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Finite Element Modeling of Reinforced Concrete Bridge Columns with Steel

Jackets Using Plastic Hinge Integration

Chapter 1: Introduction

The modeling of inelastic behavior in framing members is necessary for
simulating a structural response from severe lateral loadings. Inelastic behavior occurs
in the form of plastic hinges, which are modeled with distributed plasticity. The
recognition that inelasticity occurs has created a need to consider plastic hinges in
design. This has led to increased confinement requirements for the design of
reinforced concrete columns (Chai et al. 1994). Steel jackets are used to confine
concrete and improve structural performance during a seismic event. For reinforced
concrete columns with steel jackets, different section properties can occur in the
plastic hinge region and linear-elastic region for two reasons: either the jacket is not
continued across the entire column, or the bond development length prevents full
composite action between the jacket and the concrete column (Chai et al. 1994). The
use of reinforced concrete columns with steel jackets creates a need for an accurate
and computationally efficient numerical model which can represent a beam-column
with two different section properties and objectively model strain softening behavior
that may occur due to crushing of concrete.

Scott and Fenves (2006) propose a plastic hinge integration method based on
Gauss-Radau quadrature that is recommended for nonlinear material modeling of
frame structures with strain softening. In this thesis, it is proposed that this integration
method is ideal to simulate the behavior of reinforced concrete columns with steel

jackets. This plastic hinge integration method allows different section properties to be
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specified for the plastic hinge region and the elastic region of an element. These
capabilities enable structural behavior to be accurately modeled using only one
element per frame member.

This thesis is comprised of two manuscripts. The first manuscript discusses the
new plastic hinge integration method and verifies that it can be used to model a frame
member with different section properties in the plastic hinge region and the linear-
elastic region. This is done by modeling a cantilever with different section properties
for the plastic hinge region and the linear-elastic region. The second manuscript
examines three types of bridge columns with steel jackets subject to lateral loads and
discusses the modeling of the column response. The data from experimental testing for
these columns comes from Hewes and Priestly (2002) and Silva et al. (1999). The

simulated results are then compared to the experimental results.



Chapter 2: Verification of the Modified Hinge-Radau Integration Method for
Force-Based Beam-Column Elements
Introduction

To support applications in performance-based earthquake engineering the
modeling of distributed plasticity is necessary to evaluate the likelihood of structural
failure under extreme loadings. For a nonlinear analysis, it is desirable to use a single
finite element to represent each member of a frame structure. Using only one element
per frame member decreases the number of equilibrium equations required in the
simulation, creating a more computationally efficient model. There are two prominent
formulations for modeling frame members. The first approach uses a displacement-
based finite element formulation, which utilizes cubic Hermitian polynomials for the
transverse displacement; however, difficulties occur because the assumed
displacement field is inexact for nonlinear material behavior (Neuenhofer and Filippou
1997). A force-based beam-column approach, instead, derives the beam-column
element stiffness through interpolation functions based on the second order differential
equations for bending and axial loading, providing an accurate response for nonlinear
material behavior (Neuenhofer and Filippou 1997).

Models simulating nonlinear behavior can be either concentrated plasticity or
distributed plasticity. Concentrated plasticity beam-column elements lump the
nonlinear material behavior at the ends of the element. Concentrated plasticity does

not provide an accurate response for axial-moment interaction. Distributed plasticity
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beam-column elements allow nonlinear material behavior to spread across an element.
Problems can occur with distributed plasticity in force-based elements because of how
the governing equations are numerically integrated. Numerical integration can lead to
a loss of objectivity if the distribution of the integration points restricts the location of
plasticity. This loss of objectivity occurs for perfectly plastic and strain softening
behavior. Plastic hinge integration is used in elements to model distributed plasticity
without a loss of objectivity. Additionally, the increased use of steel jackets to confine
reinforced concrete columns has created a need to model frame members that have
different section properties along their lengths. Plastic hinge integration using
modified two-point Gauss-Radau quadrature, also referred to as hinge-Radau
integration, is ideal to model such members because different section properties can be
specified for each region. This chapter verifies that the hinge-Radau integration
method can simulate this behavior by modeling a cantilever having two regions with

different material section properties.

Force-Based Element Formulation

Force-based beam-column elements are formulated in a two-dimensional, three
degree of freedom basic system. Deformations are assumed to remain small compared
to the element length. After removing rigid body displacement nodes, the three
degrees of freedom possible for each element are rotation at both ends and axial

translation at one end as shown in Figure 2.1. The vector q=q (V) is the force vector

for the basic system, and it is dependent on the element deformations. Rigid body
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equilibrium of the basic forces is included to account for all six degrees of freedom in
two dimensional analysis. The section deformations are described by the vector e, and
correspond to the section forces described by s = s(e), where s is a function of the
section deformations e. The equilibrium between the forces in the basic system and the
section forces is described by,

s=bq @.1)
where b is the matrix with the interpolation functions relating the section forces, s, and

the basic forces q. The matrix b is

1 0 0
b= 2.2)
0 x/L-1 x/L

The principle of virtual forces imposes the compatibility condition expressed by
L

v= ije dx (2.3)
o

e=[g(x),x(x)] (2.4)

where £(x) is the axial strain and x(x) is the curvature.

When linearized with respect to q, Equation (2.3) gives the flexibility matrix

L
et o [btb dx (2.5)
oq

where f, =k’

is the section flexibility matrix, which is the inverse of the section

stiffness k, = % The inverse of f is the stiffness matrix k which is transformed and

assembled in the finite element equations. For computer implementation the

compatibility relationship from Equation (2.3) is evaluated by numerical integration



Np

V= Z(bre I_x:gf )a’;’ (2.6)

where £ and @ are the locations and associated weights of the integration points.

Similarly, the flexibility matrix is determined by

f= NZ ®tb 1., )o, @.7)

Element

Figure 2.1: Simply supported basic system and element cross section.

Force-Based Element Integration Methods

Gauss-Lobatto integration is commonly used with force-based beam-columns
to evaluate Equations 2.6 and 2.7. This numerical integration method uses one
integration point at each end with the remainder of the integration points distributed

between the two ends according to optimality constraints for the integration of high
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order polynomials. This method is commonly used because it samples forces at the
end of the columns, where the moments are the largest in the absence of member
loads. Gauss-Lobatto integration can exactly model linear-elastic behavior with three
integration points and accurately integrates polynomials of up to degree 2N,-3 where
N, is equal to the number of integration points used. Gauss-Lobatto integration models
strain hardening behavior by allowing plasticity to spread across the element. To get
accurate results for strain hardening behavior it is necessary to use at least four or five
integration points. While Gauss-Lobatto integration can model strain hardening
behavior, strain softening and perfectly plastic behavior create computational
problems because plasticity is_ confined to the first integration weight regardless of the
number of integration points used. This causes the plastic hinge length to be dependent
on the number of integration points specified by the analyst instead of the length
observed in the field or predicted by empirical relationships. The result is a loss of
objectivity in the computed response for strain softening and perfect plasticity when
using Gauss-Lobatto integration because the response changes as a function of the

number of integration points.

Example of Non-Objective Response

To show the loss of objectivity a three story frame is modeled using six, seven,
and eight point Gauss-Lobatto integration. The geometry and details are shown in
Figure 2.2. The beams and columns are spaced at 4 m on center. The columns are 300

mm by 300 mm and the beams are 150 mm by 300 mm. The columns have four M29



bars and the columns have four M25 bars

to crushing in the concrete.
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Figure 2.2: Geometry for example of strain softening behavior using Gauss-Lobatto
integration.

This frame structure is modeled and subjected to a incremental lateral

displacement of node 11. The results from the pushover analysis are shown in Figure

2.3 where the post-peak structural response varies depending on the number of

Integration points used to model each element. The variation in the response occurs

because the plastic hinge is being defined differently in each case. As the plastic hinge

length becomes smaller, less force is required to maintain equilibrium for a given

displacement. For an objective solution, the post yield behavior should not be

dependent on the number of integration points used.
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Figure 2.3: Load vs. displacement for three-story reinforced concrete structure
modeled with 6, 7, and 8 Gauss-Lobatto integration points.

To correct the loss of objectivity, Coleman and Spacone (2001) provide a
regularization technique to maintain the objectivity of the localized response using the
constant fracture energy criterion. This allows for any number of integration points to
be used and still provide an objective element response. However, to regularize the
solution it is necessary to modify the material properties, creating a loss of objectivity
in the material response. Another approach is hinge-Radau integration, which instead
of modifying the material properties to change the localized curvature, allows the
analyst to fix the length of the plastic hinge to provide an objective response at the

element and material levels (Scott and Fenves 2006).
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Plastic Hinge Integration
The hinge-Radau integration method maps two-point Gauss-Radau quadrature
on to the lengths 4(L,); and 4(L,); at the ends of an element, where L, is the plastic
hinge length. Two-point Gauss-Radau quadrature over [0,1] has integration points at 0
and 2/3 with integration weights of 1/4 and 3/4 respectively. The first integration point
is located at one of the ends of the element, and it has an integration weight equal to
Lp. The second integration point is located 8/3L, into the element and has an
integration weight of 3L,. The other two integration points are symmetrically located
on the opposite end of the element. The portion of the element that is not within four
plastic hinge lengths from either end is modeled as linear-elastic because the plastic
hinge assumption is that inelasticity is confined to the plastic hinge regions. The
location of the integration points is shown in Figure 2.4. This integration method
allows for the section force-deformation relationship to be evaluated at the end of the
element where the bending moment is largest in the absence of distributed loads. The
two point method allows for exact integration of quadratic polynomials across hinges
giving an exact theoretical solution for linear-elastic prismatic elements. The plastic
hinge region is modeled with one integration weight to maintain objectivity because
the weight 1s defined by the analyst as the plastic hinge length. Another benefit of this
integration method is that the analyst can specify different section properties for the
plastic hinge regions and the elastic region to accommodate elements with different

material properties along their length.
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Figure 2.4: Location of hinge-Radau integration points.

Modeling for Cantilever Example

The accuracy of the hinge-Radau integration method for beam columns with
differing flexural stiffness (EI) between the plastic hinge region and the elastic region
1s verified by computing a theoretical solution and comparing it to a solution modeled
using hinge-Radau integration. To verify the theoretical solution, an approximate
solution is modeled using two force-based elements that is compared to the other two
solutions. The finite element models were constructed using the Open System for
Earthquake Engineering Simulation (OpenSees) (McKenna et al. 2000). OpenSees is
an object oriented framework for finite element analysis, using the Tcl/Tk
programming language. It is open source software intended for use in the research
community, and it provides an ideal environment to test different integration options.

Three cases of post yield behavior are modeled using hinge-Radau integration.
The first is strain hardening, the second is perfect plasticity, and the third is strain

softening. Strain softening occurs when increased curvature takes place with a
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decrease in moment. An example of strain softening is crushing in concrete. These
three cases are modeled to show that objective solutions are found for perfectly plastic

and strain softening behavior. For the three cases, the inelastic responses are modeled

by defining a variable «(EIl). Where « is the percentage of the original stiffness

which represents the post yield response. The variable o is equal to 0.02 for strain

hardening, zero for perfect plasticity, and -0.02 for strain softening. For these cases the
post yield responses are linear and are shown in Figure 2.5. These linear post yield
responses are simplified versions of real material behavior. Fiber discretized cross-
sections can be used to more accurately model the beam’s response. An example of a

more complicated section response is presented in the second chapter.

— - - — Alpha = -0.02 Strain
Softening =
Alpha = 0.02, Strain |
Hardening

“|— — — Alpha = 0, Perfectly
) F'Iasti_q i

Moment
[\] w 1Y [4] (=)} =-J (=] w

1 - S

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Curvature

Figure 2.5: Moment curvature relationship for strain hardening, perfectly plastic, and
strain softening behavior.
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Theoretical Solution
The theoretical solution corresponds to the force-displacement response of a
cantilever with a transverse load P applied at the free end. The cantilever has a plastic
hinge length of (L;);. A theoretical solution exists only for strain hardening behavior
while the other two types of behavior lead to singularities in the theoretical solution.

The displacement is measured from the free end of the cantilever shown in Figure 2.6.

P

¢ L.

AT

< 3 Lp)j =0

;?1? 1 {'Lpg ip 3% ip4

Jen @]
<>

- (Lpi (Lp)j = 0

Figure 2.6: Geometry of cantilever used in verification.

The beam has a constant cross section and a stiffness of (EI); in the elastic
region and stiffness (EI); in the plastic hinge region. The moment-curvature response

is bilinear with a yield moment My and a hardening ratio v. The theoretical response



14
for the displacement of the beam is shown in Equations 2.7 and 2.8. For the derivation

of these equations see Appendix A. The variable /& is defined as & = Ly/L. The

variable ¢ is defined as the length from the fixed end of the cantilever to where M is

greater than M, in the cantilever. It represents the length of the beam undergoing an

inelastic response.

For P <Py use

o pL=BLY UL} ~(L—pLY]

2.7
3E 1, 3E,1, @7
And for P > Py use
U=U+U,+U,+U, (2.8)
where:
U, = pL—BLY (2.9)
3E I
U-, =P[(L_§L)3_(L_ﬁ£‘)3] (210)
- 3E.1,
3 3
U=M, (MJ (2.11)
' 3BT,
U4=(PL3[(4§_1)+(1_€)4]J (212)
12aE, 1,
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¢ =max(0,1-My/M)

B=L,/L

These equations describe the displacement of the free end of the cantilever
beam with an applied load P. Equation 2.7 describes the behavior prior to yield and
Equation 2.8 describes the response after yield has occurred. When looking at the

behavior of the beam the four terms of this equation describe separate parts of the

beam’s behavior.

Cutwature
" Us .
Us |[Uz| Ws
pi4
L
S
” L

Figure 2.7: Curvature distribution for the cantilever beam.

1)  The first term (U;) describes displacement due to the elastic region. This
region continues to deform elastically when the plastic hinge region

deforms inelastically.
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3)

4)
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The second term (U:) is the elastic portion of the deformation of the

plastic hinge region. The area over which this section occurs is controlled

by ¢ in the equation. Prior to yield at the end of the beam ¢ is equal to

zero. After yield has spread across the whole region, ¢ is equal to &

causing the term to go to zero.

The third term (Us) in the equation is the elastic deformation of the
plastic hinge region after it has yielded. It remains constant for the entire
post yield response and gradually spreads across the plastic hinge region

until it covers the entire region. The length of this region 1s also

controlled by ¢. It starts at the fixed end and is of length ¢ L. The sum of

the lengths over which U, and Us apply is always equal to 4L, which is

the length of the plastic hinge.

The fourth term (U,) describes the inelastic behavior of the plastic hinge

section. This term is defined from the fixed end and is (L in length. It is

the length of the beam that is in an inelastic response. The inelastic

behavior is always confined to the plastic hinge region SL from the fixed

end.
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Modeled Solution for Cantilever Example

The model built in OpenSees is a one member cantilever beam. It consists of
two nodes and one force-based beam-column element with hinge-Radau integration. It
is made in a two dimensional, three degree of freedom system. Node one is fixed in all
directions and node two is unrestrained. The location of the integration points can be
seen in Figure 2.6. The cantilever has a unitless length of ten and a plastic hinge length
of one. The section properties for the element are linear-elastic to yield point and then
there is either strain hardening at 2% of EI, perfect plasticity, or strain softening at
-2% of EI. The stiffness, EI, for this model is 800 and 600 for the plastic hinge region
and the elastic region, respectively. The yield moment is eight for the whole beam. A
plot of the moment-curvature relationship in the plastic hinge region is shown for each
type of post yield response in Figure 2.5. The model uses a displacement controlled
integrator to calculate the load because in the strain softening case the load decreases
after the yield point. Load controlled integration fails at yield for strain softening
because the increased load step would not converge to equilibrium.

The theoretical solution is verified by an OpenSees solution using two
elements. The plastic hinge region is modeled by the first element, and it is a force-
based element with ten-point Gauss-Lobatto. The large numbers of integration points
approximate a closed form solution, and allow the plasticity to spread freely through
the element. The second element models the elastic region and it is a force-based

element with three-point Gauss-Lobatto integration that remains linear-elastic. This
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solution is only modeled for strain hardening because perfectly plastic and strain

softening behavior do not give an objective response.

Results of Cantilever Example

From the comparison of the force displacement plot in Figure 2.8, it is seen
that hinge-Radau integration provides a similar solution to the theoretical solution for
strain hardening. All of the solutions show that the cantilever beam remains linear-
elastic up to the yield point. After yield the hinge-Radau solution is more flexible than
the other solutions because it does not take into account the gradual spreading of
plasticity across the plastic hinge. The results for all three cases using hinge-Radau
integration are shown in Figure 2.9, where an objective response is achieved for all

three cases.

1.2
14— —
0.8 - e S
§ 06 1— f/ — . - Two Element Gauss-
e / Lobatto Solution
/ Theoretical Solution
04 4 ——F—
,’{ — - — - Hinge-Radau
/" Solution |
02 = B N - e e T e L { R —S B |
1/
oV

0 0.5 1 1.5 2
Displacement

Figure 2.8: Comparison of results between the hinge-Radau model, the two element
Gauss-Lobatto model, and the theoretical response.
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Figure 2.9: Cantilever displacement response for a point load for strain hardening,
perfectly plastic, and strain softening behavior.

Conclusions

This chapter compares the post-yield response of a cantilever modeled using
hinge-Radau integration and the computed theoretical response for a cantilever beam
with a transverse load applied at the free end. The hinge-Radau integration method
uses a minimum number of integration points and elements to compute an
approximate solution for a cantilever with a nonlinear response distributed across the
plastic hinge region. The comparison shows that the numerical solution using hinge-
Radau integration closely matches the theoretical solution. This verifies that the hinge-

Radau integration method can be used to model the behavior of more complicated
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structural systems with beam-columns that have plastic hinges, and make the solution

method as efficient as possible.
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Chapter 3: Modeling of Circular Concrete Bridge Columns with Steel Jackets
using Force-Based Beam-Column Elements with Modified Hinge-Radau
Integration
Introduction

In seismic regions bridge design using reinforced concrete columns is common
place. After the 1971 San Fernando Earthquake the confinement requirements for
column design were increased. The confining ratios of the columns designed prior to
1971 are approximately less than one-fifth the current design requirements (Chai et al.
1994). Steel jackets have been used to add confinement to deficient columns.
Confinement, either with steel jackets or spiral reinforcement, increases concrete
strength and ductility. The use of steel jackets to improve the performance of new and
retrofitted structures is gaining popularity because steel jackets easily attach to
columns.

The increased use of steel jackets to add confinement to bridge columns has
created a need for finite element modeling of these structures. Two common
approaches to modeling frame members are displacement-based and force-based
element formulations. The displacement-based formulation utilizes cubic Hermitian
polynomials for the transverse displacement, which results in linear curvature for the
element. This provides exact results for linear-elastic beam columns, but difficulties
occur with nonlinear analysis (Neuenhofer and Filippou 1997). Force-based elements
are formulated using interpolation functions for the internal forces of the element,
which are based on second order differential equations for bending and axial loading.

Force-based elements provide an accurate response for nonlinear behavior.
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This chapter examines the modeling techniques of steel jacketed circular
concrete columns with force-based beam-column elements using hinge-Radau
integration. Scott and Fenves (2006) used hinge-Radau integration to overcome
difficulties that arise with Gauss-Lobatto integration for strain-softening behavior in
force-based beam-column elements. In addition to modeling strain-softening behavior,
hinge-Radau integration can allow the specification of different section properties for
the plastic hinge and the elastic regions. The formulation for the force-based beam-
column elements with hinge-Radau integration and the verification for specifying
different section properties for the linear-elastic and the plastic hinge section are
discussed in the previous chapter.

Three cases of reinforced concrete columns with steel jackets are modeled,
shown in Figure 3.1. The first case is a concrete column with a steel jacket around the
plastic hinge region. This case is modeled based on an experiment conducted at the
University of California at San Diego. The experimental data and column design are
taken from Hewes and Priestly (2002). The second case is a bent cap with three CISS
(cast in-place steel shell) columns with the steel jackets around the entire column,
which is based on another experiment conducted at the University of California at San
Diego. The experimental data and column design are taken from Silva et al. (1999).
The third case is a bent cap with three CISS columns with steel jackets around the
elastic region and spirally confined reinforced concrete in the plastic hinge region. The
general column geometry and design are taken from Silva et al. (1999). The only

modification of the column design is the change to the length of the steel jacket, where
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instead of the steel jacket covering the length of the column, the plastic hinge section
is exposed with only spirally confined concrete.

OpenSees (Open System for Earthquake Engineering Simulation) (McKenna et
al. 2000) is used to model the columns. OpenSees is an object oriented framework for
finite element analysis, using the Tcl/Tk programming language. It is open source
software intended for use in the research community, and provides an ideal
environment to use different integration methods to model reinforced concrete

columns with steel jackets.

Plastic
Hinge
Length

Plastic
Hinge
Length

L.

Figure 3.1: The three types of columns modeled.

Background
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Steel jackets are used to provide confinement for the concrete. They are added

to columns by welding two prefabricated steel shells around a column. The space

between the concrete and the steel jacket is grouted to allow composite action between

the two materials. The steel jackets must be terminated prior to cap beams and

foundations to prevent the jacket from deforming and bearing on the cap beam or

foundation. To model the behavior of concrete columns confined by a steel jacket it is

necessary to determine the confined strength of the concrete and the bond
development length between the concrete and the jacket.

The confined strength of the concrete is calculated using Mander’s theoretical

stress-strain relationship (Mander et al. 1988).

f'rf:f"m[—l.254+2.254 1+7.94;‘ -if ‘} (3.1)

Where: ., = initial concrete strength

f":=2f;,;;"‘-ti

4

fij = yield stress of the steel jacket
ti = jacket thickness

D;j = jacket diameter

From experimental testing, Chai et al. (1991) has shown that the steel jacket
does not need to extend the entire length of the column to provide the desired

confinement across the plastic hinge. In practice, the steel jacket frequently extends
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the entire length of the column to maintain uniformity. However, in order to obtain
flexural strength from the steel jacket it is necessary to account for the transfer length
between the concrete and the steel jacket.

To correctly model the steel jacket properties in a section, it is important to
account for composite action between the steel jacket and the concrete. The composite
action is controlled by the bond strength of the grout used between the jacket and the
concrete. Assuming the column is at full composite strength along the length of the
steel jacket, there will be a linear stress distribution in the jacket due to the moment
caused by the lateral loading. If bond transfer lengths are taken into account, then the
stress distribution starts at zero at either end of the steel jacket and approach full
composite stress after the transfer lengths. Chai et al. (1994) have proposed a linear
relationship through the transfer length, shown in Figure 3.2, with the transfer lengths
calculated by

_ (L=ve—=L)y

I =
(4oL = (fi)arets]

(fy)ave (3.2)

L—ve)tj
b i) (33)
Where

L = Length of the Column

L; = Length of the Jacket

.. = Bond Stress

t; = Thickness of the Steel Jacket

ve = Length of the Gap
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(f3)ave = Full Composite Strength
It 1s important to check that /, + /; is less than the length of the steel jacket. Otherwise,

the stresses never equal the full composite stresses, and have the profile shown in

Figure 3.2 (c).
(a) (b) (c)
\ \
| X b
A X
| :
L X Qo g
| I \
| I A
I I L; \\
i T =227
Sen X
[ [ L / v
T == e S s e
[ _ :
Vg )( (fYJ)a\c %

Figure 3.2: Description of the bond transfer length to develop composite flexural
strength; The geometry of the column with the steel jacket (a); the stress distribution
for a steel jacket (b); and the stress distribution for a steel jacket with inadequate
development length (c).
Material Behavior

The material behavior is defined by uniaxial material models available in

OpenSees. Steel is modeled using the Steel01 material, which is linear-elastic up to the

yield stress. After the steel strength reaches yield, it strain hardens at a percentage, (v,

of the modulus of elasticity, as is shown in Figure 3.3. Concrete is modeled using the

Concrete01 material. The concrete has zero tensile strength, and the compressive
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strength is modeled by a parabola starting with a slope 2 /€, at zero strain. Then
the concrete strength curves to the peak crushing strength, f°. at crushing strain, &€,.

From the yield point the strength declines linearly to ultimate strength, ', at ultimate

strain, &.,. The material properties of concrete can be seen in Figure 3.4. The

prestressing strands, modeled with the PresstressedSteel material, are defined as

linear-elastic until yield and then as nonlinear defined by Equation 3.4 (PCI 2004).

1.48*10™
S =T~ Ju 1 48107 (MPa) (Equation 3.4)
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Figure 3.3 Stress strain plot for steel material model.
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A circular fiber discretization describes the section behavior for all three cases.

The circular fiber section combines multiple material properties into one section to

more accurately represent the section response and to account for axial-moment

interaction. A circular patch command is used in OpenSees for the concrete and the

steel shell. The rebar is defined by a circular layer command specifying the number of

bars, area of the bars and location of the bars. An example of the OpenSees code

describing the sections used in case one is shown in Figure 3.6. The specific section

properties are discussed for each case in the following sections.

Confined
i by Spiral
E?"g'{':ﬂ / Relnforcement
She-!% 6
PT Strand 27 nn Thick
2. 7mm? Gra70 (2) M3 @ o
radlus of 293 mn
d r\ / o a

Colunn Racius = 205 mm

section Fiker 1

section Fiber 1 4

# Concrete
#patch clrc $motTag $numSubdhvClire $numSubdivRad $ycenter
patch drc $matTag $numSubcivClirc $numSubdivRod $ycenter

$zCenter
$zCenter

#3trand
Hpatch drc FmatTag $numSubdivClirc $rnumSubdivRad $ycenter
patch drc FmatTogpre $numSubdivCircpre $numSubdivRadpre

$zCenter
sycenter

H
sectlon Fiber 2 4

# Concrete
#potch circ $motTog SnumSubdivCirce $numlubdivRad $ycenter $zCenter

PT Stroand 27
12.7mm> Gra270
o o

section Fiber 2

$intRad $extRad
$intRad Sinterface 0 360

ftRad $extRoc
fzCenter #ntRadpre $exiRadpre 0 360

$intRod $extRoc

patch crc 5 FnumdubdivCirc $numSubdivRad $ycenter $ztenter 3IniRod $Finterface 0 360

#Relnforcing Steel
#layer circ $matTag $numBor $oarecBar $yCenter S$zCerter Sradius
layer drc #matTagst $numBar $areaBar FyCenter FzCenter Sradius

#Prestressing Strand
#ipatch circ $matTag SnumSubdivCirc $numSubdivRad

SintRad SextRad

F ter Szlernter
patch drc $matTogpre $rumSubdivClrcpre tnunSubdlv%cubr*e tycenter $zlenter #HntRadpre $extRadpre 0 360

H

Figure 3.6: An example of the OpenSees code for defining a section.



30

Case 1: Steel Jacket Around Plastic Hinge Region
The first case considered is a circular concrete column with a steel shell around
the plastic hinge region. The data used to model the column comes from a report by
Hewes and Priestly (2002), which examines the performance of unbonded post-
tensioned precast segmental bridge columns under lateral loading during testing
conducted at the University of California at San Diego. The displacement in the
precast columns is not due to a plastic hinge formation; rather it is caused by a crack
formed at the base about which the column rotates as a rigid body. This failure occurs
because of the use of precast segments and the steel jacket (Hewes and Priestly 2002).
Due to the short length of the steel jacket, the necessary bond length is not developed
for composite action. So, the flexural strength of the steel shell is neglected, but
confinement from the steel shell is still considered in the concrete stress-strain

response.

Geometry for Case 1

Two of the columns from the test done by Hewes and Priestly (2002) have
been modeled in this thesis. Both columns have the same geometry and are shown in
Figure 3.7. One column was tested at a later date than the other column, allowing the
concrete in that column to gain more strength. Both precast columns sit on a 1675 mm
by 1675 mm square footing that is 914 mm tall. The columns consist of four precast
segments. The bottom segment is 610 mm tall and the other three segments are 914

mm tall; all of the segments are 610 mm in diameter. There are two sections in each
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column. One has a steel jacket, and the other does not. The steel jacket attaches around
the bottom segment of each column and is also 610 mm tall. The jacket terminates
21mm above the footing to prevent bearing on the foundation. The precast segments
have (27) 12.7 mm diameter, grade 270 m, low-relaxation, prestressing strands with a
total cross-sectional area of 2665 mm®. The prestressing strands act through the center
of the column. The strands are initially stressed to 40% of ultimate strength for the
first test, and 60% of ultimate strength for the second test. Additional mild steel of

eight M13 bars (#4) are provided for crack control except in the steel jacket segment.
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Figure 3.7: Geometry for case 1.

Modeling for Case 1
Case 1 is modeled in a two dimensional system with three degrees of freedom.

The model consists of two nodes and one element. The bottom node is fixed
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transversely in the X, Y directions and rotationally in the Z direction to simulate a
rigid connection. The top node is unrestrained.

A force-based beam-column element with hinge-Radau integration is used.
The plastic hinge length is 610 mm for the fixed end, which corresponds to the length
of the steel shell. A plastic hinge does not form at the free end where there is no
bending moment. Two different sections have been created, one in the plastic hinge
region with a steel shell and another in the elastic region without a steel shell.

The material behavior is defined by material models available in OpenSees, as
discussed earlier. The reinforcing steel has an elastic modulus of 200,000 MPa and
yield strength of 443 MPa with a strain hardening ratio of 2%. The confined concrete
strength 1s determined using Mander et al. (1988), which gives values for . and f* .,
at their respective strains. These values depend on the thickness of the steel jacket and
the concrete properties. The f° . and f* ., values are shown in Table 3.1. The steel shell
has an elastic modulus of 200,000 MPa with yield strength of 250 MPa. The flexural
capacity of the steel jacket is negligible because the transfer lengths overlap. Also the
crack between the steel shell and the foundation indicates the steel shell only provides
confinement for the concrete (Hews and Priestly 2002). The strands have an ultimate

stress of 1,953 MPa

Table 3.1: Concrete Strength for Case 1

Spirally Confined Steel Jacket
f’c Fcu f’c f,CLI
Test 1 58 MPa 48.7 MPa 82 MPa 48.7 MPa

Test 2 66 MPa 57 MPa 91 MPa 57 MPa
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The section used in the plastic hinge region is a circular composite section
combining the concrete, the prestressing strand, and the shell steel. The concrete has a
diameter of 610 mm and is confined by the steel jacket. The (27) Grade 270 strands
with a gross area of 2665 mm” are lumped together into one circular patch. The
prestressing strands are jacked to 40% of ultimate strength after losses for the first test
and 60% for the second test. This section is shown in Figure 3.7, Section B-B.

The section in the elastic region is a circular composite section combining
concrete, prestressing strand, and reinforcing steel. The diameter of the concrete is 610
mm, and it is spirally confined. The prestressing strand is identical to that of the plastic
hinge region. The reinforcing steel is eight M13 bars (#4) equally spaced with a clear

spacing of 76 mm. This section is shown in Figure 3.7, Section A-A.

Results for Case 1

The results for the columns modeled in OpenSees using hinge-Radau
integration closely match the experimental results provided by Hewes and Priestly
(2002). The comparison of the pushover analysis is shown in Figure 3.8. This figure
compares the modeled results to the experimental results found by Hewes and Priestly
(2002). For the first test, the OpenSees solution matches the elastic response of the
column and the post yield response, but it slightly underestimates the stiffness at yield.
For the second test, the OpenSees solution matches the elastic response and the
inelastic response, but overestimates the stiffness at yield. This model does not

accurately predict the ultimate strength and strain of the structure because the modeled
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material properties do not have a defined failure strain. The analysis is stopped at 3%

drift for test 1 and 6% drift for test 2 to correspond to failure during the experimental

tests.
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Figure 3.8: Results for test 1 and test 2 for case 1 of a lateral pushover analysis.

Case 2: Continuous Steel Jacket

The second case examined is the circular concrete column with a steel shell

around the entire length. The data and design used to model this case come from Silva

et al. (1999), which describes pushover analyses of three columns connected with a

cap beam.
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Geometry for Case 2

The geometry for case two is shown in Figure 3.9. Three CISS columns are
connected at their tops by a concrete cap beam. The columns are 4.34 m tall and have
a diameter of 910 mm. The steel jackets have a thickness of 12.70 mm. The columns
have reinforcement ratios of 2.5% with (16) M36 bars (#11) symmetrically spaced in a
diameter of 787 mm. The columns are spaced at 4.27 m center to center. Each column
rests on a 610 mm tall concrete foundation, which is bolted to a strong floor. The cap
beam is 1.07 m tall by 1.37 m wide and is designed to be rigid relative to the columns.
The structure is loaded in the vertical direction before the pushover analysis starts. A
continuous load is placed over each span between columns. The continuous load is
equivalent to two point loads 1.2 m away from the center of the columns. The exterior
point loads are 1223 kN and the interior point loads are 445 kN. The pin connection is
used by Silva et al. (1999) to approximate half of a fixed-fixed column subject to

lateral displacement at one end. This reduces the size of the experimental model.
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Figure 3.9: Geometry for case 2.

Modeling for Case 2

The three CISS columns and the cap beam are modeled in a two dimensional

system with three degrees of freedom. The model consists of ten nodes and nine

elements. The layout of the model is shown in Figure 3.10. The bottom node of each

column is fixed in the X and the Y directions, but it is free to rotate in the Z direction

to simulate the pin connection. One force-based beam-column element with modified

hinge-Radau integration is used to model each column.
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Figure 3.10: OpenSees model layout for Case 2.

aN

A circular composite section combining the concrete, the reinforcing steel, and
the steel jacket is used to model the columns. The concrete material has an unconfined
strength, f°c, of 35 MPa. The concrete has a confined strength of 86 MPa and is
determined using the Mander model for confined concrete. The diameter of the
concrete is 846 mm. The reinforcing steel has an elastic modulus of 200,000 MPa and
a yield strength of 448 MPa with a strain hardening ratio of 2%. The reinforcing steel
1s equally spaced around the column with a clear spacing of 76 mm to the outside of
the steel shell. The steel shell has a thickness of 12.7 mm, an elastic modulus of
200,000 MPa, yield strength of 250 MPa and a strain hardening ratio of 2%. Data for
the strain hardening ratio is unavailable, so it is approximated from the results of the

test.
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The plastic hinge length is 868 mm and is located at the top of the column

where it connects to the cap beam. The steel jacket flexural strength for the plastic
hinge region is determined by taking an average of the steel jacket flexural strength
over the bond transfer length determined by Chai et al. (1994). This approximation
gives an average steel yield strength of 144 MPa for the plastic hinge region. In the
elastic section the bond between the steel jacket and the concrete is fully developed, so
the full strength of the steel shell is included. The composite circular section is shown

in Figure 3.11.

(16> M36 @ o

radius of 393 m

Spiral Confinement

Confined M1& B305 mm Pitch

by Steel
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Section A-A

Column Radius = 455 mm

Figure 3.11: Composite circular column section for case 2.

The cap beam is modeled as a rigid member because its stiffness is
significantly larger than that of the columns. To make a rigid cap beam the modulus of
elasticity is increased to 200,000 MPa which is an order of magnitude stiffer than
concrete. The cross-sectional area of the cap beam is 0.67 m”. The cap beam consisted

of three force-based beam-column elements with Gauss-Lobatto integration per span
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with nodes at 1.2 m away from the center of each column. Three-point Gauss-Lobatto
integration is used because the sections are uniform and expected to remain elastic.
Vertical point loads are applied to each of the nodes in between the columns with
1,223 kN applied on the exterior nodes and 445 kN applied on the interior nodes to
approximate the experimental loading. The simulated pushover analysis is conducted
by the displacement control where the displacement of the center node on the cap

beam is incrementally increased in the horizontal direction.

Results for Case 2

The results of the pushover analysis show the column yielding at 2000 kN with
a displacement of 60 mm. After yield, the response flattens out and continues linearly
until failure. These results are shown in Figure 3.12 and are compared to those from
the experimental pushover analysis. The comparison shows that the OpenSees model
accurately predicts the response of the columns. The elastic response closely matches
the experimental results. The strength is slightly underestimated at yield. The post-
yield behavior also matches the experimental results assuming the 2% strain hardening
approximation was valid. This model does not accurately predict the ultimate strength
and strain of the structure because the modeled material properties do not have a
defined failure strain. The analysis is stopped at 8% drift corresponding to where the

experimental model failed.
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Figure 3.12: Comparison for case 2 of the experimental results and the modeled

results.

Case 3: Continuous Steel Jacket in the Elastic Region
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The third case considered is the circular concrete column with a steel shell

around the elastic section. For this column type there is no experimental data available

for comparison. Instead, the results are verified by hand calculations shown in

Appendix B. This type of column is used to control the spread of the plastic hinge area

and force the nonlinear behavior to occur in a specified area. This is done to control
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the location of damage and facilitate repair after a seismic event. The geometry of this

model is similar to the second case as it is taken from Silva et al. (1999).

Geometry for Case 3

The geometry for case three is shown in Figure 3.13. The three CISS columns
are connected to the reinforced concrete cap beam along the top of each column. The
columns are 4.34 m tall and have a diameter of 910 mm. The steel shells have a
thickness of 12.7 mm. The columns have reinforcement ratios of 2.5% with (16) M36
bars (#11’s) symmetrically spaced with a diameter of 787 mm. The columns are
spaced at 4.27 m center to center. Each column sits on a 610 mm tall concrete
foundation, which is bolted to a strong floor. The cap beam is 1.07 m tall by 1.37 m
wide and is designed to be rigid relative to the columns. The structure is loaded in the
vertical direction before the pushover analysis starts. The continuous load is
equivalent to two point loads 1.2 m away from the center of the columns. The exterior
point loads are 1223 kN and the interior point loads are 445 kN. The plastic hinge

length 1s 700 mm which is the length of the section unconfined by the steel jacket.
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Figure 3.13: Geometry for case 3.

Modeling for Case 3

The columns are modeled using force-based beam-column elements with
hinge-Radau integration. Two sections are used in the column elements. One is the
reinforced concrete column with a steel jacket used in the elastic region of the column,
and the other 1s a spiral confined concrete section used in the plastic hinge region. The
plastic hinge region is at the end of the element connected to the cap beam.

The section used for the elastic region is the same as is used in case two. A
circular composite section combining the concrete, the reinforcing steel, and the steel
Jacket is used to model the columns. The concrete material has a crushing strength, .,
of 35 MPa. The concrete has a confined strength of 86 MPa and is determined using

the Mander model. The diameter of the concrete is 846 mm. The reinforcing steel has
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an elastic modulus of 200,000 MPa and a yield strength of 448 MPa with a strain
hardening ratio of 2%. The reinforcing steel is equally spaced around the column with
a clear spacing of 76 mm to the outside of the steel shell. The steel shell has a
thickness of 12.7 mm, an elastic modulus of 200,000 MPa, yield strength of 250 MPa
and a strain hardening ratio of 2%.

The plastic hinge section consists of spirally confined concrete. The strength,
f’c, 1s 58 MPa at a strain of 0.003. The ultimate strength, f,, is 44 MPa at an ultimate
strain of 0.03. The model is shown in Figure 3.14. The reinforcing steel is the same as

for the elastic section.
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Figure 3.14: OpenSees model layout for case 3.

The cap beam is modeled as rigid, similar to case two, because its stiffness is

significantly larger than that of the columns. To make a rigid cap beam the modulus of
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elasticity is increased to 200,000 MPa and the area of the cap beam is 0.67 m* which is
the same as in case two. The cap beam consisted of three force-based beam-column
elements with Gauss-Lobatto integration per span with nodes at 1.2 m away from the
center of each column. Three-point Gauss-Lobatto integration is used because the
sections are uniform and expected to remain elastic. Point loads are applied to each of
the nodes in the middle of the spans of 1,223 kN on the outside nodes and 445 kN on
the inside nodes to approximate the experimental loading. The pushover analysis is
conducted by displacement control where the displacement of the center node on the

cap beam 1s incrementally increased in the horizontal direction.

Results for Case 3

The results of the pushover analysis are shown in Figure 3.15. The failure
occurs in the plastic hinge region. The stiffness of the elastic portion of the column has
minimal effect on the behavior after the plastic hinge region begins to yield. From
hand calculations, it is shown that the nominal point load capacity of the spirally
confined circular columns is about 1,585 kN (Nilson et al. 2004). The hand
calculations are shown in Appendix B. This is close to the values predicted by the

OpenSees model.
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Figure 3.15: Modeled results for case 3 compared to the hand calculations.

Conclusion

This chapter presents an application of a plastic hinge integration method
based on modified two-point Gauss-Radau quadrature to model circular concrete
bridge columns with steel jackets. It is shown that using this integration method it is
possible to obtain a simulated response which closely matches experimental data for
two of the test cases and matches the hand calculations for the third case. From the
results, it is shown that the hinge-Radau integration method can accurately and
efficiently simulate the experimental response of reinforced concrete columns with

steel jackets.



46

References

Chai, Y. H., Priestly, M. J. N., and Seible, F. (1991). “Seismic retrofit of circular
bridge columns for enhanced flexural performance.” ACI Structural Journal,
88(5), 572-584.

Chai, Y. H., Priestly, M. J. N., and Seible, F. (1994). “Analytical model for steel-
jacketed RC circular bridge columns.” Journal of Structural Engineering,
120(8), 2358-2376.

Hewes, J. T., Priestly, M.J.N. (2002) “Seismic design and performance of precast
concrete segmental bridge columns.” Structural Systems Research Project,
Report No. SSRP-2001/25, University of California at San Diego, La Jolla,
California.

Mander, J. B., Priestly, M. J. N., and Park, R., (1988) “Theoretical stress-strain model
for confined concrete.” Journal of the Structural Division, ASCE, 114(8),
1804-1826.

Neuenhofer, A., and Filippou, F. C. (1997). “Evaluation of nonlinear frame finite-
element models.” Journal of Structural Engineering, 123(7), 627-641.

Nilson, A. H., Darwin, D., and Dolan, C. W. (2004). Design of Concrete Structures,
13" Edition, McGraw-Hill, New York.

PCI Design and Handbook, Precast and Prestressed Concrete, 6™ Edition, MNL-120-

04, Prestressed/Precast Concrete Institute, Chicago, (2004).



47

Scott, M. H., and Fenves, G. L. (2006). “Plastic hinge integration methods for force-

based beam-column elements.” Journal of Structural Engineering, 132(2),
244-252.

Silva, P. F., Sritharan, S., Seible, F., and Priestly, M. J. N. (1999) “Full-scale test of

the Alaska cast-in-place steel shell three column bridge bent.” Structural

Systems Research Project, Report No. SSRP 98/13, University of California at

San Diego, La Jolla, California.



48
Chapter 4: Conclusions

The plastic hinge integration using modified two-point Gauss-Radau
quadrature method (hinge-Radau) creates an accurate and computationally efficient
numerical model for columns with different section properties in the plastic hinge
region and the elastic region. The use of plastic hinge integration to model different
section properties in the two regions is verified by comparing the response of a
cantilever, using hinge-Radau integration, to the theoretical response of the same
cantilever. The results show that hinge-Radau integration method closely
approximates the nonlinear response of the cantilever. This result verifies that the
hinge-Radau integration method can be used to model the behavior of structural
systems with beam-columns that have plastic hinges. It also keeps the number of
equations to a minimum because only one element is used for each frame member to
make the solution method as efficient as possible.

The application of hinge-Radau integration to reinforced concrete columns
with steel jackets is examined. Three cases are explored with the designs and the
experimental responses provided by Hewes and Priestly (2002) and Silva et al. (1999).
The comparison of the results validates that the hinge-Radau integration method can,
accurately and efficiently, simulate the experimental response of steel-jacketed
columns. It i1s recommended that the force-based beam-column with hinge-Radau
integration be used for nonlinear analysis of reinforced concrete columns with steel

jackets.
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Appendices
Appendix A: Theoretical Solution for Cantilever

The following shows the calculations for the displacement of the cantilever

beam. To calculate the displacement of the cantilever the principle of virtual forces is

applied.
L
U= Im(x);c(x)d 3 Where m(x) is the virtual moment and k(x) 1s the curvature.
0
m(x) =x forO<x<L
and
k(x) =
Px for 0<x<L-BL
E] lI
P-x for L-pL <x <CL
B
Py-x
fortl. <x<L
EL

Px(c-1) p Pax’
a-E, I2 u»Ezlz‘L

forcl.<x<L

where ¢ =max(0,1-My/M)and C describes the spread of plasticity across the plastic

hinge length. The length CL is the length of the cantilever over which m(x) is greater

than M.



This gives:
L-p.L
2
Ul = P_x dx
E111
“0
FL-C.L ”
UE = P_x dx
Bk
“L-p-L
I
Py-:ar2
U,=
3
Bh
L-£.L
k 2 3
0, = Px-(f - 1) LB
ct.-E.212 o:‘E.zlz-L
I-¢.L

Integrate to get:

p.(L-pL)
U=———
3E 1,

o pl-c)’ - (L-p)]
2" 3EL,

3 3
272

y P03 p-g)Tel-1) +3-g))

4 .
120-E L, L 120-E 1L
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Uy simplifies to:

o rlg-+ -0

4
leoc-Ez-I2

For the elastic case where P < Py, terms U3 and Uy become zero giving:

U.=U, +U,= PL- B'L)3 + P'[(L‘C'L)3 -(L- B-Lﬂ

E 1 2 : -E..
l‘sE]Il 313212

For the inelastic case where P > Py:

U=U1+U2+U3+U4

s P-pr)’ Plo-e’--pyd F - (L—@f] p(ag-1)+ (-9
Y|

3-E] Il 3-E2-12 3-I32-I2 120.-52-[2
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Appendix B: Hand Calculations for Load Capacity for Case 3
The flexural capacity of the concrete column from case three is computed as follows.
The following equations control the behavior of the column. Figure B.1 shows the

layout of the column section and the flexural resistance.

Variables:
Height =4.34 m
f'e = Compression Strength of Concrete
f; = Steel Stress
E = Elastic Modulus of Steel

¢ = Distance to Neutral Axis

{31 = Variable to Define the Depth of Stress Block
a= ,H| C

A. = Area of Concrete Along Length a

€g = Steel Strain
gy = Concrete Strain = 0.003

d = Distance to Steel

C = Concrete Force

L. = Length from Concrete Centroid to N.A.
T; = Steel Force for Steel Bar i

L; = Length from Steel i to N.A.

M, = Nominal Moment Capacity for Section



P, = Nominal Load Capacity = M,/Height

Equations:
fh = E gS
d-c
£, =&,
¢
C=0.85f" A,
T =A(f),

M, =CL.+» T,L,
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Figure B.1: Flexural resistance of the concrete section.
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Excel was used to goal seek for the neutral axis. Equilibrium was found with
¢ =260 mm. The results are shown in Table B.1. The sum of all of the moments is
2293 kN m. To calculate the force, divide the moment by the moment arm of 4.34 m
which gives 528 kN. To account for the three columns used in each bent the force is

multiplied by three to give a calculated force of 1585 kN.

Table B.1: Calculations for Flexure in a Reinforced Concrete Section

Concrete Properties ¢ (mm) a (mm) yl(mm) concrete area (m2)
259 168 225 0.076
Steel Area Asl | As2 | As3 | Asd4 | As5 | As6 | As7 | As8 | As9
(mm) 1006 | 2012 | 2012 | 2012 | 2012 | 2012 | 2012 | 2012 | 1006
Steel Strain etl et2 et3 etd et5 etb et7 et et9
-0.003 [-0.003 [-0.002 |-2E-04]0.0016|0.0033|0.0048 |0.0058|0.0061
Steel Stress fs1 fs2 fs3 fsd fs5 fs6 fs7 fs8 fs9

0 0 0 0 413 413 413 413 413
Forces |Concrete|As1Fs1|As2fs2|As3Fs3|As4Fs4|As5Fs5|As6Fs6/As7Fs7|As8Fs8|As9Fs9

(kN) -3744 0 0 0 0 832 832 832 832 416
Moment Arm|Concrete| cl c2 c3 cd c5 cb c7 c8 c9
(mm) -259 =259 | 2229 | -144 -16 134 285 412 497 527

Moment Mc M1 M2 M3 M4 M5 M6 M7 M8 M9
kNm 969 0 0 0 0 112 237 | 343 414 | 219







