LEDA: A Blending of Imperative

and Relational Programming”

Timothy A. Budd
Department of Computer Science
Oregon State University
Corvallis, Oregon
97331
budd@cs.orst.edu

September 20, 1994

Abstract

This paper describes features of a new strongly typed, compiled programming language,
called LEDA. LEDA attempts to combine aspects of both imperative (value-oriented) and logical
(relation-oriented) styles of programming. Logical behavior is introduced by means of a new pro-
gramming structure, called a relation. Relations have similarities to functions and procedures,
but are distinct from both. Several examples are presented illustrating how the combination
of features from the two paradigms are mutually beneficial. Finally a short overview of the
implementation is given.

1 Introduction

The field of programming languages has undergone a transformation in the last several years, from
considering programming languages each as representing just a particular syntax and perhaps an
emphasis on a particular data structure, to recognizing the existence of diverse philosophies or
outlooks in languages. These different approaches are called language paradigms, a term which
emphasizes that the important distinguishing characteristic is one of “world-view” and not simply
syntax.

Different paradigms arise because problems in disparate areas require diverse approaches to so-
lution, and even in a single area contrasting techniques are often advantageous. Thus individual
paradigms emphasize different aspects of both problem solving and programming. The imperative
paradigm emphasizes variables and values, the functional paradigm concentrates on functional com-
position and the development of higher-order functions (functions using functions as arguments),
the object-oriented paradigm places more importance on behavior than on values, and the relational

*To appear in IEFE Software

or logical paradigm deals with the relations between objects, and not necessarily the objects them-
selves. Clearly all of these techniques are useful at different times, and indeed in any sufficiently
complex task a combination of approaches may be called for. Thus the field of “multi-paradigm”
programming language research has developed [Hai86].

Combining languages is more than just connecting syntaxes, however. A language must have
some internal consistency, the parts must work easily together. A natural blending is one that
combines the best features of two or more paradigms and allows them to work easily together, as
well as achieving the benefits of either individually. The development of such natural blendings has
proved difficult. The present work is one more experiment in this vein. The programming language
LEDA, described in the next section, is a strongly typed, compiled language that attempts to combine
features of both the imperative (value or state-oriented) and logical (relational-oriented) styles of
programming,.

2 The language LEDA

We will not provide a detailed description of either the syntax or the semantics of the program-
ming language LEDA; interested readers are referred to some of our other papers [Bud89a, Bud89b,
Bud89c¢]. Instead we will simply describe those features necessary for understanding the examples
we will subsequently present.

The imperative portion of LEDA is derived from the ALGOL tradition of languages such as
Simula, Pascal or Modula. One notable difference 1s that functions are first class types, and function
execution is terminated using an explicit return or suspend statement (the latter to be discussed
shortly). Data types supported in LEDA include the standard types of integer, real and boolean,
enumerated types, subprogram types, and object-oriented class types [Bud89a]. All types must
possess some value used to indicate “undefined”; the state of not yet having been assigned a value.
All variables are undefined prior to their first use, and the attempted use of an undefined value in
a computation will result in a run-time error. A system-provided predicate defined() can be used to
determine if a particular variable has been defined yet or not.

In most imperative languages, such as Pascal or C, there are two different mechanisms for struc-
turing procedural abstractions; namely the procedure and the function. The first is used as a
statement, whereas the second is an expression. Both can take values as arguments, and can modify
external values through either global variables or through parameters which are passed by reference
(pointer parameters in C)!. Relational programming is provided in LEDA by means of a third type
of procedural abstraction, the relation. A relation is neither a procedure nor a function, although in
imperative code a call on a relation can be made as if it were a procedure, and in relational code
it is often thought of as a function of type boolean. Like a function or a procedure, a relation is
defined with an argument list, most typically invoked using call-by-reference (or var) parameters.
This allows information to flow both into and out through parameters.

The body of a relation consists of Prolog-style rules. (Those unfamiliar with Prolog might want
to consult a reference for that language, such as [StS86]). As in Prolog, these can be thought of as

1 This is not to say this is good programming practice. Functions which modify global variables or change values
via parameters indiscriminately are often difficult to understand.

either representing facts or rules of inference. For example, the relation shown in Figure 1 can be
thought of as a database of genealogical information. A fact, such as

child(helen, leda, zeus).

can be viewed as asserting that helen is a child of leda and zeus. Each of the separate lines of
the body is an individual rule. The collection of rules constitutes all the knowledge in the system
about the relation child. Note that names is an enumerated datatype that includes leda, zeus, helen,
and so on.

A rule of inference describes how new relational information can be derived from existing rela-
tions. For example, the relation shown in Figure 2 can be thought of as describing how to determine
if two individuals possess the “mother” relationship; the first is mother to the second if we have
recorded in the child relationship that there is some value for the variable dad such that child(kid,
mom, dad) is true. In addition to simply checking the veracity of facts, rules of inference can also
generate values for which the relation is satisfied through a process known as unification.

Rules in the body of a relation can have multiple clauses that must each be satisfied for the
relation to hold. For example, if we assume a relation female has been defined which indicates the
sex of each person in the names enumerated datatype, then the relation daughter can be given as
shown in Figure 3. This can be read as asserting that girl is a daughter of parent if and only if girl
is female and parent is the mother of girl, or parent is the father of girl. As we will see in section
3.1, the body of a relation can also include arbitrary imperative style code surrounded by begin end
pairs.

Within imperative code a relation is invoked as if it were a procedure. As in conventional
procedures, unification can cause information to flow out across var parameters. For example, if
mom is a variable of type names, the statement:

mother(mom, aeneas);

would assign mom the value aphrodite. Parameters are not specifically defined as input or output
parameters in relations, however, and so can be used in both manners?. For example the statement:

mother(aphrodite, son);

would assign the variable son the value aeneas. A call on a relation, with some arguments
potentially bound to constant values, is known as a query>.

Of course, it 1s frequently the case that queries can be satisfied in a number of ways. For
example, if we ask for a child of zeus we see, examining the database in Figure 1, that there are
multiple answers as both helen and hercules are children of zeus. But only one value can be assigned
to a variable at any one time. The solution provided in LEDA is to use backiracking. If a query has
multiple solutions one response (the first, for example helen) will be returned. If subsequently any
other relation turns out to be unsatisfiable, it will be said to fa:l. Failure will invoke backtracking,

2This is not strictly true, as information can only flow out through a parameter if it has been declared using the
var specifier. Parameters not declared using the var modifier are always call-by-value, and are thus used only for
input to a subprocedure.

31t is natural to wonder why a relation is treated as a procedure in imperative code, and not as a boolean function.
The reason is that such a function could return true but, as we will see when we discuss the backtracking mechanism,
will never return false, instead returning control to the last point at which there was an alternative.

which will restore the system to the most recent point where there was a choice of multiple solutions.
This time the second solution will be returned. This will continue until a satisfactory alternative is
found or all choices exhausted.

Failure, and its associated backtracking, can be forced from within imperative code by executing
the special statement fail. As we will see in sections 3.1 and 3.2, multiple answers can also be
produced in imperative code through the use of the suspend form of procedure return.

Functions, including relations, are first class values in LEDA. Thus, for example, relations can
be passed as arguments. The code shown in Figure 4 illustrates a relation called closure that takes
another relation as an argument. The relation closure is satisfied if the transitive closure of the
argument relation is satisfied*. Passing “mother” as an argument to closure would capture the
notion of arbitrary levels of “motherness” (maternal grandmother, maternal greatgrandmother, and
so on). Used in this manner functional arguments are similar to functors in Prolog [StS86]. Further
discussion of the use of functional arguments in conjunction with the object-oriented features of

LEDA can be found in [Bud89c¢].

3 Blending Imperative and Relational Programming

Both the imperative and relational styles of programming benefit from the abilities provided by the
other. The imperative style benefits from the succinct representation of relational information, from
the bidirectional dataflow opportunities presented by unification, and from the unique control flow
regime imposed by backtracking. The relational style benefits from a more direct way of dealing
with negation and with numbers, two concepts that are difficult in pure logic programming.

The next two sections will illustrate, by means of several examples, how the two styles of pro-
gramming are mutually beneficial, and can be usefully blended together. The third section shows
how the mechanisms of choice points and backtracking can be utilized in imperative programs even
in situations having nothing to do with relations. In languages which try to combine features from
two or more different domains, what is often “lost” is a difficult-to-quantify sense of consistency,
simplicity, coherence or clarity. We would like to argue that we have not fallen prey to these prob-
lems, but we appreciate the fact that this judgement is subjective, and that simplicity and coherence
is very much in the eye of the beholder.

3.1 Using Imperative Statements in Relations

In LEDA arbitrary imperative style code can be used between rules in relations, by surrounding the
code with begin end pairs. This can be used, for example, to trace the flow of execution in a relation
as the various rules are invoked by the backtracking mechanism (Figure 5). As execution moves from
one rule to the next any intervening imperative code will be executed. The values of any variables
can be used within the imperative code, although the values of variables set by the relations will be
undone by the backtracking mechanism before the imperative code is executed.

Suppose, for example, we try to discover the name of a grandchild of leda using the query
grandchild(leda, kid), where kid is a variable of the appropriate type. First the imperative code will
be executed, and the output from the statement writeln('test father-father descent’) produced. Then

4 Just with conventional recursion, the programmer must be careful to avoid infinite loops here.

an attempt will be made to find a value Z such that father(leda, Z) is true. This will fail, of course,
since leda is father to no one. So the second writeln will be executed, and the second rule attempted.
Again this will fail for the same reason. The output of the third writeln will be printed, and an
attempt will be made to find a value Z such that mother(leda, Z) is true. This time this succeeds
with Z bound to helen. However the second clause of the third rule then fails, since helen is father to
no one. It i1s only on the forth and final rule that we discover that leda is grandmother to hermione.

Within a relational rule an imperative function can be invoked as long as the function returns a
boolean value. Returning false from the function is treated the same as the failure of a clause, and
invokes backtracking. This use of imperative functions in rules does not affect the meaning of the
function when used in imperative contexts, where it is simply a boolean function. The imperative
function notsame is used by the brother relation in Figure 6 to insure that an individual i1s not
considered to be a brother to themselves. Again there are two ways that two individuals can be
brothers; by sharing the same father or the same mother.

Consider a query brother(pollux, X) for example. First an attempt will be made to find the father
of pollux, which 1s zeus. Next an attempt will be made to bind the variable X to another child of
zeus, such as helen. Then a test will be made to make sure helen is male. This will fail, which will
invoke backtracking to find another child of zeus. The next candidate in our database is pollux.
Pollux is male, and thus the function notsame will be invoked with the arguments pollux and pollux.
These match, and thus the notsame procedure returns false. This is interpreted as failure, and thus
yet another attempt is made to find a third child of zeus. This time the candidate is hercules, who
turns out to be both male and not the same as pollux. Thus the relation succeeds with the variable
X bound to hercules. Should a subsequent relation fail and backtracking return to this point, the
second clause of the relation will be tried, which will result in the variable X being set to castor
(since they share a common mother, namely leda).

In this example the imperative procedure i1s not used to generate new values, but merely to
filter out previously generated values and invoke backtracking if necessary. Here it is assumed the
values of the variables X and Y will be set, if they were not set already when the relation brother
was invoked, by the two invocations of the father relation (or, if that is unsuccessful, by the mother
relations). Using imperative procedures is frequently useful when, as in this example, inequality is
involved, since inequality is a difficult notion to handle in pure logic programming [StS86].

In Prolog two undefined (unbound) variables can be unified, so that if either variable is subse-
quently assigned a value this will be reflected in the values of both variables. LEDA does not support
this level of unification, since to do so would require multiple levels of indirection for variables, in-
consistent with the use of reference parameters in the imperative portion of the language and the
simple implementation to be described in a subsequent section®. It can, however, support the weaker
requirement that if either value is defined and the other undefined, the undefined value is set equal
to the defined value. This is illustrated by the imperative procedure shown in Figure 7, which also
shows use of the built-in predicate defined. The function same first tests to see if the first argument is
defined. If it is, it then tests the second argument to see if it is also defined. If they are both defined
it returns true if they are the same, and false otherwise. If either value is not defined the system
procedure assign 1s used to assign the defined value to the undefined variable. The assign procedure
is used instead of simply an assignment statement as i1t establishes the requirements necessary for

5For a good survey of unification and its implementation, see Knight [Kni89].

the assignment to be “undone” as a consequence of backtracking. This will be discussed more in
Section 4. Finally, if both variables are undefined the procedure returns false.

We can extend this technique in order to define “relations” of a sort that are not easy to define
using Prolog-style rules. The function recip in Figure 8, for example, maintains the property that
X 1s the reciprocal of Y, assigning a value to either if one is set. The recip function returns false if
both values are undefined, or if they are both defined but the relation is not satisfied. The function
can be used either in a purely imperative setting, or as a clause within a relation.

3.2 Using Relations in Imperative Programs

The last section showed how imperative programming techniques are frequently useful from within
relations. The converse is also true, namely that relations are often useful in the middle of otherwise
imperative programs. We will illustrate this by means of several examples. To understand these, a
small amount of information about the implementation is necessary. A more detailed explanation
of the implementation will be given in section 4.

Whenever the system is faced with multiple solutions to a query, a record called a choice point
is placed on the activation record stack. The choice point records all the information necessary to
restore the state of the program to the point where the choice was made. Any time a failure occurs
the most recent choice point is used to reset the system, and another alternative is tried.

In our first example the failure and backtracking mechanism is used to simulate a simple catch
/ throw control flow, similar to that of Lisp [Ste84], or to the Setjmp/Longjmp facility of C. This is
shown in Figure 9. An imperative procedure calls the relation catch, which succeeds and unifies the
parameter with the value true, but leaves a choice point on the activation record stack. Execution
then continues in the imperative program. At some later point, perhaps even deep in a series of
procedure calls, a throw can be made back to the catch routine simply by failing. In an imperative
program this can be accomplished by executing the statement fail. Following execution of the fail
statement control is returned to the last point of choice, which in this case was in the catch relation.
The next alternative is attempted, which reassigns the parameter X the value false. Control is then
once more “returned” from the relation, despite the fact that we have already once returned from
this very same invocation. This time, however, the value of the actual parameter v is different, and
thus we follow a different execution path.

If we use a global variable to transmit information from the sender to the receiver, we can
extend this technique to build a general exception handling mechanism. Consider the code shown in
Figure 10, which illustrates the coding of a stack module which uses exceptions to signal underflow
and overflow. The enumerated type exception lists the types of exceptions, and the global variable
stackexcept will hold values returned by the exception handler associated with a stack code. The
relation handler is used to set down a choice point. When first invoked, it returns the value noerror.
If subsequently a procedure, say the push routine, wishes to raise an exception it does so by calling
the procedure raise. The raise procedure signals the exception, setting the global variable stackexcept
to the appropriate value and returning control to the relation handler®. Handler uses the current
value of stackexcept to assign a value to the reference parameter X before returning once again. This
time, since the value of the variable except will have changed, the exception handler code will be

6To be precise it returns control to the most recent choice point, which we are here assuming to be the handler.

executed. The nature of the exception can be determined by examining the local variable except.

3.3 Backtracking in Imperative Programs

Examples in the last section illustrated how the fail statement could be used in imperative code to
initiate backtracking to alternatives established by previous invocations of relations. It is possible
to create choice points in purely imperative code. This is accomplished by means of a suspend
statement, which acts like a return, but in addition places a choice point on the activation record
stack. A subsequent failure will then cause execution to be continued with the statement immediately
following the suspend.

Through the use of the suspend and fail statements, the mechanisms of choice points and back-
tracking are valuable in imperative programs independently of their utility in implementing relations.
For example, they can be used to create generators. A generator is an expression that is capable of
producing more than one result, producing values one at a time on demand. The concept was popu-
larized in the language Icon [GrG83]. LEDA differs from Icon in being strongly typed and compiled,
instead of interpreted, and in lacking the rich set of data structures provided in Icon. Nevertheless,
the technique of programming with generators exploited by Icon programs can often be adapted to
LEDA code. The function shown in Figure 11, for example, is an exact translation from a function
shown on page 118 of [Gr(G83]. When given a value n, the function fibseq produces the first n Fi-
bonacci numbers. It initially returns the first Fibonacci number, namely 1. If a subsequent failure 1s
encountered, control is returned to the point following the suspend statement and the next number
is returned. This continues until all n numbers have been generated, at which point the function
fails.

The utility of generators is greatly increased through the use of the every statement. The preface
every before a statement bounds backtracking within the statement, and forces the exploration of all
possible alternatives. This is most useful if two or more generators are used within the statement,
where it will force the exploration of all possible combinations of values. For example, suppose
we have a generator primes which produces all prime numbers less than some specified value (the
development of this is left to the reader); the following statement will print those values which are
both Fibonacci numbers and prime numbers.

every
begin
i = fib(100);
if i = primes(100) then
writeln('number both prime and fib '.i);
end;

As we will note in the next section, debugging programs written using generators and relations
can sometimes be made difficult because of the backtracking mechanism returning control to an
unanticipated earlier point in the program. We are currently investigating syntactic devices that
would give the programmer greater control over the flow of execution in a program following failure.

4 Implementation

LEDA is implemented as a compiler producing 68000 assembly language. The details of code gen-
eration for the imperative portion of the language are conventional, and will not be discussed.
Information on the implementation of first class functions can be found in [Bud89b]. In this paper
we will describe only the implementation of the logical features of the language.

An invocation of a relation is treated similarly to an invocation of a function or procedure;
an activation record containing space for the parameters (or pointers to them, in the case of var
parameters), local variables, the dynamic chain and return information is created. The activation
record register (fp in our notation), always points to the current activation record. A stack pointer
(sp) points to the current top of the activation record stack. Code is then generated which sets the
values of all local variables to the appropriate “undefined” value for the type of the variable.

When the program is faced with the possibility of several alternative answers to a query, either
implicitly in the case of relations or explicitly in the case of a suspend statement in an imperative
procedure, a special record is created and pushed onto the activation record stack. This record is
called a choice point. The choice point record maintains sufficient information necessary to restart
the system should another alternative be necessary. As with activation records, a register (cp) always
points to the most recent choice point. Figure 12 shows a pseudo-code representation of the code
generated for the child relation of Figure 1, and illustrates the code used to create a choice point.

The information stored in a choice point consists of the current value of the activation record
register, the address of the previous choice point, a instruction address where execution will continue
should backtracking be required, and enough information to “undo” the effect of certain assignment
statements during the process of backtracking. This latter is accomplished by maintaining another
register pointing to a separate data structure, called the trail. The trail is a stack of tag-address
pairs, where the tag indicates the type of object assigned and the address of the location for the
variable. Each choice point records the current location in the trail, indicated by the value of the
trail register (tp). As part of the backtracking process, all values marked in the trail above this
location are set once more to “undefined””. Figure 13 gives a typical snapshot of the activation
record stack, showing the presence of several activation records and choice points, as well as the
trail.

If a choice point is to be used to restore the state of a program, it is important that the choice
point not be removed from the activation record stack. This is accomplished by a simple change to
the procedure epilogue, namely that the stack pointer is never decremented lower than the current
choice point. (This can be determined simply by comparing the frame pointer and the choice point
registers). If returning from a procedure call would result in this happening, the activation record for
the procedure is simply left on the stack. This is true for both imperative procedures and relations.
Note that this places the responsibility for removing arguments on the called routine and not, as is
often done, on the caller.

Choice points will accumulate on the stack until they are used. Subtle difficulties in programming

7In general, backtracking requires that variables be reset to their old values. When used to construct relations, it will
always be the case that the previous value of a variable is “undefined”. This has the advantage that only the addresses
of the altered locations need be remembered. We have emphasized in this paper, however, that backtracking can be
used in contexts other than relations; whether a more general facility which remembers values as well as addresses is
necessary in these circumstances is a debatable question.

using generators and backtracking can arize as a result of control flowing through unanticipated
choice points. As we will mention in the conclusions section, we are currently working on developing
techniques to give the programmer more complete control over the creation of choice points.

To implement backtracking is then simply a matter of restoring the values of the registers stored
in the most recent choice point, undoing the effects of any assignments recorded in the trail, decre-
menting the stack to eliminate the current choice point (which may free activation records which
were not previously released because they were below the choice point), and branching to the code
location given in the choice point record.

Given this background, the code generated for relations can now be described. This code is in-
spired by the WAM (Warren Abstract Machine) for Prolog [MaW88], although we produce assembly
language directly instead of virtual machine instructions.

We first consider the code generated when the head of a relational rule (the portion to the left of
the :- symbol, or the entire rule in the case of a fact), contains constants. This occurs, for example,
in the child relation of Figure 1. Here the generated code tests the value of the associated variables,
assigning or branching to the failure routine as the situation may warrant. A pseudo-code description
of the initial part of the code for this relation is shown in Figure 12.

Code generated for assign places an entry of the correct type in the trail stack before modifying
the given location (as shown in Figure 12). A suspend(expression) statement generates code similar
to the following:

makeChoicePoint L1
return expression

L1:

The every statement is similar, only 1t fails following the given statement, thereby forcing the
statement to run through all possible alternatives before continuing. That is, code generated for
every statement is as follows:

makeChoicePoint L1
statement
fail

L1:

Invocations of relations in the right hand portion of relational rules are treated exactly like
procedure calls, since the backtracking mechanism will automatically take care of control flow. Calls
on functions (which must be declared to be of type boolean) are made into relations by surrounding
them with a conditional tied to an explicit fail, as in:

if not fune(X,Y) then fail

All other aspects of the implementation are straightforward and need not be discussed.

5 Conclusions

Once multiple programming paradigms have been identified, the integration of several paradigms into
a single language is an appealing objective, and we are certainly not the first to try to combine Prolog

style relations with another language. Several researchers, such as Lindstrom [Lin85], and Darlington
[DFP86], have attempted to add various features of Prolog to functional languages. Others, such
as Rumbaugh [Rum87], and Korth [Kor86], target object-oriented languages. Languages such as
PLEASE [Ter87] combine imperative and relational features, but are not compiled.

A language i1s more than just a collection of features, however, and thus the blending of two or
more paradigms into a single language is a complicated undertaking. It is rather easy to interface
features of two different languages; but often the result is like two separate worlds joined by a narrow
opening. To combine two separate programming styles into one uniform linguistic whole in a manner
that they flow naturally together and derive mutual benefit from each other 1s a subtle process; and
we are not at all convinced yet that we have achieved this.

In our mind, the significant aspects of LEDA are as follows:

e The language is strongly typed and compiled. Although the implementation is not sufficiently
developed for actual timings to be meaningful, the fact that the system is compiled rather
than interpreted should mean the imperative portions will execute as fast as most compiled
languages, and the relational aspects should be comparable to other compiled WAM-based
systems.

e Relations are provided as a third type of subprocedure, similar in many ways to both functions
and procedures. Relations can be used both in logical and imperative code, and imperative
code can be used inside of relations.

e The two paradigms are mutually beneficial, each providing features advantageous to the other,
so that the whole of the combination is more than merely the sum of the parts. For example,
the mechanisms of choice points and backtracking necessary to support relations have utility
quite apart from this use.

The development of truly multiparadigm programming languages opens up new possibilities for
the computing community:

e They allow us to more easily compare and contrast solutions to problems presented in various
forms for such features as succinctness, clarity, and efficiency.

e They allow students and programmers to become proficient in a variety of programming styles,
and perhaps better understand the importance and appropriate use of techniques from different
paradigms, while still working in only a single language.

e Perhaps most interesting, they provide for the possibility of software developed in a truly mul-
tiparadigm manner. In any sufficiently complex software system it is perhaps inevitable that
different parts of the system might be most appropriately addressed with different techniques.
In a compiler, for example, the parser might be best described using logical relations, while
the symbol table could be implemented as an object, and optimizing transformations on an
intermediate form described in a functional manner. All of these styles are possible in LEDA.

We emphasize that our experiences thus far are promising, but only beginning. The language
itself is also evolving. In addition to adding more complex data structures, we are also investigating
ways of controlling backtracking. This appears to be important if we are to fully utilize the generator

10

style of programming described in Section 3.3. Interestingly, the problem here is different from that
of Prolog. The primary mechanism used to control backtracking in Prolog is the cut, which discards
recent choice points. An equally necessary function is the ability to ignore early choice points created
prior to entering some context; so that failure can be handled gracefully rather than passing control
to some far flung location. We are currently investigating various alternatives to the every statement.
One approach is similar to the drive statement of Cg [Bud82]. An alternative proposal is more like
the notion of continuation in Scheme [SpF89]. There is also a question concerning whether simply
copying the Prolog syntax for relational rules is a good idea, or whether an alternative form that uses
explicit logical connectives (and, or and not) might be more efficient (since it would allow clauses to
be left factored out of rules, for example) and natural.

Acknowledgements

Clearly many of the ideas in LEDA were adapted from earlier programming languages, notably
Pascal, Prolog and Icon. I am indebted to the designers of these languages for providing me with
such good material to work with. T am also grateful to David S. Warren for explaining to me the
working of the David H.D. Warren Abstract (Prolog) Machine. Chris Fraser, Frank Griswold, Ralph
Griswold, and the seven unnamed referees made detailed comments on earlier drafts of this paper.

References

[Bud82] Budd, T. A. An Implementation of Generators in C. Computer Languages, Vol 7(2): 69-88
(1982).

[Bud89a] Budd, T. A., Data Structures in LEDA, Oregon State University, Technical Report 89-60-
17, August 1989.

[Bud89b] Budd, T. A., Low Cost First Class Functions, Oregon State University, Technical Report
89-60-12, June 1989. submitted for publication.

[Bud89¢] Budd, T. A., Functional Programming in an Object Oriented Language, Oregon State
University, Technical Report 89-60-16, August 1989. submaitted for publication.

[DFP86] Darlington, J., Field, A.J. and Pull, H. The Unification of Funclion and Logic Languages,
in Logic Programming: Functions, Relations and Equations, D. DeRoot and G. Lindstrom
(Editors), Prentice-Hall, Englewood Cliffs, New Jersy, 1986.

[GrG83] Griswold, R.E. and Griswold, M.T. The Icon Programming Language, Prentice Hall, En-
glewood Cliffs, New Jersy, 1983.

[Hai86] Hailpern, B. Multiparadigm Languages and Environments. IEEE Software, 3(1):6-9 (Jan-
uary 1986).

[Kni89] Knight, K. Unification: A Multidisciplinary Survey, ACM Computing Surveys, 21(1): 93-
124 (March 1989).

11

[Kor86]

[Lin85]

[MaW8g]

[Rum87]

[SpF89]

[Ste84]
[StS86]
[Ter87)

Korth, H. F. Extending the Scope of Relational Languages, IEEE Software, 3(1):10-28
(January 1986).

Lindstrom, G. Functional Programming and the Logical Variable, Proceedings of the
Twelfth Annual ACM Symposium on Principles of Programming Languages, pp 266-279
(January 1985).

Maier, D. and Warren, D.S. Computing with Logic: Logic Programming with Prolog Ben-
jamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1988.

Rumbaugh, J. Relations as Semantic Constructs in an Object Oriented Language, Sigplan
Notices, Vol 22(12):466-481 (December 1987).

Springer, G. and Friedman, D. P.; Scheme and the Art of Programming, MIT Press,
Cambridge, Mass. 1989.

Steele Jr., Guy L. Common Lisp, Digital Press, Bedford Massachusetts, 1984.
Sterling, L. and Shapiro, E. The Art of Prolog, MIT Press, Cambridge, Mass. 1986.

Terwilliger, Robert B. PLEASE: A Language Combining Imperative and Logic Program-
ming,

12

relation child(var name, mother, father : names);
begin
child(helen, leda, zeus).
child(hermione, helen, menelaus).
child(castor, leda, tyndareus).
child(pollux, leda, zeus).
child(aeneas, aphrodite, anchises).
child(telemachus, penelope, odysseus).
child(hercules, alcmene, zeus).
end;

Figure 1: A Relation consisting only of Facts

relation mother(var mom, kid : names);
var dad : names;
begin
mother(mom, kid) :- child(kid, mom, dad).

end

Figure 2: A Relation Implementing a Rule of Inference

relation daughter(var girl, parent : names);
begin
daughter(girl, parent) :- female(girl), mother(parent, girl).
daughter(girl, parent) :- female(girl), father(parent, girl).
end

Figure 3: A Relation with Multiple Clauses

13

type
binaryNameFun : relation (var names, var names);

relation closure (F : binaryNameFun, var A, B : names);
var C : names;
begin

closure(F, A, B) :- F(A, B).

closure(F, A, B) - F(A, C), closure(F, C, B).

end

Figure 4: A Relation used as an Argument in another Relation

relation grandChild(var X, Y : names);

var Z : names;

begin

begin writeln('test father-father descent’); end;
grandChild(X,Y) :- father(X,Z), father(Z,Y).
begin writeln('test father-mother descent’); end;
grandChild(X.Y) :- father(X,Z), mother(Z,Y).
begin writeln('test mother-father descent’); end;
grandChild(X,Y) :- mother(X,Z), father(Z,Y).
begin writeln('test mother-mother descent'); end;
grandChild(X,Y) :- mother(X,Z), mother(Z,Y).

end;

Figure 5: Tracing Execution with a Relation

function notsame(X, Y : names) : boolean;
begin

return X <> Y;
end;

relation brother(var X, Y : names);

var Z : names;

begin
brother(X,Y) :- father(Z, X), father(Z, Y), male(Y), notsame(X,Y).
brother(X,Y) :- mother(Z, X), mother(Z, Y), male(Y), notsame(X,Y).

end;
Figure 6: Using an Imperative Function within a Relational Rule

14

function same(X, Y : names) : boolean;
begin
if defined(X) then
if defined(Y) then return X =Y;
else assign(Y, X);
else if defined(Y) then assign(X, Y);
else return false;
return true;
end;

Figure 7: Simplified Unification in an Imperative Function

function recip(var X, Y : real) : boolean;
var Z : real;
begin
if defined(X) then begin
Z.=1/X;
if defined(Y) and Y <> Z then return false;
else assign(Y, Z);
end
else if defined(Y) then assign(X, 1 /Y);
else return false;
return true;
end;

Figure 8: An Imperative Function Used to Define Values

15

relation catch(var X : boolean);
begin

catch(true).

catch(false).

end;

begin
catch(v);
if v then
.. normal erecution
else
... process caught execution

fail; ...

end;

Figure 9: A simple catch - throw mechanism

16

type

exception : (noerror, underflow, overflow);
var

stackexcept : exception;

relation handler(var X : exception);
begin
handler(noerror);
handler(stackexcept);
end;

procedure raise (X : exception);
begin

stackexcept := X;

fail;

end;

handler(except);

if except == noerror then
normal execution

else
handle raised exception

Figure 10: An Exception Handler built using Relations

17

function fibseq(n : integer) : integer;
var count, i, j, k : integer;
begin
=1
suspend(i);
j=1;
suspend(});
for count := 3 to n do begin
k:=i+j;
suspend(k);
=
J = k;
end;
fail;

end;

Figure 11: Using Choice Points to Implement a Generator

L1: makeChoicePoint L2
if not defined(name) then
assign(name, helen)

else if name <> helen then fail

if not defined(mother) then
assign(mother, leda)

else if mother <> leda then fail

if not defined(father) then
assign(father, zeus)

else if father <> zeus then fail

goto return

L2: makeChoicePoint L3

return: if fp > cp then
sp := fp - argument size
goto return address

Figure 12: Code Generated for the Child Relation

18

sp —

cp —

I

local variables

saved fp

return address

saved fp

saved tp

saved cp

instruction address

local variables

saved fp

return address

saved fp

saved tp

saved cp

instruction address

local variables

saved fp

return address

local variables

saved fp

return address

Activation Record

Choice Point

Activation Record

Choice Point

o

)
|
}
|
!
|

tp— trail
Activation Record
\ >
Activation Record tag address
X tag address
| tag address

Figure 13: A Snapshot of the Activation Record Stack

19

