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MEMBRANE ANALOGY FOR TWO-WAY SLABS

A two-way slab may be defined as a rectangular slab
supported on all four edges. It 1s frequently encountered
in the design field, since its most common use is in the
floors of buildings. When subjected to loads normal to
the surface, the two-way slab bends in two directions in
contrast to one-way slabs which are assumed to bend in
one direction, The interdependency of the bending in two
directions in the two-way slab makes it & highly indeter-
minate structure and difficult to analyze. These slabs
have been analyzed by rigorous mathematical approach and
investigated experimentally.

For design purposes the rigorous mathematical approach
is not used because its complicated nature renders it
impractical. Consequently, the designer resorts to codes
for more workeble information based on a combination of
the rigorous solution and tests of models and prototypes.
Thlis information 1s usually given in the form of bending
moment coefficlents. The bending moment coefficlents
obtained from mathematical analysis, based on the assump=-
tion that the maximum load is reached when the maximum
stress at any point reaches the yleld point of the material,
are more conservative than those found from tests. This
has been accounted for mainly by the added usable strength

attained from redistribution of stress caused by slight



yielding of portions of localized high stress.

Shown in Figure 1 1s a comparison of bending moment
coefficients of simply supported uniformly loaded two=-way
slabs derived from: 1) theoretical analysis by Timoshenko
(2, pe133); 2) a combination of experimental and theore-
tical analysis by Westergaard (3, p.431); 3) Method 1 of
the ACI Building Code (1, p.941); L) Method 2 of the ACI
Code (1, p.943).

The values given by Timoshenko (using a value of
0.3 for Poisson's ratio) are founded on rigorous mathe=
matical analysis with the assumption that no yielding
takes place. Westergaard, however, assumed Poisson's
ratio to be zero, and assumed a reduction in moment coef-
ficients due to localized ylelding. He also modified
theoretical results to obtain simpler mathematical expres-
slons,

The ACI code offers two methods for obtaining bend-
ing moments in twoeway slabs which differ considerably
in results. No reason is given for this difference and
elther method is stipulated to yleld an adequate design,

Models and prototypes have been tested using various
mechanical, optical and electrical strain measuring devices
giving varying test results. Some of this variance can
be attributed to errors in measuring small strains and

inadequacies in the test setup. The oplnions already
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formed by the experimenter affect his location of the
strain measuring devices and consequently affect the
results of the test, Important strains can go unmeasured
and their effects may be masked by inaccurate measurement
of small strains,

It is evident that the four sources of design infor-
mation cited will give four different solutions to the
same problem, This and limited basic strain information
made further investigation by a different approach the
objective of thnis thesis.

Considering the shortecomings of present approaches,
it was concluded that a concept of strain benavior on a
greatly magnified and more dependable basis quantitatively
was most desirable.

Foam rubber had been used successfully by Professor
Orville Kofoid in other investigations concerned with
stress concentrations. It was known to have a very small
flexural rigidity, a linear stress~-strain relationship,
and it was not inclined to creep at low stress levels.
From these known characteristics, foam rubber was considered
a very appropriate material for a model of a two-way slab
that would magnify strains to a large extent and on a
dependable basis. Consequently, a foam rubber model of
a two-way slab was constructed and tested.

In dealing with any material involving strains,

dependable stress-straln information i1s highly essential.



Therefore, a stress-strain test and a Foisson's ratio
test were made.

A one-way slab (or essentlally a beam) is not open
to question with respect to analysis and can be cuonsidered
a standard for deflections and membrane behavior by which
those of a two-way slab can be compared., Therefore, a
correlation test was also made on a one-way slab.

The assumption involved in determining the strain
behavior was based on the foam rubber slab models behaving
as uniformly loaded membranes. Thls allows the application
of the principle of the string polygon that the product
of the sag at any point and the constant hnorizontal force
equals the external moment. This principle is the key
to correlations between the known behavior of the one-way
slab and the unknown behavior of the two-way slab.

In the one-way slab the external moment can be
definitely calculated and gives & positive check on the
vallidity of the string polygon principle applied on the
basis of measured strains. Therefore, the application of
the string polygon principle in conjunction with measured
strains in the two-way sleb to arrive at external moments
is established as a dependable basic working tool in the

analysis of results,



DESCRIPTION OF TLETS AND MODELS

Stress=Strain Test

To obtain reliasble stress-strain information the
specimen has to be long enough to minimize the effect of
rapid neckdown at the ends and wide enough so that minor
imperfections in the material and unavoidable irregular-
ities along the cut edges have insignificant effects on
the test results., Conseguently, a sheet of foam rubberl
25 in. by 9 in. by 1l.06 in. was clLosen for a test specimen
and two sets of gage marks were centered on the specimen
five and ten inches apart.

Foam rubber, having & very low modulus of elasticity,
strains considerably for small increments of load and is
also very resilient. This required the stress-strain
test setup to provide good control, a high degree of sensi-
tivity, and a long travel distance. S8ince standard testing
machines do not fulfill these requirements, another means
of testing had to be sought. The use of a drill press
stand with minor modifications as a testing machine (shown
in Plate I) seemed to be most plausible in accomplishing
these ends.

Wooden loading blocks were glued firmly to the ends

lrhe foam rubber used for all tests and models was medium=-
firm Koylon, a product of U. 5. Rubber Company.



Plate I. Stress-strain test setup.
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of the specimen. The top block was pinconnected to a mast
bolted to a worm peared vertical travel assembly on the
drill press column. The bottom block was pinconnected

to a T-shaped hanger on which accurate brass welghts were
placed as increments of load.

Initially the hanger rested on the base of the drill
press stand. The mast was raised by the vertical travel
assembly inducing strain in the specimen. When this strain
became great enough to accomodate the applied load, the
hanger ceased to bear on the base of the stand. This con-
dition was accurately determined by using a plece of paper
under the hanger as a !{eeler gage. After the distance
between gage marks was found by reading from a steel engi-
neer's tape suspended from the top of the mast, another
increment of load was applied and the process repeated.

Figure 2 shows the stress-straln curve derived from
this testy from this, the modulus of elasticlty was found

to be 7.60 psi.

Poisson's Ratio Test

Poisson's ratio was found from testing a strip of
foam rubber 30 in. long and 1.08 in. square. Gage marks
five inches apart were centered on the specimen for the
determination of longitudinal strain. Transverse strains

were found from cross-sectional measurements. To minimize
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10
the effect of errors in small measurements, strain measure~
ments were taken at several stress levels and the results
averaged giving & Polsson's ratio of 0.257. (Note Table 1,

appendix).

Qne-way Slab Model

In considering the dimensions of the one-way slab
model, the span length must be long enough to allow the
glab to sag cunsiderably. It must alsobe wide enough to
minimize the effect of minor imperfections in the msaterial
and irregularities along the cut edges. From these criteria
and known stress-strain characteristics of the fuam rubber,
the model was c.nstructed using a sheet of foam rubber
29 in. by 19.33 in. by 1.08 in.

Plates II and 1II show the setup for testing the one=-
way slab model. The foam rubber slab was laid out flat
and completely relaxed on a removable platform. Wooden
edge supports glued firmly to the 19.33 in. edges were
pinconnectied to a rigid supporting frame so that the edges
were restrained from translation but were free to rotate.
The platform was then removed and the slab allowed to sag
under its own welight. Plate II shows the platform in
place and Plate I1I shows the platform removed. To obtain
deflections, the sliding scale of a tri-square was lowered

from the top of a solidly supported two-by-four spanning
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Plate II. One-way slab model,
platform in place.

Plate III. One-way slab model,
platform removed,
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the model until it came in contact with the rubber. These
deflections were read directly with the aid of a magnify-
ing glass from a steel scale to the nearest 1/100th of an
inch,

Intended deflections were measured along the center-
line of the slab, but because a transverse bow apreared
in the slab, deflections were also measured on a line
perpendicular to the centerline at midspan., These deflec~-

tions are recorded in Tables 2 and 3 of the appendix,

Two=-way Slab Model

Several c . ntrolling factors were considered in
arriving at the dimensions of the two-way slab model. The
purpose of the test, to determine the validity of the
membrane analogy for two-way slabs, dictated the use of
a simple but indicative case. Consequently, a square slab
simply supported on all four edges was considered with a
view to minimizing the variables and taking advantage of
symmetry. Again, as in the one-way slab, the span length
had to be great enough to allow considerable sag. A 29 in.
span length was assumed to yield the desired degree of sag
and would also facilitate correlation with the one-way
slab, FEased on these criteria, a square sheet of foam
rubber 29 in, by 29 in. by 1.06 in. was used for the model.

Piates IV and V illustrate the test setup for the

two-way slab model.



Plate IV.

Plate V.,

Two-way slab model,
platform in place.

Two-way slab model,
platform removed.

13
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To provide a sound basis of correlation, the procedure
followed in testing the two-way slab paralleled that used
in testing the one-way slab.

The foam rubber slab was laid out flat and completely
relaxed on a removable platform. Four wooden edge supports,
glued firmly to the four edges of tne slab, were pine
connected to a rigid supporting frame restralning the edges
from translation but leaving them free to rotate. The
platform was then removed and the slab was allowed to sag
under its own weight.

The method used to determine deflections was the
same as the method described in the one-way slab test.

Deflections were measured along the diagonal lines
connecting the corners and on lines perpendicular to the
edges., These deflections are recorded in Tables L4, 5 and

6 of the appendix.



ANALYSIS OF TeSTS

Basic Method of Analysis

The basic tool used for analysis in the membrane
analogy is the application of the string polygon principle

as shown in the following:

et

A
)

= arc length of strip

= thickness of strip

T o O

= width of strip

=

= modulus of elasticity of foam rubber

Since the slab was originally flat and relaxed, the
total strain in a strip of the unsupported slab acting as
a membrane 1s then the difference between t he arc length
S and the span length L. This divided by the span length

gives the average unit strailn e in the strip.

Cave ¢



The unit strain at midspan ey 1s the product of egyg

and L/S.

S-L
e =
H o =

wie

The unit stress f at midspan is the product of ey

and the modulus of elasticity E.

S-L L
F st 3

E

The total horizontal force Ty in a strip b" wide
and t" thick is the product of the unit stress f and the
area bt of the strip.

Ty =82k L B oo
L 8

From the string polygon principle, the external
bending moment M, due to the weight of the membrane, at
a point in the strip is the product of the constant hori-

zontal component of tenslon Ty in the strip and the sag

D at that point.

M=3S=L L EptD (3)
L S

One-way Slab

The deflections of the top surface of the one-way
slab along centerline were found to be well defined (with

an average deviation of 0.006 inches) by the expression:

Y = 0.0116x2

16

in
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considering the origin of the coordinate axis at the top
surface of the slab at midspan. (Note Fig. 3 and Table 2).
Adjusting this to describe the line of tension yielded
the expression:

Y = 0.0118x2
with the origin midway between the top and bottom surfaces
at midspan,
Letting x = %. = 145" = A
Sag at midspan is 2.48" =D
the arc length S is then found by substituting these values

of A and D into the equation:

s ={a2 + yo2 + %g Ln (a2 + 2 + 2p (y)t
“A2 + b2 - 2D

S = 29.56".

Taking & 1" strip and substituting into the formula:

(1)

=
"
[ ¥2]
]
=
It
=
o
ct
o

CEHNWea T
nuwwnoaH
n
Ne)

\n
o

=2

M= 0.3861“#
The moment at midspan calculated by the standard formu-

la is sl.own for comparison:

lThe derivation of this equation is given in the appendix.
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P
T

w = uniform load of 0.00368#/in
M = 0.387in#
This close correlation confirms the assumption that
the foam rubber slab acts as a uniformly loaded membrane
and forms a basis for sound analysis by the string polygon

principle,

Two-way Slab

The deflections of the top surface of the two-way
slab along centerline were found to be well defined (within
an average deviation of 0.007 Inches) by the expression:
Y = 0.,0088x2
considering the origin of the coordinate axis at the top
surface of the slab at midspan. (Note Flg. L and Table L).
Adjusting this to describe the line of tension yielded
the expression:
Y = 0,00855x2
with the orlgin midway between the top and bottom surfaces
at midspan.
Letting x = % = 14.5" = A
Sag at midspan is 1.80" = D
the arc length S is then found by substituting these values

of A and D into the equation:



DEFLECTION IN INCHES

Figure l.
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s=|A2+uD?—+.&.2.Ln HF*e*hDZ*aD (4)
uD UAa + uDz - 2D

S = 29.297"

Taking a 1" strip and substituting into the formula:

M= S=L % EbtD (1)

UEptiaco
HH MWW NH
n
0
=

M = 0.,147in#
= 0,04 74wL2
This value compares favorably to the moment coef-
ficlent 0.0479 given by Timoshenko (2, p.1l33) for & square
plate with a Poisson's ratlio of 0.30.
The other deflections taken were used to construct

the contour map of the sagged specimen shown in Figure 5,
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DISCUSSION

It is interesting to note that sags along perpendi-
cular lines from the edges other than at midspan in the
two-way slab were very consistent. For example, the
deflections of the top surface along the lines at the
quarter points were found to be well defined by the
expression:

Y =0.00234x2.k |
with an average deviation of 0.005 inches. (Note Fig. 6
and Table 5).

The deflectlions along the diagonal from the corners

were also consistent, conforming to the expression:

Y = 1.05 (1 - cos6.9x)
with an average deviation of 0,007 inches. (Note Fige. 7
and Table 6).

A visual inspection of the two-way slab model in the
corners gives an insight as to placement of reinforcing
in the corners (note contour map, p.22). The curvature
parallel to the diagonal from the inflection point is con-
vex upward indicating negative moment in this direction.
For tihis condition, reinforcement would be placed in the
top of the slab parallel to the diagonal extending to the
inflection point. The curvature perpendicular to the

diagonal is concave upward indicating positive moment in
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a6
this direction. This requires reinforcing placed perpen-
dicular to the diagonal in the bottom of the slab. The
point of inflection occurred 7.95 inches from the corner
corresponding to 5.63 inches from each edge or 19.4 per-
cent of the span length.

These observations compare closely to the specifica-
tions set forth in the ACI Building Code, paragraph 709b,
(1: p.94l) which states:

Where the slab is not securely attached to the
supporting beams or walls, speclal reinforcement
snall be provided at exterior corners in both the
bottom and top of the slab., This reinforcement
shall be provided for a distance in each direction
from the corner equal to one-fifth the longest span.
The reinforcement in the top of the slab shall be
parallel to the diagonal from the corner. The rein-
forcement in the bottom of the slab shall be at
right angles to the diagonal or may be of bars in
two directions parallel to the sides of the slab.
The reinforcement in each band shall be of equiva-
lent size and spacing to that required for the maxi-
mum positive moment in the slab.

Plate VI shows a transverse bow that appeared in the
one-way slab specimen when it sagged. This bow was due
to the difference in stress between the top and bottom
of the specimen.

From Figure 8 it is seen that the arc distance between
the edge supports on the bottom surface is longer by 28!
than the distance along the top surface., This caused the
strain in the bottom fibers to be greater than that in

the top fibers. A lateral strain e' accompanies a



Plate VI.

Transverse bow in
one-way slab model.
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longitudinal strain e, the ratio of e'/e being Poisson's
ratio u. Since the top fibers were strained less than
the bottom, the la teral strain in the top was correspond-
ingly less than the lateral strain in the bottom. This
caused the specimen to have a transverse bow convex upward,

The difference in strain between the top and bottom

longitudinal fibers is thens

op = 25
Lo
2(0.36
e, = = 0.0252 in/in
D 2 52 in/

The difference in unit strain between t he top and

bottom transverse fibers 1s

eDl = ZST'
L
ep' = 2(0.063) = 0.0065 in/in
19.33

Dividing aD' by ep

°n’ _ 0.0065

e ]
2 = 0.258
€D
This value compares favorably to the experimental

value of 0.257 obtained from the Polisson's ratio test.
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From this it is logical to econclude that this same
action takes place in a beam, but 1s more pronounced in
a slab, If this bow is restrained from occurring as in
the case of an infinitely long two-way slab, the moment
induced in the long span will be the product of Poisson's
ratio and the moment in the short span; since stress 1s
proportional to strain which is in turn proportional to
the bending moment M.
My = uMg
My, = moment in long span
Mg = moment 1n short span
u = Folsson's ratio
The moment at midspan of a uniformly loaded infinitely

long two-way slab then becomes

ML'\IEEAE
8
w = load #/in
Lg = length of short span in inches
If the difference in strain between the top and bottom

fibers in the longltudinal direction is constant through-
out the width of the specimen, the curvature of the trans-
verse bow would also be constant. This leads to the
assumption that the bow is circular. To investigate this

assumption, perpendiculars to tangent lines at the edges

were projected. The length of the perpendicular lines
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from the tangent points to their point of intersection
were taken as the radius of curvature. This value was
found to be 164.9" and substituted into the type equation

for & circle yielded the expression:

Y = Y164.92 - x2 - 164.9
This equation was found to describe the transverse bow
with an average deviation of 0.006 inches. (Note Fig. 9
and Table 3). Since the subtended angle is very small,
it would appear as though changing the value of the radius
would not affect Y apprecliably, however, a change of one
inch alters the calculated deflections by approximately
one percent.

As stated previously, it was desired to find a method
for experimental analysis of the two-way slab that would
greatly magnify strains on a dependable basis. The very
consistent results obtained from the tests show that these
ends have been attained. The bending moment coefficlents
derived from the membrane analogy closely parallel those
derived from rigorous mathematical analysis by Timoshenko.
The experimental data taken were consistent to the degree
that equations could be written describing the deflections
of the slabs., The low modulus of elasticity of the rubber
allowed greatly magnified strains which provided an insight
into the basic actions which take place in both the one-way

and two-way slab, For example, the transverse vow,
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revealing the effect of Poisson's ratio on slab behavior,
would probably have gone unnoticed without this magnifi-
cation. A visual inspection of t he sagged membrane also
provided an insight into the particularly complex stress
conditions of the corners.

From the results obtained in this investigation
it appears that the membrane analogy would be of use not
only in the analysis of other two-way slabs with varying
length to width ratios, but the concepts used therein
could possibly be extended to the analysis of other complex
or unusual problems for which the solutions are question-

able or nonexistent.
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CONCLUSIONS

From the results of this study the following conclu-
sions are presented:

l. The membrane analogy has provided a new and
reliable method for experimental analysis of the two-way
slab on both a qualitative and cuantitative basis.

2. The membrane analogy is further substantiated
by the close agreement of bending moment coefficients
derived from tne analogy with those derived f rom rigorous
matnematical analysis by Timoshenko.

3. The derived matuhematical expressions des~-
cribing measured deflections verify thne consistency of the
data and substantiate the dependability of the membrane
analogy.

4j. The transverse bow which appeared in the one-
way slab revealed tune importance of FPoisson's ratio in the
analysis of slab behavior,

5. The use of foam rubber models shows promise
in being extended to the analysis of other complex stress

problems.
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Table 1. Poisson's ratio test.

Perpendi- Longltu-

Reading Width Length cular dinal Poisson's
in. in. Strain Strain Ratio
in/in in/in (u)
1 1.08 5.00 0 0
L 1.05 5.53 0.0278 0.108 0.257
5 1.04 S.Th 0.037 0.148 0.250
6 1.03 5.93 0.0463 0.186 0.249
7 1.02 6.02 0.0556 0.204 0.273
8 1.01 6.18 0.0648 0.236 0.275
9 1.00 6.40 0.0742 0.280 0.265
10 0.95 7450 0.1202 0.50 0.241

mean value 0.257




Table 2. Deflection of top surface of one-way
slab along centerline.

X Y
(Distance from {Deflection)
Midspan) Experimental Formula®* Deviation*

in, in, in,

0 0 0 0
1 0.01 0.01 0.00
3 0.10 0.10 0.00
5 0.29 0.29 0.00
;i 057 0457 0.00
9 0.95 0.94 0.01
11 1.38 1.40 0.02
13 1.97 1.96 0.01
14.32 2.41 2.40 0.01

*y = 0.0116x2

+Average deviation 0,006



Table 3. Deflections perpendicular to centerline

at midspan of one-way slab, (Transverse
bow)
X & 4
(Distance from (Deflection
Centerline) Experimental ormula®* Deviation®
in, in. in.
0 0.00 0.00 0.00
2 0.02 0.014 0.006
L 0.06 0.05 0.01
6 0.12 0.12 0.01
8 0.20 0.197 0.003
9 0.25 0.245 0.0085
9.6 0.29 0.280 0.01

by = \/(16&.9)2 - x2 - 164.9

*Average deviation 0.006



Table 4.

Deflection of top surface of two-way
slab along centerline.

X Y

(Distance from (Deflection)

Center) Experimental Formula®* Deviationt

in, in, in,
0 0 0 0
: 8 0.02 0,01 0.01
3 0.08 0.08 0.00
5 0.22 0.22 0.00
7 0.43 0.43 0.00
9 0.73 0.72 0.01
11 1.09 1.07 0.02
13 1.52 1.49 0.03
14.38 1.82 1.82 0.00
15.2 2.03 2.03 0.00

*Y = 0,0088x2

*Average deviation 0.007
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Table 5. Deflection of top surface of two-way
glab along lines at quarter points.

(Distaﬁce from (Derlegtion)
Centerline) Experimental Formula™ Deviationt
in, in, in,
0 0 0 0
1 0.01 0.02 0.01
3 0.05 0.033 0.02
5 0.11 0.11 0.00
7 0.25 0.25 0.00
9 0.47 0.46 0.01
11 0.74 0.74 0.00
13 1.10 1.10 0.00

*v = |0.0023yx2+4

*Average deviation 0.005



Table 6. Deflection along diagonal from corners

of two=-way slab,

(Distaﬁco from (Deflaztion)
Center) Experimental Formula® Deviation®

in, in, in,

0 0 0 0

2 0.01 0.03 0.02
n 0.10 0.11 0.01
6 0.25 0.26 0.01
8 0u45 0.45 0.00
10 0.68 0.67 0.01
12 0.91 0.92 0.01
1l 1.18 1.18 0.00
16 1.42 l.42 0.00
18 1.63 1.63 0.00
20 1.82 1.83 0.01

¥ = 1.05 (1 - cos86.9x)

+Avarage deviation 0,007

y2



Table 7. Stress=strain test.

Strain

Stress
(10" gage)

pea in/in
0.2165 0.035
0.374 0.048
0.480 0.060
0.586 0.074
0.694 0.089
0,800 0.101
0.906 0.116
1.013 0.130
1.120 0.145
1,228 0.160
l.441 0.176
1.548 0.210
1,652 0.228
1.759 0.245
1.868 0.263
1.974 0,280
2.080 0.302
2.185 0.325
2.295 0.350
2.400 0.37
2.507 0.39
2.615 0.421
2.721 0.4446
2.835 0.4472
2.941 0.500
3.05 0.530
3.16 0.562
327 0.591
3'38 0.638
3.49 0.668
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DERIVATION OF FORMULAS FOR FINDING THE ARC
LENGTH OF A LINE

The deflections along perpendicular lines from the

edges were found to be describable by equations of the

type:

(2)

To obtain the strain in a strip along one of these

lines, the arc length 8 has to be found. This arc length

bl

can be found arithmetically, graphically, or analytically.

The analytical solution was used because it is more exact

and involves less calculation once the formulas have been

derived, Derivations of these formulas follow:

For a differential length of arc

as2 = dax2 + ay2

ds = 1+(£x)2 dx
ax

%% = g% xn=-1
A

n

S -f\/l +(..@. xﬂ“l)z dx (3)
AD

>

s = \/1 +(_n,f_> ::n-l)2 ax




us

For a parabolic arc, n = 2

Letting 20 = 1
22 K

A
=1 \[mdx
K
-A

=1 [j V Ka + x2 + Ka in x ﬂ K2 + x@ J
K

\}A2+L|D2 -|-a“\2 1n VA2 + D2 + 2D (4)
\’Aa + 4D2 - 2D

A = one-~half the span length

-A

D = gag at midspan

It is seen that the exact soclution for the length

of arec 1s a rather cumbersome expression. The solution

for a parabolie arc involves square roots and logarithms

and the general solution has a repeating integral. This

led to the following derivation for a series that could

be easily applied and also give accurate wvalues for S:

Expanding by the binomial series the expression

1+ [Dn xn-1)2
AR

in the differential equation

ds = \Il + (2‘1 xﬂ‘l)a dx
An



46

48 = | 1 + 1 néD@x2n~2 . 1 phphxhn=4
AZn B Ah’n

+ 1 nbpbxbn-6 . nOpBxbn=8 | 4x
IE Asﬂ Agn

Integrating this expression between the limits of <A and

+A and letting A equal L/2 yielded the expression:

2 b
S =1L 1l + 1 (20D)€ - 1 gg%§1
[ 2(2n-1) L 8(n=3)
—l————l—-s)—ann 6 ‘—-L—.‘—E.J—znb 8 TR (5)
‘ 16(6n=5) L 128(8n-7) L J

S = Length of are vetween
X = 4+ A of the expression

L = gpan length
D = gag at midspan

Thie series is easily applied and gives accurate values

for 8 for curves of tne types

D n
Y = S x

n>1
anb <L





