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AN EVALUATION OF OPTIMIZATION TECHNIQUES 
FOR PRODUCTION AND EMPLOYMENT SCHEDULING 

INTRODUCTION 

Fluctuations in customer's orders create difficult problems for 

a manager responsible for scheduling production and employment. 

Changes in ordering quantities must be absorbed by some combina- 

tions of the following actions: 

1. Adjusting the size of the work force by hiring and firing. 

2. Adjusting the amount of overtime or undertime. 

3. Adjusting the finished goods inventory. 

4. Adjusting the order backlog or the proportion of shortage. 

Each of these courses of action has certain associated costs. 

If the fluctuations in orders can be predicted or known with certainty, 

the application of mathematical techniques may improve the quality of 

scheduling decisions and help managers make substantially better de- 

cisions than they could make by using judgment procedures. Once a 

general rule has been derived, the computation required to establish 

the optimal production quantity for each period can be computed by a 

clerk or on a computer without difficulty. 

The purpose of this paper is to investigate mathematical ap- 

proaches to deal with the production planning problem stated above. 

This problem is also referred to as a production smoothing problem. 
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It is concerned with the conflict among the costs associated with the 

four actions which are usually adopted in absorbing the fluctuations in 

orders. 

The problem is defined as: 

minimize: 

Inventory holding cost + Shortage or backlog cost 

+ Overtime and undertime costs + Hiring and layoff costs 

+ Regular payroll cost 

subject to: 

Inventory level at the end of the production period t - 1 

+ Production rate in the period t - Demand rate in the period t 

Inventory level at the end of the period t, for t = 1, 2, n. 

The techniques described in this paper which are applicable in 

solving this problem are found as: 

1. Linear programming. 

2. Dynamic programming. 

3. Quadratic programming. 

In this paper, the analysis of some important costs which are 

related to the decision variables are introduced first. They are fol- 

lowed by three separate chapters presenting three mathematical pro- 

gramming methods which are largely used in the field of operations 

research. In some of the methods, examples are employed to verify 

their applicability to the real situation. These examples are solved 

by an electronic computer for convenience and accuracy in numerical 

computation. The computer programs are presented in the Appendix. 

= 



COST ANALYSIS 

Overview of the Chapter 

In this chapter, we are concerned with various approaches for 

studying the costs relevant to production and work force decisions. 

Once the functional relation has been made of the cost structure, the 

next step is to evaluate the optimal policies. These will be introduced 

in the following three chapters. 

The costs that depend on the production and employment deci- 

sions are different from factory to factory, but we will consider in 

general terms the costs depending upon regular payroll, hiring and 

layoffs, overtime and under time (spare time), inventory holding and 

shortages.] 

Cost structure presented in this analysis is divided into two 

parts; one is linear approximation (5, 16, 22); the other is quadratic 

approximation (18). In the real world, however, it may neither be 

linear nor quadratic function of the decision variable, but it may be 

approximated into one of these two types of functions within some 

specified regions. The purpose of doing these approximations is for 

1The costs discussed here are those which usually depend on 
the decision variables. Hence the material cost, etc. , are not con- 
sidered. The length of the decision period is also an important fac- 
tor in making the decision, but will not be studied in this paper. 

3 
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the convenience of establishing mathematical models. 

Notation 

We will first introduce some notations which will be used in 

this chapter and throughout this paper. 

Given a planning intervals of n time periods, ?define the fol- 

lowing quantities for time period t (t = 1, 2 , n): 

Pt = Production rate (in a suitable unit), 

Dt = Demand rate (in the same unit), 

It = Net inventory level at the end of the time period = Inventory 

- Shortage (in the same unit), 

Wt = Work force level (in man - period of time which can be ob- 

tained in regular time). 

Except It, all the defined quantities above are non -negative values. 

Regular Payroll, Hiring and Layoff Costs 

When order fluctuations are absorbed by adjusting the work 

force, regular payroll, hiring and layoff costs are affected. 

Regular Payroll Cost 

With periodic adjustments in the size of work force, regular 

2The time period may be in week, month, season, or year. 

... 



payroll cost per time period is approximated as a linear function of 

the size of work force as (18, p. 52): 

Regular payroll cost = C 1Wt + C13 (2.1) 

where C may be regarded as regular time wages per unit of work 

force per time period and C is a fixed term; it may be consider- 

ed as an indirect work force which is not changed by the scheduling 

decisions over a range and hence is irrelevant.- / This cost is shown 

in Figure 2 -1. 

a 

+.4 

w 

C1Wt +'C13 4.) . ° 
to k 
o (t) 

04 

Ri 

O 

. r 
0 work force level, Wt(man /period of time) 

Figure 2 -1. Regular payroll cost. 

Hiring and Layoff Costs 

These costs are associated not with the size of the work force, 

but with the change in its size between successive time periods. 

3Since C13 is irrelevant to the scheduling decision, we say 
"variable" regular payroll cost = CrWt, where Cr = C1. 
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Linear Approximation. If we consider the cost of hiring and 

laying off rise with the number of work force hired and laid off, then 

according to Hanssmann and Hess (16), these costs may be approxi- 

mated as: 

Hiring cost = 

Layoff cost = 

Ch(Wt =Wt- 1)' if Wt - Wt-1 > 0, 

0, otherwise. 

t-1-Wt), if Wt-1 - Wt > 0, 

otherwise. 

where Ch, Cf are hiring, layoff costs per unit of work force, re- 

spectively. 

(2.2) 

(2.3) 

From the relation above, if hiring occurs, layoff may not occur. 

Actually, both can happen at the same time. Since this situation is 

caused mainly by human factor, but not by our scheduling decisions, 

it is not our case. 

Quadratic Approximation. According to Holt, et al. (18, p. 53), 

if the following arguments hold, a quadratic curve may suitably rep- 

resent the hiring and layoff costs as: 

Hiring and layoff costs= C 
2(Wt Wt -1 C 11)2 

(2.4) 

where CZ' C11 are constants obtained from the analysis of cost data 

4For the detail derivation of this function, see (18, p. 74) "Fit- 
ting quadratic approximations to cost relations ". 

I 

coat 1 

0, 
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1. The efficiency of hiring, measured in terms of the quality 

of employees hired may fall when a large number of work 

forces are hired at one time. 

2. The reorganization costs are more than proportionately 

larger for large layoffs than small layoffs. 

Equations (2. 2), (2. 3), (2.4) have the common property that the 

smaller the work force changes, the less the hiring and layoff costs. 

These are shown in Figure 2 -2. 

cost 
(dollars /period of time) 

C (W -W -C )2 .e"/4 2 t t-1, 11 

G 
, 

. 

.n 
'. 

changes in the size of the 
work force, Wt -Wt (man/ 
period of time) 

Figure 2 -2. Hiring and layoff costs related to the number 
of work force hired and laid off. 

Overtime and Under Time Costs 

When order fluctuations are absorbed by increasing and decreas- 

ing production without changing the work force, overtime and under 

time costs are incurred. Overtime cost is an hourly wage paid at a 

fixed ratio (usually 50 percent) higher than that paid for in regular 

,i 

-1 



payments. Under time is a waste of labor time that is paid for in 

regular payroll, but is not used for productive activities. 5/ 

Linear Approximation 

The overtime and under time costs depend on two decision var- 

iables, the size of work force Wt, and the production rate Pt. 

With an average work force needed to produce a unit of product, K 

(in number of direct labor per unit of product), KPt is the number 

of work force required in producing the quantity But But actually 

we have work force Wt, so KPt - Wt is the work force required 

to work overtime if KPt is greater than Wt, and Wt - KPt is 

the number of work force idled, if Wt is greater than KPt. 

Let 

Then, 

Co be the overtime cost per unit of work force, 6/ 

Cu be the under time cost per unit of work force.- 

C (KP -W), if KPt - > 0, 

Overtime cost (16) =(o (KPt t t t (2.5) 
0, otherwise. 

C (W t -KP t ), if W t - KPt 0, 
Under time cost = 

u t (2. 6) 

0, otherwise. 

5It may be possible to perform some activities other than pro- 
duction with labor that should otherwise be wasted. If so, this pos- 
sibility should be taken into account. 

6Co = (overtime wages -regular wages) per unit of work force. 
7Cu = regular time wages per unit of work force (Cr), if the 

work forces idled are not used in other activities. 

8 
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Quadratic Approximation 

In most factories, a small increase in production would require 

only a few employees who work in bottle neck functions to work over- 

time. As production is increased further, more and more employees 

are required to work overtime until the whole work force is doing 

some overtime work. Also, if the random disturbances such as 

emergency orders, machine breakdown, quality control problems, 

fluctuations in productivity, etc. , are taken into account, the higher 

the production target with a given size of work force, the greater the 

possibility that some disturbances will occur. Therefore, as in the 

case of hiring and layoffs, Holt, et al. (18,, p. 54) suggested a U- 

shaped, possibly unsymmetrical cost curve as: 

Overtime and under time costs = C3(Pt C4Wt)2 

+CSPt+C6Wt+C12PtWt .8/ (2. 7) 

As production, Pt, exceeds or goes below C4Wt, -/ a level 

set by the size of the work force, overtime or under time costs are 

increased. The linear term, C5Pt, 10 and C6Wt, and the cross 

8C3is mainly obtained from the analysis of Co and Cu. 

9C4 may be regarded as a measure of the "capacity" per em- 
ployee. 

1005 turns out to be irrelevant in making scheduling decisions. 
Because shifting production from one period to another will leave this 
component of cost unchanged. 

9 
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product term C12 PtWt' are added to improve the approximation. 

Equations (2. 5), (2. 6), and (2. 7) reveal that the more work 

force required in producing the quantity Pt deviates from the size 

of work force Wt, the more overtime and under time costs are in- 

curred. They are shown in Figure 2 -3. 

cost 
(dollars /period of time) 

c 

' 4w . 
xG b ,: vxG4 N. 

,. 4,` , ,' ti G Ni, 
G eGo. x , 

,,'(4 N., 

"G - II 

production rate (unit of 
product /time period) 

Figure 2-3. Overtime and under time costs related to the 
amount of production rate. 

Inventory and its Related Costs 

Absorbing order fluctuations through inventory and back order 

buffers gives rise to new costs. Holding a good size inventory in- 

curs costs such as interest, obsolescence, handling, storage, and 

price movements (27). On the other hand, a decision to decrease 

these costs by operating with a smaller inventory increases the 

` . 
¡., 

A t) . - 

K 

,421 
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probability of running out of products and thus incurring the penalty 

of delaying customer shipments and possibly losing sales. 

The net inventory level, It, has close relation to our produc- 

tion scheduling decisions. If the back orders can be carried over to 

the following periods, then the relation between It and the schedul- 

ing deicisions, Pt and Wt, is: 

It = I 

1=1 

Pi-Di) . 

If back orders can not be carried over to following periods, then the 

relation is: 

It 
Pt - Dt, if It-1 < O. 

+ 
Pt - Dt, if It-1 > 

Linear Approximation 

In this approximation, we consider inventory holding cost and 

shortage cost seperately. The two cost coefficients are defined as: 

C 
v 

= inventory cost per unit of product per time period, 

Cs = shortage cost per unit of product. 

Then, 

Inventory cost = 
CC vlt, 

0, 

if It > 0, 

otherwise, 
(2. 8) 

(It-1 

s 



C sIt, if It < 0, 
Shortage cost =t. 

0, otherwise. 

12 

(2.9) 

The machine setup cost is ignored. Bowman (5) and Hu (22) used 

these relations in order to gain computing feasibility with the methods 

they used in their approaches. 

Quadratic Approximation 

From the economic lot size formula (6, p. 644), we know the 

optimal production quantity for the time period t, Qt, is 

where 

2CpDt 

Qt C 
v 

Cp = setup cost for a lot, 

C 
v 

= cost of holding one unit of inventory one period of time, 

Dt = demand rate for time period t. 

The optimal safety stock also can be derived (34). This is a constant, 

say C8, over a fixed time interval.. From these two quantities, 

we obtain optimal average inventory level as: 

Q 
Optimal average inventory level for the time period t = C8 + Zt 

Since the square root relation between Qt and Dt can be 

- 

p 



approximated by a linear relation over a limited range, the optimal 

average inventory can be approximated as: 

J 
2 

C8 + C9Dt, where C9 = 6 
v 

13 

When actual net inventory deviates from the optimal net inven- 

tory, (C8 + C9Dt), in either directions, cost rises as shown in 

Figure 2 -4 which is a U- shaped curve and has approximately the 

same total variable cost structure as the economic lot size problem. 

cost 
(dollars /period of time) 

,"6. 
7 
[It- (C8 +C9Pt)]2 

net inventory (units of 
product) 

Figure 2 -4. Inventory and its related costs related to the 
net inventory level. 

According to Holt, et al. (18, p. 57), 

inventory, back order, and set up costs = C7[ It- (C8 +C9Dt)J2, (2.10) 

where C7 is a constant derived mainly from Cv, Cs, and the 

machine set up cost. 

v s 

, 

0 
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Summary 

Costs involved in the scheduling decisions have been analyzed 

and put into two possible functional forms: linear and quadratic re- 

lations. Once the cost structures are assured, some solution tech- 

niques can be applied. 

In the real world, McNaughton (28) felt that a quadratic cost 

function would be more realistic in many cases. In our problem, the 

required accuracy of the estimated cost is very important. Methods 

of obtaining an approximated cost function are discussed in (18, Chap- 

ter 3) while the sensitivity of these cost estimations can be found in 

the article written by Pamne and Bosje (33). 
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LINEAR PROGRAMMING METHOD 

Overview of the Chapter 

The cost relationship to the decision variables is assumed to be 

linear.. Two methods are introduced in this chapter under different 

assumptions. The first one is transportation method. This is the 

simplest method for developing a production schedule. Bowman (5) 

formulated the problem by allocating available productive capacity 

to various periods in such a way that sales requirements were met 

while combined incremental inventory and production costs were 

minimized. The second method is solved by the simplex algorithm 

(16, 29) and eliminates the constant employment restriction. This 

gives greater flexibility than the constant employment schedule of the 

transportation model. The technique of changing variables is applied 

in this second method in order to reach a linear programming formu- 

lation. 

Transportation Method 

As sumptions 

(a) Fixed work force. 

(b) Sales must be met. 

(c) Demand in each period is known. 
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(d) Linear cost function. 

Solution Method 

If we consider the regular or overtime production in each time 

period as a source of supply or input, and each period's sales re- 

quirement a distination or output, and the combination of production 

and storage costs is considered as the cost of each possible ship- 

ment. Then the production scheduling problem may be thrown into 

the standard form for the transportation method and hence may be 

solved by this method. 

Let: 

a.. = optimal number of units to be produced during ith time 

period on regular time and to be sold in jth period. So, 

i < j. 

b.. = optimal number of units to be produced during ith time 

period on overtime and to be sold in jth period. So, i < j. 

R. = maximum number of units which can be produced during 

ith time period on regular time. 

0. = maximum number of units which can be produced during i 

ith time period on overtime. 

If a unit is produced in period i and sold to the customer in 

period j, then the production and inventory costs become: 

it 
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Cr + Cv(j -i), for regular time production, 

Co + Cv(j -i), for overtime production, 

j= 1, n; i = 1, ... , j, 

where Cr, Cv are as defined in the Cost Analysis chapter, and 

Co is the overtime wages per unit of work force per time period. 11 

Since there are a.. and b.. units to be produced during ith 

time period and to be sold in jth time period on regular time and over- 

time, respectively, the production and inventory cost for the deliv- 

ered items on jth period is then 

aij[Cr+ (j-i)Cv] + bij[Co+ (j-i)Cv] , 

for j = 1,..., n; i = 1,... 

If the starting inventory is I0, and from I, IO is going 
j 

to be used in the jth period, the inventory costs for IO 
j 

is 

IOjjCv, for j = 1, ... , n. 

Hence the total production and inventory cost from production 

periods one to n can be formulated as: 

11Note that Co = Cr(1 + overtime ratio), it is different from 
what we have defined in the Cost Analysis chapter. Cr, Cv, Co are 
not necessary to be constant. This model is also useful when they 
vary from time to time. 

... , 

j 

v 

t it 
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n 

{aij[Cr+(j-i)Cv] + bij[Co+(j-i)Cv]} + > TjjCv. (3, 1) 

j=1 i=1 j=1 

The problem becomes: minimize Equation (3. 1 

subject to 

1(a.. + b..) + I > D j = 1, . . . , n, 

i=1 

n 

a. < R., 
LLLLLLi 

i j - 
j =1 

n 

b. < 0., ij 
j=1 

aij, b.. > 0, . for j= 

IOj > 0, for j = 1,...,n 

(3. 2) 

(3. 3) 

(3.4) 

(3. 5) 

, j , (3. 6) 

(3.7) 

This is a standard form of transportation problem in linear program- 

ming. 

Transportation Table Representation 

Table 3 -1 exhibits the costs of unit production produced in the 

n J 

r v i o v 

i 

I <I , 
Oj - 

j=1 

1 n i = 1, . . . - 

L iJ i] - 



Pr
od

uc
tio

n 
Pe

ri
od

s 
(O

ri
gi

ns
) 

Table 3- 1. Unit costs of production and inventory holding. 
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ith period and sold in the jth period. From this table, it is read- 

ily seen that the problem may be viewed as one of allocating the avail- 

able supplies I0, Ri, Oi (origins) to consumption points j (des- 

tinations). A dummy column is used to absorb excess capacity. 

Simplex Method 

Assumptions 

(a) Variable workforce. 

(b) Shortage is allowed. 

(c) Shortage can be carried over to the next period. 

(d) Linear cost functions. 

Description of the Problem 

In this approach, analysis extends to evaluate two sets of de- 

cision variables, Pt and Wt. 

For a given pair of values (Pt, Wt), the respective amounts 

to be produced on regular time and on overtime are determined. 

From Equations (2. 1), (2. 2), (2. 3), (2. 5), (2. 6), (2. 8) and (2. 9), 

the total cost incurred in period t is composed of the following ele- 

ments: 

Regular payroll?/ CrWt 

12See footnote 3.on page 5. 

(3.8) 

- 



Ch(Wt -Wt -1)' 
if Wt - Wt- 1> 0, 

Hiring 
0, otherwise. 

(Wt-1-Wt), if Wt-1 - Wt > 0, 

Layoff 
0, otherwise. 

Co(KPt-Wt), if KPt - Wt > 0, 
Overtime 

0, otherwise. 

Cu(Wt -KPt), if Wt - KPt > 0, 
Undertime 

0, otherwise. 

Inventory CvIt, for It > O. 

Shortage -CsIt, for It < O. 

21 

(3. 9) 

(3. 10) 

(3.11) 

(3.12) 

(3.13) 

(3. 14) 

The problem of minimizing total costs for n time periods can 

be formulated as: 

minimize 

C(P1, P2, Pn; W1, 

[Egs . (3.8) + (3.9) + . . . + (3.14)j, (3.15) 

t=1 

subject to the restrictions 

It = It + Pt - Dt, 

Pt, Wt > 0, 

for t = 1, 2 , . . . , n. 

(3.16) 

(3.17) 

C f 

W2,...,Wn) 

JL 

_ 

-1 
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where the demand Dt, and the initial condition I0, and W0 

are known. 

Solution of the Problem 

Let 

x=W - Wt 
> 0 

-1 t t 

- yt Wt-1 Wt 
> 0, 

= KPt - Wt > 0, 

wt = Wt - KPt > ,0, 

ut = It, if It > 0, 

vt = -I if It < 0, 

for t-= 1,...,n. 

From Equations (3. 9), (3. 10), if 

Wt Wt > 0, hiring cost occurs, 

Wt - Wt < 0, layoff cost occurs. 

Since both these two costs can not happen in the same period, if hir- 

ing cost occurs, xt > 0, yt = 0; if layoff cost occurs, xt = 0 

yt > 0 and the difference of Wt and Wt may be represented 

by 

Wt -W t- 1 - xt - yt. 

zt 

t 

- 

- 
= 
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The same argument holds for overtime and under time costs, and in- 

ventory and shortage costs, so, 

KPt- Wt =zt - wt, 

It = ut - vt. 

From Equation (3. 16), 

Since 

Since 

It = It-1 + Pt -D. 
It = ut - vt, 

Pt = (ut vt) - (ut-l-vt-1) + Dt. (3. 18) 

Pt > 0, 

.' . 
(ut-vt) (ut-l-vt-1) + Dt > O. (3. 19) 

Since KPt W = z - w 

.'. Wt = KPt .. 
-wt (.zt-wt). 

Use the relation in Equation (3. 18), we have 

Wt = K[(ut-vt) - (ut- -vt -i) + Dt] - (zt-wt) . (3.20) 

Since W t- > 0, 

K[(ut -vt) - (ut_ 
1 -vt -1) 

+ Dt] - (zt -wt) > 0. (3.21) 

Equation (3. 21) divided by non -negative value K, we have 

(u t -v t (ut-vt) (ut- l -vt-1) + Dt - 
K 

(zt -w t ) > O. (3.22) 

t 

.. 

= 

l 

- 

- 
- 

. 

- 



Since Wt -Wt 
= t - yt' from Equation (3.20), this relation be- 

comes 

So, 
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K [(ut-vt)- (ut -vt 1)+ Dt] (zt-wt) 

-K[(ut_-vt-1)-(ut-2-vt-2)+Dt-1] + (zt-l-wt-1) 

= K[ut-vt-2(ut- -vt 1)+ ut_ 2-vt-2+Dt 1 t-1] - (zt-"vt)+.zt-1 t-1 

= xt - yt 

K[ut-vt- 2(ut- 1-vt- 1)+ ut- 2-vt- 2] 
- (zt-wt) + (zt-l-wt- 1) - (xt-yt) 

= K(Dt-Dt). (3.23) 

The relations require that all variables be non -negative, 

xt, yt >0, zt, wt >0 ut, vt > 0, 

for t = 1, ...,n. 

(3.24) 

Equations (3. 19), (3.22), (3.23), (3. 24) are the constraints of the 

problem after changing variables. 

Cost elements: 

Regular payroll C r W t r = C K[(u t -v) - (u t -1 
-v 

t -1 
) + D ] 

Hiring 

Layoff 

- Cr(zt-wt), 

Ch(Wt-Wt_ 1) = Chxt, 

Cf(Wt-1-Wt) = C fYt, 

-1 

- 

t 

1 



Overtime 

Undertime 

Inventory 

Shortage 

Co(KPt-Wt) = Cozt, 

Cu(Wt-KPt) = Cuwt, 

CvIt = Cvut, 

-CsIt = Csvt. 

The cost function after changing variables is: 

C =L {CrK[(ut-vt)-(ut- 
1 
-v 

t -1 
)+D]-Cr(zt-wt) 

t=1 
+C hxt+ Cfyt+ Coz + C uwt+ C vut+ C vt . 
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(3.25) 

Since It = ut - vt, where It is net inventory at the end of the 

time period t. 

t=1 
CrK[ut-vt-(ut-l-vt-1)+Dt] = CrK(un-vn-I + Dt). 

t=1 

n n 

'. C = CrK(un-vn-I+ Dt) + {-Cr(zt-wt) Ch t+ 
CfYt t=1 tLLL=1 

+Czt +C wt Csvt} ot 

= C K(u 
n 

-v 
n 

-I r 

n n 

+ Dt) + [Chxt+ C fyt+(Co-Cr)zt 

t=1 t=1 

+ (Cu +Cr)wt +Cvut +CsVt]. 

n 
` .. j 
n 

+ 

t=1 



The problem becomes 

minimize 

C (xt, yt, zt, wt, ut, vt; for t = 1, . . . , n) 

= ) [Chxt+C fyt+ (Co-Cr)zt+ (C u+ C r)wt+Cvut+C vt] 

t=1 

subject to 

K[ut-vt 

+ CrK(un-vn-IO+ > Dt) 

t=1 

(ut-vt) - (ut-l-vt-1) + Dt > 0 
13 
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(3.26) 

(3.27) 

(ut-vt) - (ut_ l -vt-1) + Dt - 
K 

(zt-wt) > 0 (3.28) 

(ut _1-vt-1) + ut2-vt-2] (zt-wt) + (zt-wt-)" (xt- 

(3.29) 

(3.50) 

= 
K (Dt Dt) 

xt, yt, z t, > wt, ut, vt 0 

for t = 1,...,n 

This is a linear programming problem and can be solved by Simplex 

Algorithm. Each period t contributes six variables and three con- 

straints. If the total time periods are six, then we have 36 variables, 

18 constraints. 

13Equations (3. 27) through (3. 30) are the same as Equations 
(3.19), (3.22), (3.23), (3.24), respectively. 

n 

r n n 

- 
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According to Equations (3.27) and (3.28), for each period, the 

original decision variables Pt and Wt are slack variables of 

these equations. 

If demand is stochastic, this approach may still be useful. Re- 

placing Dt by its expected value can obtain an approximate solu- 

tion. (Proof is shown on page 69). 

Summary 

Two linear programming methods are applied in this chapter. 

In transportation method, it is assumed that in each period the pro- 

duct may be made in two types of operations, each of which has a con- 

stant unit cost combining with the unit inventory holding cost for the 

span of some fixed periods, the unit cost in each cell of the transpor- 

tation table is thus established. 

For more complicated cost conditions, the Simplex method is 

used. In the approach, the work force is also under control. This 

model is established by introducing a set of new non -negative vari- 

ables, and hence a new set of cost functional and restrictions which 

are in the form of linear programming is made. This can be solved 

by Simplex algorithm. 

The weakness of these two methods is the assumption of linear 

cost function. This is not met by most of the cases. Some more 

practical models will be discussed in the later chapters. 
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DYNAMIC PROGRAMMING METHOD 

Overview of the Chapter 

In this chapter we apply the functional equation approach of dy- 

namic programming to the scheduling problem. This method requires 

no restriction in cost structure, and is very useful in formulating the 

case where demands are uncertain. The method is based on factor- 

ing complex problems in several variables into a series of simple 

problems (4). This will be found in the construction of recurrence 

relations in this chapter. 

Three cases are considered. Sections beginning on pages 29 

and 37 treat the case of demand under certainty and uncertainty, 

where the work force levels are not under the control. Each case is 

followed by an illustrative example. The section beginning on page 

44 treates the case of probablistic demand while the work force levels 

are also taken into consideration. 

Throughout this chapter where the involved costs are not neces- 

sarily linear or quadratic in relation to the decision variables, we 

use only functional name to represent the cost relation. For example, 

the function ht(It t-1 , Pt' Dt) is defined as an inventory cost func- 

tion in the time period t, and is continuous for all finite It -1' Pt' 

and Dt, where It Pt, Dt are the independent variables. We 

say the inventory cost in each period is a function of the beginning 



inventory, production rate, and demand of that period. Once these 

three quantities are known, the inventory cost can be determined. 

The Case of Deterministic Demand 

Assumptions 

29 

(a) Demand in each time period is known as certainty. 

(b) The inventory cost per period is proportional to the closing 

inventory level. 

(c) The components of the cost function may or may not be 

linear. 

(d) Hiring, layoff, and overtime costs are proportional to the 

change in production levels of the consecutive periods. 

Formulation of the Problem 

Let 

Inventory cost = h (I ,P,D), if + P >D t t-1 t t -1 t- t 

Shortage cost = s (I , P D) if It_ + P < D stat- 1 t' t' t -1 t t 

Overtime, hiring and layoff costs 

g lt(Pt' Pt -1) 

Regular payroll cost 

= g2t(Pt' Pt-1) 

= 
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glt and g2t can be combined into a gt(Pt, Pt -1) 

The cost function is then 

n (4.1) 

C(P1, P2, ... , n) / , [gt(Pt' 
Pt- 

1) 
+ht(It Pt, Dt)+ st(It -1' Pt' Dt)] 

t =1 

subject to the restrictions 

It -1 +Pt - Dt =It 

Pt, It > 0 

for t= 1,...,n 

where the initial conditions P0, IO are known. 

Construction of the Recurrence Relation 

(4. 2) 

(4. 3) 

From the problem: 

minimize Eqùation (4. 1) 

subject to Equations (4.2),(4.3). 

We use backward induction, set nth period as first stage, (n -1)th 

stage as second stage, etc. , and let 

f . (P. , I. ) = cost of optimal policy for the last i stages 
1+1 

where Pi units are produced in the (i +1)th 

stage and X. units are carried over into the 

ith stage in inventory. 

_ 

+1 

+1 



Then 

f 1(P2, I2) = min 
P1 

fi(Pi+1' Ii+1) =min 

Pi 

g1(P1, P2) + h1(I2, P1,D1) + f0(P1, I2+P1-D1), 

ifl2+Pl>D1 

g1(P1, 
1 1' 

P2) + sl(I2, P + f0(P1, 0), 

ifI +P <D 
2 1-- 1 
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(4.4) 

g(P' Pi+1) + h. (I' P, D. + fi-1(Pi' 
i i 

P. P. I. 

ifli+l+Pi>Di. 

gi (Pi' Pi+1) + si(Ii+1' Pi, Di) + fi-1(Pi, 0), 

if Ii+1 
+ 

Pi < Di 

This becomes a dynamic programming problem, where the optimal 

production levels P1, P2, ... , Pn can be solved. An illustrative 

example will show the procedure of solving the production scheduling 

problem by this method. 

Example 

The manufacturing process for a perishable commodity is such 

that the cost of changing the level of production from one month to the 

1 
) 

li 

I 

1\,, 

I 

i i+1 i i i-1 i i. 
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next is twice the square of the difference in production levels. Any 

production not sold by the end of the month is wasted at a cost of $20 

per unit. Given the sales forecast below, which must be met, deter- 

mine a production schedule to minimize costs. Assume the December 

production was 200 units. 

Month Jan. Feb. Mar. Apr. 

Sales forecast 210 220 195 180 

Solution: 

Let April be the first stage, March be the second, ..., and Jan- 

uary be the fourth stage. We have 

h. (P, , D. ) = 20(P. -D, ), i - for Pi > D. 
i. . . i 

gi(Pi' Pi+1) 2(Pi Pi+1)2 

The problem is then 

minimize 

subject to 

Let 

for i = 1, 2, 3, 4 

4 

12(Pi-Pi+1)2 + 20(Pi-Di)} 

t=1 

Pi > Di, i = 1, 2, 3, 4 

1 1 

- 

- 
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fn(Pn +1) = 
minimum achievable cost for the last n 

stages of the process given that Pn 
+1 

units are produced in the (n +l)th stage. 

Then 

f. (P ) = min {2(P. -P )2 + 20(P. -D,) + f. (P.)} 
i 1 +1 1 i +1 1 1 3.-1 1 

P. > D. 1- 1 

Set 

f0(P1) = 0, for P1 > 0 

In the first stage, when P2 = 195 

P1 = 180, 2(180-195)2 + 20(180-180) + fo(180) = 450 

P1 = 181, 2(181-195)2 + 20(181-180) + fo(181) = 412 

P1 = 188, 2(188-195)2 + 20(188-180) + fo(188) = 258 

f1(195) = min P1 = 189, 2(189-195)2 + 20(189-180) + fo(189) = 252 

P1 = 190, 2(190-195)2 + 20(190-180) + fo(190) = 250- 

P1 = 191, 2(191-195)2 + 20(191-180) + fo(191) = 252 

P1 = 192, 2(192-195)2 + 20(192-180) + fo(192) = 258 

From the result above we know that if the production level in March 

is 195, the optimal production level for April is 190 units, the total 
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cost up to this stage (first stage) is 250 and is represented as: 

f1(195) = 250, where P1 = 190 

With the same technique we find that 

f1(196) = 270 P1 = 191 

f1(197) = 290 P1 = 192 

f1(208) = 510 P1 
1 

= 203 

f1(209) = 530 P1 = 204 

fí(210) = 550 P1 
1 

= 205 

fí(211) = 570 P1 = 206 

f1(220) = 750 P1 = 115 

We now continue to work on the second stage: 
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When P3 = 220 

f (220) = min 
2 

13.2 

= 208 

P2 = 209 

P2 = 210 
2 

P2 = 211 

P2 = 212 

2(208-220)2 + 

2(209 -220)2 + 

2(210-220)2 

2(211 + -220)2 

2(212-220)2 + 

20(208-195) 

20(209-195) 

+ 20(210-195) 

20(211-195) -195) 

20(212- 195) 

+ f (208) 
1 

+ f1(209) 

+ f1(210) 

+ f1(211) 

+ f 1( 212) 

= 

= 

= 

= 

= 

1058 

1052 

1050 

1052 

1058 

So, f2(220) = 1050 where P2 = 210 

and f 2(221) = 1090 P2 = 211 

f2(222) = 1130 P2 = 212 

In the third stage: 

f3( 210) = 1250 P3 = 220 

f3(211) = 1212 P3 = 220 

f3(212) = 1178 P3 = 220 

In the fourth stage, since the production level in December was 200. 

So we consider only f4(200). It is found that 
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f4( 200) = 1450 P4 = 210 

From the results we have for each stage, we conclude that the opti- 

mal production level for January (4th stage) is 210. 

Tracing back to the third stage, the policy for the production 

level in this stage when the production level in the fourth stage is 

210 is 

f3( 210) = 1250 P3 = 220 

So the optimal production level for February (3rd stage) is 220. 

Since f2(220) = 1050 P2 = 210 

So production level for March (2nd stage) is 210. From 

fí(210) =550 P 
1 

= 205 

the production level for April (1st stage) is 205. 

follows. 

List the results as 

Month Jan. Feb. March Apr. 

Demand 210 220 195 180 

Optimal 
Production 
Level 210 220 210 205 

Total cost = f4(200) = 1450 

A FORTRAN II program for solving this problem is shown in the 

Appendix. 



The Case of Stochastic Demand 

Assumptions 
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(a) The demand for the product in any time interval is treated 

as a random variable and such random variables in differ- 

ent periods are independent. 

(b) The inventory cost is charged at the beginning of each per- 

iod and is proportional to that inventory level. 

Formulation of the Problem 

Since the inventory is charged at the beginning of each period, 

the inventory cost for the period t is a function of the closing in- 

ventory level of period t - 1, that is 

ht(It -1)' for It 
-1 > 

The demand during each period is random variable and has the pro- 

bability density function of 

t(Dt), for Dt > 

Therefore, the shortage cost in period t is the function of the val- 

ue of the integration 
oo 

[Dt-(It-1+Pt)]4)t(Dt)dDt (4, 4) 

t-1 t +P 

0 

0 



and is denoted by 

st[Eq. (4.4)] 
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The overtime cost, hiring and layoff cost and regular payroll cost 

can be represented by the function as we defined in the section begin- 

ning on page 29, which is 

So the cost function is 

C(P1, P2, . . . , Pn 

n 

t=1 

gt(Pt' Pt-1) 

(' 
t(It-1)+st[JI (Dt-(It-1+P)jct(Dt)dDt] 

t-1 t +P 

+ gt(Pt, Pt-1)} 

where the initial conditions I0, 

restrictions: 

(4.5) 

are known, and has the following 

It It-1 
+ 

Pt 
Dt 

Pt > 0 

fort= 1,2,...,n 

Construction of the Recurrence Relation 

(4. 6) 

(4.7) 

Again, we use the backward induction. Let fi(Pi +i, Ii +1) 
be 

defined as for the provious case, the cost is taken by expected value 

in this case, then the recurrence relations take the form:: 

P 
0 

) 

= 
- 



fi. (Pi+ 1' 
I. 

1) v min lg. (Pi' P. 
1) 

+ hi 
(Ii+ 1) 

¡ 
+ si[J [Di-(Ii+1+Pi)ji(Di)dDi} 

I. Pi 
1 

Ii +P, 
+1 z[f. (P. ' .I +P -D )4). (D.)dD, 

i+ 1 i i i i 

+ fi-1(Pi' 0) i(Di)dDi} 
i+ 1+Pi 
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(4. 8) 

This is a two state parameters dynamic programming problem. In 

its solutions, the optimal value for the number of product in first 

period (t = 1) will be determined. Since the demands are probabil- 

istic, the optimal production level of each production period from 

production periods two to n will be a set of decision policy, with 

the production and inventory in the previous period, the optimal pro- 

duction quantity can be found from the policy. 

Example 

Demand distributions for February, March, and April are as 

follows: 

i 

i 

oo ( 

Pi 

0 



Probability 
Demand February March April 

0 1/4 0 2/ 3 

1 1/ 2 1/4 1/ 3 

2 

3 

1/4 1/ 2 0 

0 1/4 0 

40 

Production cost for producing 0, 1, 2 units in each period is 

Production rate 0 1 2 

Cost 15, 000 20, 000 35, 000 

Inventory cost is charged according to the closing inventory 

level at the end of each month (except April) as following: 

Inventory level 0 1 2 3 

Cost 2, 000 5, 000 9, 000 15, 000 

End of April inventory cost. 

Inventory level 0 1 2 3 

Cost 10, 000 0 5, 000 10, 000 

Shortage cost = $10, 000 /unit. Shortage is not carried over. If 

demand is not met, the customer goes to another place. The inven- 

tory level at the end of January is 1, 

Find the optimal policy. 

Solution: 

Let April be the first stage, March the second, and Febru- 

ary the third stage. 
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Charge the inventory cost at the beginning of each stage accord- 

ing to the beginning inventory level. This will cause no difference 

with charging at the end of each 

stage are: 

stage. The cost elements for each 

15, for P. = 0, 

Production cost: g. (P,) _ 

20, Pi = 1, 

35, Pi= 2, 

otherwise. 

2, for Ii+ 
1 = 0, 

5, Ii +1 = 
1, 

Inventory cost: h. (Ii+ 1) 9' 
Ii+ 

1 
2, 

15, Ii+ 1 3, 

oo, otherwise. 

10(Dí I. -P.), 

Shortage cost: s. (D. -I. -P,) =( 
i i +1 i 

for (D -I -P) > 0, i i i +1 i 
otherwise. 

Let fn(In 
+1) 

Expected cost of optimal policy for the last n 

stages where In 
+1 

units are in inventory at the be- 

ginning of the stage. 

+1 

0, 

= 

s s 

- - 

= 
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So 

f n(In+ 1) P 
min 

0, 1, 2. 

Therefore, 

(P )+h hn (ln+ 1)+s n ( Dn 
In+ 

1 
-P ) 

n 

+ fn-1(In+1+Pn-Dn)} 

n 0 1, P 2{gn 
(Pn hn (I ) n+ 1 

n . 

ci) (D )[ s (D -I -P)+f n-1 (I +P 
n+1 

-D )]} 
n n n n n+1 n n n 

Therefore, 

f0(0) = 

f1(0) = min 
C 

D 

10. f0(1) = 

iPl = 0, 15 + 

P1 = 1, 20 + 

LP P1 
1 

= 2, 35 

O. 

2 + 

2 + 

+ 2 

From which, we have 

f0(2) = 5. f0(3) = 10. 

3 
(0+10) + 

3 
(10+10) = 30. 33 

3 (0 +0) + 
3 

(0+10) = 25. 33+- 

+ 
3 

(0+5) + 
3 

(0+0) = 40. 33 

f 1(0) = 25. 33, P1 = 1. 

Accordingly, 

f1(1) = 23.33, P1 = 1. 

f1(2) 
1 

= 27.33, P1 = 0. 

f1(3) = 38. 33, P1 = 

n 

0. 

= 



In the second stage 

f 2(0) = 57. 33, P2 = 1. 

f2(1) = 52. 33, P2 = 1. 

f2(2) = 51.33, P2 = O. 

f2(3) = 54.83, P2 = O. 

In the third stage, since the beginning inventory level in the fourth 

stage is 1. Hence, 

f3(1) = 78. 33, P3 = 1. 
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The policy is: 

-- produce 1 unit in February. 

-- if the inventory levels at the end of February are 

0 unit then produce 1 unit in March. 

1 unit then produce 1 unit in March. 

-- if the inventory levels at the end of March are 

0 unit then produce 1 unit in April. 

1 unit then produce 1 unit in April. 

2 units then produce 0 unit in April. 

Total expected cost = 78. 33. 

A FORTRAN II computer program input data and results are listed in 

the Appendix. 



The Case of Considering the Work Force 

A s sumpti on s 
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(a) The quantity to be produced does not uniquely determine the 

work force. Therefore, the work force level at each per- 

iod becomes a decision variable. 

(b) Unfilled orders can be carried over into next period. 

Therefore, negative inventory occurs. 

(c) Stochastic demand. 

Cost Function 

The inventory cost and shortage cost can be represented as 

B(Ii) 

if this cost is charged at the beginning of each time period. It has 

no restriction in sign. Overtime cost is a function of labor force 

which deviates from the size established as ideal for an output Pt, 

represented by 

Et(Wt, Pt) 

Regular payroll cost: Ht(Wt) 

Hiring and layoff cost: Ft (Wt' Wt -1) 



The total cost function is then 

C P,2, (P1' 

Bt(It-1)+Et(Wt' Pt)+H Wt)+Ft(Wt' 

t =1 

Recurrence Relation 

; W1,W2, ...,Wn) 

Wt-1)} 

Use backward induction. Set 
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(4.9) 

f. (W i+1' I i+1 
) 

= 
cost of optimal policy for the last i stages 

where Wi is the size of work force in the 

(i+ 1)th stage and Ii+ 

over into the ith stage 

Then, in this case 

units are carried 

in inventory. 

fi(Wi+1'Ii+1) = 

P1 W 
{Bi(Ii+1)+Ei(Wi'Pi)+Fi(Wi'W1+1)+Ht(W ) t 

t' t 

+ ,fi-1(Wi' Ii+1+Pi-Di) 
0 

i(Di)dDi} 

for i = 1, ...,n (4. 10) 

Because of the necessity of minimizing over two variables, . P t 

n 

... 

+1 

i i t i+ i 
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and Wt, and at each stage, the numerical solution of this problem 

would require much more time than in the previous two cases. How- 

ever, it could be handled on a large -scale digital computer. 

Summary 

The application of dynamic programming methods to our sched- 

uling problem has been studied and classified into three major cases. 

The main contribution of this method is its applicability to any type 

of cost structure. But from the examples we can find that the method 

can be evaluated only in the discrete case and without the computer as 

a tool, it is nearly impossible to obtain the solution when the cost 

structures are complex and the planning horizon spans a larger num- 

ber of time periods. Owing to the rapid development of computer 

science, this approach is gradually being accepted by management. 
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QUADRATIC PROGRAMMING METHOD 

Overview of thé Chapter 

From the cost analysis in the Linear Programming Method 

Chapter, we know the components of the production cost for each per- 

iod can be approximated by quadratic forms. If we assume the cost 

elements for period t are 

(5. 1) Regular payroll C Wt + C13 

Hiring and layoff C 
2(Wt Wt -1 C 11) 2 

(5. 2) 

(5. 3) Overtime C3 (Pt -C4Wt)2 + CSPt - C6Wt + C12PtWt 

Inventory and shortage C7(It- C8- C9Dt)2 (5.4) 

where Cts are constants, the initial work force W0, inventory 

level I0, and DtI s are known and the inventory level It obeys 

the rule 

It = It + Pt - Dt, t = 1, 2, . . . , n (5. 5) 

then, according to Holt, Modinglian, Muth and Simon (18), the solu- 

tion which minimize the cost function may reach an optimal decision, 

Pt, Wt, for t = 1, 2, ... , n, in particular, P1, W are of the 

form 
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t=1 

atDt+ bW + cI0 + d 

W= atDt+ b/WO+ clIo + d 
1 , 

t=1 

The decision rules for P1, W1 are referred to as linear decision 

rules. 

The linear decision rules can be applied only for the first per- 

iod. Since the model is designed for the optimization over a shifting 

horizon, we are only interested in the quantities P1 and W P2 

and W2 can be solved by next n periods from which we regard 

P2, W2 as the decision variables for the starting period. So the 

linear decision rules are all that is needed for sequential decision 

making. 

This chapter will mainly treat the mathematical derivation of 

the decision rule. The conditions for minimum total cost may be 

found by taking derivatives with respect to the decision variables. 

Since the cost function is quadratic, the first derivative yields a set 

of linear equations. The section beginning on page 65 gives a step- 

by-step computational procedure for obtaining these decision rules 

by hand calculations. Alternatively an electronic computer will re- 

duce the computation time to a few minutes. A computer program 
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written in FORTRAN II for solving the example problem is given in 

the Appendix. Page 69 gives a simple proof of certainty equivalence 

from which we know that if future demands are uncertain, we merely 

insert the expected future demand replacing the actual demands, that 

are used in the case of certainty Also yield the best decision in the 

presence of uncertain future conditions. No new analysis or calcula- 

tions are needed. 

The Derivation of the Decision Rules 

Define Problem 

From Equations (5.1) through (5. 5), we define the problem as: 

minimize 

C(P1,P2, ...,Pn; W1,W2, ...,Wn) 

n 

[(C1-C6)Wt+C2(Wt-Wt-1 C11)2+C3(Pt C4Wt)2+C5Pt 
t=1 

subject to 

+C 12PtWt+C 7(It-C8-C9Dt)2+C13] 

Pt Dt - It - It-1 for t = 1, 2, . . . , n 

(5. 6) 
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Establish the Relationship Between the Optimal Production Rate and 
the Optimal Work Force 

(a) Partially differentiating the cost function Equation (5. 6) 

with respect to Wt for t = 1, 2, . , n - 1. 

- awt -C 
6 t )W +C (W-W-C 

3 t )2+C (P-CW)2+C5P awt awt1 

+C12PtWt+C7(It C8 C9Dt)2+C13+(C1 C6)Wt+l 

+C 2(Wt+1-Wt-C11)2+C3(Pt+1+C4Wt+1)2+C5Pt+1+C 12PtWt+1 

+C7(1t+1 C8 C9Dt+1) 
2 
+C13 

+ the cost in the periods other than t and t+1] 

= (C1-C6) + 2C 2(Wt Wt-1-C 11) - 2C 3C4(Pt-C4Wt) 

+ C12Pt - 2C2(Wt+1 Wt C11) 

(b) Set ac - 0 solve for Pt 
t 

(C1-C6) + 2C2(Wt-Wt-1-C11) - 2C3C4Pt + 2C3C4Wt 

+ C12Pt - 2C2(Wt+1-Wt-C11) = 

Pt(2C3C4 C12) = (C1-C6) - 2C2(Wt-1+Wt+1) + 
(2C3C42+4C2)Wt 

1 

Pt - 
2C3 C 

4 
C12[(C1-C t-1+Wt+1)+(2C 3C42+4C 

2)Wt] 

2 t-1 11 

. 

DC 

8 13 

0 

1 2 



If we let 

Then 
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C1-C6 -2C2 2C3C4+4C2 
K 2C3C4-C12' 2 2C3C4-C12' K K 3 2C3C4-C12 

Pt = K1 + K2(Wt-1+Wt+1) + K3Wt 

for t = 1, 2, ... , n - 1 (5. 7) 

The production rate of each period is a linear function of the size of 

the work force in the same and its adjacent periods. So if we know 

the work force decisions, we could readily determine the production 

decisions. 

The Determination of Work Force Decisions 

(a) Since t t 

It = ID + ) Pi - > D., 

i=1 i=1 

It is a variable depending on the cumulative production of all pre- 

vious periods. If we take partial derivatives of total cost, C, with 

respect to Pt, we obtain a very complicated expression, since It 

exists in the cost function. If we consider It as a second set of de- 

cision variable, the production rate for each period would then be 

uniquely determined tnrough the constraint Equation (5.5). 

1 



(5. 6). 
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Pt=It-It-1+ Dt 

(b) Substituting Pt in terms of I - I + D Equation 
t t -1 t 

n 

C = [(C -C 
1 

+C2(Wt-Wt-1 C11)2+C(It 
1t-1+Dt C4Wt)2 

+C5(It-1t-1+Dt)+C12(It -C 
C8 C9Dt)2+C13J 

(5. 8) 

(c) Partially differentiating Equation (5.8) with respect to 

for t = 1, 2, ...,n 1. 

8 t ait +D-CW)2+C(I-I+D)+C(I-Z+Dt Wt 

+C (1 
7 t C8 

C9Dt)2+C3(It+1 -I t +Dt+1 C4Wt+1)2+C5(1í+1-It+Dt+1 ) 

+C12(1t+1-It+Dt+1)Wt+1+C7(1t+1-C8-C9Dt+1)2] 

2C3(It It-1+ Dt-C4Wt) + C5 + C12Wt + 2C 
7(I t -C8-C 

9 
Dt) 

-2C3(1t+1-It+Dt+1 C4Wt+1) C5.-C 
12 t+1 

W (5.9) 

substituting It It 
-1 + Dt in terms of Pt into Equation (5. 9) we 

have 

ac 
= 2C (P -C W )+ 2C (I -C -C D ) - 2G (P C4Wt+1) ait 3 t 4 t 7 t 8 9 t 3 t+ 1 4 t+ 1 

2 (Wí+1 Wt) 
(5.10) 

into 
t 

t=1 

t 

- 

3 = 

It 

= 

- 

- 



(d) Set 8C 
âI = 0, solve for It. 

2C7It = 2C3(Pti l-Pt) + (C12-2C3C4)(Wt+1-W) + 2C7C9D + 2C C 
7 g 

C C - 2C C 

It = 
3 (Pt+1 t -P )+ 1 2C 

3 4(Wt+ 
1 ' W ) + C D + C 

7 t 9 t g 

If we let 

Then 

C -2C C 
3 12 3 4 

, K - 
C°; 2.,C7 

K=Cg, K7=C8 

It K4(Pt+1 
-Pt) + K5 (Wt+1-Wt) + K6Dt + K7 

for t = 1, 2, ..., n - 1 (5.11) 

(e) Since P - D = I I 
t t t t-1 

P1 - D1 =II - I0 = K4(P2-P1)+ K5(W2-W1) + K6D1 + - I 
0 

Pt -D = It -I t-1 = K4(Pt+1 Pt) + K5 
(Wt+1 -Wt) +K6Dt + 

7 

- K4(Pt-Pt-1) - K5 (Wt-Wt-1) - K6Dt-1 - K7 

= K (P 
4 t+1 

2P +P ) + K W - 2W +W t- t t-1 5 ( +1 t t_1) 

+ 
K6(Dt-Dt-1) 

for t = 2, 3,...,n- 1. 

(5. 12) 

(5. 13) 
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::+ 
+ 

C 
X d = 

8 

1 

- 

t_1 



54 

Using the relation between production and the size of work force in 

Equation (5. 7), we can eliminate production from the above equations 

as following. 

(f) From Equation (5.7) we have 

P1 = K1 + K2(W 2) + K3W1 (5. 14) 

P2 -P1 = K1 + K2(W 1+W 3) + K3W 2-K1-K2(W 0+W 2) - K 
3W1 

= -K2 WO + (K2 -K3)W - (K2-K3)W2+ K2W3 

Pt-Pt-1 = 
K2Wt-2+(K2 K3)Wt-1-(K2 K3)Wt+K2Wt+1 

Pt+I 2Pt+Pt-I (2K2- K3)Wt + (2K2- 2K3)Wt 

- (2K2 K3)Wt+1 + K2Wt+2 

(5.15) 

(5.16) 

(5.17) 

Substituting Equations (5. 14) and (5. 15) into Equation (5.12) 

K1 +K 
2 
W0 +K3W1 +K2W2 -D1 

= K4[- K2W0 +(K2- K3)W1- (K2- K3)W2 +K2W3] + K5(W2- W1) +K6D1 +K7 -I0 

KI+K2W K3W I+K2W 
0 

2-D1 

= 
-K2K4 Ó+K4(K2-K3)Wl -K4(K2-K3)W2+K2K4W3+K5W2-K5W1+K6D1+K7-I0 

.. (K3-K2K4+K3K4+K5)W1 + (K2+K2K4-K3K4 -K )W2 
5 

K2K4W3 

= (1+K6)D1 - (K2+K2K4)W + (K7-K1) - I0 (5.18) 

-1 

- 

= 



Substitute Equations (5.16), (5. 17) into Equation (5.13) 

K1 + K2Wt + K3Wt + K2Wt - Dt 

r K4[K2Wt- -(2K2 K3)Wt-1+(2K2-2K3)Wt-(2K2 K3)Wt +1 +2] 

+ K5(Wt+1-2Wt+Wt-1) + K6(Dt-Dt-1) 

( K2K4)Wt-2+ (K2+2K2K4-K3K4-K5 )Wt -1+(K3-2K2K4+2K3K4+2K5)W 

+ (K2+2K2K4-K3K4-K5)Wt+1 
( K2K4)Wt+2 

= -K6Dt-1 + (1+K6)Dt K1 

for t = 2,3,...,n - 1 
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(5.19) 

Equations (5.18) and (5. 19) are a set of simultaneous linear 

equations with unknowns W1, W2, ... , Wn 
+1. 

Since this system of 

equations has n + 1 unknowns in n - 1 equations, we can remedy 

this deficiency by applying terminal condition and writing two more 

equations. Then the unknown employment levels for the various per- 

iods will be solved. Another method for solving this system of linear 

equations is stated in the following paragraph. 

The Solution of Optimal Work Force Level by Applying the Infinite 
Set of Linear Simultaneous Equations 

(a) Original system of equations represented in matrix form. 

From Equations (5.18) and (5.19), if we let 

- 
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K3 - K K4 
2 

+ K3 + K5 = m4 

- (K2+K2K4-K3K4-K5) = 
m5 

K2K4 = m1 

- (K2+ = 2K2K4-K3K4-K5) m2 

K3 - 2K2K4 + 2K3K4 + 2K5 = m3 

Equation (5. 18) becomes: 

m4W 1 - m5W2 + m1W = (1+K6)D1 - (K2+K2K4)W0 + (K7-K1)-I0 

(5. 20) 
Equation (5. 19) becomes: 

m1W -2-m.2Wt-1+m3Wt-m2Wt+1m1Wt+2 K6Dt-1+(1+K6)Dt-K1 

when t = 2, 

nz1W0-m2W1+m3W2-m2W3+m1W4 = - K6D1 + (1+K6)D2 - K1 

-m2W 
2W 

1+ m3W 2- m2W 3+ rn.1W4 = - K6D1+(1+K6)D2+K2K4W 

(5. 21) 
when t 3, 4, ... , n - 1, 

mlWt- 2-m2Wt-1+m3Wt-m2Wt+1 +m1 Wt+2 - -K6Dt-1+(1+K6)Dt-K1 

(5. 22) 

The set of linear equations composed of Equations (5. 20), (5.21), 

and (5. 22) can be written into the following matrix form. 

- 

. 

0-Kl 

- 

.. 



m4 -m5 ml 
m3 

m1 -m2 m3 -m2 m1 

m1 
-m2 m3 -m2 

m1 

0 

0 

m1 -m2 m3 -m2 m1 

-m2 
m3 -m2 mi,, 

(1+K6)D1 - (K2+K2K4)W0 + (K7-K1) - ID 

-K6D1 + (1+K6)D2 + K2K4W0 - K1 

-K6D2 + (1+K6)D3 K1 

-K6Dt-1 + (1+K6)Dt - K1 

+ (1+K6)Dn-1 - K1 
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1 

W2 

(5.23) 

-m2 -m2 m1 

m1 

- 

-K6Dn-2 
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This matrix equation has n + 1 unknowns in n - 1 equa- 

tions. It has no unique solution to the unknown Wts. 

(b) Construction of the infinite set of linear equations: Let n 

approach infinity so that the terminal conditions have a negligible in- 

fluence on the employment (and production) of the first few periods, 

then an approximate solution to Equation (5. 23) can be derived. 

(c) Solution of the infinite set of linear equations; Multiply 

each equation by the expression At -1, where X. is a variable and 

t indicates the equation. Thus the first equation is multiplied by 

0 unity (0 ), the second is multiplied by A, the third by X2, and 

so on. Adding the resulting system of equation, we obtain a single 

equation. 

m4W 1-m5W 2+m1W 
3+ 

X(-m 
2W 

1+m3W 2-m2W 3+m1W4) 

00 

t-1(m 
1Wt-2-m2Wt-1+m3Wt-m2Wt+1+m1Wt+2) 

t=3 

= (1+K6)D1-(K2+K2K4)W (1+K6)D1-(K2+K2K4)W0+(K7-K1)-I0 

+ X.[-K6D1+(1+K6)D2+K2K4W0-K1] 

co 

+ Xt-1[-K6Dt-1+(1+K6)Dt-K1] 

t=3 

(5. 24) 1 
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The left hand side of Equation (5.24) may be revised as, 

m 4 
W1 - m 

5 
W2+ m2W2- 

2 
A 1m1W2- m W1 + 

3 
1m2W - 

2m1W1 

+ A 2m1W1 

- A 1m2W + X 
1m1W2 

m3W1 - m2W2+ m1W3 

- X.m2W + A.m3W - Am2W + X m1W4 

+ X 2m1W1 - X 2m.2W2 + X m 2 

3 
W3 - A2m2W4 + A2m1W5 

+ A3m1W X m W3 + X m3W4 3 
- X 3m2W5 3m2W5+ A3m1W 

= (X-2m1 -A 1m2+m3-Xm2+X 2m1) X. 
t-1Wt 

t=1 

+ W1[(m4-m3)+X 1m2-A 2m1] - W 

The right hand side of Equation (5.24) may be revised as, 

+ 

- 

00 

1m1J 
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(1+K6)D1 - (K2+K2K4)W0 + K7 - K1 - IO 

- XK6D1 + X(1+K6)D2 
6 

+ XK2K4W0 - XK1 

- X.2K6D2 + X2(1 +K6)D3 Á2K1 

- X K D3 
3 

6 
+ A3(1+K6)D4 X 3K1 

_ (1+K6)D1 - (K2+K2K4)W0 + 

co 

t=2 

XK2K4W0 + 
2K4W 0+ K7 - I0 

t 1[-K6Dt-1+(1+K6)Dt] 
- 

Since 

co 

1 

1-A 
t=0 

t=0 

for 0 < < 1 

So under the assumption that 0 < < 1, the above equation be- 

come s 

00 

X t 

IX' 

!XI 

- 

+ ) X 

xt 
= 



K 
1 

- W0 [K2+K2K4(1-.A)] 
+ K7 - I0 - 1-A 

+ D1 + K6D1 

XK6D1 + AD2 + AK6D2 

- X 2K6D2+ x2D3 + X K D3 
2 

6 

- x3K6D3 + OD4 + X 3K6D4 

K 
_ - W0 [K2+K2K4(1-X)] + K7 IO 

X 
+ 

K 
= - W0 [K2+K2K4(1-X)] + K7 - Io - + 

0o 

t=1 

00 

DtXt-1(1+K6-XK6) 

DtX t 1[1+K6(1-X)] 

t =1 

The entire equation of Equation (5. 24) now is 

00 

-2 -m2X 1 +m3 -M2X +m1Á2) At -1W + W 

il 

t=1 

-W2[(m5-m2l] 

t-1 1+K6(1-A)] - W 0[K2+K2 

[ -m3)+-lm2 
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-2 
-X 

K 
1-X)] + K7 - Io - 

1-A 
(5. 25) 

-. 

- - t 6 

1-)7. 

) 
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Equation (5. 25) holds for 0 < N <1 (5. 26) 

In particular, we can choose values of ).. which satisfy Equation 

(5. 25) and cause 

m1A- 2- m2X 1+ m3 - m2X + m1A2 = 0 (5. 27) 

Since Equation (5. 27) is symmetric, if we find a solution of X not 

zero or unity, we can find a solution 1/X that also satisfies the 

equation. Therefore, we know that there is at least a value of X. 

which satisfies Equation (5. 26) and Equation (5. 27). 

Next, we will show that there are two and only two values of X 

(say 
X1 

and X2) which satisfy Equations (5. 26) and (5. 27). 

k1 
and X2 are the roots of Equation (5. 27), which is sym- 

metric. Hence 1 and 1 are also roots. Suppose 
1 m3 2 

k1 I 
= 1, then m1 + 2 _± m2 = 0. But this is not the case. 

Therefore, IX1 I, IX2I < 1 and I - I, I 
j 1, this im- 

1 2 

plies that there are only two roots in Equation (5. 27), which 

satisfy Equation (5. 26). 

Having obtained X1, X2 from Equations (5. 26) and (5. 27), we then 

substitute these values into Equation (5. 25) and have 

1 



oo 

t=1 

or 

W,[ -rn3)+al lm 2-X1 2m 
1 

= W2[(m5-m2)-A1 im1] 

K 
t-1 Dt[1+K6(1-X i)] - WO[K2+K2K(1-Xi)] + K - IO - 1-X. i 

for i = 1, 2, 

Since X1 and X2 are the roots of Equation (5. 27), 

-2 miAi m2Xi_.1. m3 - m2ñi + mlXi2 = 

-(m 
1 

k. 2-rn2X.-1+m 
3 

) = - m2i + mi X12 

for i = 1, 2. 

So the coefficient of the first term in Equation (5. 28) is 
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(5.28) 

m4 - (m3-X1 1m2+A1 2m1) = m4 - m21.i + miXi2, i = 1, 2, 

Equation (5. 28) becomes: 

W 1(m4-m2X i+m1 - Ai 1m1] 

00 

X i 
t-1D [1+K (1-A)] 

6 i 
- W [K +K K (1-X..)] + K7 - I 

0 
- 1 

t 0 2 2 4 7 1-X. 
t=1 

for i = 1, 2. 

(5. 29) 

1 
+ 0 

i 

2) 
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(d) The decision rules for the work force level and the produc- 

tion level: Equation (5. 29) has two equations in two unknowns W1 

and W2 and we can solve such a system of linear equations then 

obtain the decision rules for W and W In particular, W1' 

W2 will be in the form 

W1 = 

a. 

00 

al ti 1 
X 

.1+at2A2 1]Dt + biWo + clI0 + d 
t=1 

atDt + bW + cIO + d; 
t=1 

n 

a'tDt + b""WO + cUIO + d'; 

t =1 

Since from Equation (5. 14) 

Pl = K1 + K2W0 + K3W1 + K2W2 

it is obvious that 

where 

n 

t=1 

atDt. + bW 
0 

+ cI0 + d. 

at=K3at+K2a't, for t = 1,2,...,n, 

b = K3b1 + K2b + K2, 

n 

. 

W_? 



c = K3c1 + Ki 2c, 
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d = K3d + K2d + K1. 

Example 

The components of the cost function of a single item to be pro- 

duced are as follows. 

Regular payroll 350 Wt + 3, 500 

Hiring and layoff 67 (Wt- Wt -1)2 

Overtime 0. 15(Pí -4. 57Wt)2 +49Pt -285Wt 

Inventory connected 

cost 0.15(Ií -325)2 

The demands from period 1 to n are known as 

D1, D2,...,Dn 

Derive the decision rules to determine the production and work 

force levels in the first period. 

Solution: 

Step 1. List of the cost 14 / data; 

C1=350. C5 = 49. C9=0. 

C 
2 

= 67. C 6= 285. C 11 

C3 = 0.15. C7 = 0.15. C12 = 0. 

C4 = 4.57. C8 = 325. 

14 Since C13 =3500 is irrelevant to the decision analysis, it has 
been dropped. 

= 0. 
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Step 2. Evaluating the derived coefficients which are intro- 

duced in the sections beginning on pages 50, 51, and 

55' 

C1 C6 350-285 - 47.410 
1 2C3C4-C12 (2)(0.15)(4.57) 

-2C 
K 

2 -(2)(67) 97.738 
2 ^ 2C3C4-C12 (2)(0.15)(4.57) 

- 

2 2C3C4+4C2 (2)(0.15)(4.57)2+(4)(67)_ 
200.047 

3 2C 3C4-C (2)(0. 15)(4. 57) 

C3 0.15 
K 4 -1.000 C7 0.15 

K 
C12-2C3C4 -(2)(0.15)(4.57) - 4.570 

5 2C7 (2)(0.15) 

K6=C9=0. 

K7 = C8 = 325. 

m 
1 

= - K K 
2 4 

= 97.738 

m2 = -:(K2+2K2K4=K3K4-K5) = 488.694 

m3 = K3 - 2K2K4 + 2K3K4 + 2K5 = 786.481 

m4 = K3 - K2K4 + K3K4 + K5 = 493. 264 

m5 = - (K2+K2K4-K3K4-K5) = 390. 955 

= 

- 

- 
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Step 3. Calculation of roots: 

Equation (5. 28) now is 

m1 -2 -m2X.1+m3 -m2X.+m.1á 

= 97. 738X 
-2 

. 488. 694X-1+ 786.481 - 488. 694X + 97. 738X 
2 

= 0 

From this equation we obtain 

X1 = 2.5602 

X2 = 0. 3905 

X3 = 1. 2477 

X4 = 0. 8014 

Since according to Equation (5. 27) Xi should be the values 

which are between 0 and 1, so we pick up two values 

X2 = 0. 3905, X4 = 0. 8014 and substitute them into Equation (5. 29). 

In the next step, we let X1 = O. 3905, X2 = O. 8014. 

Step 4. The reduced system of equations: The system of 

equations in Equation (5. 29) now becomes: 

CO 

317. 2966W1 - 152.4955W2 = Xi 1Dt + 157. 3020W0-I0+ 247. 2024 

t=1 

2 



164. 3724W1 - 24. 2101W2 = 

00 

At 1Dt + 117. 1426W0 - IO + 86.1879 

t=1 

for i = 1, 2 
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Step 5. The solution of the equation for W1 and W2; From 

the system of linear equations we obtained in Step 4, 

the values of W1 and W2 can be solved. They are 

W1 = 0. 007379D1 + 0. 006486D2 + 0. 0054 22D 
3 

+ 0. 004433D4 

+ 0. 003587D5 + 0. 002888D6 + 0. 002320D7 + 0. 001861D8 

+ 0. 001492D +- 0.001196D 
10 

+ 0.000959D 
11 

+ 0. 12 

+ 0. 808514W0 - O. 007379I0 + 0.411778 

W2 = 0. 008796D1 + 0. 010935D2 + O. 010281D3 + 0. 008833D4 

+ 0. 007311D5 + 0. 005950D6 + 0. 004804D7 + 0. 003864D8 

+ 0. 003102D9 + O. 002488D10 + 0. 001995D11 + 0. 001599D12 

+ 0. 650752W0 - 0.008796I0 - 0.764262 

Step 6. Solution for 

P = K1 + + KW + K2W2 

= 47.410 97. 738W + 200. 047W 97. 738W 

Form Equation (5.14) P.C. 

- - 

) 
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= 0. 616452D1 + 0. 228824D2 + 0.079794D + 0. 023487D4 

+ 0. 0031018D5 - 0. 003753D - 0.005419D7 - 0.005285D8 

- 0. 004604D9 - 0.003833D14 - O.003128D11 - 0.002529D12 

+ 0. 398764W - 0. 61645 210 + 204.484090 

The Case of Probabilistic Demand 

The previous derivation of the linear decision rules was based 

on the assumption that the demand in each period is known with cer- 

tainty. In the case of probabilistic demand, the decision rules are 

still applicable if we use the expected values of the demand as the 

value of Dt in the deterministic case. A brief proof is shown as 

follows: 

Let f(d1, d2, ..., dt) be the joint probability density of de- 

mand in period 1, 2, ... , t, as known at the beginning of per- 

iod 1, and let E(d1), E(d2), ... , E(dt) be the expected de- 

mands. In a probabilistic formulation, the cost of inventory 

and shortage-- C7(It- C8 -C9Dt) 2 

must be replaced by 

in the deterministic case -- 

(IO+Pi-di-C8-C9dt)2f(dl, a2, , dt) 
C7 //, ..., 

dl d2 dt 
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all other cost terms remain unaffected. When partial deriva- 

tives with respect to P1, P2, ...,P t are taken, this cost be- 

comes 

t t 
2C 7[I0+ Pi- E (di) -C 8-C 9E (dt)] 

i=1 i=1 

This result no longer depends on any probability distribution 

but only on the expected values of the demands. 

Therefore, the same linear decision rules as in the deterministic 

case apply if the demands d's are replaced by their expectations. 
t: 

Summary 

When the quadratic cost function has been obtained for a parti- 

cular factory, the optimal decision rule can be computed for schedul- 

ing production and work force in that factory. The step -by -step de- 

rivation of decision rules was given under the condition of certainty 

demand. 

A brief proof of the certainty equivalence showed that the linear 

decision rules are optimal even when sales are subject to chance 

fluctuations. 
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COMPARISON OF METHODS 

Many approaches to production and employment planning have 

been reported in the literature, but none is universally best. In de- 

scribing several of these approaches, we shall therefore summarize 

their relative strengths and weaknesses. Four criteria are impor- 

tant in choosing an analysis: 

1. Applicability. 

2. The relative computational difficulty. 

3. How well the analysis may be revised as operating exper- 

ience accumulated. 

4. The sensitivity of operating costs to errors in forecasts 

and data of the decision model. 

Since the sensitivity analysis requires another mathematical 

approach, no studies will be carried out in this comparison task. 

Applicability 

Linear Programming Method 

Transportation Method. This method has been advocated wide- 

ly for seasonal demand scheduling as evidence by its presence in 

many production management and control texts (see, for example, 

(6), and (21)). However, in trying to apply it to the industries, Ver- 

gin (37) found that this method had two rather severe weaknesses: 
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1. There is an implicit assumption of constant employment in 

the model. Production above some normal capacity level 

can be accomplished only by overtime. 

2. The model allows changes to occur in the production rate 

for any level below the normal capacity level without any 

costs assigned to making such changes. Such a solution 

is unrealistic, since such rate changes could only be ac- 

complished by hiring and layoff workers, allowing idle 

time, etc. 

Since the optimal schedules in industries include some, and 

often substantial, employment and production levels change with de- 

mand fluctuations, the constant employment schedules of the transpor- 

tation model would be inappropriate in its application. 

If we divide the production operations into some more levels 

(in our analysis we divided the production operations into two levels, 

the regular time production and the overtime production), some weak - 

nessess of this method may be eliminated. Moreover,. according to 

Bowman (5), this method can readily extend to several products. 

With its computational advantage, this method would provide decisions 

with considerably lower cost than other methods. 

Simplex Method. This method eliminates the constant employ- 

ment restriction. The remaining restrictions that production 
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requirements are assumed known and exact and that cost relationships 

are linear appear to be rather rigid. The seriousness of the assump- 

tion of linear costs depends on the individual case. If the linear ap- 

proximation fits the case, this method would be useful. Especially 

when it is too expensive to undertake a full scale non -linear program- 

ming analysis or where the necessary data are simply not available, 

this method can be helpful. 

Dynamic Programming Method 

The major contribution of this method is its lack of restrictions 

in the cost structures. Moreover, the cost structure is not necessar- 

ily an approximated function; we can list the actual cost value as 

represented by the example on page 31. 

In handling the case where demands are uncertain, the dynamic 

programming method considers the whole demand probability distri- 

bution, but not their expected values. The result is a set of optimal 

policies under various conditions. This is easier to handle when ac- 
t, 

tual demand deviates from the forecase demand, if there are no sig- 

nificant errors in the estimated demand probability distribution. The 

concepts of this method are clear and easy; people who possess ele- 

mentary mathematical backgrounds can accept it without difficulty. 

No indication of dynamic programming application to production 

and employment scheduling is presented in the literature. This 
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might be because this type of problem has been used very infrequent- 

ly and the dynamic programming requires too much computational 

effort. 

Quadratic Programming 

Several applications of the linear decision rules have been re- 

ported: In a paint factory, using the decision rules and a simple 

moving average forecast, a simulation of past operations reduced 

variable system costs by eight percent (18, p. 24). Simulation of a 

50 -man ice cream plant over a two -year period produced cost savings 

of one percent of $50, 000 (18, p. 35). By contrast, an application in 

a large fiber manufacturing company produced no savings (18, p. 34). 

In that plant, the size of the work force was tied closely to the num- 

ber of production machines operating. Any change in production level 

produced sudden large increases and decreases in the work force. 

Therefore, the fit of the quadratic cost function was only approxi- 

mate and the resulting decisions were no better than those previously 

made by management. 

The difficulty of this method might be in obtaining the cost par- 

ameters. Fortunately, Holt, et al. (18) pointed out that fairly large 

errors in estimating the cost relations lead to relatively small dif- 

ferences in the decision. So only reasonable accuracy is required in 

estimating the cost relationship. 

.. 
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The assumption that the cost structure remains constant over 

many time periods is not practical. Therefore, a periodic review of 

the cost estimates has to be made and to determine whether or not 

the cost structure has changed sufficiently to require that a decision 

rule be computed. The constant cost structure assumption might be 

the reason that the reported applications did not get a significant sav- 

ings in production cost. 

The Relative Computational Difficulty 

Linear Programming Method 

The computational advantages of the transportation method are 

fairly well known for its tabular layout providing a conveneient work 

sheet for doing the computation. Both transportation and simplex 

methods are easily handled in the computer. Furthermore, some 

canned programs are available for use. In the simplex method, since 

each time period contributes six variables and three constraints, ow- 

ing to the limitation of the size of computer memory, the planning 

horizon is not allowed to span a large number of time periods. 

Dynamic Programming Method 

Compared with the other two methods, dynamic programming is 

the most difficult both in hand calculating and computer programming. 
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If the demand fluctuates in a large range, or if the decision variables 

are continuous, the solution of this method is too time consuming. 

However, using the technique of Maximum Principle (25) will reduce 

its computational effort to some extent. 

Quadratic Programming Method 

The computation requires a certain familiarity with elementary 

mathematics. However, once an electronic computer program has 

been written for a particular job, it may be used in a purely routine 

manner. We just insert the cost coefficients and the decision rules 

can be read from the computer in a few minutes. 

The Revision of the Decision- Making System 

The structure of the production and work force scheduling prob- 

lem may change over time so that the old answer simply does not 

solve the new problem. Thus, the manager not only has a responsi- 

bility to control the operation, but to control the decision system it- 

self in order to keep it current. Therefore, the study and analysis 

of our decision problem should not be considered as once- and -for -all 

operation. Instead, a process of review, testing, and revision should 

be a continuing responsibility of the manager in charge. In this com- 

parison, we shall consider how well the analysis may be revised as 

operating experience accumulates among different approaches. 
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Linear Programming Method 

In this method, any change in the cost coefficient and the fore- 

cast demand lead to the reformulation of the problem. It is unusual 

that the actual performance will confirm the estimated quantitites, 

hence a new decision problem has to be established in almost every 

time period and the same computational effort as the beginning of the 

planning horizon has to be applied. Compared with others, this meth- 

od requires most frequently revisions and the revision technique is 

also complex. 

Dynamic Programming Method 

A change in cost function means an over -all revision. If the estimat- 

ed demand distributions are fairly accurate, revision is not neces- 

sary each time actual demand deviates from the expected forecast de- 

mand. 

Quadratic Programming Method 

In this method, the future demands have no influence to the de- 

cision rules. If the numerical constants in the cost function of the 

factory should change, the numbers in the previous decision rules 

would need to be recomputed. However, the algebraic forms of the 

decision rules would remain unchanged. 
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Even though a wide variety of quantitative models designed to 

handle the production and work force scheduling problem have been 

developed, they are seldom used. Up to now, only a few applications 

of linear decision rules have been reported. In general, management 

should adopt the method from which the most profit can be expected. 
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SUMMARY AND SUGGESTIONS 

Summary 

Decision models in scheduling production and work force levels 

under conditions of variable demand have been presented and evaluat- 

ed. The costs involved in scheduling decisions are approximated into 

linear and quadratic forms. From these cost structures and under 

some assumptions, three different approaches which lead to the opti- 

mal production and employment decisions are derived. Some exam- 

ples are employed to reinforce the evaluations. The methods were 

compared as to applicability, computational difficulty, appropriate- 

ness, and the revision of the decision- making system. 

Some Other Approaches 

Besides the methods we have already discussed in this paper, 

certain other approaches to production and employment scheduling 

have been reported. They are: 

1. Network analysis: Hu and Prager (22), linear cost function. 

2. Break -even approach: Manne (30), linear cost function. 

3. Horizon planning: Modigliani and Hohn (31), linear or non- 

linear cost function. 

4. Discrete maximum principle: Hwang, Fan and Erickson 

(24), linear or non -linear cost function. 

. 
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A method called piece -wise linear approximation which approxi- 

mates the non -linear function with straight -line segments and solved 

by linear programming method might be useful for the case of non- 

linear cost functions. 

Some Other Applications of the Scheduling Algorithms 

Decision problems in areas outside of production would also ap- 

pear to be candidates for the application of optimal decision methods. 

The scheduling of warehouse operations, of employment in retail 

stores, of working capital and of some type of transportation opera- 

tions- -all appear to be effective areas for research. With ingenuity, 

management will undoubtedly discover still other applications in the 

future. 

For the Future 

In our study, all of the models are based on the cost of produc- 

tion and employment changes. A factor which perhaps is equally 

critical is ignored. That is the "point of departure ". According to 

McGarrah (27), this is defined as the production, employment, and 

inventory levels of the time change. The influence of the current 

rates can be shown through the following example: 

If a firm has been operating at 80 percent of normal 
one -shift capacity, an increase in output could be effected 
without additional costs of overtime or second -shift 
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premiums. A decrease in output might necessitate laying 
off key personnel who would be difficult to replace. How- 
ever, if the plant has been operating at 100 percent of 
normal one -shift capacity, an increase very likely may in- 
volve overtime costs or second -shift premiums, and extra 
supervision. A decrease in production could be affected 
by reducing the work day or by layoff personnel with the 
lowest seniority and least skill, these costs would not be 
so great as a layoff when a plant was at 80 percent of the 
normal capacity. 

It is found that the production smoothing decision is relatively 

insensitive to errors in estimating the parameters of the cost func- 

tion. Holt, et al., (18, p. 68) stated that the linear decision rules 

calculated on the basis of cost parameter estimates, which contain 

errors as large as plus or minus 50 percent, yield operating results 

which are very near optimal, and it is concluded that the model is in- 

sensitive to cost coefficient errors. This might be caused by the ig- 

norance of the point of departure. 

Thus, it appears that the most important current requirements 

in improving the production and employment decisions are: 

1. More empirical evidence on the magnitude of the point of 

departure effect. 

2. Evidence on the sensitivity of the production smoothing de- 

cision to this effect. 

The first task is difficult, since the pertinent data are not avail- 

able in either financial or cost accounting records. The second task 

may be carried out by a simulation test. 



82 

BIBLIOGRAPHY 

1. Antosiewicz, H. and A. Hoffman. A remark on the smoothing 
problem. Management Science 1:92 -95. 1954. 

2. Arrow, Kenneth J., Theodore Harris and Jacab Marschak. 
Optimal inventory policy. Econometrica 19: 250 -272. 1951. 

3. Bellman, R. E. Dynamic programming and the smoothing prob- 
lem. Management Science 3: 111 -113. 1956. 

4. Bellman, R.E. and S.E. Dreyfus. Applied dynamic program- 
ming. Princeton, Princeton University, 1962. 363 p. 

5. Bowman, Edward H. Production scheduling by the transporta- 
tion method of linear programming. Operations Research 4: 
100 -103. 1956. 

6. Buffa, Elwood S. Modern production management. New York, 
Wiley, 1961. 636 p. 

7. Bursk, Edward C. and John F. Chapman. New decision -mark- 
ing tools for managers. Cambridge, Mass. , Harvard Univer- 
sity, 1963. 413 p. 

8. Carr, Charles R. and Charles W. Houe. Quantitative decision 
procedure in management and economics: Deterministic theory 
and application. New York, McGraw -Hill, 1964, 383 p. 

9. Chames, A. and W.W. Cooper. Management models and in- 
dustrial applications of linear programming. Vol. I. New 
York, Wiley, 1961. 467 p. 

10. Chames, A., W.W. Cooper and Donald Farr. Linear pro- 
gramming and profit preference scheduling for a manufacturing 
firm. Operations Research 1:114 -129. 1953. 

11. Chames, A., W.W. Cooper and B. Mellon. A model for opti- 
mizing production by reference to cost surrogates. Economet- 
rica 23(3) : 307-322. 1955. 

12. Dantzig, George B. Linear programming under uncertainty. 
Management Science 1:197-206. 1955. 



83 

13. Green H. Geene. Production control: System and decision. 
Homewood, Ill., Richard D. Irwin, 1965. 605 p. 

14. Hadley, G. Nonlinear and dynamic programming. Reading, 
Mass., Addison -Wesley, 1964. 484 p. 

15. Hanssmann, Fred. Operations research in production and in- 
ventory control. New York, Wiley, 1962. 254 p. 

16. Hanssmann, Fred and Sidney W. Hess. A linear programming 
approach to production and employment scheduling. Manage- 
ment Technology 1(1) : 46 -51. 1960. 

17. Hoffman, A. J. and W. Jacobs. Smooth patterns of production. 
Management Science 1:86 -91. 1954. 

18. Holt, Charles C. et al. Planning production, inventory, and 
work force. Englewood, N.J., Prentice -Hall, 1960. 419 p. 

19. Holt, C.C., F . Modigliani and J.F. Muth. Derivation of a lin- 
ear decision rule for production and employment scheduling. 
Management Science 2:159-177. 1956. 

20. Holt, C.C. and H. A. Simon. Linear decision rule for produc- 
tion and employment scheduling. Management Science 2: 1 -30. 
1955. 

21. Holzman, A.G. , H. H. Schaeffer and R. Glaser. Matrices and 
mathematical programming: Mathematical basis for manage- 
ment decision making. Vol. I. Chicago, Ill. , Encyclopedia 
Britannica. 1962. 

22. Hu, Te- chiang and W. Prager. Network analysis of production 
smoothing. Naval Research Logistic Quarterly 6: 17 -23. 1959. 

23. Hugli, Wilfred C., Jr. Production planning through inventory 
control. Management Technology 1(2) :59 -65. 1960. 

24. Hwang, C. L. and L. T. Fan. The application of the maximum 
principle to industrial and management systems. The Journal 
of Industrial Engineering 17 :589 -593. 1966. 



84 

25. Hwang, C. L. , L. T. Fan and L.E. Erickson. Optimum pro- 
duction planning by the maximum principle. Management Sci- 
ence 13 :751 -755. 1967. 

26. Johnson, S.M. Sequential production planning over time at 
minimum cost. Management Science 3:435 -437. 1957. 

27. McGarrah, R.E. Production programming. The Journal of 
Industrial Engineering 7: 263-271. 1956. 

28. McNaughton, Robert. Scheduling with deadline and loss func- 
tion. Management Science 6: 1 -12. 1959. 

29. Magee, J.F. Production planning and inventory control, 2d 
ed. New York, McGraw -Hill, 1958. 333 p. 

30. Manne, Alan S. A note on the Modigliani -Hohn production 
smoothing model. Management Science 3: 371-379. 1957. 

31. Modigliani, Franco and Franz E. Hohn. Production planning 
over time and the nature of the expectation and planning horizon. 
Econometrica 23: 46- 66. 1955. 

32. Muth, John F. and Gerald L. Thompson. Industrial scheduling. 
Englewood Cliff, N.J., Prentice -Hall, 1963. 387 p. 

33. Panne, C. Van De and P. Bosje. Sensitivity analysis of cost 
coefficient estimates: The case of linear decision rules for em- 
ployment and product. Management Science 9:82 -107. 1962. 

34. Sasieni, Maurice, Arthur Yaspan and Lawrence Friedman. 
Operations research - methods and problems. New York, 
Wiley, 1959. 316 p. 

35. Schild, Albert and Irwin J. Fredman. Scheduling tasks with 
deadlines and non -linear loss functions. Management Science 
9: 73 -81. 1962. 

36. Teichroew, Daniel. An introduction to management science: 
Deterministic models. New York, Wiley, 1964. 713 p. 

37. Vergin, Roger C. Production scheduling under seasonal de- 
mand. The Journal of Industrial Engineering 17: 260 -266. 1966. 



APPENDIX 



; 

C 

85 

PRODUCTION SCHEDULLNG 
QYNAMIC PROGRAMMING THE CASE OF DETERMINISTIC DEMAND 
DIMENSION F(8,50), P(8,50), D(8), ID(8) 

10.0 FORMAT(12) 
200 FORMAT(8F4.0) 
300 FORMAT (F4.0) 
400 FORMAT(I3, F60,F12.2-,F6.0) 

READ 100,N 
READ 200,(D(I),I=2,N) 
DMIN=D(2) 
DMAX=D(2) 
DO 4'I=3,N 
IF(D(I)-DMIN)1,2,2 

1 DMIN=D(I) 
2 IF(DMAX-)(1))3,4,4 
3 DMAX=D (, I ) 

4 CONTINUE 
IR=DMAX-DMIN+3. 
DO 5 I=2,N 

5 IDdI)*D(I)-DMIN+1. 
IS=ID(2) 
DO 6 IP=IS,IR 
F(1,IP)=0. 

6 P(1,IP)=1. 
L=N-1 
DO 8 K=2,L 
PAUSE 
IS=ID(K+1) 
M=ID(K) 
B=M 
DO 8 IP=IS,IR 
A=IP 
F(K,IP)=2.#(B-A)*#2--F(K-1,M) 
P(K,IP)=B 
DO 8 I=M,IR 
X=I 
C=2.*(X-A)##2+20.#(X-B)+F(K-1,I) 
IF (SENSE SWITCH 1)20930 

20 PT1=A+DMIN-1. 
KS=K-1, 
PT=X+DMIN-1. 
PRINT, 400,KS,PT1,C,PT 

30 IF(C-F(K,IP)) 7,8,8 
7 F(K,IP)=C ' 

P(K,IP)=X 
8 CONTINUE 

READ 300,P0 
IP=PO-DMIN+1. 
A=IP 
M=ID(N) 
B=M 
F(N,IP)=2.#(B-A)##2+F(N-19M) 

" 

' - 
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PEN,IP)=B 
DO 10 I=M,IR 
X=I 
C=2.#(X-A)*#2+20.#(X-B)+F(N-1,I) 
IF(C-F(NrIP))9,10,10 

9 F(N,IP)=C 
P(N,IP)=X 

10 CONTINUE 
DO 15 I=1,L 
J=ID(I+1) 
DO 15 ,IL=.l, IR 

A=IL 
KS=I-1 
PT1=A+DMIN-1. 
PT=P(I,IL)+DMIN-1. 

15 PUNCH 400sKS,PT1,F;(I,IL),PT 
A=IP 
KS=N-1 
PT1=A+DMIN-1. 
PT=P(íd,IP)+DMIN-1. 
PUNCH 400,KS,PT1IF(N,IP),PT 
STOP 
END 

C INPUT DATA 

05 
180 195 220 210 
200 



C RESULTS 

0 180. 0.00 180. 
0 181. 0.00 180. 
0 182. 0.00 180. 
0 183. 0.00 180. 
0 184. 0.00 180. 
0 185. 0.00 180. 
0 186. ,0.00 180. 
0 187. 0.00 180. 
0 188. 0.00 180. 
0 189. 0.00 180. 
0 190. 0.00 180. 
0 191. 0.00 180. 
0 192. 0.00 180. 
0 193. 0.00 180. 
0 194. 0.00 180. 
0 195. 0.00 180. 
0 196. 0.00 180. 
0 197. 0.00 180. 
0 198. 0.00 180. 
0 199. 0.00 180. 
0 200 0.00 180. 
0 201 0.00 180. 
0 202. 0.00 180. 
0 203. 0.00 180. 
0 204. 0.00 180. 
0 205. 0.00 180. 
0 206 0.00 180. 
0 207. 0.00 180. 
0 208 0.00 180. 
0 209. 0.00 180. 
0 210. 0.00 180. 
0 211. 0.00 180. 
0 212. 0.00 180. 
0 213 0.00 180. 
0 214. 0.00 180 
0 215. 0.00 180. 
0 216. 0.00 180. 
0 217. 0.00 180. 
0 218. 0.00 180. 
0 219. 0.00 180. 
0 220. 0.00 180. 
0 221 0.00 180. 
0 222. 0.00 180. 
1 195. 250.00 190. 
1 196. 270.00 191. 
1 197. 290.00 192. 
1 198. 310.00 193. 
1 199. 330.00 194. 

87 
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1 200. 350.00 195. 
1 201. 370.00 196. 
1 202. 390.00 197. 
1 203. 410.00 198. 
1 204. 430.00 199. 
1 205. 450.00 200. 
1 206. 470.00 201. 
1 207. 490.00 202. 
1 208. 510.00 203. 
1 209. 530.00 204. 
1 210. 550.00 205. 
1 211. 570.00 206. 
1 212. 590.00 207. 
1 213. 610.00 208. 
1 214. 630.00 209. 
1 215. 650.00 210. 
1 216. 670.00 211. 
1 217. 690.00 212. 
1 218. 710.00 213. 
1 219. 730.00 214. 
1 220. 750.00 215. 
1 221. 770.00 216. 
1 222. 790.00 217. 
2 220. 1050.00 210. 
2 221. 1090.00 211. 
2 222. 1130.00 212. 
3 210. 1250.00 220. 
3 211. 1212.00 220. 
3 212. 1178.00 220. 
3 213. 1148.00 220. 
3 214. 1122.00 220. 
3 215. 1100.00 220. 
3 216. 1082.00 220. 
3 217. 1068.00 220. 
3 218. 1058.00 220. 
3 219. 1052.00 220. 
3 220. 1050.00 220. 
3 221. 1052.00 220. 
3 222. 1058.00 220. 
4 200. 1450.00 210. 
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C PRODUCTION SCHEDULING- 
C DYNAMIC PROGRAMMING THE CASE, OF STOCHASTIC DEMAND 

DIMENSION P(8,8),F(8,8),PD(8,8),D(8),T(8) 
100 FORMAT(412) 
110 FORMAT(8F5.3) 
120 FORMAT(8F4.0) 

'130 FORMAT(F4.0) 
180 FORMAT(3I5,2F7.2) 

READ 1001N,M,ND,NI 
DO 1 I=2,N 

1 READ 110, (P(I,J), J=1,M) 
READ 120, (D(I), I=1,ND) 
READ 120, (T(I)s I=1,NI) 
READ 120, (F(1,J), J=1,N1) 
READ 130, S 

DO 13 J=1, NI 

13 PD(1,J)=1. 
XNI=NI 
DO 10 I=2,N, 
PAUSE 
XI=I 
DO 10 J=1,NI 
XJ=J 
F(I,J)=999. 
PD(I,J)=ND+10 
DO 10 K=1lND 
XK=K 
EXPC =0. 
DO 7 L=1,M 
XL=L 
AS=XJ+XK-XL-1. 
IF (AS-XNI+1.)12,12,14 

14 IF(P(I,L))7,7,15 
15 L=1 

GO TO 10 
12 IF(AS)4,3,3 
3 SC =0. 

GO TO 8 

4 SC=-AS#S 
8 IA=AS+1. 

IF(IA-1)5,5,6 
5 REC=F(I-1,1) 

GO TO 16 
6 REC=F(I-1,IA) 

16 EXPC=EXPC+P(I,L)#(SC+REC) 
KA=I-1 
KB=J-1 
KC=K-'1 
KD=L-1 
IF(SENSE SWITCH 1)20,7 

20 PRINT 180,KB,KC,KD,SC,REC 
7 CONTINUE 
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TEMPF=D(K)+T(J)+EXPC 
IF (SENSE SWITCH 2)50,60 

50 PRINT 200,KA,KB,TEMPF,KC 
200 FORMAT ( /2I4,F7.2,I4/) 
60 IFCTEMPF- F(I,J))9,10,10 
9 F(I,J) =TEMPF 

PD(I,J) =XK 
10 CONTINUE 

DO 11 I =1,N 
K =I -1 
PUNCH 140,K 
PUNCH 150 
DO 11 J =1,.4I 

K =J -1 
PROD= PD(I,J) -1. 

11 PUNCH 16O,K,F(I,J),PROD 
140 FORMAT( / / /12HSTAGE NUMBER,12 //) 
150 FORMAT(39H INV. LEVEL(I) F(I) PROD. LEVEL) 

160 FORMAT(7)(,I3,5X,F7.2,9X,F5.0) 
STOP 
END 

C INPUT DATA 

04040304 
0.6670.3330.0000.000 
0.0000.2500.5000.250 
0.2500.5000.2500.000 
15. 20. 35. 
2. 5. 9. 15. 

10. 0. 5. 10. 
10. 
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C RESULTS 

STAGE NUMBER 0 

INV. LEVEL(I) F(I) PROD. LEVEL 
0 10.00 0. 

1 0.00 0. 
2 5.00 0. 

3 10.00 0. 

STAGE NUMBER 1 

INV. LEVEL(I) F(I) PROD. LEVEL 
0 25.33 1. 
1 23.33 0. 
2 27.33 0. 
3 38.33 0. 

STAGE NUMBER 2 

INV. LEVEL(I) F(I) PROD. LEVEL 
0 57.33 1. 

1 52.33 1. 
2 51.33 0. 
3 54.83 0. 

STAGE. NUMBER 3 

INV. LEVEL(I) F(I) PROD. LEVEL 
0 80.58 1. 

1 78.33 1. 

2 77.33 0. 

3 82.45 0. 
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COMPUTATION OF LINEAR DECISION RULES FOR PRODUCTION 
AND EMPLOYMENT SCHEDULING 

DIMENSION T(4),RT(2),AE(2),8E(2),CE1(2),CE2(2),CE3(2) 
1,CE4(2),8P(2),CP(2)-,DP(2),AP(2,20),AT(20) 

100 FORMAT(11F5.0) 
110 FORMAT(6HSTEP 1//) 
120 FORMAT(4X,4HC1 =,F9.4,6H 
130 FORMAT(4X,4HC4 =,F9.4,6H 
140 FORMAT(4X,4HC7 =,F9.4,6H 
150 FORMAT(4X,4HC11= ,F9.4,6H 
200 FORMAT(6HSTEP 2//) 
210 FORMAT(4X,4HK1 =,F8.3,6H 

16H K4 =,F8.3) 
220 FORMAT(4X,4HK5 =,F8.3,6H 
230 FORMAT(4X,4HM1 =,F8.3,6H 

16H M4 =,F8.3) 
240 FORMAT(4X,4HM5 =,F8.3///) 
300 FORMAT(11HFIRST ENTER) 
310 FORMAT(12HSECOND ENTER) 
320 FORMAT(11HTHIRD ENTER) 
330 FORMAT(2F14.4) 
340 FORMAT(6HSTEP 3//) 
350 FORMAT(4X,5HRT1 =,F7.4,7H 

17H RT4 =,F7.4//) 
360 FORMAT(4X,4HX1 =,F9.4,6H X2 =,F9.4///) 
400 FORMAT(6HSTEP 4//) 
410 FORMAT(4X,F12.4,4HW1 +,F12.4,4HW2 =) 

420 FORMAT(6X,F12.4,24HSUM OF RT(I)##(T-`1)#D(T)) 
430 FORMAT(6X,1H+,F12.4,9HW0 - IO +,F12.4///) 
500 FORMAT (6HSTEP 5//) 
510 FORMAT(4X,2H+ ,F12.6,3H D(,I3,IH)) 
520 FORMAT(4X,2H+ ,F12.6,6H WO + ,F12.6,6H IO + ,F12.6//) 

530 FORMAT(2X,2HW(,I2,3H) =) 

600 FORMAT(6HSTEP 6//) 
610 FORMAT(2X,6HP(1) _) 

C STEP 1 

PAUSE 
READ 100, C1,C2,C3,C4,C5,C6,C7,C8,C9,C11,C12 
PUNCH 110 
PUNCH 120,C1,C2,C3 
PUNCH 130,C4,C5,C6 
PUNCH 140,C7,C8,C9 
PUNCH 150,C11,C12 

C STEP 2 

PAUSE 
X=2.#C3#C4-C12 
AK1= ( C1-C6 ) /X 
AK2=(-2.*C2)/X. 
AK3=(2.#C3#C4*C4+4.#C2)/X 
AK4=C3/C7 
AK5=(C12-2.#C3#C4)/(2.*C7) 
AK6=C9 

C2 =,F9.4,6H C3 =,F9.4) 
C5 =,F9.4,6H C6 =,F9.4) 
C8 =, F9.4,6H C9 =,F9.4) 
C12W,F9.4///) 

K2 =,F8.3,6H 

K6 =,F8.3,6H 
M2 =,F8.3,6H 

RT2 = ,F7.4,7H 

K3 =,F8.3, 

K7 =,F8.3//) 
M3 =,F8.3, 

RT3 =,F7.4, 

C 
C 
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AK7 =C8 
AM1 =-AK2 *AK4 
AM2 =- (AK2 +2. *AK2 *AK4 -AK3 *AK4 -AK5) 
AM3= AK3 -2. *AK2 *AK4 +2. *AK3 *AK4 +2, *AK5 
AM4= AK3 -AK2 #AK4 +AK3 #AK4 +AK5 
AM5 = -(AK2 +AK2 *AK4 -AK3 *AK4 -AK5) 
PUNCH 200 
PUNCH 210,AK1,AK2,AK3,AK4 
PUNCH 220,AK5,AK6,AK7 
PUNCH 230,AM1,AM2,AM3,AM4 
PUNCH 240,AM5 

C STEP 3 

PAUSE 
A =AM1 
B =-AM2 
C= AM3- 2. *AM1 
PRINT 300 
CALL R0O T(A,B,C,X1,X2) 
B1 = -X1 
B2 -X2 
PRINT 330,X1,X2 
PRINT 310 
CALL ROOT (1.,(31,1.,X1,X2) 
T(1) =X1 
T(2) =X2 
PRINT 330,X1,X2 
PRINT 320 
CALL ROOT (1.,B2,1.,X1,X2) 
1(3) =X1 
T(4) =X2 
PRINT 330,X1,X2 
RT(1) =0. 
DO 3 I =1,4 
IF(ABSF(T(I))- 1.)2,3,3 

2 IF(RT(1))1,1,4 
1 RT(1) =T(I) 

GO TO 3 

4 RT(2) =T(I) 
3 CONTINUE 

PUNCH 340 
PUNCH 350, (T(I),I =1,4) 
PUNCH 360, RT(1),RT(2) 
PUNCH 400 

C STEP 4 

PAUSE 
DO 10 K =1,2 
AE(K)= AM4 -AM2 *RT(K) +AM1 *RT(K) *RT(K) 
BE(K) =- (AM5- AM2 +AM1 /RT(K)) 
CE1(K) =1. +AK6 *(1.- RT(K)) 
CE2 (K)=- (AK2 +AK2 *AK4 #(1.- RT(K))) 
CE3(K) = -1. 
CE4(K)= AK7- AK1 /(1.- RT(K)) 

= 
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PUNCH 410,AE(K),BE(K) 
PUNCH 420,CE1(K) 

10 PUNCH 430,CE2(K),CE4(K) 
C STEP 5 

PAUSE 
X=AE(1)*BE(2)-AE(2)*BE(1) 
Y=-X 
BP(1)=lCE2(1)*BE(2)-CE2(2)*BE(1))/X 
CP11)=(CE3(1)#BE(2)-=CE3(2)*BE(1))/X 
BP(1)=(CE4(1)*BE(2)-CE4(2)*BE(1))/X 
BP12)=(CE2(1)#AE(2)-CE2(2)#AE(11)/Y 
CP(2)=(CE3(1)*AE(2)-CE3(2)*AE(1))/Y 
DP12)=(CE4(1)*AE(2)-CE4(21*AE(1))/Y 
DO 20 K=1,20 
S1=RT(1)**(K-1) 
S2=RT(2)**(K-1) 
AP41,K)=(CE1(1)*BE(2)*S1-'CE1(2)*BE(].)*S2)/X 

20 AP;(2,K)=(CEI(1)*AE(2)*S1-CE1(2)*AE(1)*S2)/Y 
22 PUNCH 500 

DC'24 I=1,2 
PUNCH 530,1 
DO 23 K=1,20 

23 PUNCH 510,AP(I,K),K 
24 PUNCH 520,BP(I),CP(I),DP(1) 

C STEP 6 

PAUSE 
DO 30 K=1,20 

30 AT(K)=AP(1,K)*AK3+AP(2,K)*AK2 
BTFBP(1)*AK3+ßP(2)#AK2+AK2 
CT=CP(1)*AK3+CP(2)*AK2 
DT-DP(1)#AK3+DP(2)*AK2+AK1 
PUNCH 600 
PUNCH 610 
DO 31 K=1,20 

31 PUNCH 510, AT(K), K 

PUNCH 520,BT,CT,DT 
STOP 
END 
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SUBROUTINE ROOT (A,B,C,X1,X2) 
250 FORMAT(12HCOMPLEX ROOT, 4F10.2) 
260 FORMAT(5HX1 =X2, 4F10.2) 

D =B *B- 4. *A *C 
IF(D)1,2,3 

1 PRINT 250,A,B,C,D 
PAUSE 

2 PRINT 260, A,B,C,D 
X1 =- B /(2. *A) 
X2 =X1 
GO TO 4 

3 X1=(-B+SQRTF(D))/(2.*A) 
X2= (- B- SQRTF(D)) /(2. *A) 

4 RETURN 
END 

C INPUT DATA 

350.0067.000.1504.5749.00285.0.1500325.0000.00()0.0(J000 
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C RESULTS 

STEP 1 

Cl = 350.0000 C2 = 67.0000 C3 = .1500 
C4 = 4.5700 C5 = 49.0000 C6 = 285.0000 
C7 = .1500 C8 = 325.0000 C9 = 0.0000 
C11= 0.0000 C12= 0.0000 

STEP 2 

Kl = 47.410 K2 = -97.738 K3 = 200.047 K4 = 
1.000 

K5 = -4.570 K6 = 0.000 K7 = 325.000 

M1 = 97.738 M2 = 488.694 M3 = 786.481 M4 = 493.264 
M5 = 390.955 

STEP 3 

RT1 = 2.5602 RT2 F .3905 RT3 = 1.2477 RT4 = .8014 

X1 = 

STEP 4 

.3905 X2 = .8014 

317.2966W1 + a152.4955W2 = 

1.0000SUM OF RT(I)#*(T*1)#D(T) 
+ 157.3020W0 IO + 247.2024 

164.3724W1 + -24.2101W2 = 

1.0000SUM OF RT(I)##(T-1)#D(T) 
+ 117.1426yJ0 - IO + 86.1879 

- 
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STEP 5 

W( 1) = 

+ .007379 D( 1) 

+ .006486 D( 2) 

+ .005422 D( 13) 

+ .004433 D( 4) 

+ .003587 D( 5) 

+ .002888 D( 6) 

+ .002320 D( 7) 

+ .001861 D( 8) 

+ .001492 D( 9) 

+ .001196 D( 10) 

+ .000959 D( 11) 

+ .000768 D( 12) 

+ .000616 D( 13) 

+ .000493 D( 14) 
+ .000395 D( 15) 

+ .000317 D( 16) 

+ .000254 D( 17) 

+ .000203 D( 18) 

+ .000163 D( 19) 

+ .000130 D( 20) 
+ .808514 WO + -.007379 IO + .411778 

W( 2) = 

+ .008796 D( 1) 

+ .010935 D( 2) 

+ .010281 D( 3) 

+ .008833 D( 4) 

+ .007311 D( 5) 

+ .005950 D( 6) 

+ .004804 D( 7) 

+ .003864 D( 8) 

+ .003102 D( 9) 

+ .002488 D( 10) 

+ .001995 D( 11) 

+ .001599 D( 12) 

+ .001282 D( 13) 

+ .001027 D( 14) 

+ .000823 D( 15) 

+ .000660 D( 16) 

+ .000529 D( 17) 

+ .000424 D( 18) 

+ .000339 D( 19) 

+ .000272 D( 20) 
+ .650752 WO + -.008796 IO + .764262 
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STEP 6 

P(1) 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 

+ 
+ 

= 
.616452 
.228824 
.079794 
.023487 
.003018 

-.003753 
-.005419 
-.005285 
-.004604 
-.003833 
-.003128 
-.002529 
-.002035 
-.001635 
-.001311 
-.001051 
-.000843 
-.000675 
-.000541 
-.000434 
.398764 

D( 

D( 

D( 

D( 

D( 
D( 
D( 

D( 
D( 
D( 

D( 

D( 

D( 

D( 
D( 
D( 

D( 

D( 
D( 

D( 

WO 

1) 

2) 
3) 

4) 

5) 

6) 
7) 

8) 
9) 

10) 

11) 
12) 
13) 

14) 
15) 
16) 

17) 
18) 
19) 

20) 
+ -.616452 IO + 204.484090 

+ . 


