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NOMENCLATURE
 

b Channel width, m 

cp Specific heat, JIkg.k 

g Gravitational acceleration, ml s2 

h Convection coefficient, W/m2 k 

k Thermal conductivity, W/m k 

1 Channel length, m 

T Fluid temperature, k 

U Vertical velocity, m/s 

Horizontal velocity, m/s 

p Fluid density, kg1m3 

/3 Volumetric thermal expansion coefficient, 1/k 

v Kinematic viscosity, m2/s 

Length coordinate, x/b 

77 Width coordinate, y lb 
gfib3(T., Toy

Gr Grashof number, 
v2 

Pr Prandtl number, vl a 

Nu Nusselt number, hb /k 

Nu Average Nusselt number 

Rai Channel Rayleigh number, Gr Pr bl 1 

0 Temperature, (T T. 

(1) Velocity, Ubl v
 

II Pressure, P'b2I(pv2)
 



SUBSCRIPTS 

b based on bulk 

co based on ambient 

w value at wall 



FULLY DEVELOPED LAMINAR NATURAL CONVECTION IN A
 

VERTICAL PARALLEL PLATE CHANNEL WITH SYMMETRIC UNIFORM
 

WALL TEMPERATURE
 

1. INTRODUCTION 

The physical phenomenon considered in this thesis is that of temperature 

induced buoyant flow. In a situation where a fluid such as air is in contact with a 

heated surface, the fluid near the surface will be heated by conduction and begin to 

rise. This motion is a result of the decrease in density of the fluid when heated. 

Common examples of this type of flow are found in heat exchangers of all types. 

If a vertical channel is formed from two parallel heated walls, a channel flow 

will be induced. As the lower density fluid rises, cooler and therefore denser fluid is 

drawn into the channel from below. This net fluid motion from the lower reservoir 

to the upper reservoir is referred to as a thermosyphon. A graphical depiction of this 

geometry is shown in figure 1.1. Once fluid motion has begun, heat transfer from 

the hot walls to the moving fluid is convective. As a steady state is reached, a 

constant heat transfer with time is achieved. It is an understanding of this steady 

state heat transfer from the hot walls to the cool fluid which is the goal of this work. 

Natural convection in vertical channels and tubes is of great importance in 

many practical applications. A greater understanding of natural convection is 

expected to be beneficial in the design and use of arrangements involving chimneys, 

heaters, nuclear reactors, microchips, power supplies and other devices. Other 

possible applications include problems in combustion and flammability of materials, 

either to retard or enhance combustion. Vertical or inclined ducts may be of various 

cross-sections. Ducts of circular cross-section and those formed by two parallel 

plates of infinite width placed a known distance apart are the most convenient for 
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study. It is the latter of these two geometries upon which we focus attention in this 

study. 

, , , b, 
U. .; 

x . 1 L_,. v
Y 

Y=o )=6 

FL0,-,J 

Figure 1.1 Flow Geometry 

Within chimneys and heaters, natural convection occurs between a high 

temperature fluid and the walls of the channel. Safety and reliability of nuclear 

reactors could be enhanced by more effective natural convection for cooling which 

allows for higher power output without resorting to noisy and unreliable pumps. 

Effective natural convection in electronic equipment promises to allow for an 

increase in the component density while prolonging service life. Improvements in 

convective heat transfer within heaters may allow more fuel-efficient and safer 

operation. Ignition and combustion characteristics of household and aircraft 

components may also benefit from a greater understanding of the natural convection 

phenomenon. 

Due to the importance of natural convective flows, many investigators have 

devoted considerable effort in the past to quantifying and predicting heat transfer 

results for this geometry. Consequently, much work exists for both forced 

convection and natural convection within channels and tubes. Natural convection 

between two plates with a temperature elevated with respect to the surroundings was 
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first studied experimentally and analytically by Elenbaas [I]. The first experiments 

reported by Elenbaas and later corroborated numerically by Bodia and Oster le [2], 

have established a foundation on which to judge all subsequently obtained results. 

The fluid studied by Elenbaas was air (Pr = 0.7), and experiments were conducted 

over a range of channel Rayleigh numbers (Ra') from 0.2 to 3,000. The experiments 

were performed with two elevated temperature plates. Air was assumed to enter the 

channel from a quiescent uniform temperature room at the bottom of the channel as 

a result of the buoyancy effects from the two channel wall plates. 

Sparrow and Bahrami [3] reported critically on Elenbaas and other's earlier 

work. This work noted that for Elenbaas' report at small values of interplate 

spacing, the corrections for extraneous heat losses were much larger than the actual 

heat transfer results. 

Bar-Cohen and Rohsenow [4] reported empirical relationships for Nusselt 

number that support Elenbaas' results. Their report emphasized the maximization 

of heat transfer for banks of parallel plates for symmetric and asymmetric constant 

wall temperature and isoflux boundary conditions. Results were provided for an 

optimal spacing for efficient use of space when designing heat exchangers. 

Seban and Shimazaki [5] compared results for uniform heat flux boundary to 

those of uniform wall temperature to predict that the uniform heat flux boundary 

condition results in a greater heat transfer by approximately 12% to 13.5%. The 

current results presented here, when compared to the companion work of Aldan [6] 

support this general finding. 

Aung [7] presented analytical results for asymmetrically heated walls with either 

a uniform temperature or heat flux. Quintiere and Mueller [8] report approximate 

analytical solutions for the uniform wall temperature boundary as well. Martin, 

Raithby and Yovanovich [9] discuss the existence of the asymptotic behavior of an 

average Nusselt number at low channel Rayleigh numbers. 
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Sparrow and Bahrami [3] reported results critical of previous work. 

Experimental investigation using a naphthalene sublimation technique led to 

potentially more accurate results in the low Ra' region where edge effects are the 

greatest. Sparrow also discussed the effect of property evaluation temperature on 

final heat transfer results, indicating the relative importance of evaluating fluid 

properties in a standardized manner. Colwell and Welty [10] experimentally 

investigated the low Ra' regime by use of a low Pr fluid (mercury). In this report 

Colwell and Welty discuss the effects aspect ratio and a low Pr fluid have on heat 

transfer and entrance effects. This investigation somewhat avoids this issue by 

neglecting the third dimension of depth in the governing equations. 

In the analysis of both forced and natural convection in channel flows, two 

boundary condition categories can be said to exist. The first is when the walls are 

maintained at a constant temperature, this is referred to as UWT (uniform wall 

temperature boundary). The second is UHF (uniform heat flux boundary). This 

paper deals with the UWT boundary condition. Analysis of these two categories of 

problems is similar, with results for the local Nusselt number being somewhat 

greater for the UHF condition [5,11]. 

Heat transfer is generally greater in forced convection. Results are presented in 

terms of Nusselt numbers, either averaged over the channel length or local. Local 

Nusselt numbers can be defined on the basis of either the ambient temperature or 

bulk temperature. 

Table 1.1 shows a brief compilation of existing work of relevance to this study. 

This table contains information cited from Kays [12]. Values shown in Table 1.1 are 

for local Nusselt numbers. The value listed for natural convection between parallel 

plates with the UWT boundary condition is a result of the analytical study presented 

in this paper. A companion paper by Aktan [6] provided a result of 4.12 for natural 

convection between parallel plates under the UHF boundary condition. 
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Nusselt Numbers: Nub = hbb /k 

Circular Tubes Parallel Plates 

UWT UHF UWT UHF 

Forced 3.66 4.36 7.60 8.24 

Natural 3.77* 4.12** 

Table 1.1 Local Nusselt Numbers 

The goal of this work is to provide analytical results for uniform wall 

temperature (UWT), fully developed, symmetric boundary condition, natural 

convection in a vertical parallel plate channel. It is desirable to fill in the above table 

in order to have a complete understanding of the relationship between natural and 

forced flows, UWT and UHF boundary conditions for different geometries. In 

Table 1.1, the result from Aktan[6] is marked with two asterisks(**), while the result 

from this work is marked with a single asterisk(*). Analytical solutions are 

inherently desirable because they embody the physics of the problem while clearly 

displaying any simplifications used in arriving at the solution. This allows easier 

adaptation of the results presented within this paper to other situations. Numerical 

solutions tend to conceal simplifications. Additionally computer code must be 

copied or rewritten to be adapted to situations not anticipated by the original author 

of the code. We hope to contribute a closed form analytical solution to the well 

known Elenbaas natural convection problem that is easily adaptable to other 

situations. 
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2. PROBLEM FORMULATION
 

2.1 Problem Statement 

Two vertical parallel flat plates separated by a distance b, having length 1 , are 

maintained at a uniform temperature 7:,, and situated in a room of uniform quiescent 

air at temperature T. As shown in Figure 1.1 the setup resembles a thermosyphon 

with both the top and bottom open to an infinite reservoir. The walls are assumed to 

be at an elevated temperature( Tv > Too). The plates are presumed to be of infinite 

width normal to the plane of the paper and of large vertical height 1 relative to plate 

spacing b. The temperature difference creates a buoyant effect, causing the fluid 

between the walls to rise against gravity. This causes fluid to be drawn in at the 

inlet(bottom opening) from the room conditions. The fluid is taken to enter the 

channel at To, . The plates are taken to be infinitely wide, thus eliminating any edge 

effects associated with infiltration of cool air. The local gravitational acceleration is 

g. 

Flow within a vertical channel can be divided into three distinct regions. The 

first, near the channel entrance, is characterized by developing thermal and 

momentum boundary layers. In this region fluid velocity is high near the walls and 

much of the fluid remains at the ambient temperature. The heat transfer problem in 

the first regime is much like that of a single vertical flat plate. In the second region, 

boundary layers have merged at the plane of symmetry, although the velocity is still 

high near the wall. This is the transition regime between flow characteristic of a 

single flat plate and that of channel flow. The third region is the fully developed 

domain, in which the velocity profile has become parabolic. In the fully developed 

region, boundary layers are no longer present. Both the velocity and temperature 
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profiles are fully developed. Fully developed conditions for the velocity profile 

mean that velocity no longer changes in the direction of flow. Fully developed 

conditions for the temperature profile are somewhat different. The temperature 

profile does not attain a situation where it remains constant, rather the fluid is 

heated continuously and warms. The fully developed conditions for the temperature 

profile requires that, although the fluid continues to warm, the general shape of the 

profile remains the same. More precisely, as a consequence of the fully developed 

temperature profile we know there exists a generalized temperature distribution 

which is unchanging in the direction of flow. These fully developed assumptions 

will be discussed in greater detail in the following section. 

If the channel is long with respect to plate spacing, much of the channel will 

conform to the fully developed region explained above. It is therefore convenient to 

assume that the entire channel conforms to the fully developed conditions, provided 

that it is long enough with respect to plate spacing. This assumption will be made. 

2.2 Governing Equations 

We will begin by considering the momentum equation in the x-direction(vertical). 

The Boussinesq approximation has been made so that density variations with 

temperature are considered negligible except in the buoyant force term. 

5U) c 
p U +V v (2.1) 

We will utilize the notion of fully developed flow to simplify Eq. (2.1). For fully 

developed flow, the change in the x component of velocity is zero( cly = 0). By 

examination of the two dimensional continuity equation 
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o'Ll 
-F = (2.2) 

alc 

we can see that the change in the y component of velocity must also be 

zero(c1V/0 = 0). From this observation and the boundary condition that the walls 

are impermeable to flow it is known that 

V = const = 0 (2.3)
 

With these simplifications the momentum equation becomes 

(3) clq/ 
(2.4)
ac 2 

Equation (2.4) can be applied outside the flow channel to get 

(2.5)
opor,ga 

If we subtract Eq. (2.5) from Eq. (2.4) we get 

= +pd2U 
+ (pc° p)g (2.6) 

dy2 

It is assumed that the fluid behaves as an ideal gas (pT= const .), and that the 

thermal expansion coefficient fi can be expressed as 1/Too . It is also convenient to 

reckon the pressure relative to the hydrostatic pressure (P' = P Pte). With these 

simplifications, Eq. (2.6) becomes 
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d2U 1 dP' gl3 
(2.7)
= -(T Too)dy2 dx 

The energy equation can be reduced in a similar manner. We consider initially 

the two dimensional energy equation with constant fluid conductivity, no internal 

generation and negligible compressibility. 

1 +rja )=4T +0T) 
(2.8)
p- a 02 

As before, we will make simplifying assumptions consistent with fully developed 

conditions. From [12,5], fully developed conditions for the temperature can be 

stated as 

0 (T.- Tj_ 
(2.9)
 

ac T.- Th 

where Tb in Eq. (2.9) is the bulk mean or average temperature across the channel at 

any point x. A more rigorous definition of the bulk temperature can be found from 

Kays and Crawford [12] as 

pUc pTdy 

T ob 

pUcpdy 
0 

The impact of Eq. (2.9) on the velocity profile will be investigated in greater detail 

later in the analysis. It is known, from the simplification of the momentum 

equation, that V is zero. If the fluid examined is air, axial conduction can be 
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neglected, thus 0 Voc2 is zero. If conditions are taken to be steady, aya= 0. 

With these simplifications, the energy equation becomes 

T Pc e7T = u P (2.10) 
6,2 k a 

With the reduction outlined above the velocity and temperature distributions are 

described by Eq. (2.7) and (2.10) respectively. For the current geometry the 

boundary conditions are as follows. 

@y= 0 @y =b
 

U = 0 U = 0
 

T = 7:4, T --=. 7:
 

Table 2.1 Boundary Conditions 

Next we turn our attention to nondimensionalizing Eq. (2.7) and (2.10). We will 

introduce five dimensionless parameters to this end. 

velocity cl) Ub/v 

temperature 0 --=(T T.)/(T. T.) 
II = P'by 

pressure PV 

x coordinate Yb 

y coordinate YX77 

Table 2.2 Dimensionless Parameters 
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In terms of these variables the momentum Eq. (2.7) takes the following form. 

orto g 13b3 
= 0(TH, Too) (2.11) 

We recognize the dimensionless Grashof number as the following. 

g fib3
Gr = (T T ) (2.12) 

Equation (2.11) states that the velocity (I) is only a function of ,, we can therefore 

surmise that the 4' functionality of drIkg must exactly cancel the functionality of 

0 the nondimensional temperature. This relationship between the pressure term 

and the temperature term will be illuminated in later analysis. So we have as our 

non-dimensional x momentum equation. 

d2(1) oTI 
= Gre (2.13)

dr? c9 

And for the energy Eq. (2.10), we can rewrite with substitutions as 

oc (T-L) vpc, (Tv Tco) 
(2.14)

el2 b2 b k (2 b 

Cancellation and rearrangement of Eq. (2.14), as well as recognition of the Prandtl 

number as (Pr = v / a) with (a = kipcp) we get 

0 )
= (1) Pr (2.15) 
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The problem indicated by equations (2.7) and (2.10) is now reformulated to 

equations (2.13) and (2.15). In dimensionless form the boundary conditions are 

@ 71= 0 @ 77 = 1 

(1) = 0 ct = 0 

0 = 1 0 = 1 

Table 2.3 Dimensionless Boundary Conditions 

2.3 Separation of Variables 

In order to proceed with further analysis, it will be necessary to introduce a 

separation of variables for the nondimensional temperature. The function 0 is 

expected to be a function of both the non dimensional coordinates and 77. Two 

new functions will be introduced to allow for this separation. 

r =r(77) (2.16) 

s = s() (2.17) 

To correctly define the temperature 0 in terms of r(77) and s( 6, a further 

examination of the definition of fully developed flow from Eq. (2.9) is required. As 

defined from table 2.2 

(2.18)0(rl, 
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The bulk temperature is defined as the average value of the temperature profile at 

any value of j . A nondimensional bulk temperature can be difined in a similar 

manner to that of Eq. (2.18) as 

(2.19) 

In order to satisfy the definition of a fully developed temperature profile from Eq. 

(2.9), we can observe that 

(T,T)_1 
(2.20)

Tb 1 Ob 

We can then introduce our separation variables in a convenient manner 

1-0 = r(ri) s(4) (2.21) 

1 Ob = s() (2.22) 

From these definitions we can see that the j functionality of the ratio defined by Eq. 

(2.9) has been canceled out, this is a requirement for the condition of a fully 

developed temperature profile. 

0(T,,T)_ 0(1-0)_ 0(72)0 
(2.23) 

oar Tw -T a ob a s ) 

The goal is to obtain a solution to the energy Eq. (2.15). The temperature profile as 

described by Eq. (2.21) must be differentiated in order to allow for a substitution into 
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Eq. (2.15). It is necessary to take the second derivative of Eq. (2.21) with respect to 

ri and the first derivative with respect to 

00 d2r clD r ds 
(2.24) 

61772 e3 4 

We can now rewrite Eq. (2.15) with these substitutions to get 

d2r -s. = Pr (I)(-r) . (2.25) 

A simple rearrangement allows us to separate the variables in this differential 

equation. 

1 1 1 d2r _1 ds 
(2.26)

Pr (13 r dr/2 sd 

The left side of Eq. (2.26) is only a function of r7, and the right side is only a function 

of Both sides must therefore be equal to a constant denoted by A. 

1 1 1 1d2r ds 
= = A (2.27)Pr 4) r dr? sd4 

Two distinct ordinary differential equations can thus be obtained from Eq. (2.27). 

We will examine first the equation in s . 

1 ds 
(2.28) 

s 

By performing a single integration step and taking the exponent of both sides we get 
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--nt+cs = e (2.29) 

where C in Eq. (2.29) is an integration constant. From Eq. (2.22), boundary 

conditions can be developed for s . It is known that the bulk temperature, as defined 

by Eq. (2.19), is zero at the inlet to the channel where T = T., therefore s must be 

one when is zero. The constant in Eq. (2.29) is therefore zero. So we have 

s =e A (2.30) 

For the second ordinary differential equation in r from Eq. (2.27), we have 

1 1 1 der = A (2.31)
Pr (1) r dr? 

In order to proceed with a solution to Eq. (2.31), it is necessary to obtain a solution 

for the dimensionless velocity O. We will examine Eq. (2.13) in light of the 

separation variables that have been introduced. Because the velocity in Eq. (2.13) is 

only a function of i, we know that the functionality of the two remaining terms 

must cancel, therefore 

811 = Gr c13 Grr--r d5) (2.32) 
!? Cg) 

By integrating twice we get an expression for the pressure II as 

II = rGri s4+ C2 (2.33) 
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From Eq. (2.30) the indication integration can be performed and substituted to 

obtain 

rGr= e (2.34) 
A 

In order to solve for the integration constants in Eq. (2.34), boundary conditions 

must be developed. The nondimensional pressure as defined from table 2.2 contains 

P' = (13 Po) . P' , and therefore II, must be zero at the entrance and exit of the 

channel, where P = P. From this, the constants of Eq. (2.34) can be evaluated to 

get 

rGr(II= (2.35) 
A 

Where @ 1 =, =1 /b is the dimensionless x coordinate evaluated at the channel 

exit, referred to as the channel aspect ratio. Once this pressure function is known, 

we can take the first derivative with respect to for substitution into Eq. (2.13). The 

first derivative of Eq. (2.35) with respect to is 

dri = Girs+r( e A41 )) (2.36) 
/141 

With substitution of Eq. (2.36) into (2.13) we have 

1 -A4e)
d2o =Gr( rs+r( 1+rs) (2.37) 
d772 

With cancellation we are left with, as the momentum equation 
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d2(1) =Gri r( I e-A4' 11 (2.38) 
dii2 A1 /11 } 

Further simplification is possible if we observe that, for channels that are long with 

respect to plate spacing 

I e-MI )Mz »1 ,,-, 0 (2.39)(.g A1, 

This simplification is consistent with previous simplifications that the channel must 

be sufficiently long so that fully developed flow can be assumed to prevail for the 

entire channel. The unknown constant A is yet to be determined, however, for 

sufficiently large aspect ratio channels the momentum equation can be simplified to 

d2(1) = Gr (2.40)
chi 

The result of two integration steps on Eq. (2.40) is 

oz I)=Gr 772 +Ciri+C2 (2.41) 

By applying the boundary conditions for (1) from table 2.3, both constants can be 

solved for to get 

Gr 
(2.42)4) -=- (772 11)

2 
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Equation (2.42) describes the fully developed velocity profile as parabolic. This 

velocity profile is based on the assumption that the channel aspect ratio is 

sufficiently large that fully developed conditions can be assumed to exist for the 

entire channel. Eq. (2.42) is the desired velocity function that is sought for 

substitution into Eq. (2.31). By substituting we get 

der AGr Pr 
(2.43)77- 772)rde 2 

2.4 Application of a Series 

The function r can be determined by means of a series solution. It is proposed that 

the function r is given by a convergent series in ri 

r (A° +Al 77+ 242 + .43e Arne') (2.44) 

With two differentiations, Eq. (2.44) becomes 

d2 r = (2.45)(2 A2 + 6 A3 71 1)(M) Am 71 2))
dq2 

Equation (2.44) and (2.45) can be substituted into Eq. (2.42) to get 

AGr Pr 
(2A2 +6A377...(m-1)(m)A. 4"1-2)) = ) (2.46) 

2 

For convenience of notation the following term is introduced for substitution into 

Eq. (2.46). 
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AGr Pr 
f2 = (2.47) 

2 

By making this simplifying substitution and equating the coefficients of equal powers 

of ri from the left and right sides, the following recurrence relation is obtained. 

Am 
LI I (2.48)

A ("1-3))(m)(m -1)0 (m-4) 

This relationship applies only for m 4 . The first four coefficients must be 

determined by use of boundary conditions as discussed in the following section. 
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3. SOLUTION
 

3.1 Series Solution 

With the recurrence relation obtained in Eq. (2.48), any coefficient A. can be 

defined in terms of lower order coefficients. This will be useful in evaluating as 

many terms in the series function r =r(77) as desired. The first four terms must be 

examined without the use of the recurrence formula (2.48), but by use of the 

boundary conditions. From the boundary condition for 0 from table 2.3 we know 

r(ri=0)=0 

Gives 

Ao . 0 

and by examination of Eq. (2.46) 

2 A2 = 0 ... A2 = 0 

6A3 = -04 ... A3 = 0 

In order to evaluate any further terms, an expression relating the constant Q to the 

constant Al will be required, as both appear within the recurrence relation. To this 

end the mass flow through a control volume must be evaluated. For this situation 

the energy added to fluid flowing between two heated walls is equal to the energy 

convected to the fluid from the two walls in a differential length dx. This can be 

written for a plate width W. 
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in - c dT = 2d)c W (3.1)
P b 

The factor of two is to account for both walls being hot. By dividing though by the 

plate width, mass flow is written per unit width. Rearranging we get 

tie c dTb a= _ (3.2)
2k dx 4

0 

Making substitutions with the dimensionless forms introduced earlier from table 2.2 

and Eq. (2.19) we get 

riecp dob cic 
(3.3)

2k d eri
0 

By making substitutions using the separation variables from equations (2.21) and 

(2.22), Eq. (3.3) can be rewritten as 

rim' c ( dS)= sdr
(3.4)

2k 4 di
0 

From Eq. (2.28), the constant A can be substituted to obtain 

riec dr 
A - (3.5)

2k 6177 
0 

The mass flowrate through the channel can be written as 

1 

tie = pvi 001)&7 (3.6) 
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Making a substitution from Eq. (2.42) for the velocity term and performing the 

indicated integration of the two term polynomial, we get 

pvGr 
(3.7)
m -= 

12 

Substitute Eq. (3.7) into (3.6) and solve for the constant 

dr 24 
(3.8)
A=d 

dii oGr Pr 

Finally, from the definition of the function r from Eq. (2.43), the crucial 

simplification can be performed to get 

24 
A = AI (3.9) 

Gr Pr 

If equations (2.47) and (3.9) are combined and the constant ) is isolated 

SI =12A, (3.10) 

Equation (3.10) is the desired relationship between the two constants that appear 

within the recurrence relation Eq. (2.48). A solution has been found for three of the 

first four coefficients of the function r . All remaining coefficients build upon the 

first four( AO = 0,A, = ? , A2 = 0, A3 = 0). As more terms are added the function 

becomes more accurate, however, r can always be reduced to a function of A, only. 

The second boundary condition can then be applied. From the boundary conditions 

for 0 from table 2.3 we know 
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1-(7=1) = 0 

gives 

= 0	 (3.11) 

The Eq. (3.11) has only one unknown, Al. This equation can be solved for the 

unknown coefficient. Once we have determined the value of A we will use this 

information to develop heat transfer results, such as local and average heat transfer 

coefficients. Once the complete expression for the series r is established, the 

temperature profile from Eq. (2.21) is known. This profile is plotted in figure (3.1) 

below. 

0	 0.2 0.4 0.6 0.8 
Channel width 

Figure 3.1 Temperature Profiles 
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As can be seen in figure 3.1, the temperature profile is similar as the fluid is heated. 

This corresponds to the fully developed condition that was discussed earlier. 

Although the profile is seen to shallow somewhat as x/b is increased, the form of the 

profile is constant. 

3.2 Heat Transfer 

Having determined the coefficient A, and the functions r and s , heat transfer results 

for the given conditions can be developed. Heat transfer results are presented in 

terms of a nondimensional Nusselt number defined as 

Nu =hb (3.12)
k 

The convective heat transfer coefficient h of Eq. (3.12) can be defined in two 

different ways. h can be defined in terms of the temperature difference between the 

hot walls and the local bulk temperature 

(3.13)
4" = k(T. 4)
 

or in terms of the total temperature difference between the hot channel walls and the 

ambient fluid. 

4" = hoo(T. 7:,) (3.14) 
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Defining the convective heat transfer coefficient in these two ways results in Nusselt 

numbers based on these two temperature differences. By defining h as in Eq. (3.13) 

we can write an expression that equates the energy conducted through the fluid to 

that convected by the fluid in order to develop a local Nusselt number based on the 

bulk temperature. 

-k =--hb(T.,- (3.15) 

0 

Our first step will be to replace the temperature change at the wall with the 

dimensionless form from table 2.2 as follows 

-k cl) (T. To) 
(3.16)
= k(7,

b 

We will rearrange, shifting terms to the RHS to form the bulk, local Nusselt number. 

In the same step we will replace the partial derivative at the wall with the 

appropriate derivative from the definition of 0 from Eq. (2.21). 

drs-- (3.17) 

Combining Eq. (3.17) with (3.16) and rearranging we have 

(Tv Teo )sdr hbb 
(3.18)
 

T. Tb 
0 k 

From the definition of the bulk temperature in Eq. (2.19) we recognize the 

temperature ratio on the LHS and can make a substitution as follows 

http:s--(3.17
http:hb(T.,-(3.15
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1 sdr Nub (3.19)
1-0b 

0 

From Eq. (2.22) we can see that a further cancellation can be performed because 

(3.20) 

And from the definition of the series r from Eq. (2.44) we know 

dr 
= A, (3.21) 

dry 
0 

We can then make a substitution into Eq. (3.19) and simplify to get 

A, = Nub (3.21) 

The x dependency of the local Nusselt number is lost if the convective heat transfer 

coefficient is based on bulk temperature as in Eq. (3.13). If we perform a similar 

derivation as that above, but this time define our convective heat transfer coefficient 

on ambient temperature as in Eq. (3.14) we get 

Nuco= Ais (3.22) 

For comparison with existing literature it is also desirable to derive an expression for 

heat transfer based on an average heat transfer coefficient 
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h,,,g(T Tja (3.23) 

The convective heat transfer coefficient in Eq. (3.23) is based on the same 

temperature difference as in Eq. (3.14). Consequently the Nusselt number obtained 

from this definition will be the average over the channel corresponding to the local 

value from Eq. (3.22). With the area (a = 2/). Making a substitution for the LHS we 

have 

thcp(Tke ) 7:321 (3.24) 

Where Tb, is the bulk temperature at the exit of the channel. In this derivation we 

have need for a new temperature ratio to be 

4e-7:0) 
b,e 

(3.25) 

This quantity is the dimensionless bulk temperature, similar to that defined in Eq. 

(2.22), but applied at the exit of the channel. We can now combine equations (3.25) 

and (3.7) with (3.24) and rearrange to get 

pc Gr 0b hoo,,,g1 (3.26) 

With the definition of the bulk temperature in terms of the separation variables from 

Eq. (2.22), we can see that the bulk, exit temperature as defined in Eq. (3.25) can be 

written as 

b= 1 s(I) = 1 e (3.27) 
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We can then combine Eq. (3.27) with (3.26) and solve for the average Nusselt 

number based on fluid ambient temperature. 

k Gr Pr (1 el (3.28) 
k 24 

If both sides of Eq. (3.28) are then multiplied by the same problem constant bll , we 

arrive at the desired result 

1gb Pr b=Gr e Prb (3.29)Ni 1 

24/ 

Equation (3.29) is plotted in figure 4.2 and will be discussed in greater detail in the 

following section. Defining the Nusselt number in this manner allows comparison 

with a many existing results. Figure 4.2 clearly shows that for a limited range of 

channel Rayleigh number, the analytical expression obtained here shows good 

agreement with previously published results. 
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4. RESULTS AND DISCUSSION
 

Using the recurrence relation, Eq. (2.48), 48 coefficients were defined as 

functions of AI only. This procedure is outlined in section 3. These terms when 

summed and set equal to zero create the second known boundary condition from 

Eq. (3.11). This equation can be solved for a value of AI , which is also the local 

Nusselt number based on fluid bulk temperature. For a 48 term series 

= 3.77 (4.1) 

And, consequently 

Nub = 3.77 (4.2) 

The important result presented as Eq. (4.2) has been unavailable in heat transfer 

literature to date. This result tells us that the convective heat transfer coefficient is 

constant with . From Eq. (3.13) we can see that the heat transfer from the hot 

walls to the cool fluid must then be decreasing with because the temperature 

difference between the hot walls and the fluid is decreasing as the fluid warms. To 

get a result for the local Nusselt number based on fluid ambient temperature we 

must first use Eq. (4.1) and (3.9) to solve for s as defined in Eq. (2.30). From the 

result presented as Eq. (4.1) we can return to our simplification in Eq. (2.39) to 

observe that the results presented here should have good accuracy for channel aspect 

ratios ( i) of ten or greater. 

For a 48 term series 

-22.62 
S = e Gr Pr (4.3) 
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This can be used as indicated by Eq. (3.22) to get 

22.624 

Nuco= 3.77e GPr	 (4.4) 

Equation (4.4) is plotted as figure 4.1 below. As can be seen in figure 4.1 the Nusselt 

number when based on the ambient temperature is not a constant with respect to 

When the product of Gr and Pr, called the Rayleigh number is low, the Nusselt 

number decays rapidly from a value of 3.77 at the channel entrance. 

z 2 20 

0 
0	 0.2 0.4 0.6 0.8 

x/b 

Figure 4.1 Local Nusselt Number based on Ambient Temperature 

By comparing these two methods of obtaining heat transfer results we can see that 

the energy transferred from the walls to the fluid by either Eq. (3.13) or by Eq. (3.14) 

must decrease with increasing These two contrasting definitions simply make the 

decrease in heat transfer a result of the temperature difference or conversely as a 

1 
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result of the convective coefficient decreasing. By making similar substitutions into 

Eq. (3.29), we get an expression for the average Nusselt number based on ambient or 

reservoir temperature. This is plotted in figure 4.2 for comparison with previous 

results. 

10 

0.001 

1E-1 1E0 1E1 1E2 1E3 1E4 

Ra' 

Present Study Bar Cohen/Rohsenow Elenbaas 

Figure 4.2 Average Nusselt Number Comparison 

While applying the series solution method to determine the numerical value of 

A1, the number of terms included in the series is of critical importance. As the 

recurrence formula from Eq. (2.48) is used to develop successive terms and then find 

solutions for Ai , two interesting features of the solution become apparent. First, an 

even number of terms must be used to avoid a meaningless and erratic solution. 

This is most notably true when the number of terms is less than 16. The second 

observation is that a computer mathematical application is required due to the fact 

that the solution was observed to change when the number of terms was increased 

from 12 to 14. A 14 term hand solution was time consuming and error prone. Hand 
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calculation beyond this point was therefore prohibitive. When a computer was 

employed the solution was seen to stabilize and the data are presented in figure 4.3. 

After approximately 26 terms are included, the value is stabilized at 3.77. No 

change was seen in the value of A, to 4 decimal places when the number of terms 

was increased to 48. This gives confidence that the series is sufficiently convergent 

with 48 terms that the final results presented are accurate to the precision indicated. 

4 

3.5 

3 

2 

1.5 
5 15 25 35 45 55 

number of terms in series 

Figure 4.3 Convergence of Series 

The expression for the average Nusselt number based on ambient fluid 

conditions is presented in figure 4.2. This value is plotted verses the channel 

Rayleigh number, which is traditional. As can be seen the analytical result obtained 

compares well over a range of channel Rayleigh number from 10 to 100. Figure 4.2 

shows also the correlation presented by BarCohen and Rohsenow[2]. Results are 

plotted from a Rayleigh number of 0.1 to 1000. Results below this Rayleigh number 

are not included because of the assumption of negligible axial conduction. The 
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assumption of negligible axial conduction is not applicable to low Prandtl fluids 

such a liquid mercury, where axial conduction can be significant. Higher channel 

Rayleigh numbers are associated with channels that are short with respect to 

interplate spacing. Under these conditions, the assumption made here that the 

channel is sufficiently long that fully developed conditions exist everywhere within 

the channel is inaccurate. 
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5. CONCLUDING REMARKS
 

The number found for the local Nusselt number based on the bulk temperature is 

about what would be expected. This value of 3.77 has been unavailable in the 

literature before this report. The value of the averaged Nusselt number based on the 

ambient fluid temperature shows excellent agreement with previously reported data 

over specific ranges of the channel Rayleigh number. 

The solutions obtained, being analytical in nature, offer greater flexibility and 

elegance compared to previous experimental results. 

Further work is needed to apply the current solution technique to the entrance 

domain. This domain is characterized by developing boundary layers. In this 

analysis, simplifications used to reduce the complexity of the governing equations 

limits the applicability of the results for the high channel Rayleigh number regime. 

In addition, further work might focus on different wall conditions such as allowing 

one wall to be unheated or cooled. 
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