}%. (a) The intersection of subdiffusion and diffusion
is at (tr, `c) = (1.1 s, 0.19 µm). (b) The intersection of subdiffusion and diffusion is at
(tr, `c) = (5.7 s, 0.05 µm). (c) The MSD scales as τ0, and `c = 0.03 µm. (d) The MSD
scales as τ0, and `c = 0.02 µm. With an increase of the concentration of XG, the motion
of the particles become more subdiffusive, the relaxation time becomes longer, and the
cage size becomes smaller. Ultimately, the particles are bounded inside an elastic cage
at the concentrations of 0.5% and 1.0%, where the motion implies that the media was a
viscoelastic solid.
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Figure 4.11: Diffusive properties as a function of the concentration of XG. (a) The relax-
ation time tr versus concentration. The relaxation time increases with the concentration
of XG with the scaling of C1.4

XG. The gray area shows that, at a concentration of 0.5%
and higher, the particles are permanently captured in the elastic cage, and the relax-
ation time cannot be obtained. (b) The cage size `c versus concentration. The cage size
decreases with the concentration of XG with the scaling of C−2.07

XG . (c) The diffusive
exponent α versus concentration. With an increase of the concentration of XG (from
0.1% to 0.4%), the motion of the particles become more subdiffusive, and the diffusive
exponent, α, scales as C−0.92

XG . The gray area shows that, at a concentration of 0.5% and
higher, the diffusive exponent is zero, and the ASM+XG mixtures are purely elastic.
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Figure 4.12: MSD of particles that were suspended in ASM with different concentrations
of XG. The slope of MSD shows that the ASM is purely viscous

(
MSD ∼ τ1

)
. With an

increase in concentration of XG, the mixture becomes elastically dominated, and even-
tually, it becomes a pure solid

(
MSD ∼ τ0

)
. The agarose that was used to characterize

the static error of the experimental system is shown for comparison of the cage size.
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viscous modulus. In Fig 4.13(a)-(b), the crossover frequency (ωc, the reciprocal

of the characteristic “relaxation” time) obtained from the microscopic rheological

measurements generally decreased as the concentration of XG increased, which

is in agreement with the macroscopic rheological measurements. However, the

moduli that were obtained microscopically at high frequencies (>10 rad/s) were

consistently about one order of magnitude smaller than the moduli that were

obtained macroscopically, which is consistent with the results from Dawson et al.

in Fig. 4.5. Thus, the solutions of XG appear to have a hierarchy of structures

that is similar to CF sputum.

These results can be described by considering that the particles could have been

constrained inside a small first-order structure that was itself contained inside a

larger second-order structure. Since the size of the particle may have been small

when compared wit the second- or higher-order structures, the rheological prop-

erties at higher order would not have been probed. The macroscopic rheological

techniques, however, averaged the properties of the material at lengthscale that are

greater than a millimeter. The viscosities that were obtained in this diffusive re-

gion at long times were compared with the zero-shear viscosities that were obtained

from standard rotational rheometry. Figure 4.14 shows that the builk viscosities

were again consistently about an order of magnitude larger than the viscosities

that were obtained from the microscopic rheological technique. However, the scale

of the viscosity with concentration was close between the macroscopic and micro-

scopic methods, which is consistent with the theoretical scaling prediction from
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(a) ASM+XG(0.1%).
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(b) ASM+XG(0.3%).
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(c) ASM+XG(0.5%).
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(d) ASM+XG(1.0%).

Figure 4.13: Comparison between microscopic rheology and macroscopic rheology for
varying concentrations of XG. (a), (b) Elastic modulus G′ and viscous modulus G′′ for
concentrations of XG of 0.1% and 0.3%. Lines are used for microscopic rheology, and
spheres are used for macroscopic rheology. Solid lines or filled symbols are used for
G′ and dashed lines or open symbols are used for G′′. (c), (d) Comparison of |G∗| of
concentrations of XG of 0.5% and 1.0%. Lines are used for microscopic rheology and
triangular symbols are used for macroscopic rheology.
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reptation theory (η0 ∼ C3.75
XG ) [116].
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Figure 4.14: Viscosity of ASM as a function of different concentrations of XG, CXG ∈
{0.1, 0.2, 0.3, 0.4}%. The gray area shows the concentration of XG that cannot be used
to calculate the viscosity because the particles are permanently captured in the elastic
cage. The microscopic viscosities were obtained from the long-time diffusive region. The
macroscopic viscosity was found using the zero-shear viscosity.

4.5 Conclusion

The rate of diffusion of 1-µm particles in ASM was found to be only 0.63 times the

diffusion rate in water. The low concentration of polymers in ASM had trivial in-

fluence on the elastic properties at a microscopic lengthscale. The addition of XG,

however, created weakly-associated elastic cages that bounded the probe particles.

The ionic environment of the ASM solution causes XG to conform to a fivefold he-

lix, and the intermolecular associations cause the formation of networks, or elastic
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“cages” of XG. At lower concentrations (CXG ≤ 0.4%), the particles were observed

to escape the cages at long times. At higher concentrations (CXG ≥ 0.5%), the re-

sulting material appeared gel-like, and the particles were observed to be restrained

inside the cages. This study provides preliminary microrheological data by using

less costly materials and directs future studies, for instance, on the dependence of

particle size and surface functionality. To study the discrepancy between macro-

scopic and microscopic rheology of ASM+XG, larger particles should be used.

Table 4.2: Macroscopic and microscopic data of ASM, ASM+XG, and CF sputum [2].

ASM+XG Macroscopic Rheology (ω = 1rad/s, γ0 = 0.01) Microscopic Rheology
[% XG] G′ G′′ ωc η0 α tr lc

[Pa] Pa] [rad/s] [Pa·s] [-] [s] [µm]
0% 6.5×10−4 1.5× 10−3 —– —– 1 ∞ —–

0.1% 0.14 0.11 0.62 0.55 0.68 1.1 0.19
0.2% 0.39 0.40 2.6 2.50 0.25 4.6 0.068
0.3% 1.2 0.86 10.8 10.76 0.22 5.8 0.050
0.4% 3.2 1.6 48.9 47.18 0.19 7.9 0.043
0.5% 5.1 2.2 —– 78.45 0 —– 0.027
1.0% 23.2 2.2 —– 401.50 0 —– 0.017
CF 7.3 2.2 —– 50.98 —– —– —–
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Chapter 5

Suppressed Coarsening of

Particles in Yield-Stress Fluids

So far we have discussed the suspensions of particles in Newtonian fluids (Chapters

2 and 3) and microrheological study of non-Newtonian fluids (Chapter 4). We

have shown that the rotational and translational of magnetic microdisks under a

rotating magnetic field cannot be decoupled if the microdisks are suspended in

a Newtonian fluid. If the microdisks are suspended in a non-Newtonian fluid,

specifically a fluid with yield stress, we have shown that we are able to suppress
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the translational motion while allowing the rotational motion, which is the main

topic of this chapter. Moreover, the yield stress at a microscopic lengthscale of

the fluid is characterized by the microrheological technique discussed in Chapter

4.

5.1 Motivation and Background

Inkjet printing is a deposition technique used for fabrication of a variety of novel

materials via using functionalized fluids, such as solar cells that are printed with

poly(methyl methacrylate) polypyridyl ruthenium (II) copolymer and C60 fullerene

with heptyl viologen derivatives [119], DNA microarrays [120], active proteins [121],

tissue structures, and magnetic materials [122, 123]. The inkjet printing can be

combined with an external magnetic field to create construct complex configura-

tions inside the droplets and so control the properties. For instance, anisotropy

can be achieved by aligning MOPs, and the configurations can be fixed by poly-

merization of the droplets. One-dimensional and two-dimensional anisotropy have

been obtained by using rod-like MOPs [124] and disk-like MOPs [3,19,29] respec-

tively.

The external magnetic field can induce magnetic particles which subsequently will

attract neighbor particles to create column-like or sheet-like structures [29,125] (see

Fig. 5.1). Although the chaining can be exploited in magnetorheological (MR) flu-

ids for magnetically activated devices [126], such coarsening of the particles can
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be unfavorable in areas like high-frequency applicationsm as it increases the eddy-

current loss in the material. Thus, to obtain a composite with a high concentra-

tion of aligned magnetic microdisks and a homogeneous distribution, a race occurs

among three events: (1) the alignment of the magnetic particle, (2) the coarsen-

ing of the particles through particle-particle interactions, (3) the freezing of the

particles into place through phase transition (e.g., polymerizing the suspending

medium). The ideal suspending medium for processing these composites would

therefore be a fluid with a high translational viscosity that restricts chaining and

with a low rotational viscosity that allows alignment.

Modeling Alignment Dynamics of Magnetic Microdisks
Mingyang Tan, Han Song, Pallavi Dhagat, Albrecht Jander, Travis W. Walker

School of Chemical, Biological, and Environmental Engineering, Oregon State University
School of Electrical Engineering and Computer Science, Oregon State University

Overview

Composites with aligned particles can have
enhanced magnetic, mechanical, optical, and
di↵usive properties.

I High-frequency applications such as
inductors and antennae

I Magneto-optics

I Biological tissue sca↵olds

Anisotropic structures with periodic disk
orientation obtained through programmed
alignment using magnetic field [1]

Anisotropic structures with particles of
di↵erent orientations found in nature, e.g.,
tooth and mollusk shells [2-4]

Motivation

The magnetic microdisk has a high susceptibility plane, �?, and a low susceptibility axis,
�k, which is parallel to the disk’s orientation vector, p. By using rotating magnetic field,
the particles can be aligned into the plane of the field.

I Develop a theoretical model to describe the alignment dynamics

I Fabricate nanocomposites with aligned particles embedded within a polymer matrix.

Experimental Methods

I Ni-Fe disks (5 µm ⇥ 150 nm)

I Silicon oils: ⌘ 2 {215, 550} cP

I Inverted microscope with CCD camera

I Three-axis electromagnetic coil system

Assumptions and Definitions

I Isolated particle

I Quiescent fluid u1i = 0i, ⌦1
i = 0i, E1

jk = 0jk

I Stokes flow ReP = ⇢ua
⌘ ⌧ 1

I High rotary Peclét number Per ⇠
V
⇣
�E
?��E

k
⌘
B2

kBT � 1

I High aspect ratio

I Induced dipole µj = V
µ0
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�⌘

Theoretical Model

Torque balance "ijkµjBk � ⇣r!i = 0, 3 ⇣r = 32
3 ⌘a

3

Governing Equation

dpi

dt
= ABlpl (Bmpmpi � Bi) 3 A =

V
⇣
�E
? � �E

k
⌘

µ0⇣r
3 V =

4

3
⇡abc
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I Reduce from 3 to 2 di↵erential equations by using spherical coordinates,
pi = (sin ✓ cos�, sin ✓ sin�, cos ✓)

I Define phase shift, u, to be the angle between the projection of p on 1,2-plane and field

direction, u = �� ⇠⌧
2

Governing Equation in Spherical Coordinates

du
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2
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Model vs Experiment

Define alignment time �⌧ = ⌧(p3 = 0.9) � ⌧(p3 = 0.1) [5-6]
Compare experimental results to model for di↵erent parameters

Full Analytic Solutions and Simplified Asymptotics

Full analytic solutions, confirmed by finite di↵erence, have been derived.

Full Analytic Solution [⇠ = 0.5] Full Analytic Solution [⇠ = 2]

Slow Field Asymptotics [⇠ ⌧ 1]

tan ✓

tan ✓0
=

"
tan2 �0

1 + tan2 �0

#1/2

exp

"
�⇠

2⌧

4

#
Fast Field Asymptotics [⇠ � 1]

tan ✓

tan ✓0
= exp

h
�⌧

2

i

Stability Analysis

At low ⇠, a stable node attracts all the u
trajectories. The particle is phase-locked with
the field.

At high ⇠, no stable node exists. The particle
is phase-ejected with the field.

Conclusions

I The analytic solution covers the entire frequency range, showing good comparison with
experimental results.

I The asymptotic solution provides a simple form that can give a straightforward guide to
industrial implementation.

I The high-⇠ asymptotics has minimum controlling parameters, which provides direction for
optimizing the process.

Future Works

I Perturb the axisymmetry of the particle

I Introduce translation (i.e., sedimentation)
and Brownian motion

I Study the far-field stability analysis of
two-particle dynamics

I Use boundary element method (BEM) to
simulate many-particle system

I Use non-linear constitutive model of
viscoelastic fluids to simulate motions of
particles

I Test the applicability of the theory in high
volume fraction sample

I Determine the contribution of particles’
orientation distribution to bulk rheology

Future Applications I: Nanocomposites Fabrication

I Fabricate composites with anisotropic
structures by using layer-by-layer alignment

I Develop drug-delivery vehicles of
nanocomposites for better drug targeting

I Introduce yield-stress polymer matrix to
minimize particle migration

I Test the anisotropic di↵usive properties of
nanocomposites

Future Applications II: Microrheology Probe

I Study the rotational and translational motion of particles in non-linear rheology materials

I Relate the motion of the particles to the physical properties of the matrix

I Vary the size of the particle and investigate lengthscale of microstructures of
heterogeneous materials (e.g., mucus)

I Selectively functionalize the surface chemistries of the particles, and investigate the
dependence of microrheological properties on the surface functionalities of particles

I Investigate the ability of a second particle to enhance/diminish the ability of the original
particle to di↵use through soft solids
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(a) Cartoon of spheres
chaining.

1 5 10 15 20 25
[s]

50

100

150

(b) Time sequence of disk chaining.

Figure 5.1: (a) Cartoon showing coarsening of chains of spherical particles in a constant
magnetic field directed up relative to the page. (b) Experimental sequence of NiFe disks
(5µm diameter, 0.05 vol%) chaining in a 10-mT constant magnetic field directed up
relative to the page.

To prevent the migration of particles, nonlinear fluids, especially fluids that exhibit

a yield stress, have been successfully introduced. Associated gel networks of gum

solutions (e.g., xanthan, gellan) have been shown to prevent sedimentation in par-

ticle suspensions [127, 128]. Rich et al. postulated [129] and confirmed [130] that

such materials could arrest magnetic particles. Since these fluids have relatively
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quick reformation time of their yield stress, they make ideal candidates for allow-

ing rotational alignment while preventing translational chaining in a fluid that can

still be successfully ejected from an inkjet printhead.

In our previous work, we have shown that two-dimensional sheets of particles are

formed under a rotating magnetic field when microdisks are suspended in a lin-

ear fluid. In this study, microdisks were suspended in solutions of gellan gum to

utilize its nonlinear rheological properties. The concentration of the gellan gum

was tuned to obtain a yield stress that was strong enough to prevent the particles

from migrating (or sedimenting), but the alignment of particles was still obtained.

We present a theoretical comparison of the characteristic timescales that are as-

sociated with the rotational and translational motions in a linear fluid, validating

the necessity for such an elaborate system, and an experimental comparison be-

tween the yield stress of a suspending fluid and the stresses that are caused by

rotational and translational motions, as a proof of concept for future development.

We also provide a detailed characterization of our suspending media to exemplify

the ability to tune the value of yield stress for this concept.

5.2 Theoretical Scalings

For particles with induced dipoles, most of the available work in the literature

focused on rods that have a director or orientation vector, p, that is in the direction

of the axis of extension of the particle (the axis of rotation or the axis of symmetry).
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When researchers have made progress on the dynamics that are associated with

disks, they have almost always been interested in oblate spheroids that have a

permanent dipole that is directed in the axis of symmetry. In this study, we

study the oblate spheroids that have an induced dipole as introduced before. The

influence of rotational fields on distribution of oblate spheroids with induced dipoles

has been rarely discussed in the literature to date.

5.2.1 Equilibrium Configuration in A Linear Fluid

Our preliminary efforts to study suspensions of disks with induced dipoles under ro-

tating magnetic fields have provided insight into the creation of layered structures,

as shown in Fig. 5.2(b). The dynamics of sheet formation and sheet coarsening are

actively being investigated, but we have recently developed a simple geometric ar-

gument to discuss the long-time equilibrium state of a hexagonal packing that will

arise. These sheets are found to form layers that are single-particle thick, which

is a direct result of the magnetization that induces the magnetic dipole. Since the

dipole is dynamic in its direction, two sheets that are stacked in close proximity

with their surface normals pointing parallel (as is forced by the rotating magnetic

field) will initially repel each other as their overall magnetization creates a situation

where the north and south poles of the sheets are in close proximity.

Therefore, if we assume that a single layer of spheres will pack in an ideal hexago-

nal configuration, we can estimate the separation distance that exists between two

layers by simply using the overall volume fraction of the particles and some geome-
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(a) Particle-particle geom-
etry.

(b) Sheets formation. (c) Hexagonal sheet.

Figure 5.2: Geometric arrangements of chaining events. (a) Two oblate spheroids with
induced dipoles. (b) Sheets formed by a rotating magnetic field taken from experiments.
The magnetic field rotates in the plane that is perpendicular to the plane of view. The
dimension of the particle is a = 2.5µm and c = 75 nm, and the volume fraction is
φ = 0.001. Eight sheets are identified with a sheet spacing of dexp = 80 ± 37µm. (c)
Ideal hexagonal sheet formation under a rotating magnetic field. A unit cell is chosen in
the blue rhombus.

try. For a hexagonal lattice (Fig. 5.2(c)), if one cuts a unit cell (parallelogram-type

prism) from the lattice that connects the centers of four neighbor spheroids, then

one full spheroid will exist inside the unit cell with a volume, Vc, of

Vc = 2
√

3a2d, (5.1)

where d is the separation distance of the layers. By defining the volume fraction

to be φ = V
Vc

, where volume of an oblate spheroid is V = 4πa2c
3

, the spacing can be

predicted to be

d =
2πc

3
√

3φ
. (5.2)

A quick calculation of the experiment in Fig. 5.2(b) shows that, for a = 2.5 µm,

c = 75 nm, and φ = 0.001, the sheet spacing should be approximately d = 90 µm.
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The actual measured value is dexp = 80 ± 37 µm, which confirms the geometry

scaling. Microtome slices in the (x, y)-plane, which is perpendicular to the axis of

rotation of the magnetic field, show that the assumption of hexagonal packing was

not fulfilled. Thus, a nonideal random packing exists, which will reduce the number

of particles that can exist in a sheet, increase the total number of sheets that are

present, and decrease the sheet-to-sheet spacing. This simple geometric scaling

provides an excellent estimate if bulk composites are attempting to be made with

well-controlled sheet spacing. This configuration shows the potential for control of

anisotropic diffusivities in metamaterials with controlled diffusivity ratios.

5.2.2 Timescales of Rotation and Translation in A Linear Suspending

Liquid

We have seen the two characteristic timescales associated with the rotational and

translational motions in Chapter 2 and 3. Let’s reaffirm them here

tR =
32ηa3µ0

3V χE⊥B
2 (1− α)

, and (5.3a)

tT =
64πµ0r

5
0ηa

3 [V χE⊥B]
2 . (5.3b)

The ratio, β, between these two timescales dictates which motion dominates,

β =
tR
tT

=
2

3

a4c

r5
0

χE⊥
1− α. (5.4)
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If β � 1, then the timescale for rotation is much greater than the timescale for

translation, and the particle will chain before orienting. In contrast, if β � 1, then

the timescale for rotation is much smaller than the timescale for translation, and

the particle will orient long before chaining occurs. The time ratio can be treated

as a product of the volume fraction, φ ∼ a2c
r30

, the planar area fraction, ψ ∼ a2

r20
,

and the magnetic property of the particle,
χE⊥

1−α . Once the particle shape, size,

material, and volume fraction are chosen for a given experiment, the timescales

for orientation and translation are no longer independent. If an even distribution

of the center of mass of the aligned particles is sought, β must be kept low. Yet,

β grows in magnitude as the volume fraction, φ, the planar area fraction, ψ, or

the perpendicular susceptibility, χE⊥, grow in magnitude, and β also grows as the

susceptibility ratio, α, approaches unity.

5.2.3 Stress Scales of Motion in A Nonlinear Suspending Fluid

By sparsely distributing the particles in a linear fluid, the translational motion

can be slowed; however, translation and orientation cannot be decoupled, and the

translational motion can lead to significant chaining in a densely distributed fluid.

To suppress the translational motion, a nonlinear fluid can be introduced in an

attempt to arrest the particles. If we return to the idea that an ideal suspending

medium would would have a high translational viscosity that restricts chaining an

a low rotational viscosity that allows alignment, then a fluid that exhibits a yield

stress with a fast reformation time would be a prime candidate. Some materials
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require an applied force before flow is achieved (e.g., ketchup, toothpaste). The

associated stress of this force is called a yield stress. Not all non-Newtonian fluids

exhibit a yield stress, but they are common in hydrocolloids, crosslinked polymers,

gels, and colloidal dispersions, where a significant microstructure can withstand

an external force.

The magnitude of the yield stress, τy, needs to be carefully adjusted to allow

rotational motion while suppressing translational motion. Therefore, we compare

the yield stress with the magnetic force and torque to obtain a proper parametric

scaling that permits the alignment while preventing the migration. Similar to the

dimensionless parameter, Yg, that is used in the work of Beris et al., which is the

ratio between the yield stress and the gravitational stress, we use two dimensionless

parameters, YT and YR, that are the ratio between the yield stress and the stresses

that are created by the magnetic force and the magnetic force, respectively. A

quick derivation of the scaling is shown below.

The magnitude of the magnetic forece, FM , and the magnetic torque, TM , are

found in previous chapters, and reaffirmed here

FM ∼
[
V χE⊥B

]2

µ0r4
0

, and (5.5a)

TM ∼ V χE⊥B
2

µ0

. (5.5b)

The magnitude of magnetic force represent an upper bound on the pairwise in-
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teractions for a given separation distance as the particles are fully aligned and

in-plane. Similarly, the magnitude of the traction on the surface of the particle

that is caused by the yield stress is given by

F Y ∼ τya
2

(
1− e2

e

)
tanh−1 e, (5.6)

where e is the eccentricity of the microdisk, such that [ea]2 = a2− c2. The magni-

tude of the torque that is caused by the yield stress scales like

T Y ∼ τya
3. (5.7)

Thus, the dimensionless parameters YT and YR can be found to scale like

YT =
F Y

FM
∼ r4

0

a4

µ0

[BχE⊥]
2 τy, and (5.8a)

YR =
T Y

TM
∼ a

c

µ0

B2χE⊥
τy, (5.8b)

which will hold at leading order for most practical particles with aspect ratios,

ρ = c
a
> 1 × 10−2. In the case of YT > 1 and YR < 1, the particle alignment

can be achieved, while the translation of particles is obstructed. An inequality

can then be written that bounds the yield stress, setting the necessary property of

suspending fluid, such that

kT
a4

r4
0

[
BχE⊥

]2

µ0

< τy < kR
c

a

B2χE⊥
µ0

, (5.9)
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where kT and kR are proportionality constants that are only dependent on geom-

etry and susceptibility. The left side of this inequality can be considered τT , the

maximum stress on the body that is associated with translation, and the right side

of this inequality can be considered τR, the minimum stress on the body that is

associated with rotation. This inequality can be immediately simplified to produce

a criteria for the packing density of the material such that

kTa
5χE⊥ < kRcr

4
0. (5.10)

This criteria is independent of the field strength, which again makes manipulating

external variables of the process unavailable. If the type of particles are set for a

specific experiment such that {a, c, χE⊥} are known, then r0 is set by this criteria.

Thus, this criteria can be written in a form that sets a bound on the volume fraction
(
φ ∼ a2c

r30

)
that can be used in practice without experiencing chaining, where the

maximum volume, φ̂, assuming an even distribution, scales like

φ̂ ∼ ρ

[
ρ

χE⊥

]3/4

. (5.11)

Finding the exact proportionality constant would require numerically solving for

YR and YT ; however, in practice, empirical fitting to experimental data for a spe-

cific system would still be necessary. Thus, this expression provides a general

design heuristic for manufacturing as the volume fraction of the composite is in-

creased.
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5.3 Experimental Methods and Materials

Building on the insight that was developed from the theoretical scalings in the

previous sections that allowed for the development of bounded regimes for relating

particle volume fraction, yield stress, and field strength, we identified experimen-

tal strategies for magnetically aligning filler particles while preventing chaining

through the use of a fluid with a yield stress. We hypothesized that, at sufficient

magnetic fields, altering the concentration of the constituents of the fluid and thus

the strength of the yield stress would allow adjustment of the cages of stress so

that the particles would be able to align without migrations.

5.3.1 Gellan Gum

In this study, we used CG-HA gellan gum from CP Kelco for our suspending

medium. CG-HA is a pharmaceutical-grade, high acyl gellan gum that forms soft,

elastic, non-brittle gels. Solutions at certain concentrations of gellan gum present

as Bingham plastics (i.e., non-Newtonian, shear thinning fluid with a yield stress),

which have the ability to indefinitely suspend particles, depending on the yield

stress. Polymer systems that contain gellan gum are capable of exhibiting a given

yield stress at much lower shear viscosities than most hydrocolloids, allowing the

system to suspend materials of dissimilar density while maintaining manageable

flow behavior.

Gellan gum is an industrially relevant biopolymer that is utilized in food, personal-
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care, and pharmaceutical industries for its ability to gel, texturize, stabilize, form

films and suspensions, and act as a structuring agent. Gellan gum has also been

utilized in bioink for bioprinting of living cells, including tissue scaffolds, as it

allows for filament deposition with a larger operating range, less fine-tuning of

parameters, and reduced optimization of printing temperatures and settings.

To reduce the time-dependent, thermoreversible development of aggregates in the

solutions of gellan gum, all samples were made one day in advance, stored in the re-

frigerator at 4℃overnight, brought to room temperature, and mixed in a centrifuge

at 1000 rpm prior to being used. All concentrations are presented as a percent,

where the percent is the weight of gellan gum per volume solute (w/v%).

5.3.2 Bulk Rheology

In an effort to connect the microscopic properties being probed by the particles

to the macroscopic properties, we investigated the concentration dependence of

the bulk yield stress for gellan gum. A protocol for measuring yield stress was

developed using a standard rotational rheometer (TA Instruments DHR-3) with a

60 mm, 1◦ cone and plate to complete a stress sweep (0.001 to 1 Pa) under steady

shear. The sample holding time was set to 30 s with an equilibrium time of 5 s

and measurement time of 60 s.

A weak yield stress was determined on the order of 1 × 10−2 Pa. Figure 5.3(a)

shows the results of the yield stress as a function of concentration of gellan gum
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from CGG = [0.001, 0.1]% for CNaCl = 1%. A monotonic relationship between the

addition of gellan gum and an increase in yield stress is observed over this range of

concentrations with good reproducibility for replicate concentrations. Variations in

the reproducibility increase above CGG = 0.065%, as the timescale of reformation

after loading the sample increases beyond the limited time that is available to

ensure that evaporation is not affecting the sample. Further, multiple batches of

gellan gum were used throughout the study, and the sensitivity of the yield stress

these concentration is quite pronounced, as seen in Fig. 5.3(a).

5.3.3 Microrheology

Polystyrene (PS) particles (SpherotechSpheroTM, d = 4.3 µm, ρ = 1.22±0.02 g/cm3)

with ferromagnetic inclusions were used in two different experiments to determine

the concentration dependence of the microscopic yield stress of the solutions of

gellan gum.

Suppresion of Gravitational Sedimentation. Longtime suspension of particles has

been a consistent roadblock in maintaining a homogeneous distribution of the cen-

ter of mass in suspensions of magnetic particles. We initially utilized the high

density of the particles to determine the lowest concentration of gellan gum that

allowed particles to stay indefinitely suspended within the bulk fluid, identifying a

concentration such that the microscopic yield stress of the fluid was a greater than

the gravitational stress. The experimental setup consisted of a Nikon D90 DLSR

that was secured to a z-axis platform. A digital timer remote was used to capture
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experimental photographs every hour for 24 hours. Experimental fluids were pre-

pared by pipetting 1 mL of solution into a 1.5 mL centrifuge tube. A 2.5% bulk

solution of 4.3 µ, PS particles with ferromagnetic inclusions was vortexed on the

highest speed for 30 s to ensure a homogeneous concentration of particles through-

out the bulk solution. Immediately after vortexing, 20 µL of the bulk particle

solution was pipetted into the 1 mL aliquots in centrifuge tubes. Figure 5.3(b)

shows the dispersed particles at t = 0 h, while Fig. 5.3(c) shows the dispersed

particles at t = 24 h.

A concentration was deemed to have an inadequate yield stress if the particles

completely settled to the bottom of the tube. Complete sedimentation of PS

particles with magnetic inclusions occurred after 24 h for all concentrations below

0.02%. Concentrations above 0.025% were able to suspend particles indefinitely.

This method served to determine lower concentration bounds for gravitational

stress scalings. Calculating the stress that is exerted on the lower half of the

particle by associated buoyancy force, τg, such that

τg =
2∆ρga

3
, (5.12)

the yield stress can be calculated via a simple stress balance, τy = τg, to be

τy(CGG = 0.025%) > 3.1× 10−3 Pa, which is displayed in Fig. 5.3(a) for compari-

son.

Suppression of Magnetic Migration. To measure the microscopic yield stress of
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Figure 5.3: Yield stress as a function of concentration of gellan gum. (a) Bulk rheo-
logical results for concentration of gellan gum from 0.001 to 0.1% in 1% NaCl. The
triangle (4) indicates the value for the microscopic yield stress that was calculated
from the sedimentation suppression. The asterisks (∗) indicate the values of the mi-
croscopic yield stress that was obtained from pulling active microrheology. (b)-(c)
Time-lapse sedimentation experiment. Polystyrene particles with magnetic inclusions
(d = 4.3µm, ρ = 1.22 ± 0.02 g/cm3) were injected into various concentrations of gel-
lan gum (CG-HA). From left to right, CGG = {0.0100, 0.0150, 0.0200, 0.0225, 0.0250,
0.0300, 0.0400, 0.0500}% in CNaCl = 1% (note that concentrations in the photos are
shown as weight per volume percent times 104). Values from the microscopic rheological
results are included. (b) Suspensions immediately after they were vortexed for 30 seconds
for particle suspension. (c) Complete sedimentation of polystyrene particles with mag-
netic inclusions occurs after 24 hours for all concentrations below 0.02%. Concentrations
above 0.025% were able to suspend particles indefinitely.
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the solutions of gellan gum above concentrations that can suppress sedimentation,

we utilized a magnetic bead microrheometer (Fig. 5.4(a)), the so-called magnetic

tweezers [90–92] that has been mentioned before. The magnetic tweezers used

in this study is a single-pole magnetic tweezers which has a very fine tip. It is

mounted on an independent stage so that it can externally apply a magnetic body

force (FM) to control the motion of paramagnetic particles within viscoelastic

fluids. The force that is exerted by the magnetic field is FM = ∇ [µµµ ·B]. However,

the field strength of the fine magnetic tip is very difficult to measure explicitly,

with the gradient of the magnetic field near the tip being very sharp. A region of

155 µm× 155 µm that was centered 150 µm from the tip was chosen as the region

of interest for this experiment. A force map is constructed by pulling the particles

through a Newtonian fluid of known viscosity. Two different dilutions of corn

syrup were prepared and measured on a rheometer. Suspensions of Spherotech

particles were prepared with both dilutions, and the motion at relevant input

voltages was captured via video. The trajectory of the particles in the fluid was

used to calculate the body force that was experienced by a particle at a particular

location. Trajectories in the region of interest were selected and used to calculate

the average force in the region. From this force map, an estimate can be made

for the force that is required to induce translation for each concentration gellan

gum.

The electromagnetic was driven with a Kepco bipolar operational power sup-

ply/amplifier (BOP 20-10M), which was controlled using a RIGOL DG1022 func-
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tion generator. An inverted microscope (Nikon Eclipse Ti-S) with transmitted light

and either a 4× magnification or a 10× magnification (Fig. 5.4(a)) was used to

track the motion of the particles in time throughout the experiment. By complet-

ing a simple force balance (FH = FM), the viscosity of the fluid can be measured

from knowledge of the magnetic body force (input stress) and the tracking of the

bead (output strain) [131].

(a) Magnetic tweezers setup. (b) Apparatus. (c) Microscopic yield experiment.

Figure 5.4: (a) Horizontal slide containing the complex fluid that was seeded with mag-
netic particles is placed on an inverted transmission microscope (left), allowing precise
control of the magnetic body force (right: closeup of magnetic tweezers). (b) A pulling
magnetic-tweezer apparatus with sharpened soft-iron rods is positioned directly above an
inverted microscope objective. (c) Microscopic image of tip of magnetic tweezers. The
image is a composite of the initial and final state of the particles with nonrecoverable
displacements that are marked in blue. The region of interest (155µm× 155µm) for the
tweezers is bounded in green.

For each experiment, approximately 100 µL of the solution was placed in a small

well on the microscope stage. The fine tip of the electromagnet was brought into

the field of view and lowered into the solution without contacting the bottom of the

well. Using the function generator, a constant voltage was applied to the Kepco

amplifier input, and the response of the particles in the field of view was captured
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in a video. If more than three particles within the plane of focus and region of

interest were determined to have moved more than 1.5× the particle diameter,

then the voltage as determined to generate a field which results in a force at or

above the yield stress. The results are shown in Tabel 5.1.

Table 5.1: Input voltage, calibrated yield force, and calculated yield stress for each
concentration.

CGG V F Y τy

[%] [mV] [pN] [Pa]

0.065 200 120 4.2
0.070 400 250 8.4
0.075 600 370 12.7
0.080 > 800 – –

At low voltage, particles moved slightly in the weak hydrogel, but they recovered

fully once the power was removed from the magnet. As the power was increased,

a small number of particles very near the tip eventually began to overcome the

yield stress and translate toward the magnet. As the power was increased further,

this translation occurred at greater distances until the motion occurred within the

calibrated region. The minimum force that was required to induce displacement

of the particles that did not fully recover once the magnetic field was removed was

interpreted as the local yield stress of the fluid.

The particles experiencing critical voltage in the lowest concentration moved short

distances along predictable trajectories. More erratic motion was observed as the

yield stress exceeded in the other trials. In the 0.07% solution, some particles

broke free and displayed characteristic flow behavior, while others remained bound
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but followed a path not perfectly aligned with the magnetic field. The 0.075%

solution required the strongest body force to surpass the yield stress. At that

intensity, nearly all particles that showed non-recoverable displacement exhibited

rapid movement to the magnetic tip. With the current setup, the power supply

could nod deliver enough current to the magnet to induce translation in the 0.08%

solution. Further support that this body force is on the order of the yield stress is

that the particles in each concentration undergo flow behavior at voltages above

the critical voltage. This behavior is particularly evident in the 0.070% and 0.075%

solutions.

5.3.4 Microdisk Alignment

Directed alignment experiments in a rotating magnetic field were conducted using

ferromagnetic microdisks to provide a proof of concept that a fluid with yield stress

can allow rotation while preventing translation. These experiments utilized a three-

axis electromagnetic coil system that has been discussed in detail in Chapter 2 and

Tan et al. [3] (Figure 1(c)).

Magnetic microdisks were created by laser milling (ESI 5330 UV Laser uVIA Drill,

Electro Scientific Industries, Inc.) a 1.15 mil cast ribbon of Metglas 2826MB3

(Metglas, Inc.). The disks were approximately 360 µm in diameter and 29 µm in

thickness, and their effective in-plane and out-of-plane susceptibilities were mea-

sured in previous work to be 12 and 1, respectively [29].
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Single Disk Alignment. The three-axis electromagnetic coil system can be mounted

on an inverted microscope (Nikon Eclipse, Ti-S). A single disk was suspended in

a clear sample well that contained 3 mL of gellan gum of a known concentration.

The sample well was placed in the induction device on the microscope with a 4×

objective. The particle was aligned orthogonally to the field of view by manipu-

lating the sample with a stir rod. Once the initial alignment was set, a rotating

magnetic field at a frequency of 60 Hz was applied at various intensities, and the

response of the disk was captured via video.

Multi-Disk Alignment. To see the transition from a magnetic field that would

allow rotation while preventing translation to a field that would allow both modes

of motion, the three-axis electromagnetic coil system was mounted on a workbench.

Backlit with an LED lamp, a Nikon D90 DSLR with a macroscopic lens was

mounted above the system to veiw the dynamics from above, providing adequate

resolution for analysis of the alignment of these larger disks.

Multiple disks were suspended in a clear sample well that contained 5 mL of

gellan gum with a concentration of 0.065%, which was found to be the lowest

concentration that would prevent sedimentation. Random alignment was achieved

via manual stirring. Magnetic fields at a constant frequency of 60 Hz and varying

intensity were applied, and the response of the disks was captured via video.
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5.4 Results and Discussion of Microdisk Alignment

Going into the experimental portion of this study, we assumed that, for a given

particle of size a > c, we could create a suspending medium with a concentration

of gellan gum
(
ĈGG

)
such that the yield stress of the medium would equal the

gravitational stress of the particle, that is τy

(
ĈGG(a, c)

)
= τG, implying YG = 1.

The value of ĈGG can be found for any size and shape of particle in a similar manner

to the procedure that was outline in the section on suppression of gravitational

sedimentation. Assuming that the yield stress of the suspending media grows

monotonically with the concentration of gellan gum, which is supported by the

bulk results in Fig. 5.3(a), we could then choose a concentration of gellan gum

that exceeds this lower limit of suppresion, C > ĈGG.

Next, assuming that the particle has susceptibility χE⊥ and χE‖ and that all of

our previous assumptions from our theoretical scalings held, our efforts turned

to identifying two critical values of our field strength, B, that are predicted by

Eq. (5.9). The first critical value, denoted by B∗, sets the lower limit of strength

of the external field that is necessary to obtain alignment. The particles cannot be

fully aligned at a magnetic field that is weaker than the critical value; or in other

words, below this critical value, the yield stress is stronger than the stress that

is necessary to align the particle. The mathematical description is shown below,

∃B∗ 3 ∀B < B∗, τR < τY , (5.13)
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which can also be restated such that YR < 1.

The second critical value, denoted by B∗∗, set the upper limit of the strength of the

external field. It is the maximum external field that can align the particles while

preventing the translation of the particles; or in other words, above this critical

value , the stress caused by the magnetic interaction between particles is stronger

than the yield stress. The mathematical description is shown below,

∃B∗∗ 3 ∀B > B∗∗, τT < τY , (5.14)

which can also be restated that YT > 1. Since we were interested in a proof

of concept, we used the volume fraction, φ, to our advantage to manipulate the

minimum separation distance, r̂0, between suspended particles. The Eq. (5.9),

which assumed that YT < 1 < YR, can be restated such that, for certain values of

r̂0, the upper limit of suppressed translation will be greater than the lower limit

for the onset of rotation, B∗∗ > B∗. Thus, we can write that a regime must exist

where B∗ < B < B∗∗.

5.4.1 Alignment of A Single Disk

Generally speaking, each concentration exhibited similar characteristics. At low

field intensity, the magnetic microdisks would vibrate locally, but the did not

experience any rotation. As the intensity increased, the microdisks began to rotate

into planar alignment. However, upon removal of the external field, the microdisks
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were found to sometimes rotate back to their initial alignment to varying degrees.

This response showed that the suspending medium had a natural deformation

prior to yielding that is typical of soft solids, which can allow the microdisks to

rotate without causing the medium to flow. At high field intensity, the particles

aligned very quickly, “snapping” into place as soon as the field is applied, and they

remained aligned when the external field was removed.

The minimum magnetic field, B∗, that was required for planar alignment, regard-

less of the degree of recovery, was determined from the videos. Table 5.2 shows the

strength of the magnetic field that was required for each concentration of gellan

gum. The 0.060% concentration of gellan gum was not able to suspend microdisks,

and data for this concentration is presented to identify the lower bound of bulk

yield stress that allowed for microdisk suspension. The microdisks required a min-

imum concentration of 0.065% to stay suspended. The maximum field strength of

the induction device was 7 mT, which was unable to achieve full planar alignment

at concentration above 0.080%. The value of B∗ increases monotonically with con-

centration, as expected. For fields greater than B∗, once the field was removed, the

amount of recovery was loosely correlated with field intensity. In other words, mi-

crodisks that were aligned with a high field strength recovered recovered less than

microdisks that were aligned with a lowered field strength. Analyzing the speed or

acceleration of the rotation is hypothesized as possible avenues for describing the

disruption of the local structure of gel.
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Table 5.2: Values of bulk yield stress of fluids that were used in directed particle assembly
experiments. The field strength that was required to induce complete orientation into
the plane of the magnetic field is also presented.

CGG τy B∗

[%] [mPa] [mT]

0.060 23 –
0.065 25 3
0.070 26 3
0.075 31 4
0.080 33 5

The heterogeneous behavior, which was slightly evident in the tweezer experiment,

was more pronounced at this larger lengthscale. In some cases, the microdisks

appeared to rotate clearly about the center of mass. In others, a disk seemed to

become bound to some invisible structure in the gel, and the disk would ratchet

into place slightly offset from the enter of mass. For instance, on occasion, the

lowest concentration, 0.065% was not as well aligned at 3 mT when compared to

0.07%.

While attempting to reset the particle alignment during experiments, relaxation

motion was observed to form in the wake of the stir bar that was used to manipulate

the gel. Visually, tensions that had developed specifically in the path of the stir bar

within the fluid appeared to drive the fluid. In some cases, these structures were

on the scale of the well, that is, much longer than the diameter of the microdisk.

Though detailed characterization of these events would require a well-organized

investigation, formation of such structures near a around a microdisk would likely

have a significant influence on alignment.
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5.4.2 Alignment of Multiple Microdisks

The investigation of the alignment of multiple disks demonstrated that translation

that is caused by the induced magnetic field between microdisks is dependent

on the external field and that the resulting body force can be suppressed when

particles are separated by a distance of r̂0 ∼ 10a.

Figure 5.5 shows a sequence of photographs as the field strength was increased. At

a field strength of 1 mT, a few particles were rotating into alignment. At both 3 mT

and 5 mT, all particles are observed to fully align with no translational motion.

This observation was consistent with the results from the previous section that

determined the minimum field strength that was needed for complete alignment

for an isolated particle was B∗ (CGG = 0.065%) = 3 mT. At 7 mT, particle 3

began to spin substantially, migrating from its initial position and sedimenting to

the bottom of the well.

Figure 5.5 shows a second sequence of photographs as the field strength was in-

creased. At 5 mT, all particles were observed to fully align with no translational

motion. This observation was again consistent with the results from the pre-

vious section that determined that minimum field strength that was needed for

complete alignment was B∗ (CGG = 0.065%) = 3 mT for a single particle. At

7 mT, translation and eventual sheeting with other microdisks was observed; thus

B∗∗ (CGG = 0.065%, r̂0 ∼ 10a) = 7 mT. At higher concentrations of suspending
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Figure 5.5: Directed alignment of Ni-Fe microdisks (360-µm diameter) in 0.065% gellan
gum. Field strength was increased sequentially from 0 to 7 mT. (a) Initial particle
positions before an induced, rotating magnetic field was applied. (b) A field strength of
1 mT was applied. Particles 3, 5, and 6 exhibited vibrational motion without full rotation
or translation. (c) A 3-mT field strength was applied. Particles 2, 3, and 6 snapped into
the plane of the magnetic field. Particles 1 and 4 also snapped into the plane, as they
are now evident. Another particle has translated to the location of particle 3, as they
were most likely very close before the field strength was increased. (d) Little change
exists after the field strength was increased, aside from the obvious rotation of particle
3 and its partner. (e) At 7 mT, rotation of particle 3 and its partner was substantial,
leading to translation as they spun through the fluid. (f) After a time of 15 s, particle 3
had moved laterally in the sample, as well as sedimenting to the bottom of the well.
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medium, we were able to align the particles at various field strengths that were

consistent with the results from the alignment of single particles. However, we

were unable to produce large enough magnetic fields to induce chaining and iden-

tify B∗∗.

From these results, we can calculate a quick approximation for the proportionality

constants from the inequality in Eq.( 5.9) at the concentration of CGG = 0.065%.

From Table 5.1 we see that the microscopic yield stress is τY = 4.2 Pa. Thus, the

necessary field strength for rotation, B∗ = 3 mT, implied that the proportionality

constant for rotation is kR = 0.6. Finally, the necessary field strength for trans-

lation, B∗∗ = 7 mT, implied that the proportionality constant for translation is

kT = 7.5.

5.5 Conclusions and Future Works

Nanocomposites, made of ferromagnetic nanoparticles in a dielectric, non-magnetic

matrix, offer unparalleled opportunities for innovation in electromagnetic materi-

als — the size, shape, concentration, and orientation of the particles in the matrix

can be readily varied to realize a wide range of magnetic and dielectric characteris-

tics. Voxel-by-voxel alignment of fillers would allow the creation of functionalized

gradient materials with potentially important opportunities for new applications,

including diffusion and conduction [132–134].

This formulation could, at a minimum, allow bulk composites with even distribu-
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Figure 5.6: Directed alignment of Ni-Fe microdisks (360-µm diameter) in 0.065% gellan
gum. Field strength was increased from 0 to 7 mT. (a) Initial particle positions before an
induced, rotating magnetic field was applied. (b) A field strength of 5 mT was applied.
All particles became aligned. (c) The external field was removed. Some particles (e.g.,
particle 4) experienced some rotation back out of alignment. Particle 7, which seemed
to consist of two particles that were stuck together, migrated slightly, as the particle
slowly rotated. (d) A field strength of 7 mT was applied. All particles became aligned
again. (e) While the field strength was held at 7 mT, multiple particles began migrating.
After a time of 39 s, Particles 6 and 7 chained before migrating towards particle 1. (f)
Particles 1, 6, and 7 formed a sheet of particles.
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tion of the center of mass to be formed. Further, this strategy should be easily

incorporated into layer-by-layer deposition of material to form composites with

layer-dependent orientation. Obviously, the addition of this strategy to voxel-by-

voxel efforts will bring added complexities in terms of distributing the droplets,

but, given the difficulties in preventing chaining when it is unwanted, the potential

for success is worth investigating. The use of inkjet printing technologies allows

for the incorporation of voxel-by-voxel filler alignment and effects of filler concen-

tration to be leveraged. These technological opportunities drove our interest in

using a suspending medium with a yield stress that can prevent chaining but allow

orientation of filler particles while still be processable.

5.5.1 Theoretical Scalings

Within this manuscript, we sought validation for our experimental efforts by de-

riving a number of scalings that guided our choice for our suspending medium.

First, we outlined a scaling for the spacing of sheets of magnetic particles that

are a single particle in thickness, which could be used as a design parameter for

creating composites with defined interstitial spacing in two dimensions. Next, we

derived a ratio between the timescales of rotation and translation of an oblate

spheroid in a linear fluid, which justifies the overall need for using a more com-

plicated suspending medium to suppress chaining. Then, we derived the relevant

scales of stress for rotation and translation of an oblate spheroid. These stress

scalings, combined with the idea of a fluid with a yield stress, allowed the deriva-
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tion of the necessary inequality to ensure that rotation is allowed and translation

is suppressed. Finally, we derived a scaling for the maximum volume fraction that

could maintain this inequality, given a disk-like filler particle with a given shape

and susceptibility.

5.5.2 Suppression of Magnetic Migration

The experimental results show that, as the concentration of gellan gum was in-

creased, a higher magnetic field was required to induce translation, implying that

the yield stress of the fluid at the microscopic scale grows monotonically with the

polymer concentration. However, the behavior was somewhat heterogeneous. In

some cases, particles experiencing translation appeared to migrate past particles

that seem to still be bound by the yield stress. This observation is reasonable

considering that a moving particle will have already exceeded the yield stress, and

its local environment will flow. Further, weakness in the polymer microstructure

could create local environments that are unable to resist flow relative to another

location.

5.5.3 Alignment of A Single Microdisk

The experimental results from the alignment of a single microdisk showed that the

critical value, B∗, that is necessary for alignment grows monotonically with the

concentration of gellan gum in the suspending medium and with the yield stress of

the medium, as expected. When the process was viewed at low frequencies, com-
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plex behavior in the far field was observed in the gellan gum. Thorough analysis

of this process via particle image velocimetry could provide unique insight into

these complex materials. The nonlinear and heterogeneous behavior of this gellan

gum ultimately made rotational dynamics difficult to determine. A large number

of independent trials would be required to tell a detailed story. In this case, the

number of available microdisks was limited, which prevented a more statistically

rigorous design of experiments. The addition of a high-speed camera would aid ob-

servations of any complex motion (e.g., ratcheting) that would promote permanent

rotation.

5.5.4 Alignment of Multiple Microdisks

The proof of concept that a fluid with a yield stress can allow rotation to orient

filler particles that are subject to an external body force while preventing their

translation was a success. Although detailed experiments at smaller lengthscales

are necessary to identify the limitations of this concept, this framework could lead

to new processes that are based on aligning filler particles in a fluid that can be

molded in any shape. Coupled with an event to permanently solidify the shape,

novel composites that incorporate voxel-level orientation (and concentration) of

filler particles for gradient materials could soon be reality.

The field strength that was required to induce complete orientation into the plane

of the magnetic field is also presented.
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Chapter 6

Future Work

In this study, we investigated the dynamics of single microdisk, dynamics and

rheology of multiple spheres and microdisks, experimental characterization of a

complex fluids using microrheological properties, and a proof-of-concept study that

combines the knowledge of dynamics that was developed earlier and the knowledge

of microrheological properties.

Some parts of this study is still under investigation, i.e., improve the performance

of Stokesian dynamics and a new method of microrheology.
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6.1 Modification of Stokesian Dynamics

Our goal is to establish dynamics and rheology of particles with various geome-

tries that are suspended in a fluid with or without external field. It requires an

accurate model of magnetic interactions among spheres. To our knowledge, we

haven’t seen any work that includes both the accurate magnetic interactions and

hydrodynamic interactions of spherical particles, not to mention the more compli-

cated geometries. Bonnecaze’s [36,135] works established an accurate electrostatic

interactions among spheres in an ER fluid, but no one has done MR fluid yet.

Also, our current simulation is limited to small scale due to the high computa-

tional cost of our current code. The most time-consuming part of the code is

the inverse of the mobility tensor M∞ of which the operation is at the order of

N3. If we wish to simulate particles with high aspect ratio or in a high-volume

fraction, we need to include many particles in our system so the simulation cell

is significantly larger than the particle’s size, which makes the simulation costly

to run. But, the simulation can be accelerated by using iterative inversion of the

tensors and the computational scaling can be reduced to the order of N2. Sierou

and Brady’s [136] work has accelerated the simulation to an order of N logN by

using particle mesh ewald (PME). We are in the process of developing the codes

using these methods.
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6.2 Magnetic Nanorheology

The microrheolgy, or specifically the multiple particle tracking microrheology, pro-

vides a useful way of characterizing fluids. However, this technique and other

microrheological techniques require samples that can be visualized by microscope.

Also, it can only do in vitro detection. If the sample is opaque, or needs to be

monitored in vivo. Microscopy cannot be used. For example, if we want to measure

the rheological properties of synovial fluids of an injured knee and want to monitor

the change of properties over a period of time, it is not practical to draw the fluid

out repeatedly. The conventional microrheological techniques are not convenient

in this case. In this section, a new technique will be introduced and the application

to rheology will be discussed. This is a project that just takes off. We would like

to show some results we have so far.

The magnetic resonance spectroscopy of Brownian relaxation (MSB) is a new tech-

nique of magnetic sensing [117]. Under an external magnetic field, the moments

of magnetic particles tend to be aligned with the field, as introduced earlier, but

the thermal energy will drive the particle out of alignment. The time between the

unaligned state to the aligned state is called the Brownian relaxation time. If the

magnetic particle’s size decreases below a critical size, the direction of magnetiza-

tion will randomly flip due to the thermal energy of the atoms. We call the time

between two flips the Néel relaxation time. In this study, the Néel relaxation time

is assumed to be much larger than the Brownian relaxation time. In other words,
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when a magnetic field is applied, the magnetic particle will be aligned mechanically

instead of the flipping of magnetization.

In a specific experiment, an in-phase susceptibility χ′ and out an out-of-phase

susceptibility χ′′ are measured, and the susceptibility is related to the property of

the fluid. This measurement does not request a clear sample.

In the rest of this section, we will discuss some models regarding the relationship

between the rheological properties of the fluid and the measured susceptibility. We

start with the Germant-DiMarzio-Bishop model [118]

χ∗ − χ∞
χ0 − χ∞

=
1

1 +KG∗
, (6.1)

where χ∗ is the complex susceptibility such that χ∗ = χ′ − iχ′′, χ∞ is the suscep-

tibility measured at an infinitely-large frequency, χ0 is the susceptibility measured

in a DC field, K is a parameter given by K = 4πa3

kBT
.

By decoupling the in-phase part and out-of-phase part of both χ∗ and G∗, we

obtain

G′ =
1

K

(
χ′N

χ′2N + χ′′2N
− 1

)
, and (6.2a)

G′′ =
1

K

χ′′N
χ′2N + χ′′2N

, (6.2b)
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where

χ′N =
χ′ − χ∞
χ0 − χ∞

, and (6.3a)

χ′′N =
χ′′

χ0 − χ∞
. (6.3b)

6.2.1 Newtonian Fluid

For a Newtonian fluid, G′ = 0, and G′′ = ωη, substituting them into Eq. (6.2a)

and (6.2b) we obtain

χ′N =
1

1 +K2ω2η2
, and (6.4a)

χ′′N =
Kωη

1 +K2ω2η2
. (6.4b)

Figure 6.1 plots the susceptibilities as functions of frequency ω with arbitrarily

chosen parameters K = 1 and η = 1.. The peak of χ′′N is shown to be 1
Kη

. Thus,

the viscosity of a Newtonian fluid can be found by finding the critical frequency,

ωc that corresponds to the peak of χ′′N .
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Figure 6.1: Susceptibility χ′N and χ′′N versus frequency ω. The parameters are chosen
arbitrarily that K = 1 and η = 1. The peak of χ′′N happens at ωc = 1

Kη .
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6.2.2 Hookean Solid

For a Hookean solid, G′′ = 0, and G′ = G, substituting them into Eq. (6.2a) and

(6.2b) we obtain

χ′N =
1

1 +KG
, and (6.5a)

χ′′N = 0. (6.5b)

Both the in-phase and out-of-phase susceptibilities are constant in this case. When

the particle is embedded in a solid, the particle is not able to rotate, thus the

susceptibilities do not change with frequency.

Next, we will discuss the cases of suspending particles in viscoelastic fluids. We

discuss two specific cases — Kevin-Voigt fluid and Maxwell — two simplest models

that describe viscoelastic fluids.

6.2.3 Kevin-Voigt Model

Kevin-Voigt model describes a viscoelastic fluid in terms of a dashpot paralleled

with a spring, as shown in Fig. 6.2. The mathematical description of Kevin-Voigt

model is

G∗ = G (1 + iωτ) , (6.6)
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Figure 6.2: Kevin-Voigt model of viscoelastic fluid. A dashpot is paralleled by a spring.

and

G′ = G, and (6.7a)

G′′ = Gωτ (6.7b)

where G is the relaxation modulus and τ is the relaxation time, two parameters

depending on the material. Substituting the modulus into Eq. (6.2a) and (6.2b)

we obtain

χ′N =
KG+ 1

(KG+ 1)2 + (KGωτ)2 , and (6.8a)

χ′′N =
KGωτ

(KG+ 1)2 + (KGωτ)2 . (6.8b)

We can find the critical frequency, ωc, that corresponds to the peak of χ′′N , as

shown in Fig. 6.3, that

ωc =
1 +KG

KGτ
. (6.9)
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We also note that as the frequency goes to zero,

χ′N (ω → 0)→ 1

KG+ 1
, and (6.10a)

χ′′N (ω → 0)→ 0. (6.10b)

Thus, by fitting χ′N and χ′′N data, and so by finding the critical frequency, ωc, and

zero-frequency in-phase susceptibility, χ′N , we are able to obtain the properties, G

and τ , of Kevin-Voigt fluid.

0 2 4 6 8 10
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0.1

0.2

0.3

0.4

0.5

Figure 6.3: Susceptibility χ′N and χ′′N versus frequency ω of a Kevin-Voigt fluid. The
parameters are chosen arbitrarily that K = 1, G = 1, and τ = 1. The peak of χ′′N
happens at ωc = 1+KG

KGτ .
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6.2.4 Maxwell Model

Maxwell model describes a viscoelastic fluid in terms of a dashpot connected with

a spring, as shown in Fig. 6.4. The mathematical description of Maxwell model is

G∗ =
Giωτ

1 + iωτ
. (6.11)

We write it in terms of the elastic and viscous modulus such that

G′ =
Gω2τ 2

1 + ω2τ 2
, and (6.12a)

G′′ =
Gωτ

1 + ω2τ 2
. (6.12b)

Figure 6.4: Maxwell model of viscoelastic fluid. A dashpot is connected with a spring.

Similarly, we can obtain the susceptibilities by combining with Eqs. (6.2a) and

(6.2b) that

χ′N =
KGω2τ2

1+ω2τ2
+ 1

(
KGω2τ2

1+ω2τ2
+ 1
)2

+
(
KGωτ

1+ω2τ2

)2
, and (6.13a)

χ′′N =
KGωτ

1+ω2τ2(
KGω2τ2

1+ω2τ2
+ 1
)2

+
(
KGωτ

1+ω2τ2

)2
, (6.13b)

and the susceptibilities are plotted in Fig. 6.5.
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Figure 6.5: Susceptibility χ′N and χ′′N versus frequency ω of a Kevin-Voigt fluid. The
parameters are chosen arbitrarily that K = 1, G = 1, and τ = 1. The critical frequency
ω̂c corresponds to the peak of χr and is found that ω̂c = τ−1.
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In contrast to the case of Kevin-Voigt model where the fluid’s relaxation modulus

G is found at the zero-frequency limit, the relaxation modulus of Maxwell model

is found at the high-frequency limit such that

χ′N (ω →∞)→ 1

KG+ 1
, and (6.14a)

χ′′N (ω →∞)→ 0. (6.14b)

The relaxation time τ is buried in the critical frequency, ωc, at which χ′′N is max-

imum. Finding τ requires solving the equation ∂
∂ω
χ′′N = 0. Unfortunately, this

equation is prohibitive to solve because of the complicated form of χ′′N . But, if we

take a ratio between χ′N and χ′′N and denote it as χr such that

χr =
χ′′N
χ′N

=
KGωτ

(1 + ω2τ 2) +KGω2τ 2
. (6.15)

The ratio, χr, is much easier to deal with, and we obtain the solution that

∂χr
∂ω

= 0 → ω̂c =
1

τ
. (6.16)

The hat on the critical frequency means that it is found according to χr instead

of χ′′N . Thus, if we fit the data of χ′N and χr and find the critical frequency, ω̂c,

from χr and high-frequency in-phase susceptibility, χ′N , we are able to obtain the

properties of Maxwell fluid.
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Appendix A

Derivations in Single Particle

Dynamics

A.1 Oblate Spheroid Resistance Tensor

For any resistance tensor, R, a corresponding mobility tensor, M, exists such

that R ·M = I [42]. Multiplying both sides of Eq. (2.5), under the condition of

quiescent fluid, by a mobility tensor Mim that corresponds to Cij, the following
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expression is obtained for the angular velocity

ωm = MimεijkµjBk −Mimεijkpj
∂ [kBT log Ψ ]

∂pk
. (A.1)

Substituting Eq. (A.1) into Eq. (2.8) gives an explicit expression for the orientation

rate of change,

dp`
dt

= Mimε`mnεijkµjBkpn −Mimε`mnεijkpjpn
∂ [kBT log Ψ ]

∂pk
. (A.2)

The mobility tensor for an axisymmetric particle has the following form

Mim ≡ C1δim + C2pipm. (A.3)

We substitute the mobility tensor into Eq. (A.2) to have

dp`
dt

=C1ε`inεijkµjBkpn + C2ε`mnεijkpmpnpiµjBk

− C1ε`inεijkpjpn
∂ [kBT log Ψ ]

∂pk
− C2ε`mnεijkpmpnpipj

∂ [kBT log Ψ ]

∂pk
. (A.4)

Since the product of a symmetric tensor and an anti-symmetric tensor is zero, the

product ε`mnpmpn is null, where ε`mn is anti-symmeetric in m and n, while pmpn is

symmetric in m and n. Thus, the second and fourth terms of Eq. (A.4) are zero,

and only terms containing C1 remain. Therefore, only the isotropic term of Mim,

or equivalently Cij, plays a role in the rotation of an oblate spheroid. We can thus
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write

Cij = ζrδij, (A.5)

where ζr is equal to 8πηa3Y C from Eq. (2.6). If the aspect ratio is very large, then

Y C = 4
3π

and Cij = 32ηa3

3
δij.

A.2 High Peclét Limit

Now we have the resistance tensor and we can write the governing equation as

dpi
dt

= −

(
χE⊥ − χE‖

)
V

µ0ζr
Bnpn (Bi −Bkpkpi)−

kBT

ζr

∂ log Ψ

∂pi
. (A.6)

A “rotational Peclét number” is defined as the ratio between the magnetic torque

and Brownian torque such that

Per =

(
χE⊥ − χE‖

)
V Bnpn (Bi −Bkpkpi)

µ0kBT

∼

(
χE⊥ − χE‖

)
V B2

µ0kBT
. (A.7)

The Peclét number in this study is very high (O [104]). Thus the Brownian torque

can be neglected.
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A.3 Derivation of Solution of Rotating Field

To solve Eq. (2.17a), separating the variables and integrating gives

∫
du

sin 2u− ξ =





1

2
√

1−ξ2
log

[
−ξ tanu+1−

√
1−ξ2

−ξ tanu+1+
√

1−ξ2

]
if ξ < 1

− 1
cotu−1

, if ξ = 1

1√
ξ2−1

arctan

[
1−ξ tanu√

ξ2−1

]
, if ξ > 1

(A.8)

which provides the need for separate cases depending on the value of ξ. The

solution of Eq. (2.17a) has the form

X = Dτ +X0, (A.9)

as seen in Eqs. (2.22c), (2.24c) and (2.26c), whereD is a constant. Now, Eq. (2.17b)

can be integrated such that

∫
dθ

sin 2θ
= −

∫
1

2
cos2 udτ, ⇒ log [tan θ] = −

∫
1

1 + tan2 u
dτ. (A.10)

Here [1 + tan2 u]
−1

is used instead of cos2 u, since Π and K are expressed as tanu,

and the integrand in Eq. (A.10) can be transformed according to Eq. (2.22a) and

(2.26a).
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A.4 Low-ξξξ Expansion

The alignment time appears to scale as ξ−2 at ξ � 1. To validate the scaling

constant, a Taylor expansion around ξ = 0 on the low-ξ solution is necessary.

Writing the Taylor expansion around ξ = 0 for the Γ -terms gives

Γ1 =

(
λ2 − λ1ξ +

3λ2 + λ0

4
ξ2 +O

[
ξ4
])

e
−τ

(
ξ2

2
+O[ξ4]]

)
, (A.11a)

Γ2 =

(
λ0 − λ1ξ +

λ2 + 3λ0

4
ξ2 +O

[
ξ4
])(

1 +
ξ2τ

2
+O

[
ξ4
])

e−2τ , and (A.11b)

Γ3 =
(
2λ1ξ − (λ0 + λ2) ξ2 +O

[
ξ4
])
e−τ . (A.11c)

Because the exponentials in Γ2 and Γ3 decay much faster than the exponential

decay in Γ1, the value of Γ1 is much greater than the values of Γ2 and Γ3 when

τ � 1. Therefore, Eq. (2.27) can be simplified to be

tan θ

tan θ0

≈ [Γ1]1/2 . (A.12)

Keeping the leading terms in Γ1 such that Γ1 ≈ λ2 exp
[
− τξ2

2

]
, Eq. (A.12) becomes

Eq. (2.30).

A.5 Stability Analysis of Alignment of Microdisk

Even though the analytic solutions have been derived, it is still desired to predict

the dynamics without obtaining the complicated expressions. In this section, a
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stability analysis is carried out to describe the dynamics for different values of

ξ. The method used in this study for the stability analysis follows the book by

Strogatz [137].

A.5.1 ξ = 0

In the constant field case, we plot the Eq. (2.17a) in terms of u versus du
dτ

as shown

in Fig. A.1. The red arrow indicates the flow of u and we can see that u flows to

π/2 while away from 0, so we can say that π/2 is the stable node while 0 is the

unstable node (the periodicity is π). Unless the microdisk initially starts with the

orientation vector perfectly orthogonal to the field vector, the microdisk will be

one-dimensional aligned as discussed before.

Figure A.1: The rate of change of u versus u at ξ = 0. The stable node is shown to be
π/2 and the unstable node 0.
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A.5.2 ξ < 1

In the slow-rotating field case, the stable node is u = π
2
− arcsin ξ

2
and the unstable

node is u = arcsin ξ
2

, as shown in Fig. A.2. The field rotates so slowly that the

particle is able to catch up with the field, and the phase shift does not change with

time. The particle can spin synchronously with the external field; and the particle

is phase-locked with respect to the external rotating field.

Figure A.2: The rate of change of u versus u at ξ = 0. The stable node is shown to be
π/2− arcsin ξ/2 and the unstable node arcsin ξ/2.

A.5.3 ξ = 1

In the case of ξ = 1, the stable node and unstable node collapse into a single

saddle point at u = π
4
, as shown in Fig. A.3. The saddle point is not stable, but

it attracts all the trajectories toward it. But for u that starts initially smaller to
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π
4

goes through a large excursion before it reaches to π
4
, as shown in Fig. A.3.

The motion of the particle is changed from phase-locked to phase-ejected at ξ = 1,

where the external field is rotating at a frequency that is equal to the intrinsic

frequency.

Figure A.3: The rate of change of u versus u at ξ = 0. The stable node and unstable
node collapse into a single saddle point at π/4.

A.5.4 ξ > 1

In the case of ξ > 1, there is not fixed point of u, as shown in Fig. A.4. The

field is rotating so fast that the particle “sees” the field everywhere. It cannot

follow up with the rotating field, so the particle is phase-ejected with respect to

the field.
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Figure A.4: The rate of change of u versus u at ξ = 0. No stable/unstable node or saddle
point is found and u keeps changing.
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Appendix B

Ewald Summation

B.1 Introduction

In simulating homogeneous infinite systems such that we let the number of parti-

cles, N , go to infinity, volume of the system, V , go to infinity, and keep N/V fixed,

we often take a finite number of particles in a simulating box, the primary cell,

and replicate it periodically in space, as shown in Fig. B.1. Avoiding calculation of

pair interactions among all the particles is crucial; otherwise, the computational

efforts would become prohibitive. Thus, we need to truncate the number of parti-
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cles or the number of cells. However, if the interactions are long-range (decays no

faster than 1/r3) such as electrostatic interaction or the hydrodynamic interaction,

the infinite summation of the interactions converges very slowly, and the accuracy

depends on the order of summation.

Figure B.1: The simulation cells periodically positioned in space. The primary cell is in
dark line.

Ewald summation is a method that is used to calculate electrostatic energies of

ionic crystals that can converge fast. It provides a method to calculate the long-

range interaction by splitting the interaction into a short-range contribution, which

converges fast in the real space, and a long-range contribution, which converges

fast in the Fourier space. Beenakker [69] calculated the Ewald summation of

hydrodynamic interactions. We will present the technique briefly here.



181

We write the mobility problem such that




U

ΩΩΩ

E




=




a b̃ g̃

b c h̃

g h m



·




F

T

S



,

and a, b, etc are the sub-matrices of the grand mobility tensor M∞. The sub-

matrices are calculated based on the stokeslet, J. In this section, we take a, the

Rotne-Prager tensor, as an example to see how Ewald summation is applied.

B.2 Ewald Summation of Rotne-Prager Tensor

We write the velocity of particle α in terms of the tensor a and the force F in a

periodic system such that

Uα =
1

6πηa

∑

n

(
N∑

β=1

aαβ · Fβ

)
, (B.1)

where n is the position vector of simulation cell, and we denote n = 0 the primary

cell. We can rewrite the velocity of particle α as

Uα =
1

6πηa
aαα · Fα +

1

6πηa

∑

n

(
N∑

β=1

′
aαβFβ

)
, (B.2)
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where the prime sign means that α 6= β when n = 0. The self-interaction and

pair-interaction Rotne-Prager tensors are

aαα = I, and (B.3a)

aαβ =

(
3

4
+

1

4
∇2

)
J. (B.3b)

We will focus on deriving the Ewald summation of aαβ in the rest of this section.

We write the stokeslet J here

Jij =
δij
r

+
xixj
r3

=
(
δij∇2 −∇i∇j

)
r, (B.4)

where r is the separation between particles α and β. As discussed before, we are

going to split aαβ into two parts by writing r as a sum of the error function and

the complementary error function such that

r = r erf [υr] + r erfc [υr] (B.5)

so that the Rotne-Prager tensor can be written as

aαβ =

(
3

4
+

1

4
∇2

)(
δij∇2 −∇i∇j

)
{r erf [υr] + r erfc [υr]} . (B.6)

where υ is a parameter that controls the convergent rate. According to Beenakker’s

paper [69], for optimal convergent, υ = π1/2V −1/3. We then split aαβ into two parts,
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aR and aK such that

aR =

(
3

4
+

1

4
∇2

)(
δij∇2 −∇i∇j

)
r erfc [υr] , and (B.7a)

aK =

(
3

4
+

1

4
∇2

)(
δij∇2 −∇i∇j

)
r erf [υr] . (B.7b)

Obviously, aR converges fast in the real space, and it is the short-range contri-

bution, while aK converges fast in the reciprocal space, and it is the long-range

contribution. We substitute the decomposition into Eq. (B.2) to give

Uα =
1

6πηa
aαα ·Fα+

1

6πηa

{∑

n

(
N∑

β=1

′
aR,αβFβ

)
+
∑

n

(
N∑

β=1

′
aK,αβFβ

)}
. (B.8)

We further add the self-interaction part back in the long-range contribution and

then subtract it off,

Uα =
1

6πηa

(
aαα − aK(x = 0)

)
· Fα +

1

6πηa

{∑

n

(
N∑

β=1

′
aR,αβFβ

)

+
∑

n

(
N∑

β=1

aK,αβFβ

)}
. (B.9)
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The short-range contribution, aR, after some tedious differentiation, becomes

aR
ij = δij

{(
3

4r
+

1

2r3

)
erfc [υr]

+

(
4υ7r4 + 3υ3r2 − 20υ5r2 − 9

2
υ + 14υ3 +

υ

r2

)
exp [−υ2] r2

√
π

}

+ eiej

{(
3

4r
− 3

2r3

)
erfc [υr]

+

(
−4υ7r4 − 3υ3r2 + 16υ5r2 +

3υ

2
− 2υ3 − 3υ

r2

)
exp [−υ2r2]√

π

}
, (B.10)

where e = x
r
.

The long-range contribution is calculated in the Fourier space. For a lattice sum-

mation, we can write it in terms of the Fourier series

∑

n

(
N∑

β=1

′
aαβ (x)

)
=

1

V

∑

k
k·k 6=0

(
N∑

β=1

′
e−ik·xaαβ (k)

)
, (B.11)

where

V = n(1) ·
(
n(2) × n(2)

)
, and (B.12)

k(1) =
1

V

(
n(2) × n(3)

)
, k(2) =

1

V

(
n(3) × n(1)

)
, k(3) =

1

V

(
n(1) × n(2)

)
, (B.13)

and aαβ (k) is the Fourier transform of aαβ (x) such that

aαβ (k) =

∫
eik·xaαβ (x) dx. (B.14)
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After some integrations, (details can be found in Beenakker’s paper [69]), we find

that

aK
ij (x = 0) = δij

1√
π

(
6υ − 40

3
υ3

)
, and (B.15)

aK
ij =

(
δij − k̂ik̂j

)(
1 +

k2

4υ2
+

k4

8υ4

)(
1− k2

3

)
6π

k2
exp

[
− k2

4υ2

]
. (B.16)
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Appendix C

Simulation Flowchart

In this appendix, the process of the simulation is introduced.

1. A initial configuration of particles is randomly distributed inside the primary

cell, if the goal is to simulate an infinite suspension. The initial configura-

tion is produced according to the value of the volume fraction, φ. At low

volume fraction (φ ≤ 0.1), the particles are distributed using the Monte

Carlo method. At high volume fraction, the particles are first distributed on

a regular grid. Then, the particles are nudged out of the grid points by a
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random displacement. In both cases, overlap needs to be checked in the end.

2. According to the initial configuration, the initial external body forces, if

present, are calculated according to Eq. (3.78). The configuration-dependent

tensors M−1 and R2B −R∞2B are computed.

3. We need to invert M∞. The dimension of the mobility tensor M∞ is

(11N×11N), where N is the number of particles. The operation of inverting

the mobility tensor is of the order [(11N)3]. To accelerate the simulation, we

decompose the mobility tensor into sub-matrices and do a blockwise inver-

sion. We write the mobility tensor as

M∞ =




MUF MUS

MEF MES


 (C.1)

where the dimension of MUF is 6N ×6N , the dimension of MUS is 6N ×5N ,

the dimension of MEF is 5N × 6N , and the dimension of MES is 5N × 5N .

We can invert M∞ by these submatrices such that




MUF MUS

MEF MES




−1

=




R∗FU R∗FE

R∗SU R∗SE


 (C.2)

where

• R∗FU =
[
MUF −MUS ·M−1

ES ·MEF

]−1
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• R∗FE = −R∗FU ·MUS ·M−1
ES.

• R∗SU = [R∗FE]T

• R∗SE = M−1
ES −R∗SU ·MUS ·M−1

ES

Note that the inversion operations above are carried out by Cholesky de-

composition to accelerate the simulation, as the hydrodynamic tensors are

symmetric positive definite because of the dissipative nature of the Stokes’

flow. Then the far-field resistance matrices are added to the corresponding

sub-matrices of R2B −R∞2B to obtain the resistance matrices.

4. The velocity, U, is calculated according to Eq. (3.70a).

5. The new position is computed by x(t + ∆t) = x(t) + ∆tU. The choice of

the time difference needs to be careful. For a system where the shear rate

or magnetic force is strong, ∆t needs to be chosen sufficiently small to avoid

overlapping. But, if ∆t is chosen too small, the simulation cost increases. So,

in some studies, an arbitrary volume-exclusive force is imposed to prevent

overlapping. In this study, the volume-exclusive force is not included since

the computational costs are not high in the simulations.

6. With the new configuration, Steps 2 to 5 are repeated.



189

Bibliography
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