
THE CONDENSATE STORY

Patrick Rogers Nalco Company Spokane, Washington

Overview

- · The value of condensate
- · Condensate corrosion
- System survey
- Condensate treatment mechanical chemical
- · Monitoring and control

Condensate Receiver

The Value of Condensate

Heat:

Reduced fuel usage - typically \$6-13 per 1000 gal

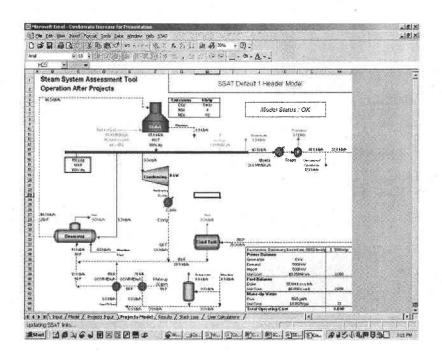
Water:

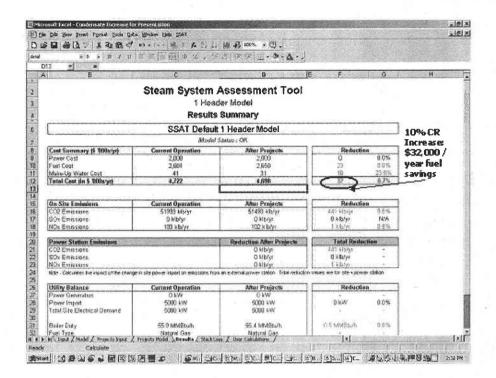
Decreased makeup water demand Decreased pretreatment costs Reduced water discharge

Boiler Reliability

Improved feedwater quality

Potential Savings =
$$\frac{H_f \times C}{FV \times B} \times FC$$


Where:


H_f = difference in hf between condensate stream and make-up (Btu/hr)

C = condensate stream flow (lbs/hr) FV = heat value of fuel (Btu/fuel unit)

B = boiler efficiency (%) FC = cost of fuel (\$/fuel unit)

Use of Steam System Assessment Tool

Results of Condensate Corrosion

- Frequent kiln coil replacement
- Steam/condensate line replacement
- Excess iron entering boiler efficiency loss deposits result in potential tube ruptures boiler cleaning due to iron deposits
- Unscheduled outages

Primary Causes of Condensate Corrosion

Condensate treatment is the battle against three dissolved gases:

 $\begin{array}{ccc} \text{carbon dioxide} & & \text{(CO$_2$)} \\ \text{oxygen} & & \text{(0$_2$)} \\ \text{ammonia} & & \text{(NH$_3$)} \\ \end{array}$

Carbon Dioxide Comes from Alkalinity in Make-Up Water

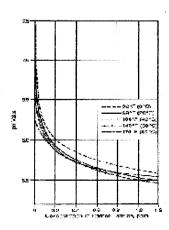
Breakdown of feedwater alkalinity

$$CO_3^{-2} + H_2O \xrightarrow{heat} 2OH^- + CO_2$$
Carbonate Water Hydroxide Carbon Dioxide

Air in leakage

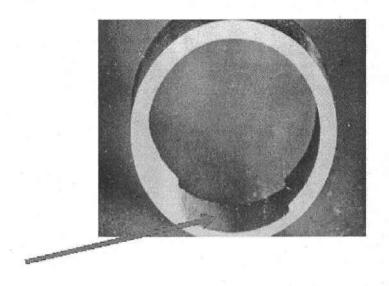
Pumps, receivers, etc.

Carbon Dioxide


Dissolves in the condensate forming carbonic acid

$$CO_{\chi_g)} + H_2O_{(g)} - No$$
 Reaction

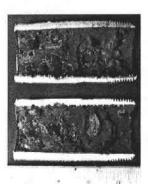
$$CO_{2(g)} + H_2O_{(1)} --> H_2CO_{3(1)}$$
 (carbonic acid)


Then,
$$H_2CO_{3(1)} < -> H^+ + HCO_3^-$$

pH Value of CO2 in Pure Water at Various Concentrations

Carbonic Acid Corrosion

Results in a thinning and grooving of the metal surface. Usually on the pipe where the condensate lays.



Oxygen Sources

- Air in-leakage: pumps, traps, vacuum systems, vented receivers, week-end shutdowns
- · Inefficient deaeration operation
- · Raw water intrusion: pump seals, heat exchanger leaks

Oxygen Corrosion

- O₂ attack results in pitting type corrosion.
- · Rapid localized metal loss.
- Combined corrosion rate of carbon dioxide and oxygen is 10-40% faster than the sum of either alone.

System Survey

- A complete system survey is the key to any effective corrosion prevention strategy.
- The survey defines system needs and limitations allow for proper MOC solution Mechanical Operational Chemical

Key Considerations

- Make-up water quality
 CO₂ generation
- Percent condensate return
 amine recycled, determines makeup quantity
- · Potential for system contamination
- System configuration and complexity (steam uses)
 amine selection

Mechanical Reduction of Corrosion Potential

- · Prevent stagnation/coil water logging
- · Reduce air in leakage
- · Assure proper deaeration
- · Reduce feedwater alkalinity

Mechanical: Steam Trap Maintenance

- · Annual maintenance checks
- · Four-six years, 50 percent of traps will likely be failing open or closed
- Efficiency/corrosion
- · Problems do not surface until too late w/o a formal trap program

Mechanical: Condensate Delivery Potential Issues

- Above ground condensate recovery tanks rely on steam pressure through coils to elevate to the height of tank
- Condensate pumps not utilized
- rely solely on steam pressure to push condensate to boiler house
- Both can result in stagnant condensate
 - elevated corrosion rates decreased coil efficiency

Operational/Mechanical Common Air In-Leakage Sites

- · Vacuum systems
- · Vented receivers
- · Condensate pumps, traps, and valves
- · Intermittently operating systems

Operational: Feedwater Alkalinity Reduction

- Lime softening
- Reverse osmosis

- Dealkalization
- · Demineralization
- · Increased condensate return

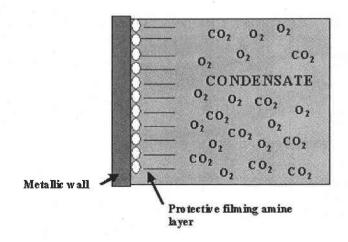
Chemical: Condensate Treatment

- · Neutralizing amines
- · Filming amines

Condensate Treatment Requirements

- Effective corrosion protection
- · Distribution throughout system
- Which chemistry do we primarily use to combat carbonic acid?

Why Amines are so Popular


- · Direct neutralization of CO2
- · Direct elevation of pH
- · Easy to feed/control
- · Compatible with other system treatments
- · Treatment recycles
- · Blends available: able to distribute through entire systems

Neutralizing Amines Limitations/Considerations

- Not effective against oxygen
- Perhaps not best choice in high alkalinity waters
- Not all locations will have same pH: a blend of amines is typically required good distribution volatility ratio

Filming Amines

- · Long chain amines that absorb onto the metal surface
- Function at the lower pH range of 6.5 to 9.0

- · Protect against acids, O2, and ammonia
- · Dosage dependent on surface area and not contaminant concentration
- · Cost effective in high CO2 systems

Filming Amines Limitations/Considerations

- · Film formation takes time
- · pH control still necessary
- · Should be fed after turbines and condensate polishers
- · Will clean up old deposits
- · Overfeed may cause sticky deposits and "gunk" ball formation
- Nalco ACT

Quality Control: Condensate Monitoring

- pH
- Conductivity
- · Corrosion rates
- Corrosion byproducts

Secondary Testing and Troubleshooting

- Dissolved oxygen
- Hardness
- Silica
- Ammonia
- Alkalinity
- · Product residual

Corrosion and Corrosion Byproducts

· Grab samples

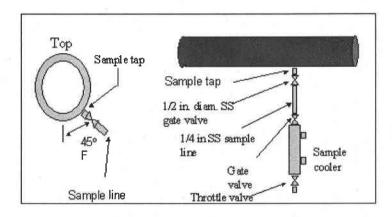
filtration millipore testing wet chemistry

colorimeter testing

- * total iron
- * insoluble iron (particulate)
- * soluble iron (indicative of recently corrosion activity
- · Corrosion coupons
- Corrosion sensor

Nalco Corrosion Sensor

- Monitors corrosivity of condensate real time indication
- · Provides direct MPY readings up to 300 F
- · Collects and displays all data


Sampling Requirements

- Cooled to less than 90 °F* (pH)
- · Sample flow throttled at outlet only*
- · Stainless steel sample lines
- · Continuous flow
- · Adequate velocity

Sampling

- · Sample tap locations
- · 45 degrees off bottom of horizontal pipe
- · Representative of system
- · Prior to condensate receivers*

Sampling Horizontal Lines

Key Take-Aways

- Condensate is a precious commodity
 Never underscore its value
 Take every opportunity to return as much condensate as possible, look for lost condensate, it is out there.
- Every system is unique Complete proper survey
- Always mechanical before chemical Alkalinity removal prior to boiler Check each trap once per year Proper flow for condensate return
- · Proper condensate monitoring in place