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This study investigated associations among teachers' pedagogical content beliefs,

approaches to teaching, and their students' achievement in a high school Advanced

Placement (AP) Calculus setting. The three major research questions concerned: (a)

how well Al' calculus teachers' pedagogical beliefs about mathematics, curriculum, and

instruction aligned with a constuctivist point of view, (b) how AP teachers' pedagogical

content beliefs were reflected in their approaches to teaching and goals for instruction,

and (c) relationships among AP teachers' pedagogical content beliefs, approaches to

teaching, and their students' achievement.

Teachers' pedagogical content beliefs were categorized as cognitively based

(CB) or less cognitively based (LCB) using a belief questionnaire adapted from research

with first-grade teachers. Telephone interviews with nine CB and eight LCB teachers

served to provide additional insight into their beliefs and to gain information on how

teachers approach teaching differential calculus. A researcher-designed Differentiation

Test was administered to assess student achievement.

Interviews with nine CB teachers and eight LCB teachers revealed: (a) CB

teachers were more likely to believe the role of the teacher was that of a facilitator/guide

and the role of the student was to explore. LCB teachers were more likely to believe

their role as that of a knowledge base, and the role of the student was to learn from the

teacher. (b) CB teachers' self-reported classroom practices were found to be more

student-centered and conceptual in nature than LCB teachers. (c) CB teachers were



more likely to use word problems when introducing topics, emphasize student

involvement, have their students work in groups, emphasize visual approaches to topics,

and consider students' knowledge when planning instruction. LCB teachers were more

likely to present rules and theorems, work examples, and require students to memorize

rules of differentiation.

Students of CB teachers were found to have a better conceptual understanding

of differential calculus than students of LCB teachers. Students of CB teachers were

better able to interpret graphical information and to interpret information given in a table.

No differences were found in students' ability to work with symbolic information or to

use a graphing calculator in conjunction with problem solving.
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RELATIONSHIPS AMONG AP CALCULUS TEACHERS'
PEDAGOGICAL CONTENT BELIEFS, CLASSROOM PRACTICE,

AND THEIR STUDENTS' ACHIEVEMENT

CHAPTER ONE: INTRODUCTION

Mathematics education researchers and curriculum reformers have been

developing new ideas about what it means to teach mathematics. These ideas emphasize

that: (a) mathematics is not a set of procedures, but rather a changing science of quantity

and patterns, (b) mathematics is learned through students construction of knowledge, not

through the transmission by the teachers, and (c) mathematics students should be enabled

to develop, solve, and debate interesting mathematical problems, rather than simply carry

out procedures (Knapp and Peterson, 1995).

Teachers' thoughts, knowledge, judgements, and decisions have a profound effect

on the way teachers teach as well as on the way students learn and achieve in their

classrooms (Peterson, 1988). Research exploring the nature of beliefs has found a strong

relationship between teachers' educational beliefs and their planning, instructional

decisions, classroom practices, and student achievement. According to Pajares (1992),

beliefs can be the single most important construct in educational research. Therefore,

adopting the new constructivist theories into the classroom will require considerable

change in most teachers' beliefs (Knapp and Peterson, 1995).

The focus of this study was to examine high school Advanced Placement (AP)

calculus teachers' pedagogical content beliefs and to explore relationships among these

beliefs, teachers' classroom practices, and student achievement. In particular, the

questions addressed in this study are:



Teachers' pedagogical content beliefs
What are AP calculus teachers' pedagogical beliefs about mathematics,
curriculum, and instruction in AP calculus? How well do their
pedagogical content beliefs align with a constructivist point of view?

How do AP teachers' pedagogical content beliefs change with time? Do
the pedagogical content beliefs of teachers become more cognitively based
as they become familiar with the materials from a calculus reform project?
Is there a relationship between how long a teacher has used the project
materials and the degree to which they are cognitively based?

Teachers' classroom practices
How are AP teachers' pedagogical content beliefs reflected in their reports
of their approaches to teaching, their concepts of the roles of the teacher
and the learner, and their goals for instruction?

Student achievement
Is there a relationship between AP teachers' pedagogical content beliefs,
approaches to teaching, and their students' achievement, including
achievement of computational skills and problem solving?

Is there a relationship between teachers' pedagogical content beliefs and
their student's ability to work in multiple representations: graphically,
numerically, and symbolically?

The teachers in this study were high school Advanced Placement calculus

teachers who were selected to participate in an inservice program as a part of the

Calculus Connections Project, a teacher enhancement project funded by the National

Science Foundation. In addition to the inservice received through the Calculus

Connections Project, these teachers had three fundamental factors in common:

they taught AP calculus at the high school level

they were all using new calculus curriculum materials developed
to be used with graphing calculators (Calculus of a Single
Variable, by Dick and Patton, 1994)
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3. all students in their calculus classes had access to graphing
calculators (the Calculus Connections Project provided each
school with a set of HP-48G calculators)

In this study teachers' pedagogical content beliefs were categorized as being

cognitively based or less cognitively based. This categorization of teachers' pedagogical

content beliefs, based on constructivist theories of learning, was drawn from an earlier

study by Peterson, Fennema, Carpenter, and Loef (1989). Constructivism views

teachers and students as active meaning-makers who are continuously giving meaning to

each others' words and actions (Cobb, 1988). From this point of view, mathematical

structures are not perceived, intuited, or taken in; instead, they are constructed. They

are inventions of the individual's mind. On the other hand, the central assumption in the

transmission view of learning is the idea that meaning is inherent in the words and

actions of the teacher, or in the objects in the environment. By this account, the words

and actions of teachers carry meaning in and of themselves that are waiting to be

absorbed by the students.

We will begin our review of the literature in Chapter II by providing the reader

with some background on calculus reform. After this context has been established, we

will review the literature concerned with teachers' pedagogical content beliefs and

establish a framework for studying these beliefs. In Chapter III we give a detailed

account of the methods and procedures used in this study and in Chapter IV we present

the results of our investigation. We will conclude this study with a discussion of results

in Chapter V. In addition we will comment on the limitations of this study, and

implications for future research.
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CHAPTER TWO: THEORETICAL FRAMEWORK

This is a time of curricular reform in mathematics education and one of the most

active areas has been calculus reform. This climate for change in the way calculus is

taught has promoted the development of a number of curriculum reform projects. These

curricular reforms are ultimately implemented through the classroom practices of

teachers and the success of the reform is determined by students' conceptual

understanding and academic achievement.

Research has shown that teachers' pedagogical content beliefs, i.e., beliefs about

how a topic should be taught and how learning of the topic occurs, are closely related to

both teachers' classroom practices and student achievement (Pajares, 1992; Peterson et

al., 1989). This study investigated how high school Advanced Placement (AP) calculus

teachers' pedagogical content beliefs relate to their classroom practices and their

students' achievement. The teachers in this study were all actively engaged in

implementing a specific reform curriculum in Advanced Placement calculus. A basic

motivation for the study was an examination of factors that could help explain different

levels of success in those teachers' efforts.

The purpose of this chapter is to provide the reader with some background on

calculus reform and a theoretical framework through which we can discuss and

investigate teachers' pedagogical content beliefs. We will begin this section by

discussing the context of calculus reform, including:

The Call for Reform

Student Difficulties with Calculus Concepts

Emerging Themes of Calculus Reform

The Calculus Connections Project

Calculus Reform and the Advanced Placement Calculus Program



After this context has been established, we will review the literature concerned

with teachers' pedagogical content beliefs and establish a framework for studying these

beliefs.

Calculus Reform

The Call for Reform

In recent years there has been a call for substantial change in precollege and

college mathematics curricula and instructional methods (National Council of Teachers

of Mathematics, 1989; National Research Council, 1989). Coupled with the availability

of powerful and relatively inexpensive computing technology, this call presents a great

opportunity for change in mathematics education.

One factor contributing to the present climate for change is the redefinition of

what it means to be mathematically literate. Knowledge of facts and a facility with

procedures are no longer considered adequate standards. Instead, a more conceptual

definition considering mathematical literacy as a process of learning which emphasizes

the social and cognitive construction of knowledge is called for (National Council of

Teachers of Mathematics [NCTM], 1989). Reform efforts recommend a shift from

teacher-directed transmission approaches to instruction that is learner-centered. These

recommendations, based on recent developments in cognitive psychology, promote the

construction of mathematical concepts by the student (Piliero & Confrey, 1992; Confrey,

1986).

Technology has also had a significant influence on the call for change.

Calculators and computers can free students from algebraic manipulation, allowing for

more emphasis on exploration and problem solving. The National Council of Teachers

of Mathematics (NCTM), among others, highly favors the use of computing technology

5
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in mathematics instruction and testing. It is NCTM's position that teachers, authors, and

test writers should integrate the use of calculators at all grade levels, and that the time

presently spent on practicing computation could be used to further students'

understanding and their ability to apply mathematics (NCTM, 1989).

The NCTM (1989) has recommended a more conceptually oriented curriculum

that:

reduces the amount of time devoted to drill-and-practice,

involves students in challenging problem-solving situations,

creates a classroom atmosphere where questioning, exploration,
reasoning, and justification are encouraged and expected, and

uses the power of computing technology to free students from tedious
computations, allowing them to concentrate on problem-solving
processes.

Another motivating force behind the call for change in the way mathematics is

taught is the lack of understanding many students have of even the most basic

mathematical concepts. Next we will review the literature concerned with student

understanding of key calculus concepts.

Student Difficulties with Calculus Concepts

One of the factors influencing the reform movement is the concern among

mathematics educators and the business community that there will not be a sufficiently

trained technological workforce for entry into the twenty-first century (Berenson & Stiff,

1989). According to Ferrini-Mundy & Graham (1991), of the 600,000 students who

enroll in calculus in four-year colleges and universities in America, half are enrolled in

mainstream "engineering" calculus. Of these 300,000 students, only 140,000 finish the



year with a D or higher. In addition, many students completing calculus do not have an

adequate understanding of the most basic concepts of the course (Virmer, 1990; Orton,

1983b; Ferrini-Mundy and Graham, 1991). In the discussion that follows, research

concerned with student understanding of key calculus concepts is explored.

One of the most important ideas in mathematics is that of function. However,

many students have a poor understanding of this basic idea. Students have trouble

finding images and pre-images, making the transition between the tabular, algebraic and

graphical representations of a function, and understanding operations involving

functions, in particular the composition of functions (Vinner & Dreyfus, 1989).

In a study that investigated students' understanding of functions, Schwarz,

Dreyfus, and Bruckheimer (1990) found that:

Students could carry out procedures they had been taught, but were
unable to link their procedural knowledge with their conceptual
knowledge.

Students take a discrete approach to functions, conceiving of them as
consisting of points.

Students have difficulty in those aspects of functions that describe
variation, and are unable to cope with variation of variation.

Students have difficulty in relating graphs to functions when
presented with tasks on function transformations.

In addition, students' difficulties understanding the concept of function include an

attachment to linearity, difficulties in transferring between representations, a lack of a

dynamic conception of functions, and an inability to see a function as an object (Schwarz

et al., 1990).

As with functions, researchers have found students' understanding of even the

most basic concepts of differentiation and integration lacking. Conceptual difficulties

included understanding the derivative as a limit of a set of secant lines, negative and zero

rates of change, rate of change at a point, and average rate of change (Orton, 1983a).
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Students have difficulty with the notion of Riemann sums and are often not able to define

the definite integral clearly (Ferrini-Mundy and Graham, 1991; Davis, 1985). In

addition, students lack connections between their procedural and conceptual knowledge

(Ferrini-Mundy and Graham, 1991; Orton 1983b) and are not retaining what they do

learn (Virmer, 1990).

The concept of limit seems to give students particular difficulty. In part, this may

be due to the non-mathematical images the term may invoke (Davis and Vinner, 1986).

Students may conceive a limit as a bound, as something unreachable, as motion, and

often choose a representation which is not correct for the problem at hand (Williams,

1991). Although most students are able to determine limits graphically, they seem to

have little geometric understanding of what they are doing (Ferrini-Mundy and Graham,

1989).

One of the goals put forward by the Standards (NCT'M, 1989) is that all students

should be able to translate among tabular, symbolic, and graphical representations. The

ability to transfer among representations is essential to problem solving because it allows

one to make progress in one representation and use the results in another. However,

researchers have found that students' ability to understand concepts within the different

representations, and their ability to transfer among representations, is lacking. Many

students show preferences for a certain representation (Hart, 1991) and little

understanding of connections with other representations (Dreyfus and Eisenberg, 1988).

In fact, students have conceptual difficulties regardless of the representation used

(Markovits et al., 1986).

To address this lack of student understanding it has been recommended that

curricula be developed that consider (a) the body of research available on student

learning of calculus-related topics, (b) the nature of the role of technology, and (c) the

role of teachers and instructors in the development and dissemination process (Ferrini-

Mundy & Graham, 1991). It is in this spirit that the National Science Foundation has

funded a number of projects intended to explore the opportunities for revitalizing



calculus instruction. We will now turn our attention to an overview of these reform

efforts.

Emerging Themes of Calculus Reform

Calculus reform projects, both NSF-funded and others, have taken a variety of

approaches in their attempts to revitalize the calculus curriculum. Among the calculus

reform projects there is diversity in the material emphasized, the approach taken to

introduce the material, and the emphasis placed on the use of technology. However,

there are important common threads among these reform projects. Central to most

reform efforts is the notion that students actively construct knowledge, as evidenced by

the more student-centered instructional methods which many reform projects employ.

This philosophy is reflected by Hughes-Hallett et al. (1994) of the Harvard project in

their belief that insight into mathematical concepts is gained through the investigation of

practical problems.

Another theme common to the reform projects is that conceptual understanding

should be the emphasis of the mathematics curriculum. To promote conceptual

understanding, teachers employ more intuitive approaches to the development of

important concepts. For example, in the Harvard project (Hughes-Hallett et al., 1994) a

definition is first introduced and developed in everyday language, and only after an

understanding is grasped is the formal definition introduced.

The idea of a multiple representation approach to the teaching of the important

concepts of mathematics is central to the call for curriculum reform (NCTM, 1989, p.

125). In many calculus reform projects, such as the Calculus Connections Project of

Oregon State University (Dick and Patton, 1994), an emphasis on numerical, graphical,

and symbolic representations of mathematical topics is evident. The Calculus

Consortium (Hughes-Hallett & Gleason, 1994), based at Harvard University, embraces

a multiple representation approach to the teaching of calculus known as "The Rule of

9
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Three." The Rule of Three emphasizes that every topic should be presented

geometrically, numerically, and algebraically. The St. Olaf Project (Ostebee & Zorn,

1994) also emphasizes combining, comparing, and moving among graphical, numerical,

and algebraic representations of important concepts.

The use of graphing calculators and computer programs is emphasized in many of

the reform projects. Some of reform projects which emphasize the use of calculators or

computer programs are technology specific: the University of Illinois project uses

Mathematica, the Purdue University project uses ISETL, and the Computer-Integrated

Calculus Project at the University of Connecticut uses True BASIC as a platform for

exploring calculus concepts. Another reform project that uses a specific computer

program as an integral part of its calculus curriculum can be found at the University of

Northern Colorado which uses Mathematica "notebooks" with a weekly open laboratory

assignment to complement a traditional lecture/discussion format. Project CALC

(Calculus as a Laboratory Course) at Duke University uses both graphing calculators

and the computer program MathCAD in their approach to teaching calculus (Tucker &

Leitzel, 1995).

Other reform curricula are designed in a way which allows for a variety of

calculator or computer programs to be used. The texts written in conjunction with the

Calculus Connections Project, the Harvard project, and the St. Olaf project are among

the curricula written without any particular computer program or calculator in mind.

While technology is heavily emphasized in many reform projects, there are exceptions.

New Mexico State University (Cohen, Gaughan, Knoebel, Kurtz, & Pengelley, 1991),

for example, has instituted a curriculum development program which focuses on two-

week assignments called "student research projects" which do not require the use of

calculators or computer programs.



The Calculus Connections Project

Oregon State University is the site of one of several NSF-funded curriculum

revision programs. Calculus of a Single Variable, by Dick and Patton (1994) was

written as a part of this project. The Calculus Connections Project (CCP) is a follow-up

NSF-funded dissemination effort specifically targeting high school calculus instruction

through the Advanced Placement program. Central to the learning philosophy of the

Calculus Connections Project is the notion that students actively construct knowledge.

This philosophy can be seen in the more student-centered instructional methods which

this reform project employs.

To foster a stronger conceptual understanding, the Calculus Connections Project

emphasizes a multiple representation approach in the development of important calculus

topics. Promoting the abilities of students to work with graphical, numeric, and

symbolic representations, and to switch among representations, are fundamental

objectives guiding this reform project. Another important pedagogical strategy of the

project is that of using problem situations for investigative purposes. The Project's

methodology uses real world problems to develop the concepts of calculus, allowing

students to develop understanding through exploration of real life applications and

solutions.

The use of technology is an important component of the Calculus Connections

Project; visualization and approximation play an important role in the curriculum

materials. Graphical interpretation skills take on particular importance as problem-

solving aids, since they allow the student to monitor the reasonableness of results

obtained numerically or symbolically. The calculating abilities of the new technologies

allow estimation strategies to be approached in ways that were not possible in the

pretechnology classroom.

Another characteristic of the CCP curriculum materials, which distinguishes it

from traditional texts, can be found in the exercises at the end of each chapter.

Traditional texts tend to have a large number of practice problems that closely follow the

11



Figure la

Types of Problems Found in Calculus of a Single Variable (1994)

For exercises 1-4: Use the graph of water level
as a function of time shown. When the faucet is on, the
water level rises at a steady rate. Similarly, when the
plug is pulled out, the water level falls at a steady rate
(but slower than the faucet's rate). At various times,
some events happen that affect the water level and/or the
rate at which the water level changes. In the exercises
below, you are asked to identify at exactly what tern the
given event occurred (p. 165).

The plug is pulled out with the faucet turned off.
A large rock is pulled out of the aquarium.
The plug is pulled out with the faucet turned on.

II The table below gives level y ( in centimeter) of fluid in a tank of industrial chemical reactants at.time
t (in minutes). Our purpose is to learn about the rate at which this level changes with passing time (P. 268) .

12

10

water 8
level

in 6
inches 4

2

10 1

time in minutes

12

What are the lowest and highest levels? When do they occur?
Are there time when the fluid is relatively or temporarily at a high or low level (even if not the

overall highest or lowest)? Identify these times and levels.
When is the level rising most rapidly? (Try adding a column to the table to give the differences or

changes in level.)

DI For exercises 1-4: Zoom in (with the same factor both horizontally and vertically) on the graph of the
indicated function y =f (x) to estimate f (1) graphically (P. 192).

f(x) = .x2/3 3. f(x) =x213
fix) = arctan (x) 4. fix) = log,o x

IV You are given the graph of the derivative y = f (x) . Indicate the locations of the points of inflection
for the graph of the original function y =fix). Where is the original function graph concave up or concave
down (P. 326)?

Time t Level

0.0 0.525
0.8 4.927
1.2 6.011
1.6 6.506
2.0 6.525
2.4 6.184
2.8 5.599
3.2 4.883
3.6 4.154
4.0 3.525
4.4 3.112
4.8 3.03
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pattern of examples given in the book. In the CCP curriculum, problems presented are

intended to be more thought-provoking and open-ended. There are more problems

which combine and compare the three representations, as well as problems that require

students to translate between representations. The problems in Figure 1a exemplify the

types of problems found in the text of the Calculus Connections Project (Calculus of a

Single Variable).

Calculus Reform and the Advanced Placement Program

The Advanced Placement (AP) Program is intended to provide an opportunity for

secondary school students to receive college credit or advanced standing for college

level course work. An AP course in mathematics consists of a full academic year of

work in calculus and related topics comparable to courses taught in colleges and

universities (see Appendix E for AP syllabus). The AP exams are administered

nationally and are open to any secondary school that elects to participate.

The AP program offers two examinations in calculus, denoted Calculus AB and

Calculus BC, which are scored on a scale of 1 to 5 (1 lowest, 5 highest). Calculus AB

covers at least as much material as a traditional first semester college calculus course,

and Calculus BC covers at least as much material as the standard first two semesters of

college calculus. It is the decision of individual colleges and universities if and how

much, credit or advanced course placement is to be given for a given score on each

exam. In many institutions a full semester's credit is given for a score of 4 or 5 (and

sometimes 3) on the Calculus AB exam, while a full year of college calculus credit may

be awarded for a 4 or 5 on the Calculus BC exam. Students may take only one of the

calculus exams per year, choosing the one more appropriate for their level of

preparation.

Currently, each AP Calculus Examination has a multiple-choice section and a free-

response section. The multiple-choice section contains 45 questions and the
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free-response section contains six questions, with 90 minutes allotted for each section.

The multiple-choice questions are machine scored, while the free-response questions are

scored by AP teachers and college professors who teach comparable courses. The AP

exams are administered once a year in May.

Figure lb gives examples which are indicative of the kinds of problems found in

the Advanced Placement AB exam (Educational Testing Service, 1994). Problem 1

requires the use of a calculator to solve. Although this problem is given algebraically,

the solution is determined graphically. Problem 2 requires the student to interpret the

graph of a function. To answer this question a student must have a good conceptual

understanding of the first and second derivative and have the ability to interpret

information graphically. Problem 3 requires the use of a graphing calculator. The

student must be able to interpret graphs and use the calculator's function to solve this

question.

The issue of calculator use in the AP exam has been a difficult one to resolve. The

NCTM calls for students to learn when and how to use calculators to:

concentrate on the problem-solving process rather than on the
calculations associated with problems,

gain access to mathematics beyond their level of computational skills,

explore, develop, and reinforce concepts, including estimation,
computation, approximation, and properties,

experiment with mathematical ideas and discover patterns, and

perform those tedious computations that arise when working with real
data in problem-solving situations (NCTM 1986).

Many educators believe that the non-use of calculators on standardized

examinations keeps calculators from being widely used in mathematics instruction. AP



Two particles start at the origin and move along the x-axis. For 0 t . _ 10, their
respective position functions are given by x1 = cos(t) and x2= ln(2t)2. For how many
values of t do the particles have the same velocity?

Consider the graph ofy =./(x) given below (note that this is the graph of the
derivative of f ).
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Sketch the graph of f " (x) in the space provide.
Over which intervals is the graph of f concave up? Justify your answer.
Find the x-coordinates of all relative minimums for the function f (x) .
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standardized examinations provides increased motivation for teachers to begin using

calculators in their classrooms. Teachers are, to one degree or another, motivated to help

their students be successful on the AP exam and are often held accountable for their

success. When students are required to use calculators on the exam, teachers will be

motivated to provide calculator instruction and practice.

In 1983 the College Board permitted the use of calculators on the AP exams;

however, their use was discontinued in 1985 because of issues of equity. Scientific

calculators were allowed on the 1993 and 1994 exams, and beginning with the May 1995

examination, graphing calculators were required.

Figure lb

Examples of Problems from the Advanced Placement AB Exam
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Figure lb (continued)

3. Supposefix) is continuous over the interval 1 <x < 7 and f '(x) = (In x)2 +
2(sin x)` for 1 <x < 7. Answer the following to three decimal places.

For what values of x isf'(x) = 0 ?
Find the x-values for all relative minima for the functionf (x). Justify
your answer.
For what values of x is f" (x) = 0? Justify your answer.
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Features of a Belief System

Teachers' Pedagogical Content Beliefs

An important consideration of this study is in the exploration of relationships

between teachers' pedagogical content beliefs and student achievement. Fundamental to

this inquiry are the questions: (a) how does learning occur? and (b) what roles do

teachers' pedagogical content beliefs play in the educational process? One basic

assumption of current research is that children actively construct knowledge by

interacting with their environment and reorganizing their own mental constructs

(Romberg & Carpenter, 1986). Instruction, according to this assumption, affects what

children learn, but does not determine it. Research has found a strong relationship

between teachers' pedagogical content beliefs and their planning, instructional decisions

and classroom practices (Carpenter, Fennema, Peterson, & Carey, 1988; Peterson et al.,

1989a). Therefore, if current reform efforts which reflect constructivist theories are

going to affect a change in teachers' instructional methods, a corresponding change of

beliefs will be required. In this section, we will examine the literature concerning these

ideas. In particular, we will consider:



Characteristics of Teachers' Beliefs

Constructivism in the Classroom

Features of a Belief System

The literature offers little agreement among researchers on a definition for teachers'

beliefs. Kagan (1992) points out that some researchers refer to the term "teacher belief'

as the teacher's "principles of practice," "personal epistemologies," "perspectives,"

"practical knowledge," or "orientations." Pajares (1992) maintains that "teacher belief'

should include socio-cultural factors such as attitudes, values, judgments, axioms,

opinions, ideology, perceptions, conceptions and conceptual systems. In this study,

teachers' beliefs were characterized as cognitively based (CB) or less cognitively based

(LCB) on the basis of their scores on a belief questionnaire that was adapted from the

research of Peterson et al. (1989).

To better understand the meaning of teachers' beliefs, it is helpful to consider the

differences between beliefs and knowledge (Pajares, 1992; Nespor, 1987; Abelson,

1979). Nespor (1987) suggests that beliefs have stronger affective and evaluative

components than knowledge, and operate independently of the cognition associated with

knowledge. According to Nespor, beliefs do not require group consensus regarding

validity, whereas knowledge systems are open to evaluation and critical examination.

Because of this, Nespor claims, beliefs can defy logic.

Abelson (1979) identifies seven features which he believes distinguish a belief

system from a knowledge system:

The elements (concepts, propositions, rules, etc.) of a belief system are
not consensual.

Belief systems are in part concerned with the existence or nonexistence
of certain conceptual entities.
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Belief systems often include representations of "alternative worlds,"
typically the world as it is and the world as it should be.

Belief systems rely heavily on evaluative and affective components.

Belief systems are likely to include a substantial amount of episodic
material.

The content set to be included in a belief system is usually highly
"open."

Beliefs can be held with varying degrees of certitude.

Characteristics of Teachers' Beliefs

Although there is no consensus on a definition of teachers' beliefs, some

generalizations can be made concerning their nature and effects. Pajares (1992) lists

definitional inferences and generalizations drawn from the literature on the assigned

meaning of "beliefs." Among them are:

Beliefs are formed early, are self perpetuating, and resistant against
contradictions.

Individuals develop a belief system that houses all beliefs acquired
through the process of cultural transmission.

Beliefs have an adaptive function which help individuals define and
understand the world and themselves.

Beliefs and knowledge are intertwined; beliefs are a filter through
which new information is interpreted.

Thought processes may be a precursor to beliefs; however, beliefs
screen thinking.

7. Beliefs are prioritized according to their connections with other beliefs.
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Beliefs are instrumental in defining tasks and selecting the cognitive
tools with which to interpret, plan, and carry out tasks. They play a
critical role in defining behavior and organizing knowledge.

Beliefs influence perception.

Beliefs affect behavior.

Beliefs must be inferred.

Beliefs about teaching are well established by the time a student gets
to college.

Pajares found that researchers exploring the nature of beliefs report a strong

relationship between teachers' educational beliefs and their planning, instructional

decision, and classroom practices. He states, "Attention to the beliefs of teachers and

teacher candidates can inform educational practice in ways which prevailing research

agendas have not and cannot." (Pajares, 1992 p. 328) He contends that understanding

teachers' beliefs is important in order to understand how teachers make their decisions.

Kagan (1992) reported consistent findings with regard to two generalizations

about teachers' beliefs. First, teachers' beliefs appear to be relatively stable and resistant

to change. Second, teachers' beliefs tend to be associated with a congruent style of

teaching. The relationship between teacher beliefs and teacher behavior is a particularly

significant finding, according to Kagan, because of the difficulties inherent in capturing

teachers' beliefs. One difficulty the author cites in capturing teachers' beliefs is that they

cannot be inferred directly from teacher behavior. This is because teachers can behave in

similar ways for very different reasons. Other reasons teachers' beliefs are difficult to

study are (a) teachers are often unaware of their own beliefs, (b) teachers often do not

have a language to describe their own beliefs, and (c) teachers may be reluctant to

explain their beliefs publicly.

Two special forms of teachers' beliefs are self-efficacy and content-specific beliefs.

Kagan describes self-efficacy as a teacher's expectancy concerning a personal ability to

influence students, as well as the teachers' own beliefs concerning how well they can
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perform certain professional tasks. Kagan found that self-efficacy has been positively

related to specific classroom behaviors, such as using praise instead of criticism,

persevering with low achievers, accepting student opinions, and raising the level of

student achievement in reading and mathematics. He describes teachers' content-specific

beliefs as their epistemological conceptions of the field to be taught. These conceptions

include the teachers' judgments about appropriate instructional activities, goals, forms of

evaluation, and the nature of student learning. Kagan found content-specific beliefs to be

correlated with a number of instructional and noninstructional variables.

In an unpublished paper, Simonsen (1993) reviews the literature concerned with

changing teachers' subject matter and pedagogical conceptions and beliefs. Simonsen's

review indicates the most important factor involved in the development of teachers'

subject matter and pedagogical conceptions and beliefs is their past experience in

mathematics classes. Because of this, the author suggests a necessity to examine what

conceptions and beliefs participants bring to teacher education programs and workshops.

Although Simonsen found that staff development interventions can affect teachers'

conceptions and beliefs, she noted that teachers' pedagogical thoughts and actions

change gradually with experience.

Constructivism in the Classroom

Constructivism views teachers and students as active meaning-makers who are

continuously giving meaning to each others' words and actions (Cobb, 1988). From this

point of view, mathematical structures are not perceived, intuited, or taken in; instead,

they are constructed. They are inventions of an individual's mind. On the other hand,

the central assumption in the transmission view of learning is the idea that meaning is

inherent in the words and actions of the teacher. The meanings they carry in and of

themselves are transmitted to and absorbed by the students.
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Cobb (1988) gives two reasons why a constmctivist view should be considered as

an alternative to the transmission perspective. The first reason is that the goal of

mathematics instruction should be to help students build structures that are more

powerful, complex, and abstract. The second reason is that the constructivist view of

learning considers what is worth knowing in terms of conceptual development, rather

than in terms of skills acquired.

While favoring constructivist theory, Cobb claims that deep-rooted problems arise

when attempts are made to apply constructivist principles in the classroom. One

problem is that teachers will not adopt constructivist methodology because it requires

more of them, demanding both a deep relational understanding of the subject and a

familiarity with the conceptual development of students in specific areas of mathematics.

Another problem is that deriving precise instructional recommendations from

constructivist theories is difficult. This, Cobb says, is due to the fact that we cannot

explain how students construct concepts which are more advanced than the ones with

which they started. According to Cobb, the best that can be done to help teachers

implement constructivist mathematics instruction would be to propose general

instructional heuristics and to suggest a variety of activities and interventions that might

work with some students. The solution, he says, is for the teacher to become "a

reflective pedagogical problem solver who, in effect, conducts an informal research

program."(p. 101)

Romberg and Carpenter's (1986) findings from their review of the literature

supports Cobb's findings that constructivist theories of learning are not being reflected in

current classroom teaching practices. The predominant pattern Romberg and Carpenter

found in elementary school mathematics pedagogy was extensive teacher-directed

explanation and questioning, followed by seatwork and paper-and-pencil assignments.

Romberg and Carpenter cite three limitations to this type of instruction. First, it gives

the impression that mathematics is a static and bounded discipline, supporting the view

that mathematics is separated from other disciplines and is composed of independent

subjects. Second, the acquisition of knowledge becomes an end in itself, requiring that



22

students spend their time learning what others have done, rather than having experiences

of their own; and third, the role of the teacher becomes that ofa manager.

These recent calls for a more constructivist approach to teaching, coupled with the

importance of teachers' beliefs, are fundamental to the present study. A central question

associated with the present study is whether AP calculus teachers' beliefs can be

categorized according to the degree to which they are constructivist in nature. In

addition, if teachers' beliefs can be categorized in this way, are there any relationships

between these beliefs, the teachers' classroom practices, and their students'

achievement? To explore these questions further it is necessary to establish a framework

for studying teachers' beliefs. This is the intent of the next section.

Framework for Studying Pedagogical Content Beliefs
of AP Calculus Teachers

For more than ten years a group of researchers based at the University of

Wisconsin has been studying teachers' pedagogical content knowledge and teachers'

pedagogical content beliefs, and their association to student achievement. Four of the

key researchers are Penelope L. Peterson, Elizabeth Fermema, Thomas P. Carpenter, and

Megan Loef. Their research has culminated in a program intended to promote classroom

practices which have been found to be associated with improved student performance.

This program, called Cognitively Guided Instruction (CGI), informs elementary teachers

of current research on how children learn, and of children's knowledge of solution

strategies for simple addition and subtraction problems. The aim of the CGI program is

for teachers to use this information to adapt their classroom teaching practices in ways

which will improve student understanding.

This study adopts the framework underlying the research undertaken at the

University of Wisconsin to the AP calculus setting, and uses this framework to research

relationships among teachers' pedagogical content beliefs, classroom practices, and their
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students' understanding of differentiation in calculus. We will begin this section by

examining the philosophies that have guided the development of the CGI program. This

will be followed by a review of key studies done by the researchers at Wisconsin and a

detailed look at a study by Peterson, Fennema, Carpenter, and Loef on which the current

study is based. In particular we will consider:

Overview of the Cognitively Guided Instruction Program

Development and Review of the CGI Program

The Key Study of Peterson, Fennema, Carpenter, and Loef

Overview of the Cognitively Guided Instruction Program

In an article in the Educational Psychologist, Carpenter and Peterson (1988a)

called for a combining of research on teaching and research on learning. According to

the authors, researchers who have focused on teaching have primarily concentrated on

how instructors teach and not on what is being taught, while researchers who have

focused on children's cognition have been primarily concerned with what is learned and

not with how learning occurs. In particular, researchers have not considered questions

regarding the knowledge children bring to the classroom, how this knowledge influences

what children learn, and how this prior knowledge changes with instruction. The authors

believe that new paradigms for research on learning and instruction in mathematics which

draws on the strengths of both are needed.

According to Fennema, Carpenter, and Peterson (1989), a prominent feature of

current research is the emphasis on the content being studied. The purpose of this

research has been to identify features related to the ways children think about content,

and to understand the processes children use to solve specific problems within a fixed

mathematical domain. According to the authors, this research provides maps of how
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children move from relatively intuitive knowledge to more sophisticated and abstract

knowledge. In particular, they point to research on addition and subtraction that has

provided a structured and detailed analysis on how children develop addition and

subtraction concepts and skills with respect to the children's solutions of different types

of word problems. This research gives a way of categorizing problem types and

strategies used by children and provides a model of the major levels in the development

of addition and subtraction concepts and skills. The framework for asking the

appropriate questions and understanding student answers has been an important result of

research on problem types and solution strategies.

Fermema et al. (1989) claim, ". . . understanding can be achieved in a variety of

classrooms, being taught by teachers using a variety of styles. The critical component

appears to be the teacher's pedagogical content knowledge. Such knowledge includes

knowledge of mathematics, knowledge of instructional techniques, and knowledge of

children's cognition in specific subject areas."(p. 217)

In keeping with the current curricular recommendations, the authors developed a

new paradigm for curriculum development. The Cognitively Guided Instruction Project

(CGI) is an investigation designed to improve student learning. In this project, the

researchers have been particularly concerned with teachers' knowledge and beliefs about

students' learning and thinking processes. Fennema et al. list the guiding principles of

CGI as:

Instruction must be based on what each learner knows.

Instruction should take into consideration how children's mathematical
ideas develop naturally.

Children must be mentally active as they learn mathematics.

The development of the CGI program was based on two assumptions (Peterson

et al., 1991). First, teachers can benefit from research-based knowledge of children's

thinking about addition and subtraction problems. Second, children make sense of new



Note. Arrows indicate direction of influence. (Fennema, et al., 1989, P. 204).
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knowledge in light of existing knowledge, as do teachers. In the CGI program,

research-based knowledge about children's mathematical knowledge is shared with

teachers, and the teachers are given the opportunity to interpret for themselves what it

means to their classroom instruction. In other words, the teachers are allowed to adapt

the research-based knowledge to their existing knowledge and belief systems.

Fennema, Carpenter, and Peterson (1989) offer the following model for research

and curriculum development (see Figure 2a).

Figure 2a

Model for Research and Curriculum Development

Teachers'
Knowledge

Students'
Learning

Teachers'
Decisions

Classroom
Instruction

Students'
Cognition

--->

Teachers' Students'

Beliefs Behaviors
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The authors stated that the CGI workshop did not in and of itself change the

teachers' beliefs. Peterson et al. (1991) found that teachers changed most when they

began to listen, and attend seriously, to their own students' thinking as the students solved

mathematical problems. In fact, they reported that the impact of the CGI program was

directly related to how carefully the teachers listened to the way their students solved

mathematical problems. According to the authors, "The research-based knowledge of the

problem framework and children's strategies gave teachers a context for thinking about

children's knowledge and for helping teachers make sense of their children's thinking."

(Peterson et al., 1991, p. 89)

According to Peterson et al., adults have not always taken children's knowledge

seriously. Many teachers, the authors claim, have assumed that children begin school

without much knowledge. In part, the authors say this is because children do not come to

school with much knowledge of formal algorithms, leading to the assumption that they do

not have much mathematical knowledge. This, the authors have found, is generally a

false assumption.

According to Peterson et al., children's solutions to mathematical problems

demonstrate two things. First, children can solve a variety of problems by analyzing the

information given instead of looking for key words or using other tricks. Second, the

authors assert, children's solutions to mathematical problems demonstrate their ability to

be creative in problem solving, and to solve mathematical problems based on an

understanding of fundamental number concepts.

Development and Review of the CGI Program

Several studies have influenced the development and refinement of the CGI

framework. Carpenter and Moser (1984) explored children's ability to solve addition and

subtraction problems and defined five levels of student problem-solving ability. At level

zero, the children were unable to solve any addition or subtraction problems. At level
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one, children were limited to direct modeling strategies. Level two was a transitional

period where children used both modeling and counting strategies. At level three,

students depended primarily on counting strategies. At level four, children primarily used

number facts.

A closer look at the strategies that children used to solve addition problems

showed that they initially solved problems with a count-all strategy and that this was

gradually replaced with a counting-on and the use of number facts. This research

provided a principled framework for selecting problems and analyzing students' thinking.

Having developed a framework for selecting problems and analyzing students'

thinking, Peterson (1989b) and Carpenter (1988b) present an initial conceptualization of

how teachers' and students' cognition and knowledge mediate effective teaching and

investigate relationships between teachers' pedagogical knowledge and student

achievement. In these studies there was found a significant correlation between teachers'

knowledge of their own students' thinking and student performance.

The above research culminated in an important study by Peterson, Fermema,

Carpenter, and Loef (1989b) which found relationships among first-grade teachers'

pedagogical content beliefs, teachers' pedagogical content knowledge, and students'

achievement in mathematics. This study is key to the present research and will be

reviewed in detail at the end of this section.

Having found teacher characteristics associated with improved student

achievement, the CGI program was developed. The CGI program was designed to

familiarize teachers with the findings of research on the learning and development of

addition and subtraction concepts in young children. Several studies investigated whether

providing teachers with information derived from this research would influence the

teachers' instruction and their students' achievement (Carpenter et al., 1989b; Peterson,

Fennema, Carpenter, and Loef, 1989a; Knapp and Peterson, 1995). It was found that

teachers participating in the CGI program had beliefs and instructional practices which

were more in keeping with the principle that children construct their own knowledge. In

addition, students of teachers who participated in the CGI program had a significantly
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greater understanding of mathematics than students of teachers who did not participate in

the CGI program.

The Key Study of Peterson, Fennema, Carpenter, and Loef

The framework and methodology employed in the current study is based closely

on research carried out by Peterson, Fennema, Carpenter, and Loef (1989b). Their

research investigated relationships among first grade teachers' pedagogical content

beliefs, teaching strategies, and student achievement. To investigate relationships among

AP calculus teachers' pedagogical content beliefs, teaching strategies and student

achievement the framework and methodology of Peterson et al. was adapted to the high

school AP calculus setting. This section describes in detail the study of Peterson,

Fennema Carpenter, and Loef which is central to the current study.

Peterson, Fennema, Carpenter, and Loef (1989b) conducted a study which found

that teachers' pedagogical content beliefs was strongly connected to their teaching

strategies and students' learning. This study involved 39 first grade teachers from 27

schools in Wisconsin. The purposes of the study were to conceptualize teachers'

pedagogical content beliefs, give examples of how teachers' pedagogical content beliefs

in mathematics might be analyzed, and to describe how teachers' pedagogical content

beliefs influence teachers' thinking, decision making, and teaching; and how these beliefs

influence students learning and achieving. Four basic principles of the framework used to

analyze these questions were:

Children construct their own mathematical knowledge.

Mathematical curriculum should be organized to facilitate children's
construction of knowledge.

Children's development of mathematical ideas should provide the basis
for sequencing topics.



4. Mathematical skills should be taught in relation to understanding and
problem solving.

A 48-item belief questionnaire was developed by the researcher to assess teachers'

pedagogical content beliefs according to these four constructs. The questionnaire was

divided into the following subscales:

how children learn math,

relationship between skills and understanding,

what should provide basis for sequencing of topics, and

how addition and subtraction should be taught.

Teachers whose responses to the questionnaire agreed with the above framework

were considered cognitively based (CB), while those with a low agreement with the

above framework were considered less cognitively based (LCB). Structured interviews

were used to support information obtained from the questionnaire and to obtain specific

information on the content and techniques that teachers used to teach addition and

subtraction in their classrooms.

Peterson found that teachers differed in the degree to which their pedagogical

content beliefs correspond to a cognitively-based perspective. The highest agreement

was found with the idea that math skills should be taught in relationship to problem

solving. The lowest agreement was found with the perspective that children "construct"

mathematical knowledge rather than "receive" mathematical knowledge. Peterson also

found that teachers that scored high on one construct tended to score high on the other

three constructs, while teachers that scored low on any given construct tended to score

low on the other three constructs.

Evidence was found indicating that the teachers' pedagogical content beliefs were

related to their knowledge of addition and subtraction word problems and their ability to
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distinguish between different types of problems. Teachers' general knowledge of

children's strategies was significantly positively related to a cognitively-based belief

structure. It was reported that the CB teachers were more likely to introduce word

problems early when teaching addition and subtraction, while the LCB teachers were

more apt to emphasize manipulation. All teachers indicated that understanding was most

important. However, the CB teachers related learning number facts as least important.

The CB teachers tended to consider the role of the teacher and learner as being actively

engaged with one another in the construction of mathematical knowledge and

understanding, while the LCB teachers viewed the teacher's role as that of organizer and

presenter and the children's role as that of receiver. It was also found that teachers' total

scores on the belief questionnaire were significantly positively related to their students

scores on a problem solving test. No significant difference was found in their students'

scores on a computational test.

The results of this study suggest that content belief and content knowledge are

linked to teachers' actions and students' learning. However, an analysis of the seven

teachers who scored highest and the seven teachers that scored lowest on the four

constructs found that the CB teachers had more years' teaching experience than the LCB

teachers (M = 14.57 and M = 8 respectively, p<.05). Since no other significant

demographic differences were found, it was suggested that this might indicate that the

contrasts found in this study are due to experience.

Summary

The present call for reform suggests developing curricula which promote the

construction of mathematical concepts by the student and incorporates the use of

technology. A number of calculus reform projects, as well as the AP calculus program,

have taken up the challenge of initiating these changes. Ultimately, the success of these

projects lies in the hands of the teachers implementing these changes. The literature that
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has been reviewed indicates that if these reform projects are to be successful, teachers'

pedagogical content beliefs must be considered. This research has shown that there is a

strong relationship between teachers' pedagogical content beliefs and their planning,

instructional decisions, and classroom practices. To promote a change in teachers'

classroom practices, corresponding changes are going to have to occur in teachers'

pedagogical content beliefs.

The work of Peterson, Fennema, Carpenter, and Loef (1989b) has shown that

teachers' pedagogical content beliefs are closely related to both teachers' classroom

practices and student achievement. These researchers have found strong relationships

among first-grade teachers' pedagogical content beliefs and students' achievement in

mathematics. Their research has given valuable insight into an important factor, teachers'

beliefs, associated with improved student achievement. Finally, the CGI program has

demonstrated that inservice workshops can be designed which will help affect teachers'

beliefs in a way which promotes improved student achievement.

The population of students and teachers studied as part of the CGI program are

quite different than the population of students and teachers in the AP calculus program.

Nevertheless, the goals of calculus reform and of the Cognitively Guided Instruction

program are strikingly similar in spirit. What is the role that teachers' pedagogical

content beliefs play in determining the success of implementing calculus reform in the AP

calculus setting? The purpose of the present study is to study relationships among high

school AP calculus teachers' pedagogical content beliefs, their classroom practices, and

student achievement.



CHAPTER THREE: RESEARCH DESIGN

Purpose of the Study

This study explores relationships among teachers' pedagogical content beliefs,

teachers' classroom practices, and student achievement. Specifically, we examine:

Teachers' pedagogical content beliefs
What are AP calculus teachers' pedagogical beliefs about mathematics,
curriculum, and instruction in AP calculus? How well do their pedagogical
content beliefs align with a constuctivist point of view?

How do AP teachers' pedagogical content beliefs change with time? Do
the pedagogical content beliefs of teachers become more cognitively based
as they become familiar with the materials from a calculus reform project?
Is there a relationship between how long a teacher has used the project
materials and the degree to which they are cognitively based?

Teachers' classroom practices
How are AP teachers pedagogical content beliefs reflected in their reports
of their approaches to teaching, their concepts of the roles of the teacher
and the learner, and their goals for instruction?

Student achievement
Is there a relationship between AP teachers' pedagogical content beliefs,
approaches to teaching, and their students' achievement, including
achievement of computational skills and problem solving?

Is there a relationship between teachers' pedagogical content beliefs and
their student's ability to work in multiple representations: graphically,
numerically, and symbolically?
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Method

Subjects

Subjects for this study were drawn from teachers participating in the Calculus

Connections Project. Each teacher in the Calculus Connections Project (CCP) attends

intensive inservice workshops (more than 60 hours in duration) during the summer

immediately before their first use of the curriculum materials. These workshops are

intended to provide the teachers with a thorough orientation to the CCP curriculum

materials and instruction in the use of graphing calculators.

Teachers chosen to participate in the Calculus Connections Project already show a

high degree of motivation and leadership skills. Participation in workshops and other

activities that demonstrated interest, motivation, and leadership were deemed desirable in

the competitive selection process. The teachers, from more than 40 states, teach at both

public and private schools. They reside in urban, suburban, and rural school districts and

have a wide range of student populations.

A new group of teachers was selected to participate in the Calculus Connections

Project in each year from 1992 to 1995. The first group consisted of 102 teachers and

attended one-week workshops in the summer of 1992. This group used a preliminary

version of the project materials and the HP 48SX graphing calculator.

The next three groups of teachers (123 in 1993, 113 in 1994, and 73 in 1995)

attended two-week workshops, used a revised version of the CCP curriculum materials,

and used the newer model HP 48G graphing calculator. Because of the differences in

workshop duration, curriculum version, and calculator model, the 1992 group of teachers

was not included as subjects in the study except for piloting the instruments and interview

protocols.

The 1995 group played a central role in this study. The teachers in this group

became involved in this study at a point before they had received any inservice
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instruction. This allowed for instruments to be administered to these teachers and their

students before they received any instruction in the CCP curriculum materials and again

after they had been using the project materials for six or seven months. Relationships

among the 1995 teachers' pedagogical content beliefs, approaches to teaching, and their

students' achievement were examined in depth.

Instruments

Teachers' Belief Questionnaire. To determine teachers' pedagogical content

beliefs, the Teachers' Belief Questionnaire developed by Peterson, Carpenter, Fennema,

and Loef for use with first grade teachers was adapted to the AP calculus setting (see

Appendix A for the Teachers' Belief Questionnaire used in this study). Questions were

reworded in a way that made the language appropriate to high school AP calculus.

The Belief Questionnaire uses a 5-point Liken scale. Four subscales to the Belief

Questionnaire measure agreement with the following constructs:

Students construct their own knowledge.

Mathematical skills should be taught in relation to understanding and
problem solving.

A math curriculum should be organized to facilitate students' construction
of knowledge.

Students' development of mathematical ideas should provide the basis for
sequencing topics.

Strong agreement with these constructs indicates cognitively based (CB) beliefs. Weaker

agreement indicates less cognitively based (LCB) beliefs.
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The first subscale is concerned with how students learn mathematics. A high score

suggests a belief that students construct their own knowledge, while a low score suggests

a belief that students receive knowledge. Items comprising subscale I are shown in

Figure 3a.

The second construct explores the relationship between mathematical skills,

understanding, and problem-solving. A high score suggests a belief that skills should be

taught in relationship to understanding and problem solving, while a low score suggests a

belief that skills should be taught in isolation. Items comprising subscale 2 are shown in

Figure 3b.

The third subscale was concerned with teachers' beliefs about what should provide

the basis for sequencing topics in mathematics instruction. A high score on this construct

suggests a belief that students' natural development of mathematical ideas should be the

basis for instruction. A low score on this construct suggests a belief that formal

mathematical ideas should provide the basis for sequencing topics for instruction. Items

comprising subscale 3 are shown in Figure 3c.

The fourth subscale addresses teachers' beliefs about how mathematics should be

taught. A high score on this construct suggests a belief that mathematics instruction

should facilitate students' construction of knowledge. A low score on this construct

suggests a belief that instruction should be organized to facilitate teachers' presentation of

material. Items comprising subscale 4 are shown in Figure 3d.

In each of the four subscales, six of the 12 questions were written so that a positive

response indicated an agreement with CB beliefs. The remaining six questions were

worded in a way that a negative response indicated CB beliefs.



Figure 3a

Students Construct/Receive Knowledge
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12+ Students learn calculus best by exploring problem situations.

25+ Students can figure out ways to solve many calculus problems without formal
instruction.

26+ Most students can figure out a way to solve many calculus problems without
teacher help.

39+ Most students can figure out a way to solve simple calculus problems.

42+ It is important for a student to discover how to solve elementary calculus
problems for him/herself.

43+ Students usually can figure out for themselves how to solve simple calculus
problems.

2- Most students have to be shown a method of solving elementary calculus
problems.

4- It is important for a student to know how to follow directions to be a good
problem solver.

10- Students learn calculus best from the teachers' demonstrations and
explanations.

13- To be successful in mathematics, a student must be a good listener.

17- It is important for a student to be a good listener in order to learn how to do
mathematics.

23- Students learn math best by attending to the teachers' explanations.

Note. Agreement with "+" item indicates CB beliefs. Disagreement with "-" item
indicates CB beliefs. Numbers indicate the order items appeared in the Belief
Questionnaire.



Figure 3b

Skills Taught in Relation To/In Isolation from Problem Solving
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8+ The instructional sequence of math topics should be determined by the order
in which students naturally acquire math concepts.

9+ The natural development of students mathematical ideas must be considered
in making instructional decisions.

11+ When selecting the next topic to be taught, a significant consideration is what
students already know.

14+ The natural development of student's mathematical ideas should determine the
sequence of topics used for instruction.

28+ In planning for instruction, it is important to know how student's mathematical
ideas develop naturally.

33+ It is more important to use student's concept development in planning an
instructional sequence than to use a mathematically determined sequence.

1- Time should be spent practicing computational procedures before students are
expected to understand the procedures.

30- Recall of basic rules of differentiation should precede the introduction of word
problems involving differentiation.

32- Students should master computational procedures before they are expected to
understand how those procedures work.

37- Time should be spent practicing computational procedures before students
spend much time solving problems.

Students will not really understand differentiation until they have mastered the
basic rules of differentiation.

Students should not solve basic differentiation word problems until they have
mastered some basic differentiation facts.

Note. Agreement with "+" item indicates CB beliefs. Disagreement with "-" item
indicates CB beliefs. Numbers indicate the order items appeared in the Belief
Questionnaire



Figure 3c

Instruction Sequenced to Facilitate Student Development of Mathematical
Ideas/Structure of Mathematics
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The instructional sequence of math topics should be determined by the order
in which students naturally acquire math concepts.

9+ The natural development of students mathematical ideas must be considered
in making instructional decisions.

11+ When selecting, the next topic to be taught, a significant consideration is what
students already know.

14+ The natural development of student's mathematical ideas should determine the
sequence of topics used for instruction.

28+ In planning for instruction, it is important to know how student's mathematical
ideas develop naturally.

33+ It is more important to use student's concept development in planning an
instructional sequence than to use a mathematically determined sequence.

5- The natural development of mathematical topics should determine the
sequence of topics which is used for instruction.

19- The mathematically logical sequence of topics must be considered in planning
for instruction.

22- The instructional sequence of math topics should be determined by the formal
organization of mathematics rather than by the natural development of
student's math ideas.

29- It is more important to teach in a mathematically sequenced way than to use
student's concept development in planning an instructional sequence.

36- When selecting the next topic to be taught, one must carefully follow the
mathematically logical sequencing of topics.

44- The structure of mathematics is more important in making instructional
decisions than is the natural development of student's ideas.

Note. Agreement with "+" item indicates CB beliefs. Disagreement with
"-" item indicates CB beliefs. Numbers indicate the order items appeared
in the Belief Questionnaire.



Figure 3d.

Instruction Organized to Facilitate Student Construction/ Teacher
Presentation

15+ Teachers should allow students to figure out their own ways to solve calculus
problems.

20+ Students should be allowed to invent ways to solve simple word problems
before the teacher demonstrates how to solve the problems.

24+ Calculus should be presented to students in such a way that they can discover
relationships for themselves.

31+ Teachers should facilitate student's invention of their own ways to solve
calculus problems.

38+ Teachers should encourage students who are having difficulty solving a word
problem to continue to try to find a solution.

48+ It is best to teach students how to solve a variety of word problems at one time
rather than one type of problem at a time.

7- Teachers should teach exact procedures for solving word problems.

16- Students should be encouraged to solve problems in the same way the teacher
has modeled them.

18- The best way to teach problem solving is to show students how to solve one
kind of problem at a time.

34- Teachers should tell students who are having difficulty solving a word
problem how to solve the problem.

The teacher should demonstrate how to solve calculus problems before
students are allowed to solve them.

It is better to teach students how to solve one kind of word problem at a time.

Note. Agreement with "+" item indicates CB beliefs. Disagreement with
"-" item indicates CB beliefs. Numbers indicate the order items appeared
in the Belief Questionnaire
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A pilot version of the adapted Belief Questionnaire was administered to ten teachers

participating in a Calculus Connections Project meeting in January 1995. This allowed

the researcher to administer the questionnaire in person and discuss the contents of the

questionnaire with the teachers after they had completed it. The discussion was primarily

concerned with how well the individual statements on the Belief Questionnaire addressed

the four belief constructs (i.e. the face validity of the questionnaire) and whether the

wording of the Belief Questionnaire was appropriate to the high school AP calculus

setting.

Several statements in the initial version of the adapted Belief Questionnaire were

subsequently revised and two versions of the Belief Questionnaire were developed:

Version 1 maintained the same length as the original Peterson questionnaire, and Version

2 was shortened to 40 questions.

These two versions of the Belief Questionnaire were then piloted with the 1992

teachers. Half of the 102 teachers were randomly selected to receive Version 1, while the

other half received Version 2. One week prior to mailing the two preliminary versions of

the Belief Questionnaires, a letter was sent to each teacher informing them that a

questionnaire was going to be mailed to them and requesting their cooperation. Two

weeks after mailing the Belief Questionnaire a reminder, which included another copy of

the Belief Questionnaire, was sent to teachers who had not responded. The final return of

64 completed questionnaires included 30 returns of version 1 and 34 returns of version 2.

Version 1 was chosen as the instrument for the study for two reasons: 1) it appeared

to provide a sharper discrimination for determining teachers beliefs, and 2) it maintained a

closer parallel to the instrument in the Peterson study. Summary statistics for Version 1

are given in Table 3a.

When the 1995 teachers completed the Belief Questionnaire at the beginning of their

inservice workshops they were also asked to fill out a form which gathered demographic

information. Figure 3e shows the demographic information requested and a summary of

the collected demographic information.



Table 3a

Piloted Belief Questionnaire Scores for 1992 Teachers

Note. n = 30. Scale 1, students construct/receive mathematical knowledge.
Scale 2, skills taught in relation to/isolation from problem solving.
Scale 3; instruction organized to facilitate development of ideas/structure of
mathematics.
Scale 4, instruction sequenced by students' construction/clear teacher
presentation.

Figure 3e

Demographic Information

Gender a) female 33 b) male 32

Age a) 20 - 29_i c) 40- 49 26
b) 30 - 39 12 d) 50 - 59 24

Highest degree
a) Bachelor's in Mathematics 11 b) Bachelor's not in Mathematics 5
c) Master's in Mathematics 28 d) Master's not in Mathematics 19
e) Doctorate in Mathematics 1 f) Doctorate not in Mathematics _...j.

Number of years teaching g = 19

Number of years teaching Mathematics u = 18

Number of years teaching calculus u. = 8.4

8. Number of students in your school g = 19

e) 60 or older 0

Note. 65 teachers from the 1995 group of participants gave demographic
information.
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Scale 1 Scale 2 Scale 3 Scale 4 Total

Mean 35.23 28.33 29.57 26.87 120.00

Median 36 28 29.5 28.5 122

SD 1.46 1.35 0.87 1.19 4.06

Range 32 34 17 26 94

Minimum 14 12 21 12 64

Maximum 46 46 38 38 158
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Interview Protocol. The interview protocol served several purposes (see Appendix

C for the complete interview protocol). First, the interview protocol served to gain

information on how teachers approach teaching differential calculus. In addition, the

interview protocol provided additional insight into teachers' pedagogical content beliefs.

Figure 3f shows questions from the interview protocol which were designed to gain

insight into teachers' classroom practices. Figure 3g shows the questions from the

interview protocol which explored teachers' pedagogical content beliefs.

The interview protocol used in the present study was adapted for the AP calculus

setting from the Knowledge and Belief Interview Protocol developed by Peterson,

Carpenter, Fennema, and Loef (1989). Selected teachers from the 1995 group were

interviewed. Interviews were conducted by telephone during the fall term of 1995.

To determine if teachers' self-reported approaches to teaching AP calculus

accurately reflected their actual teaching practices, five AP calculus teachers were both

observed while teaching their calculus class and asked to describe their teaching practices

during a telephone interview. Four of the teachers were observed twice, and one teacher

was observed once. These observations took place during the fall and winter quarters of

the 1995-1996 school year. During classroom observations, a trained observer would

alternate between observing the teacher for 30 seconds, and recording those observations

for 30 seconds.

Approximately two weeks after each teacher's last observation, the researcher

interviewed these teachers by telephone using the interview protocol. The teachers'

observed classroom practices were compared with their self-reported classroom practices

by the researcher and independently by a mathematics educator. Both concluded that the

teachers very accurately reported their classroom practices during the telephone

interview. Hence, using teachers' self-reported classroom practices during the telephone

interview was deemed a reliable source of data for the study and no other classroom

observations were conducted.

In addition to determining whether teachers accurately reported their classroom

practices, the telephone interviews with the local AP teachers served to pilot the



interview protocol. Several questions on the interview protocol were modified and

additional questions were added after analyzing the interviews with these teachers.

Figure 3f

Interview Protocol Questions Related to Teachers' Classroom Practices

IA "Describe as specifically as you can the lesson in which you introduce
differentiation to your class. We are interested in the way you organi7e and
present the mathematics content as well as the specific teaching methods and
strategies that you use."

2A "Describe as specifically as possible a typical lesson involving differentiation in
your class. Again, we are interested in the way you organi7e and present the
mathematics content as well as the specific teaching methods and strategies that
you use. Also, please explain how the typical lesson differs from the
mtroductory lesson on differentiation and whether and how the typical lesson
might change over the course of the school year."

ID "Do you use a graphing calculator when introducing differentiation? If so,
How?"

2C "How do you use the graphing calculator in a typical lesson on differentiation?"

lE "Do your students use a graphing calculator during the introductory lesson on
differentiation? If so, How"

1B "How do you use the math textbook in your introductory lesson(s)?"

2B "How do you use the math textbook in your typical math lesson on
differentiation?"

4A "Do you have the students memorize rules of differentiation sometime during the
school year?"

5A "Do you have the students work on word problems involving differentiation at
any time during the first few weeks of the school year?"

8C "Students have different abilities and knowledge about differentiation, slopes,
and rates of change, how do you find out about these differences?"

813 "Do you use this knowledge in planning instruction?"
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Figure 3g

Interview Protocol Questions Related to Teachers' Beliefs
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2D "What do you think the role of the teacher should be in a typical lesson on
differentiation in your class?"

2E "What do you think the role of learner should be in a typical lesson on
differentiation in your class?"

3A "What do you try to have your students learn about differentiation during the
year?"

3B "Are there certain concepts in differentiation that you want all students to learn?
If so what are they?"

3D "Are there certain kinds of word problems using differentiation you believe that
all students should learn to solve? If so, what are they?"

7A "What factors do you consider when determining how topics in differentiation
should be sequenced?"

7B "How rigorous an understanding of limits should students have before
proceeding to the study of differentiation?"

6C "hat do you see as the relationship between learning of differentiation rules,
conceptual understanding differentiation, and differentiation word problems?"

7C "What do students in your calculus class know about slopes and rates of change
when they start the class?"

Calculus Readiness Test. The Mathematical Association of America's Calculus

Readiness Test, form IG (CRT) was administered as a pretest to the students of the 1995

teachers (Mathematical Association of America [MAA], 1994). The CRT contains 25

multiple-choice questions. Students were allowed thirty minutes to take the test and

calculators were permitted, but not required to answer any of the questions. Permission

to use this test was granted by the Mathematical Association of America.
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Differentiation Test. A researcher-designed Differentiation Test (see Appendix D)

was administered to assess student achievement. This test was modeled after parts of the

Advanced Placement AB exam. The Differentiation Test included questions about

functions and graphs, limits and continuity, and differential calculus. However questions

about integral calculus which would be found on the AP exam were excluded. The

Differentiation Test was designed to assess students':

ability to use graphical, numeric and symbolic presentations of
information,

computational skill with derivatives,

conceptual knowledge of derivatives, and

general knowledge of differential calculus.

The Differentiation Test was piloted with undergraduate students at Oregon State

University during the summer of 1995. AP calculus teachers' who gave the

Differentiation Test to their students established face validity.

The Differentiation Test contained two sections. Section 1 included two parts: Part

A consisted of seven multiple choice questions where the use of a calculator was not

allowed (twenty-five minutes was allowed for Part A) and Part B consisted of seven

questions where a graphing calculator was required to answer some questions (twenty-

five minutes was allowed for Part B). Section II contained three free-response

questions, one of which required the use of a graphing calculator. In this section partial

credit was possible. A scoring guide, similar to the guide used to grade AP exams, was

developed by the researcher to determine partial credit (see Appendix D). Forty-five

minutes was allowed for Section II.

The Differentiation Test contained four subtests designed to determine students'

ability to work graphically, numerically, and symbolically, and to test their facility with



1. Given thatf(x) = 2ex2sin(x), what isf'(x)?

4xex2cos(x)

2x 2e x2cos(x)

2e '2sin(x) +2ex2cos(x)

4xe X2sin(x) +2e x2co5(x)

2x2e x2sin(x) + 2e x2cos(x)

2. The equation of the curve determined by reflecting y= In x -1 about the
x -axis is

y= ex"1

y=
y= ln x-1
y= 1 -ln (-x)
y= 1 - ln x

46

the graphing calculator. The first subtest contained three questions which presented

information graphically (questions 11, 14, and 15). The second subtest contained two

questions which required interpreting information given in a table (questions 8 and 13).

The third subtest contained three question which required the use of a graphing

calculator (questions 10, 12, and 16). The fourth subtest contained nine questions which

tested students' ability to work with symbolic information (questions 1,2,3,4,5,6,7,9,and

17). Figure 3h below lists the 17 questions from the Differentiation Test.

Figure 3h

Questions From the Differentiation Test



Figure 3h (continued)

what is rim
sin(n/2+h)- sin(Tt/2) 2

h-O h

A) -00 B) -1 C) 0 D) 1 E) +.0

If r is positive and increasing, for what value of r is the rate of increase of r4 six
times the rate of increase of r 2 ?

3
A) B) IS C)1

sis

5. The slope of the tangent line to the curve y3x+y 2x 2= 6 at (2,1) is

-3
A) B) -1

2

6. Given the curve y=2.x3- 3x 4 , which of the following statements are true?

The curve has no relative extrema.
The curve has one point of inflection and two relative extrema.
The curve has two points of inflection and one relative extremum.
The curve has two points of inflection and two relative extrema.
The curve has two points of inflection and three relative extrema.

7. For which of the following functions does the property - hold?
cbc3 dr

y=ex
y= ln x

IH. Y = AI-3-

I only
II only
I and II
I and III
I, H, and HI

D) vg

-D)3 E) 0
14

47



Figure 3h (continued)

8. For the following question use the information given in the tables below. What is the
value of (f g)(x) + f(2x) for x = 3?

A) 43 B) 45 C) 12 D) 8 E) 10

9. Which of the following combination of properties could possibly describe a function?

f(x)> 0 and f (x) >0 for all x

f(x) < 0 and f " (x) <0 for all x

f(x) >0 and f"(x)<0 for all x

A. I only B. II only C. I, II, and III D. I and II E. I and III

10. Let f' (x)= -x4 +-3x2. To three decimal places the function f has a relative
4 2

maximum at x=?

A) 0.00 B) -.777 C) 1.059 D) 1.572 E) 3.514

11. At which of the five points on the graph

in the figure at the right are .61---Y and

d2Y
dx

both positive?
dx2

A
B
C
D
E
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2 3 6 7

f(x) 3 5 8 2

g(x) 4 7 5 7

AB C D



Figure 3h (continued)

12. Two particles start at the origin and move along the x-axis. For 0 t 10, their
respective position functions are given by x1= cos t and x2= ln(2t) +2. For how
many values of t do the particles have the same velocity?

A) none B) one C) two D) three E) four

13. For the following question use the information given in the tables below. Let
H(x)= (f g)(x). What is the value of H'(3)?

14. Which of the following graphs below represent(s) motion at constant, non-zero
acceleration?

II DI

2

0

Iv

0
0 1 2

Time

2

.2

0
0 1

Time

2
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x f(x) f' (x) x g(x) g' (x)

1 2 3 3 7 6

2 3 4 4 8 7

3 4 6 5 9 8

7 3 8 6 1 9

A) 36 B) 9 C) 46 D) 48 E) 4

0 2 1

Time Time

A) I, IL and IV B) I and III C) II and V D) IV only E) V only

2

0
0 1

Time

2



Figure 3h (continued)

15. Consider the graph ofy = f '(x) given below (note that this is the graph of the
derivative of f ).

Sketch the graph of f"(x) in the space provide.
Over which intervals is the graph of f concave up? Justify your answer.
Find the x-coordinates of all relative minimums for the function fix). Justify
your answer.

3WI
1 1 1 1 1 1 1 1

I I I I I I I I

I I I I I I I I

16. Suppose f is continuous over the interval 1 <x <7 and f (x) = (In x)2 - 2(sin x)4

for 1 <x < 7. Answer the following to three decimal places.

For what values of x is f '(x) =0?
Find the x-values for all relative minima for the functionf(x).
Justify your answer.
For what values of x is f " (x) = 0 ? Justify your answer.

17. The radius r of a sphere is increasing at the constant ire of 0.05 centimeters
per second. (Volume of sphere with radius r is V = 7Er3). Answer the

3following questions.

How fast is the volume of the sphere increasing when the radius of the
sphere is 10 centimeters?
What is the radius of the sphere when the volume of the sphere and the radius of
the sphere are increasing at the same rate?
When the volume of the sphere is 397c cubic centimeters, how fast is the area of
the cross section through the center of the sphere increasing?
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Procedure

Teachers' Pedagogical Content Beliefs

Categorizing teachers' pedagogical content beliefs. The Belief Questionnaire was

administered to the 1995 teachers during the summer of 1995. The internal consistency

of teachers' scores on each of the four subscales, as well as the total score, was

determined using Cronbach's alpha. Correlations between subscales were also

determined using Cronbach's alpha. The median and standard deviation of 1995

teachers' scores on the four belief constructs were determined. Teachers were

considered cognitively based (CB) if their scores on each of the four subscales in the

Belief Questionnaire fell above the median of the total score for that construct. Teachers

were considered less cognitively based (LCB) if their scores on each of the four

subsca1es in the Belief Questionnaire fell below the median.

One of the purposes of the telephone interview was to provide an additional

method of determining teachers' pedagogical content beliefs (construct validity).

Immediately following the telephone interview, teachers were rated by the researcher on

each of the four subscales of the Belief Questionnaire. The teachers were rated on a 5-

point scale where a high score indicated cognitively based beliefs. Teachers' responses

to the interview were read and rated a second time by the researcher several weeks after

the final interview. Teachers' names were removed from the interview notes for the

second reading so that individual teachers could not be identified. The two ratings given

to each of the teachers on the four scales were compared by the researcher. In those

cases where there was a disagreement between the two ratings, the notes were reread

once again by the researcher and a determination was made. Correlations between the

interview ratings and the Belief Questionnaire score were reported.
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Changes in teachers' pedagogical content beliefs. To investigate if teachers'

pedagogical content beliefs become more cognitively based as they become familiar with

the CCP materials, Belief Questionnaire scores of the 1993, 1994, and 1995 were

compared. The Belief Questionnaire was mailed to teachers who participated in CCP

workshops in 1993 and 1994 in December of 1995. At the time the Belief Questionnaire

was administered to the 1993 and 1994 teachers, the 1993 teachers had been using the

project materials for more than two years and the 1994 teachers had been using the

project materials for more than one year. The 1995 teachers were given the Belief

Questionnaire at the beginning of their workshops, prior to any instruction in the CCP

curriculum. The Extra Sum of Squares Test was used to test the Belief Questionnaire

total score for consistency across the three different years.

To gain additional insight into the pedagogical content beliefs of 1993, 1994, and

1995 teachers, a One-Way ANOVA was used to test differences in means among the

1993, 1994, and 1995 CB and LCB teachers (CB and LCB distinctions for the 1993 and

1994 teachers were based on the median scores of the 1995 teachers).

To examine changes in teachers' pedagogical content beliefs over time, the 1995

teachers were given a follow-up Belief Questionnaire after having used the project

materials for seven or eight months. The follow-up Belief Questionnaire (see Appendix

B) consisted of the 24 positively worded questions from the Belief Questionnaire

(responses to the positively-worded questions and the negatively-worded questions of

the Belief Questionnaire were found to be highly correlated). The follow-up Belief

Questionnaire was mailed to the 1995 teachers at the end of March in 1996. A paired t-

test was used to compare the responses of the 1995 teachers to the positively worded

question on the Belief Questionnaire to their responses on the follow-up Belief

Questionnaire. A Paired Two-Sample t-test was to determine if the 1995 CB and LCB

teachers' pedagogical content beliefs changed over time.



Teachers' Classroom Practices

Telephone interviews. Teachers' reports of their classroom practices and their

goals for instruction were obtained by the interviews. All CB and LCB teachers were

interviewed by the researcher in January and February of 1996. During the interview,

the researcher would read a question from the interview protocol and record teachers'

responses on paper. If the interviewer felt that a question had not been adequately

answered, a single probe would be used. Individual interviews took from forty-five

minutes to two hours. Typically, interviews took between one hour to one hour and

thirty minutes.

Procedure for analyzing interviews. The handwritten comments from the

Interview protocol were entered into a computer by the researcher. For each question,

teachers' comments were arranged into a list. Each statement on the list was preceded

by a number which identified the teacher who made the statement. CB teachers were

numbered 1 through 9 and LCB teachers were numbered 11 through 18. Teacher

statements to each question were then read and "cut-and-pasted" into groups of similar

statements. Statements given by CB teachers to a particular question were grouped

separately from statements given by LCB teachers. Categories for teachers responses to

individual questions were determined from these groups of responses.

Graduate students and professors participating in a mathematics education

seminar who were familiar with this research project served as sorters to confirm the

categorization of teacher statements. To accomplish this, one question from the

interview protocol was typed at the top of a blank document. Just below the question

the category titles which had been determined by the researcher were listed. An

additional category titled "OTHER" was added to the list of category titles (see Figure 3i

for an example of the sorters' form). Teacher comments, preceded by their identification

number, were listed below the category titles. The sorters would read ateacher

comment and write the teachers' identification number next to the category title they
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thought it belonged to. Each question was categorized by two sorters in addition to the

researcher. In those cases where both sorters and the researcher agreed on which

category a statement belonged, no changes were made. In those cases where only one

sorter agreed with the researcher on which category a statement belonged to, the

statement was categorized by a fourth sorter. If the fourth sorter agreed with the

majority, the category remained unchanged. When three out of four sorters did not

agree on which category a teacher's comment belonged, the comment was put in a

category titled miscellaneous, or a new category was defined for that statement.

After the teachers' responses had been categorized, the number of responses by

CB teachers and LCB teachers to each category were summarized. To gain further

information on teachers' pedagogical content beliefs, some questions on the interview

protocol asked the teachers to provide supporting information. A summary of teachers'

interviews, which considers the overall interview, is presented as a part of the data

analysis.

Student Achievement

Test administration. The 1995 teachers were given copies of the Calculus

Readiness Test, instructions for its administration, and the answer key during the CCP

workshops they attended in the summer of 1995. A reminder, which included an

additional copy of the Calculus Readiness Test, instructions for its administration, and

the answer key was sent to these teachers prior to the start of the school year. Teachers

were asked to administer the Calculus Readiness Test as close to the first day of class as

possible.

Teachers graded the Calculus Readiness Test and returned a list of students'

scores. To protect student confidentiality, teachers used the student number from their

roll books for identification purposes. Teachers who did not return student scores were

contacted by telephone.



Figure 3i

Sorters' Categorization Form

APPROACH TO TEACHING INTRODUCTORY LESSON

Introduce Differentiation Using Slope of Secant Line Tending to Tangent Line
Introduce Differentiation Using_Average Velocity and Instantaneous Velocity
Introduce Differentiation with Word Problem
Introduce Differentiation by the Definition
Other

I First do velocity and average velocity using a graph.

2 Discuss average rate of change, then look at instantaneous rate of change in
terms of speed and velocity

3 Talk about _slope of tangent line at. a point, get values from curve. Use this to
come up with definition of derivative

4a Talk about secant line tending to the tangent line.

4b Often use velocity and use secant line to get at the idea of tangent line.

5 Talked about average rate of speed going to Grapefalls. Ask students what
average speed is then ask what the speed is at a particular place to introduce
instantaneous rate of change

6 First show graph of fruit fly experiment, have data on fruit fly population Talk
about average change in population. Relate this to secant line and Tangent lme

7 Talk about stock pricesyesterday and today. Look at change in stock prices and
where the changes are the greatest.

8 Define derivative with secant line and let two points get closer together and
discuss those becoming the tangent line.

9 Usually start with look at some kind of Problem, usually max/inin problem. Talk
about why we want to find the max point on graph of the function.

11 Start with curve on board show how secant line goes to tangent line.

12 Draw graph and talk about slope of tangent line and behavior of graph.

13 Start with slope formulas to identify rise over run then go through the formulas
using the definition of denvahve.

14 Begin with curve on board and look at secant line as it becomes tangent line.

15 Start with slope and rate of change. Use definition of derivative to look at this
Do that with limit, start with

16 Reintroduce topic by talking about slope and do secant line tending to tangent
line.

17 Teach from a_geometric point of view. Use a general function and talk about
tangent line. Use secant line and 2 points andlook at secant line as points get
close together.

18 Go into definition f(x + h) thing. Do drawings to get students to see secant line
tending to tangent line.

Note 1-9 represent statements by CB teachers. 11-18 represent statements
by LCB teachers. (Sorters were not aware of the numbering scheme.)
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All 1995 teachers were sent Section I of the Differentiation Test (of the 61

teachers who returned the calculus readiness test, 51 administered and returned the

Differentiation Test). CB and LCB teachers received Section II of the Differentiation

Test in addition to Section I. The tests, instructions for their administration, and

scantron sheets were mailed to the 1995 teachers in January 1996. Teachers were

requested to administer the test immediately after completing their lessons on

differentiation, prior to any instruction on integration. In order to match students'

Differentiation Test scores with their Calculus Readiness Test scores, teachers identified

student exams with the same student identification number used with the Calculus

Readiness Test. Teachers who did not return the completed exams were contacted by

telephone.

Section I of the Differentiation Test was machine-scored, Section II, the free

response portion of the test, was scored by the researcher. The class average for each

question was used as the unit of analysis.

Assessing student achievement. To determine relationships between the 1995

teachers' pedagogical content beliefs and student achievement correlations between

teachers' scores on the Belief Questionnaire and their students' achievement on Section I

Part A (computational) and Section 1 Part B (conceptual) of the Differentiation Test

were analyzed using Multiple Linear Regression. Student Calculus Readiness Test

scores were used as a covariate.

Relationships between teachers' pedagogical content beliefs and student

achievement was explored in greater detail with the 1995 CB and LCB teachers. A t-test

indicated that there was no significant difference in the pretest scores of students of CB

and LCB teachers (p < 0.05) so that it was not necessary to adjust for Calculus

Readiness Test scores when comparisons were made between students of CB and LCB

teachers. Therefore, a t-test was used to test for difference in the mean scores of student

of CB and LCB teachers on Section I Part A, Section I Part B, Section II, and the total

score. A t-test was also used to test for a difference in means on four subtests of the
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Differentiation Test which tested students' ability to work graphically, numerically

symbolically, and their facility with the graphing calculator.

A t-test for regression coefficients was used to determine if the demographic

variables Sex, Age, Degree, or Final Class Size were related to students' achievement

after accounting for student pretest scores. The F-statistic and p-values are reported. A

regression analysis was also used to determined if Years Teaching Mathematics, was

related to student achievement. The t-statistic and p-values are reported.

Figure 3j gives a summary of the instruments used in this study and the dates

which whey were administered. Figure 3k shows how many teachers were given each

instrument and how many teachers completed each instrument. Figure 31 gives a

summary of the instruments given to the 1995 CB and LCB teachers.

Figure 3j

Schedule for Administration of Instruments

Belief Questionnaire Preliminary Belief
Questionnaire

January 1995

Version I and Version II of
Belief Questionnaire

May 1995

Belief Questionnaire Summer 1995

Interview Protocol Preliminary Version Fall 1995

Interview Protocol Winter 1995

Teachers Classroom
Practices

Observations Fall 1995

Interviews Fall/Winter 1995

Calculus Readiness Test August-September 1995

Differentiation Test Preliminary Version Summer 1995

Differentiation Test January-February 1996

Follow-up Belief April 1996



Figure 3k

Summary of Data Collected From 1995 Teachers
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Number of teachers in Study 69 73 teachers completed Belief
Questionnaires, 1 teacher retired, 2
teachers no longer taught class, and 1
teacher missed 3 months of school due to
illness.

Completed Calculus Readiness
Test

61 Of the 69 original teachers, 8 teachers did
not return student scores on the Calculus
Readiness Test (88% return).

Completed Calculus Readiness
Test and Differentiation Test

51 61 teachers who returned completed the
Calculus Readiness Tests were sent the
Differentiation Test, 8 teachers did not
return completed Differentiation Test, 2
teachers returned scores for the
differentiation test which did not include
student identification numbers (82%
return).

Completed Both Belief
Questionnaires

57 Of the 69 teachers in the study who
completed the Belief Questionnaire during
the summer workshops, 12 failed to return
the Belief Questionnaire which they were
sent near the end of the study (83%
return).



Figure 31

Summary of Data Collected From 1995 CB and LCB Teachers
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CB 9 All teachers determined to be CB
elected to participate in the study

Number of teachers in Study
LCB 7 9 teachers were determined to be

LCB. 1 teacher elected not to
participate and 1 teacher was
replaced during the course of the
study.

Completed Calculus Readiness
Test

CB 9 All CB teachers returned
completed Calculus Readiness
Tests (100% return).

LCB 7 All LCB teachers returned
completed Calculus Readiness
Tests (100% return).

CB 8 1 CB teacher did not return the
Completed Calculus Readiness Differentiation Test (89% return).
Test and Differentiation Test

LCB 5 2 LCB teachers did not return the
Differentiation Test (71% return).

CB 9 All CB teachers completed both
Completed Both Belief
Questionnaires

Belief questionnaires (100%
return).

LCB 5 2 LCB teachers failed to return the
Belief Questionnaire mailed to
them near the end of the study
(71% return).



CHAPTER FOUR: RESULTS

This study explored relationships among teachers' pedagogical content beliefs,

teachers' classroom practices, and student achievement. We begin the presentation of

results by looking at AP calculus teachers' pedagogical beliefs about mathematics,

curriculum, and instruction in AP calculus, and how well their beliefs align with a

constuctivist point of view. This will be followed by an examination of how AP calculus

teachers' pedagogical content beliefs are reflected in self-reports of their approaches to

teaching, their concepts of the roles of the teacher and the learner, and their goals for

instruction. This chapter is concluded with an examination of relationships among AP

teachers' pedagogical content beliefs, approaches to teaching, and their students'

achievement.

Teachers' Pedagogical Content Beliefs

The Belief Questionnaire used a 5-point Likert scale. High scores indicated

cognitively based beliefs (5 was high). Lower scores indicated less cognitively based

beliefs (LCB). Table 4a gives the mean, median and standard deviation of the 1995

teachers' responses on the Belief Questionnaire. The maximum score possible on each

of the four belief constructs is 60, while the minimum score possible is 12. The

maximum total score possible on the Belief Questionnaire is 240 and the minimum total

score possible is 48.

The standard deviations given in table 4a indicate considerable variation existed

among teachers' scores on the four belief constructs. The greatest variation occurred in

Scale 1 (students construct knowledge), while the least variation is found in Scale 2

(skills should be taught in relation to problem solving). Teachers had the highest average

score on Scale 4 (instruction should be organized to facilitate students' understanding of

60



Note. Summary statistics of the 73 teachers who initially completed the Belief
Questionnaire.

Table 4b gives the CB and LCB teachers' scores on the Belief Questionnaire and

Table 4c compares means and standard deviations for the 1995 CB and LCB teachers.
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mathematics). On the other hand, teachers had the lowest average score on Scale 1

(students construct knowledge).

Teachers were characterized as cognitively based (CB) or less cognitively based

(LCB) on the basis of their scores on the four subscales of the Belief Questionnaire (the

same criteria used in the study of Peterson et al.). Teachers who had scores above the

median on each of the four subscales were defined to be CB, while teachers whose

scores fell below the median on each subscale were defined as LCB. In this way nine

teachers were determined to be CB, and nine teachers were determined to be LCB. One

of the LCB teachers chose not to participate leaving eight teachers in the LCB group.

Table 4a

Teachers Responses on Belief Questionnaire

Mean Median SD Range Min Max
12 60

Students construct or receive
mathematical knowledge 37.70 38 5.29 27 23 50

Skills taught in relation to or isolated
from problem solving 41.08 41 4.38 23 30 53

Instruction organized to facilitate
students' development of mathematical
ideas or by the structure of mathematics

40.86 42 4.45 23 26 49

Instruction sequenced by students'
construction of knowledge or for clear
teacher presentation

44.58 45 4.66 24 30 54

Total score 164.22 164 12.87 57 133 190
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Table 4d reports the internal consistency of the four belief constructs and correlations

between subscales on the Belief Questionnaire using Cronbach's alpha. In Table 4d, the

entries along the diagonal estimate the correlation between the positively worded

questions and the negatively worded questions within a subscale of the Belief

Questionnaire. Entries off the diagonal estimate correlations between subscales.

Table 4b

CB and LCB Teachers' Scores on Belief Questionnaire

Note. Numbers in left hand column are teacher identification
numbers. Medians for each scale and total score are given in bold.

CB Teachers' Scores on the Belief Questionnaire

Scale 1
38

Scale 2
41

Scale 3
42

Scale 4
45

Total
164

1 50 44 46 50 190

2 42 49 43 46 180

3 46 45 47 49 187

4 43 48 43 49 183

5 42 42 44 47 175

6 46 49 44 47 186

7 42 50 44 48 184

8 39 44 44 46 173

9 41 44 44 47 176

LCB Teachers' Scores on the Belief Questionnaire

Scale 1
38

Scale 2
41

Scale 3
42

Scale 4
45

Total
164

11 32 31 38 41 142

12 37 37 38 43 155

13 31 40 26 42 139

14 29 37 37 30 133

15 35 37 33 40 145

16 34 34 31 43 142

17 32 40 39 40 151

18 28 30 37 41 136



Table 4c

Comparison of Means for 1995 CB and LCB Teachers

Note. Maximum score on each subscale was 60. Minimum score on each subscale
was 12. Maximum total score was 240. Minimum total score was 48.

Table 4d

Belief Questionnaire Correlations using Cronbach's alpha

Note. Entries on the diagonal are correlations between positively worded
questions and negatively worded questions on a single scale. Entries off the
diagonal are correlation between scales. n = 73.
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Scale 1 Scale 2 Scale 3 Scale 4 Total

CB
n=9

LCB
n=8

CB
n=9

LCB
n=8

CB
n=9

LCB
n=8

CB
n=9

LCB
n=8

CB
n=9

LCB
n=8

Mean 43.4 32.3 46.1 35.8 44.3 34.9 46.77 40.0 181.7 143.0

SD 3.3 3.0 2.9 8.8 1.3 4.5 1.4 4.2 5.9 7.4

n 9 8 9 8 9 8 9 8 9 8

Scale 1 Scale 2 Scale 3 Scale 4

Scale 1: Students construct or receive
mathematical knowledge

.6776 .6162 .4652 .5918

Scale 2: Skills taught in relation to or
isolated from problem solving

.7153 .4624 .3865

Scale 3: Instruction organized to
facilitate students' development of
mathematical ideas or by the structure
of mathematics

.7603 .3151

Scale 4: Instruction sequenced by
students' construction of knowledge
or for clear teacher presentation

.8049



Interview Results

To establish construct validity, ratings determined by the researcher after the

telephone interview were compared to the scores teachers received on the Belief

Questionnaire. Table 4e shows that teachers' interview ratings and their Belief

Questionnaire scores were highly correlated.

Table 4e

Interview and Belief Questionnaire Correlations using
Cronbach's alpha

Note. Correlations between interview rating and Belief
Questionnaire score for the 9 CB and 8 LCB teachers.

Some interview questions were intended to shed additional light on CB and LCB

teachers' pedagogical content beliefs. To explore patterns in the responses of CB and

LCB teachers to questions about their pedagogical content beliefs, teachers' responses to

individual questions were categorized. Table 4f gives a summary of CB and LCB

Teachers' responses to questions about their pedagogical content beliefs.
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Scale 1: Students construct or receive mathematical
knowledge .8205

Scale 2: Skills taught in relation to or isolated from
problem solving .6269

Scale 3: Instruction organized to facilitate students'
development of mathematical ideas or by the structure of
mathematics

.7355

Scale 4: Instruction sequenced by students' construction
of knowledge or for clear teacher presentation .6337



Table 4f

Teachers' Beliefs: Summary of Interviews

Role of the Teacher
Teacher allows students to explore 3-CB 1 -LCB
Teacher as facilitator/guide 6-CB 5-LCB
Teacher as instructor and knowledge base 4-CB 4-LCB

Role of the Learner
Student as explorer 3-CB O-LCB
Students being involved 5-CB 5-LCB
Learn from teacher 1-CB 3-LCB

What Teachers Want Students to Learn
Meaning of derivative 5-CB 3-LCB
Rules and notation 4-CB 1 -LCB
Solve problems 6-CB 4-LCB
What is on AP exam 0-CB 2-LCB

Concepts Teachers Want Students to Learn
Conceptual understanding of derivative. 7-CB 6-LCB
The ability to work problems 3-CB 3-LCB
Rules of differentiation 1-CB 4-LCB

Important Word Problems
Typical calculus problems 8-CB 6-LCB
Real World 2-CB O-LCB
Non-traditional 0-CB 1 -LCB
No particular kind 0-CB 1 -LCB

Factors Considered When Sequencing Topics
Follow the text 8-CB 5-LCB
Ability of student 4-CB 3-LCB

Relationship of Rules, Concepts, and Word Problems
Concepts most important 8-CB 3-LCB
Word problems most important 0-CB 1-LCB
Rules most important 0-CB 2-LCB
Equal importance 1-CB 2-LCB

Instructional Strategies
Memorize rules 4-CB 7-LCB
Start with word problems 7-CB 1-LCB
Use student knowledge in planning 9-CB 6-LCB
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Role of the teacher. Question 2D: "What do you think the role of the teacher

should be in a typical lesson on differentiation in your class?" All of the CB teachers

included in their answer to this question statements which indicated they believed

teachers should allow students to explore or the teacher should act as a facilitator/guide.

Only five of the LCB teachers made statements related to these categories. Four LCB

teachers and four CB teachers made statements indicating their role to be that of

instructor or knowledge base. However, all of the CB teachers who indicated that the

role of the teacher was that of instructor or knowledge base also indicated a belief that

the role of the teacher was to allow students to explore or act as a "facilitator/guide."

Only two of the LCB teachers who believed the role of the teacher was that of instructor

or knowledge base also indicated they thought their role was to allow students to

explore or act as a "facilitator/guide."

Role of the learner. Question 2E: "What do you think the role of learner should

be in a typical lesson on differentiation in your class?" Most teachers responded by

giving statements which were categorized as "students should be involved." Four CB

teachers viewed the role of the student as that of an explorer, while none of the LCB

teachers made comments related to this category. On the other hand, three LCB

teachers made statements indicating that the role of the student was to learn from the

teacher, while only one CB teacher made a statement which fit into this category.

What teachers want students to learn. Question 3A: "What do you try to have

your students learn about differentiation during the year?" Solving problems was the

most common response from both CB and LCB teachers when they were asked what

they would like to have their students learn about differentiation. Two-thirds of the CB

teachers and half of the LCB teachers mentioned wanting students to learn how to solve

problems. An interesting difference between the responses of CB and LCB teachers to

this question was that CB teachers were more likely to include in their response to this

question a desire to have their students learn rules and notation. However, all of the CB
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teachers who believed learning rules and notation was important also indicated that they

thought solving problems and/or understanding the meaning of derivative was important.

Only two teachers indicated that they wanted students to learn what was necessary to be

successful on the AP exam and both of these teachers were LCB

Concepts teachers want students to learn. Question 3B: "Are there certain

concepts in differentiation that you want all students to learn? If so what are they?"

When teachers were asked if there were certain concepts they wanted all students to

learn, the most frequently given response was a desire to have students understand the

concept of derivative. Although teachers were specifically asked what concepts they felt

were important, many teachers responded with ideas which were not conceptual. Half of

the LCB teachers included in their answer to this question statements that indicated the

rules of differentiation were important, while only one CB teacher gave this response.

Important word problems. Question 3D: "Are there certain kinds of word

problems using differentiation you believe that all students should learn to solve? If so,

what are they?" CB and LCB teachers most often reported believing that traditional

calculus problems such as related rates, max/min, and application problems were most

important. Interesting differences were found when the CB and LCB teachers were

asked why they thought these word problems are important. Six of the CB teachers

gave reasons related to future employment or success in college. For example, CB

teacher 1 stated that she lived in a rural area with lots of business and industry and

wanted her students to be able to use mathematics related to these employers. On the

other hand, no LCB teachers gave a response to this question related to future

employment or success in college. Two LCB teachers indicated that they thought

application problems were important because they were common in calculus texts. No

CB teacher gave this reason.
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Factors influencing the sequencing of topics. Question 7A: "What factors do

you consider when determining how topics in differentiation should be sequenced?" This

is the first year that the 1995 teachers have used the CCP materials and it is not

surprising that when they were asked what factors they consider in determining how

topics should be taught, the most common response was categorized as "Follow the

text." All but one CB teacher indicated the class text influenced how topics were

sequenced, five of the LCB teachers gave this response. Less than half of both CB and

LCB teachers gave responses to this question which were categorized as "Ability of

student."

Relationship of rules, concepts, and word problems. Question 6C: "What do you

see as the relationship between learning of differentiation rules, conceptual understanding

of differentiation, and differentiation word problems?" Important differences were found

in the responses of CB and LCB teachers to this question. All but one of the CB

teachers indicated that they believed conceptual understanding was most important. The

remaining CB teacher believed learning rules, conceptual understanding, and solving

word problems were equally important. This is in sharp contrast to the responses given

by the LCB teachers. Only three LCB teachers indicated a belief that conceptual

understanding was most important. In addition, LCB teachers were more likely than CB

teachers to believe that learning rules of differentiation was most important.

Comparison of Interview Results for CB and LCB Teachers

An analysis of teachers' responses to interview questions further supported the

categorization of teachers' pedagogical content beliefs determined by the Belief

Questionnaire. Scale 1 of the Belief Questionnaire reflects a belief that students

construct their own knowledge. During the telephone interview teachers were asked to

describe their beliefs about the role of the teacher and learner. More CB teachers gave
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responses indicating that the role of their students should be to explore and the role of

the teachers to guide and facilitate. On the other hand, LCB teachers were more likely

to indicate that students learn from the teacher.

Scale 2 of the Belief Questionnaire reflects a belief that mathematical skills should

be taught in relation to understanding and problem solving. To gain insight into this

construct during the telephone interview, teachers were asked their beliefs about what

should be the relative emphasis on rules of differentiation, conceptual understanding, and

solving word problems. CB teachers were more likely to indicate that a conceptual

understanding of differentiation was most important. LCB teachers' belief that skills

should be taught as a discrete component is indicated by the fact that LCB teachers were

more likely to have their students memorize the rules of differentiation. In addition,

LCB teachers more often indicated that rules were more important than conceptual

understanding and solving word problems.

Scale 3 of the Belief Questionnaire indicates that a math curriculum should be

organized to facilitate students' construction of knowledge. To explore this construct

during the telephone interview teachers were asked how rigorous an understanding of

limits they thought students should have before proceeding to the study of

differentiation. Intuitive approaches were considered in keeping with the idea that a

math curriculum should be organized to facilitate students' construction of knowledge.

On the other hand, an approach to limits which required students to work on traditional

delta-epsilon problems was considered to indicate a greater concern for the structure of

mathematics. Results of the telephone interview indicated that CB teachers were more

likely to approach limits intuitively and LCB teachers more often reported having their

student work delta-epsilon problems.

Scale 4 of the Belief Questionnaire reflects the belief that students' development

of mathematical ideas should provide the basis for sequencing topics rather than

sequencing topics to insure a clear presentation by the teacher. To address this construct

teachers were asked what factors they considered when determining how topics should

be sequenced. Responses which indicated that teachers believed it important to take into
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consideration the students' ability or previous knowledge were considered in keeping

with this construct. Although CB teachers were more likely to report following the text

closely, they were also more likely to indicate that it was important to take into

consideration the ability of their students.

Demographic Relationships

Peterson (1989) found a strong relationship between the number ofyears first

grade teachers had been teaching and their Belief Questionnaire scores. For this reason

relationships between Belief Questionnaire scores and demographic information for the

1995 AP calculus teachers was determined. An Extra Sum of Squares F-Test was used

to explore possible relationships. The demographic variables analyzed were; gender,

age, highest degree obtained, and number of years teaching mathematics.

A simple linear regression analysis between years teaching mathematics and years

teaching provides strong evidence of a relationship ( t-stat=21.11 , df = 71, and p <

.0001) between years teaching mathematics and years teaching for this set of teachers,

this relationship is described by

Years Math = -.0676 + .9559*YearsTeaching

This equation supports the obvious fact that the population of teachers considered for

this study are mostly mathematics teachers. That is, each year gained in teaching

experience has usually been accumulated in a mathematics program.

Results of the Extra Sum of Squares Test gives convincing evidence that the

number of years teaching mathematics is related to the total beliefscore for the 1995

group of teachers (F=5.13 , p=.027). However, there is no evidence that any of the

other demographic variables, sex, age, degree, and years teaching calculus, are related to
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the total score on the Belief Questionnaire (p= .7975).

Relationships among the demographic information and the four sub scales on the

Belief Questionnaire were also explored. There is marginally suggestive evidence that

the number of years the 1995 teachers have been teaching mathematics is associated with

Scale 1 (p=.0726) and Scale 3 (p=.0895 ). There is convincing evidence that the number

of years teaching mathematics and the degree obtained by the teacher were associated

with the Scale 2 (p=.0104). No other demographic variables appeared related to any of

the sub scale measurements.

A two sample t-test was used to compare the teaching experience of CB and LCB

teachers. There is strong evidence of a difference in the average number of years the CB

teachers and LCB teachers have been teaching mathematics (p = .0397). The mean

number of years CB teachers have been teaching mathematics was 22.13, while the mean

number of years LCB teachers have been teaching mathematics is 13.44.

A regression analysis was used to determine whether CB and LCB distinctions

were significant after accounting for years teaching experience. The results of this

analysis gave strong evidence supporting a difference between belief scores of CB and

LCB teachers after accounting for differences due to years teaching mathematics (p <

.01). Table 4g gives the results of this analysis.

Table 4g

Significance of CB and LCB Distinctions Accounting for Years Teaching Mathematics

Note. Results of Regression analysis for 9 CB teachers and 8 LCB teachers

F P

Scale 1: Students construct or receive mathematical knowledge 40.77 .0007

Scale 2: Skills taught in relation to or isolated from problem solving 13.87 .0098

Scale 3: Instruction organized to facilitate students' development of
mathematical ideas or by the structure of mathematics

. 37.76 .0009

Scale 4: Instruction sequenced by students' construction of knowledge or
for clear teacher presentation

4.93 .0683

Total Score 197.84 .0001



Changes in Teachers' Beliefs

Comparison of 1993, 1994, and 1995 Teachers

The Belief Questionnaire scores of the 1993, 1994, and 1995 teachers were

compared to determine if there was a relationship between how long a teacher has used

the CCP project materials and the degree to which they are cognitively based. Table 4h

is a Stem and Leaf diagram of 1993, 1994, and 1995 teachers' scores on the Belief

Questionnaire. In Table 4h, CB and LCB distinctions for 1993, 1994, and 1995 teachers

were based on the median Belief Questionnaire scores of the 1995 teachers. A One-Way

ANOVA found no evidence that the total scores on the Belief Questionnaire are different

for these teachers (F=.97, p=.3808). There was also no significant difference among

the 1993, 1994, and 1995 teachers on any of the four subscales of the Belief

Questionnaire.

Changes in 1993, 1994, and 1995 teachers' pedagogical content beliefs were also

explored by comparing scores of CB and LCB teachers on the Belief Questionnaire.

Table 4i gives the results of a One-Way ANOVA used to test differences in means

among the 1993, 1994, and 1995 CB and LCB teachers. A significant difference in

means was found among the three groups of CB teachers (F = 4.40, p = 0.0205). The

mean total score for the 1993 and 1994 teachers is 192.32 and 190.71 respectively,

while the mean total score for the 1995 teachers was 181.56. No statistically significant

difference was found in the means of the 1993, 1994, and 1995 LCB teachers.
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Table 4h

Belief Questionnaire Scores of 1993, 1994, and 1995 Teachers

: I'Atli, a'
22
21 4
20 4
19 001235679
18 112222223679
17 00112233578
16 012233333334455578999
15 22223334445566666777889
14 2244667799
13 17
12 25

22
21
20
19 0123356
18 0003345568
17 001122223345556688
16 02344799
15 144455677$8
14 124557778
13 7
12

22
21
20
19 0
18 0134 567
17 22344555556666779
16 01122333444444567777899
15 01234556788899
14 22567899
13 369
12

Note. 1715 represents a score of 175 on the Belief Questionnaire. Bold
type represents CB teachers. Underline type represents LCB teachers.

I
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Changes in 1995 Teachers' Pedagogical Content Beliefs.

The 1995 teachers were administered Belief Questionnaires twice. The first time

they were given the Belief Questionnaire was during the summer of 1995 prior to the

CCP inservice workshop. A follow-up Belief Questionnaire, containing only the

positively worded questions of the Belief Questionnaire, was mailed to teachers in April

of 1996, near the end of the school year. Of the 69 teachers remaining in the study when

the follow-up Belief Questionnaire was mailed, 57 returned a completed questionnaire

(83%). Teachers not returning the follow-up Belief Questionnaire showed no indication

of being biased toward CB or LCB.

Table 4j gives the results of a Paired Two-Sample t-test used to test for a

difference in means between the scores of teachers who completed both questionnaires.

Only the positively worded questions from the first Belief Questionnaire were used in the

analysis. There is no evidence of a difference between the means of all teachers (p =

0.23), for CB teachers (p = 0.14), or for LCB teachers (p = 0.22).

Table 4i

Differences in Means Among 1993, 1994, and 1995 Teachers

Note. 1993, 1994 and 1995 CB and LCB groups based on the median scores on the
Belief Questionnaire of the 1995 teachers.
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1993 Teachers 1994 Teachers 1995 Teachers

CB LCB ALL CB LCB ALL CB LCB ALL

Mean 192.32 142.38 166.40 190.71 147.17 168.39 181.56 142.88 164.22

SD 11.25 10.40 18.21 3.73 6.24 15.49 5.90 7.36 12.87

n 19 13 93 7 12 64 9 8 73



Table 4j

Comparison of 1995 Teachers' Belief Questionnaire Scores with their Follow-up Belief
Questionnaire Scores
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Note. Only teachers who completed both the Belief Questionnaire and the follow-up
Belief Questionnaire were included, n = 57.

Teachers' Classroom Practices

The interview protocol included questions which explored teachers' classroom

practices. Three of these questions required a "Yes" or "No" answer, the remaining

seven questions required detailed responses by the teachers. Similar statements made by

teachers to any one question were grouped into categories. The number of CB teachers

and the number of LCB teachers who made a statement related to a given category are

reported in Table 4k.

CB and LCB Teachers' responses to the three "Yes" or "No" questions show

some dramatic differences. When asked if they had their students memorize the rules of

differentiation at any time during the school year, all but one LCB teacher said yes, while

only four of the nine CB teachers reported having their students memorize rules of

differentiation. CB teacher 1 was one of the teachers that did not have her students

All Teachers CB Teachers LCB Teachers

1st Belief
Survey

2nd Belief
Survey

1st Belief
Survey

2nd Belief
Survey

1st Belief
Survey

2nd Belief
Survey

Mean 86.37 87.86 93.11 95.89 77.80 75.80

SD 8.58 8.51 10.39 3.92 6.14 4.92

n 57 9 5

t 0.74 1.17 0.88

P 0.23 0.14 0.22



Table 4k

Teachers' Classroom Practices: Summary of Interviews
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Instructional Strategies
Memorize rules 4-CB 7-LCB
Start with word problems 7-CB 1 -LCB
Use student knowledge in planning 9-CB 6-LCB

Approach to Teaching Introductory Lesson
Slope of secant line 3-CB 7-LCB
Average velocity 4-CB O-LCB
Word problems 3-CB O-LCB
Definition of derivative 0-CB 1 -LCB

Approach to Teaching Typical Lesson
Starts class with problem 3-CB 1 -LCB
Students working in groups 3-CB O-LCB
Rules and examples 4-CB 6-LCB
Discovery/intuitive approach 2-CB 1 -LCB
Reinforce ideas 0-CB 1 -LCB

Teachers' Calculator Use in Introductory Lesson
Graphing functions 8-CB 3-LCB
Computational 1-CB 4-LCB
Don't use (much) 2-CB 2-LCB

Teachers' Calculator Use in Typical Lesson
Graphing functions 8-CB 5-LCB
Computational 4-CB 1 -LCB
Check work 1-CB 2-LCB
Don't use (much) 0-CB 3-LCB

Students' Use of Calculator in Introductory Lesson
Students follow along with instructor 3-CB 2-LCB
Use calculator for graphing 3-CB 4-LCB
Use calculator for evaluation 0-CB 1 -LCB
Check work 1-CB O-LCB
Do not use 3-CB 1 -LCB

Use of Text in Introductory Lesson
Do not follow the book 4-CB 4-LCB
Follows book closely 1 -CB 1 -LCB
For problems and examples 7-CB 4-LCB
Assign students to read 4-CB 2-LCB

Use of Text in Typical Lesson
Follows book closely 2-CB 1 -LCB

For problems and examples 8-CB 7-LCB
Assign students to read 4-CB 1 -LCB
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memorize rules of differentiation. She reported having her student do "thousands of

problems" and they picked up the rules as they went along. CB teacher 4 required her

student to learn some of the basic rules. She believed that, "just like the times tables,

knowing the rules can save time." Generally, teachers who required their students to

memorize the rules of differentiation, did so as the rules were introduced.

An important difference can also be seen in the responses CB and LCB teachers

gave when asked if they had their students work on word problems at any time during the

first few weeks of the school year. Seven CB teachers reported working on word

problems in the first few weeks while only one of the LCB teachers gave this response.

LCB teachers 14 and 17 gave typical reasons for not introducing word problems in the

first few weeks of the school year. LCB teacher 14 said that he did not have his students

work word problems until they had enough of the rules down to be able to attack

problems. LCB teacher 18 reported wanting to get the mechanical things out of the way

before doing word problems. On the other hand, CB teachers who reported working

word problems during the first few weeks of the school year seemed to center their

instruction around problem situations. CB teacher 7 said he presented word problems on

the first day and used them to introduce ideas whenever possible. CB teacher 5 reported

using word problems to introduce calculus using mathematics they already know.

The third question which required a "Yes" or "No" answer asked teachers if they

used what they know of their students' abilities and knowledge about slopes and rate of

change in planning instruction. All of the CB teachers and six of the LCB teachers

answered "yes' to this question. Two of the LCB teachers reported that they did not use

what they knew of their students' knowledge about slopes and rate of change in planning

for instruction. LCB teacher 17 said he would not alter a lesson unless three-fourths of

his students were lost because he needed to stay on schedule. The AP exam was the

driving force for him. LCB teacher 15 also said that she did not use what she knew about

her students' knowledge when presenting new material. Instead, she would get back to

students who had questions on material that had already been covered.
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Approach to teaching introductory lesson. One of the most significant differences

in the responses of CB and LCB teachers to questions about their teaching practices was

found in the way teachers reported introducing differentiation. Seven LCB teachers

reported using the idea of the secant line tending to the tangent line to introduce

differentiation. The remaining LCB teacher reported using the definition of derivative to

introduce differentiation. This is in sharp contrast to the responses given by CB teachers

where only three out of nine reported introducing differentiation in this way. Three CB

teachers reported using word problems in their introductory lesson. For example, CB

teacher 6 reported introducing differentiation by using data from a fruit fly experiment

and CB teacher 7 used stock market prices to introduce the idea of derivative. Four of

the CB teachers reported using the idea of average velocity to introduce differentiation.

This approach is exemplified by CB teacher 5 who reported introducing differentiation by

discussing with his students the velocity associated with driving to a nearby town. Only

three of the CB teachers reported using the slope of the secant line tending to the tangent

line to introduce the derivative, and none of the CB teachers reported using the definition

of derivative.

Approach to teaching typical lesson. In a typical lesson CB teachers were more

likely to report beginning a class by presenting a problem, while LCB teachers were more

likely to present rules and examples. For example, CB teacher 9 reported that she

typically started class by putting a problem on the board and getting students' ideas on

how to solve it. On the other hand, LCB teacher 16 reported that in a typical lesson

students get down the rules and practice working problems. CB teachers were also more

likely to report having their students work in groups during a typical lesson.

Teachers' calculator use in introductory lesson. Eight CB teachers reported using

the calculator for graphing functions, while only three LCB teachers reported using

calculators for visualization in the introductory lesson. Typical uses of the calculator for

visualization were: looking at graphs of functions, using the calculator to draw secant
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lines, and using the zoom feature to look at local linearity. LCB teachers more often

reported using the calculator for computational purposes in the introductory lesson.

Altogether, four teachers reported not using the graphing calculator during the

introductory lesson. Of these, only LCB teacher 18 reported that he wanted his students

to do derivatives mechanically first.

Teachers' calculator use in typical lesson. Eight CB teachers reported using the

calculator for graphing functions in an introductory lesson on differentiation, while only

five LCB teachers reported using calculators in this way. CB teachers were also more

likely to report using the calculator for computational purposes. Three LCB teachers

reported not using the calculator much during the typical lesson while none of the CB

teachers reported not using the graphing calculator during a typical lesson. The reason

LCB teacher 14 gave for not wanting his students to use a graphing calculator was that

he wanted his students to do the algebra. LCB teacher 16 gave a similar reason, saying

she wanted her students to do differentiation by hand.

Students' calculator use in introductory lesson. Teachers most often reported

their students using the graphing calculator to graph functions and often used the

introductory lesson to acquaint their students with the use of the calculators. The most

notable difference found in teachers' reports of their students' use of the calculator was

that half of the LCB teachers reported their students using the calculator for

computational purposes, while none of the CB teachers reported this. Three of the CB

teachers reported that their students did not use a calculator in the introductory lesson.

Teachers' use of text in introductory lesson. CB and LCB teachers reported using

the class text in much the same way. Five CB teachers and four LCB teachers reported

not following the class text in the introductory lesson. The reasons CB and LCB teachers

gave for not following the text were much the same. CB teacher 1 stated that she had

taught calculus enough that she made things up on her own. LCB teacher 17 reported
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using ideas that had worked for him before. CB teachers were more likely to report using

the text for problems and examples and to require their students to read the book than

were the LCB teachers.

Teachers' use of text in typical lesson. As with the introductory lesson, CB and

LCB teachers' reports on how they use the class text in a typical lesson were similar. The

most commonly reported uses of the text were for homework problems and for examples

to work in class. The most significant difference was that more CB teachers reported

requiring their students to read the text than did LCB teachers.

Student Achievement

A researcher designed Differentiation Test was designed to assess students'

achievement. This test contained two sections. Section I of the Differentiation Test was

given to students of all 1995 teachers, while students of the 1995 CB and LCB teachers

were also given Section II of the Differentiation Test. To adjust for possible differences

in abilities of students entering the AP calculus classes, the MAA Calculus Readiness

Test form 1G was administered to students at the beginning of the school year. Table 41

shows that student scores on the Calculus Readiness Test were strongly related to

Section IA (p < .05), Section IB (p < .05), and the total score of Section I (p < .05).

Table 4m shows that when the entire group of 1995 teachers were considered,

there was no conclusive evidence that student achievement was related to teachers'

scores on the Belief Questionnaire ( p > .05). In addition, no relationship between the

demographic variables (sex, age, degree, and years teaching mathematics) and student

achievement were found (see Table 4n).



Table 41

Relationships of Calculus Readiness Test Scores to
Differentiation Test Scores

Note. The analysis included 51 teachers who completed both
the Calculus Readiness Test and the Differentiation Test.

Table 4m

Relationships of 1995 Teachers' Belief Questionnaire Scores and Student Differentiation
Test Scores

Note. The analysis included 51 teachers who completed the Belief Questionnaire, the
Calculus Readiness Test, and the Differentiation Test.
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Section I Part A Section I Part B Total

t-statistic 2.60 3.35 3.56

p-value 0.0123 .0026 .0008

Scale 1 Scale 2 Scale 3 Scale 4 Total

t p t p t p t p t p

Part A 0.48 0.36 0.41 0.34 -0.62 0.27 -0.43 0.34 -0.03 0.49

Part B 1.33 0.09 0.92 0.18 1.15 0.13 -1.03 0.15 0.84 0.20

Total 0.29 0.14 0.79 0.22 0.29 0.38 -0.87 0.19 0.48 0.32



Table 4n

Relationships of Student Differentiation Test Scores to 1995 Teachers'
Demographic Data After Accounting for Calculus Readiness Test Scores
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Note. Pretest scores were accounted for by using multiple linear regression.

To gain further insight into potential relationships between student achievement

and teachers' pedagogical content beliefs, CB and LCB teachers were examined in

greater detail. A t-test indicated that there was no significant difference of means

between the students' Calculus Readiness Test scores of CB and LCB teachers (p <

0.01), and therefore it was not necessary to adjust for the pretest scores when

comparisons were made between the CB and LCB teachers.

Table 4p gives the results of a t-test used to compare students' scores on Section I

Part A, Section I Part B, Section II, and the total score on the Differentiation Test. A

statistically significant difference was found in Section I Part B (p < .05), the conceptual

part of the test, and there was suggestive evidence of a difference in the total score of the

Belief Questionnaire (p = .11). No significant differences were found between student

scores of CB and LCB teachers on Section I Part A (computational) and Section II (free

response) of the differentiation test.

The Differentiation Test consisted of four subtests designed to explore

relationships between teachers' pedagogical content beliefs and their student's ability to

work graphically, numerically, symbolically, and to use a graphing calculator. Table 4q

Part A Part B Total

F P F p F P

Sex 1.47 0.23 0.73 0.40 0.05 0.82

Age 0.38 0.77 1.89 0.14 1.15 0.34

Degree 0.53 0.76 0.66 0.66 0.48 0.79

Years Teaching Math 0.82 0.42 1.95 0.06 1.65 0.10
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shows that students of CB teachers scored significantly higher on questions that required

interpreting graphs (p < .05), and there was marginally suggestive evidence that students

of CB teachers scored higher on questions which required students to interpret tabular

information (p = 0.087). No difference was found in students' ability to work

symbolically (p = .237) or in their ability to use a graphing calculator ( p = .481).

Table 4p

Student Scores on Differentiation Test for CB and LCB Teachers

Note. Scores are percent correct. Part A, 7 points possible. Part B, 7 points possible.
Section II, 27 points possible. There were 9 CB teachers and 8 LCB teachers.

Pretest Section 1
Part A

Section 1
Part B

Section II Total

CB LCB CB LCB CB LCB CB LCB CB LCB

Mean 65 64 45 41 41 30 37 32 42 35

SD 13 03 11 11 10 10 18 14 10 08

t 0.10 0.64 1.89 0.50 1.31

p 0.46 0.27 0.04 0.31 0.11



Table 4q

Students' Ability to Work in Multiple Representations
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Note. Scores reported are percent correct. Part A has 7 points possible. Part B
has 7 points possible. Section II has 27 points possible. There were 9 CB
teachers and 8 LCB teachers.

Graph Table Symbolic Calculator

CB LCB CB LCB CB LCB CB LCB

Mean 44.2 27.6 53.1 38.2 45.0 40.8 23.1 23.3

SD 15.3 16.7 19.0 16.4 9.4 11.0 9.8 8.9

t 1.846 1.449 0.340 -0.482

P 0.045 0.087 0.237 0.481



CHAPTER FIVE: DISCUSSION

In this chapter we will discuss the results and their implications for calculus

teachers, curriculum reformers, and mathematics researchers. In addition, we compare

and contrast the results of the current study with the work of Peterson, Fennema,

Carpenter, and Loef, and examine the limitations of this study. We begin by restating the

research questions.

Teachers' pedagogical content beliefs
What are AP calculus teachers' pedagogical beliefs about mathematics,
curriculum, and instruction in AP calculus? How well do their
pedagogical content beliefs align with a constructivist point of view?

How do AP teachers' pedagogical content beliefs change with time? Do
the pedagogical content beliefs of teachers become more cognitively based
as they become familiar with the materials from a calculus reform project?
Is there a relationship between how long a teacher has used the project
materials and the degree to which they are cognitively based?

Teachers' classroom practices
How are AP teachers' pedagogical content beliefs reflected in self-reports
of their approaches to teaching, their concepts of the roles of the teacher
and the learner, and their goals for instruction?

Student achievement
Is there a relationship between AP teachers' pedagogical content beliefs,
approaches to teaching, and their students' achievement, including
achievement of computational skills and problem solving?

Is there a relationship between teachers' pedagogical content beliefs and
their student's ability to work in multiple representations: graphically,
numerically, and symbolically?
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Summary of Results

Teachers' Pedagogical Content Beliefs

This study focused on AP calculus teachers' pedagogical beliefs about

mathematics, curriculum, and instruction in AP calculus and how well their beliefs align

with a constructivist point of view. We found that teachers vary greatly in their

pedagogical content beliefs about mathematics, curriculum, and instruction in AP

calculus. In particular, the teachers in this study differed significantly in the degree to

which their beliefs corresponded to a cognitively based perspective.

The Belief Questionnaire developed for this study proved effective in

distinguishing teachers' pedagogical content beliefs as cognitively based (CB) or less-

cognitively based (LCB). Additional support for these categorizations was obtained by

the telephone interviews. The analysis of these interviews showed CB teachers'

responses to questions about their pedagogical content beliefs were more in keeping with

constructivist theories. This was exemplified by the responses of CB and LCB teachers

when asked to describe their beliefs about the role of the teacher and learner. CB

teachers were more likely to indicate a belief that the role of the teacher was that of a

facilitator/guide and that the role of the student was that of explorer. On the other

hand, LCB teachers were more likely to believe the role of the teacher was that of a

knowledge base, and the role of the student was to learn from the teacher.

How AP Teachers' Pedagogical Content Beliefs Change with Time

Relationships between how long teachers had used the project materials and the

degree to which they were cognitively based were explored in two ways. First we
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compared the Belief Questionnaire scores of the 1993, 1994, and 1995 teachers. Because

no data was available on 1993 and 1994 teachers' pedagogical content beliefs prior to

instruction in the CCP materials, CB and LCB distinctions for these teachers were

defined by the median scores of the 1995 teachers on the Belief Questionnaire. No

statistically significant differences were found in the scores of the 1993, 1994, and 1995,

nor were any differences found in the Belief Questionnaire scores of the 1993, 1994, and

1995 LCB teachers. However, the Belief Questionnaire scores of the 1993 and 1994 CB

teachers were significantly higher than the 1995 CB teachers (p < .05).

The second way in which we investigated how teachers' pedagogical content

beliefs change with time involved administering the Belief Questionnaire to the 1995

teachers prior to instruction with the CCP materials, and again six or seven months later.

We found no statistically significant evidence of a change in 1995 teachers' pedagogical

content beliefs when the 1995 teachers were considered as a group. The lack of any

statistically significant change in the Belief Questionnaire scores of the 1995 teachers is

not entirely unexpected. Beliefs tend to change slowly over time and no substantial

change in the teachers' pedagogical content beliefs was expected in six or seven months.

It is interesting that CB teachers tended to show greater change in their beliefs.

Suggestive evidence was found indicating that CB teachers' scores on the Belief

Questionnaire were higher for the 1993 and 1994 groups of teachers than for the 1995

group of teachers. When the scores of the 1995 CB teachers' Belief Questionnaire

scores were compared before and after their inservice instruction, they significantly

increased. This implies that those teachers who were more cognitively based to begin

with were most affected by their use of CCP materials.



Teachers' Classroom Practices

Teachers' self-reports of their classroom teaching practices were found to be

strongly associated with their pedagogical content beliefs. Compared to LCB teachers,

CB teachers' self-reported classroom practices were found to more closely reflect the

calculus reform's recommendation for instructional approaches that are student centered

and conceptual in nature. CB teachers were more likely to use word problems when

introducing topics and to emphasize student exploration than were LCB teachers. In

addition, CB teachers more often reported having their students work in groups,

emphasize visual approaches to topics and consider students' knowledge when planning

instruction. On the other hand, LCB teachers were more likely to present rules and

theorems, work examples, and require their student to memorize rules of differentiation.

The categorization of teachers' classroom practices given in Figure 4k of Chapter

Four provides strong evidence that teachers with more cognitively based beliefs tended

to be more constructivist in their approaches to teaching. The difference in the number

of CB and LCB teachers giving a particular response to any one question in Figure 4k

was not always profound. However, the differences in the number of CB and LCB

teachers reporting any particular classroom practice consistently show CB teachers

reporting more responses which were in keeping with constructivist ideas.

Student Achievement

The results of this study suggest that students of teachers with cognitively based

beliefs tend to have a better conceptual understanding of differential calculus than

students of teachers with less cognitively based beliefs. However, no evidence was

found of a difference in the computational skills of students of CB teachers and students
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of LCB teachers. This is particularly interesting because of the fact that the LCB

teachers placed a greater emphasis on the learning of rules and procedures.

In addition to a better conceptual understanding, students of CB teachers were

better able to interpret graphical information and to interpret information given in a table.

The fact that students of CB teachers were better able to interpret graphical and numeric

information suggests that teachers with cognitively based beliefs used a greater variety of

approaches when teaching calculus than did teachers with less cognitively based beliefs.

No differences between students of CB and LCB teachers were found in their

ability to work with symbolic information. The types of problems associated with

assessing students' ability to work with information given symbolically and the types of

problems designed to determine their computations skills are closely related since

computational problems are very often given symbolically. Since no difference was

found in students of CB and LCB teachers' computational abilities, it is not surprising

that no difference was found in their ability to work with symbolic information.

However, we note that the greater emphasis placed on the symbolic aspects of

differential calculus by LCB teachers did not result in higher scores for their student on

the symbolic subtest of the Differentiation Test.

In addition to not finding any differences in students of CB teachers and LCB

teachers computational ability, we also found no statistically significant differences in

students' ability to use the graphing calculator when solving calculus problems. This

may, in part, be because the use of the graphing calculator was emphasized during the

CCP workshops. Teachers were not only taught how to use the graphing calculator

during these workshops, an emphasis was placed on how the calculator could be used in

the classroom. Another factor which may have contributed to the lack of any difference

in students' ability to use the graphing calculator for solving problems may be that CB

and LCB teachers reported having their students use the graphing calculator in similar

ways.

In this study we found that the more student-centered approaches to teaching

calculus associated with cognitively based beliefs were effective in promoting improved
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student understanding. In addition, the results of the present study supported the results

reported by Peterson et al. with first grade teachers and their students. The fact that

similar results were obtained with two such very different groups of teachers has

implications reaching beyond the teaching of first grade mathematics and AP calculus. In

the next section we will compare and contrast the results of the present study with the

results reported in the Peterson study to gain some insight into these implications.

Comparison with Peterson's Study

Both the present study and Peterson's study found notable variation in teachers

responses to the Belief Questionnaire. However, teachers' Belief Questionnaire scores

in the Peterson study tended to be higher than they were for teachers in the present

study, indicating that the first-grade teachers in Peterson's study, as a whole, were more

cognitively based than were the AP calculus teachers in the present study. In addition,

there tended to be greater variation in the teachers scores on the Belief Questionnaire in

the Peterson study than was found in the present study.

In the present study we found very distinct differences in CB and LCB teachers'

self-reports of their teaching practices. This was also the case in the Peterson study. In

both studies, CB teachers' classroom teaching practices were more in keeping with

constructivist philosophies than were the teaching practices of LCB teachers. Peterson

reported that CB teachers tended to use word problems as the basis for teaching

mathematics with the assumption that knowledge of number-facts would follow. On the

other hand, LCB teachers were more likely to teach word problems after the students

had learned their number-facts. We found similar differences between CB and LCB

teachers in the present study. LCB teachers in the present study were more likely to

report having their students learn the rules of differentiation before they moved on to

word problems. CB teachers, on the other hand, more often reported working word

problems and expecting student to acquire skills as they went along.
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The present study and Peterson's study obtained similar results when relationships

between Belief Questionnaire scores of CB and LCB teachers were compared to their

students' scores on the achievement tests. In the Peterson study, students of CB

teachers outperformed students of LCB teachers on the problem-solving test (p < .05).

However, no difference was found in the student scores of CB and LCB teachers on the

number-fact test. In the present study, a statistically significant difference was found in

the student scores on Section I Part B of the Differentiation Test, the conceptual part of

the test (p <.05) and no significant difference was found student scores on the

computational portion of the Differentiation Test. Not finding any difference in students'

computational ability in both studies was particularly interesting because, in both studies,

LCB teachers placed greater emphasis on skills than did CB teachers.

Implications for Teaching

Teachers' pedagogical content beliefs were found to be strongly associated with

self-reports of their classroom teaching practices. Compared to LCB teachers, CB

teachers' self-reported classroom practices were found to more closely reflect the

calculus reform's recommendation for instructional approaches that are student centered

and conceptual in nature. The results of this study support the calculus reform's

recommendation for instructional approaches that are student-centered and conceptual in

nature. We found that teachers who reported placing a greater emphasis on exploration

and conceptual understanding were more effective in helping students develop a better

conceptual understanding of differential calculus.

To allow for this greater emphasis on problem solving and student exploration, it

is necessary to reduce the amount of time devoted to drill-and-practice. A concern

expressed by some teachers is that reducing the time spent on skills will be detrimental to

students' computational ability. This study suggests that placing a greater emphasis on
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conceptual understanding and problem-solving need not lead to corresponding

deficiencies in students computational abilities.

The recommendation of the NCTM for an increase in the use of computing

technology is, in part, an attempt to free students from tedious computations and allow

them to concentrate on conceptual understanding and problem-solving. In this study we

did not explore, in depth, students' use of the graphing calculator. However, we gained

some insight into how students use the graphing calculator through the telephone

interviews with CB and LCB teachers, and found students of CB and LCB teachers used

the graphing calculator in similar ways.

In addition to the computational uses suggested by the NCTM, the graphing

calculator has the potential to be an excellent exploratory tool. It stands to reason that

allowing student to use calculators to explore and discover key calculus concepts will

allow them to build for themselves a better mathematical foundation. When teachers

were asked how they used the graphing calculator we found that the greatest difference

between how CB teachers and LCB teachers used graphing calculators was that CB

teachers were more likely to use the calculator for visualization.

The results of this study suggest that AP calculus teachers can place a greater

emphasis on student exploration and problem solving, and that by doing so, they can

improve students' conceptual understanding without necessarily sacrificing skill

proficiencies. From a purely statistical point of view the results of this study cannot be

generalized to a larger population. However, the fact that Peterson's study, involving

first-grade teachers, and the present study, involving AP calculus teachers, found similar

teaching strategies associated with improved student understanding lends support to the

idea that constructivist based teaching strategies are sound pedagogically across the K-

12 mathematics curriculum.

Ultimately, the goal of educational research is to improve student understanding

and this goal will be achieved through the efforts of teachers in the classroom. It follows

that to improve student achievement will require changes on the part of the teacher.



However, the results of this study supports the idea that changing teachers' classroom

practices will require a corresponding change in their pedagogical content beliefs.

Implications for Calculus Reform

Teacher inservice programs are often ineffective in bringing about significant long

term changes in teachers' classroom practices (Guskey, 1986). However, the CGI

program has shown that a teacher intervention program can be designed which will affect

first grade teachers' beliefs and have a corresponding effect on their classroom teaching

practices (Carpenter et al., 1989b; Peterson, Fennema, Carpenter, and Loef, 1989a;

Knapp and Peterson, 1995). Because relationships between AP calculus teachers'

pedagogical content beliefs and their classroom teaching practices found in the present

study were similar to the relationships found with first grade teachers, the philosophies

which guided the development of the CGI program might have relevance to inservice

programs associated with the calculus reform movement.

One of the guiding principles of the CGI program is that teachers can benefit from

research-based knowledge of children's thinking about addition and subtraction problems

and how children make sense of new knowledge in light of existing knowledge (Peterson

et al., 1991). In the CGI program, research-based knowledge about children's

mathematical knowledge was shared with teachers, and the teachers were given the

opportunity to interpret for themselves what it meant to their classroom instruction. In

other words, the teachers are allowed to adapt the research-based knowledge to their

existing knowledge and belief systems.

This has important implications for the calculus reform movement. For example,

one goal of the calculus reform movement is to promote an increased emphasis on

conceptual understanding and problem solving. We suggest that a good first step toward

changing teachers' classroom practices to attain this goal is to familiarize teachers with

research demonstrating that this approach to teaching is associated with improved
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student understanding. However, this research-based knowledge is not enough, in and

of itself. To effectively promote a greater emphasis on conceptual understanding and

problem solving, teachers must come to believe that changing their teaching practices

will have a positive effect on their students' learning.

Research on teachers' beliefs has shown that beliefs tend to change slowly over

time (Kagan, 1992; Simomsen, 1993). Therefore, changing calculus teachers'

pedagogical content beliefs about what emphasis should be placed on conceptual

understanding and problem solving will be a gradual process. The effectiveness of the

CGI program suggests that rather than presenting calculus teachers with a "script" to

follow and expecting instant changes, it may be more effective to allow teachers to adapt

this research-based knowledge to fit their own particular style of teaching. This suggests

educators interested in calculus reform should make materials available to teachers which

have been shown to improve student understanding and encourage teachers to adapt

them to their personal teaching style. However, learning how to "fit" these new

approaches, as well as coming to believe these approaches are effective, will take time

and ongoing support is essential.

According to Knapp and Peterson (1995), the ongoing support the teachers

received played an important part in the long term effect of the CGI program. In

particular, interaction with other teachers who were attempting to use the CGI ideas was

found to be particularly important. This continuing support is going to play an important

role in the calculus reform movement. Teachers are going to vary in the degree to which

that are successful in incorporating new approaches to teaching and are bound to run

into difficulties. The opportunity to share their experiences and ideas with other

teachers seems to be a key factor in the successful implementation of a new curriculum.

It is important for curriculum reformers to keep in mind that teachers participating

in an inservice program take on the role of student. This provides a valuable opportunity

to model constructivist teaching methods. Inservice programs promoting calculus

reform may benefit by incorporating greater levels of participation by teachers, by



helping them become better informed, and by paying special attention to their

pedagogical content beliefs.

Limitations of the Study

The teachers selected to participate in this study should not be viewed as a

representative sample of high school AP calculus teachers. No attempt should be made

to make statistical inferences beyond this population to any broader population, such as

all AP calculus teachers or moreover to all high school mathematics teachers.

Participation in the CCP project came was determined by both self-selection (who

applies) and a competitive selection (who gets selected out of those who apply).

Relationships between teachers' Belief Questionnaire scores and the demographic

information (gender, age, highest degree obtained, and number of years teaching

mathematics) indicate that CB teachers had more years teaching experience than LCB

teachers (M = 22.13 and M = 13.44 respectively, p < 0.05). This relationship between

years teaching and the degree to which teachers pedagogical content beliefs are

cognitively based suggests that the contrasts found in this study may be influenced by

experience (similar results were reported by Peterson)

Another limitation of this study was that no data was available on 1993 and 1994

teachers' pedagogical content beliefs prior to instruction with the CCP curriculum. The

1993 and 1994 teachers received their inservice instruction with the CCP materials

before the start of the current study. Because of this, the determination of CB and LCB

groups for the 1993 and 1994 teachers was based on the median scores on the Belief

Questionnaire of the 1995. This aspect of the study must be considered observational in

nature. The differences among the three groups of teachers could be attributed to

factors other than the project curriculum. One alternate hypothesis is that the 1993 and

1993 teachers may have had more cognitively based beliefs when they joined the

Calculus Connections Project than did the 1995 teachers. The 1995 teachers may have
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been motivated to join the Calculus Connections project because graphing calculators

were required beginning with the 1996 AP exam and the project provided teachers

instruction in their use. On the other hand, 1993 and 1994 teachers joined the project

before graphing calculators were required and may have chosen to participate because of

their beliefs about the projects' curriculum.

Implications for Future Research

The results of the present study support the claim that teachers' pedagogical

content beliefs are indeed linked to teachers' actions and student learning. The first-

grade mathematics teachers studied by Peterson et al. and high school AP calculus

studied here are near opposite ends of K-12 mathematics curricular spectrum. However,

the fact that similar results were found with two such different groups of teachers lends

support to the idea that similar results might be obtained with other mathematics classes

and teachers in other grades. Further research is needed to determine whether teachers'

pedagogical content beliefs, teachers' classroom practices, and student achievement are

related similarly at all levels of school mathematics.

In both the Peterson study and the present study the mean number of years

teaching mathematics for CB teachers was significantly greater than the mean number of

years LCB teachers had taught mathematics, A possible conclusion to draw from this is

that teachers' pedagogical content beliefs simply become more cognitively based as

teachers gain classroom teaching experience. Another area open to future research is to

explore the factors which contribute to these changes in teachers pedagogical content

beliefs over time. By determining the specific experiential factors which contribute to a

more cognitively based perspective, it may be possible to develop teacher inservice

programs which will help promote these beliefs earlier in a teacher's career.



Conclusions and Recommendations

This study has important implications in the current educational reform climate. It

supports the claim that teachers' pedagogical content beliefs are an important

consideration for teacher education programs and teacher inservice education. The

results of this study have shown strong relationships among teachers' pedagogical

content beliefs, their classroom practices, and student achievement. It supports previous

research suggesting that teachers' beliefs, thoughts, judgements, knowledge, and

decisions indeed affect how teachers perceive and think about teaching a new curriculum

and to what extent they implement it (Peterson et al., 1989). If reform efforts and

teacher preparation programs are to effect a meaningful change in the way mathematics

is taught, teachers' pedagogical content beliefs need to be considered.

The research of Carpenter, Fennema, Peterson, and Loef (1989) has shown a

positive correlation between cognitively based beliefs and student achievement in the first

grade. The fact that the relationships among first-grade teachers' pedagogical content

beliefs, classroom teaching practices, and their students' achievement were also found

with high school Advanced Placement teachers and their students has significant

implications for the calculus reform movement. It lends strong support to the idea that

teachers' pedagogical content beliefs play a very important role in curricular reform. If

the reform efforts are to have a significant impact on teachers' classroom practices, they

will need to have a corresponding impact on teachers' pedagogical content beliefs.

In closing, we make the following recommendations for improving the

effectiveness of inservice efforts aimed at helping teachers implement calculus reform

curricula. First, teachers can benefit from research based knowledge concerning

effective approaches to teaching mathematics. This is not to say that teachers should be

expected to read educational research papers, rather reformers should summarize

important findings research and present them in a way which benefit teachers.

The results of the present study suggest that AP calculus teachers can emphasize

student exploration to help students develop an improve conceptual understanding
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without necessarily sacrificing skill development. These results are supported by other

studies showing that exploration can have a positive effect on students' conceptual

understanding (Orton, 1983a; Orton, 1983b; Tall, 1985). Using technology to allow

students to explore has been shown to be particularly effective, and a great deal of

research on the effectiveness of calculators and computer algebra systems as exploratory

tools (Pa'miter, 1991; Heid, 1988; Tall, 1985; Orton 1993a; Orton, 1993b). These

studies show how using technology to take over computation demands and allow

students to explore important calculus concepts can promote a better conceptual

understanding without necessarily sacrificing computational skills.

Informal approaches to teaching calculus that include numerical and graphical

exploration have also been found to improve students' understanding (Beckmann, 1988;

Schwartz, Dreyfus, and Bruckheimer, 1990; Dreyfus and Eisenberg, 1984; Dreyfus and

Eisenberg, 1982). These studies have shown how exploration of important calculus

concepts in multiple representations: (symbolic, numerical, and graphical) can be used as

effective teaching strategies.

Familiarizing teachers with the research which supports the called for change in

teaching practices is the first step in effecting a change in teachers' pedagogical content

beliefs. In addition, materials and activities need to be made available to the teachers

which promote the desired teaching strategies. The Calculus Connections Project of

Oregon State University, Project CALC of Duke University, The St. Olaf Project, and

The Calculus Consortium, based at Harvard University are among many projects which

provide curricula promoting the ideas of the reform effort.

Finally, ongoing support is essential. The results of this study suggest that

changing teachers' classroom practices requires corresponding change in their

pedagogical content beliefs. These changes in teachers' pedagogical content beliefs are

realized through positive experiences in their classrooms with the new teaching

strategies. The support teachers receive from other teachers play an important part in

insuring a positive classroom experience.
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If teachers are the true "change agents" in implementing curricular reforms, then

reforms must act as "change agents" of these teachers. The results of this study has

shown that cognitively based beliefs are associated with both teaching practices which

are constructivist in nature, and improved student achievement. These results suggest

that calculus reforms efforts need to promote these beliefs in order to effect meaningful

changes in how calculus is taught and a corresponding improvement in student

understanding.
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8. Number of students in your school

Appendix A: Belief Questionnaire

INSTRUCTIONS

There are 48 statements in this survey that represent beliefs teachers may have regarding the teaching
and learning of calculus. We are interested in how well these statements reflect your own feelings about the
teaching and learning of calculus. Please respond to each statement with your degree of agreement or
disagreement by filling in the appropriate "bubble." We really are interested in your opinion.

Your responses to this survey will be held in the strictest confidence, and no individual teacher's
responses will be reported in any way. You will be provided with a sunmary of the survey results when they
are compiled. Thank you for your help!

BACKGROUND INFORMATION

NAME
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1. Gender
a) female b) male

2. Age
20 - 29 c) 40 - 49 e) 60 or older
30 - 39 d) 50 - 59

3. Highest degree
Bachelors in Mathematics d) Masters not in Mathematics
Bachelors not in Mathematics e) Doctorate in Mathematics
Masters in Mathematics 0 Doctorate not in Mathematics

4. Number of years teaching

5. Number of years teaching mathematics

6. Number of years teaching calculus

7. Describe your school
a) Urban b) Suburban c) Rural
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A=Strongly Agree B=Agree C=Undecided D=Disagree E=Strongly Disagree

ABC DE
0 0 0 0 0 1. Time should be spent practicing computational procedures before students are expected to

understand the procedures.

0 00 00 2. Most students have to be shown a method of solving elementary calculus problems.

000 0 0 3. Students should understand computational procedures before they master them.

0 00 00 4. It is important for a student to know how to follow directions to be a good problem solver.

0 0000 5. The natural development of mathematical topics should determine the sequence of topics
which is used for instruction.

000 0 0 6. Students should understand computational procedures before they spend much time practicing
them.

0 00 0 0 7. Teachers should teach exact procedures for solving word problems.

0 00 00 8. The instructional sequence of math topics should be determined by the order in which
students naturally acquire math concepts.

000 0 0 9. The natural development of students' mathematical ideas must be considered in making
instructional decisions.

00 0 00 10. Students learn calculus best from the teachers' demonstrations and explanations.

000 0 0 11. When selecting the next topic to be taught, a significant consideration is what students already
know.

00 000 12. Students learn calculus best by exploring problem situations.

00 000 13. To be successful in mathematics, a student must be a good listener.

00 000 14. The natural development of student's mathematical ideas should determine the sequence of
topics used for instruction.

0 0 0 0 0 15. Teachers should allow students to figure out their own ways to solve calculus problems.

0 0 0 0 0 16. Students should be encouraged to solve problems in the same way the teacher has modeled
them.

0 0 000 17. It is important for a student to be a good listener in order to learn how to do mathematics.

00 000 18. The best way to teach problem solving is to show students how to solve one kind of problem
at a time.

0 0 0 0 0 19. The mathematically logical sequence of topics must be considered in planning for instruction.

0 0 0 0 0 20. Students should be allowed to invent ways to solve simple word problems before the teacher
demonstrates how to solve the problems.

0 0 000 21. Students should have many informal problem solving experiences in calculus before they are
expected to memorize basic differentiation facts.

0 0 0 0 0 22. The instructional sequence of math topics should be determined by the formal organization of
mathematics rather than by the natural development of student's math ideas.

0 0000 23. Students learn math best by attending to the teachers explanations.

0 0 000 24. Calculus should be presented to students in such a way that they can discover relationships for
themselves.

00 000 25. Students can figure out ways to solve many calculus problems without formal instruction.



A=Strongly Agree B=Agree C=Undecided D=Disagree E=Strongly Disagree
ABC DL
00000 26.

0 0 0 0 0 27.

0 0 0 0 0 28.

0 0 0 0 0 29.

0 0 0 0 0 30.

0 0 0 0 0 31.

0 0 0 0 0 32.

0 0 0 0 0 33.

0 0 0 0 0 34.

0 0 0 0 0 35.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 38.
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Most students can figure out a way to solve many calculus problems without teacher help.

Students should explore problem situations before they master computational procedures.

In planning for instruction, it is important to know how student's mathematical ideas develop
naturally.

It is more important to teach in a mathematically sequenced way than to use student's concept
development in planning an instructional sequence.

Recall of basic rules of differentiation should precede the introduction of word problems
involving differentiation.

Teachers should facilitate student's invention of their own ways to solve calculus problems.

Students should master computational procedures before they are expected to understand how
those procedures work.

It is more important to use student's concept development in planning an instructional
sequence than to use a mathematically determined sequence

Teachers should tell students who are having difficulty solving a word problem how to solve
the problem.

Students should understand the meaning of differentiation before they memorize rules of
differentiation.

When selecting the next topic to be taught, one must carefully follow the mathematically
logical sequencing of topics.

Time should be spent practicing computational procedures before students spend much time
solving problems.

Teachers should encourage students who are having difficulty solving a word problem to
continue to try to find a solution.

Most students can figure out a way to solve simple calculus problems

Students will not really understand differentiation until they have mastered the basic rules of
differentiation.

Students should not solve basic differentiation word problems until they have mastered some
basic differentiation facts.

It is important for a student to discover how to solve elementary calculus problems for
him/herself.

Students usually can figure out for themselves how to solve simple calculus problems.

The structure of mathematics is more important in making instructional decisions than is the
natural development of student's ideas.

The teacher should demonstrate how to solve calculus problems before students are allowed
to solve them.

It is better to teach students how to solve one kind of word problem. at a time.

Time should be spent exploring problem situations before students spend much time
practicing computational procedures.

It is best to teach students how to solve a variety of word problems at one time rather than one
type of problem at a time.

0 0 0 0 0 39.

0 0 0 0 0 40.

0 0 0 0 0 41.

0 0 0 0 0 42.

0 0 0 0 0 43.

0 0 0 0 0 44.

0 0 0 0 0 45.

0 0 0 0 0 46.

0 0 0 0 0 47.

0 0 0 0 0 48.



Appendix B: Follow-up Belief Questionnaire

INSTRUCTIONS There are 24 statements in this survey that represent beliefs teachers may have
regarding the teaching and learning of calculus. Please respond to each statement with your degree of
agreement or disagreement by filling in the appropriate "bubble." Your responses to this survey will be held
in the strictest confidence, and no individual teacher's responses will be reported in any way.

A=Strongly Agree B=Agree C=Undecided D=Disagree E=Strongly Disagree

ABC DE

000 0 0 1. Students should understand computational procedures before they master them.

0 0 000 2. Students should understand computational procedures before they spend much time
practicing them.

0 0 0 00 3. The instructional sequence of math topics should be determined by the order in
which students naturally acquire math concepts.

0 0 000 4. The natural development of students' mathematical ideas must be considered in
making instructional decisions.

0 0000 5. When selecting the next topic to be taught, a significant consideration is what
students already know.

0 0 000 6. Students learn calculus best by exploring problem situations.

000 0 0 7. The natural development of student's mathematical ideas should determine the
sequence of topics used for instruction.

0 0 0 0 0 8. Teachers should allow students to figure out their own ways to solve calculus
problems.

0 0 0 00 9. Students should be allowed to invent ways to solve simple word problems before the
teacher demonstrates how to solve the problems.

0 000 0 10. Students should have many informal problem solving experiences in calculus before
they are expected to memorize basic differentiation facts.

000 0 0 11. Calculus should be presented to students in such a way that they can discover
relationships for themselves.

000 0 0 12. Students can figure out ways to solve many calculus problems without formal
instruction.

0000 0 13. Most students can figure out a way to solve many calculus problems without teacher
help.

0 0000 14. Students should explore problem situations before they master computational
procedures.
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A=Strongly Agree B=Agree C=Undecided D=Disagree E=Strongly Disagree

ABCDE

0 0 0 00 15. In planning for instruction, it is important to know how student's mathematical ideas
develop naturally.

0 0 0 0 0 16. Teachers should facilitate student's invention of their own ways to solve calculus
problems.

0 0 000 17. It is more important to use student's concept development in planning an
instructional sequence than to use a mathematically determined sequence.

0 0000 18. Students should understand the meaning of differentiation before they memorize
rules of differentiation.

0 0 0 0 0 19. Teachers should encourage students who are having difficulty solving a word
problem to continue to try to find a solution.

0 0 0 0 0 20. Most students can figure out a way to solve simple calculus problems.

0 0 0 0 0 21. It is important for a student to discover how to solve elementary calculus problems.
for him/herself.

000 0 0 22. Students usually can figure out for themselves how to solve simple calculus
problems.

0 0 0 0 0 23. Time should be spent exploring problem situations before students spend much time
practicing computational procedures.

0000 0 24. It is best to teach students how to solve a variety of word problems at one time
rather than one type of problem at a time.
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Appendix C: Interview Protocol

Belief Interview

"We are interested in how you teach differentiation in your classroom and why you teach it the way that you
do. We are going to ask you some specific questions about the way you teach differentiation and why you
teach as you do. There are no right or wrong answers to these questions. We are interested in your opinions
and ideas. We would like you to respond to the specific questions. However, after you answer each question,
please feel free to depart from the original question if you have additional comments on how and why you
teach differentiation as you do."

1A. "Describe as specifically as you can the lesson in which you introduce differentiation to your class. We
are interested in the way you organize and present the mathematics content as well as the specific
teaching methods and strategies that you use."

--Probe (to be used once)

"Anything else?" or "Can you tell me more?" or repeat question or paraphrase question.

"How do you use the math textbook in your introductory lesson(s)?"

or if the teacher has already discussed how (s)he uses the textbook then "You said that you used the
textbook [insert teacher's words]." "Is that correct?" "Is there anything else you would like to add?"

--Probe once if necessary.

"When introducing differentiation, how closely do you follow the presentation of the material in the
book?"

D "Do you use a graphing calculator when introducing differentiation? If so, How?"

--Probe once if necessary: "How do you use the graphing calculator when introducing differentiation?"

E. "Do your student use a graphing calculator during the introductory lesson on differentiation? If so, how"

--Probe once of necessary: "How do you have your students use the graphing calculator when
introducing differentiation?"

2A. "Describe as specifically as possible a typical lesson involving differentiation in your class. Again, we
are interested in the way you organize and present the mathematics content as well as the specific
teaching methods and strategies that you use. Also, please explain how the typical lesson differs from
the introductory lesson on differentiation and whether and how the typical lesson might change over the
course of the school year."

--Probe once if necessary.
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"How do you use the math textbook in your typical math lesson on differentiation?"

Or

"You said that in your typical math class the textbook [insert teacher's specific words]?" "Is that
correct?" "Is there anything else you would like to add?"

--Probe once if necessary.

"How do you use the graphing calculator in a typical lesson on differentiation?"

-Probe once if necessary

"What do you think the role of the teacher should be in a typical lesson on differentiation in your class?"

--Probe once if necessary: "What do you think the teacher's responsibility should be in a typical lesson
on differentiation in your class?"

"What do you think the role of learner should be in a typical lesson on differentiation in your class?"

-Probe once if necessary: "What do you think the learner's responsibility should be in a typical lesson
on differentiation in your class?"

3A. "What do you try to have your students learn about differentiation during the year?"

--Probe once if necessary: "What is important for most students to know about differentiation by the end
of the year?"

B. "Are there certain concepts in differentiation that you want all students to learn? If so what are they?"

--Probe once if necessary.

C "Why did you decide that these concepts are important?"

--Probe once if necessary.

"Are there certain kinds of word problems using differentiation you believe that all students should learn
to solve? If so, what are they?"

--Probe once if necessary.

"Why did you decide that these kinds of differentiation word problems are important for all students to
learn to solve?"

--Probe once if necessary.

I 1 1



4A. "Do you have the students memorize rules of differentiation sometime during the school year?"

Yes No

B."When?" B. "Do you teach differentiation rules
to all calculus students?"

C."How do you decide when?" Yes No

--Probe once
"When?" "Why not?"

--Probe once

"How?"

--Probe once

5A. "Do you have the students work on word problems involving differentiation at any time during the first
few weeks of the school year?"

Yes No

B. "When?" B "Do have students work on word problems
involving differentiation during the
school year."

Yes No

C."How do you decide when?" C."When?" "Why not?"

--Probe once --Probe once

6A. "In teaching differentiation in high school calculus, what do you believe should be the relative emphasis
on rules of differentiation versus conceptual understanding versus solving of word problems?"

--Probe once if necessary.

"Why?"

--Probe once if necessary.

"What do you see as the relationship between learning of differentiation rules, conceptual understanding
of differentiation, and differentiation word problems?"

--Probe once if necessary.
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7A. "What factors do you consider when determining how topics in differentiation should be sequenced?"

--Probe once if necessary

B. "How rigorous an understanding of limits should students have before proceeding to the study of
differentiation?"

--Probe once if necessary

8A. "What do students in your calculus class know about slopes and rates of change when they start the
class?"

--Probe once if necessary.

"Where do students get this knowledge?"

--Probe once if necessary

"Students have different abilities and knowledge about differentiation, slopes, and rates of change. How
do you find out about these differences?"

"Do you use this knowledge in planning instruction?"

Yes No

"How?"



1 2 3 4 5
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After you have completed interviewing the teacher on the above seven questions, think back over the
teacher's responses and judge where you think that teacher falls on the continuum for each of the four beliefs
below. If you are unable to make a judgement for one or more beliefs, then ask additional questions to get the
information that you need to make a judgement.

Students receive mathematical Students construct
knowledge from the teacher their own mathematical
and others knowledge

3. Structures of mathematics Students's development
provides the basis of sequencing of mathematical ideas

topics for instruction providing the basics
for sequencing topics
for instruction

1 2 3 4 5

1 2 3 4 5

Mathematica skills should Mathematics skills
should be taught as a discrete should be taught

component in relationship to
understanding and
problem solving

1 2 3 4 5

4.Madiematics instruction Mathematics instruction
should be organized to should be ed to

be organized to facilitate facilitate students's

teacher's clear presentation construction of

of knowledge knowledge
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Appendix D: Differentiation Test

PRACTICE AP CALCULUS EXAM
SECTION I

PART A

INSTRUCTIONS

Time allowed is 25 minutes

SECTION I PART A consists of 7 multiple-choice questions. CALCULATORS ARE
NOT ALLOWED ON THIS SECTION OF THE TEST. Unless otherwise
indicated, the domain of any given function is assumed to be the set of all real
numbers for which the function is defined. Examine the given answers and circle the
response you decide is correct on both the test and on the answer sheet.

DO NOT GO ON TO PART B



1 Given that j(x)= 2e x2sin(x), what isf (x)?

4xex2cos(x)

2x2ex2cos(x)

22e x2sin(x) + 2e xcos(x)

4xe x'sin(x) + 2e x2cos(x)

2x2ex2sin(x) +2e x2cos(x)

2. The equation of the curve determined by reflecting y= In x - 1 about the
x-axis is

y= ex-1
y= e 1-x
y= ln x-1
y= 1 - In (-x)
y= 1 - In x

4. If r is positive and increasing, for what value of r is the rate of increase of r4 six
times the rate of increase of r 2 ?

A) B)
2

D) E)

5. The slope of the tangent line to the curve y3x+y 2X 2 = 6 at (2,1) is

-3 -5 -3
A) B) -1 C) D) E) 0

2 14 14
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3. What is rim sin(n/2+14-sin(TE/2)
h-O

A) -.0 B) -1 C) 0 D) 1 E) +.0



6. Given the curve y=2x3-3x4, which of the following statements are true?

The curve has no relative extrema.
The curve has one point of inflection and two relative extrema.
The curve has two points of inflection and one relative extremum.
The curve has two points of inflection and two relative extrema
The curve has two points of inflection and three relative extrema.

d3v dy
7. For which of the following functions does the property ---- - hold?

dx3 dx
I. y.ex

y=lnx
Y=i1

I only
II only
I and II
I and III
I, II, and 1TI
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PRACTICE AP CALCULUS EXAM
SECTION I

PART B

INSTRUCTIONS

Time allowed is 25 minutes

SECTION I PART B consists of 7 multiple-choice questions (numbered 8 through 14).
A GRAPHING CALCULATOR MAY BE REQUIRED FOR SOME OF THE
QUESTIONS IN THIS SECTION. Unless otherwise indicated, the domain of any
given function is assumed to be the set of all real numbers for which the function is
defined. Circle the correct response on both the test and on the answer sheet.
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8. For the following question use the information given in the tables below. What
is the value of (f 0 g)(x) + f(2x) for x -= 3?

A) 43 B) 45 C) 12 D) 8 E) 10

9. Which of the following combination of properties could possibly describe a
function?

f(x)>0 and f ' (x)> 0 for all x

f(x) <0 and f " (x) <0 for all x

f(x) >0 and f" (x)<0 for all x

A. I only B. II only C. I, II, and III D. I and II E. I and III

10. Let f' (x)= x5
- x4 + 3x 2. To three decimal places the function f has a relative

4 2
maximum at x= ?

A) 0.00 B) - .777 C) 1.059 D) 1.572 E) 3.514
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x 2 3 6 7

f(x) 3 5 8 2

g(x) 4 7 5 7



11. At which of the five points

on the graph in the figure at

the right are-d--)) and d2Y
dx cbc2

both positive?

A
B
C
D
E

For the following question use the information given in the tables below. Let
H(x) = (f g)(x). What is the value of ff(3)?

A

Two particles start at the origin and move along the x-axis. For 0 t 10, their
respective position functions are given by x1= cos t and x2= ln(2t) +2 . For how
many values of t do the particles have the same velocity?

A) none B) one C) two D) three E) four
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x f(x) ' (x) x g(x) g' (x)

1 2 3 3 7 6

2 3 4 4 8 7

3 4 6 5 9 8

7 3 8 6 1 9

A) 36 B) 9 C) 46 D) 48 E) 4



14. Which of the following graphs below represent(s) motion at constant, non-
zero acceleration?

II ra
2

0
0 1 2

Time

Iv

0
0 1

Time

0
0

2

2

Time

2

0
0 1

Time

2

A) I, II, and IV B) I and III C) II and V D) IV only E) V only
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0
1

Time

0 2



PRACTICE AP CALCULUS EXAM
SECTION II

INSTRUCTIONS

Time allowed is 45 minutes

SECTION II
Section II contains 3 free-response questions. Partial credit may be
given so be sure to show your work in the space provided. A
GRAPHING CALCULATOR MAY BE REQUIRED FOR SOME OF
THE QUESTIONS IN THIS SECTION. Unless otherwise indicated,
the domain of any given function is assumed to be the set of all real
numbers for which the function is defined.
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15. Consider the graph ofy = f ' (x) given below (note that this is the graph of the
derivative of f ).

A) Sketch the graph of f "(x) in the space provide.

V1
1 1 1 1 1 1 1 1
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16. Suppose! is continuous over the interval 1 <x < 7 and f ' (x) = (in x)2 - 2(sin x)4
for 1 <x < 7. Answer the following to three decimal places.

For what values of x is f (x) = 0 ?
Find the x-values for all relative minima for the functionf(x).
Justify your answer.
For what values of x is f (x)= 0? Justify your answer.

17. The radius r of a sphere is increasing at the constant rate of 0.05 centimeters

per second. (Volume of sphere with radius r is V = 4nr 3). Answer the
3

following questions.

How fast is the volume of the sphere increasing when the radius of the
sphere is 10 centimeters?
What is the radius of the sphere when the volume of the sphere and the radius of
the sphere are increasing at the same rate?
When the volume of the sphere is 39Tc cubic centimeters, how fast is the area of
the cross section through the center of the sphere increasing?

3
I I I I I I I 1

2

1

0

1
2

3
I I I I I I I I

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Over which intervals is the graph of f concave up? Justify your answer.
Find the x-coordinates of all relative minimums for the function f(x) . Justify

your answer.

3

2

1

0

1

3



15a. The graph of f" (x) is above.

15b f is concave up when f " (x) > 0
OR

f is concave up when f' is increasing

15c Minimum occurs when f Tx) =0 and f " (x) > 0
OR

Minimum occurs when f Tx) =0 and f Tx)
changes from negative to positive

16a. Using the calculator we find f " (x) =0
when x = 0.620 and x = 2.275

ANSWER KEY

1 1 l

45 67 89
1 point for the 3 zeros in approximately the

correct places

1 point if the graph is drawn above and below
the x-axis in the proper intervals

1 point for relative minimum of about -1 and
relative maximum of about 2

1 point for (0,1)
1 point for (4,7)
1 point for reason

1 point for answer of x 5.25
2 points for reason

2 points for x = 2.275
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SECTION II

3
1 1 1

2

0

-2

-3 1 1 1

01 2 3

SECTION I Part A Part B

/. D 8. E
E 9.D
C 10.D
B 11.D
C 12.D
C 13. D
D 14. C



16b When x = 2.275, f' (x) changes signs from
negative to positive

16c. (x) =0 when the derivative off' is 0

OR

(x) =0 at the relative maximums and
relative minimums of f ' .

f" (x) = 0 when x = 1.503, x = 3.625, x = 4.629,
and x = 6.725.

17a dV/dt = 4nr2(dr/dt)

When r = 10, dV/dt = 4n(/ 02)(0.05) = 20n

17b. Need the volume of sphere increasing
at 0.05 centimeters per second so,

0.05 = 4nr2(0.05)

solving for r we get, r= 1/(2/7)

17c. 39n = (4/3)nr3 r= (117/4)' 1 point for finding r

Area = nr2 dA/dt = 2nr(dr/dt) 1 point for A = nr2

Evaluating dA/dt at r= (117/4)" 1 point for dA/dt

we get dA/dt 0.968 square centimeters
per second. 1 point for answer
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1 point for value
1 point for reason

1 point for x = 1.503

1 point for x = 3.625

1 point for x = 4.629

1 point for x = 6.725

1 point for reason

1 point for derivative

1 point for answer

1 point for setting up
problem

1 point for finding r



Appendix E: 1994 Advanced Placement Syllabus

A. Functions and Graphs

1. Properties of functions

Domain and range
Sum, product, quotient, and composition
Inverse functions
Odd functions
Periodic Functions
Zeros of a function

2. Properties of graphs

Intercepts
Symmetry
Asymptotes
Relationships between graphs

B. Limits and Continuity

1. Finite limits

Limit of a constant, sum, product, or quotient
One-sided limits
Limits at infinity

2. Nonexistent limits

a. Types of nonexistence
b Infinite limits

3. Continuity

Definition
Graphical interpretation of continuity and discontinuity
Existence of absolute extrema of a continuous function
Application of the Intermediate Value Theorem
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B. Differential Calculus

1. The derivative

Definition
Derivative formulas

2. Statements and applications of theorems about derivatives

Relationship between differentiability and continuity
The Mean Value Theorem
l'Hopital's Rule for indeterminate forms

3. Applications of the derivative

Geometric applications
Optimization problems
Rate-of-change problems

C. Integral Calculus

1. Antiderivatives (indefinite integrals)

Techniques of integration
Applications of antiderivatives

2. The definite integral

Definition of the definite integral as a limit of sums
Properties
Approximations to the definite integral
Fundamental theorems
Applications of the definite integral

2. Applications of antiderivatives

3. Techniques of integration

4. The definite integral

5. Applications of the integral
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