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ADMISSIBILITY IN LINEAR MODELS
I. INTRODUCTION

In this thesis consideration is given to estimating linear

parametric functions in the linear model
Y = XB + e,

where Y 1isan nx 1l random vector having expectation XP and
covariance matrix in a set Af of covariance matrices with X a
known n x p matrixand f avector of p unknown parameters.
Under varying assumptions about the structure of Af, the problem
of choosing ''good'’ estimators of a given estimable linear parametric
function is investigated. The available class of estimators is
restricted t;) those estimators that are unbiased and linear in Y.

The estimation problem described above is widely considered in
the literature. An extensive presentation of the early work in the gen-
eral theory of linear models up to the year 1935 is contained in a
review article by Seal (1967). In this article, Seal mentioned that the
classical approach to this estimation problem is the principle of least
squares introduced by Legendre in 1805. This principle says that the
least squares estimator of p is the vector IE that minimizes

the sum of squares of the residuals. He also noted that it was Gauss

N
in 1823 who proved that AP is the blue (best linear unbiased
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estimator) of \'B when X has full column rank and £U> = {pI: p>0}¢
The extension of Gauss's Theorem to AP = {pV:p>0}, where V
is a known p.d. (positive definite) matrix, and the first formulation
of the problem in terms of matrices were published by Aitken (1935,
1945). In order to treat X not full column rank, Bose (1944) intro-
duced the concept of an estimable linear parametric function.
Goldman and Zelen (1964) extended Gauss's Theorem to linear models
with constraints on the parameters and with singular covariance
matrices. Zyskind (1967) characterized blue's as those linear esti-
mators b'Y for which Vb is in the range of X.

Zyskind (1967), Rao (1967) and Kruskal (1968) obtained condi-
tions under which least squares estimators and blue's coincide.
Thomas (1968) studied the question of when blue's under different
covariance matrices coincide. It was recognized by Seely and
Zyskind (1971) that this question is the same as asking when blue's
exist. Using the coordinate-free approach introduced by Kruskal
(1961), Seely (1970b) noted that linear model theory can be applied to
quadratic unbiased estimation of the variance components. An appli-
cation of these results to the one-way random model implies that
blue's for the mean or the variance components exist if aﬁd only if
the design is balanced.

In cases when blue's do not exist it is not clear which lue

(linear unbiased estimator) to use. Olsen, Seely and Birkes (1976)




characterized the minimal complete class of all admissible lue's of
A'B. Under a general covariance structure CUD , they proved that the
class of all admissible lue's is contained in the class of all lue's that
are best at some non-zero V in [ﬂf], the smailest closed convex
cone containing £. They also proved that equality holds if XX'+V
is p.d. for all non-zero V e [Af]. LaMotte (1977) dealt with the
same problem.

In this thesis we will characterize the class of all admissible

lue's of NP when [Af]= {p1W +...+pka;pi2 0} where

1

W LW are n.n.d. (non-negative definite) matrices. This
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allows us to consider ANOVA models which cannot be treated by the
results of Olsen, Seely and Birkes (1976). We will also extend these
results to the case when o\f C CU>O C spc\f and [‘Upo] has a poly-
hedral structure. These results will lead to a direct treatment of the
two -variance component problem considered in Olsen, Seely and
Birkes (1976).

The general linear model assumed throughout this thesis
together with some basic definitions and notation are introduced in
Chapter II.

Some general facts concerning admissibility are established in

Chapter III. These facts are used extensively throughout the remain-

ing chapters.




The case when v is such that [] :{Zilpiwi: P, > 0} is
considered in Chapter IV. The results of this chapter cover all
fixed, mixed and random ANOVA models.

Generalizations of the results of Chapter IV are given in
Chapters V and VI. This allows us, in Chapter VII, to characterize

the class of all admissible quadratic unbiased estimators of a linear

combination of the variance components in a two-component model.




II. MODEL, DEFINITIONS AND NOTATION

2.1. Model and Definitions

Consider the general linear model
m E(Y) =XB, Cov(Y) e OUD

where Y isan nx 1l random vector, X aknown nxp
matrix, P a vector of p unknown parameters and ‘U’ a given
set of covariance matrices. A parametric function of the form \'B
is said to be estimable if and only if it has a lue, i.e., if and only if
X =X'a for some a. Throughout this thesislet X be a fixed
vector in the range of X' and let ®O = {a'Y :X'a = \} be the set
of all lue's of \'B. We are concerned with characterizing the class
(R (4P) of all admissible lue's of \'B  when Af assumes a given
structure. The elements of ®O will be compared according to
their possible variances w. r.t. (with respect to) ﬂ? ILet b'Y and

h'Y bebothin B We say that b'Y is as good as h'Y w.r.t.

o
U if and only if b'Vb < h'Vh for all V e P ; b'Y is better than
B'Y w.r.t. AP ifandonlyif b'Vb < h'Vh forall Ve Y and

b'Vb < h'Vh for some V ¢4f. Also, we say that b'Y is admis-

sible w.r.t. AP if and only if no element in @ 0 is better than

b'Y w.r.t. CU>




For a subset D of @O’ we say that D is a complete
class if and only if for every lue b'Y in ®O but not in D there
exists alue in D which is better than b'Y; D is an essentially
complete class if and only if for every lue b'Y in @O there exists

aluein D whichis as good as b'Y; D is minimal (essentially)

complete if and only if D is (essentially) complete and for any b'Y

in D the set D\{b 'Y} is not (essentially) complete.

Finally, for a set B 1in a finite dimensional vector space, we
say that B is a cone if and only if b € B implies that aobe B
for all a > 0; B is a convex cone if and only if bl,,..,bme B
implies that Ziozibi e B for all a, > 0. Also, we say that B is‘a.

closed half-space if and only if B = {b:<b,c> < a} where <-,->

is an inner product.

2.2. Notation

Concerning notation, R™ is used to denote an n-dimensional
Euclidean space. For a linear transformation or a matrix A, R(A),
N(A), r(A), n(A), |A| and tr(A) denote the range, null space,
rank, nullity, determinant and trace of A respectively. For
vectors a,b e Rn, a'b is used to denote the usual inner product

with a' as the transpose for a. For a set B C Rn, B is used

to denote the orthogonal complement, w.r.t. the usual inner product,

of B. For afunction W and a set D, W(D), W_l(D) and DC




denote the image, the inverse image and the set complement of D
respectively. For a set C in a finite dimensional vector space,
6, Co, [c] and sp C denote the closure of C, the relative
interior of C, the smallest closed convex cone containing C,
i.e., the intersection of all closed convex cones containing C, and

the linear span of C respectively. Finally it is assumed throughout

that all vector spaces are real finite dimensional vector spaces.




III. PRELIMINARY FACTS

In this chapter some general facts concerning Q (Af) will be
established. These facts are needed to establish the main results in
the remaining chapters. No assumption about the structure of f is
required.

3.1. A Minimal Essentially Complete Class and a Reformulated
Model Having a p.d. Covariance Matrix

Let CO ={a:X'a = \}. Notice that a'Y e (BO if and only if
ae G o Olsen, Seely and Birkes (1976) proved that their definitions
of "as good as”, "better than" and "admissible" in QO are the

same w.r.t. ‘\f as w.r.t. [qf] These two remarks enable us to

conclude that

3.1.1) Q@) = QI

This fact will be used extensively to establish the results we need.
Depending on which is more convenient, a (af), 2 (¥]) or Q
will be used to denote the class of all admissible lue's of \'B.

Now, let V be a maximal element in [4f] (see LaMotte,

M

1977). Thus V,  is suchthat R(V) C R(V,) forall Ve [V¥].

Note that N(V, ) C N(V) for all Ve [¥]. Let R - R(X) +R(V )

and define @0_2 {t'vy:t'vy ¢ (@ with t e@,} and

1
F- fy:fe(® ). Let CQO be the class of all admissible lue's of




the parametric function zero. Then,

Proposition (3.1.2). @0 = ?

Pf. The estimator zero is a lue of the parametric function zero
and Var(0|V) =0 forall Ve[%] and so a'Ye @0 if and only
if X'a=0 and a'Va= Var(a"YlV) =0 forall Vel[Af], i.e., if
and only if ae N(X') and ae N(V) for all Ve [ﬁf], i.e., if

and only if a e y(X“)mﬁ(VM) =@ - |

Proposition (3. 1.3). CQ = @a+ C]ZO .

e
Pf. Let b'Y e & Since beRn:&ﬂﬁ& , then there
1
exist te@ and fe@, such that b=t + f. Then
A=X"M=X"t+X'¥=X"t and b'Vb =t'Vt+ 2t'Vf+ f'Vf = t'Vt for

all Vel[V], since X'f=0 and Vf=0 forall Ve[Af]. Thus

[}

'Y ¢ ( (see (3.2.13)). Hence b'Y =t'Y +{Y with t'Vv e (Ry

and f'Y e Q 0’ i.e.,
Qc+Q,.

Now, let f'Y ¢ O’lo and t'Y e CQ&, i.e., f'Y is such that

un
fe R and t'Ye (@ with te@ . Let b=t+f. Then

b'Y =t'Y +f'Y is suchthat X'b =Xt =\, and b'Vb=t'Vt for

all Ve [W¥] with t'Y ¢ ( whichimplies that b'Y e R, i.e.,
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CO@_‘F@OC@- I

Proposition (3.1.4). @&is essentially complete.

Pf. Let a'Ye @0. Since OZ is complete (see Olsen, Seely
and Birkes, 1976), there exists b'Y ¢ (. suchthat b'Y is as
1
good as a'y. By (3.1.3), there exists te @, and f ¢ @. such
that b'Y =t'Y +f'Y with t'Y e C?& and £'Y ¢ Q. Then t'Y
is as good as a'Y since Var(t'Y|V) =Var(b'Y|V) for all

V e [ﬁf], i.e., @&

is essentially complete. D

Let g = dim @,, let H bean n xq matrix such that its

columns form a basis for @, and consider the linear model

“fY'Z “E(Z) = GB, Cov(Z) ea\fz

with Z =H'Y, G =H'X and ‘\fzz{H’VH:Ve‘U’}. Then

Proposition (3.1.5). \'B is estimable under M  if and

only if it is estimable under WZ'

Pf. It suffices to show that R(X') = R(G'). Note that

R(G") = R(X'H) C R(X"). Also, r(G')=r(G)=r(HX) = r(X)

r — —
L
- dim[B(X),r\E(H')]. Since N(H') = & and R(X) C& it follows

3

that R(X)~N(H') = {0} so that r(G) = r(X).
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Proposition (3.1.6). RI(G, H"VMH) = r%

Now let @Z be the class of all admissible lue's of \'B

under W 7" Then

Proposition {3.1.7). a&: OZZ'

Pf. Let b'Z (=b'H'Y) be in O‘z' Then X\ =G' = X'Hb
and z a'Z suchthat \ = G'a with a'Z betterthan b'Z
w.r.t. DLPZ« ILet t=Hb, sothat t'Y =b'Z, and assume that
t'Yy ¢ @& . Thus te R(H) = @_ is such that E(t'Y) =\'B and
t'Y § @@. which implies that t'Y ¢ (I . By the completeness of (
there exists h'Y ¢ ( suchthat h'Vh < t'Vt for all Ve 4
and h'Vh < t'Vt for some V ¢ 4f. Note that h'Y e QC @0 and
&& is essentially complete. Then there exists a'Y ¢ Q& such
that a'Y is as good as h'Y w.r.t. A4f with a-= Hc for some
c. Hence a'Va<t'Vt forall Ve 9f and a'Va < t'Vt for some
v e 4f which implies that c¢'H'VHc < b'H'VHb for all V e £
and c¢'H'VHc < b'H'VHb for some V ¢ Af. Thus c'VZc < b"VZb

£ 3 ! < ! , 1.e.,
or all VZeoLfZ and CVZC bVZb for some VzeoL?Z i.e

b'Z {@Z, which is a contradiction. Thus t'Y € @a, i.e.,
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Q, C @&ﬂ

Now, let t'Y e CQQ Thus t = Hb for some b and
t'Y =b'Z. Assume b'Z[O.Z. Thus there exists a'Z with

X =G'a=X"Ha such that a'VZaﬁb"V b for all Vzea\fz and

4

! < b' . = .
aVZa. VZb for some Vzec\fz I.et h = Ha. Then

h'Vh < t'Vt for all Ve 9f and h'Vh < t'Vt for some V e .,

i.e., t'Y ¢ @& which is a contradiction. Hence
Q
W@, 1

Proposition (3.1.8). If there exists a set of covariance

matrices ﬂ\f 0

such that c\f C 0\5’0 C spQU’ and
K ;
[,] = {z e

jVj L > 0}, then CQ& is minimal essentially com-
plete.

Pf. Let a'Y and b'Y be bothin CQ& such that
a'Va=b'Vb for all V e¢4f. We should prove that a =b. By the
definition of Q& », a and b are bothin @, . Hence there exist
c and d suchthat a =Hc and b = Hd. Consider the linear
model ‘M and notice that c'Z (=a'Y) and d'Z (sb'Y) are both

4

in & 7 Assume there exists a set of covariance matrices Af 0

such that 4f C VO C spc\f and [AFf ] = {E;{:lpjvj:pj > 0}. Hence

H'YHC H'A® HC sp H'YPH and H'[V,]H = {2?:1ij'VJ.H: Py 2 0},

0
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k
i.e., 0\‘ - 1= Lip. >
i.e A 7 C 1 C sp ‘lfz and [%Pl] { =1 ijJ pJ > 0} where

H, = H”VJ,H, ‘\fz =H'WH, A =H'AYH and [‘U’l] = H'[‘\PO]H

(see (3.3.7)). By (3.1.6), R(G,H'V H)=RY whichimplies that

- nd : 0 af k
) 9 e 2o g - . H
RI(G H1 Hk) R since H VMH € [‘UZ] ClI 1] and Z)le i

is a maximal element in [c\fl] Hence ‘U’Z C ‘U’l C sp VZ and

k q
= ip. > 0} ,H. ..., = .
[°U’1] {ijlijj Py 2 0 where R(G,H H,) =R Apply

(5.2.3) to conclude that ¢ =d. [

Remark (3.1.9). By (3.1.4) it suffices to consider @& when
estimating \'B. Proposition (3.1.7) says that @@_ = CQZ where
O’Z is the class of all admissible lue's of \'B under the trans-
formed model %Y)_. Therefore, estimation problems concerning

Z

model M  can be translated in terms of model m 7" The

advantage of M 7 is that it satisfies (3.1.6) which is useful in

Chapter IV.
Now let Af +XX'= {V+XX':V eAf }. Then

Proposition (3.1.10). Q (af) = Q (Af+xXX").

Pf. Note that for all a'Y e @0 we have
Var(a'Y |VHXX'") = a'Va + a'XX'a = Var(a'Y|V) + X'\,

for all V e QP. Hence the notions of "as good as” and "better than”

w.r.t. O\P are the same as w. r. t. q)o +xx' ]
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Remark (3.1.11). As remarked in (3.1.9) we can always

change from model ¥Y) to model A{Y\Z. By (3.1.10),

Q. =Q_(88,+GG"). Note that 4f, + GG' contains a p.d. matrix
Z Z Z

Z

H'VMH + GG'. This gives us the interesting result that we can always
reformulate the estimation problem so that there exists a p.d. covari-

ance matrix, asnoted by LaMotte (1977).

3.2. Best lue's and Admissibility

In this section Zyskind's Theorem (see Zyskind, 1967) will be
used to establish some more general facts concerning admissibility.

A restatement of this theorem is given without proof.

Zyskind's Theorem. Let X be a n.n.d. matrix. Then for

any matrix A and vector h such that A'h = 6, we have

h'Zh = min b'EZEb if and only if Zhe R(A).
A'b=8

Proposition (3.2.1). Let X be any n.n.d. matrix and A

and F be any matrices such that R(F) = _1\_I(A'). Then

R(A,ZF) = R(A, Z).

Pf. Note that R(A,ZF) C R(A, ). It suffices to show
r(A,ZF) = r(A,Z). But r(A,Z)=r(A)+ r(Z) - dim[R(A)AR(D)].

Also r(A,ZF) = r(A) + r(SF) because R(A)NR(ZF) ={0}. (If

Ab = ZFd, then 0 = F'Ab = F'SFd, so ZFd = 0.) Note that
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r(ZF) = r(F'Z) = 2(T) = dim[R(Z)~N(F "]

= r(Z) - dim[R(Z)~R(A)]. [

Now let V SV be non-zero matrices in 4f and define

1’

(B(Vl) ={b'Y ¢ @O:bivlb: min a.'Vla.},
a'Y e @O

o i o ! = 1 '
@(VI,VZ) {bYe@l.bVZb min aVZa}g

a'y e@l
@(V,..,,V ) ={b'Yy e (@ :b'V b = min a'V. al,
1 m m-1 m Y e (B m
a m-1
where @m = @(Vl, - ,Vm) for m=1,2,...,r. Note that when-
ever a'Y and Db'Y E(Br then a.'Via:b'Vib, i=1,2,...,r.
Let Fl, ,Fr be such that _I_{(Fl) = N(X') and
B(Fi) = ﬁ(X')r\ﬁ(Vl)r\. . .r\ﬁ(Vi l)’ i=2,3,...,r. Then
Proposition (3.2.2). B(X,VlFl, .o ’VrFr) = I_{(X,Vl, e ,Vr).

Pf. The result will be proved by induction. For r = 1, the

result is established using (3.2.1) with A =X, X = Vl and F = Fl.
For r > 2, assume the result holds for r-1, 1i.e., assume
|
i ,V 3 v 0 ey = ] LA * h
R(X lFl Vr-lFr-l) R(X Vl Vr-l) Thus we have
} I_{(X,VlFl,...,Vr_lFr_lperr)=I_((X,Vl,...,Vr_l,VrFr) and the
‘ result holds using (3.2.1) with A = (X,Vl, e ,Vr l)’ 2 = Vr and

F = Fr together with the fact that
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N(A') :N(X')r\_l}_I(Vl)r\...r\E(V .
r-1 T

o, o - ] o
Proposition (3.2.3). ®‘r {bYEer—l'vrbEB(X'VI’“'”VI‘-I)}'

Pf. The result will be proved by induction. For r =1, use

Zyskind's Theorem with A =X, T = V1 and 6 =\ to obtain

@1 ={b'Y ¢ @O:b“Vlb = min a“Vla}
a'y e 0

=Y « B,V be RX))

Thus,

B =Y e FiVp=0=pY:(X,V,F)b=007"

For r =2, the proof ‘will be given for clarification.

min a'v > a}

@ =b'vy e @.:b'V.b
2 1 2 a'YeCBI

= {b'Y ¢ CBl:b'V b

. ]
5 min aVZa} ,

A'a=§

where A = (X’VlFl) and 6 = (\'",0)'. Apply Zyskind's Theorem
with X = V2 to have

- 1 . .
®, = 'y « B,:V,be RX,V,F )},

and the result holds using (3.2.1). Note that




17

= 4 ° ! =
@2 by e G :FyV,b =0

={b'y :(X,VlFlsV F.)'b =(\,0,0)"}.

22)

For r > 3, assume the result holds for r-1, 1i.e., assume
that
- 1 .
@, =0T e@® ,:V, beRE V...,V )},
Then
- ! i -
® B b'Y € @r_z F! (V..P 0}
=b'Y:X,V.F.,...,V ) = (\',0,...,0)'}
171 r-1"r-1
Thus, we have
@ - b'v e ® :b'V b =  min a'V_ a}
T r-1 T Y (R
a r-1
={b'Y e @ _lib'V b= min a'v a},
. A'la=5
where A= (X,V.F_,...,V F ) and &6=(\',0,...,0)"
171 r-1"r-1

Applying Zyskind's Theorem with X = V. we have

= ! °
CBr b'Y € @r_l,vrb ¢ RX,V Fp,...,V_F_ 1)} ,

and the result holds using (3.2.2). [

(3.2.3) we have

|
|
Remark (3.2.4). Note that from the proof of Proposition
|




18

® =pYVXV.F,...,.VF)b=(\0,...,0 .
T 171 r r

Proposition (3.2.5). Let bo be any vector such that

§
bOY € (Br' Then,

). ANV )} .

+ N(X ANV
- - 1 - r

® - b'Y:beb
T 0

Pf. Since byYe (Br C @, then X'b=\ ifand only if

be b, #N(X'). Remark (3.2.4) implies that

0
® =Y X,V.F,...,VFIb=(1,0,...,0"
T 171 r r
={b'Y:X" =\, (V_F._, ,V F )b = (0, ,0)"
171 r r
=b'v:be b +NXYNANF'V )A... ANF'V )}
0 — = 1 1 - r r

)~ ANF'V )},

- Ix7 . l '
b'Y:ibeb  + NX')ANEFV, N(F V

0

since b, e N((V.F » V Fr)v)m_lil(F'lv

1 ‘ :
0 LR . )m...mg(FrVr). Using

1
(3.2.2) we have

12
o
D)

1Z

o
<

17 r

Proposition (3.2.6). (® . has only one element if and only if

n

Pf. Proposition (3.2.5) implies that b(')Y is the only element
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in (Br if and only if N(X)AN(V )~... ANV ) = {0} [

Corollary (3.2.7). If b'Y e (® with RX, V...,V ,

then b'Y is admissible.

Pf. Let a'Y be another element in ®O such that a'y is
better than b'Y w.r.t. 4F . By the definition of @r, a'vy ¢« (R "y

By (3.2.6), a'Y =b'Y whichis a contradiction. |

Corollary (3.2.8). If b'Y ¢ 81_ with Vr p.d., then b'Y

is admissible.

Proposition (3. 2.9). @(Vlg...,v V) :CB(\fl,...,Vr

v )-

if RV )CR(X,V_,...,
~— r = 1 r-1

Pf. By (3.2.3) we have b'Y ¢ (B if andonlyif b'Y e ®.

and V be R(X,V V_ ). Thus b"Ye@,r if and only if

1V

b'Y e ®r—l since Vrb € _]E_{(Vr) C R(X,V Y ) for all

o r-1

b ¢ Rn., D

Proposition (3.2.10). If a'Y,b'Y e Q@ (Vl’ e ,Vr) and if

V isn.n.d. suchthat R(V)(C R(X,V ,...,Vr), then a'Va = b'Vb.

1

Pf. Proposition (3.2.9) implies that

. ,Vr), and the result holds by the

RV v V) =G ..

definition of @(le---gvrav)~ [
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For i=1,2,...,h with h<r, let KiC{l,Z,...,r}.

-1
Iet J. =K. and J =K NU T K,m=2,...,h.
1 1 m m i=l 1

Proposition {3.2.11).

z V..., Z, )= P Voo, 2,
CB( jeK1 j ZJGKV) (B( jeJ jedJ

V.).
j L p W

Pf. The result will be proved by induction. For h =1 the

result is obvious since Kl = Jl“ To continue the proof, define
m-1 .
L =K ~(u _ K), m=2,...,h. For h=2 the proof will be
m m i=1 1

given for clarification. By (3.2.3) we have

bin (Z., V,sz. V»)
@ JeKl j JGKZ j

<=>
¥
b'Y e CB(ZjeKIVj)

and (Z Jbe R(X,Z

v \s
JeK, ] = jeK

since J, =K, and K,=L,0J, with LZC K, which implies that

- =, . VoOCRE, . V).
= .V, zjeKlvj and R( jeL, J)C_(JeKl ;)

Thus
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For h >3 assume the result holds for h-1, 1i.e., assume

that
R, 53 v)=Q@E=, _v.,....Z, V)
JeKl j JeKh-l j JeJl j JeJh—l j
Hence
b' = ) =
Ye@( jeKl j jeKth)
<=>
b'Y e @ (= s D V.)
eKl j JeKh—l j
and
)b e R(X, 2 V., » Z V.)
JeKhJ = JeKl j JeKh-l j
<=>
bY @2, V... Z o V)
Jedy ) Jedy 1 )
and
(Z V.)b e R(X,Z V., D v.)
jedy d jedy jedy 1)
since K, = L UJ with L Cuh—lK which implies that
h h~"h h i=1 71
> e ey N
R( jeLth)C E(ZjeKlvj ZjeKh_le) D

This last proposition says, for example, that

(B(V1+V2+v3,vl+v3+v4) = (B(V1+VZ+V3, RE

which might be a useful simplification.

The next two propositions will be used extensively in Chapters

V and VI.
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Proposition (3.2.12). Let a“Ye@O and b'Y ¢ (L (49).
If a'Yy is as goodas b'Y w.r.t. 4, then a'Va=b'Vb for

all VvV in 4P .

Pf. Note that a'Va < b'Vb for all V e &f. Assume there

exists V1 in Af such that b"Vlb?’a"Vla. Thus

a.”Vla < b'V 1b which implies that b'Y ¢ Q (af), contradiction. 0

Proposition (3.2.13). If a'Ye @0 and b'Y ¢ (&P) are

such that a'Va =b'Vb for all V ina\fp then a'yY e&(oif)-

Pf. Assume a'vy { R (@P). Then, by the completeness of @,‘,
there exists h'Y admissible such that h'Vh < a'Va for all
VedP and h'Vh < a'Va for some V e¢4P. But a'Va=b'Vb for
all V¢ 4P. Hence h'Y isbetter than b'Y w.r.t. &£, i.e.,

b'Y {Q () whichis a contradiction. ]

3.3. Alternative Representations for [A\PZ], [Af] and [Af ]O

Consider the linear model WZ introduced in Section 3.1.
Recall that 4f 7 = {HVH:V ¢qf} and R(V) C R(H) = I_{(X,VM)
for all V ¢ [AP]. In this section we will prove that [‘U,Z] = H'[aflHu
and obtain alternative representations for ["U] and [ﬂf]o where

[CU’]O is the relative interior of [4f]. To begin the proof, let B

be a subset of a real finite dimensional vector space. Then
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Proposition (3.3.1). If B 1is aconvex cone, then B is.

Pf. Since the closure of a convex set is convex (see Eggleston,

1963), it suffices to show that B is a cone. Let b e B and

@ > 0. We should prove that ab ¢ B. Since be B, then

b= lim b with b ¢ B forall n. Thus o¢b = lim ab ¢ B
n n n
n—" o n—" 0

since ab ¢ B. [
n
scc

Now, let B be the smallest convex cone containing B,

i.e., the intersection of all convex cones containing B. Then

Proposition (3.3.2). B®¢C = {Ziaibi: a, > O,bi ¢ B}.

Pf. It can be verified that the right hand set, G say, is a

convex cone. Note B ( G. Let C be any other convex cone con-

taining B. Note that C = {Ziaici: ozi >0, ¢ e C}. Now if be G,

then b=Z.ab. with @ >0 and b ¢B C C and hence be C.

Thus G C C and so G =B"°C, N

e

Proposition (3. 3. 3). [B] = B¢,

Pf. Note that [B] 1is a convex cone containing B. Thus,

BSCC C [B]

BSCC C [B] = [B] since [B] is closed. Note

which implies that
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e

also that B C B®°C C B°C® and B®“® is aclosed convex cone by

(3.3.1), so

[BIC B%°C . [

Proposition (3.3.4). If I is a compact convex set not con-

taining zero, then r] = {ay:a >0, ye T}

m———

Pf. Propositions (3. 3. 3) and (3. 3. 2) say that r] = rsc¢

with °¢C = {Z)ioz.y. A > O,yi e T'}. Let G ={ay:a>0,yce T}

Thus, it suffices to show that FSCC =G and that G 1is closed.

Clearly G C FSCC. Now, let Ziaiyi € PSCC. Hence
= = i = >
Ziaiyi (Ziozi)Zi(ozi/Zjozj)yi ay, with « Ziai- 0 and
y = Zi(ai/Zjaj)yi e I since I 1is convex, Y; € I and
(@./=.2,) >0 for all i with Z,(a /Z,e)=1. Hence, Z.a.y, ¢ G,
1))~ I S ii'i

ice., I°°°“C G. Thus r*c“=qg. To prove that G is closed,

let {oznyn} be a convergent sequence in G. Then @ >0 and
A\ I" are such that oY — h. We should prove that he G, 1i.e.,
h=ay with @ >0 and vyeI. Notethat I is a compact setnot

containing zero. Hence there exists a > 0 suchthat a < I Yn“ <®

where H | is the Euclidean norm. Since {oznyn} is convergent,

then there exists ¢ < © such that \oz |y = |le_v | < ¢ which
n n n'n' —

implies that lozn| < cla< o, i.e., {ozn} is a bounded sequence.

Note that {yn} is an infinite sequence in the compact set I'. Hence
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there exists a subsequence {y } such that Y, TV« I'. Also,
n. .

J J
since {an} is bounded, then the subsequence {an} is bounded.
]
Hence there exists a sub-subsequence {an }  such that

g

« ™ a with o >0 since {«¢ } > 0. Notethat y ™ v.
n - n, - n

i J; )
Since @ Y h, then anu Yn, h. But an. Yn, ay and
i3 i)

hence h =ay with o >0 and vye I'. ]

Proposition (3. 3.5). ﬂf;cc = H' "\_fSCCH.

SCC
Pf. By (3.3.2) we have af C={Z.,a.H :a, >0,H, ¢ 4P_}. We
= =y z N R z

can write Hj = H“VJ,H for some Vj ¢ 4. Using (3.3.2) we have

i

AP - (H(Z.aV.)H:a, >0,V, ¢4f}
z i j— j

i

HY{Z.aV. :a >0,V, ¢ \fIH
Jyio1- j

HHVSCCH ) I:I

Proposition (3.3.6). H'VH = 0 if and only if V =0, for all

V e [‘U’]

| Pf. Clearlyif V =0, then H'VH = 0. Now, suppose
H'VH = 0. Then VH =0 which implies that R(H) C N(V). But

R(V) C R(H) for all V ¢ [AP]. Hence we have R(V)(C N(V) which

2
implies that V= 0 and the result holds. I
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Theorem (3. 3. 7). [‘\fz] =1'{¥lu .

Pf. By (3.3.3) and (3.3.5), [ 1= a8 = H'4p"H.

. . . _ .., scc
Applying (3. 3. 3) again we have H [(PlH = H 4f H. Hence we

sccC sccC

should prove that L(4p ) = L(4f ), where L(V)=H'VH. Note

that L 1is linear and continuous. By Dugundji (1966),

L(‘\fscc) C L(G@Scc)o To prove the other containment, it suffices to

show that L( ‘\fs ce

. ) scc, ~ scc
) is closed since L(af ) C L(af 7). By
Lemma 3.5 in Olsen, Seely and Birkes (1976) there exists a compact
convex set I' not containing zero such that [4f] = [T']. Hence, by

(3.3.3), we have

a——

L(qp®cc) = L(¥) = L(r)D.

Using (3. 3.4) twice together with the linearity of 1L we have

I

-‘L([l“]) LH{pV:p >0,V e T}

{pL(V):p >0,1L(V) e L(D)} = [L(D)],

which is closed. For this last equality, notice that L(I") is com-
pact because L 1is continuous, convex because L is linear and

does not contain zero by (3.3.6). []

Now, let S .S be nxn real matrices and let £ be

IR k

a subset of Rk such that W(p) = Z?::lpjsj is n.n.d. for all

pe . Define
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U, =wie)ip e 0} =w@),

k
and notice that W 1is a linear mapping from R to D)’( , the vec-

tor space of all n xn real matrices.

Proposition (3. 3. 8). w(e]y C [we)l.

-1
Pf. We will begin by proving that W ((w(@)]) 1is a closed

-1
convex cone containing €. Clearly, Cw ([W(Q )]) because

w@) C [wE®)]. Also, W”l([W(Q)]) is closed in RS since W

is continuous and [W(R)] 1is closed in €. Now, let

1

PpreeaP € W ([W(Q)]) and « Y be nonegative numbers.

1’ """ m
Note that Z.a.W(p,) ¢ [W(Q)]. By the linearity of W,

T.a.W(p.) = W(Z.a,p.). This implies that W(Z.a,p.) e [W(R)], so
11 1 1 11 111

—1([W(Q )]) is a closed convex cone

-1
Z?iozipi e W ((W()]). Hence W
containing £ which implies that Q] C W-l([W(Q)]), Therefore,

w(e]) Clwe)]. 1

Proposition (3.3.9). If w(2]) is closed, then

[w)] C w(e)).

Pf. Since C @], then WE&)C w(R]) where w([2])
is a convex cone because W is linear and [Q] is a convex cone.

Hence W(Q)SCC C w(R]). Now assume that w(R]) is closed.

Then, by (3. 3. 3), we have
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[w@)] = w@)*° C wde) = wleD . [

Theorem (3. 3.10). If c\f[Q] is closed, then V[Q] = [‘U’Q]

Pf. Recall that W[Q]:W([Q]) and [‘\PQ]:[W(Q)] a.pd

apply (3.3.8) and (3.3.9). [l

Proposition (3.3.11). If there exists a compact convex set

GC [2]) suchthat [G]=[R] and 0/ W(G), then Afp5q= (UG )

Pf. Notice that the zero vector is not in G since the zero
matrix is not in WI(G). Hence G 1is a compact convex set not con-
taining zero. Also, W(G) is a compact convex set not containing
zero. It is compact because W is continuous and G is compact,
convex because W is linear and G 1is convex, and not containing
zero by assumption. Applying (3. 3. 4) twice together with the lin-

earity of W we have

[(W(G)] = {aW(y):a >0, W(y) € W(G)}

= {W(ay):a >0,ye G}
= {W(ay):ay e [G]}
= w(a]) = w(e))

The last equality holds because [G] = [Q]. Hence ﬂf[Q] = W([Q])

is closed. Apply (3.3.10). |
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Proposition (3. 3. 12). If Sl, e ey Sk are linearly independent,
then ‘\f[Q] = [‘U’Q]
Pf. Assume that Slg ceey Sk are linearly independent. Then

k
W:R ™ W(R') is one-to-one and onto linear mapping. Hence,
c\f[Q] = wW(2]) is closed since [2] is closed and W 1is a one-to-

one and onto continuous map. Apply (3. 3.10). I

Assumption. Hereafter we will assume that Slo ceey Sk are

. . . k k .
linearly independent, i.e., W:R ™ W(R ) is a one-to-one and

onto linear mapping which implies that its inverse W_1 exists and
is linear. Hence W is a continuous map whose inverse is continu-
ous, i.e., W 1is a homeomorphism and hence preserves topology
as well as linear structure. Of course Wnl, also, preserves
topology and linear structure.

Now for any set B in a real finite dimensional vector space
let aff(B) and B® denote the affine hull of B and the interior of
B relative to its affine hull. Hence B® is the largest set con-

tained in B and open in aff(B).

Proposition (3.3.13). W(aff(B))= aff(W(B)).

Pf. Apply the linearity of W. 0

Proposition (3.3.14). W(B") = (W(B)) .
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Pf. Note that B is the largest set contained in B and
open in aff(B). Since W preserves topology, then W(Bo) is the
largest set contained in W(B) and open in W(aff(B)) = aff(W(B))
(see (3.3.13)). Also, by definition, (W(B))0 is the largest set con-

tained in W(B) and open in aff(W(B)). Hence W(Bo)=(W(B))O. [

Theorem (3. 3.15). CUD[Q]O = [‘\.?Q]o .

Pf. Recall that ‘U’[Q]o = w(e]%) and, by (3.3.12),
[o\%]o = (n\f[ﬂ])o = (W([Q]))o- Apply (3.3.14) with B =[Q] to con-

clude that W([Q]%) = (W([Q]))o= 0
Let % be the set of all nxn n.n.d. matrices. Then

Proposition (3. 3.16). If W(p) e 9} for all p e 2, then

Wip) € ¥) for all p e [Q].

Pf. Recall that W:Rk - W(Rk). Hence
k -1 k . .
QC{H:wWpEe)eN={p: W) e NAWR I} =W (NAWR)), which is
a closed convex cone. It is closed because N is closed in ‘\& , SO
‘Y] k . . k : -1
AW(R") is closedin W(R ), and W preserves topology. It
is a convex cone because Qn and Rk are convex cones and W

-1 .
and W preserve linear structure. Hence

2] C w hnAw@"). [
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3.4. Topological Properties of Q.

In this section, some topological properties of (R will be
studied. The topology of the set of linear estimators b'Y, b e Rn,
will be taken to be the topology of the coefficient vectors b, i.e.,
the topology of R". We prove through a counter example that a
may not be compact. However, @ is shown to be compact when

(XX '+V) 1is p.d. for all non-zero V ¢ [4£].

Proposition (3.4.1). If V is p.d. for all non-zero V ¢ [‘U’],

then CQ is compact.

Pf. If V isp.d. for all V e [AP]\{0}, then

@:u @(V) .

Ve [°\f’] \{O}

-1 -1 -
In this case, b'Y ¢ (3(V) ifand only if b=V XX'V "X) .

By Lemma 3.5 in Olsen, Seely and Birkes (1976), there exists a com-

pact set I’ not containing zero such that

[AP] ={aV:a >0,V ¢ T}hu{0}. Note @(QV) = @(V) for a >0, so

-1 -1
1X(X'V X) N. Thus f is a

A = Uy p@(V). Define £(V)=V
continuous map from I onto the coefficient vectors of (. The

result holds since the image of a continuous function on a compact set

is compact. {0
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Proposition (3.4.2). If R(X,V) = R™ for all non-zero V

in [f], then (Q is compact.

Pf. Olsen, Seely and Birkes (1976) proved that
Q- uVe [ﬂf]\{O}@(V)' Proposition (3.1.10) says that

CD:@ (P +XX'"). Note that (XX'+V) =V is p.d. for all non-zero

X
Vi € [CUDX] and the result holds if we apply (3.4.1) to

Qap+xxn. 1

Proposition (3. 4.3). Suppose X\ # 0. If &4f is the class of

all p.d. matrices, then @ = @0.

Pf. Clearly QC @0. Now let be R™ be such that
X' = \X. Then bb' is n.n.d. matrix such that R(bb') = R(b),
N(bb') = N(b"), r(bb') =1 and n(bb') = n-1. Let Q be such that its
columns form a basis for ﬁ(bb“) and consider the matrix

(XX '+QQ'"). Then (XX'+QQ'") is n.n.d. with

i

r(XX'+QQ") = r((X, Q)(X,Q)") = r(X,Q)

i

r(X) + r(Q) - dim[R(X)~R(Q)]

1

= r(X) + n(b") - dim[R(X)~N(b")] = n,

since n(b') =n-1 and 1= r(b'X) = r(X) - dim[B(X)r\N(b')]. Thus

(XX '+QQ'") is p-d. Note that

(XX'+QQ"Yb = XX'b + QQ'b = XX'b ¢ R(X),
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since b'Q=0=Q'b. Thus be¢ R"™ is suchthat X' =\ and
(XX'+QQ")b ¢ R(X). Zyskind's Theorem implies that
b'Y € CB(XX '+QQ'). Note that b'Y is the only element in
R(XX'+QQ") since (XX'+QQ') isp.d. Thus b'Y € (R, which

implies that (B, C Q. [

Note that (3. 4. 3) gives an example where Q (4f) is not com-

pact.

Remark. If 4Ff 1is the class of all n.n.d. matrices then

C? = CBO since the closure of the class of all p.d. matrices is the

class of all n.n.d. matrices.
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IV. ADMISSIBILITY WHEN [4f] ASSUMES
A POLYHEDRAL STRUCTURE

4.1. Model and Notation

Throughout this chapter let 4f be such that

[0] = (=5 1o, W, 10, 20}

J= J ]
where the ijs (j=1,2,...,k) are known nxn n. n.d. matrices.
In the first four sections we assume that R(X, Wl’ e ey Wk) = Rn.

This range condition is relaxed in Section 5. Note that fixed, mixed
and random effect ANOVA models all have covariance structure like
the one assumed in this chapter.

Suppose Jl’ JZ’ ceey J are nonempty pairwise disjoint subsets

h
h

= L ! 1 -
of J={1,2,...,k}. Let T J\ui=1 J.- Suppose J,  is non
empty. Set
(4.1.1) M ={=, _,p,W :p, >0}

h jed iy i

Consider a given set of positive numbers ozj, j=1,2,...,k. Set

V. =%, aW, (i=1,2,...,h) and @ :Q(V ,.-.>V. ). Note
i J&Ji_] J h 1 h

that the results of Section 3.2 hold for ®h and recall that

Q=0 @ = Q).
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4,2. A Characterization of Ce

Suppose b'Y is in (Bh' We say that b'Y is admissible in
CBh w.r.t. QP if and only if no element in Qh is better than
b'Y w.r.t. 4P ; and we say that b'Y 1is V-bestin @h if and
only if b'Vb < a'Va for all a'Y ¢ @h. Thus b'Y 1is an element
in C%h if and only if b'Y 1is V. _-bestin ®h-

h 1

Proposition (4.2.1). Let b'Y and a'Y bebothin (Bh.

Then,
(i) b'Y is as good as a'Y w.r.t. [4P] if and onlyif b'Y
is as good as a'Y w.r.t. wh'
(ii) b'Y is better than a'Y w.r.t. [Af] if and only if Db'Y
is better than a'Y w.r.t. Wh'
(iii) b'Y is admissible in @h w.r.t. [AP] if and only if

b'Y is admissible in @h w. r.t. wh-

h
Pf. By (3.2.10), b"ij = a.'Wja. for all je v, , J. because

whenever je J, we have
i

g(wj) CROVI)CRE, Voo V)
So

k
b e Wb < a'(EX . p.W.)a
j=1 (<) =105

if and only if
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b'(Z, ., P Wb < al(Z, P W)a.
jery N33 gy Tdedy i

This proves (i) and (ii). Part (iii) holds using (ii) together with the

definition of admissibility in @h' 1

Proposition (4.2.2). If b'Y is admissible in (Bh w.r.t.

[°U°], then b'Y 1is V-bestin ®h for some non-zero Ve‘\"fh.

Pf. By (iii) of (4. 2.1) we conclude that b'Y is admissible in

@h w.r.t. W

W Now, consider the linear model

‘W)h-.E(T) =Gy, Cov(T)e Wh,

where T isan nx 1 random vector, G = (X,VlFl, . ’VhFh)
with Fi and Vi (i=1,2,...,h) as defined in Section 3.2 and
a vector of g unknown parameters with g as the number of col-

umns in G. Set &= (\,0,...,0)". Then &'y 1is an estimable

parametric function if and only if there exists a vector b in rR"

e - N = ! '
such that G'b = (X,V F ..., V,F)'b (\',0,...,0)". Let %Lh be

the set of all lue's of 6'1];, i.e.,

- i = P !
‘U\h b'T: (X, V,F ...,V F)b (A", 0,...,0)'}.

Note that (3.2.4) implies that b'Y e ®h if and only if b'T e CU‘h'

Moreover for V ¢ 'W,, Var(b'y|V)=b'Vb = Var(b'T|V). Since
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b'Y is admissible in (Bh w. r.t. Dv\f b'T is admissible in

h’
‘Uh under ‘W]h. Applying Proposition 3.6 in Olsen, Seely and
Birkes (1976) to the linear model “m h we conclude that b'T is

V-best in Mh for some non-zero Vew. Hence b'Y is

h
V-best in ®h' I

Definition (4.2.3). P = (Jl, J’z, e J's) is an ordered parti-

tionof J=1{1,2,...,k} if and only if
(i) Ji is nonempty for all 1i=1,2,...,s,
(ii) JimJj is empty for all i 7 j,
(i) T =, T,

Let @ be the set of all ordered partitions of J. Then,

Proposition (4.2.4). If (Jl, cen ,.Ts) is an ordered partition

and ozj>0 forall j=1,2,...,k, then

Pf. Because a, >0 for all j we have

n
X, 2. W.,..., 2. W)=RX,W_,...,W )=R ,
B( _]eJl a_] j _]er a_] J) '—( 1 k)

and the result holds from (3.2.7). []
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Proposition (4.2.5).

AcCo

= s ey 2, W)
PeGDua/j>0(B( jeJ ajWJ jeJ QJWJ)

Pf. Assume b'Y ¢ (L. Then Proposition 3.6 in Olsen,

Seely and Birkes (1976) implies that b'Y ¢ (B(V )} for some non-

1

zero V. ¢ [‘\f] Write V., = Z, aW,, a >0 forall jeJ..
1 1 J&Jl il i 1

since b'Y isin Q(V,) C (@, andis admissible in @, wrt

[4P], then b'Y 1is admissible in @(Vl) w.r.t. [AS]. If

Jl #J, we can form 6V\r’l as in (4.1.1). By (4.2.2) there exists

a hon-zero matrix V_ ¢ ‘\(\f

> I such that b”Ye@(Vl,VZ). Write

v, =2, a W, a, >0 forall jeJ,. Then b'Y is admissible
2 JeJZ ] ] j 2

in @(Vlsvz) w.r.t. [Af]. Note that Jlr\JZ =¢. If JluJZ 47,

we can form WZ as in (4.1.1). Again by (4. 2. 2) there exists a

non-zero matrix V3 € WZ such that b'Y ¢ @(VI,VZ,V3). Write

V3:EjeJ3 a/jW,, a/j>0 for all je J3. Continue for s steps
until we get JluJZu,.,qu =J. So,
b'Y e R(Z, . aW,...,Z, a W),
@ jedy 1] jedg 3]

where (J.,J7.,...,J

1775 is an ordered partitionof J and a/j >0

g)

for all j. 1
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Theorem (4.2.6).

Q S Up V.50 B g W By W)

Pf. Apply (4.2.4) and (4.2.5). [

Remark (4.2.7). Note that, by (3.2.9),

(Z, aW.,...,2, aW.,...,2. a W)
@ jedy 3] jedy, 1 jedg 3

h
whenever B(X,Wj ,..,ng):Rn with {jl,...,jt}=u. J..
1 t

Pf. By (4.2.6) it suffices to show that

Choose P ¢ @ and a, >0 (j=1,2,...,k) arbitrary but fixed.
J

Write V. = Z, aW., i=1,2,...,8. Thus,
1 jelJ.
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il

Note that r(X,V_,...,V ) E(X,Wls...,W = n. Proposition

)

(3.2.6) says that CB(VI» B ”Vs) has only one element. Thus

=@V, V) =BV .oV V)
C Yr(X,V ..V )en, @V oee-0 V)
Vie[‘\f]
. . _ <k (1) .
For the opposite containment let Vi = Z‘Zl ozj Wj, with
ozgl) >0 forall i and j, be such that £(X9V1,. "’Vk) = n. Let
L,:{j:a§1)>0}9 i=1,2,...,k.

1

Set J, =L, and J_ =L\ u?_;ll L., h=2,...,k. Retain only the

i
sets Jh that are nonempty and renumber them so that Jl, -,Jm
are pairwise disjoint subsets of J ={1,2,...,k}. Let
J .. =I\uUl J. By(3.2.11) weh
] “.oJ.- By (3.2 we have
(1) (k)
V.o, » V) = z W., ) 2, a, W
@, RS jer i jer, 5 "y
1 k
1
=@, ; W oy )
jed, 3 jed i




4]

,V.) = n with

where (X, W, ,...,W,):E(nglg... K

1 It
{jlg...,jt}=u, J. . By (4.2.7) we have

) J ) m
= (= a W, ) 2 a W, = aW,),
jed, jed 31 ded gy 1)
where (J.,...,J ) is an ordered partition of J ={1,2,...,k}
1 mtl
oz,=oz€1)>0 for all j, i.e.,
J J
BV V) =@, eW, B o e WL, o @ W)
Jedy 3 ) JemJJJemHJJ

4.3. Example

3
Let Af be such that [Af] = {Z‘,j:l ijj : pj >0} where
W1 = I, the identity matrix. Note that the two-way additive or nested

random model has this covariance structure. The ordered partitions

of {1,2,3} are:

({2, 3%, (1)), ({1}, {2, 3D, ({1}, {23, (3)), ({1}, {3}, {2}, ({2}, {1}, {3}),
({2}, {3}, {1}), {3}, {1}, {2}) ana ({3}, {2}, {1}).

By (4.2.6) we have

i
({1, 2, 3, ({1, 23, B3, (3}, {1, 2, ({1, 33, 2, ({2}, {1, 3,
1
i
;
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@ - uaj >0 @(a I+012‘W2+013W3 @ « I+012W2, 3W3)
for all j
U @ , o I+aZWZ) @(all+a3W3, aZWZ)

v @ (e, W,, o It W)U Rla,W,taWo, o 1)

v Rle 1 o, W +a3W3) @(a I, azwz,a3w3)

. @a I, a3W ,ay W o CB(OIZW2301119013W3)

3
. @(a2W29a3W3,all)u (Rla 3 W L aZWZ)

v BlagWy. apWyo D)
By (4.2.7) we have, for example,

uon> o QlogTHe, Wy, aW,) = Ya,a,>0 Qe Tra, Wy) s

for all j

Uaj 5o @loLayWytagWy) = Y, >0 @y

for all j
and
Vo >0 @aWpralagWs) = Yaa,>0 layWyoe 1) -
J
for all j
To obtain a shorter expression for (), we will prove
Proposition (4.3.1) @(01 V . 901th) @(Vla cee ’Vh) if

ozi >0 for all 1.
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Pf. The proof is by induction. Suppose b'Y e @O. Then for

h=1 we have
! <=> i < ! i
b'Y e @(alvl) @bV b <eaVia for a11aYeG30

<=>b”Vlb < a,"Vla for all a'yY « @O

<=>b'Y ¢ R(V,).

For h > 2, assume the result holds for h-1, 1i.e., assume
that @(alvl, vy ah_th_l) = (B(Vl’ ce ’Vh-l)° Then
B'Y ¢ RlayVy, . e V) <=>a b'V.b < @2V, a,
for all a'yY e@(alvl,---,ah_ th_l)
<-‘—">b9Vhb < a'Vha.
for all a'Y « BV ...V, )

). 0

<= !
>b'Y e @(vl, vy

Applying this result we have, for example,

Q(w,, W,,1) = U"‘j 5o BlaWy, e, Wy, al)s
for all j

} U, s o @MWty Wa D) = w0 Qe Wote Wi e T) 5
j
‘ for all j

Y3
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UYZ S 0@(W39 I%"YZWZ) = Uoz, >0 @(a W._,a Ita
- J

for all j

331 ZWZ)

P , . > O(B(Q3W3’ 0111) :
1° 73
and

+ =
@(I-i—yZWz y3W3) Ve >0 @(a11+azwz+a3w3)
J

for all j

W/
>
V2 Y320
uw’alg e, S O@(all+a2W2)

Vual, @, >0 Qe T+ W,)

WU

Applying (4.2.7) and (4. 3.1) we have

les Y3Z 0@(1 YZWZ Y3W3)uuy3 S O(B(W2 y3W39 1)

\Juy3 > O(B(Wz, 1+Y3W3)UVYZZ 0@(W3, I+y,W,)

@ W, W, Do @(W,, Wa. ).

@ =@V.,...,V.) has only one element, b'Y say. Corollary
h 1 h Y

4.4, Calculating the Admissible lue's
Let Vl, e ,Vh be matrices in [4f] such that
B(X,Vl, ce ,Vh) = r". Proposition (3.2.6) says that
\
|
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(3.2.7) says that b'Y is admissible. By (3.2.4) we have

b'Y ¢« Q. if and only if (X,V.F_,...,V.F )b ={("',0,...,0)
h y 17 1 h' h

with Fl’ cea Fh as defined in Section 3.2. Let

U= (X’VlFl’ C e ,VhFh). Note that by (3. 2. 2),

R(U) = R(X,V_,...,V.) =R, i.e., U has full row rank. Then

-1

Ub=(0\,0,...,0)" implies that b = (UU')" UM\',0,...,0)", 1i.e.,

-1
4.4, = "+ ! ..t ! .
( 1) b = (XX '+V 1F1F1V l+ VhFhFth) D@\

., H be such that the columns

To calculate F n

TR
of I—Ii form a basis of B(X,Vl, C ,V_l 1) i=1,2,...,h). Notice
that Hi(Hi'Hi)_lHi’ is the orthogonal projection operator on

). Hence

is such that B(Fi) = _N(XV)mE(Vl)r\. <o AN(V

2
and F.F'!=F_ =F., for all i. Thus
i i i

i-1

-1
. 4. = ' . .
(4 3) b = (XX +V1F1V1+ +VhFth) DN

4.5, The Case Where B(X,Wly - K

k
Let [4f] = {Zj=1 ijj : pjz 0} and suppose that

I_{(X,Wl, R Wk) #R™. Let H be such that its columns form a
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basis of R(X, Wl, c e Wk) and let r(H) = q. Consider the linear

model LYY\Z introduced in Section 3.1. Recall that

c\fz = {H'VH:V ¢4P}. Applying (3.3.7) we have

[‘\fZ] = H'[Af]H = {Z];"{:l ijj : pj > 0},

where Hj =H'WH, j=1,2,...,k. By (3.1.6),

Let @’O be defined as in Section 3.1. Then

Theorem (4.5.1).

a-o,

V. e [AFf]

' 'V _H,...,H'V, H) + .
(H'X,H'VIH,...SH‘V H):q,Q(H 1 HV.H) CI10

k

Pf. Apply (3.1.3), (3.1.7) and (4.2.8). []
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V. AN INTERSECTION RESULT

5.1. Introduction and Notation

In this chapter let S .9 S be nxn real matrices, not

1’ k

necessarily linearly independent, and let 2 be a subsetof R

k

such that W(p) = Zj:1

ijj isn.n.d. for all p e 2. Note that W
. . . k . .
is a linear mapping from R to M . Consider the linear model

M, defined in Chapter 1I, with the covariance structure

‘\fQ = (W(p):p ¢ Q) = W(@).

Under the assumption that £ is contained in a polyhedral convex
set A, (see below), such that W(p) isn.n.d. for all pe A

we will characterize @(ﬂf ). The generality of this chapter and the

Q

following one lies in the fact that we do not assume that [GUOQ] has a

polyhedral structure.

Definition (5.1. 1). For a subset A in Rk9 A is a non-

empty finitely generated convex set if and only if there exist vectors

ags a2 s (m >1), suchthat for a fixed integer h, 0 < h < m,
m h .
A={="_"Na:=,__\ =1,\ >0,j=1,2,...,m}.
=1y El i~

Note that if h=m then A is bounded andif h =0 then A is
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a cone. Theorem (19.1) in Rockafellar (1970) implies that A is a
non-empty finitely generated convex set if and only if A 1is a non-
empty polyhedral convex set, i.e., if and only if A is the non-
empty intersection of a finite number of closed half-spaces. Through-
out, the qualifier "non-empty" will be dropped when dealing with
non-empty polyhedral convex sets.

k
Now let A be a polyhedral convex setin R, i.e., there

exist €. ,...,8 and 0 < h< m suchthat
1 m - -
m h
A={=Z" Ne.:Z._ N, =1,\,>0,j=1,...,m}
=1l 53 iEl g i~
Then

™ Ne.:\, >0}

Proposition (5.1.2). [A] ={=." X\,
=gy

Pf. Notice that {er:l N.e. .\, > 0} = B 1is a convex cone con-

15
taining A. Theorem (19.1) in Rockafellar (1970) says that B is
closed. Hence [A] (_ B, since [A] is the smallest closed convex

cone containing A. To prove the other containment let

o >0, if v.=...=v. =0 then v, =...=v__ =0}

D={Zj:1 vieyv; 20, . b : -

and apply (3. 3.2) together with the definition of A to obtain

A%CC Dfcuic>0,ue A} = {zgfl(cxj)ej:szo,zjzlxj =1,c>0} DD.

Proposition (3. 3.3) says that [A] = ASCC. since A°CC D) D, it
P Yy
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suffices to show that D ) B. Let be B, then

b=z Ne., A2 0. If A >0 for any 1<j<h, then be.D(C D.

=1 17
It remains to consider the case when )\1 =,..= )\h =0, 1i.e.,
b = EI,I:' Ne., A\,>0. Let b = El,rr_l Vv, e. where

j=htl 575 - n =1 jnj

m

Then {bn} is a sequence in D such that Ilim bn = Ej=h+1 )\jej = b,

n—"®

i.e., be _]5 []
Suppose W(p) is n.n.d. for all pe A and let

¥ =wa) = E&™ . sh
A =1 R

Then

Proposition (5.1.3). [“\fA] = {=

Pf. Note that LK is isomorphic to Rn and apply (5.1.2). [l

Proposition (5. 1.4). [ ﬂfA] = ﬂf[A] .

Pf. By definition ﬂ\f[ = W([A]). Apply (5.1.2) together with

Al

|
the definition of W  to obtain W([A]) = {21;:11 )\jW(ej) : )\j >0}. Then

apply (5.1.3). ]




50

5.2. The Main Result

Proposition (5.2.1). Let 9f and °\S>2 be two sets of

1

covariance matrices such that sp ‘U’l = sp ‘U’Z. Then a'Va =b'Vb

for all V e ‘\fl if and only if a'Va =b'Vb for all V e ‘\PZ.

Pf. Assume that a'Va =b'Vb for all V e ‘U’l and let

13

. be a spanning set of sp oLfl with Vj e U

j=1,2,...,k. Then a“‘Vja:bVij for all j=1,2,...,k which

1
implies that ozja'Vja = ozjb r'ij for all ozj e R*. Hence
1 wa 1 l
a'(=. . aV,))a=bl'(Z aV.)b for all ozj e R,

i.e., a'Va=b'Vb for all V e sp 6\191. Then a'Va =b'Vb for all
Ve q\fa since C\fz C sp o\fz = sp GU;I' The opposite implication

follows similarly. [

Lemma (5.2.2). Let ALfl and VZ be such that

V Caf, Csp¥. Then (A C QAL

Pf. Let b'Ye CQ(‘\_PI). By the completeness of @(‘\S’Z)

there exists a'Y e (‘\fz) such that a'Va < b'Vb for all V e aLfZ.

Since cUol C ckfz we conclude that a'Y is as good as b'Y w.r.t.

o\fl. But b”YeCQ(Q_f’l) and so by (3.2.12) we have a'Va =b'Vb

for all V ¢ aLfl. Note that sp q‘fl = sp aboz' Hence (5.2.1) implies
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that a'Va =b'Vb for all V e 4F..

5 Since a'Y e@(‘\fz), (3.2.13)

implies that b'Y ¢ QAL). [

Proposition (5.2.3). Let ‘U’l and ﬂfz be as in (5.2.2).
Furthermore, suppose [‘\fZ] = {Z;(:l ijj : pj >0} such that

R 1""’Vk):R° If a'Yy and b'Y are bothin CQ(D\'PI)

such that a'Va =b'Vb for all Ve‘\fl, then a =Db.

Pf. By (5.2.2), Q(QG)C@(VZ) which implies that a'Y
and b'Y are both in a(‘\fz). Theorem (4.2.6) says that a'Y
and b'Y are both in . aV.,...,2. a,V.) where
i @ jedy 3] jedg 3

on. >0 for all j and

By (3.2.5) we have a =b +{ with

fe NXHANV ). ANV, ) = {oy . [

. k
Assume there exists a polyhedral convex set A in R such
that @ C A and W(p) isn.n.d. for all pe A. By intersecting
A  with sp 2 if necessary, we can suppose A C spf. Let i

be the set of all such A's. Then

Theorem (5.2.4). Q(4F,) = ~Acd Qas,) -
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Pf. Since @ CAC sp, w®)C w(a) C W(sp ). By the
linearlity of W we have W(sp ) = sp W(Q). Thus we can apply
(5.2.2) to conclude Q ("\fﬂ) C N E:i,a( c\fA). Now let
b'Y e K\AE:LO? (‘\fA). By the completeness of (X (ﬂfﬂ), there

exists a'vy ¢ QAP

Q) such that a'W(p)a < b'W(p)b for all p e.

Choose A in i and let Al ={pe Ara'W(pla < b'Wi(p)b}.
Notice that @ C Al (_ A. Since A is a polyhedral convex set,
then A = ~° .» where . is a closed half-space
j=1 HJ HJ

k .

(j =1,2, ..,c). Note that )-(c+l ={pe R :a'"W(pla < b'W(p)b} is
losed half H A= AT with

a close -space. ence 1 r\j:l i wi

Q C Al C AC spf. Hence Al e_i/ is such that

a'W(p)a < b'W(p)b forall peA and b'Y ¢ Q(QfA ). By

1

(3.2.12) we have a'Wi(pla = b'W(p)b for all p e Al' Since © Al"’

1

then a'W(p)a = b'W(p)b for all pe . Since a'Y e @(a\fﬂ)s

(3.2.13) implies that b'Y ¢ Q). i-e.,

A g QAR C QUG- T

Recall that for any polyhedral convex set A, defined as in

Section 5.1, we have

N.W(e.):\.>0},

A I R R

[‘U’]%z?_}

which has a polyhedral structure. Also, &(@A) = @([VA])-

Hence Q( °U’A) can be characterized using (4. 5. 1).
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VI. A UNION RESULT

6.1. Introduction and Notation

k
For the purpose of this chapter let W(p) = Zj=l ijj be n.n.d
k
for all p e Q where £ is a subset of R and Sl’ ce ’Sk are
linearly independent n xn real matrices. By (3.3.16), W(p) is

n.n.d. for all p € [Q]. In the linear model ¥, defined in Chapter

II, let

W, ={Wip):p e} =w@).

By the results of Section 3. 3 we have 9\53[9] = [‘U’Q] and

ﬂS>[Q]0 = [o\PQ]O. Throughout this chapter @(Q) and GZ([Q]) will

be used to represent (R (‘LPQ) and GZ(CUD[Q]) = CQ([%DQ]) respec-
tively. Hence Q)= Qua]).
Now let A be a polyhedral convex set defined as in (5.1.1).

k
Let e .,em be vectors in R and 0 < h<m be such that

1

Ne,:Z._ N\, = 1,xj30,j: l,...,m},

H
—
M
>’

[0}
>’
\
o

-

and recall (5.1.2) which says that [A] Again

by the results of Section 5.1 we have

Il
—,—
N
3
>
=
'('D
N
>
I
—
>
\%
L
L
1
—
3
gt

and
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which has a polyhedral structure.

6.2. The Main Result

In this section we will assume that there exists € [Q] such

Po

that R(X9W(p0)) = Rm° We will also assume that there exists a poly-

hedral convex set Ql such that Q C Ql with W(p) n.n.d for

all p e By intersecting £ with sp if necessary, we can

I 1

suppose Ql (C sp2. Let {AN} be an increasing sequence of poly-

hedral convex sets such that e A AN CelC sp AN and

po 19

[2]° C Uy Note that "U’[Q]o = W(2]%) C U W), Set

Vo =wa) = {wie)ipe AL}
Hence

WN C %N*'l C o\f[Q] 5 for all N.

Proposition (6.2.1). CQ(AN) C Q) for all N.

Pf. Apply Lemma (5.2.2) and the fact that

Q@) = Qil). 0

Let a'yY e CQ and for each N define

KN ={b e atN(X ) :b'W(p)b < a'W(p)a for all p e AN}.
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i A A
Hence, for all N, we have KN-I—l C KN since N C N+1’

i.e., {KN} is a decreasing sequence.

Proposition (6.2.2). KN is compact for all N =1,2,..

e A and

Pf. Recall that {AN} is constructed such that Py N

R(X, W(po)) = rR". Apply the proof of Lemma 3.2 in Olsen, Seely and
Birkes (1976) with MM = N(X") and h}: E(X“)r@(W(po)) = {0}

to get the result. [|

R
Proposition (6.2.3). Q&) C UNQ(AN) .

Pf. Let a'Y « Q). By the completeness of @(AN) there

exists b! Y e Q(AN) such that b! W(p)b

< a' 1
N N NS a'W(p)a for al

p € AN. Note that b € Ko C K,. Thus {bN} is an infinite

N
sequence in the compact set Kl. Then there exists a subsequence
- : af
{bN,} such that bN. bO for some bO € Kl Let V ¢ [Q]o
J J
be artibrary but fixed. Note V e uNW(AN) and {W(AN)} is an

increasing sequence. Then for sufficiently large Nj, V e W(AN )
J

and so we have b! Vb _ < a'Va which implies that

N N,
' , o v s
< g . . . ’
bOVbO < aVa. Since V is arbitrary in [2]o then

! < 1 .
bOVbO < aVa forall Ve OLF[Q]O Thus

¥ o C{V:b'Vb

(2] 0'"0 < a'Va} which is closed. Hence by (3.3.12),

(3.3.15) and Eggleston (1963), p. 11, we have
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1= T° =7

Q 210 C {V:b(')VbO < a'va},

i.e., b(')VbO < a'Va for all Ve okf[ﬂ] By (3.2.12) we have

b(')VbO = a'Va for all V e CLP[Q] since a'¥Y e @(Q). Proposition

(3.2.13) says that bE)Y € &(Q). It suffices to show that a = bO.

Let Ql be a polyhedral convex set such that £ C Ql C spQ

with W(p) n.n.d. for all pe Ql., Then [91] has a polyhedral

structure of the form {21;31 )\jej :\. >0} and
= =

Py € Al Cle]CIe,] is such that R(X, W(p,)) = R™. Hence

1 Po

B(X,W(el),...,W(e )) = R(X, W(p ))=er1 since 21:12 Wi(e.) is a
m = 0 j=1 J

maximal element in CUQ[Q ] which contains ‘Lf[A 1" Apply (5. 2. 3)
1

1
with a\fl = GUD[Q] and °U’2 = GLP[Q

] to get the result. ]
1

Proposition (6.2. 4). 'Q;Ioz(AN) C Q).

Pf. By (6.2.1), @(AN)C@(Q) for all N. Hence

“N &(AN) C Q@) C Q@) and the result follows. []

Theorem (6.2.5). (R(Q) = Oy Q) -

Pf. Apply (6.2.3) and (6.2.4). [

Recall again that &?[ has a polyhedral structure and hence

AN]

@(AN) can be characterized using (4. 2. 8).
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VII. AN APPLICATION TO THE TWO VARIANCE
COMPONENT PROBLEM

7.1. Introduction

In this chapter we let Y bean nx 1 random vector having a
multivariate normal distribution with zero mean and a covariance
matrix Ve = 611 + GZV where V is aknown nxn n.n.d.

matrix and 6 = (61, 62)' is a vector of unknown parameters called

the variance components with 61 >0 and 62 > 0. Our interest is

to characterize the class (R of admissible estimators of a given
linear parametric function of the form \'6 when attention is

restricted to the class AL of all quadratic unbiased estimators.

0
Note that if Y has a non-zero vector M , then a reduction via
invariance will lead to a model with zero mean (see Olsen, Seely and
Birkes, 1976).

Recently, Olsen, Seely and Birkes (1976) reduced MO via
sufficiency to a minimal complete class which allowed them to char-
acterize (A using linear model techniques. In this chapter we will
consider this problem directly through UO” The approach we adopt
will follow the general framework established in Seely (1970a), Seely

(1970b) and Seely and Zyskind (1971).

Now let —J be the vector space of all n xn real symmetric

matrices and let the associated inner product be the trace inner
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product defined by (A,B) = tr(AB) for all A,B e —J Hence

we have

U, = (A, YY) EMB, YY) =)', A ).

+1)/2
Remark (7.1.1). Notice that —J is isomorphic to Rn(n )

and that ﬂ}o may be expressed in the form

‘UO = {a'U:E(a'U) = \'8, a ¢ Rn(n+l)/2}

b

2
2 .Y Y )'. Hence con-

ith = y e s e oo s
wi U (Yl n 172 1 n n-1"n

sidering quadratic unbiased estimators of the form (A, YY " = Y'AY,
A e —J, is equivalent to considering lue's of the form a'l,

+1)/2
ae Rn(n )/ ,  when estimating a parametric function of the form

\'@. Thus the results of Chapters III, IV, V and VI can be applied to

the problem of estimating the variance components.

7.2. The Linear Model

Using the normality of Y and the results of Seely (1970a),
Seely (1970b) and Seely and Zyskind (1971) together with the fact that

YY' 1is a random matrix in ‘J, we have for arbitrary A,B e é

E(Y'AY) = E(A, YY" = (A,E(YY") = (A, V_),

0

and
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Cov[Y'AY,Y™BY] = Covl(Aa, YY", (B,YY")] = 2(A3V9BV9)

NN

ZGT(A,B) + 29192(A,VB+BV) + 20 (A, VBV)

2
20 (A,PlB) + 49192(A,P B) + 20

1 2 (A9r B)9

3

[SSE NS

where I , T', and T are the linear operators on J defined by

1’ "2 3

rlB = B, PZB = (1/2)(VB+BV), F3B = VBV, for all B GJ.

', and T are n.n.d. linear operators on ‘J and

Note that Pl, 2 3

Fl is a p-d. linear operator. Hence we have

2 2
1y Ty = = + + .
E(YY') 911 + GZV, Cov(YY ') Ze 291P1 49192F2 2921“3
Define Z =YY' and let H be the linear transformation from
2 2
R to J defined by Ha = ozll + a2V, for all a = (ozl,ozz)“ e R .
Then we have the model
“ml 1E(2) = H8, Cov(Z) = I,
|
|
where 6. >0 and ©6_ > 0. More precisely (6,=.) 1is an element

1 2 6

of the parameter space ® which has the form

2 2
: >
26T 426,60, +0°T5)]: 0, >0,0, >0},

®={(6,,86 ,+0,

i
1 2)2

2
and 1s containedin R x ‘Y\ where (Y] is the set of all n.n.d
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linear operators on —J Hence we have a situation where the
possible © vectors do not form an affine set and where the mean

vector and the covariance structure have a known functional relation-

ship. Let D={0:(8,Z )¢« ® for some Ze} and note that

0
2
sp D =R . Hence, by Remark (7.1.1) and by Olsen, Seely and Birkes

(1976), the linear model techniques can be applied to model ‘YYII.

Thus concerning admissibility we may act like we have the linear

model
“mzzE(Z) = HO, Cov(Z)e ‘\j’Q ,
2 . .
where B© e R, H is defined as before and
= 14 ! Q 3
U, la T e, T ta, T o (@), @y, a)" € 2}
with

Q = {2(6?,26 o ,62

' > > .
1850 85)':8) >0,8, 20}

3 .
Now let A Dbe the triangle in R with extreme points

e. =(1,0,0)", e

] =(0,1,0)' and e, =(0,0,1)" and let us regard

2 3

the line joining e and e as the base of the triangle. Let £

1 3 0

be the convex setin A whose boundary consists of the curve
-2 2
{(1+p) “[1,2p,p ]HIPEO} and the base of the triangle. Let I' be

. 3 .
the linear operator from R to the vector space of all linear

operators from —J to —J defined by
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3
(7.2.1) T(8) 611"1 621"2+63l"3 l"6 for all 6 ¢ R

By Olsen, Seely and Birkes (1976),

[CU)Q]={011"6:012096€QO}.

By (3.3.4), [2, ] ={as:a>0, 6}, andso
[4F,]
[A5,]

t

r(a ) = Vg ]

[QL,P ] Hence
QO

which is closed. Apply (3.3.10) to get

1

7.2.2) QO=Q@e)-= Qe,) -

Thus, concerning admissibility, we can always talk about QO

instead of 2. Notice also that l"6 is p.d. for all

6« Ql :QO\{e3},

7.3. The Admissible Class (Q

In this section we will characterize the class Q  of all
admissible quadratic unbiased estimators of \'6. We will continue

using the notion of the sets @r =®,(V . ,Vr) defined in Chapter

h
III with quadratic unbiased estimators and their respective variances

in mind. By Proposition 3.6 in Olsen, Seely and Birkes (1976) we

conclude that

ac Uaeszo@(ra) - Uaeszl@(ra)"@(rs) ‘
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By (3. 2.8), Vs QlCB(1“6) C @ since F6 is p.d. for all

6 ¢ Ql. Hence

731y Q=0 Ql@(r6)u[Q ~AR(r,)]

In order to investigate OZ ) (B(l“?’)g we use the fact that
3
€ (C A. This implies that @ ]C [a]l={=7 , ae,:a.>0}, and so
0 0 izl i1 i~
(48]

r(e O]) C r(al = {Zf: al, ‘a, > 0}. We use the notation

!

(2] = F([A]). Since sp[Q ] = s,p[A] = R3, then we use the

linearity of I to obtain

spl U] = SpF([QO]) = T(spl@]) = T(spla]) = spr(la]) = sp cU)[A] ~

Hence applying (5.5.2) we have

@.3.2) Q@ =QdY,) CQ Y,y -

) N 3
Since ‘U)[A] = {=]

=1 ozil“i : oziz 0} has a polyhedral structure with

R(H) + 23 R(Fi) = 1_1(1“1) = ‘J, the results of Chapter IV can be

i=1 =

applied to (QP[A]).

) 3
Let i, be the set of all polyhedral convex sets A in R

such that QO CA and spA = R3 and let :L; be the subset of

A e i, such that A(C A. Note that A e j %. By (5.2.4),

@zmAe‘i/&(qu)' Given Aei_,, let A% = A~A. Hence

A% ¢ j;, Notice that €, C A% (C A and
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spA=spQ :R3:spA>:<. So by (5. 2. 2), C?(‘U'A;,:)CCQ(‘U’A)«

Thus we see

(733) @: K\A*Ei’*a(wA*) )

e

We will begin by proving that any A% e f % should have e €,

and ae, t (l-a)

> for some 0< a< 1, as three of its extreme

€y
points. Since the base of A 1is in the boundary of QO, it is clear

from a picture of A that any A% e f % must have ) and e,

as two of its extreme points. To prove that oze2 + (l—oz)e3 is an
extreme point of A%, for some 0 < a < 1, we will prove that

the line connecting e, and e, is the tangent of QO at e,

Recall that the curve {(1+p)—2[19 2p, pz]ﬂ :p >0} =C 1is inthe

boundary of £ The projection of A from the (x,y,z) space to

o
the (x,y) plane preserves the linear structure of A. In particular,

tangent lines are preserved. The projection of C is

-2
{(1+p) “[1,2p]":p >0} and the points e, ,, e, and e, are pro-

17 72
jected to the points (1,0)', (0,1)' and (0,0)' respectively. Thus

we need to prove that the line joining (0, 1)' and (0,0)' is the

tangent of the projection of QO on R2 at (0,0)'. For any given

p>0, let x = (ltp) and y = 2p(ltp) ~. Hence vy = 2px with

p=(1/Nx) -1 which implies that y = 2(Nx -x). The derivative of

y w.r.t. x 1is givenby (dy/dx) = (1/Nx) - 2 which tends to
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infinity as x tends to zero. Thus the line connecting (0,1)' and

2
(0, 0)' 1is the tangent of the projection of 520 on R~ at (0,0)".
Thus we have proved the following:
Proposition (7.3.4). If % € %, then el, e3 and
ae, + (l-oz)e3, for some 0 < a < 1, form a subset of its extreme
points.

Now, for any A% ¢ i;, let 4f o T T'(A%) with T° as

k)

defined in (7.2.1). By (5.1.3), [ﬂf ] has a polyhedral structure.

Ak
By (7.3.4) and (7.2.1), I‘l, P3 and aPZ + (l-a)P3 are in the gen-
erating set of [‘U’ >,{] with R(H) + I_{(I‘l) = R(T «é Hence,

for all * € %, the results of Chapter IV can be applied to

Q).

Proposition (7.3.5). (B(I‘3,I‘2,I‘l) CCQ .

Pf. Pick any A% ¢ i and recall that the results of Chapter
IV are applicable to Q ([4af >,<]). By (4. 2.8) we have
@(r3,ar2+(1 -a)l, T ) CQI¥,,)), 0<a <1 By(3.2.11) and

(4.3.1) we have

B(T,, el H{1-a)T,, T ) = (B(I‘3,01I“23I“1) =@, r,,T)).

Now apply (7.3.3). []




AProposition (4.2.2) implies that CQ(‘{P[A ])r\ @(F3, FZ) C @(1“39 FZF ).

65
y (7.3.2) we have @f'\ (B(l“g, FZ) C @(%[A ])F\Q(ry rZ)"

1

Hence we conclude that

QABr,, T, CAAQRT, T, ) = @, r, T,

using (7.3.5). Notice that @(1‘3 F F C@r\ﬁf F) Thus we

have proved the following:

Proposition (7.3.6). Q m@(ryrz) = @(ryrzsrl) .

Proposition (7.3.7).

Q ~QR(T SEQl@r T U5 T, T)) -
-Pf. Note that for any 6 ¢ Ql we have
QI, T =0~Qr,.T)CQA RT,)

since F6 is p.d. Also, by (7.3.6)

@, r,,T) = AR, T, C @ ~Q(r

Hence we have

Vg . Q@r rou®r,.r,. 1) CA~RT

To prove the other containment we use (7.3.2) to obtain
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QA QT, C A

A])m @(I‘3). By (4.2.2) we conclude that

QW , P BT, C o

+ .
,>0 (R (ry e T *e,Ty)

not both zero

ozl,oz

Note that

Ya,a,>0 B0 e I e, Ty
not both zero

= + .
@(r3,rl)u®(r3,r2)uualsa2>O@(r3,alrl a,T,)

Applying (4.3.1) and (3.2.11) we have

_I..
uozl, @, > O(B(ry alrl aZI‘Z)

2 -1
_ + 4
Vas oB Ty Ttely) = vy s o (s Tytely e Ly

-2 2 -1
(I‘1+ozI‘2+oz 4 r3))

Vs o5 (1Fal2)

C Vg Ql(B(I‘3,I‘6) .

This implies that

®(ry, e 0 +e,T,) C ooy Ql®(r3,r6>u®(r3,r2>.

W/
a.,a

1’72
not both zero

>0

Thus we have

Q (9F

])mCB(r3) Cveiq l(}(r3, L)o@, Ip) s

[a
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which implies that

A AR, C vy, g 1®<r32r6>u[@ ~Q(T,. T,

[ 3

Apply (7.3.6) to obtain

Theorem (7. 3. 8). @ - Ve q [@(Fa)u®(F3,F6)] U ®(r3’r2”rl)°

1

Pf. By (7.3.1) we have O=u669 @)(l‘é)u[a m@(r3)]«

1

Apply (7.3.7). ]

To calculate the admissible estimators in (Br’ r > 1, apply
(4.4.1) or (4.4.3) with the trace inner product in mind.

In 1976, Olsen, Seely and Birkes reduced the problem of
quadratic unbiased estimation of \'6 to considering linear combina-

tions of the minimal sufficient statistics T . Tm where m 1is

1’

the number of the distinct eigenvalues of V and T, = Y“EkY /rkg

k=1,...,m, with Y defined in Section 1, r the multiplicity

k

the k:c'h distinct eigenvalue of V, and E  the ortho-

| of A\ K

k?
gonal projection operator on the subspace associated with the eigen-

vector of )\k. Then, for m > 2, they characterized the admis -

sible class (} using the linear model
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E(T) =GB, Cov(T) ¢4f = {yD iy >0, 69}

whe re
1 1 1
Gﬂ —
)\1 )\2 )\m_
T=(T_,...,T ), @ as defined in Section 2 and D_ = Zi 6.D,
1 m 0 ) i=l i
i-1 i-1
with D, = diag{?xl v ..., A /r }, 1=1,2,3. Note that
i 1 1 m m
ﬁ(G")mﬁ(Dé) = {0}. They proved that
Q=0u, , B
0
In our characterization of the admissible class GZ , Wwe con-

sidered the problem of the admissible quadratic unbiased estimators
of \'@ directly through MOS the class of all quadratic unbiased
estimators of \'8. We were able to use this direct approach because

our main results in Chapters III, IV and V do not require that

E(H')r\_l\_l(l“é) = {0} for all §e

0°
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