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THE SUPPRESION OF LEARNING AT THE HIDDEN UNITS OF

NEURAL NETWORKS

I. INTRODUCTION

In recent years interest in neural networks has exploded, and the subject

has been studied avidly by psychologists, computer scientists, engineers, and even

mathematicians. The reason for this is straight-forward: neural networks utilyze a

philosophically satisfying technique to successfully solve a variety of difficult

problems. They have theoretical, philosophical, and practical importance.

UNDERLYING CONCEPTS

A neural network is an example of a parallel processing system. Whereas

most computing systems used today utilyze a single central processor, a parallel

processing system uses several processors working simultaneously on separate

parts of a problem. In a neural network, each of these processors, called a neuron

or node, is exceedingly simple - capable only of a single kind of calculation. These

nodes are connected by synapses to eachother according to some architecture.

Each synapse is assigned a weight, and directs the output of one node to the input

of a second node. A node may be linked to other nodes, or to itself, both as input

and as output, and the weights represent the importance and nature (positive or

negative
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enhancing or inhibiting) of the connection. Figure 1 illustrates a simple network.

Each node performs the same kind of calculation. Thus the distinction

between networks is the architecture - the way the nodes are connected - and the

values of the weights. To build a network to perform a specific task, these two

parameters must be specifically set. This corresponds to programming a

conventional computer, but the method is drastically different.

First, the architecture must be chosen. The most important considerations

are that the network be large enough and deep enough to provide the complexity

demanded by the task. There are techniques to help optimize the size and

structure of networks, but they have important limitations, as we'll see later. The

power of a network to solve a problem is related to the size and depth in an ill-

understood way, and it is crucial that the network be large enough for the

appointed task. It is also important that the network not be too large [1].

Second, the synapses must be assigned weights. This is where neural

networks diverge most strongly from conventional computers, even parallel

processing machines. For the weights are not pre-determined, but are arbitrarily

set, then adjusted during a training period until the network performs the task

adequately. In this manner a network can be trained to perform a task which

may be intractable to program conventionally. Indeed, networks may be trained

to classify pattern set that may be too complicated or vague for prdgrammers to

provide a useful heuristic. For example, Soviet researchers used a neural network

to successfully predict the outcome of the 1988 American presidential election,

using the outcomes of previous elections to train the system [2]. Such a network

is merely a toy, but it illustrates that the programmer does not need to provide an

algorithm for the task, merely a reasonably large set of inputs to train with.
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Neural networks have been used primarily for pattern recognition thus far.

Since they don't require an explicit method or heuristic to distinguish patterns -

just a training set of identified patterns, they can easily be created to solve a

variety of problems. Furthermore, they deal with ambiguous or non-ideal inputs

effectively. They are rarely perfectly accurate, but their performance in usually

adequate, and sometimes spectacularly so.

DEFINITIONS

A neural network is a set of nodes and synapses. A node is a simple

calculator in most networks it sums the values of its input synapses, evaluates a

transfer function at the sum, and the result is its output. A synapse transmits the

output of one node to become the input of another node, after multiplying by a

weight. A unit is a node together with the synapses which provide its input.

The transfer function is usually chosen to be an increasing function with

range [0,1], or to be a Heaviside function - i.e. fa(x)=1 if x>a, 0 if x<a. The

value of the threshold parameter, a, may be fixed, or it may be adjusted in a

manner similar to the weights. If a continuous function is chosen, it is usually the

logistic function, f0(x)-
1

, where 0 is again either fixed (usually 0=1) or
-}-ev -x

adjustable during training. One advantage this function has is that its derivative

is easily calculated from the relation f'(x)=f(x)(1-f(x)). All of the experimental

work done in this paper used this function, with 0=0.

Every network requires two special kinds of nodes. An output node

generally provides no information to any other node. It is observed by the user,

and provides the results of the networks attempt to perform the task. A network

may have several such nodes. An input node receives no information from any
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other node, and it performs no calculations. Instead it is assigned a value by the

user, the input for the task. Again, there may be several input nodes. Performing

a task once thus requires the user to set the values of the input nodes, allow the

system to calculate, and then observe the values of the output nodes. Nodes

which are neither input nor output nodes are called hidden nodes.

In some situations, another specialized node is introduced. A global node

is a node which always keeps the same value, usually negative one. The use of a

global node is formally equivalent to the threshold parameters in the transfer

functions, and may be desirable in certain instances. The parameter is replaced

by a synapse of the same weight from a global node with value one. The synapse

weight may then be adjusted using the same algorithm as the other synapse

weights.

The synapses and nodes form a directed graph. If this graph has no loops,

i.e. if the output of a node does not affect its own input directly or indirectly, the

network is called feed-forward. A feed-forward network is easily modeled on an

ordinary computer, since the values of each node may be calculated sequentially,

starting at the nodes which receive input only from the input nodes, and finishing

with the output nodes. Furthermore, there are well-established methods for

training these networks, and feed-forward networks are capable of a number of

important tasks. Thus, although non-feed-forward networks are an exciting

concept, this paper will consider only feed-forward networks, which have been the

object of most of the recent research and applications.

If a feed-forward network is arranged in layers, with the output of the

nodes of one layer becoming the input of the next layer, it is often denoted by

listing the number of nodes in each layer. It is assumed that the nodes in
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consecutive layers are completely connected (every node in a layer is connected by

a synapse to every node in the next layer), and nodes in non-consecutive layers

are not connected. The input nodes are considered the first layer, and the output

nodes are the final layer. Thus a 2-5-3-1 network has two input nodes, eight

hidden units divided into two layers, and one output unit.

The inputs and outputs of a network may be treated as vectors, and the

task of a network is to approximate a specific vector function. In a classification

problem, the function is discrete-valued, and the utility of the network is given by

the accuracy with which it assigns the proper values to the input vectors - i.e. the

accuracy with which it correctly partitions the input vectors into classes. In a

general problem, the utility of the network is measured by the norm of the

difference between the desired function and the actual output. For ease of

calculation, and in analogy to physical and statistical measurements, the absolute

error is usually squared. There is a strong theoretical difference between the two

methods, and although the latter is used almost universally, even for classification

problems, it does not guarantee best performance as measured by the former

method.

As mentioned before, neural networks are not programmed, but instead are

trained. This is done using a learning rule to adjust the weights of each synapse

after entering an input vector and comparing the actual output to the desired

output. The input vector is chosen from a training set, usually randomly, and the

process is repeated until the system is either performing within acceptable

tolerances, or it becomes apparent that the system will not learn the task.

If the training set is finite, it is common to use each element as input once

until the set is exhausted. The process is then repeated, and each cycle is called
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an epoch. Under this nomenclature [3], each input vector is called an

environment, and the corresponding output is termed a response. One of the

fundamental problems of neural network training is the distinction between

learning the correct response to a given environment, in contrast to all the

environments which it will be expected to respond to. For example, if the

training set is too small, or has insufficient variation, after training the resulting

network may perform poorly on environments which were poorly represented.

Conversely, if the training set contains "outliers", rare environments requiring

unusual responses, the network may be less effective for more common

environments. And importantly, though application of the learning rule will

improve performance for a specific environment, it may not improve overall

performance. This phenomenon of "dynamic mislearning" is important to

understanding many of the limitations of neural networks.

The most common learning rule is back-propagation of error, [1,4] which is

a minor misnomer, since all common learning rules utilyze a recursive process of

weight adjustment, starting at the output units and propagating backwards, in

response to the error. More precise would be gradient descent. The theory is

based on a common method of optimization. If the error of the system's response

to a given input is treated as a function of the synapse weights, we can consider

the surface thus defined. The current weights define a point on that surface, and

the gradient at that point indicates how the weights may be adjusted to yield a

smaller error. Thus the weights are adjusted by a small amount in the

appropriate direction, and the process is repeated for a new input vector.

The error function used is almost always the square of the difference, since

it is continuous and differentiable, thus easy to calculate. Thus, consider the
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following equations and the resulting formulae for back-propagation.

Define

e = error,

o. = value of output node i,

t. = desired value of output node i,

v. = value of (non-output) node i,

= weight of synapse from node i to node j,

Then

(1.1)

(1.2)

(1.3)

= weight of synapse from node i to output node j,

6-v. = delta value at node v. o.
1, 1,

f(x) = transfer function.

e = E(t-o.)2

fo.= (Ev.wi.)

v. = f(Ev.4

We wish to calculate °e and

(1.4)
Do.

= -2(t-o.)

De

az!

summation over all output nodes.

summation over all nodes which

output to of

summation over all nodes which

output to v.

for every synapse. Thus note

a,. 80:
(1.5) ae = "c =

ow( aoi aiArii J J

Define

(1.6) So. -2(tfoi).f(Eviwii)



(1.7)

So

To find

Oe = 60..v.j 1

ae
, define

azi
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(1.8) bvi = [E(bvizii) E(boiwij)]Evkzijc) where the first

summations are over all nodes v. outputs to, and the last summation is over the

nodes vi receives input from. Note that every ovi and 5oi for nodes receiving

input from v. must be calculated first. Thus the term back-propagation -

calculation begins with the output units, then proceeds backwards through the

network. Thus without modification, the method only works for feed-forward

networks.

Finally,
az
_ae = 5v.

1
.v.. This may be easily verified for small networks using

ii
i

the chain rule. For large networks, the additivity of the derivative preserves the

awkward summations.

As an example, consider the "1-2-1" network illustrated in Figure 2.

Assume it has the logistic transfer function f(x) =(1 +e x)-1, and assume that the

desired task is simply for the output to echo the input, i.e. t1 = v1. Note

(1.9) ae = -2(t -o f (VAwl 1 v;w1).v2
- 2 i=2 1 1

(1.10) ae
az2

= -2(t1-01)-f(E V.W)-W;f(ViZ?)VI
1=2 1 1

and similarly for w13 and z3i.
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To illustrate the learning rule, suppose 4 = 4 = 1, w2 = 1, and wq = -2.

If the input v1 is 0.5, then v2 = v3 = f(1.0.5) = 0.622. of = f(0.622.1+0.622. -2) =

f(- 0.622) = 0.349. The error, e = (0.5 0.349)2 = 0.0229.

Back-propagating yields 6o1 = - 2(0.151).f'(- 0.622) = -0.0686, 6v2 = (-

0.0686.1).f'(0.5) = -0.0161, 6v3 = (-0.0686-2)-f(0.5) = -0.0322. Thus 'It- =

0.0686.0.622 = -0.0427, --Q-e = -0.0427, = -0.0161.0.5 = -0.0081,awl az2 84
3 1

0.0322.0.5 = -0.0161.

Each weight should now be adjusted in proportion to its corresponding

partial derivative, e.g. w2 = 2
wi - , where e is some pre-determined small

2

positive number.

A second learning rule, useful for classification problems, is the desired

states method [31. It also propagates backwards, but rather than utilyze gradient

information, each unit has attached to it three pieces of information: its actual

value, desired value, and criticality. The desired state is either 1 or 0, thus the

system is only used for classification problems, where the desired responses are

also combinations of l's and 0's. This does not limit the method to systems using

Heaviside transfer functions, however. In fact, it is independent of the transfer

function chosen.

For the output units, the criticality is a constant which is specified when

the task is defined. The criticality is chosen in [0,1], and represents the

importance of that unit to the performance of the system. For hidden units, the

criticality represents the outcome of a "voting" process: a high criticality implies

that adjustment of that unit will have the the desired effect on most of the units

to which it outputs.
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The desired states and criticality of each unit are calculated as follows.

For output units, the desired state is simply the target, or desired output, and the

criticality is given in advance. For hidden units, if the actual state, desired state,

and criticality is calculated for all units to which it outputs, the values are given

by the following formulae:

Define

v. = value of node i.

d. = desired state of node i.

c. = criticality of node i.

wi. = weight of synapse from node j to node i. No distinction will be made

between hidden and output units.

s(x) = 1 if x=1, -1 if x=0

u(x) = 1 if x>0, 0 if x<0

Then

(1.12)

di u(Dr.s(d.).c.)
J

C. =
1

E wi..s(d.).c.
3 J .1

E wi..s(dj)ci
j 3

The summations are over the nodes to which node i sends output. Note

that the criticality is 1 if all of the nodes "desire" the same adjustment (positive

or negative), and decreases according to how much the "desires" cancel eachother.

Once these values have been calculated for each unit, the synapse weights
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are adjusted in proportion to the error (difference between actual and desired

values), criticality of the receiving node, and the value of the sending node. Thus

(1.13) vv? = w.! e(d-v)cv

with e being a small positive number. Often the changes are not made

immediately, but are accumulated and adjustments are made at the end of an

epoch.

As an example, consider the 2-3-2 network illustrated in Figure 3. Let the

transfer function be the Heaviside function with threshold 0.5, the task be to

evaluate the "AND" function on the inputs, i.e. d6 = v1v2, with v1, v2 E {0,1} ,

and the criticality c6 = 1. Suppose Niq = w25 = w: = wei6 = w: = 1, wi = w2 = -1.

We shall calculate the appropriate adjustments resulting from entering v1 = 1, v2

= 0.

First, note v3 = 1, v4 = 0, v5 = 0, v6 = 1. Since d6 = 1.0 = 0, the system

must be adjusted. Starting with d6 = 0, c6 = 1, calculate d5 = u(w:s(d6)c6) =

u(1 11) = 0. c5 = I1111/11 111 = 1. Similarly d4 = u(1 11) = 0, c4 = 1, d3

= 0, and c3 = 1.

Thus, if e = 0.1, for example, vq. = 1 + 0.140-104 = 1 0.1 = 0.9. Since

d4 = v4 and d5 = v5, the weights at those nodes are not adjusted. Since v4 = 0

and v5 = 0 , the synapses from those nodes are not adjusted. The only other

adjustment is w: = 1 + 0.10-1)4 = 1 0.1 = 0.9.

Note that the method never refers to the transfer function. It merely

assumes that the function is non-decreasing with range in [0,1].
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LIMITATIONS OF NEURAL NETWORKS

Although neural networks have demonstrable practical value, they also

have important limits, both theoretical and practical. These limitations stem

from the method of learning. A network is likely to be theoretically capable of a

task, but in practice, such a network may be intractable to train. Difficulties may

arise in a number of ways, and a network designer must often devise schemes to

overcome them.

For example, the method of error calculation may be inappropriate.

Gradient descent back-propagation utilyzes a least-squares definition of minimum

error. In a classification problem, the set of weights which provides the minimum

error may not necessarily correctly classify each member of the training set, even

when there is a

when there are

set of weights which can perform the task [5]. This may happen

unusual members in the training set, or the training set has an

inappropriate distribution. In general, there is no simple fix for this problem.

The situation is analogous to the presence of outliers in other optimization

problems.

Another deficiency can strike any learning rule. The learning

corresponding to a specific environment may not improve the system's

performance overall. This phenomenon shall be refered to as dynamic

mislearning. Research is being conducted which indicates that for suitably small

adjustments, dynamic mislearning can be avoided, but the practicality of the

result has not yet been demonstrated, nor has a rigorous proof been given.

These first two limitations are mainly of theoretical importance. They

underscore the difficulty of establishing any general theorems of practical value,

but they detract little from the utility of neural networks, since they arise only in
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unusual cases. But there are other deficiencies which are more practical, which

depend less on mathematical theory.

Neural networks, regardless of learning rule, may fail to learn a task which

theoretically they should be able to perform. For any task that networks are

theoretically capable of, there is some minimal network that can perform that

task arbitrarily well. Larger networks generally perform the task only marginally

better. But often the small network will not be able to learn the task starting

with randomly selected weights. Thus a larger network must be trained for the

job. And although it is often possible to determine the size of the minimum

network capable of the task, there is no known method for determining the

smallest network which will reliably learn the task.

So for most applications, networks significantly larger than necessary are

used. After training, a unit may be removed if it has little effect on the output,

or it is duplicated by another unit. An entire layer of units may be removed if it

is similarly not important to the performance of the system. But although well-

defined rules exist to determine how a network may be "pruned" and retrained

[6], the method is severely limited. For example, a network may seem unprunable

- that is, every node may appear essential to the system - even if it much larger

than necessary. Units, or even groups of units, may be removable or replaceable

by smaller groups without being apparent to the pruner. Thus the current

heuristics for pruning are incomplete, and have only been tested on a limited

range of tasks.

Furthermore, pruning is inconvenient and complicated to automate.

Pruning can degrade a system, and occasionally render it incapable of the task.

The results are unpredictable, and often unsatisfying.
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Networks may fail to learn a task they are theoretically capable of,

regardless of size. Units often tend to "couple", to act as a pair, their values being

highly correlated, either positively or negatively. This has the effect of making

the network one unit smaller in function. In the worst case, two units may have

identical weights, creating a symmetry which robs the system of computing

power. Coupling may affect entire groups of units, and may not be immediately

obvious to the designer.

Methods like gradient descent often suffer from local minima. A set of

weights may perform a task better than any nearby set of weights, but still be

unacceptable. An effective way of bypassing such local minima and obtaining a

useful set of weights is simulated annealing. At each iteration, in addition to the

adjustment made by the learning rule, a small random term is added. In ordinary

simulated annealing the random term is proportional to a factor which decreases

exponentially over time, thus simulating annealing in physical systems. In TINA,

or Time-Invariant Noise Algorithm, the random term is proprtional to the error.

Other schemes are also used, with similar effects [7].

One of the most debilitating problems encountered with neural networks is

slow learning. Even within the basin of attraction of a good minimum, learning

may be slowed by dynamic mislearning, or by local flat regions. In a flat region,

the adjustments calculated by the learning rule are correspondingly small, and

thus learning is slow. The former case occurs when the weight adjustments are

poorly correlated to the adjustments which would improve overall performance,

and may be nearly the opposite the adjustments for another environment. Thus

there may be cancellation and competition between environments, slowing the

learning process. Annealing is of doubtful utility at this point, and may even
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hinder learning, as the weights may "bounce" out of a good minimum. Another

technique is the inclusion of a momentum term. A constant, a, in (0,1) is chosen,

and to each weight adjustment is added a times the previous adjustment. Thus

the weights will move more smoothly across the error surface, and presumably

settle into a minimum more reliably.

These methods apply similarly to any learning rule. However, the choice

of learning rule may introduce other sources of slow learning. For example,

gradient descent suffers when used with "deep" systems systems with several

layers of hidden units, each layer having only a few units. The problem arises

Efromthe calculation of bvi as bv..z) multiplied by f' (Evkzk ) This last factor
J

may be very small, for the logistic function is is never greater than 1/4. Thus if

the summation factor is not large, sv. will be small relative to the bv. it is derived

from, and adjustments at that unit will be small. Fortunately, systems with

many layers but few nodes have little application.

In summary, there are a number of problems neural networks may suffer

from, both theoretically and in practice. They stem from the method of

calculating error, the tendency for units to become correlated, and dynamic

mislearning. There are a number of techniques used to bypass these problems,

but there are few general principles to guide the designer or analyst.

MATHEMATICAL RESULTS

Most of the work with neural networks has been done by either computer

scientists and engineers interested in applications, or biologists and psychologists

interested in the analogies with actual nervous systems and learning. Their

results are largely empirical, and hence inexact. However, even when
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mathematicians or other scientists attempt to produce analysis, the results are

disappointing - neural networks have not yet lent themselves well to mathematical

techniques.

Where mathematical results do exist, they are usually of one of two types.

Either the result is a broad positive theorem, or a special case where the common

wisdom fails. The first kind of result is reassuring, but rarely useful - the existing

theorems tend to be fairly obvious and without significant practical application.

The second kind shows why the first kind is so rare - virtually every useful

conjecture already has a counter-example attached to it. Thus it is difficult to

produce any general results of value.

For example, there are task which neural networks can perform, but for

which given a specific learning rule, it cannot learn, or only has a small

probability of learning [5]. Thus general conjectures about the learning of tasks

are almost certainly false, unless they are seriously weakened by the placing of

strong conditions on the predicate, or contain a probabilistic conclusion. The

latter is common in applications - most workers are satisfied if a system usually

learns a task.

This paper intends to avoid obscure counter-examples, and provide positive

results which are as practical and testable as possible. The result will be

dependent on the existence of a network which can perform the task, and the

strength of the result will depend upon the aptness of the parameters. The result

will be an existence statement no reference will be made to learning. Thus the

result will have some modest practical value, but be strictly limited theoretically.

Of particular interest will be the contrast with the negative results arising from a

similar conjecture for larger systems.
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II. DESCRIPTION

The purpose of this paper is to analyze a phenomenon first noted by

Burton, Mpitsos, and their colleagues in their investigation of annealling [7].

While working with a 1-4-1 feed-forward network using gradient-descent back-

propagation, they observed similar results whether learning was allowed at the

hidden units or only at the output units. In the latter case, synapse weights were

arbitrarily set at the hidden units, and they were never adjusted in response to

error. Yet despite this hobbling, the systems almost always learned the tasks

comparably quickly and well.

This phenomenon was convenient for analyzing the effects of annealling,

and it was during my own research on annealling that I became aware of it.

Assuming learning is only necessary at one layer simplifies analysis considerably,

and thus it became important to determine when this assumption can be made.

Furthermore, if this phenomenon is specific to a certain kind of network, it may

call into question empirical results based on work with those networks.

Briefly, this paper attempts to show that in a 1-n-1 feed-forward network,

given a task, if a set of weights exist so the network performs the task within a

certain error, then if the weights at the hidden units are set arbitrarily, a set of

weights at the output unit exists so that the task is performed comparably well.

A maximum error may be calculated which is dependent on the appropriateness of

the chosen hidden weights. The maximum error is unfortunately uselessly large,

but it gives a qualitative indication of the goodness of the weights. Further,
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evidence is given that the conjecture is not true for most multi-input networks.

Note that the proposition only claims existence of a set of weights, not that

a particular learning rule will ensure that those weights will be found. Thus the

proposition is independent of the algorithm chosen. Also, the success of the new

network is dependent upon the success of an objective network. Thus if the task

cannot be performed accurately by a network in which all the weights are

adjustable, the proposition is trivial.

In the single-input (1-n-1) case, the proof consists of an algorithm for

determining the weights at the output unit, given the weights of an objective

network and the arbitrarily determined hidden weights. Although the error

calculations provide no assurance that the new network will be useful,

experiments verify that the algorithm works surprisingly well.

In the multi-input (m-n-1) case, a similar algorithm is developed, but it

fails experimentally. An explanation is given why the method fails for the system

it was tested on. Also, there will be a discussion of the difficulties of producing

any effective algorithm.

The major limitation of the method is that the transfer function must be

Cn, i.e. continuously n-times differentiable. This paper assumes the logistic

transfer function as standard, although the result is valid and the calculations

similar for other functions.

In the conclusion, several important limitations and objections will be

noted and discussed. What is described here are the results of the application of a

method to a specific approximation task. The full ramifications of this will be

determined after the results are shown.
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III. FIRST RESULT

Consider a 1-n-1 feed-forward neural network, with transfer function

f:R.(0,1) which is Cn and bijective, a task represented by a target function

t:I--40,1], where I is a set of possible input values, i.e. a training set. Then the

output of the network may be considered as a function o:I.(0,1). We will assume

I.(0,1), and inputs are chosen uniformly. Then the mean-square error is given by

E=11(t(x)-o(x))2 dx.

In the following analysis, hatted variables refer to values for an objective

network. Non-starred variables refer to the values for a second network which is

intended to approximate the first. The transfer function is the same for both.

Define

n, n = number of hidden units in each system.

zi, zi = weight of synapse from input unit to hidden unit i.

w. wi = weight of synapse from hidden unit i to output unit.

x = an arbitrary input.

The goal of the algorithm is to approximate o(x) by o(x) over all x E I,

where

(3.1) o(x) = f( (wif(zi.x)))
i=i

and all zi are fixed, distinct, and non-zero. Since f is a continuous bijection

we will develop a method for approximating f 1(i5(x)) by E (w..f(z..x)) and
i=i



consider the effects of f in our error calculations.

Thus the task is to approximate

(3.2) (W.f(2..x))
!=.1

by

(3.3) E (w..f(z..x))
i=1
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given the zi as fixed. We accomplish this by approximating each term in

the sum in expression (3.2) by a term like expression (3.3), then adding the

resulting values for each wi. That is if

(3.4) *f(2x):::-_ -x))
!=i 1

then

(3.5) xE(*..42..x)) (( wh.f(z.. ))
j=1 J J i=1 i=1 1

1

To accomplish the approximation in equation (3.4), we build an augmented

matrix using the Taylor expansions of irif(2ix) and f(zix), taking the coefficients

of the first n terms, and solving to find the wi values.

Specifically, let bE [0,l] be the base point for the Taylor expansions. Let

(3.6) gi(x) =

(3.7)
(n-1)

Xi7.1= i(b), g Igq( ), (ni)! gin -1)(x)(x) IT

(3.8)

A=

f(zib)

f(z1b)zi

f(znb)

f'(z2b)z2

f(znb)

f (znb)zn

f
(n-1)

(znb)znn-1
n-11)If(n-1)(z1b)zn-11 (n-1)!
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If rank(A)=n, then let gi be the solution to Ag.=.. Let ic't Then

ITV = [w1, w2, wn]T is the desired set of weights. Note that for b=0, A reduces

to a Vandermond matrix, and hence has rank n, as the zi are distinct and non-

zero.

If the rank of A is less than n, then either the base point or the transfer

function were poorly chosen. For most transfer functions, given the set of zi, the

set of points such that rank(a) Gn is small. If the set is large, then it indicates

that some nodes are redundant, and the function is inappropriate for the task.

For most transfer functions, simply changing the base point arbitrarily is

sufficient remedy to the problem.

The maximum error of the new system can be calculated as follows:

Let R[f(x)] = remainder of the Taylor expansion of f to n-1 terms.

Let fa(x) = f(a.x). Note f(am)(x) = am.f(m)(a-x)

Let h = the maximum possible difference between the systems before the

application of the transfer function at the output unit.

Then

(3.9) h maxxeI

= maxxei

maxxd

- E (w..f(z..x))
i=i i=1

wi R[*ix)] - w. R[f(zx)]
j=1.

W -1-,4")(a.)(x-b)n - w if(ni )(g)(x-b)n
z J n! z J

for some al, a2, 1 Celli, 011 02, 1 On.
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= maxi

h i'maxxeIn!

lit -1- *..zr:1 f(n)(a..z)(x-b)11 - w.z4. f(n)(13..z.)(x-b)n
J Jn! 1 1 J

E *..zn. f(n)(a..z.)(x-b)n
i=1 1

n n f(n) )( E.)"E -wvz . (#..z. x-
j=1 J J

Let M maxxcRII'
,61) I

(x)i. If b=i, note maxxeil(x-b)nl 2-11.

E< E M.2-111 + En! i=i n.1.=1

finally yielding

w..z1?- M.2-11

(3.10) h + tn!Li=ii nl=i J J1j

Remembering that h represents the maximum of the difference between

the two systems before calculating the transfer function at the output node. Then

let o(x) and O(x) be the outputs of the two networks, and E and E be the mean

square error of the two networks. Then

(3.11)
1

E = f (t(x)-o(x))2 dx
0

1
= f t2(x) - 2t(x)o(x) o2(x) 2t(x)O(x) 82(x) + 2t(x)O(x) - 62(x) dx

0

1 1
= f (t(x)-o(x))2 dx f 2t(x)O(x) 2t(x)o(x) dx f o2(x) 62(x) dx

0 0 0



(3.12)

= E + 2 1 t(x)(6(x) o(x)) dx (o(x) - 6(x))(o(x) + 8(x)) dx
0 0

Let m = maxxER If(x)1. Note max T It(X)1 5. 1.

E < 2hm 2hm

E < 4hm
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Thus the error bound is dependent upon the values of the synapse weights,

on the number of hidden units of the new system, and on M and m, the maximum

of the derivatives of the transfer function. The difficult factor to predict is the

values of the w.. Clearly we want moderate values, which require that the z. be

"appropriate" for the application. A thorough analysis of this is far beyond the

scope of this paper. Intuitively, though, the z. values should be well spread and

adequately ranged. Importantly, though, they should not be too large, since the

error bound grows with zr.l.

The values of M and m depend upon the transfer function. For the logistic

function f(x) = (1 + exp(-x)), m = .25, and M is given by the following table:

n M = max f(n)(x)

1 0.25
2 0.0962
3 0.125
4 0.1277
5 0.25
7 1.0625
9 7.75
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For large n, the logistic function has large derivatives. This diminishes the

advantage of using a large number of hidden units.

EXPERIMENTAL VERIFICATION

Of course, the actual error is generally much less than the maximum

bound. In practice, the maximum bound is uselessly large, but the actual error is

closely comparable to the original system. The results of my first attempt to

apply the algorithm illustrate this clearly.

A 1-2-1 system was trained by gradient descent back-propagation to

approximate the target function t(x)=x, with learning occurring at all units, and

inputs chosen uniformly over (0,1). Learning was halted when no improvement

was noted in a span of 2000 iterations. The weights were recorded, and the

system became the objective system for the experiment.

The new system was also a 1-2-1 network, with z1 = 1, z2 = -1. For the

objective function, 21 = 1.769, 22 = -1.708, *1 = 4.057, *2 = -9.451. The base

point chosen was b = z . Thus

vl

v2

= [ 4.057.41.769.0.5), 4.0571.769-0.5) ]

= [ 2.872, 1.484 ]

= [ -2.822, 3.381

A= f(0.5) f( -0.5)

f(0.5) f'( -0.5)

0.6225 0.3775

0.2350 -0.2350
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From this was calculated

w= [7.865,-12.838]

E and E were estimated numerically using a rectangular approximation

with 100 partitions over the integral. E equalled approximately 0.001204. Thus

we can calculate an upper bound on E, and compare it with the actual value.

2 2
From equation (3.10), h < ".1. E + 1 E2 4 2.i=1 1

the table, M = 0.0962, thus

h= 0.08 962 1.2.69 + 27.57 + 7.865 + 12.838 ] = 0.733

From equation (3.12),

E < 4hm = 0.001204 + 4.0.25. 0.733 = 0.734

From

which is disappointingly large, to the point of irrelevancy. However, the

actual value of E is 0.00089, which is less than E. This is partly a matter of luck,

but it also indicates an amount of error in the objective system at the extremes of

the interval, which is removed by the approximation process. The fact that the

target function is easily approximated by this method allows this improvement.

Of course, the difference in performance of the two systems is practically

negligible.

Using the same objective system, new networks were calculated using other

base points for the expansion and values for the hidden weights. The results are

summarized here:

base point z1 z2 w1 w2 E Error bound

0.5 1.0 -1.0 7.865 -12.838 0.00089 0.734
0.5 2.0 -2.0 3.377 -8.996 0.00147 1.079
1.0 1.0 -1.0 6.105 -9.100 0.00963 2.668
1.0 2.0 -2.0 3.713 -10.521 0.00301 4.675
0.0 1.0 -1.0 8.963 -14.357 0.00166 3.058
0.0 2.0 -2.0 3.133 -8.527 0.00203 4.180
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The results conform loosely to our expectations from the error bound

calculations. The error bound predicted the relative magnitude of the error

reasonably well in every case but one, the third in the table. The error bound

correctly predicted that even though the larger zi values were closer to the zi

values, and the resulting wi values were smaller, the error was generally larger.

The error bound also correctly indicated the advantage of using a as the base

point. The degree of the importance of these phenomenon are exagerrated in the

error bound calculations, just as the maximum error is rediculously larger than

the actual error. Thus, although the error bound formula is useless as a rigorous

test of the efficacy of the method, it has some value in analyzing the results.

In summary, the method works better than anticipated. The error bound

formula is useful mainly as an indicator of some general trends, and provides little

support for the proposition of the thesis. However, the empirical results support

the thesis admirably.
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IV. SECOND RESULT

Single input networks are a small sub-class of feed-forward networks, and

an extension of the method to multi-input networks would be much more useful.

The method does generalize easily to the larger networks, but unfortunately it

fails to produce the desired results.

The method for multi-input networks is substantially the same as for

single-input networks. In the latter, the new system is calculated to have the

same output for a certain basepoint input, and the first several derivatives at that

point are also duplicated. Specifically, o(b) = o(b), and o(k)(b) = o(k)(b) for

1<k<n-1, bE I. For multi-input networks, the new system is designed to have the

same partial derivatives as the objective network. Thus if I= 151 I5*(=( xi, x2,

xm ), xi E Ii for all i }, b E I, then the system will have the properties o(b) =

o(b), and a° = -2L' for l< i < m, and perhaps similarly for higher order partial
axi ax.

1

derivatives.

For single input networks, the size of the new network was arbitrary, and

corresponded to the highest derivative for which the new system matches the

objective system. Specifically, for o(k)(b) = o(k)(b) for all k < n requires n+1

neurons at the hidden layer. But for multi-input networks, the required number

of neurons at the hidden layer is much larger. If the system has m inputs, then a

first order approximation (where all first partial derivatives match at the base

vector) requires m+1 hidden units, and a second order approximation requires 1 +

m + m(m-}-1)/2 hidden units, since each different partial derivative of first and
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second order must be calculated and solved for. The number of units required is a

polynomial in the number of inputs, with the degree of the polynomial matching

the order of the approximation. Thus higher order approximations require an

awkward number of hidden units.

The execution of the method again relies upon the additivity of the inputs

to the output unit, and the approximation is calculated at the output synapse

before the transfer function is applied. Thus each neuron of the objective network

may be approximated individually, and the resulting values summed to get the

final values.

Specifically, let 6: I (0,1) be the output of a m - n 1 feed-forward

neural network, with transfer function f: R --+ (0,1) which is k times differentiable.

Define the following symbols:

Ca = weight of synapse from input unit b to hidden unit a.

wa = weight of synapse from hidden unit a to the output unit.

Let o: I (0,1) be the output of the new m n - 1 network, with the

same transfer function. Define

Xm ),

za = weight of synapse from input unit b to hidden unit a.

wa = weight of synapse from hidden unit a to the output unit.

Represent the values of the inputs for both networks by 5'c = ( xl, x2, ...,

5)( E I. Let b E I be the base point for the approximation.

For illustration, consider the method for a first order approximation. The

procedure for higher order approximations is a straightforward extension. Thus

let n = m 1. The problem then is to find a set of wa given arbitrary zba such



that 6(173) =

f-1

Since

to both

o(r)), and 0-
ox

= for 1 < m
iox

O(5t) = f( (w.f(t1 (1..x)) and o(X)
i=1 1 j =1 J
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= f( (w..f( zi..x)) we apply
i=1 1 j =1 J 3

to simplify the task. Then for 1< k we approximate

cat_ft (I.x.)) by ti (w..f(E1 z1.. x.)). We find wi such that
" J=1 J J i=1 J J

(4.1) cok.f(11 (1.b.)) = (w..ft
J=1 J i=1 1 J=1 J

and for 1 < a < m

(4.2) ww t (kb.)) = a
=i

(..f(=1 z1..b.).
axaa k

.f(
J=1 j axa i j J

Simplifying (4.2) yields

(4.3) cokd, .r(t (I) = E w..zi
a

zi.b)
J=1 J 3 1=1 J=1 J 3

Equation (4.1) and the set of m equations from (4.3) provide a set of n

equations in n variables. Denote the solution, if it exists, Wk. After completing

this operation for k from 1 to n, then w = E w. = ( w1, w2, ) is the desired
i=1 1

set of weights.

No attempt has been made to provide an error bound on this method,

although it may be done in a manner analogous to the earlier calculation.
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EXPERIMENTAL RESULTS

To test the method, a 3 - 7 - 1 network was trained to perform integer

addition mod 2, using uniformly random values from {0,1} x {0,1} x10,11. This

task may be considered a classification problem, with the criterion for

classification being the parity of the input. Both first order and second order

approximations were calculated, using (0,0,0) and as base points. The first

order approximations formed 3 - 4 - 1 networks, and the z values were chosen

specifically. The second order approximations included some redundancy, thus a

3 13 1 was created, rather than a 3 - 10 - 1 network. The z values were chosen

randomly from several different ranges. All attempts had one thing in common:

the resulting network failed to perform the task. The results were comparable to

networks with random weights.

Admittedly, the task chosen was a particularly difficult task for this

method to approximate. The target function is not statistically correlated to any

of the individual inputs, or even to any pair. The training of the objective

network using the extreme values of [0,1]m is irrelevant, but measuring the error

of the new network using those values is "tough". However, if the error is

measured using inputs uniformly chosen on (0,1)m., the error is still large, but now

the training of the original network on the extrema contributes to the error.

Experimentally, a 3 7 1 network appears to be incapable of learning to

calculate the decimal part of the sum of three real numbers, anyway, so it is

hardly surprising that the new network also fails.

In conclusion, for this task, the method fails. The behavior at the base

point is a poor indicator of the behavior of the system over the entire domain of

inputs. The behavior of the objective system over the range (0,1)m is not a
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simple interpolation of the behavior at the endpoints, and any method which

assumes it is is likely doomed to failure.

But one example of failure does not mean that the method always fails.

Special cases may be devised where the method succeeds. A sufficiently well-

behaved function, such as a planar function, or a function which is dependent

mainly on one input, is approximable by this method. For example, a 2 3 - 1

network trained to average the two input values was the objective function of a

first order approximation, with base point ( , 2 ), and z values ±1 assigned in a

manner which avoided duplication. The objective network had an approximate

mean-square error of 0.000991. The resulting 2 - 3 - 1 network had a mean-square

error of 0.000747. Once again, the new system had a lower error than the

objective system, just as happened for the analogous example of a single input

system. This can again be attributed to the simplicity of the target function, and

some inefficiency in the learning process.

However, tasks like the averaging problem are not a very large class. Most

neural network applications are more akin to the parity classification task, where

the method fails. Classification problems usually utilyze discrete inputs, and the

outputs associated with inputs in the interior of (0,1)m, besides being irrelevant to

the application, are not easily approximable. Thus the method is unsuccessful in

approximating them.
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V. CONCLUSIONS

The method evidently works for networks trained to approximate relatively

simple functions over the entire interval (0,1)m, but not for classification

problems, which generally only use the endpoints of or certain discrete values in

the interval. Single-input networks are rarely used for the latter type of problem,

and multi-input networks are rarely used for the former type. Thus there is a

strong motivation to state the result in terms of the number of inputs, though

technically that would be incorrect. The statements made in the description of

the method thus are false, but they are a useful generalization for most

applications.

Note that the situations where the method works are precisely those where

the network may be constructed from scratch to perform the task, without

recourse to learning. First, the task must be performable, and second, the task

must be simple and utilyze the entire range of inputs, thus enabling the use of the

Taylor expansions. If this is the case, a set of weights could be determined using

a method analogous to this paper's, without using any objective function or any

learning. There are also functions which are not approximable using Taylor

expansions but are still approximable by neural networks. For these, other

approximation schemes, such as Bernstein polynomials, can be applied to similar

effect. One weakness is that the transfer function at the output unit may limit

the accuracy of the approximation. Thus the method applies almost precisely to

those situations where learning can be superceded.
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Returning to the original question - whether learning can be suppressed at

the hidden layer of a three-layered network - we must consider three conjectures.

First, whether the tests of the method described in this paper are sufficient to

generalize to all tasks. Second, whether the method used is capable of providing

sets of weights in all situations when weights exist. And third, whether the

existence of output weights given specific hidden weights implies that learning can

be suppressed at the hidden units during the learning process. If all three

statements are true, then we have a simple criterion for determining when

learning can be suppressed at the hidden layers.

The first conjecture is certainly supportable. The three-input parity

classification task is a very simple classification problem, and failure there is

certainly a strong indication of general failure on classification problems. The

examples of success are also very simple, and there likely are intermediate

problems where the success is marginal. This area - the approximation of

functions over an interval by neural networks has received relatively little

attention, and more research needs to be done to support the thesis in this grey

area. The positive tests are sufficient for at least a qualified affirmative of the

conjecture.

Whether another technique exists which may succeed where this method

fails is a more difficult question. Any such method must utilyze information

about the behavior of the system at the input points, rather than a single base

point, and thus if there are a large number of such points, a large number of

hidden units must be present in the new system.. If the new method utilyzes

systems of equations, as this method did, one hidden unit must be provided for

each equation. Thus if each of the eight elements of the training set of the 3-
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input parity classifier is used to determine a system, then the new network must

have at least eight hidden units. The number of hidden units grows exponentially

with the number of inputs, thus such a method would become impractical with

large networks. Furthermore, the result would be diluted considerably - it is of

less interest to note that learning at the hidden units may be suppressed in

networks with a very large number of hidden units relative to the number of

inputs. Thus, even if an alternative method exists, it is scant contradiction to the

second conjecture.

As for the third conjecture, there are few guarantees where the application

of a learning rule is considered, but since the positive results are only for simple

tasks, where learning is less likely to encounter problems like local minima, the

conjecture is strong. The appropriateness of the chosen hidden weights is

important, and is included in the analysis of the method. Since they are assumed

to be appropriate - specifically, well spread and adequately ranged - some learning

problems, like coupling, are eliminated. Hence, the statement about learning here

is about as reliable as any positive statement one can make about. learning.

Lastly, the conjecture was verified by experiment. Every system for which the

method applied also could learn the task with learning suppressed at the hidden

layer, and the learning was comparably fast, and yielded similarly small error.

Thus we have a thesis: learning may be suppressed at the hidden units of

three-layered neural networks, where the hidden weights are well-spread and

ranged, and the task is a simple function with domain equal to (0,1)m. To be

considered simple, the function must be approximable by a neural network using

the same transfer function. Learning may not be reliably suppressed in other

systems, particularly classification tasks, assuming a moderate number of hidden
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units.

And with the thesis, rather than a rigorous demonstration, we have three

sources of objection. The objections are valid and important to the understanding

of the thesis, and they should not be discounted. On the other hand, the grey

areas they introduce are far enough from the normal regions of interest in neural

networks to give confidence in the thesis for any "normal" application.

Identifying the grey areas where the thesis is weakest provides grist for the

researcher's mill. The objections raised above, and the conditionals in the thesis,

all point to important problems.

The first and second objections can be considered a challenge to find a

method of assigning weights to a network without utilyzing a learning rule. This

is probably impossible or at least impractical, but a modified version may be

considered, though it too is obviously very difficult. Given a set of weights which

does perform a task, find another distinct set of weights which also performs the

task. The z values evidently cannot be arbitrarily chosen, but perhaps it may be

possible to find full sets of weights. If so, headway may be made in research on

pruning, analysis of minima, and optimal architecture.

The third objection leads to questions about learning and reliability of

learning rules. Although general results are impossible, simplifying by accepting

as a task the approximation of a second, objective network, and suppressing

learning at the hidden units, results may likely be obtained which, if their scope is

not large, at least they fill a gap in the present thesis.

The conditionals in the thesis are that the z values be appropriate, and

that an objective function exist. The error bounds and the algorithm provide a
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means for analyzing the appropriateness of z values, and a further examination of

them may provide insight into optimizing them for faster learning. The question

of existence of an objective function is unanswered, particularly for continuous

functions, which have received less attention than classification problems, but

represent a large grey area. The number of units required for the system is also

unknown. For functions over the full interval, some progress seems attainable

here, which if produced would further reduce the uncertainty in this thesis.

This thesis provides some avenues for further research. The methods used

here also apply to some of these other problems. By using an objective function

which is assumed to already approximate the task, by approximating before the

final application of the tranfer function, by considering only a single output (since

multiple outputs are an obvious generalization for this particular problem), and

by utilying the additivity of inputs in conjunction with the additivity of

differentiation to allow consideration of each hidden unit individually, the problem

was considerably reduced. Investigating the internal workings of networks is

difficult. Simplifications such as these are valuable.

And the thesis also provides a basis for commentary on other research.

The results demonstrate that there is a clear qualitative and quantitative

difference between classification problems and approximation problems over the

full interval. Since, for the most part, learning in the latter may be suppressed at

the hidden layer, the interaction of the hidden units must be different, or at least

more complicated, in the former. Results for learning in one class do not

automatically apply to the other.

In sum, we have a thesis which is not unexpected, which has several

important limitations and objections. The thesis is sufficient to allow application
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to actual systems, and is well verified by experiment. The limitations and

objectives are not crippling, but further investigation of them would be

appropriate. The methods used in the thesis may also be useful in other research.
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Figure 1. A neural network. The network has three input

units, six hidden units, and two output units. Note that

it is not "feed-forward".

Each circle represents a node, each arrow is a

synapse. Although this diagram has no examples, it is

acceptable for a synapse to have the same input and output

node, thus forming a small loop, or for two nodes to be

connected by two synapses, one directed each way.
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Output Unit

Figure 2. A 1 - 2 - 1 feed-forward neural network.

Figure 3. A 2 - 3 - 1 feed-forward neural network.
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