AN ABSTRACT OF THE THESIS OF

Redacted for Privacy

Redacted for Privacy
Picnara J.pıakeıy

The paleomagnetic history of the volcanic rocks of Easter Island was investigated using standard paleomagnetic techniques. The remanent magnetization of 673 specimens from the three volcanic episodes recognized on the island were measured using a spinner magnetometer. Inclinations, declinations and virtual geomagnetic poles were calculated for each flow. The majority of the samples were collected from the youngest episode, the Terevaka volcanics, which represents activity from the last 200,000 years.

The 65 flows from the Terevaka episode were used to study the Brunhes epoch on Easter Island. A mean geomagnetic pole was located at $87.4^{\circ} \mathrm{N}$ latitude and 204.2° E longitude. With its oval of 95\% confidence, this includes the present geographic pole, as expected
for such young rocks.
Secular variation, expressed by the angular deviation of the mean virtual geomagnetic pole, was obtained for the Terevaka samples. This value, 12.8° with 95% confidence limits of 14.9° and 11.2°, is compared to other values for Brunhes age rocks. It appears to fit well onto a calculated model for the variation of angular dispersion with site latitude. It also can be related to an anomalously low region of secular variation found in the central Pacific.

Paleomagnetism and Secular Variation of Easter Island Basalts

by
Laurie Brown Isaacson

A THESIS

submitted to
Oregon State University
in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy
June 1974

Redacted for Privacy

\qquad

Dean of the Graduate School

Date Thesis presented: April 29, 1974
Typed by Maryolive Maddox for Laurie Brown Isaacson

This thesis compiles the results of a project originally designed and proposed by Dr. Donald Heinrichs. For his continued support and advice throughout this project, I am most appreciative. In Dr. Heinrichs' absence, Dr. Richard Blakely assisted with the many problems that arose in the development of the data and the arrival at a viable conclusion. His enthusiasm for the project was rewarding, and his role as advisor, mentor, and critic made the day to day work far less frustrating than it could have been.

Dr. Jack Dymond and Mr. James Clark provided field data from Easter Island as well as geochemical and geochronological results from many samples there.

My husband, Peter, must be given unmeasurable credit for assistance and moral support throughout this endeavor.

While a student at Oregon State University, I have been supported by assistantships from ONR and IDOE, and for these am most grateful.
INTRODUCTION 1
LOCATION AND GEOLOGY 3
Location 3
Geology 3
Age of Easter Island 6
EXPERIMENTAL PROCEDURES 9
Field Work 9
Laboratory Work 10
STATISTICAL ANALYSIS 14
Magnetic Field Measurements 14
Fisherian Statistics 15
Secular Variation Statistics 16
STABILITY AND RELIABILITY OF MEASUREMENTS 19
Stability 19
Reliability 20
RESULTS 22
Natural Remanent Magnetization 22
Demagnetization 22
Flow Inclinations and Declinations 24
Magnetic Intensities 27
Virtual Geomagnetic Poles 27
Excursion of the Field 29
SECULAR VARIATION 31
Introduction 31
Latitude Variation Models 31
Easter Island Secular Variation 35
Brunhes Secular Variation Versus Latitude 38
Central Pacific Secular Variation Low 41
Conclusions 42
BIBLIOGRAPHY 44
APPENDIX I 50
APPENDIX II 55

LIST OF FIGURES

Figure Page

1. Index map, Southeast Pacific Ocean. 4
2. Geologic Map of Easter Island. 5
3. Sampling sites, Easter Island. 8
4. Shaft directions and measured components for the spinner magnetometer. 13
5. Stereographic projections of directions of natural remanent magnetization, Flow 37 and Flow 45. 23
6. Stereographic projection of directions before and after demagnetization at 50 oe , and step- demagnetization of Flow 23. 25
7. Stereographic projection of average declinations and inclinations for the Terevaka flows. 26
8. Virtual geomagnetic pole positions for the Terevaka flows with the average pole position and oval of 95% confidence. 28
9. Normalized standard deviation of directions for models A and B, terms W_{n} and W_{d}. 34
10. Histogram of α_{95} for the 65 Terevaka flows. 36
11. Secular variation statistics for the Terevaka flows. 37
12. Angular dispersion of virtual geomagnetic poles with respect to the geographic axis. 39

PA LEOMA GNETISM AND SECULAR VARIATION OF EASTER ISLAND BASALTS

INTRODUCTION

Paleomagnetic studies investigate the history of the earth's magnetic field. The underlying assumption to such studies is that certain rocks retain the direction and relative intensity of the ambient field at the time of their origin. For extrusive igneous rocks the field is recorded as the rocks cool from a molten lava through their Curie point. Since the time of cooling is very short on a geologic .time scale, each lava flow is considered an instantaneous reading of the ancient geomagnetic field. A series of flows from one location will give an average direction of the field and a corresponding average pole position.

Studies of the ancient magnetic field over a restricted time interval are essential to the understanding of paleomagnetic events in recent earth hsitory. Easter Island consists of lava flows from several volcanic episodes spanning several million years and presents and adequate time period to study the earth's magnetic field. The location of the island close to an actively spreading ridge complex assures a young age for the extensive lava flows present there. It is possible that a detailed paleomagnetic study of such young rocks
might reveal magnetic reversals and/or events known to exist in Upper Tertiary and Quaternary rocks. Also it will be possible to investigate the secular variation of the field during the time spanned by the volcanic units. Concurrent research on the geochronology and geochemistry of these same rocks greatly aids the study and provides a detailed dated history of the island's volcanism.

LOCA TION AND GEOLOGY

Location

Easter Island $\left(27^{\circ} \mathrm{S}, 109^{\circ} \mathrm{W}\right)$ is an isolated outcrop of volcanic rock in the southeast Pacific Ocean, 3700 km west of Chile. It lies on the eastern slope of the East Pacific Rise, approximately 530 km east of the ridge axis, and is part of the Sala y Gomez Ridge complex (Figure 1). It also is located at the southeastern end of the Tuamotu-Line island seamount chain. In this context the island is considered by some to be a "hot spot" or surficial expression of a mantle convection plume (Wilson, 1963; Morgan, 1973).

Geology

Easter Island is entirely volcanic in origin. Although the island has been the subject of intensive archeological studies (Heyerdal et al., 1961), the geology has only been briefly studied. Chubb (1933) and Bandy (1937) made early attempts at geologic reconnaissance of the island. Both investigators recognized the existence of three distinct episodes of volcanism, and named each for its major volcano. Figure 2 shows the regional geology of the island with the three main volcanoes: Poike, Rano Kau, and Terevaka. Baker (1966) further investigated the island, substantiated the earlier observations and

Figure 1. Index map, Southeast Pacific (after Herron, 1972a).

Figure 2. Geologic map of Easter Island (after Baker, 1966)
added additional information concerning the relative ages of the events. He classified Poike and Rano Kau as the older episodes, and Terevaka, covering the major part of the island, as the youngest episode.

The volcanic rocks on the island are transitional between island tholeiites and alkali basalts, with even the more basic rocks saturated in silica (J. Clark, per. comm,). The extensive number of once-active volcanic vents and pyroclastic centers, especially during the Terevaka episode, make it difficult to correlate flows around the island or futher delineate the volcanic stratigraphy without additional field work.

Age of Easter Island

Although there are no reports of volcanic activity in historical time, the island does appear to be very young (Baker, 1966) based on the unweathered appearance of many of the basalt flows. Due to the island's close proximity to the East Pacific Rise, this assumption is most consistent with plate tectonic theories. From marine magnetic data (Herron, 1972b) Easter Island is situated between anomalies two and three. Using the time scale developed by Heirtzler et al. (1968), the sea floor in the vicinity of Easter Island has a minimum age of two million years and a maximum age of five million years.

Preliminary age determinations on six hand samples from the
island using potassium-argon method gave an estimated age of less than 1.0 million years (Booker et al., 1967).

A detailed investigation of the geochemistry and geochronology of the island is in progress (Clark and Dymond, 1974). The 30 lavas presently dated by the potassium-argon method readily identify the three episodes of volcanism recognized in field studies. Poike, the easternmost volcano, is the oldest with a date of 2.5 ± 0.2 million years. The southern volcano Rano Kau yields several dates, all approximately 1.0 million years. Terevaka is definitely the youngest episode on the island, with 15 flows sampled, all producing dates of 240, 000 years or less. Figure 3 shows the location of the flows which have been radiometrically dated.

Cox (1969a) has established a detailed time scale for the most recent geomagnetic polarity reversals, using known paleomagnetic data and potassium-argon age dates. The three volcanic episodes on Easter Island fall into the three most recent polarity epochs. The Poike volcanics lie in the Gauss-normal epoch. The Rano Kau lavas are in the Matuyama-reversed epoch, and the Terevaka flows are in the youngest epoch, the Brunhes-normal. Since the majority of samples studied here were collected from the Terevaka region, a normal polarity is expected. However, the samples from Rano Kau should show a reversed polarity.

EXPERIMENTAL PROCEDURES

Field Work

Donald Heinrichs, Jack Dymond, and James Clark carried out the field work in March on 1971. They spent two weeks on Easter Island collecting samples for paleomagnetic and geochemical studies.

The paleomagnetic samples were collected following procedures outlined by Doell and Cox (1965), using a gasoline powered portable drill with a diamond bit. Cores were drilled 10 to 20 cm long and 2.54 cm in diameter. These were oriented in situ using a Brunton compass and a core leveling device, consisting of a slit brass tube and an adjustable level platform, After the core is drilled, but before it is removed from the site, the tube is slipped over the core and a line is scribed down the core using a copper wire. The level and compass are used to measure the dip and aximuth of the core.

To obtain adequate data for statistical studies at least four sites per separate flow were drilled. Usually two specimens were cut from each core, with an average of eight specimens per flow obtained. Care was used to pick fresh, unweathered outcrops of rock to avoid possible problems due to weathered samples. Whenever field conditions permitted lavas were sampled in sequence. Due to the excellent outcrops found in seacliffs, and the lack of exposure in the
interior of the island, most of the sampling was done along the periphery of the island. Figure 3 is a map of Easter Island showing the location of sampling sites.

The drilled rock sample is considered in a coordinate system where the Z-axis is positive down the axis of the core. X and Y are orthogonal such that the Y -axis is always horizontal and X is positive when inclined above the horizontal. In other words, the right-hand system is employed. The line scribed on the core in the field represents the Z-axis, while small hatched lines are added to represent the Y-positive direction. The dip of the core measured in the field is the plunge of the Z-axis $\left(0^{\circ}\right.$ to $\left.\pm 90^{\circ}\right)$. The aximuth of the core is the Y-positive direction (0° to 359.9°).

Due to logistical and equipment problems, it was not possible to sample all areas using the portable drill. In these locations hand samples were collected with proper notation of their orientation in the field. For outcrops sampled in this manner only one or two sites per lava flow were visited. These rock samples were later drilled in the laboratory and reoriented there to obtain the dip and azimuth of the core.

Laboratory Work

Remanent magnetization measurements were made using a 5 Hz spinner magnetometer. A sample, secured in aholder on the end
of a long shaft, is rotated in front of a small, highly sensitive flux gate coil. The rotating magnetic moment of the sample produces an alternating current in the sensor. With the use of a reference magnet and coil, the phase and amplitude of the signal was determined.

The signal to be read is displayed on a digital voltmeter connected to a Lock-in amplifier. Controls on the amplifier allow for sensitivity, time constant and phase changes. The sensitivity controls vary from $1 \mu \mathrm{v}$ to 200 mv , but settings of 1 mv to 100 mv were adequate for the rocks measured \ln this study. The time constant may be set from 1 msec to 300 sec ; a setting of 1 sec was used exclusively here. The phase setting allows for two readings for each spin, one at 0° and the other at 90°.

Due to a slight but persistent drift of the magnetometer with time, it is necessary to "zero" the amplifier each day. This is done with a calibration probe inserted in the shaft. At the 0° phase setting the probe should induce no output, and the calibration dial is adjusted so this is true.

The cored sample is placed in a cubic specimen holder so that each axis of the specimen is parallel to one of the holder sides. The holder is scribed with the Z and Y directions to ensure proper orientation of the sample each time. The holder is then oriented on the end of the shaft with one axis pointing vertically down (the I shaft direction), and one axis pointing horizontally along the shaft toward
the motor (the II shaft direction). The sample is now "keyed" with respect to the reference signal. The 0° phase reading will correspond to the vertical axis component, while the 90° phase reading will be the horizontal component perpendicular to the II shaft direction, positive toward the reader (the rightighand rule is still used). Although three such spins provide two readings on each component, a total of six complete spins were used to obtain four readings oneach component. In this way possible inhomogeneities in the samples, magnetic anisotropy and/or possible magnetometer drift were minimized. Figure 4 lists the shaft directions and components measured for this study. The order of readings is important to ensure proper in put for the computer program used to calculate the sample directions.

Magnetic cleaning experiments were carried out using an alternating field demagnetizer. This equipment consists of a variable current transmitted through a coil, creating a magnetic field in which the sample is rotated. The field can be set at any level up to 1000 oe, and then allowed to decay over a ten minute period. By this process much of the spurious or secondary elements of magnetization are randomized and stable primary magnetization remains dominant. Samples here were rotated in a four-axis tumbler, which minimizes the possibility of a preferred direction being enhanced by the alternating field.

SPIN	SHAFT DIRECTIONS	COMPONENT MEASURED		
	I	II	0°	90°
1	+X	-Z	+X	+Y
2	+X	+Z	+X	-Y
3	+Y	-X	+Y	+Z
4	+Y	+X	+Y	-Z
5	+Z	-Y	+Z	+X
6	+Z	+Y	+Z	-X

Figure 4. Shaft directions and measured components for spinner magnetometer.

STATISTICAL ANALYSIS

Magnetic Field Measurements

The magnetic field is a vector field and can be fully described by two angles, inclination and declination, and the field intensity. Declination is the angle between geographic north and the horizontal component of the field, inclination is the angle between the horizontal and the field vector, and the intensity is the magnitude of this field vector. From the components of the magnetic moment one can easily determine these desired angles and magnitude.

Calculations were done using an algorithm developed by Doell and Cox (1965) and further adapted by Denham (1971), dependent on the intensities M_{x}, M_{y}, and M_{z} and the phase angles Θ_{x}, Θ_{y}, and Θ_{z}. The three phase angles define three planes, which intersect to form a small error traingle. By repeated iterations this triangle is collapsed, using the intensities as weighting factors on each side. When the radius of the triangle becomes less than 0.01 degrees, the strongest vertex is chosen as the solution, with a corresponding inclination and declination. The computer program SPINNER, used to make these calculations is listed in Appendix II.

Once the inclination and declination are known at one locality, a corresponding paleomagnetic pole may be calculated using the
following formulas:

$$
\begin{align*}
& \sin \theta^{\prime}=\sin \theta \cos p+\cos \theta \sin p \cos D \\
& \sin \left(\phi^{\prime}-\varnothing\right)=(\sin p \sin D) / \cos \theta^{\prime} \tag{1}\\
& \cot p=1 / 2 \tan I
\end{align*}
$$

The paleomagnetic pole has the coordinates ($\theta^{\prime}, \phi^{\prime}$), the sampling locality is given by (Θ, ϕ), and I and D are the inclination and declination. These calculations are contained in the program SIMPLET (see Appendix II).

Fisherian Statistics

The analysis of paleomagnetic data calls for the investigation of a vector field over a sphere. Fisher (1953) developed a special set of statistics to deal with this problem. He simulated a Gaussian distribution in three dimensions where points on a sphere (paleomagnetic directions) were described in terms of a probability density function

$$
\begin{equation*}
P=\frac{K}{4 \pi \sinh K} \exp (K \cos \Theta) . \tag{2}
\end{equation*}
$$

θ is the angle between individual directions and the true directions, and K is a constant called the precision parameter. K varies from $K=O$ for perfectly random directions to $K=O$ for identical directions. Since directions from one lava flow should not be random, K is expected to be large. A best estimate for K has also been
described by Fisher as:

$$
\begin{equation*}
K \approx k=\frac{N-1}{N-R} \tag{3}
\end{equation*}
$$

Here N is the number of samples and R is the normalized length of the resultant vector of the N samples. A further discussion of these statistics if found in Cox and Doell (1960).

Another useful statistic presented by Fisher (1953) is $\boldsymbol{\alpha}$.
This is the semivertical angle of a circular cone about the resultant vector R in which the true mean direction lies. For a probability level of $1-P, \alpha$ is given by:

$$
\begin{equation*}
\cos \alpha_{(1-P)}=1-\frac{N-R}{R}\left\{(1 / P)^{1 / N-1}-1\right\} \tag{4}
\end{equation*}
$$

In paleomagnetic work P is usually taken as 0.05 . Then there is 95% confidence that the cone of radius α_{95} contains the true mean direction. For \propto small it can be approximated by:

$$
\begin{equation*}
\alpha_{95}=\frac{140}{\sqrt{\mathrm{kN}}} \tag{5}
\end{equation*}
$$

α_{95}, k and R are all calculated and output by the computer program SIMPLEl (Appendix II).

Secular Variation Statistics

Cox and Doell (1964) show the best means of expressing secular variation to be the measure of angular standard deviation, S_{T} :

$$
\begin{equation*}
S_{T}^{2}=\frac{1}{(B-1)} \sum_{i=1}^{B} \quad \int_{i}^{2} \tag{6}
\end{equation*}
$$

B is the number flows involved, and S_{i} is the angle between the direction or pole of the $i^{\text {th }}$ lava and the mean direction or mean pole. S_{T} can be expressed as either the angular dispersion of directions or poles.

The total angular dispersion S_{T} must be corrected for various experimental and natural errors. These include within-site dispersion, between-site dispersion, and the possible presence of local geomagnetic anomalies at the time of extrusion. Cox (1969b) and Doell (1970) have developed the following method of dealing with these errors. In terms of the precision parameter k:

$$
\begin{equation*}
1 / k_{F}=1 / k_{T}-1 / \bar{N} k_{W}-1 / k_{A} \tag{7}
\end{equation*}
$$

where k_{T} is the total precision parameter, k_{W} is the within-lava precision parameter, k_{A} is the percision parameter due to local anomalies at the site, $\overline{\mathrm{N}}$ is the average number of samples per lava, and k_{F} is the ancient geomagnetic field precision parameter. Due to the inverse relationship between the precision parameter and angular standard deviation,

$$
\begin{equation*}
S=81^{\circ} /(k)^{1 / 2} \tag{8}
\end{equation*}
$$

for S in degrees (Cox and Doell, 1964), equation (7) can be expressed
in terms of the dispersion.

$$
\begin{equation*}
S_{F}^{2}=S_{T}^{2}-S_{W}^{2} / \bar{N}-S_{A}^{2} \tag{9}
\end{equation*}
$$

The subscripts here are similar to the ones described for equation (7).
The ithin-lava precision parameter, k_{W}, is calculated by a two-tier analysis method outlined by Watson and Irving (1957). Here the number of samples, N_{i}, from the $i^{\text {th }}$ flow are combined with the normalized resultant vector for the flow, R_{i}, in the equation:

$$
\begin{equation*}
k_{w}=\sum_{i=1}^{B} \frac{\left(N_{i}-1\right)}{\left(N_{i}-R_{i}\right)} \tag{10}
\end{equation*}
$$

where B is the total number of lavas studied.
From a study of historic lava flows on Hawaii, Doell and Cox (1963) have estimated the angular dispersion of directions due to local anomalies to be $S_{A}=1.25^{\circ}$. Using procedures developed by Cox (1970), Doell (1970) has expressed this deviation in terms of poles and the precision parameter as $k_{A}=2100$. This value depends on the relative magnetic intensity of the lavas studied, here considered to be of the order of $10^{-3} \mathrm{emu} / \mathrm{cc}$. A recent synthesis of the above statistical methods can be found in Ellwood et al. (1973).

The total precision parameter is an output of the computer program SIMPLE1, k_{W} is calculated with the aid of the program RVGP, given in the Appendix.

STABILITY AND RELIABILITY OF MEASUREMENTS

Stability

Paleomagnetic studies are based on the assumption that the magnetic field recorded in sampled rocks represents the earth's field at the time of original emplacement. This has been shown to be true for historical lava flows by Chevallier (1925), N.agata (1943), and : Doell and Cox (1963), where comparison to observatory data is possible. When the rocks in question are older than any historical observatory data, as the case usually is, field tests and laboratory tests must be employed to validate the stability of the magnetization. The field tests (see McElhinny, 1973) require igneous contacts, magnetic reversals, fold, and/or conglomerate units. Thus, there are no applicable tests to a field area such as Easter Island, consisting only of volcanic rocks.

In this study the stability of the natural remanent magnetization was investigated by alternating field demagnetizing experiments. The stable primary magnetization measured in the laboratory is thermo-remanent magnetization (TRM), or that gained by the rock as it cools through its Curie point. This primary magnetization can be contaminated by isothermal remanent magnetization (IRM), viscous remanent magnetization (VRM) and chemical remanent magnetization
(CRM). VRM and IRM components can be removed in alternating fields of only a few hundred oersteds (McElhinny, 1973), and will be erased in demagnetized samples. The remaining magnetization can be due either to TRM or CRM, but it is hard to distinguish between the two solely from demagnetizing experiments. The fresh, unweathered aspect of the samples implied that little oxidation has occurred. This fact, along with the excellent clustering of directions obtained for many of the flows substantiated the assumption that the observed magnetization was due primarily to TRM.

Reliability

Minimum criteria for the reliability of paleomagnetic data as true indicators of the paleo-field have been proposed by Irving (1964) and McElhinny (1973). The samples studied here conform to the six stated criteria except the one demanding five (Irving) or eight (McElhinny) separate sites sampled per flow. This study had only four separate cores per flow, with two specimens cut from each core. Current work by Ellwood et al. (1973) and Watkins (1973) indicates that even for the more refined secular variation statistics, four sites per flow provide adequate data.

The most scattered flows were checked to determine if these samples represented random directions. This was done using Watson's statistical test (1956), comparing a statisticalderived R to
the observed R. All flows checked passed that test (i.e. directions were not random) at the 95% level except for flow 61 , which was discarded from further calculations.

Natural Remanent Magnetization

All specimens from both cored sites and hand samples were run on the spinner magnetometer and the resulting magnetic directions calculated. For each flow, D and I for all the specimens were plotted on an equal-area stereonet projection. Figure 5 shows the direction plots for flows 37 and 45 , with their respective α 95 values. These are representative of two groups, one with the directions well-clustered (flow 37), and one with considerable scatter in the directions (flow 45).

Demagnetization

A number of flows were demagnetized in alternating fields of 50 to 200 oersteds. This was done to remove secondary unstable components of magnetization and improve the cluster of directions determining the average direction.

To obtain a suitable field level for demagnetization, the dispersion of directions was investigated following procedures by Irving et al. (1961). Two test specimens from each flow were demagnetized at levels of $25,50,100,200,400$, and 800 oersteds. The demagnetizing level for the entire flow was the field at which the dispersion

Figure 5. Stereographic projections of directions of natural remanent magnetization, Flow 37 and Flow 45.
of the directions of the two specimens was a minimum. A stability index (Bridern, 1972) was also employed, which compared the NRM vector at varying levels of demagnetization, but it proved less useful.

Figure 6 shows a typical demagnetized flow, with direction plots for the specimens, and the intensity variation at increased oersted levels. Twenty-five flows were treated in this manner, with an improved cluster of directions being obtained after cleaning.

Flow Inclinations and Declinations

The declinations and inclinations found for each sample were combined to obtain an average direction for each flow. Figure 7 is a stereographic plot of the average directions for the 65 Terevaka flows. Included on the plot are the present field directions and the axial dipole field for the latitude of Easter Island.

This data is listed in Appendix I, along with the Fisherian statistics for each flow. Also presented are the data from the other samples collected on the island. Only directions and poles are reported for flows consisting of hand samples. Due to the small number of sites sampled for these flows no attempt was made to calculate statistics or to clean these samples further. It should be noted that only four out of ten flows of the Rano Kau episode have a reversed polarity, although that is the expected result for flows of this age. Further collections and magnetic measurements are needed to clarify

Figure 6. Sterographic projection of directions before and after demagnetization at 50 oe, and step demagnetization of Flow 23.

Figure 7. Stereographic projection of average declinations and inclinations for the Terevaka flows.
this problem.

Magnetic Intensities

Magnetic intensities were calculated for each specimen and an average intensity for each flow. Flow intensities ranged from. 53 x 10^{-3} to $8.4 \times 10^{-3} \mathrm{emu} / \mathrm{cc}$. These values are very similar to ones reported by other investigators on Brunhes age rocks (see Cox, 1969b; Bingham and Stone, 1972)

Virtual Geomagnetic Poles

For each of the Terevaka flows a virtual geomagnetic pole (VGP) was determined from the inclination, declinations and site latitude. The term virtual geomagnetic pole is used to identify a pole calculated from one spot reading, representing only an instant in time.

The VGPs are listed in Appendix I and are shown in Figure 8 on a polar projection of the northern hemisphere. The mean VGP is designated by a cross, located at $87.4^{\circ} \mathrm{N}$ latitude and $204.2^{\circ} \mathrm{E}$ longitude. It is surrounded by the oval of confidence at the 95% level with major axis of 4.13° and minor axis 2.57°. This oval includes the present rotational pole of the earth, as is to be expected for very young rocks. Cox and Doell (1960), Irving (1964) and more recently, Opdyke and Henry (1969) have noted that the mean poles for upper Tertiary to Recent rocks are always very close to the geographic pole.

Figure 8. Virtual geomagnetic pole positions for the Terevaka flows, with the average pole position and oval of 95% confidence.

It appears that for a time average of at least a few thousand years in the upper Tertiary the earth's field was that of an axial dipole.

Wilson (1970; 1971) has pointed out that while the average pole always occurs very close to the geographic pole, it is also usually displaced on the opposite side of the geographic pole from the source area. He proposes that this "far-side pole" position is due to a displacement of the main dipole $191 \pm 38 \mathrm{~km}$ northward along the rotation axis. The position of the me an VGP from Easter Island does not support this contention, lying slightly on the near side of the geographic pole to Easter Island. Other Southern Hemisphere data opposing Wilson's off-set theory has been presented by Watkins (1972).

Excursion of the Field

Cox, Doell and Dalrymple (1964) demonstrated the presence of short duration polarity events as part of the geomagnetic time scale. For a limited time, on the order of 10^{4} years, the field reverses its polarity, then returns to the original polarity of the existing epoch. Several events in the Brunhes normal epoch have been postulated, but due to their short duration they have not been ovserved in all paleomagnetic studies of Brunhes age rocks. Three events have been found in very young rocks and sediments all dated at less than 30,000 years before present (Bonhommet and Zahringer, 1969; Morner et al. 1971; Barbetti and McElhinny, 1972). Another event is the Blake
event, first observed in deep-sea sediment cores (Smith and Foster, 1969; Wollin et al., 1971) and dated between 108,000 and 114, 000 years.

It is observed that occasionally a complete reversal does not occur, but the field departs from its normal vertical position for a short time and returns, never "locking-in" to the reversed position (McElhinny, 1973). Such aborted reversals are called excursions, and have been noted in recent paleomagnetic studies (Watkins and Nougier, 1973). In fact, several of the previously mentioned events may only be departures of the field and not complete reversals.

In the Easter Island data there are several flows having VGP latitudes less than 50° (Figure 8). The two lowest of these flows have VGP latitudes of 49° and 44°. These two flows are from opposite sides of the island and do not appear to be related in the field. One flow is in sequence with t other flo s, both of which have low VGP latitudes and similar VGP longitudes (see flows 32, 33, and 34, Appendix I). One of these flows has been dated by potassium argon at $127,000 \pm 58,460$ years. This relates the excursion observed here to the fore-mentioned Blake event, although there is not enought data to determine if the excursion is an actual reversal or simply a departure of the field from normal.

SECULAR VARIATION

Introduction

Secular variation is the change observed in magnetic field with time, both in field directions and intensitites. For variations due to internal sources, time scales of 10 to 10^{4} years are likely (Cox and Doell, 1964). In looking at paleosecular variation, one is concerned with a single reading of an average value of secular variation over time. It is necessary to have a sampling sequence that covers a time interval at least several times larger than the maximum time period for the variations themselves. The Easter Island Terevaka lavas span approximately 200,000 years, and thus are able to give a reasonable average for paleosecular variation. The best method for expressing secular variation is an investigation of the scatter of points about the mean, either directions or poles (Creer et al., 1959; Cox and Doell, 1964).

Latitude Variation Models

Secular variation is a change in the earth's magnetic field. There are three main causes: variations in the intensity and direction of the non-dipole field; the wobble of the central dipole; and oscillations of the dipole (Brock, 1971). All of these causes give rise to
secular variation values which vary with latitude, due to the nature of the geomagnetic field.

Several models have been proposed to explainthis dependence, and have been termed models A, B, and C by Irving (1964). Model A (Irving and Ward, l964) suggests an axial geocentric dipole of a set moment, where the secular variation is caused by a random component of fixed intensity disturbing the dipole. There is no dipole wobble in this model and all the latitude variation is caused by the dipole field latitude variance. Creer, et al., (1959) proposed model B which postulates a dipole wobble about the man dipole causing the secular variation. This is a one parameter model and non-dipole components are not considered. Model C, suggested by Cox (1962), combines the dipole wobble with non-dipole components. This model has been further expanded and is now supplanted by model D (Cox, 1970). Again both non-dipole and dipole terms affect the curve, but there also is a factor involving dipole oscillations. The angular variance for this model is found from:

$$
\begin{equation*}
s^{2}=a^{2} w_{n}^{2}+b^{2} w_{d}^{2} \tag{11}
\end{equation*}
$$

Here a is a constant depending on the intensity of dipole oscillations, b is a constant derived from the standard deviation of the dipole wobble, and W_{n} and W_{d} are the non-dipole and dipole components given by:

$$
\begin{align*}
& \mathrm{W}_{\mathrm{n}}=\left(1+3 \sin ^{2} \lambda\right)^{-1 / 2} \\
& \mathrm{~W}_{\mathrm{d}}=\frac{5+3 \sin ^{2} \lambda}{5\left(1+3 \sin ^{2} \lambda\right)^{2}} 2 \quad 1 / 2 \tag{12}
\end{align*}
$$

$\boldsymbol{\lambda}$ is the latitude at which the variation is desired.
Figure 9 shows normalized latitude curves for model A, model $\mathrm{B}, \mathrm{W}_{\mathrm{n}}$ and W_{d} (after Brock, 1971). W_{n} and A follow the same curve, and model D will lie between W_{n} and W_{d} depending on the values of a and b.

The angular dispersion represented in Figure 9 is that determined from the scatter of paleomagnetic directions. S_{T} can also be expressed as the angular dispersion of virtual geomagnetic poles. Convincing evidence is given in favor of the latter by Doell (1970). The dipole wobble component causes a latitude variation in dispersions of directions, but not in the dispersions of poles (Cox, 1962; Cox, 1970). Therefore, the dipole contribution to the angular standard deviation of the VGPs is the same for all locations on the globe. The non-dipole component produces a latitude variation in dispersion of both directions and poles (Cox, 1962; Creer, 1962). Thus, by looking at dispersions of VGPs from different latitudes the dipolewobble effects are the same, and non-dipole components cause any difference (Doell, 1970). Previously Doell (1969) has suggested 11.5° as the maximum dispersion from the dipole wobble, based on

Figure 9. Normalized standard deviation of directions for models A and B, terms W_{n} and W_{d} (after Brock, 1971).
extensive studies in Hawaiian volcanics.

In addition to considering the choice of dispersion of directions or poles, one must consider the choice of relating the poles to the mean VGP or another point. As pointed put by Cox (1969b) and Doell (1970), if one accepts the geocentric dipole theory, the dispersion of poles may be calculated with respect to the present geographic pole. Since most studies of Brunhes age rocks yield mean poles not statistically different from the rotation axis (see, for example, Wilson, 1970), this is the preferred procedure.

Easter Island Secular Variation

An important consideration in determining secular variation values is the selection of data to be used. Criteria established by Cox and Doell (Cox, 1969b; Deoll, 1970; Doell and Cox, 1972) reject any data with $\mathcal{\alpha}_{95}$ values greater than 9° and/or a VGP latitude of less than 50°. These investigators also require six to eight separate samples per flow. Other authors (Ellwood et al., 1973; Watkins and Nougier, 1973) discard flows with low VGP latitudes, but make no rejections on α_{95} values. A case has been made for as few as four sites per flow providing adequate results (Ellwood et al., 1973).

Figure 10 is a histogram of the $\boldsymbol{\alpha}_{95}$ values for the 65 Terevaka flows. The great majority of the flows fall between 2° and 16°, with only 8 flows lying beyond 16°. Two sets of statistics were calculated

Figure 10. Histogram of \propto_{95} for the 65 Terevaka flows.
for the Easter Island data. One set (set A) contained only flows with α_{95} less than 10°. The other set included all the flows regardless of $\boldsymbol{\alpha}_{95}$ values. For both sets the flows with VGP latitudes less than 50° were removed, as were any flows with less than four separate sample sites. This left 31 flows for set A and 51 flows for set B. Following the methods outlined previously the angular standard deviation of the VGPs with respect to the geographic pole was calculated for each set. The results are presented in Figure 11. The final measure of dispersion is reported with its upper and lower 95% confidence limits $\left(S_{u}\right.$ and $\left.S_{i}\right)$ determined from tables presented by Cox 1969c).

S_{T}	k_{T}	k_{W}	k_{A}	k_{F}	S_{F}	S_{u}	S_{i}
$\begin{array}{cc} \text { Set A } & 13.07 \\ \text { wrt VGP } & \end{array}$	38.40	32.08	2100	56.27	10.80	13.06	9.19
$\begin{gathered} \text { wrt geogr. } \\ \text { pole } \end{gathered}$	38.31			56.07	10.82	13.09	'9.. 23
$\begin{aligned} & \text { Set B } \\ & \text { wrt VGP } 15.79 \end{aligned}$	26.33	19.57	2100	40.44	12.74	14.75	11.22
$\begin{aligned} & \text { wrt geogr. } \\ & \text { pole } \end{aligned}$	26.29			40.34	12.75	14.78	11.21

Figure 11. Secular variation statistics for Terevaka flows.

Brunhes Secular Variation Versus Latitude

Doell and Cox (1972) have presented angular dispersion values for eight different paleomagnetic studies on Brunhes age volcanics. Their sampling sites include the Galapagos Islands (Cox, 1971), Hawaii (Doell, 1969, 1972, 1972b, 1972c), western United States (unpublished data), New Zealand (Cox, 1969b), France (Doell, 1970), Alaska (Hoare et al., 1968), Iceland (Doell, 1972d), and Antarctica (unpublished data). They plot this data on an angular dispersion versus latitude diagram (Figure 12). Model D of Cox (1970) has been adapted to estimated Brunhes age geomagnetic field values. The dipole wobble, W_{d}, is a constant 11°. The non-dipole term, W_{n}, is approximated by calculating the angular dispersion for the non-dipole component of the 1965 International Geomagnetic Reference Field. These two factors are combined to provide the proposed model, the upper solid line on Figure 12.

In the past several years other workers have determined additional angular dispersion values for Brunhes age rocks. These are included in Figure 12, and their sources are as follows: Comore Island (Watkins and Nougier, 1973); Reunion Island (Watkins, 1973); Amsterdam Island (Watkins and Nougier, 1973); Azores (Ellwood et al., 1973); Japan (Ozima and Aoki, 1972); Crozet Island (Watkins and Nougier, 1973); and Aleutian Islands (Bingham and Stone, 1972).

PRECISION PARAMETER

Figure 12. Angular dispersion of virtual geomagnetic poles with respect to the geographic axis.

It must be pointed out that the various studies follow different criteria in selecting the useable data, and exact comparison between results is not possible.

The Easter Island secular variation value found in this study is also plotted on the graph. It falls just below the proposed model, but with 95% confidence limits which cover a broad area on either side of the model. Even though direct comparison of all points is not possible, the general trend of the actual data is obvious. There definitely is an increase of secular variation with increasing latitude, but to use the data as support for this specific model is difficult.

To improve the dat a as a measure of the model's validity, one needs more paleomagnetic studies which fit the sampling criteria. There have been many studies done on Brunhes age rocks, but very few have sufficient samples and/or sites to allow for angular dispersions calculations. Since the confidence limits are directly related to the number of lavas sampled, large studies will produce narrow limits of angular dispersion.

The determination of the non-dipole part of the model is another area of question. The use of the 1965 IGRF assumes that the present non-dipole activity is representative of that in the Brunhes, but this is not necessarily so. It would be most desirable to have a better measure of the ancient non-dipole activity, and its dependence on latitude.

The problem of sampling sufficient time has been raised by Aziz-Ur-Rahman and McDougall (1973) from their studies on Norfolk and Philip Islands. They suggest that the short time spanned by many Brunhes age studies may not be long enough to accurately estimate secular variation. A minimum of 0.5 million years is proposed by them as a suitable time interval. The Easter Island data covers only half that time. A proposed subject for future study will be a secular variation investigation over the entire island. This would span at least 2.5 million years, and give an indication whether increased time produces a better estimate of secular variation.

Central Pacific Secular Variation Low

The occurrence of an extensive area of low non-dipole field intensity :was observed in the central Pacific Ocean by Cox (1962) and Cox and Doell (1964). Later investigations by these authors lead to evidence that a minimum non-dipole field and minimum secular variation has persisted in the central Pacific for at least the last 0.7 million years (Doell and Cox, 1971; Doell and Cox, 1972). They postulate inhomogeneities in the lower mantle or undulations of the core-mantle boundary as possible causes of the persistently subdued non-dipole field. This low is very evident on the Brunhes angular dispersion-latitude plot (Figure 12), where Hawaii falls well below the proposed model. It is very close to the dipole wobble component,
implying that little non-dipole field is present, and the observed secular variation is due to the dipole wobble only. This phenomenon is termed 'dipole window' and allows one to look at variations in the core without the complications of the non-dipole field.

An original aim of this study was to investigate the south eastern Pacific for an extension of this low. As can be seen from Figure 12, Easter Island lies above the dipole wobble component, but below the proposed model. It appears that the Pacific secular variation low extends into the southeast, but it is certainly not as pronounced as it is around Hawaii. The Galapagos Islands in the eastern Pacific appear to be unaffected by any low variation, as they have an angular dispersion value similar to that predicted by the model. More localities in the Pacific are needed to further delineate and investigate the Pacific secular variation low.

Conclusions

The Easter Island lava flows present an excellent opportunity to investigate the nature of the geomagnetic field in the recent past. From the 65 Brunhes age flows sampled, inclinations, declinations and VGPs were calculated. The mean VGP, only slightly different from the rotation axis, was as expected for very young rocks. A possible excursion of the field was observed in four flows, and it may be related to the previously observed Blake event. A secular
variation study of the lavas gave an angular dispersion of 12.8°.
Although it was lower than predicted by the current model for secular variation, it was higher than the Hawaiian Islands, known to be anomalously low.

Although this study is complete for the Brunhes age rocks, it would be desirable to further sample and study the older flows on the island.

BIBLIOGRA PHY

Aziz-Ur-Rahman and I. McDougall, Paleomagnetism and paleosecular variation on lavas from Norfolk and Philip Islands, southwest Pacific Ocean, Geophys. J. Roy. Astr. Soc., 33, 141-155, 1973.

Baker, P. E., Preliminary account of recent geological investigations on Easter Island, Geol. Mag., 104, 116-122, 1966.

Bandy, M. C., Geology and petrology of Easter Island, Geol. Soc. Amer. Bull., 48, 1589-1610, 1937.

Barbetti, M, and M. McElhinny, Evidence of a geomagnetic excursion 30, 000 yr B. P., Nature, 239, 327-330, 1972.

Bingham, D. K., and D. B. Stone, Paleosecular variation of the geomagnetic field in the Aleutian Islands, Alaska, Geophys. J. Roy. Astr. Soc., 28, 317-335, 1972.

Bonhommet, N , and J. Zahringer, Paleomagnetism and potassiumargon age determinations of the Laschamp geomagnetic polarity event, Earth Planet. Sci. Lett., 6, 43-46, 1969.

Booker, J., E. C. Bullard, and R. L. Grasty, Paleomagnetism and age of rocks from Easter Island and Juan Fernandez, Geophys. J. Roy. Astr. Soc., 12, 469-471, 1967.

Briden, J. C., A stability index of remanent magnetization, J. Geophys. Res., 77, 1401-1405, 1972.

Brock, A., An experimental study of paleosecular variation, Geophys, J. Roy. Astr. Soc. , 24, 303-317, 1971.

Chevallier, R., L'aimantation des lavas de l'Etna et l'orientation du champs terrestre en Sicile du XII ${ }^{\mathrm{e}}$ au XVII ${ }^{\mathrm{e}}$ siecle, Annales Phys., Ser. 10, 4, 5-162, 1925.

Chubb, L. J., Geology of Galapagos, Cocos and Easter Islands, Bernice Pauahi Bishop Mus. Bull, , 110, 1-44, 1933.

Clark, J., and J. Dymond, Age, chemistry and tectonic significance of Easter Island, EOS, Trans. Amer. Geophys, Union, 55, 300, 1974.

BIBLIOGRAPHY (Continued)

Cox, A., Analysis of present geomagnetic field for comparison with paleomagnetic results, J. Geomag. Geoelec., 13, 101-112, 1962.
[._Geomagnetic reversals, Science, 163, 237-245, 1969a.
, A. paleomagnetic study of secular variation in New Zealand, Earth Planet. Sci. Lett. , 6, 257-267, 1969b.
, Confidence limits for the precision parameter K, Geophys. J. Roy. Astr. Soc., 18, 545-549, 1969c.
\qquad , Latitude dependence of the angular dispersion of the geomagnetic field, Geophys. J. Roy. Astr. Soc., 20, 253-269, 1970.
, Paleomagnetism of San Cristobal Island, Galapagos, Earth Planet., Sci. Lett., 11, 152-160, 1971.

Cox, A., and R. R. Doell, Review of paleomagnetism, Geol. Soc. Amer. Bull., 71, 645-768, 1960.
, Long period variations of the geomagnetic field, Bull. Seisol. Soc. Amer., 54, 2243-2270, 1964.

Cox, A., R. R. Doell, and G. B. Dalrymple, Reversals of the Earth's magnetic field, Science, 144, 1537-1543, 1964.

Creer, K. M., The Dispersion of the Geomagnetic Field due to secular variation and its determination for remote times from paleomagnetic data, J. Geophys. Res., 67, 34613476, 1962.

Creer, K. M., E. Irving, and A. E. McNairn, Paleomagnetism of the Great Whin sill, Geophys. J. Roy. Astr. Soc., 2, 306323, 1959.

Denham, C. R., Program SPINNER, unpublished mans., Dept. Geophys., Stanford U., 1971.

BIB LIOGRA PHY (Continued)

Doell, R. R., Paleomagnetism of the Kau volcanic series, Hawaii, J. Geophys. Res., 74, 4857-4868, 1969.
, Paleomagnetic secular variation study of lavas from the Massif Central, France, Earth Planet. Sci. Lett., 8, 352-363, 1970.
, Paleomagnetism of lava flows from Kauai, Hawaii, J. Geophys, Res., 77, 862-873, 1972a.
, Paleosecular variation of the Honolulu volcanic series, Oahu, Hawaii, J. Geophys. Res., 77, 2129-2138, 1972 b .
__ Paleomagnetism of volcanic rocks from Niihau, Nihoa and Necker Islands, Hawaii, J. Geophys. Res., 77, 3725-3730, 1972c.
\qquad , Paleomagnetic studies of Icelandic lava flows, Geophys. J. Roy. Astr. Soc., 26, 459-479, 1972d.

Doell, R. R., and A. Cox, The accuracy of the paleomagnetic inethod as evaluated from historic Hawaiian lava flows, J. Geophys. Res., 68, 1997-2009, 1963.
, Measurement of the remanent magnetization of igneous rocks, U.S. Geol. Survey Bull., 1203A, 32 p., 1965. , Pacific geomagnetic secular variation, Science, 171, 248-254, 1971.
, The Pacific geomagnetic secular varions anomaly and the question of lateral uniformity in the lower mantle, in Nature of the Solid Earth, edited by E. C. Robertson, pp. 245-284, McGraw-Hill, New York, 1972.

Ellwood, B. B., N. D. Watkins, C. Amerigian, and S. Self, Brunhes epoch geomagnetic secular variation on Terceira Island, central north Atlantic, J. Geophys, Res., 78, 8699-8710, 1973.

Fisher, R., Dispersion on a sphere, Proc. Roy. Soc. London, Ser. A, 217, 295-305, 1953.

BIBLIOGRAPHY (Continued)

Heirtzler, J. R., G. O. Dickson, E. M. Herron, W. C. Pitmann III, and X. LePichon, Marine magnetic anomalies, geomagnetic field reversals, and motions of the ocean floor and continents, J. Geophys. Res., 73, 2119-2136, 1968.

Herron, E. M., Sea-floor spreading and the Cenozoic history of the East-Central Pacific, Geol. Soc. Amer. Bull., 83, 16711692, 1972a.
, Two small crustal plates in the South Pacific near Easter Island, Nature: Phy. Sci., 240, 35-37, 1972b.

Heyerdah1, T. E., N. Ferdon, W. Mulloy, A. Skjolsvold, and C. S. Smith, Reports of the Norwegian Archaeology Expedition to Easter Island and the East Pacific. Vol. 1 Archaeology of Easter Island, Monograph of the School of Am. Res and the Mus. of New Mexico, 24, 559 p., 1961.

Hoare, J. M., W. H. Condon, A. Cox and G. B. Dalrymple, Geology, paleomagnetism and potassium-argon ages of volcanic rocks from Nunivak Island, Alaska, Geol. Soc. Amer. Memoir 116, 377-413, 1968.

Irving, E., Paleomagnetism and its application to geological and geophysical problems, Wiley, Inc., 399 pp., New York, 1964.

Irving, E., P. M. Stott, and M. A. Ward, Demagnetism of igneous rocks by alternating magnetic fields, Phil. Mag., 6, 225-241, 1961.

Irving, E., and M. A. Ward, A statistical model of the goemagnetic field, Rev. Pure Appl. Geophys., 57, 47-52, 1964.

McElhinny, M. W. , Paleomagnetism and plate tectonics, $358 \mathrm{pp} .$, Cambridge Univ. Press, Cambridge, England, 1973.

Morgan, W. J., Plate motions and deep mantle convection, Geol. Soc. Amer. Memoir 132, 7-22, 1973.

Morner, N. A., J. P. Lanser, and J. Hospers, Late Weichselian paleomagnetic reversal, Nature: Phy. Sci., 234, 173-174, 1971,

BIBLIOGRAPHY (Continued)

Nagata, T., The natural remanent magnetism of rocks, Bull. Earth. Res. Inst., Tokyo Univ., 21, 1-196, 1943.

Opdyke, N.D., and K. W. Henry, A test of the dipole hypothesis, Earth Planet, Sci. Lett., 6, 139-151, 1969.

Ozima, M. and Y. Aoki, Quiet secular variation in Japan during the last 9500 years, J. Geomag. Geoelec., 24, 471-477, 1972.

Smith, J. D., and J. H. Foster, Geomagnetic reversal in Bruhnes normal polarity epoch, Science, 163, 565-567, 1969.

Watkins, N. D., Hemispherical contrasts in support for the offset dipole hypothesis during the Brunhes epoch; the case for an unqueal co-axial dipole pair as a possible geomagnetic field source, Geophys. J. Roy. Astr. Soc., 28, 193-212, 1972.
, Brunhes epoch geomagnetic secular variation on Reunion Island, J. Geophys. Res., 78, 7763-7768, 1973.

Watkins, N. D., and J. Nougier, Excursions and secular variation of the Brunhes epoch geomagnetic field in the Indian Ocean region, J. Geophys. Res., 78, 6060-6068, 1973.

Watson, G. S., A test for randomness of directions, Roy. Astr. Soc. Geophys. Suppl., 7, 160-161, 1956.

Watson, G. S., and E. Irving, Statistical methods in rock magnetism, Roy. Astr. Soc. Geophys. Suppl., 7, 289-300, 1957.

Wilson, J. T., Continental Drift, Scientific Amer., 208, 86-102, 1963.
Wilson, R. L., Permanent aspects of the Earth's non-dipole magnetic field over upper Tertiary times, Geophys. J. Roy. Astr. Soc., 19, 417-437, 1970 . over the past 25 million years, Geophys. J. Roy. Astr. Soc. 22, 491-504, 1971 .

Wollin, G., D. B. Ericson, and W. B. F. Ryan, Magnetism of the Earth and climatic changes, Earth Planet. Sci. Lett., 12, 175-183, 1971.

APPENDICES

```
APPENDIX I
```


A PPENDIX I

Paleomagnetic Data for Easter Island

UNIT	\underline{N}	I	D	R	K	${ }^{\alpha}{ }_{55}$	$\underline{\theta}^{\prime}$	Φ^{\prime}	EXP
TEREVAKA EPISODE									
1	3	-34.2	32.4	2.9914	232	8.1	59.1	331.4	NRM
2	4	-38.6	26.8	3.9859	213	6.3	65.1	333.5	NRM
3	4	-43.0	356.3	3.8279	17	22.6	86.0	192.9	H200
4	4	-49.3	0.0	3.9799	149	7.6	87.0	70.8	NRM
6	4	-34.8	348.9	3.9819	165	7.2	77.0	195.9	NRM
7	4	-43.5	5.3	3.9839	186	6.8	84.9	320.5	H50
8	4	-42.3	10.5	3.9808	156	7.4	80.2	326.5	H50
9	4	-59.3	329.5	3.9381	48	13.3	61.7	125.3	H150
10	4	-54.5	339.1	3.9498	60	12.0	70.5	131,3	H100
11	4	-52.6	11.6	3.9790	143	7.7	78.3	13.9	NRM
12	3	-46.1	4.4	2.9388	33	21.9	86.1	345.5	H50
13	3	-42.3	0.2	2.9924	263	7.6	87.3	254.1	H50
14	4	-53.8	306.1	3.9253	40	14.7	43.7	137.4	H200
15	3	-36.6	12.8	2.9671	61	16.0	76.5	313.1	H200
16	4	-35.3	4.9	3.9913	344	5.0	81.1	281.9	NRM
17	4	-44.1	16.6	3.9494	59	12.0	75.1	339.0	NRM
18	3	-47.4	3.5	2.9994	3258	2.2	86.6	4.7	NRM
19	4	-46.6	3.8	3.9705	101	9.2	86.5	353.3	NRM
20	4	-44.0	5.6	3.9906	318	5.2	84.8	327.0	NR M
21	3	-53.1	354.8	2.9991	2130	2.7	82.1	103.6	NRM
22	4	-57.8	329.3	3.9930	426	4.5	61.9	128.5	NRM
23	4	-57.6	325.7	3.9915	352	4.9	59.3	130.2	H50
24	3	-46.6	5.7	2.9935	308	7.0	84.9	349.5	H50

UNIT	N	I	D	\underline{R}	\underline{K}	α	θ^{\prime}	ϕ^{\prime}	EXP
25	4	-40.7	14.9	3.9895	287	5.4	76.0	327.4	NRM
26	4	-56.3	324.3	3.9447	54	12.6	58.4	133.1	NRM
27	4	-44.7	340.6	3.9416	51	12.9	72.7	158.3	NRM
28	4	-49.5	338.2	3.9550	67	11.3	70.6	145.5	NR M
29	4	-41.2	2.6	3.9921	380	4.7	85.9	285.1	NRM
30	4	-48.9	357.9	3.9856	208	6.4	86.7	103.6	NR M
31	4	-43.1	2.6	3.9542	66	11.4	86.9	300. 1	NRM
32	3	-62.1	312.6	2.9975	784	4.4	48.7	124.3	H200
33	4	-62.5	326.2	3.9865	222	6.2	58.1	119.7	NRM
34	4	-68.7	321.2	3.8440	19	21.5	51.8	108.8	H50
36	4	-37.4	10.0	3.9932	443	4.4	79.0	308.4	NRM
37	4	-45.8	14.1	3.9935	462	4.3	77.5	344.1	NRM
38	4	-48.1	352.2	3.9440	54	12.7	82.8	141.5	H50
39	4	-37.4	8.6	3.9898	293	5.4	80.1	304.0	NR M
40	4	-47. I	6.3	3.9831	177	6.9	84.3	354.2	NR M
41	4	-42.0	357.0	3.9878	246	5.9	86.1	206.5	NRM
45	4	-35.0	3.1	3.9759	125	8.3	81.7	271.2	H100
46	3	-35.6	358.3	2.9939	327	6.8	82.4	238.0	H100
47	4	-31.7	6.1	3.9753	122	8.4	78.6	281.4	NR M
48	4	-40.6	356.9	3.9812	159	7.3	85.2	214.1	H100
49	4	-30.4	27.1	3.9200	38	15.2	62.8	322.7	NR M
50	3	-30.8	345.2	2.8729	16	32.2	72.8	194.6	H400
51	4	-25.7	337.0	3.9050	32	16.6	64.6	188.1	H50
52	3	-42.8	333.7	2.9335	30	22.9	66.3	159.8	H50
53	3 4	-55.2 -16.8	353.9	2.9824	114	11.6	80.0	100.0	H50
55	4	-16.8	344.4 17.4	3. 3487	5 60	48.2	66.3	208.9	H100
56	4	-39.5	5.0	3.9309	43	14.1	73.9 83.5	5.6	NRM
58	4	-37.2	15.9	3.9314	44	14.1	74.2	294.6 320.1	NRM

UNIT	N	I	D	R	\underline{K}	α_{95}	$\underline{\theta}^{+}$	Φ^{\prime}	EXP
59	4	-42.4	11.0	3.9408	51	13.0	79.7	328.1	NR M
60	4	-39.9	344.8	3.7861	14	25.4	75.6	174.8	H100
61\%*									
62	4	-42.6	359.9	3.9658	88	9.9	87.5	247.2	H50
63	4	-44.2	1.4	3.9884	257	5.7	88.3	295.5	NR M
64	4	-49.7	12.2	3.9936 ,	467	4.3	78.8	0.8	NR M
65	4	-43.3	355.1	3.9806	155	7.4	85.2	182.7	NRM
66	4	-36.9	352.0	3.9658	88	9.9	80.1	200.4	NR M
67	4	-41.5	1.7	3.9884	258	5.7	86.4	274.8	NRM
68	4	-36.5	348.6	3.9952	627	3.7	77.5	191.1	NR M
69	4	-48.9	5.8	3.9716	106	9.9	84.2	8.9	NRM
70	4	-37.6	348.8	3.7966	15	24.8	78.1	188.7	H200
H20	3	-41.8	309.7				44.9	11.5	
H21	2	-37.2	89.9				9.4	218.0	
H23	1	-54.8	58.9				39.7	224.1	
H24	1	-25.3	322.7				52.6	33.5	
H26	2	-34.8	206.7				-36.9	321.4	
H27	2	-21.7	311.2				41.6	28.8	
H28	2	-45.5	43.7				51.3	209.4	
H29	1	-13.5	7.7				68.4	130.7	
H30	2	-25.3	353.9				75.0	86.0	
H33	1	-14.9	77.9				14.2	200.8	
H34	2	-31.2	154.0				-39.9	256.6	
H36	1	-14.5	89.5				3.8	205.7	
RANO KAU EPISODE									
H1	2	-43.6	284.5				23.4	2.0	
H2	1	-32.9	305.2				39.4	17.7	
H3	1	-52.2	188.0				-29.6	297.2	

UNIT	N	I	D	$\underline{\mathrm{R}}$	\underline{K}	${ }_{\sim}^{\sim}$	$\underline{\Theta}^{\prime}$	ϕ^{\prime}	EXP
H4	2	-43.6	36.1				57.3	201.5	
H5	2	-37.6	196.2				-39.3	309.1	
H12	1	17.1	290.6				13.9	37.1	
H14	3	-39.8	217.5				-28.4	329.2	
H16	2	-38.4	152.1				-34.2	257.7	
H17	2	-26.3	319.2				49.8	30.4	
H18	1	-17.0	277.5				10.6	15.0	
POIKE EPISODE									
42	5	-48.0	13.1				79.3	212.0	
43	4	-25.7	4.9				75.7	128.9	
44	4	-16.3	354. 3				70.6	93.7	
57	4	-48.2	358.1				87.4	327.3	
H7	2	-43.0	121.4				-13.2	236.6	
H9	1	-40.9	313.2				47.8	13.5	
H10	1	-49.3	324.9				59.2	5.2	
N,	number of separate cores per flow								
I,	inclination in degrees below the horizontal								
D,	declination in degrees								
R ,	length of the resultant vector								
K,	precision parameter								
$\underset{\Theta^{\prime} .}{ }{ }^{\prime}$	radius of the cone of 95% confidence about the resultant vector								
ϕ^{\prime},	longitude in degrees of the VGP								
EXP,	level at which remanent magnetization was measured								
**	flow gave random results, discarded								

Easter Island Collection Numbers listed inclusively per flow

Unit	Collection Numbers	Unit	Collection Numbers
1	EC-123-EC-126	53	EC-364-EC-367
2	EC-127-EC-130	54	EC-368-EC-371
3	EC-131-EC-134	55	EC-372-EC-375
4	EC-135-EC-138	56	EC-376-EC-379
6	EC-143-EC-146	58	EC-384-EC-387
7	EC-147-EC-150	59	EC-388-EC-391
8	EC-151-EC-154	60	EC-392-EC-395
9	EC-155-EC-159	61	EC-396-EC-399
10	EC-160-EC-163	62	EC-400-EC-403
11	EC-164-EC-167	63	EC-404-EC-407
12	EC-168-EC-170	64	EC-408-EC-411
13	EC-171-EC-173	65	EC-416-EC-419
14	EC-174-EC-177	66	EC-420-EC-423
15	EC-178-EC-181	67	EC-424-EC-427
16	EC-182-EC-185	68	EC-428-EC-431
17	EC-186-EC-189	69	EC-432-EC-435
18	EC-190-EC-193	70	EC-436-EC-439
19	EC-195-EC-198	H20	EH-82-EH-84
20	EC-199-EC-202	H21	EH-87-EH-88
21	EC-204 - EC-207	H23	EH-93 - EH-94
22	EC-208 - EC-211	H24	EH-95
23	EC-212 - EC-215	H26	EH-99 - EH-100
24	EC-216-EC-219	H27	EH-101 - EH-102
25	EC-220 - EC-223	H28	EH-104 - EH-105
26	EC-224- EC-227	H29	EH-106-EH-107
27	EC-228-EC-231	H30	EH-108-EH-109
28	EC-232-EC-235	H33	EH-114-EH-115
29	EC-236-EC-239	H34	EH-117-EH-118
30	EC-240-EC-243	H36	EH-121-EH-122
31	EC-244 - EC-247	H1	EH-13-EH-14
32	EC-248-EC-251	H2	EH-15
33	EC-252-EC-255	H3	EH-19
34	EC-256-EC-259	H4	EH-21 - EH-22
36	EC-261-EC-264	H5	EH-23 - EH-24
37	EC-265 - EC-268	H12	EH-53 - EH-54
38	EC-269-EC-272	H14	EH-57 - EH-59
39	EC-273-EC-276	H16	EH-64 - EH-65
40	EC-277-EC-280	H17	EH-66 - EH-67
41	EC-281 - EC-284	H18	EH-68
45	EC-317-EC-320	42	EC-304-EC-308
46	EC-321-EC-324	43	EC-309 - EC-312
47	EC-325-EC-328	44	EC-313 - EC-316
48	EC-329-EC-332	57	EC-380-EC-383
49	EC-333-EC-336	H7	EH-38-EH-39
50	EC-337-EC-340	H9	EH-43.
51	EC-341-EC-344	H10	EH -45 - EH 46
52	EC-345 - EC-348		

APPENDIX II

Computer programs
SPINNER

SIMPLET
RVGP
PROGRAM SFINNER
DECEMBER 14, 1970 STANFCRD UNIVERSITY, GEPT. GF GECPHYSICS
CHARLES R. CLAHAM, AFTER SHERH GRCFME OF LSGS
PURPOSE
PROGFAM SPINNER IS A DATA FEQUCTION FRCGRAN FOF
SPIANER MAGNETOMETER MEASUREMEATS. THE FFCGfan
aCCEFTS BCTH SLCh ANC FAST SFINAER TYFE JATA.
it oefermines the eest magnetic cifiction anc
MOMENT IMPLIED BY THE SFINAER CETA, ANC CCNFLTES
SEVEFAL STATIETICAL FARAMETERS.
REFERENCE
THE ALGCRITHM FCE THIS FROGRAM IS GIVEA IN ECELL
AND COX, (19E5), MEASUREMENT OF THE REMANEAT MAG-
NETIZATION OF IGNECLS FCCKS, U.S. EECLCGICAL SLFVEY
SULLETIN 1203-A.
COMPATISILITY
SFIANER IS DESIGNEC FOF STANFORC末S IBM SYSTEN ZER/ET
WATFIV FCRTRAN 4 CCMFILER.
LFOATIAG THE FRUGRAM
ALL SIGNIFICANT CHANGES MADE IN THİ FRGGFAM LFTER

COMMENTS, IHDICATE THE CATE, ANO ACE 1 TO THE
LFEATE INTERNALLY STCREC IN THE FRCizAN.
UFGATE=1 ORIGINAL USESFAST-SPIANER
FROGFAM, CIFCA 347 日.C.
REACS ANO LSES jLCW-SFINNER
TYFE CATA CALY. 1gEg.
REACS ANO LSES iLOh- ANE FAST-
SFINAER TYFEDATA. hFITES
OUTFUT ON FRINTER,
FRCERAM AUAFTEC TO CSL
CDC EYSTEM, INFJT AND CLT-
fut fossible vit teletyfe,
JULY,1973.
SLCW-SFINAER CALIBRATIUN CCNSTANT
CALIE IN EMU PER VOLT INPUT TO THE ITHACC
353 fHASE-SENSITIVE [ETECTOR EI ANFLIFILf
CESCRIFTICN OF PARAMETEFS
INFLT MAMES CCMMCN TC SLCW- ANC FAST-SFINAEF DATA
ID IDENTIFICATICH OF the reaslefo
SAMFLĆ IF ID IS THE KCFC
FRESIDUAL \neq, THE MEASLREMENTS
afe the slch-sfinnef gesiclal.
THE RESIDUAL WILL ef SLETfACTEG
FKOR ALL FCLLOKING SLOK-SFIMAEF
CATA, UNTIL NEW RESIOLAL DATA IS
ENCCUNTEREL.
aLFFA, AZIMLTH JF THE +Y AXIS
(HORIZONTAL) OF ThE SANFLE
IN A RIGHT-HANCEC XYZ CCCFCIN\&TE
sYSTEM. IA CEGREES.
BETA, THE FLLNGE OF THE + Z fXIS
(POSITIVE CCWNWIRO) (CEGREES)
volume of tre stmfle
(CUEIC CENTIMETEqS)
AZIMUTH OF THE ミTRIKE CF THE
eEc, to the rieht cf the cif
OIRECTION.
OIF CIFCF THE EEO (FOSITIVE=CCWN)
(EXANFLE: A BEJ hHICH STRIKES
N3OW AND DIFS 4 JE WILL HAVE
STK=15C. $A N C D I F=45$. CF
STR=330. ANC DI $==-45.1$
IEXF IOENTIFICATICN EF THE EXFEFIMENT
INF ANY AODITICAAL INFCRMATICA.
INPUT FORMAT
ffee-format. sefafate the oata ey ine coma andocf
DiNE OR NORE BLANKS.
any numger of gata fer carc. the ccmflier
REACS ITEMS UNTIL IT FINCS ENOLGH TJ
SATISFY THE PRCGRAN FEGLIREMENTS. THE NEXT
reac statement will reac a new set jf measlrements.
FAST SFINNER INFUT NAMES
extra a clmmy numeer, neecec tc eive
the fast-sfinne? input the sane
NUMEER OF ITEMS AS THE SLCh-
SPINNEF INFLT. IT IS NCT
usec in the comfutatiche.
P(M,L) PHASE (DEGREES)
FM(r,L) MAGNITUDE (ENU)
SLCY SFINNER INFUT MAMES
sCale sensitivity setiting of the
ITHACO 353 FFASE-SENSITIVE
CETECTCR 8-1 AMFLIFIEF; IN
MICFC-VOLTS.
SPIN $(M, L, 1), \operatorname{SFIN}(M, L, 2)$
IN-FHASE (G) AN: CLT-CF-FHASE (G
COMFCAENTS, feSFECTIVELY, CN A
SCALE CF =10 TO +10 VCLTS.
SLOW-SFINNER FESIOLAL INFUT NAMES
RESIC(M,L, $), F E S I O(M, L, \bar{c})$
In-fhase anc out-of-phase cGmfon
CF THE RESICLAL
the data cards.....
THE DATA FCR EACF MEASURED SPECIMEN IS INFLT T: THE SFIANEF.
frogram in the fullowing crieks.......

```
SLUW-SFINAEFi CATA.....SFECIMEN CR FESICUAL
```

 IO, AL, BË, V,STF, OIF, IEXF, INF,SCALE,SFIN(X,Y,O),
 \(\operatorname{SFIN}(X, Y, 90), \operatorname{SFIN}(X,-Y, 0), \operatorname{SFIN}(X,-Y, \exists 0)\),
 SPIN(Y,Z, \(\hat{U}), \operatorname{SFIN}(Y, Z, G 0), S F I N(Y,-Z, 0)\),
 \(S P I N(Y,-Z, 90), S P I N(Z, X, J), S F I N(Z, x, 9])\),
 $\operatorname{SPIN}(Z,-x, 0), \operatorname{SFIN}(Z,-x, 90)$
IF IC is THE WORD $\neq F E S I D L A L \neq$, THE jLCW-SFIMAEf measurcments afe the fesicual.
FAST-SPINNER OATA
ID, AL, $E, V, S T R, D I F, I E X P, I N F, E X T R A, P H$ ISE (X, Y), NAGNITUDE (X, Y), FFASE $(X,-Y)$, MAGNITLDE $(X,-Y)$, FHASE (Y, Z), MAGNITUDE (Y, Z), FHASE $(Y,-Z)$, MAGNITUUE $(Y,-Z)$, PHASE (Z, X), MAGNITLDE (Z, x), FHASE $(Z,-X)$, MAGNITUCE $(Z,-x)$
EACH SPLCIMENAS INFUT JATA MAY EE SFREAD CVER is MANY Cf FEW CAROS AS THE USER DESIRES, SO LCNG AS THE FACFER CFCEfIAG of the inflt items is maintainec. cc nct fut jata frch the offferent sficimens on the same cafc.
OUTPUT NAMËS

10	SAME AS INFLT IJ
I	INCLINATION (OEJReES)
0	CECLINATION
J	magnetic mament per unit valume (EML/CC)
M	total magnetic voment (eru)
A	an analogue of thé facils cf the
	ERRCR TRIANGLE FCRMED EY THE THR
	GREAT CIRClEs cEfineo ey tre fha ANGLES
MM	the roct-mean-sjuare cf the oiff
	eetheen the six nfasurec magneti
	INTENSITIES ANC The icenl intens
	that woulo ee exfectec if the sa
	ACTED AS AA IDEIL OIFOLE WITH MC
	manc the cifectich of magaetiza
	Calcllated. mm is tageso if it
	O.OE (S PERCENT CF M)
20 OLI	fHASE-ANGLE INOCNSISTENCY EETHSE
	FCRMARC ANC EACSWARC SFINS FOF E
	flane. outfut inc tageec if exc

Y DIFFERENCE (I)
INTENSITY INCONSISTENCY EETWEEN FCRMARC ANC BACRWAFC SFINS FOF E flaneg outfut ind tageed if exc E. 0 FERCENT CF.
IFLAG IF E DEL(I) ANCIOR M CIFFEFENCEI andicf mmexcees theif fesfectiv TLLERANCE LIMITS, IFLAG=*. OTHE IFLAG=BLANK.
$\begin{array}{ll}\text { IEXF } & \text { SAME AS INFLT IEXF } \\ \text { INF } & \text { SAME AS INFLT INF }\end{array}$

N
WEIGHTING-FACTCi EXFCNENT FUR CC THE ERROR-TRIAAJLE.
numeef cf iterailcas tc convefee EFRCR-TRIANGLE TO O. 01 CEGREES F flfeks to chane IN THIS PRCGRAN SINCE CCTCEER 11 sef notes peove.

BEGIN THE MAIA PRCGRAN SPINAER
Integer update
CHARACTEF ISTAK, IFLAG
CHARACTEF IBLANK
REAL ID1,IC2,IEXF,INF
OI M:NSION $F(2,3), F A(3), K M(2,3), \operatorname{RMA}(3), C M(3), \operatorname{CS}(2,1), W(3)$, 10Eし(3)
DIMENSION SFIN(3, 2,2$), \operatorname{RCSIO}(3,2,2), \operatorname{RSFIN}(3,2, z)$
UPCATE $=4$
ISTAR=1 H^{*}
IF LAG=IBLANK=1H
CALIB=1.12
RCF=57.2957795
C
C - write heacing ang cutflt lfeate fac calie
C
WRITE (51,4601)
4JJ1 FORMAT (3JX,FFROGKAM SPINNERZ,//)

WRITE (61,4002) LFCATE
4372 FORMAT (\ddagger PROGRAM MOOIFICATICN NUMEER $=$ UFDATE = $=$ [2) WRITE (61,4003) CALIB

C
C INITIALIZE THE SLOW SPINNER FESIOLAL
ReSIOA $=\mathrm{C}$.
DO $3 \mathrm{~L}=1$, 3
DO $3 M=1,2$
DO $3 \mathrm{~N}=1,2$
RLSIO (L, M,N) $=0$. U
3 CUNTINUE
C
C READ THE INPUT CATA, AS IF IT WERE FROM The
C SLOW-SPINNER
WRITE (61,8001)
QJJ1 FORMAT ($\neq \mathrm{PTTY}$ INPUT AT 1Ef)
10 REAO (63, 70 (1) IJ1, AL,EE,V,STF,CIF,IEXF,INF,
1SCALE
7331 FORMAT (AB, $\left.2(F 4.1), F_{4}, 2,2(F 4.1), 2 A 8, F 3 . C\right)$
READ(60,7OCZ) ((SFIN(L,M,1),SFIN(L,M,E),M=1, z),L=1,3),ICE
7302 FURMAT $(12(F 4,2), 48)$
IF LAG=IBLANK
IF (IO1.EG.ID2) GO TO 12
WRITE (61,4011)
$4 J 11$ FORMAT (I-SANFLES CLT UF ORDERF)
CALL EXIT
C
$\begin{array}{ll}C & \text { WRITE A HEAQING } \\ \mathrm{C} & \\ \mathrm{C} & \text { WRIT }\end{array}$
12 WRITE (61,4014)
4314 FOKMAT (/////////1)
WRITE (61,4304)
4 JU 4 FOKMATI I ICENTIFICATICN ALFHA EETA VC.LME STKIKE
1 DIF EXPERIMLNT ADOITIONAL INFOEMATIONA)
C
C
C
IS the cata fast-spinner tyfen
SUM=0.
$0021 L=1, \overline{3}$
$0021 M=1,2$
SUM = SUM+SPIN(L,M,1)+SPIN(L,M,2)
21 CONTINUE
IF (SUM.GT.230.) GO TO 5003
GOTCE705
C
C
C
C
5303 $3023 \mathrm{~L}=1,3$
$0023 \mathrm{M}=1, \mathrm{c}$
$P(M, L)=S P I N(L, M, 1)$
FM $(N, L)=\operatorname{SFIA}(L, M, \bar{C})$
23 CONTINUEZ
C
C WRITE THE FAST-SFINNER CATA

WRITE（61，5さ01）IC1，AL，8E，V，STR，LIF，IEXF，INF
$53 \mathcal{L}$ FORMAT（ $7 \neq A B, 4 X, 5($（PF 10．1）， $5 X, A G, 6 X, A 48,1)$ WRITE（61，4008）
4 JU 8 FORMAT $(18 X, \neq(+X,+Y$ SPIN $) \neq, 6 X, \neq(+X,-Y$ SFIN $) \neq, \in X, \neq(+Y,+Z S F I N) \neq, \in X$, $1 \neq(+Y,-Z$ SPIN $) \neq, E X, \neq(+Z,+X$ SPIN $) \neq, \in X, \neq(+Z,-X \subseteq F I N) \neq)$ WRITE（61，4007）
4307 FORMAT（F FAST－SFINNER：PHASE MAGNITLCE PHASE VAGNITLEE FHASE 1 magnituoe fhase magnitude phase magnituce fhase ragnitude z） WRITE（61，53 33）（ $(P(M, L), R M(M, L), M=1,2), L=1,3)$
5333 FORMAT（ 7 MEASLREMENTS：ま，6（DFF7．1，1PE11．2）） GO TO C 699
C
C
C
5735 WRITE（ 61,5301 ）IC1，AL，EE，V，STR，CIP，IEXP，IAF WRITE $(61,4305)$
 $1+Y+Z+Y \quad-Z \quad+Z \quad+X+Z \quad-X \neq 1$ IF（IO1．NE． 8 HFESIDUAL）GO TO 57 Cl 4 QESIDA＝ 999 C ． WRITE（E1，4012）
4J12 FURMAT（ 7 ＊＊＊FRESICLALF）
WRITE (61,5703) SCALE, ((SPIN(L,M,1),SFIN(L,M,2), M=1, $\mathbf{C}), L=1,3)$
GO TO 5835
5704 WRITE (61,5703) SCALE, ((SPIN(L,M,1),SFIN(L,M, $\overline{6}), N=1, \bar{z}), L=1, \overline{3})$
57J3 FORMAT (\ddagger MEASUREMENTS: $\ddagger, F 6 . E, 12 F 7.1)$
5305 CONTINUE
C
C CONVERT SLOW SFINAER DATA TO EML
$002002 L=1,3$
$002002 M=1,2$
$002002 \mathrm{~N}=1,2$
$\operatorname{SPIN}(L, M, N)=\triangle F I N(L, M, N) * S C A L E * C F L I B$
$\operatorname{SPIN}(L, M, N)=\operatorname{SFIN}(L, M, N)^{*} \cdot L 01$
2332 CONTINUE
C
C
C
C
SET THE SLOK SFINAER PESIDUAL
IF (IDI.NE. OHFESICLAL) GC TC 2CL1
$004016 \quad L=1,3$
$004016 M=1,2$
$004016 \mathrm{~N}=1,2$
GESIC(L, M,N) $=S P I N(L, M, N)$
4010 CONTINUE
GOTO 10
0
C CORRECT SLOW SFINAER DATA FCF FESICUAL
2101 IF (RESIDA.NE. 3999.$)$ GU TO 2305
DO $4018 \mathrm{~L}=1$, 3
D0 $4018 \quad M=1,2$
$004018 \quad \mathrm{~N}=1, \hat{c}$
SPIN(L,M,N)=SFIN(L,M,N)-RESIO(L,M,N)
RSFIN(L,M,N) $=$ SFIN(L;M,N)*10.**E/(SCALE*CALI8/1C.)
4318 CONTINUE
WRITE (51,5707) SCALE, ((RSFIN(L,N,1), FSPIN(L,M,2), M=1,2),L=1,3)
5737 FORMAT (\pm CCRF. FOK KESIOUALIF,F7.0,2X,1くF7.3)
C

```
OS3 FORTRAN VERSICN 3.12 SPINNER 04/05/74 1436
```

C CUNVERT SLOh SFINNER DATA TO FHASE ANC INTENSITY

```
C CUNVERT SLOh SFINNER DATA TO FHASE ANC INTENSITY
    2005 00 2043 L=1,3
    2005 00 2043 L=1,3
            DO 20C3 M=1,2
            DO 20C3 M=1,2
            RM(M,L) = SGFT(SFIN(L,M,1)**2 + SFIN(L,M,2)**&)
            RM(M,L) = SGFT(SFIN(L,M,1)**2 + SFIN(L,M,2)**&)
            CALL ATANG(SPIN(L,N,2),SPIN(L,M,1),P(M,L))
            CALL ATANG(SPIN(L,N,2),SPIN(L,M,1),P(M,L))
            F(N,L)=P(M,L)*RCF
            F(N,L)=P(M,L)*RCF
            IF(P(M,L),GE゙.O.L) GO TO 2003
            IF(P(M,L),GE゙.O.L) GO TO 2003
            F(M,L)=P(M,L)+3E J.
            F(M,L)=P(M,L)+3E J.
    2JJ3 CONTINUE.
    2JJ3 CONTINUE.
C
C
    2.J9 WFITE (61,4020)
    2.J9 WFITE (61,4020)
    4320 FORMAT (//)
    4320 FORMAT (//)
            SUM=C.O
            SUM=C.O
            J0 15 I=1,2
            J0 15 I=1,2
            00 15 J=1,3
            00 15 J=1,3
        15 SUM=P(I,J)+RM(I,J)
        15 SUM=P(I,J)+RM(I,J)
            IF(SUM)g¢G,¢\subseteq¢,11€
            IF(SUM)g¢G,¢\subseteq¢,11€
C
C
C average tre the phase keacines fof lach flane
C average tre the phase keacines fof lach flane
AND COMPUTE }2\mathrm{ DEL(I)
AND COMPUTE }2\mathrm{ DEL(I)
    116 00 149 J=1,3
    116 00 149 J=1,3
    IF((F(1,J)+F(2,J))-27\omega.) 128,120,1<0
    IF((F(1,J)+F(2,J))-27\omega.) 128,120,1<0
    120 IF ((P(1,J)+P(2,J))-450.) 122,122,128
    120 IF ((P(1,J)+P(2,J))-450.) 122,122,128
    122 FA(J)=(3\in0.+F(1,J)-F(2,J))/Z.
    122 FA(J)=(3\in0.+F(1,J)-F(2,J))/Z.
    DEL(J)=ABS (180.-(F(1,J)+P(2,J))/2.)
    DEL(J)=ABS (180.-(F(1,J)+P(2,J))/2.)
    GO TC 140
    GO TC 140
    128 DEL(J)=(P(1,J)+P(\Sigma,J))/2.
    128 DEL(J)=(P(1,J)+P(\Sigma,J))/2.
    IF(CEL(J)-180.)134,ょう4,132
    IF(CEL(J)-180.)134,ょう4,132
    132 OEL(J)=360.-CEL(J)
    132 OEL(J)=360.-CEL(J)
    134 PA(J)=(P(1,J)-P(2,J))/2.
    134 PA(J)=(P(1,J)-P(2,J))/2.
        IF (P(1,J)-F(\varepsilon,J))138,14&,140
        IF (P(1,J)-F(\varepsilon,J))138,14&,140
    138 FA(J)=36U.+PA(J)
    138 FA(J)=36U.+PA(J)
    140 IF (FA(J)-180.0)144,144,142
    140 IF (FA(J)-180.0)144,144,142
    1+2 PA (J)=FA(J)-3tu.0
    1+2 PA (J)=FA(J)-3tu.0
    144 IF(DEL(J)-4.E)14乌,149,140
    144 IF(DEL(J)-4.E)14乌,149,140
C
C
C 2 CEL(I) TCO LANGE. Flag IT.
C 2 CEL(I) TCO LANGE. Flag IT.
    146 WRITE (61,200) J,CEL(J)
```

 146 WRITE (61,200) J,CEL(J)
    ```


```

 IFLAG=ISTAF
    ```
    IFLAG=ISTAF
    149 CONTINUE
    149 CONTINUE
C
C
C AVERAGE THE TWO INTENSITY NEACINGS FCR EACF F.ANE
C AVERAGE THE TWO INTENSITY NEACINGS FCR EACF F.ANE
                AND COMFLTEC M ANO J
                AND COMFLTEC M ANO J
        00 212 I=1,3
        00 212 I=1,3
    212 RMA(I)=(RM(1,I)+KM(2,i))/2.
    212 RMA(I)=(RM(1,I)+KM(2,i))/2.
    RMT=SQRT((FMA(1)**2+FMA(2)** 2 +FMA(3)**E)/2.)
    RMT=SQRT((FMA(1)**2+FMA(2)** 2 +FMA(3)**E)/2.)
    RJ=RMT/V
    RJ=RMT/V
C
C
C
C
C
C
                    COMPUTE THE WEIGHTING-FACTCRS FOR CONVERGING THL ERRCR-TFIANGL
                    COMPUTE THE WEIGHTING-FACTCRS FOR CONVERGING THL ERRCR-TFIANGL
    N=2
    N=2
    220
    220
    RMI=(((1./GMA(1))**(j)+((1./FNA(2))**N)+((1./FNA(3))**f())
```

 RMI=(((1./GMA(1))**(j)+((1./FNA(2))**N)+((1./FNA(3))**f())
    ```
```

 00 224 I=1,3
 224W(I)=((1./FMA(I))**N)/RMI
 C COMPUTE M OIFFERENCE(I)
00 240 J=1,3
ORM=ABS(RM(1,J)-RM (2,J))
ONRM=DRM/RMT*100.
IF (DNRM-5.00) 240, 238,238
C
238 WRIT\ddot{E}(61,201) J, ONRM

```

```

 IFLAG=ISTAF
 240 CONTINUC
 C
C
O=0.
R=0.
S=0.
IF (W(1)-W(2)) 320,318,318
319 IF(W(1)-W(3))326,330,530
326 IF (W(3)-W(2))322,326,326
322 O=1.
GO TO 332
326 R=1.
GO TO 332
3.30 S=1.
332WI=(Q*W(2))+(E*W(3))+(S*W(1))
WJ=(S*W(2))+(G*W(3))+(R*W(1))
WK=(R*W(2))+(S*W(3))+(Q*W(1))
TI=(G*FA(2))+(\mp@subsup{R}{}{*}PA(3))+(S*PA(1))
TJ=(S*PA(z))+(Q*PA(3))+(R*FA(1))
TK=(R*PA(2))+(S*PA(3))+(Q*PA(1))
C
C
A=0.
C
C ITERATE UF TO 13 TINES TO GAIN CCAVERGENCE
DO 514 L=1,13
RMJ=COS(TJ/RCF)
RNJ=SIN(TJ/RCF)
RNK=COS(TK/RCF)
RLK=SIN(TK/RCF)
C
C
NO StrONG INTLRSECTIONa flag anJ go to new Ivfut oata
IF(FNJ*RNK)\subseteqZ0,4EC,42G
*20 F=1./(SQRT(1.+(((FLK)**2)*((FNJ)**2))/((RNK)**\&)))
RL=F*RLK*GNJ/FNK
ZM=F*RMJ
RN=F*RNJ
G=SQRT ((FL*FL)+(ZN*ZM))
C
ERROR-TRIANGLE CCNVERGED TO ZERO [EGREES FADIJSA

```

C
IF (G)431,532,431
431 CALL ATANG(2M,FL,TII)
TI1=TI1*RCF
\(A M=1.0\)
IF (TI-TI1) 443 , 433,438
\(438 \quad A M=3.0\)
\(4+\mathrm{U}\) TI \(2=T I-T I 1+A M * 360.0\)
\(U=1.0\)
IF (TI2-18J.U)446,446,448
\(446 \mathrm{U}=-1.0\)
448 TI 3 \(=(U+1.0) * 36 \hat{0} \cdot 3 / 2 \cdot 0-U^{*} T I 2\)
        IF (G*TIJ-0.07)532,532,452
    +52 TI \(4=T I 2^{*}(1 . J-h I)+C .5 *(1.0+U) * W I * 360.0\)
        TI \(5=T I 4+T I 1\)
        TI \(E=T I 5\)
        IF (TI5-180.0)462,462,460
    460 TI6=TI5-36[.0
    462 IF \((L-1) 464,4 \in 4,47 \in\)
    464 DJ=SIGN(1.C) (FNK*RLK))
        IF (RLK)470,4E 4,40
    \(+68 \mathrm{DJ}=\mathrm{SIGN}(1.0,(R N K * \operatorname{COS}(T 16)))\)
    +70 DK=SIGN(1.\{, (RNJ*KMJ))
        IF (RNJ)476,474,47E
    474 OK=SIGN(1.0, (KNJ*SIN(TI6)))
    476 TJ1=TJ+TI3*し* CJWJ
        \(T K 1=T K+T I 3 * L * C K * W K\)
        TJ2=TJ1
        IF \((T J 1+180.0) 484,434,486\)
    \(484 \mathrm{TJ} 2=\mathrm{TJ} 1+3 \varepsilon \mathrm{C} .0\)
    486 IF (TJ1-180.6) 49J,490,486
    \(498 \mathrm{TJ2=TJ1-36C.0}\)
    490 TK2 \(=T K 1\)
        IF(TK1 180.6 ) \(494,494,496\)
    +94 TK \(2=T K 1+360.0\)
    496 IF (TK1-180.0) EUC, 500,498
    498 TK2=TK1-36G.
C
\(C\)
\(C\)
    5J0 \(A T=3.5 *(W J+W K) * U * T I 3\)
        \(A=A+\Delta T\)
        \(T I=T I 6\)
        \(T J=T\lrcorner 2\)
    314 TK=TK2

Incréase thl weighting-factcr exfcnent \(n\) anc try again fof cenvergence
\(N=n+1\)
no closurea flag ano gC to new infut data

C
C
```

OS3 FORTRAN VERSICN 3.12 SFINNER J4/05/74 142E
C begin the final fhase cF the frogfam
532 FL =S*RL+R*2M+C*RN
FM=Q*RL+S* 2M+F*RN
FN=R*FL+O*2N+S*FN
A=ABS(A)
C
C COMPUTE MN
CM(1)=RMT*SQRT(FL*FL+FM*F'1)
CM(2)=FMT*SQRT(FM*FM+FN*FN)
CM(3)=FMT*SGRT(FN*FN+FL*FL)
R1MS=3.0
DO 5EE I=1,2
OO 5EG J=1,3
DS(I,J)=(CN(J)-RM(I,J))*(CM(J)-FN(I,J))
556 RMMS RMMMS+CS (I,J)
R\&M=(1.0/(c.449*RMT))*SGRT(KNMS)*1`C.
IF (RMM-5.j0)E10,572,572
C
C
572 WRITE (61,己ここ)
2O2 FORMAT(\not=O\not=\#NN GREATEK THAN 5.0 FERCEAT OF M%)
IFLAG=ISTAF
C
C PERFORH Alpha and EETA cQrgecticNs
O10 S3=SIN(BE/FCF)
C3=COS(SE/KCF)
SA =SIN(GL/FCF)
CA = COS (AL/FCF)
BA=(FL*SB)+(FA*CB)
X=(FM*CA) +(EE*SA)
Y=(FN*SA)-(EQ*CA)
Z=(FN*SB)-(FL*CB)
compute I anj o
XXYY=SORT (X* X+Y*Y)
CALL ATANF(Z,XXYY,FI)
FI=FI*\&CF
CALL ATANG(Y,X,FO)
FO=FC*RCF
IF(Y)O32,E34,034
032 FD=3EO.O+FL
34 CONTINUZ
C
C SLFARATE THE FZINCIPAL-FARTS ANE EXFONENTS OF JANDN
C
00 726 I=1,12
KJ=(-(I-1))
IF(RJ-1.0)726,728,728
P26 RJ=RJ*10.J
728 CONTINUE
DO 73E I=1,12
KYN=(-(I-1))
IF(RMT-1.0)736,736,73c
736
RYT=RMT*1J.0

```
```

 738 CONTINUE
    ```
C
C
C
C

FRINT THE ANSWERS, SHORT (USES) FCRMAT
            WRITE (61,4010) N,L
    4JIC FORMAT ( F WLIGHTINC-FACTOR EXFONENT \(=\mathrm{N}=\mathrm{F}, \mathrm{I} 2, /\),
            \(1 \neq\) NUMEER OF ITERATIONS \(=L=\neq, I 2\) )
            WRITE (61,4006)
    4JOE FORMAT ( \(\neq O S C L C T I O N: \neq)\)
            WRITE (51, EOOZ) ID1, IFLAG,FI,FD,A,FJ,KJ,RMT,KNN,FWM,ILXF,LFECTE

            \(1 \neq \pm, I 2, \neq M=\neq F 4,2, \neq L \neq I 2, \neq M M=\neq F E .1, \neq \% \neq A 9, \neq M O D \neq I 1)\)
\(C\)
\(C\)
                    WRITE THE ANShLRS ON CARE, SHCRT (LSGS) FCRMIT
C
            WRITE(7, EJC3) ID1, IFLAG,FI,FD,A,FJ,KJ, KMT,KMM, FMM,IEXF, INF

        1I2, \(\neq M=\neq F 4,2, \mp E \neq I 2, \neq M M=7, F 5.1,7 \% \neq A G, A B)\)
C
C
C
                    PtRFORN STRIKE ANC DIP CORFECTIUNS
        IF (OIP) 1701, 10,1701
    17う1 SSN=SIN(STK/RCF)
        SCS \(=\operatorname{COS}(S T F / R C F)\)
        DI \(P=-D I P\)
        DS \(A=S I N(D I F / R C F)\)
        DCS \(=\) CUS(OIF/RCF)

        \(C Y=X^{*} S S N^{*} S C S *(1.0-D C S)+Y *\left(S S N^{*} S S A+S C S^{*} S C S * D C S\right)+2 * S C S * C S N\)
        \(C Z=X * S S N * O S N-Y * C S N * S C S+Z * O C S\)
        \(C X X Y Y=\) SORT ( \(C X * C X+C Y * C Y\) )
        CALL ATANG (CZ, CXXYY,CFI)
        CFI = CFI*RCF
        CALL ATANG (CY,CX,CFU)
        CF \(\mathrm{C}=\mathrm{CFD}\) *RCF
        IF (CY) 1702,1703,1703
    1732 CFD \(=360.0+C F C\)
C
C
C
    17J3 WRITE (61,E10E) IO1, IFLAG,CFI,CFC,RJ,KJ,IEXP,LFGATE

        \(1 \neq\) STRSCIF CCFFECTECZ, \(\%\) \%, AG, FMCDF, I1)
\(C\)
\(C\)
\(C\)
\(C\)
            PRINT THE ANShERS CORRECTEC FCR STFIKE ANC CI=
            SHORT (USGS) FCEMAT
                    WRITE THE ANSWERS ON CARO, CCREECTED FOF
                    STRIKE AND UIF, SHORT (USGS) FCRMAT
            WRITE(7,61[3) IO1, IFLAG,CFI,CFD, RJ,KJ,IEXP,INF

        \(1 \neq\) STRSCIP CCRRECTEC \% \(\neq\) \&9,Aタ)
            GU TO 10
C
C FLAGS FOR ivo klajuntell sclutich
C
    91U WRITE (61,204)
    234 FORMAT (IOAC CLOSURE: CHECK IAFUT CATA FCR MISTAK:SZ)
    GO TO 10
    320 WRITE (61, É55)
    205 FORMAT (FJNC ETRCNG INTERSECTICA: CHECK INFUT CATI FCE NISTAK[Sł)
    GCTO 10
    999 STOP
    ENC
```

OS3 FURTRAN VERSICN 3.12
04105/74 1430

```
```

```
6 5 8 ~ S U E R O U T I N E ~ A T A N G ( Y , X , A )
```

```
6 5 8 ~ S U E R O U T I N E ~ A T A N G ( Y , X , A )
659
659
660
660
661
661
662
662
6 6 3
6 6 3
6E4
6E4
665
665
6E6
6E6
667
667
668
668
6E9
6E9
670
670
6 7 1
6 7 1
6 7 2
6 7 2
673
673
674
674
675
675
676
676
677
677
678
```

```
678
```

```
NO ERRORS FOR AT ANG
LENGTH CF SUSPROGRAM OL11Z

\section*{FRCGRAM SIMFLEI}
```

 R=SQRT (XSUM* XSLM + YSUM* YSUM+ZSUM* ZSUM)
 AJ=ATANZ(YSUN,XSUM)*RCF
 IF(AD.LT.C.) AL=AC+3EC.
 FN=N
 AI = ASINF(ZSUN/FN)*FCF
 AJ=SUMJ/FN
 IF(N.EC.1) GC TO 35
 STOJ=SQRT ((FN*SUMJJ-SUMJ*SUMJ)/FN/(FN-1.))
 IF(R.GE.FN) EC TO 35
 FK=(FN-1.)/(FN-R)
 FPKN=(1.0-(FN-R)*(.u5**(1./(1.-FN))-1.)/R)
 IF (ABS (FPRN).GT.1.0) GO TO 35
 AL G5=ACOSF(FFRN)*FCF
 24 IF(SLA.EQ.C.O.ANJ.SLO.EG.G.C) GO TO +j
P=ATANF(2./TANF(AI/F.CF))
IF(P.LT.U.) F=P+PI
PLA=ASINF(SIN(SLA/RCF)*COS(F)+COS(SLA/RCF)*SIN(F)*CCS(N[/FCF))
BETA=ASINF(SIN(F)*SIN(AD/RCF)/COS(PLA))
FLC=(FI-QETA +SLO/FCF)*RCF
IF(COS (P).GE.SIN(SLA/RCF)*SIN(FLA)) PLC=(SLU/FCF + ZTA)*E
IF(FLO.GE.3E0.0) FLC=FLG-360.0
FLA=FLA*RCF
DELM=ALY5*SIN(P)/COS(AI/RCF)
DELP=0.5*ALCE*(1.+3.*CUS(P)**E)
SA=SGET(2./FK)*RCF
RA=ACOSF(R/FA)*RCF
25 WRITE (61,54)
54 FORMAT(F OLTFLT INFORMATION............*)
WRITE(61,2E) IJENT,EXPER,SLA,SLO,AI,AC,PLA,PLC
26 FORMAT(\# 1 f,A5,1X,A4,\not= SLA=\#,FG.Z,\# \subseteqLC=7,FE.2,\not=AI=F,FE.z,
1\# AD=\#,F6.2, \# PLA= f,FU.2, f FLO=%,FG.2)
WRITE(G1,27) IU:NT,LXFER,N,F,FK,ALO5,SA,AJ,STCJ

```


```

 WFITE(E1,28) IDEMT,LXFER,OELM,CELF,RA
 28 FORMAT (\# 3 f,A5,1X,A4, \# OELM=7,FE.2, \# [ELF=\#,FE.Z,\# FA=7,FE.Z)
WRITE(61,2G) IOENT,AI,AC,AJ,A,EXFEF
29 FORMAT(\# f,A7,\# AV I=7, F5.1,7 [=7,FE.1,8X,7J=7, E\&.2,
11]X,\#N=F,I3,4X,A4)
WRITE (7,3C) IULINT,AI,AD,AJ,N,tXFER
39 FORMAT (A5,EX,F5.1,3X,F5.1,10X,E7.C,4X,I3,4X,A4)
WRITE (7,5G) ILENT,PLA,PLO,AJ,N,EXFEF
59 FOFMAT(AS,EX,FS.1,3X,F5.1,1iX,ET.E,4X,I3,4X,AL,7 VGFF)
IF (OUTT.NE.FPUNCHZ) GU TO 5
WRITE(7,75) IUENT,EXPER,SLA,SLC,AI,AL,FLA,FLC

```

```

 1\not=AD=#,F6.2, # PLA=#,F6.2,# FLO=7,FG.2)
 WRITE(7,77) IDcNT,EXPER,N,F,FK,ALS5,SA,AJ,STCJ
    ```


```

 WRITE(7,79) ICENT,EXFER,JELM,OFLF,RA
    ```

```

 WRITE(7,79) IDCNT,AI,AD,AJ,N,EXPEF
 79 FORMAT (A7, I AVF,T1C,7I=7,F5.1,7 [=7,F5.1,T35,7J=7,1FE8.2,
1Tכ5,\not=N=\#,IJ,TG4,A4)
GO TO 5
35 AL 95=SA=RA=OSLM= CELP=FK=105030.1STOJ=-1.0C
GO TO 24
45 PLA=FLC=10CROC.
GO TO 25
END

```
```

