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Autonomous	vehicles	(AVs)	may	have	the	potential	to	mitigate	a	significant	

proportion	of	serious	crashes	which	are	due	to	human	error	or	poor	decision	making	

behind	the	wheel.	However,	there	are	still	many	concerns	associated	with	SAE	Level	3	

AVs	that	require	intervention	by	a	human	driver	after	a	take‐over	request	(TOR).	This	

concern	intensifies	when	vulnerable	road	users	such	as	bicyclists	are	introduced	to	the	

driving	environment.	The	objective	of	this	research	was	to	investigate	how	human	

drivers	interact	with	bicyclists	during	a	right‐turn	maneuver	after	receiving	a	TOR.	

Changes	in	driver	performance,	including	visual	attention	and	crash	avoidance,	were	

measured	using	a	high‐fidelity	driving	simulator.	Forty‐three	participants	each	

completed	18	right‐turn	maneuvers.	The	time	to	react	between	the	TOR	and	the	

intersection	and	bicyclist	position	on	the	approach	to	the	intersection	were	varied.	A	

distracting	secondary	task	on	a	tablet	was	also	introduced.	In	general,	the	results	show	

the	secondary	task	led	to	decreased	driver	performance	with	respect	to	time‐to‐

collision	and	the	time	it	took	a	driver	to	first	identify	the	bicyclist	on	the	roadway.	When	

given	more	time	to	react	before	the	intersection,	drivers	generally	had	safer	interactions	

with	the	bicyclist.	 	
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1. INTRODUCTION 

Over 94 percent of serious crashes are due to human error or poor decision making 

behind the wheel (NHTSA 2018). Driver assistance systems and autonomous vehicles (AVs) 

seek to address some of the safety issues caused by human drivers. Many of the driver 

assistance systems that are in current use, such as collision warning and avoidance systems, 

lane keeping systems (LKS), and adaptive cruise control (ACC) have been shown to help 

drivers avoid crashes and improve driver safety (for example, see Sayer et al. 2011).  

However, there are still many concerns with adding increasingly complex levels of 

automation in the driving environment. One major concern is how AV will interact with 

multimodal traffic in urban environments. Bicyclists are extremely vulnerable in the 

roadway environment, with 840 deaths occurring in the U.S. in 2015 (FARS 2018). Experts 

in human factors and AVs are apprehensive about the interactions that will occur between 

AVs and bicyclists, and believe that more research is needed in this area (Kyriakidis et al. 

2015).  

Currently, one of the more prevalent types of vehicle-bicycle crashes is the right-

hook (RH) crash, where a right-turning motorist strikes an adjacent, through-moving 

bicyclist (Figure 1.1). For example, in Oregon between 2007 and 2011, over 59% of the total 

vehicle-bicycle crashes at signalized intersections were RH crashes (Hurwitz et al. 2015). In 

a simulator study involving 41 participants, it was found that one of the major contributing 

factors to dangerous RH crash scenarios was a lack of situational awareness (SA), with the 

majority of participants not identifying the bicyclist near the intersection (Jannat 2014). 
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Figure 1.1 Right-hook crash during the latter green phase at a signalized intersection 
(Warner 2015) 

While numerous engineering treatments have been designed to make bicyclists 

more visible at intersections (such as signage, pavements markings, and geometric design), 

these were created for drivers that are engaged in the driving task and aware of their 

surroundings, which may not be the case for many drivers of AVs. This was demonstrated 

by a recent collision between a self-driving Uber and a pedestrian walking a bicycle across 

the street in Arizona (Griggs and Wakabayashi 2018).  
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2. LITERATURE REVIEW 

To help identify the human factors challenges associated with AVs, a comprehensive 

literature review was conducted on the current state of the research. While significant work 

has been published in the AV realm, very little of it has focused on the impact to pedestrian 

and bicyclist safety. This chapter pulls together the relevant work on AVs and bicyclist 

safety. 

2.1. Levels of Automation 

A discussion of AVs cannot take place without first classifying the different levels of 

automation. In this sense, hierarchical models of automation become extremely important. 

Traditionally in the literature, there are three main systems that can be used to classify 

autonomous vehicles: German Federal Highway Transportation Institute (BASt), National 

Highway Traffic Safety Administration (NHTSA) and Society of Automotive Engineers (SAE) 

(Gasser and Westhoff 2012; NHTSA 2013; SAE 2016). The U.S. Department of 

Transportation’s guidance document “Federal Automated Vehicles Policy” states that 

manufacturers should ensure that their vehicles conform to SAE J3016 automation levels 

(NHTSA 2016). NHTSA’s website on automated vehicles also references the SAE automation 

levels and therefore, the SAE classification system will be adopted for this research (NHTSA 

2018). 

SAE defines levels of automation on a scale from zero to five. The zero state includes 

no automation. Level 1 (L1: Driver Assistance) and Level 2 (L2: Partial Automation) require 

humans to monitor the driving environment while Level 3 (L3: Conditional Automation), 

Level 4 (L4: High Automation) and Level 5 (L5: Full Automation) allows for the AV system 

to monitor the environment (Figure 2.1). However, L3 and L4 provide numerous human 
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factors challenges for engineers. At these levels, there will be need to transition control of 

the driving task from the AV back to the human, potentially on many unforeseen occasions 

or in specific locations, due to the limitation of the AV system. This can be difficult for 

numerous reasons, which will be discussed further in following sections. 

 

Figure 2.1 SAE levels of automation (SAE 2016) 

In the U.S., there are numerous manufacturers pursuing AV technology deployment. 

In California, a state with a more robust regulatory system in place for public testing of 

autonomous vehicles, there were 47 manufacturers licensed to test autonomous vehicles as 

of December 2017 (California DMV 2017). Based on the disengagement reports submitted 

by these private companies in 2017, many of the vehicles that are being tested appear to 

classify as L3 automation.  
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One famous example of automation is the Waymo (Google) AV. In 2017, Waymo 

reported 63 disengagements of the automation on public roads in California out of over 

352,000 miles of driving (Waymo 2017). This represents just 0.2 disengagements per 

thousand miles, only a fourth of the rate from 2015. However, of those 64 disengagements 

in 2017, the vast majority (57) occurred on urban streets, highlighting the difficulty of these 

complex driving environments. A Mercedes-Benz vehicle that was tested on public roads in 

California faced similar issues in 2016. All of the vehicle’s 673 miles of driving was 

completed on urban streets (no highway driving), with over 336 disengagements, for a rate 

of nearly one disengagement every two miles (Mercedes-Benz, 2016). 

With the potential for high rates of disengagements and transitions of control, it is 

important to understand the human factors aspects associated with automation. 

2.2. Human Factors Issues with Automation 

While L5 automation may bring about numerous safety and efficiency advantages to 

our surface transportation system, there are many human factors-related challenges 

associated with AV implementation, especially L3 and L4 automation. In a study of attitudes 

towards automation in the US, UK, and Australia (N=1533), safety was a concern for over 

75% of respondents (Schoettle and Sivak 2014).   

One way to examine human factors and driver behavior in a safe and controlled 

environment is through driving simulation in a laboratory setting. While some researchers 

note fidelity issues with certain simulation platforms, particularly fixed-base simulators in 

addressing certain types of research questions (e.g. De Winter et al. 2016; Neubauer et al. 

2010), many others note the important benefits that simulation provides (Bellem et al. 

2017; Burnett et al. 2017; Wang et al. 2010).  



 

 

6 

Specifically, driving simulation has been validated for evaluating research questions 

related to AV driving. For example, Bellem et al. (2017) found that moving-base driving 

simulators could be a useful tool to evaluate driving comfort in AVs. Driving simulation has 

also been shown to be an appropriate method for studying AV transitions of control. 

Eriksson et al. (2017) found strong positive correlations in driver behavior when comparing 

non-critical transitions of control in a driving simulator with on-road driver performance in 

a L2 autonomous vehicle. No significant differences were found between the two with 

regards to workload, driver performance, or perceived usefulness and satisfaction of the 

systems, indicating that driving simulation can be a reliable tool when evaluating AV 

capabilities.  

Previous research has utilized driving simulation to evaluate AV safety. With regards 

to safety, two related concerns with L3 AVs include driver distraction and transitions of 

control. 

2.2.1. Driver Distraction and Secondary Task Engagement 

AVs are designed to lighten the cognitive load on drivers as the level of automation 

increases. However, driver distraction and fatigue become more prominent issues with 

increasing automation. When the driver has a low cognitive load and does not have direct 

control over the driving task, passive fatigue may result (Desmond and Hancock 2001). 

Increased vehicle automation has been demonstrated to reduce driver vigilance, as 

indicated by slower responses to critical events (Cunningham and Regan 2015). 

As automation increases, drivers are also more likely to engage in secondary tasks. 

In a driving simulator study, researchers demonstrated that drivers were more prone to 

engage in secondary tasks (such as reading, watching a movie, etc.) and to look away from 
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the road for extended periods of time (Merat et al. 2012). This led to longer take over times 

and less safe autonomous driving, as measured by response time to critical events.  

Zeeb et al. (2015) analyzed gaze behaviors of 89 participants in a moving base 

driving simulator study and found similar results. During the time-critical take-over 

requests, drivers with poor monitoring behavior reacted more slowly and more incorrectly 

than drivers who more regularly monitored the road. There also did not appear to be an 

upper limit for how long a driver is willing to look away from the road, even when drivers 

were informed that the automation could fail and require the drivers to take over control of 

the vehicle (Zeeb et al. 2015). 

2.2.2. Transitions of Control 

The importance of research into transitions of control cannot be understated. In a 

very public pilot of L3 technology, Uber began running AVs in the City of Pittsburg and the 

City of San Francisco in 2016. Within the first few days of the San Francisco pilot, there 

were reports of Uber AVs running red lights (Isaac & Wakabayashi 2017). This error was 

blamed on the vehicle’s operator. Despite the specific training that the operator received to 

monitor the system and respond to a takeover request (TOR), there were still adverse 

events associated with this technology.  

In the Schoettle and Sivak survey (2014), 26% of US respondents were “very 

concerned” about vehicle performance in unexpected situations, where a TOR might be 

necessary. There is strong evidence that if automation fails unexpectedly, almost all drivers 

will crash, but a timely warning allows most drivers to avoid collisions (De Winter et al. 

2014).  
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One major issue associated with TORs is the time that it takes drivers to re-engage 

with the driving task after a period of low cognitive load. Preliminary research by Louw et 

al. (2015) and Gold et al. (2013)  has shown that driver reengagement may take between 5 

and 7 seconds. In a driving simulator study in a highway environment, Merat et al. (2014) 

demonstrated that for non-critical transitions, it takes drivers 30-40 seconds after the 

transition of control to stabilize their lateral position when the transition of control would 

occur randomly. Even when the transition was more systematic and predictable, it still took 

drivers nearly 10 seconds to stabilize their lateral position, based on the standard deviation 

of lateral position. 

Mok et al. (2015) varied the transition of control time to a road hazard (a 

construction zone on a curve), finding that two seconds to the road hazard was not 

sufficient time for the driver to regain control of the vehicle and react. While five seconds 

was sufficient, drivers felt more comfortable when the transition time between autonomous 

driving and manual driving was longer, at eight seconds. While based on a relatively small 

sample size (10 participants for each transition time), these results give an example of the 

amount of time necessary for distracted drivers to react in an unstructured transition of 

control. 

Miller et al. (2014) evaluated different levels of automation and measured the post 

transition reaction time after a pedestrian incursion onto the roadway. The authors found 

that steering was strongly associated with reaction time, with automated steering leading to 

significantly longer reaction times than other automations modes, including highly 

automated driving. The authors theorized this was due to a lack of drivers understanding of 

the limitations of automation. 
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Another driving simulator study evaluated driver performance where intervention 

was required more frequently. De Winter et al. (2016) introduced an automation failure 

rate of approximately every three minutes. They found that although automation lowered 

the physical and mental demand of the participants, drivers still seemed to be alert 

throughout the experiment, responding to critical events correctly. Drivers were much 

more frustrated with this level of automation than with other studies with a more 

consistently correct AV. 

Simulator studies involving AVs, including the ones summarized in the sections 

above, have typically focused on highway driving, not urban streets where interactions with 

other road users, such as bicyclists, could be extremely dangerous. In interviews with 

twelve experts in the human factors field of automated driving, the experts emphasized the 

importance of additional research on the interaction of AVs with other road users as well as 

human behavior during automation transitions of control (Kyriakidis et al. 2017). 

2.3. Multimodal Conflicts 

One major concern with AVs are how these vehicles will interact with multimodal 

traffic in an urban environment. This concern was brought up by numerous human factors 

researchers in Kyriakidis et al. (2017). Despite the importance of these new, potential 

interactions between L3/L4 AV and bicyclists, few studies have considered this topic. The 

studies that do exist typically only address the topic from the point of view of the bicyclist.  

For example, Blau (2018) conducted a stated preference survey of 767 respondents. 

In general, both cyclists and pedestrians preferred separated facilities but this preference 

was heightened in a future scenario that included AVs. Hagenzieker et al. (2016) showed 

bicyclists images of bicycle-vehicle interactions with manual and autonomous vehicles. 
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Bicyclists were asked whether they thought they would be noticed by the vehicles and the 

action they would take in each scenario. In general, bicyclists took a conservative approach, 

believing that they would not be seen by the AV any more than by a driver in a manually 

driven vehicle. However, this is not always the case. In a case study of WEpod AVs (small, 

low-speed shuttles), pedestrians and cyclists felt slightly more comfortable around these 

vehicles compared to traditional motor vehicles (Rodriguez et al. 2016). This comfort with 

the AVs was attributed to the WEpods maintaining a low speed (15 km/h) and the presence 

of a human driver behind the wheel monitoring the system. This trust in the combination of 

autonomous and human driving could become problematic if the human driver becomes 

distracted and is no longer ready to respond to pedestrians or bicyclists on the roadway.  

With research on AVs and human behavior demonstrating reduced driving 

performance, autonomous driving transitions of control could become important factors in 

RH crashes at signalized intersections. 

2.4. Research Questions 

Based on our review of the literature, there are gaps in human factors research 

related to AVs, especially in multimodal, urban environments. To help address these gaps in 

knowledge, six research questions were identified during the literature review process. 

These questions guided the development of experimental procedures. 

2.4.1. Collision Avoidance 

Time-to-collision (TTC) is defined by Gettman et al. (2008) as the expected time for 

two vehicles to collide if they remain at their present speed and path. TTC is an important 

measure of the likelihood of a collision. Generally, vehicle-bicycle interactions with a TTC of 

two seconds or less is considered a conflict (Sayed et al. 2013). A driver’s yielding behavior 
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also plays an important role in collision avoidance. With this in mind, four research 

questions were proposed.  

o Research Question 1 (RQ1): Is the driver’s decision to yield to a bicyclist influenced 

by the proximity of the vehicle to the intersection at the time of a TOR?  

o Research Question 2 (RQ2): Is the driver’s decision to yield to the bicyclist 

influenced by driver involvement in a secondary task prior to a TOR at a signalized 

intersection?  

o Research Question 3 (RQ3): Is TTC affected by driver involvement in a secondary 

task prior to a TOR at a signalized intersection? 

o Research Question 4 (RQ4): Is TTC affected by the proximity of the vehicle to the 

intersection at the time of a TOR? 

2.4.2. Visual Attention 

The visual attention of motorists can provide direct evidence of whether a driver 

recognizes and anticipates a hazard, in most cases (Fisher et al. 2011). As such, visual 

attention will be measured to assess the following research questions.  

o Research Question 5 (RQ5): Is the visual attention of a right-turning driver 

influenced by the proximity of the TOR to a signalized intersection? 

o Research Question 6 (RQ6): Is the visual attention of a right-turning driver at a 

signalized intersection influenced by driver involvement in a secondary task prior to 

a TOR? 
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3. METHODOLOGY 

This chapter describes the equipment and experimental design that were used to 

evaluate the research questions in the Oregon State University (OSU) driving simulator. The 

approach for this experiment is grounded in accepted practice (Fisher et al. 2011) and 

leverages unique research capabilities at OSU. Two primary tools were used for this 

experiment, the OSU driving simulator and the Applied Science Laboratories (ASL) eye-

tracking system. 

3.1. OSU Driving Simulator 

The full-scale OSU driving simulator is a high-fidelity motion-based simulator 

comprising a full 2009 Ford Fusion cab mounted above an electric pitch motion system 

capable of rotating ±4°. The vehicle cab is mounted on the pitch motion system with the 

driver's eye point located at the center of the viewing volume. The pitch motion system 

allows for accurate representation of acceleration or deceleration (Swake et al. 2013). 

Three liquid crystals on silicon projectors with a resolution of 1,400 × 1,050 are used to 

project a front view of 180° × 40°. These front screens measure 11 ft. × 7.5 ft. A digital light-

processing projector is used to display a rear image for the driver’s center mirror. The two 

side mirrors have embedded LCD displays. The update rate for projected graphics is 60 Hz. 

Ambient sounds around and internal sounds in the vehicle are modeled with a surround 

sound system. The computer system includes a quad-core host running Realtime 

Technologies SimCreator Software (Version 3.2) with a 60-Hz graphics update rate. The 

simulator software is capable of capturing and outputting accurate values for performance 

measures (speed, position, brake, and acceleration). Figure 3.1 shows views of the 

simulated environment created for this experiment from inside (left) and outside (right) the 

vehicle. 
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Figure 3.1 Simulated environment in the OSU driving simulator, from the participant’s 
perspective inside (left) and from outside (right) the vehicle. 

The full-scale driving simulator is controlled from the operator workstation. The full 

driving simulator is located in a separate room from the desktop development simulator 

and the full simulator operator workstation. This separation prevents participants in the 

vehicle from being affected by visual or audible events from researchers during the 

experiment. 

3.1.1. Autonomous Displays and Controls 

The driving simulator is updated with an AV software package controlled by Java 

Script, SimDriver V2. The automation is turned on and off through a button push on the 

steering wheel of the vehicle. It can also be controlled through sensors coded in the virtual 

environment. 

The virtual dashboard of the vehicle was updated using Altia Design to 

accommodate the new SimDriver functionality. Figure 3.2 shows the dashboard displayed 

inside the vehicle. Four different displays (Figure 3.3) were added to the vehicle dashboard 

to indicate the four different states of the autonomous vehicle during the experiment: 

manual driving, automation on, TOR and automation off. The displays were shown in this 
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order to participants throughout the experiment. All the images were static except for the 

TOR indication, which was a dynamic image designed to show hands grabbing towards the 

steering wheel with a countdown of three seconds.  

 

Figure 3.2 Dashboard display 

 

Figure 3.3 Central dashboard display (manual, automation on, TOR and automation off) 

The TOR indication was accompanied by an alert sound following NHTSA research 

on auditory alerts in vehicles (Singer et al. 2015). The alert beeped three times before giving 

verbal guidance to the driver on how to proceed. 

3.1.2. Virtual Environment 

The virtual environment was developed by using Simulator software packages, 

including Internet Scene Assembler (ISA) (Version 2.0) and SimCreator. The simulated test 

tracks were developed in ISA by using Java Script-based sensors that controlled the motion 

of bicycles and ambient traffic. The environment was designed to replicate a typical urban 
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roadway with a 30 mph speed limit. The roadway cross-section consisted of two 11-foot 

travel lanes, two 6-foot bikes lanes and two 7-foot parking lanes, one in each direction 

(Figure 3.4). When a bicyclist was present in the environment, the bicyclist always traveled 

at 16 mph. Higher bicyclist speeds are more difficult for drivers to project into the future 

and lead to more dangerous right-hook crash scenarios at signalized intersections (Jannat 

2014). 

 

Figure 3.4 Roadway cross section 

3.2. Eye Tracker 

In conjunction with the driving simulator, an eye-tracking system was used to 

record where participants were looking while driving in the simulator. Eye-tracking data 

were collected with the ASL Mobile Eye-XG platform (Figure 3.5), which allows the user 

unconstrained eye and head movements. A 30-Hz sampling rate was used, with an accuracy 
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of 0.5–1.0°. The participant’s gaze was calculated based on the correlation between the 

participant’s pupil position and the reflection of three infrared lights on the eyeball. Eye 

movement consists of fixations and saccades. Fixations occur when the gaze is directed 

towards a particular location and remains still for some period of time (Green 2007; Fisher 

et al. 2011). Saccades occur when the eye moves between fixations.  

The ASL Mobile Eye-XG system records a fixation when the participant’s eyes pause 

in a certain position for more than 100 milliseconds. Quick movements to another position 

(saccades) are not recorded directly but are calculated based on the dwell time between 

fixations. Total dwell times are recorded by the equipment as the sum of the time of 

fixations and saccades consecutively recorded within an area of interest (AOI). 

 

Figure 3.5 OSU researcher demonstrating the Mobile Eye XG glasses (left) and Mobile 
Recording Unit (right). 

3.3. Independent Variables 

Three independent variables were included in the experiment: presence and 

location of bicycle, secondary task engagement, and TOR proximity. These variables were 

selected by the research team to address the research questions. 
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The location and presence of the bicyclist was varied to induce interactions with the 

vehicle at signalized intersections, based on a total of five alpha and beta tests by the 

research team. A bicyclist was placed either relatively closer or farther from the 

intersection, to intentionally induce a more or less difficult yield or go decision by the 

driver. 

The second independent variable was whether participants were engaged in a 

secondary task or not. The task was both a motor and cognitive task, specifically a bubble 

game developed by Rokni et al. (2017). The task involves popping a bubble of a particular 

color on a touch screen device mounted in the cab of the vehicle (Figure 3.6). The task was 

intentionally designed to be difficult and to keep drivers engaged in the game.  

 

Figure 3.6 OSU researcher demonstrating the bubble game mounted in the vehicle cab 

The final independent variable was the TOR proximity to the intersection. The TOR 

was presented to the driver either 5s, 10s, or 15s upstream of the stop line on the approach 

to intersection. 
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3.4. Factorial Design 

A factorial design was chosen for this experiment to enable exploration of all three 

independent variables separately. The factorial design for the three variables, each with two 

or three levels, resulted in the inclusion of 18 scenarios, which were presented within 

subjects. Table 3.1 summarizes the independent variables and their associated levels in the 

factorial design.  

Table 3.1 Experimental variables and levels 

VARIABLE ABBREVIATION CATEGORY LEVEL DESCRIPTION 

Relative 
Bicycle 

Position 
B Discrete 

No bicycle 
Bicycle closer to stop line 

Bicycle farther from stop line 

TOR 
Proximity TOR Discrete 

5 seconds from stop line 
10 seconds from stop line 
15 seconds from stop line 

Secondary 
Task Game Dichotomous 

(Categorical) 
No secondary task 

Playing the bubble game 
 

The starting position of the bicyclist was varied based on the TOR proximity so the 

bicyclist would only become visible to the driver 10 seconds ahead of a TOR. The starting 

positions shown in Figure 3.7 were chosen to keep the bicyclist on the same trajectory 

relative to the vehicle, regardless of when the driver received the TOR. Prior to 10 seconds 

before the TOR, the bicyclist was stationary behind a parked vehicle and obscured from the 

view of the driver. The bicyclist closer to the intersection was positioned 20 meters ahead of 

the bicyclist farther from the intersection.  
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Figure 3.7 Bicycle starting position based on TOR proximity 

The within-subject design provides advantages of greater statistical power and 

reduced error variance associated with individual differences (Cobb 1998). However, one 

fundamental disadvantage of the within-subject design is the existence of “practice effects,” 

caused by practice, experience, and growing familiarity with procedures as participants 

move through the sequence of conditions. To control for practice effects, the order of the 

presentation of scenarios to participants needs to be randomized or counterbalanced 
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(Girden 1992). To control for the practice or carryover effect, the order of the scenarios was 

counterbalanced. Four different track layouts were developed and presented in random 

order to each participant. Randomized, partial counterbalancing was chosen due to its 

simplicity and flexibility in terms of statistical analysis and number of required participants. 

Each track had four or five scenarios, each with a different level of independent variables 

which was randomly assigned.  

Table 3.2 presents the configuration layout for each of the 18 scenarios that were 

presented to participants, in a randomized order, across four tracks. Figure 3.8 shows an 

example grid layout as presented to the drivers. Extra intersections and left turns were 

introduced to the track layout so that participants would not anticipated the scenarios at 

intersections. The scenarios were separated by 45-90 seconds of driving. 
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Table 3.2 Track layout 

SCENARIO BICYCLE (B) TOR PROXIMITY (TOR) SECONDARY TASK (ST) 
Track 1 

1 Farther 10 s Yes 
2 None 5 s No 
3 Farther 15 s Yes 
4 Farther 5 s Yes 

Track 2 
5 None 15 s Yes 
6 None 10 s Yes 
7 Farther 5 s No 
8 Closer 10 s Yes 
9 Farther 10 s No 

Track 3 
10 Closer 15 s No 
11 Farther 15 s  No 

12 Closer 10 s No 

13 Closer 5 s Yes 
14 None 10 s No 

Track 4 
15 Closer 15 s Yes 
16 Closer 5 s No 
17 None 15 s No 
18 None 5 s Yes 
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Figure 3.8 Layout for grid 4 

3.5. Experimental Protocol 

This section describes the step-by-step procedures of the driving simulator study, as 

conducted for each individual participant. This study was approved by the Oregon State 

University Institutional Review Board (Study #8329). 



 

 

23 

3.5.1. Recruitment 

A total of 46 participants, primarily from the communities around Corvallis, OR 

were recruited for the driving simulator study. The population of interest was licensed 

drivers; therefore, only drivers with driving licensure and at least 1 year of driving 

experience were recruited for the experiment. Participants were required to not wear 

glasses or have poor vision, to be physically and mentally capable of legally operating a 

vehicle, and to be deemed competent to provide written, informed consent. Participants 

were recruited through flyers posted around campus and the surrounding community and 

through emails sent to different campus organizations and email listservs. Although it was 

expected that many participants would be Oregon State University students, an effort was 

made to incorporate participants of all ages within the specified range of 18 to 75 years. 

3.5.2. Informed Consent 

When the test participant arrived at the laboratory, they received an informed 

consent document, which described the reasoning behind the study, the importance of 

participation, and the risks and benefits of the test for the participant. The researcher 

discussed the document and the overall idea of the experiment with the participant. The 

participant was informed that they could stop the experiment at any time for any reason 

and still receive full compensation ($10 cash) for participating in an experimental trial. To 

avoid biasing the experiment, participants were not told the specific research hypotheses. 

3.5.3. Prescreening Survey 

Participants were administered a prescreening survey on their demographics (i.e., 

age, gender, ethnicity, driving experience, highest level of education, and prior experience 

with driving simulators) and questions in the following areas:  
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• Vision – Good vision was crucial for this experiment. Participants were asked if they 

used corrective glasses or contact lenses while driving. Their abilities to see the 

driving environment clearly and to read visual instructions (displayed on the 

screen) to stop driving were confirmed. 

• Simulator sickness – Participants with previous driving simulation experience were 

asked about any simulator sickness that they experienced. If they had previously 

experienced simulator sickness, they were encouraged not to participate in the 

experiment.  

• Motion sickness – Participants were surveyed about any kind of motion sickness 

they had experienced in the past. If an individual had a strong tendency towards any 

kind of motion sickness, they were encouraged not to participate in the experiment. 

3.5.4. Calibration Drive 

After completing the prescreening survey, participants performed a 5-minute 

calibration drive. The overall purpose of this drive was to acclimate participants to the 

mechanics of the vehicle and the virtual reality of the simulator, and to determine if they 

were prone to simulator sickness. Once seated in the vehicle for the test drive, participants 

were allowed to adjust the seat, rearview mirror, and steering wheel to maximize comfort 

and performance while driving. They were instructed to drive and follow all traffic laws as 

they normally would. Participants were instructed on how to turn the automation on and off 

and the meaning of the dashboard displays that they might see during the experiment. 

According to Zhao et al. (2015), effective calibration drives introduce the participant 

to three primary roadway characteristics in the simulator environment: horizontal curves, 

acceleration and deceleration on a stretch of roadway, and turning at intersections. The 
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calibration drive included elements that the drivers would encounter during the 

experimental drives, with the exception of the bicyclists at an intersections. 

3.5.5. Eye Tracking Calibration 

After the calibration drive was completed, researchers equipped participants with a 

head-mounted eye tracker. Participants were directed to look at different locations on a 

calibration image projected on the forward screen of the driving simulator (Figure 3.9). 

 

Figure 3.9 Eye tracking calibration screen 

3.5.6. Experimental Drive 

After the motorist’s eyes were calibrated to the driving simulator screens, they were 

given brief instructions about the test environment and the tasks that they were required to 

perform. The experiment was divided into four tracks. At the completion of each 

experimental drive, the researcher instructed the participant to stop the vehicle and 

ascertained whether the participant was experiencing simulator sickness. The virtual 

driving course (four tracks) was designed to take 30 minutes to complete. 
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3.5.7. Post-Drive Survey 

Following the experimental drives, participants answered a post-drive survey. The 

survey included questions on the participant’s experience and their attitude towards 

automation after the experimental drives.  
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4. RESULTS 

This chapter presents the results of the simulator experiment. This includes a 

description of participant demographics, results from the analysis of visual attention and 

results discussing the TTC between the vehicles and the bicyclists. 

4.1. Participant Demographics 

In total, 46 individuals (23 women, 22 men, 1 prefer not to answer) participated in 

the simulator study. Only 6.5% of participants (3 women) reported simulator sickness and 

did not complete the experiment. All responses recorded from participants who reported 

simulator sickness were excluded from the analyzed dataset.  

The age of participants ranged from 18 to 74 years (Mage = 30.7, SDage = 15.11). Table 

4.1 summarizes additional self-reported demographic data of the analyzed dataset. 
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Table 4.1 Participant demographic information 

Question Possible Responses Number of 
Participants 

Percentage of 
Participants 

How many years 
have you been 

licensed? 

1–5 years 16 37% 
6–10 years 9 21% 

11–15 years 5 12% 
16–20 years 3 7% 

More than 20 years 10 23% 

How often do you 
drive in a week? 

1 time per week 9 21% 
2–4 times per week 12 28% 

5–10 times per week 12 28% 
More than 10 times per 

week 10 23% 

 
How many miles 
did you drive last 

year? 
 

0–5,000 miles 14 33% 
5,000–10,000 miles 10 23% 

10,000–15,000 miles 3 7% 
15,000–20,000 miles 14 33% 

More than 20,000 miles 2 4% 

What corrective 
lenses do you wear 

while driving? 

Glasses1 0 0% 
Contacts 14 33% 

None 29 67% 

Do you experience 
motion sickness? 

Yes 5 12% 
No 38 88% 

1Recruitment materials stated that wearing glasses was an exclusionary criterion. 

4.2. Crash Avoidance Results 

Driver performance in L3 autonomous systems will play a major role in the safety of 

these vehicles. One measure of performance is the crash avoidance behavior of drivers, 

which can including driver’s yielding behavior and a driver’s TTC with a bicyclist. The 

following section discusses driver performance with respect to crash avoidance. 

4.2.1. Time-Space Diagrams 

To help conceptualize the crash avoidance behavior of participants, three time-

space diagrams were created, one for each TOR scenario (Figure 4.1, Figure 4.2, and Figure 

4.3). The trajectories were recorded from the centroid of the user. For each plot, a case 
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where a participant yielded and a case where a participant did not yield to the bicyclist was 

considered. The figures help highlight the time when the bicyclists first begins to move for 

the different TOR scenarios and show the difference in distance between the two bicycle 

conditions. The figures also demonstrate the time the driver has to make the decision to 

yield or go, and the relative position between the driver and bicyclist at a given time. As 

noted previously, the starting positions of the bicyclists were adjusted so that the bicyclists 

were only visible to the participants for 10s before the TOR, allowing for the same amount 

of time for the driver to identify the bicyclist before the TOR across all scenarios. 

 

Figure 4.1 Example time-space diagram for 15 s TOR  
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Figure 4.2 Example time-space diagram for 10 s TOR  

 

Figure 4.3 Example time-space diagram for 5 s TOR 
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The three plots highlight the different yielding behavior of different participants, 

with some accelerating past the bicyclist and others braking to yield to the bicyclist. In the 

first two yielding cases, the drivers brake before passing the bicyclist, while in the third 

case, the driver identifies that the bicyclist is behind them and stops to yield to the bicyclist. 

4.2.2. Yielding Behavior 

Across all 516 cases in the experiment (43 participants by 12 scenarios where a 

bicyclist was present), drivers yielded to the bicyclist in 284 instances (56% of cases). 

Figure 4.4 shows the number of yielding cases disaggregated by each level of independent 

variable. Unsurprisingly, the majority of yielding cases occurred when the bicyclist was 

relatively closer to the intersection than farther from the intersection (n=210 versus n=74). 

There were also more yielding events for the 15 second TOR condition than the 10 second 

or 5 second (n=105, n=94, n=85, respectively). The yielding events were evenly split with 

respect to the secondary task, with participants yielding n=142 times for the game and no 

game conditions. 
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Figure 4.4 Yielding events by independent variables  

The decision to yield or go at the intersection is a binary choice which can be 

modeled by a linear probability model. Since each participant completed all 12 right-turn 

scenarios where a bicyclist was present, this dataset can be considered a panel dataset. 

Panel data requires replication of the same units over time (Wooldridge 2016). A fixed-

effects linear probability model was created using Stata to help determine the effect that the 

independent variables had on a driver’s decision to yield or go at the intersection. Fixed-

effects better estimate the effect of individual variables when all other variables remain 

constant and is widely used for panel data analysis (Wooldridge 2016). Using a fixed-effects 

model helps control for the omitted variable bias and data were clustered by participant to 

account for individual differences between drivers.  As shown in Table 4.2, there is a 

significant effect of the relative bicyclist position (𝑡𝑡 = −9.23,𝑃𝑃 < 0.001) and a TOR of 5 

seconds (𝑡𝑡 = −9.23,𝑃𝑃 = 0.003) on the probability of a driver yielding to the bicyclist.  
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Table 4.2 Fixed-effects linear probability model on a driver’s yielding decision 

Variable Category Coefficient Standard 
Error t P 

Yield (Dependent Var.): 
(1 if the driver yields to the 
bicyclist, 0 otherwise) 

- - - - - 

Relative Bicycle Position: 
(1 if bike is farther from the 
stop line, 0 if bike is closer) 

- -.5233 .0567 -9.23* < 0.001 

Secondary Task: 
(1 if playing the game, 0 if 
not playing the game) 

- -.0039 .0204 -0.19 0.851 

TOR: 
(2 if TOR is 5s  
1 if TOR is 10s 
 0 if TOR is 15s) 

TOR=2 
TOR=1 

-.1163 
-.0523 

.0367  

.0318  
-3.17* 
-1.64 

0.003  
0.108 

   𝑅𝑅2 (within subjects) 0.4174 
   Number of Obs. 516 
   Number of Groups 43 
   Obs. Per Group 12 

* Statistically significant at 95% confidence interval  

As the TOR proximity decreases from 15 seconds to 5 seconds or 10 seconds, there 

is a decreased probability in yielding. A TOR occurring 5 seconds from the stop line 

decreases the probability that a driver will yield by 11.6% compared to the 15-second 

condition. As the bicyclist goes from relatively closer to the stop line to relatively farther 

from the stop line, the probability that a driver will yield to the bicyclist decreases by 

52.3%. 

4.2.3. TTC Calculation 

To further investigate the effect of the independent variables on the collision 

avoidance behavior of the drivers, a time-to-collision (TTC) value was calculated for each of 

the 226 observations where a driver did not yield to the bicyclist at the intersection. SAE 

J2944 (2015) defers to the methodology presented by van der Horst (1990) when 
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calculating TTC. For a right–angle approach, van der Horst calculates the TTC considering 

velocity using the following equations: 

𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑑𝑑2
𝑣𝑣2

 ,  if   𝑑𝑑1
𝑣𝑣1

 <  𝑑𝑑2
𝑣𝑣2

< 𝑑𝑑1+𝑙𝑙1+𝑤𝑤2
𝑣𝑣1

        Equation 4.1 

𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑑𝑑1
𝑣𝑣1

 ,  if   𝑑𝑑2
𝑣𝑣2

 <  𝑑𝑑1
𝑣𝑣1

< 𝑑𝑑2+𝑙𝑙2+𝑤𝑤1
𝑣𝑣2

     Equation 4.2 

where,  

𝑑𝑑1,𝑑𝑑2 = distances from the front of vehicles 1 and 2, respectively, to the area 
of the intersection 

𝑙𝑙1, 𝑙𝑙2,𝑤𝑤1,𝑤𝑤2 = the lengths and widths of vehicles 1 and 2, respectively 

𝑣𝑣1,𝑣𝑣2 = vehicle speeds 

For the case of the right-hook crash scenario where the subject vehicle turns in front 

of the bicyclist, this procedure can be simplified, as described in Hurwitz (2015).  

 

Figure 4.5 TTC calculation for RH crash scenario (Hurwitz 2015) 

Since the location of the bicycle and vehicle centroids were recorded in the driving 

simulator, distances between the vehicle and the bicyclist were calculated from their 

centroids using the following equations (Hurwitz 2015): 
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𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑑𝑑
𝑣𝑣𝑏𝑏

 ,          Equation 4.3 

𝑑𝑑 =  𝑠𝑠 − 𝑤𝑤𝑣𝑣
2
− 𝑙𝑙𝑏𝑏

2
 ,         Equation 4.4 

where, 

𝑣𝑣𝑏𝑏 , 𝑣𝑣𝑣𝑣, = velocity of bicycle and subject vehicle, respectively (for this 
experiment, the bicyclist travelled at a constant velocity of 16mph, or 
7.15m/s) 

 𝑤𝑤𝑣𝑣 = width of the subject vehicle 

𝑙𝑙𝑏𝑏 , 𝑙𝑙𝑣𝑣 , = length of bicycle and subject vehicle, respectively 

𝑑𝑑 = distance from middle point of the side of the car and front of the bicycle 

𝑠𝑠 = center to center distance between bicycle and car 

4.2.4. TTC Results 

In total, there were 516 right-turn maneuvers in the presence of a bicyclist (43 

participants by 12 intersections with bicyclists present). Two hundred twenty six of those 

right-turn maneuvers resulted in the subject vehicle turning in front of the bicyclist and not 

yielding at the intersection.  Table 4.3 shows the minimum TTC measurements for each of 

the 226 maneuvers. More interactions occurred when the bicyclist was farther from the 

stop line compared to the closer condition (79.7% versus 20.3%).  The number of 

interactions with the bicyclist was about equally split among participants who were not 

playing the bubble game (n=114) and those who were (n=113). 
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Table 4.3 TTC results 

Relative 
position of 

bicyclist 

Secondary 
Task TOR (s) 

TTC (s) 
Total 

0-0.99 1.0-1.5 1.51-2.0 2.0+ 

Closer to SL 
(46) 

Game 
(25) 

5 2 2 3 3 10 
10 3 3 2 1 10 
15 0 0 1 4 5 

No Game 
(21) 

5 1 1 5 2 9 
10 0 0 1 7 8 
15 0 0 1 3 4 

Farther from 
SL 

(181) 

Game  
(88) 

5 0 1 0 33 34 
10 0 0 1 26 27 
15 0 0 0 27 27 

No Game 
(93) 

5 0 0 0 33 33 
10 0 0 0 30 30 
15 0 0 0 30 30 

Total 6 7 14 199 226 
 

The boxplots below indicate the three independent variables (TOR, relative bicycle 

position, secondary task) appear to have some influence on TTC (Figure 4.6). There is a very 

obvious difference in means between the two bicycle conditions (𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 1.81 𝑠𝑠,

𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.785 𝑠𝑠 ;𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒 = 4.28 𝑠𝑠, 𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒 = 0.911 𝑠𝑠). While the mean does not 

appear to be different between the five second (𝑀𝑀5𝑠𝑠 = 3.45 𝑠𝑠, 𝑆𝑆𝑆𝑆5𝑠𝑠 = 1.255 𝑠𝑠) and ten 

second (𝑀𝑀10𝑠𝑠 = 3.65 𝑠𝑠, 𝑆𝑆𝑆𝑆10𝑠𝑠 = 1.373 𝑠𝑠) TOR conditions, there is a visible difference 

between the 15 second condition (𝑀𝑀15𝑠𝑠 = 4.35 𝑠𝑠, 𝑆𝑆𝑆𝑆15𝑠𝑠 = 1.217 𝑠𝑠). Finally, there appears 

to be a slight difference between the secondary task conditions (𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 3.58 𝑠𝑠, 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝑚𝑚𝑒𝑒 =

1.425 𝑠𝑠;𝑀𝑀𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 3.97 𝑠𝑠, 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 1.209 𝑠𝑠).   
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Figure 4.6 Boxplots of independent variables and TTC 

Repeated measures analysis of variance (ANOVA) is typically used to analyzed data 

when each participant is exposed to all possible combinations of independent variables, 

resulting in multiple measurements for each participant (Ramsey and Schafer 2013). 

However, there were numerous zero values for the TTC measurements across participants 

which represented the case where a participant yielded to the bicyclist. Unbalanced data 

such as this can be problematic for repeated measures ANOVA. To still account for the effect 

of multiple measurements across individual participants, ANOVA tests were performed 

using subjects as a blocking factor (Ramsey and Schafer 2013). Relative bicycle position, 

TOR proximity, and secondary task are the within-subject factors and TTC is the dependent 

variable. The results are shown in Table 4.4. 
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Table 4.4 Blocking design ANOVA results on TTC (s) 

Blocking Factor df F P 
Participant 40 6.07* < 0.001 

Within-Subjects Factors df F P 
Relative Bicycle Position 1 315.87* < 0.001 

Secondary Task 1 15.87* < 0.001 
TOR 2 8.84* < 0.001 

Relative Bicycle Position x Secondary Task 1 0.84 0.361 
Relative Bicycle Position x TOR 2 0.46 0.635 

Secondary Task x TOR 2 2.37 0.097 
Relative Bicycle Position x Secondary Task x TOR 2 0.52 0.597 

Error 180   
Note: F denotes F statistic; df denotes degrees of freedom.  
* Statistically significant at 95% confidence interval  

By using Tukey corrected post-hoc tests for pairwise comparison of the main effect 

of relative bicycle position, it was found that regardless of the TOR proximity and secondary 

task, on average participants had a larger TTC value when the bicyclist was farther from the 

stop line (P < 0.001). Pairwise comparisons for the main effect of secondary task also 

showed that regardless of the relative bicycle position and TOR proximity, participants 

playing the game had a smaller TTC value (P = 0.001). There was not a significant difference 

between the 5 second and 10 second TOR conditions, but there was a difference between 

the 15 second condition and the two other TOR conditions, with drivers having a larger TTC 

value in the 15 second condition (P=0.002, P=0.0021). 

4.2.5. Potential Crash Severity 

While TTC alone cannot identify the potential crash severity, it can be combined 

with other data, such as velocity to indicate how severe a potential crash may be. Small 

reductions in velocity can make a large impact on bicyclist safety. For example, the risk of 



 

 

39 

death nearly doubles when a pedestrian is struck by a vehicle going 20 mph compared to 25 

mph (Tefft 2013).  

To understand potential crash severity, interactions with a low TTC were identified 

(Table 4.3) and paired with velocity. A threshold of two seconds or less was used for this 

analysis based on work by Sayed et al. (2013). These higher-risk TTC values are plotted in 

Figure 4.7. The relative bicycle position was not plotted for the low TTC values since only 

two events occurred when the bicyclist was farther from the intersection. The remaining 

cases are all from the bicyclist relatively closer to the intersection. 

 

(a) 
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(b) 

Figure 4.7  Velocity and TTC for (a) TOR and (b) secondary task 

 
The majority of higher-risk scenarios occurred when the participants were 

distracted by playing the game (n=18) or when the TOR occurred with five seconds 

upstream of the stop line (n=15) (Table 4.5). Interactions with the bicyclist farther from the 

stop line typically had higher TTC values, with only two interactions of two seconds or less 

(compared to the closer bicyclist, with 25 interactions with a TTC of two seconds or less). 

When the TOR occurred five seconds upstream of the stop line, there were more 

interactions with a TTC of two seconds or less (n=15) compared to the 10 second (n=10) or 

15 second (n=2) conditions. There were two collisions with the bicyclist during the 

experiment, both of which occurred when the bicyclist was closer to the stop line and the 

participant was distracted by the secondary task. In general, as mean velocity decreased 

across the levels of independent variables, the mean TTC decreased (Table 4.5). 
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Table 4.5 Descriptive statistics when minimum TTC < 2 secs 

Variables 
Level n Mean (SD) 

Velocity 
(mph) 

Mean (SD) 
TTC (s) 

Relative Bicycle 
Position 

Bike Closer 25 16.43 (4.13) 1.326 (0.635) 
Bike Farther 2 12.23 (0.22) 1.552 (0.543) 

TOR (s) 
5 15 16.02 (4.55) 1.518 (0.634) 

10 10 16.00 (3.86) 1.236 (0.649) 
15 2 18.15 (3.19) 1.863 (0.067) 

Secondary Task 
No Game 9 17.44 (4.84) 1.609 (0.488) 

Game 18 15.46 (3.69) 1.209 (0.651) 
 

4.3. Visual Attention Results 

Visual attention data were gathered and reduced from the ASL Mobile Eye XG for the 

34 participants with complete eye-tracking data. There were an additional five participants 

with partial eye-tracking data due to the participant accidentally adjusting the glasses and 

ruining the calibration. The remaining four participants could not be calibrated for eye-

tracking.  

4.3.1. Total Fixation Duration (TFD) 

For each right turn scenario, the number and length of participants’ fixation on 

various areas of interest (AOIs) were recorded. Total fixation duration (TFD) was generated 

by averaging all participant’s fixations in each scenario for each AOI. A TFD of zero indicates 

that the participant did not fixate at that particular AOI during that scenario. A higher TFD 

indicates greater interest in the bicyclist, suggesting a higher potential for distraction, which 

can be useful for comparing the distraction potential of different variables (Poole and Ball 

2005). TFD measurements help determine whether a driver identified critical elements in 

the visual scene (Reyes and Lee 2008). 
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A fixation was recorded on the bicyclist if the participant fixated on the bicyclist 

when it was ahead of the vehicle or when the bicyclist was visible in the rear view or side 

view mirrors. The sum of these fixations across each scenario indicates the TFD for the 

bicyclist (Figure 4.8).  

 

Figure 4.8 Histogram of TFD on the bicyclist 

Each participant is exposed to all possible combinations of independent variables, 

resulting in multiple measurements for each participant. A repeated-measures ANOVA test 

was conducted to determine whether the total fixation duration differed between scenarios. 

Since the Mauchly’s sphericity assumption was not met, the Huynh-Feldt adjusted p-values 

are reported (Abdi 2010). Table 4.6 shown the repeated-measures ANOVA results. 
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Table 4.6 Repeated-measures ANOVA results on TFD on the bicyclist (s) 

Within-Subjects Factors F(v1, v2) P 𝜼𝜼𝒑𝒑𝟐𝟐 

Relative Bicycle Position 19.27 (1, 33)* < 0.001 0.369 
Secondary Task 21.05 (1, 33)* < 0.001 0.389 

TOR 40.21 (2, 66)* < 0.001 0.549 
Relative Bicycle Position x Secondary Task 1.00 (1, 33)  0.325 0.029 

Relative Bicycle Position x TOR 12.68 (2, 66) * < 0.001 0.278 
Secondary Task x TOR 4.04 (2, 66)* 0.032 0.109 

Relative Bicycle Position x Secondary Task x TOR 2.01 (2, 66) 0.142 0.057 
Note: F denotes F statistic; v1 and v2 denote degrees of freedom; 𝜂𝜂𝑝𝑝2 denotes partial eta squared. 
* Statistically significant at 95% confidence interval  

 
By using Bonferroni corrected post-hoc tests for pairwise comparison of the main 

effect of relative bicycle position, it was found that regardless of the TOR proximity and 

secondary task, on average participants fixated on the bicyclist significantly longer when 

the bicyclist was closer to the stop line (P < 0.001). Pairwise comparisons for the main effect 

of secondary task also showed that regardless of the relative bicycle position and TOR 

proximity, participants playing the game fixed on the bicycle significantly less (P < 0.001). 

There was a significant difference between all of the TOR conditions (P<0.001 for all 

comparisons), with drivers fixating on the bicyclist significantly longer as the TOR 

proximity increased. 

4.3.2. Time to First Bicycle Fixation 

During the scenarios where there was a bicyclist, the bicyclist remained stationary 

on the side of the road obscured behind a parked car until 10 seconds before the participant 

received a TOR. The bicyclist was not visible to the participant until that point in time. To 

determine whether there was an effect on how long it took the participant to identify the 

bicyclist entering the bike lane, the time to first bicycle fixation was calculated. A bicycle 

fixation was defined as the participant fixating on the bicycle when it was ahead of the 
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vehicle or when the bicyclist was visible in the rear view or side view mirrors. A time to the 

first bicycle fixation of zero indicates that the participant identified the bicyclist when it first 

entered the roadway. Data were visualized as boxplots of time to first bicycle fixation 

disaggregated by the different levels of independent variables in Figure 4.9. 

 

Figure 4.9 Time to first bicycle fixation 

Despite participants being instructed to be prepared to take over control of the 

vehicle when requested, participants took approximately 4.5 seconds longer on average to 

identify the bicyclist on the roadway when they were playing the game (𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 11.25 𝑠𝑠,

𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 5.88 𝑠𝑠;𝑀𝑀𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 6.70 𝑠𝑠, 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 6.28 𝑠𝑠).   

There were 20 participants who identified and fixated on all 12 bicyclists 

throughout the experiment. A repeated-measures ANOVA test was conducted on the 

participants that fixated on all the bicyclists to determine whether the time to first bicycle 

fixation differed between scenarios. Pairwise comparisons were conducted to find the 

origin of the difference whenever a significant effect was observed. As shown in Table 4.7, 
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relative bicycle position (𝐹𝐹(1,19) = 12.96,𝑃𝑃 = 0.002), secondary task (𝐹𝐹(1,19) =

39.69,𝑃𝑃 < 0.001), and TOR (𝐹𝐹(2,38) = 6.14,𝑃𝑃 = 0.005) have significant main effects on the 

first time to fixation on the bicyclist. There was also a statistically significant interaction 

between the combined effects of relative bicycle position and secondary task on first time to 

fixation on the bicyclist (𝐹𝐹(1,19) = 5.80,𝑃𝑃 = 0.026). In terms of independent variables, the 

change in TOR proximity had the highest effect on the first time to fixation on the bicyclist, 

with about 54% of within-subject variance being accounted for by this interaction. 

Table 4.7 Repeated-measures ANOVA results on time of first bicycle fixation (s) 

Within-Subjects Factors F(v1, v2) P 𝜼𝜼𝒑𝒑𝟐𝟐 

Relative Bicycle Position 12.96 (1, 19)* 0.002 0.405 
Secondary Task 39.68 (1, 19)* < 0.001 0.676 

TOR 6.14 (2, 38)* 0.005 0.244 
Relative Bicycle Position x Secondary Task 5.80 (1, 19)* 0.026 0.234 

Relative Bicycle Position x TOR 0.59 (2, 38)  0.559 0.030 
Secondary Task x TOR 1.24 (2, 38) 0.302 0.061 

Relative Bicycle Position x Secondary Task x TOR 1.59 (2, 38) 0.218 0.077 
Note: F denotes F statistic; v1 and v2 denote degrees of freedom; 𝜂𝜂𝑝𝑝2 denotes partial eta 
squared. 
* Statistically significant at 95% confidence interval  

 
By using Bonferroni corrected post-hoc tests for pairwise comparison of the main 

effect of relative bicycle position, it was found that regardless of the TOR proximity and 

secondary task, on average participants fixated on the bicyclist significantly sooner when 

the bicyclist was farther from the stop line and started closer to the subject vehicle (P = 

0.002). Pairwise comparisons for the main effect of secondary task also showed that 

regardless of the relative bicycle position and TOR proximity, participants playing the game 

fixed on the bicycle significantly later (P < 0.001). There was not a significant difference 

between the 5 second and 10 second TOR conditions, but there was a difference between 
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the 15 second condition and the two other TOR conditions, with drivers fixating on the 

bicyclist significantly later in the 15 second condition (P=0.025, P=0.039). 
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5. CONCLUSIONS 

This chapter presents study conclusions related to automation take over requests in 

the presence of bicyclists. Overall, there is a consistent narrative across the performance 

measures that the independent variables had an effect on the driving performance of 

participants. The first two sections of the chapter focuses on the conclusions related to the 

results of the experiment. The following sections discuss the limitations of the work as well 

as future research opportunities. 

5.1. Crash Avoidance Findings 

The results of this study indicate that there is a difference between how individual 

drivers avoid colliding with a bicyclist after receiving a TOR on the approach to an 

intersection. The primary findings based on the research are: 

o RQ1: Is the driver’s decision to yield to a bicyclist influenced by the proximity of the 

vehicle to the intersection at the time of a TOR? When all other variables are held 

constant, participants are 11.6% less likely to yield to the bicyclist when they are 

presented with a TOR five seconds from the intersection compared to when they are 

presented with a TOR 15 seconds from the intersection. 

o RQ2: Is the driver’s decision to yield to the bicyclist influenced by driver involvement in 

a secondary task prior to a TOR at a signalized intersection? There is no statistically 

significant differences in a driver’s decision to yield at an intersection when a driver 

is involved in secondary task prior to a TOR. 

o RQ3: Is TTC affected by driver involvement in a secondary task prior to a TOR at a 

signalized intersection? When drivers played a game while the car was driving in L3 
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automation, they had a statistically significant lower mean TTC, indicating a less safe 

interaction. 

o RQ4: Is TTC affected by the proximity of the vehicle to the intersection at the time of a 

TOR? When drivers are given more time to respond at an intersection (i.e. 15 

seconds instead of ten or five seconds), there is a statistically significant higher 

mean TTC between the vehicle and bicyclist. These higher TTC values represent 

safer interactions and lower likelihoods of collisions. 

5.2. Visual Attention Findings 

The results of this study indicate that there is a difference between how individual 

drivers identify the bicyclist after a TOR while driving in a L3 autonomous vehicle. The 

primary findings based on the research are: 

o RQ5: Is the visual attention of a right-turning driver influenced by the proximity of the 

TOR to a signalized intersection? Drivers who received a TOR closer to the 

intersection identified the bicyclist earlier than drivers who received a TOR farther 

from the intersection. As the drivers received a TOR closer to the intersection, they 

were more likely to fixate on the bicyclist for a longer period of time. 

o RQ6: Is the visual attention of a right-turning driver at a signalized intersection 

influenced by driver involvement in a secondary task prior to a TOR?  There was a 

significant effect of driver involvement in a secondary task prior to a TOR on the 

visual attention of a driver. Drivers on average took longer to identify the bicyclist 

when they were playing a game prior to the TOR and fixated on the bicyclist 

significantly less. 
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5.3. Limitations 

This research provides valuable insight on the interaction of L3 automation and 

human drivers in close proximity to an intersection in the presence of a bicyclist. However, 

there are limitations associated with this work, including the following: 

o Like most within-subject study designs, there is a limitation associated with possible 

fatigue and carryover effects, which can cause a participant’s performance to 

degrade over the course of the experiment. The magnitude of these effects were 

limited by randomizing the presentation of grids to different participants and 

keeping the length of the drive brief.  

o The number and levels of independent variables that were investigated were limited 

by the total drive time. In particular, only one secondary distracting task was 

introduced and there were only three different levels of the TOR time variable. In 

addition, the length of the TOR alert was kept constant at three seconds. There may 

be more variation in this alert time in real L3 vehicles based on the performance of 

the vehicle sensors. The geometry of the roadway was also kept constant 

throughout the experiment, with participants only experiencing one environment 

and roadway cross section. 

o For many participants, this was their first experience driving an AV. Perhaps with 

more driving L3 AV experience, participants would exhibit different driving 

behavior. 

o Although efforts were made to recruit a sample of drivers similar to the driving 

population in the State of Oregon, the final sample was skewed slightly younger.  
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5.4. Future Work 

As mentioned in the literature review, this area of human factors research is 

relatively uninvestigated, yet is crucial for understanding the safety implications of L3 AVs 

in urban environments.  A few suggestions for future work include: 

o To address additional variation in independent variables, including different 

distracting tasks, increasing variation in TOR alerts, or increasing variation in 

bicyclist behavior. The secondary task could also be offered optionally instead of 

prescriptively to drivers in future studies to determine at what thresholds they 

would feel comfortable engaging in a secondary task. 

o Driver perception of automation could be more fully investigated to determine if 

drivers would feel comfortable using this type of automation in their personal 

vehicle. This could include varying the time between scenarios as a variable to 

determine a threshold for the number of TOR that a driver would be willing to 

endure to achieve the benefits of using automation. 

o Similar scenarios could be examined from the perspective of a bicyclist. Using 

driving simulation, a L3 AV could be coded based on the real world behavior 

collected through this study or by using networked simulation pairing a human 

driver and human bicyclist. 
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