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ADMISSIBILITY IN LINEAR MODELS

I. INTRODUCTION

In this thesis consideration is given to estimating linear

parametric functions in the linear model

Y xp e,

where Y is an n x 1 random vector having expectation xp and

covariance matrix in a set V of covariance matrices with X a

known n x p matrix and p a vector of p unknown parameters.

Under varying assumptions about the structure of `if , the problem

of choosing "good" estimators of a given estimable linear parametric

function is investigated. The available class of estimators is

restricted to those estimators that are unbiased and linear in Y.

The estimation problem described above is widely considered in

the literature. An extensive presentation of the early work in the gen-

eral theory of linear models up to the year 1935 is contained in a

review article by Seal (1967). In this article, Seal mentioned that the

classical approach to this estimation problem is the principle of least

squares introduced by Legendre in 1805. This principle says that the

least squares estimator of is the vector p that minimizes

the sum of squares of the residuals. He also noted that it was Gauss
A

in 1823 who proved that mp is the blue (best linear unbiased



2

estimator) of X 'f3 when X has full column rank and J = {pI o p>0}.

The extension of Gauss's Theorem to = {pV p > 0}, where V

is a known p. d. (positive definite) matrix, and the first formulation

of the problem in terms of matrices were published by Aitken (1935,

1945). In order to treat X not full column rank, Bose (1944) intro-

duced the concept of an estimable linear parametric function.

Goldman and Zelen (1964) extended Gauss's Theorem to linear models

with constraints on the parameters and with singular covariance

matrices. Zyskind (1967) characterized blue's as those linear esti-

mators b'Y for which Vb is in the range of X.

Zyskind (1967), Rao (1967) and Kruskal (1968) obtained condi-

tions under which least squares estimators and blue's coincide.

Thomas (1968) studied the question of when blue's under different

covariance matrices coincide. It was recognized by Seely and

Zyskind (1971) that this question is the same as asking when blue's

exist. Using the coordinate-free approach introduced by Kruskal

(1961), Seely (1970b) noted that linear model theory can be applied to

quadratic unbiased estimation of the variance components. An appli-

cation of these results to the one-way random model implies that

blue's for the mean or the variance components exist if and only if

the design is balanced.

In cases when blue's do not exist it is not clear which lue

(linear unbiased estimator) to use. Olsen, Seely and Birkes (1976)
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characterized the minimal complete class of all admissible lue's of

M13. Under a general covariance structure VI , they proved that the

class of all admissible lue's is contained in the class of all lue's that

are best at some non-zero V in [V], the smallest closed convex

cone containing V. They also proved that equality holds if XX° + V

is p. d. for all non-zero V E [V]. LaMotte (1977) dealt with the

same problem.

In this thesis we will characterize the class of all admissible

lue's of MP when [ip] = {p iwi+ . . + pkWk pi > 0) where

W1, Wk are n. n. d. (non-negative definite) matrices. This

allows us to consider ANOVA models which cannot be treated by the

results of Olsen, Seely and Birkes (1976). We will also extend these

results to the case when V C
0

C spk.f and [vo] has a poly-

hedral structure. These results will lead to a direct treatment of the

two-variance component problem considered in Olsen, Seely and

Birkes (1976).

The general linear model assumed throughout this thesis

together with some basic definitions and notation are introduced in

Chapter II.

Some general facts concerning admissibility are established in

Chapter III. These facts are used extensively throughout the remain-

ing chapters.
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The case when cir is such that [V] pi > 0} is

considered in Chapter IV. The results of this chapter cover all

fixed, mixed and random ANOVA models.

Generalizations of the results of Chapter IV are given in

Chapters V and VI. This allows us, in Chapter VII, to characterize

the class of all admissible quadratic unbiased estimators of a linear

combination of the variance components in a two-component model.



II. MODEL, DEFINITIONS AND NOTATION

2.1. Model and Definitions

Consider the general linear model

:E(Y) = xp, Cov(Y) E Cti)

where Y is an n x 1 random vector, X a known n x p

matrix, P a vector of p unknown parameters and a given

set of covariance matrices. A parametric function of the form VP

is said to be estimable if and only if it has a lue, i.e. , if and only if

Xla for some a. Throughout this thesis let X be a fixed

vector in the range of X' and let = {a'Y :Xla = X} be the set

5

of all lue's of k'p. We are concerned with characterizing the class

02 ( ) of all admissible lue's of VP when Ai) assumes a given

structure. The elements of
0

will be compared according to

their possible variances w. r. t. (with respect to) V . Let b'Y and

h'Y be both in 30. We say that b'Y is as good as h'Y w. r. t.

if and only if b'Vb < hVh for all V E 1f ; b'Y is better than

h'Y w. r. t. if and only if b'Vb < h'Vh for all V E V and

b'Vb < h`Vh for some V E V. Also, we say that b'Y is admis-

sible w. r. t. cLP if and only if no element in

b'Y w. r.t. V.

is better than



For a subset D of a
0,

we say that D is a complete

class if and only if for every lue b'Y in

6

but not in D there

exists a lue in D which is better than b!Y; D is an essentially

complete class if and only if for every lue b'Y in (33
0

there exists

a lue in D which is as good as biY; D is minimal (essentially)

complete if and only if D is (essentially) complete and for any bfY

in D the set D \ {b'Y} is not (essentially) complete.

Finally, for a set B in a finite dimensional vector space, we

say that B is a cone if and only if b E B implies that ab E B

for all a> 0; B is a convex cone if and only if b
1,

,bm E B

implies that Eiaibi E B for all ai > 0. Also, we say that B is a

closed half-space if and only if B <b, c> < a} where <-, ->

is an inner product.

2. 2. Notation

Concerning notation, Rn is used to denote an n-dimensional

Euclidean space. For a linear transformation or a matrix A, R(A),

N(A), r(A), n(A), All and tr(A) denote the range, null space,

rank, nullity, determinant and trace of A respectively. For

vectors a, b E Rn, is used to denote the usual inner product

with a as the transpose for a. For a set B C Rn, B is used

to denote the orthogonal complement, w. r. t. the usual inner product,

of B. For a function W and a set D, W(D), W -1
(D) and Dc



denote the image, the inverse image and the set complement of D

respectively. For a set C in a finite dimensional vector space,

C °, [c] and sp C denote the closure of C, the relative

7

interior of C, the smallest closed convex cone containing C,

i.e., the intersection of all closed convex cones containing C, and

the linear span of C respectively. Finally it is assumed throughout

that all vector spaces are real finite dimensional vector spaces.
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III. PRELIMINARY FACTS

In this chapter some general facts concerning a (0L,f ) will be

established. These facts are needed to establish the main results in

the remaining chapters. No assumption about the structure of is

required.

3.1. A MinimakEssfr14.Class and a Reformulated
Model Having a po Q.Covariance Matrix

a E

L e t
0

= {a t X 'a = X}° Notice that
0

if and only if

Olsen, Seely and Birkes (1976) proved that their definitions

of Has good as", "better than." and admissible" in

same w. r° t° as w. r. t.

conclude that

(3.1.1) 02 (V) 0 ([V]).

[V].

CO are the

These two remarks enable us to

This fact will be used extensively to establish the results we need.

Depending on which is more convenient, a (v), ([f]) or a
will be used to denote the class of all admissible lue's of x.°P.

Now let VM be a maximal element in [11] (see LaMotte,

1977), Thus VM is such that R(V) C R(VM) for all V E rIft

Note that N(VM) C N(V) for all V E [il]. Let a = R(X) + R(VM)

and define CP6L= ICY :CY E 2 with tEa} and

= {f :f E Q }. Let a
0

be the class of all admissible lue's of
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the parametric function zero. Then,

Proposition (3. 1. 2). 02 z (3.
0

Pf. The estimator zero is a lue of the parametric function zero

and Var(01V) = 0 for all V E [V] and so a'Y E 020 if and only

if X 'a = 0 and aV a = V ar(a'Y = 0 for all V E [11], i. e., if

and only if a E N(X') and a E N(V) for all V E [V], i.e., if

and only if a E N(X I)rmN(V ) =

Proposition (3. 1. 3). a = °a_ +
010

Pf. Let E . Since b E Rn = Q ®Q , then there

exist t E and f E Q, such that b = t + f. Then

X = X = X't + X = X't and b = t'Vt + 2tIVf + f'Vf = t'Vt for

all V E [V], since X = 0 and Vf = 0 for all V E [V]. Thus

t'Y E Q (see (3. 2. 13)). Hence b'Y = + f'Y with t'Y E 02a

and f'Y E i. e.

Now, let f'Y E al
0

and t'Y E , i.e. , f'Y is such that

f E (iL and t'Y E a with t E . Let b = t + f. Then

b'Y = t'Y + f'Y is such that X'b = X't = X, and b'Vb = t'Vt for

all V E [V] with t'Y E 02 which implies that b'Y E , i.e.,
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(-+0 02

Proposition (3. 1.4). ais essentially complete.

Pf. Let a.°Y E

10

Since 02 is complete (see Olsen, Seely

and Birkes, 1976), there exists WY E a such that b'Y is as

good as a°Y. By (3.1.3), there exists t E and f E Q. such

that b'Y = t°Y .CY with CY E
lr-

and f E a0. Then t'Y

is as good as a'Y since Var(t'Y Var(blY for all

V E [V], i.e., 029... is essentially complete.

Let q = dim a , let H be an n x q matrix such that its

columns form a basis for a and consider the linear model

Viz :E(z) = GP Cov(Z) E U

with Z = H°Y, G = H and = {H 'VH :V E k.f }. Then

Proposition (3.1.5). X 'p is estimable under if and

only if it is estimable under
61(111Z

Pf. It suffices to show that R(X °) = R(G'). Note that

R(G') = R(X °H) C R(X °). Also, r(G °) = r(G) = r(11°X) = r(X)

dim[R(X),r--N(H°)]. Since N(H°) = Q and R(X) C

that R(X)r--N(H°) = {0} so that r(G) = r(X). II

it follows



Proposition (3. 1. 6) R(G, H°VmH) = Rq.

Pf. Let L = (X,V
M

) and note that R(L) = a = R(H). Then

R(G,H°V M
H) = R(H°X, WV

M
) = R(H°L) = R(H°H) = R(14°) = Rq, since

H° is q x n and r(1-12) = r(H) = q. 0

Now let az be the class of all admissible lue's of X°13

under 511 z Then

and

Proposition (3.1.7). a -= 02.
(A."' z

Pf. Let 13°Z (=b°H°Y) be in Then X. = G = X °Hb

Z such that N. = G °a with a°Z better than b

11

w. r t. Let t = Hb, so that CY = b °Z, and assume that

0/a Thus t E R(H) = tic is such that E(CY) = and

t'Y which implies that CY . By the completeness of a ,

there exists h°Y E CQ such that h°Vh < CVt for all V E

and 11°Vh < CVt for some V E V. Note that h°Y E C Go and

01Q is essentially complete. Then there exists a'Y E Oa such

that arY is as good as h°Y w. r. t. eti with a = He for some

c. Hence aVa < eVt for all V E CO and aVa < eVt for some

V E S) which implies that c°H°VHc < WHVHb for all V E CkS)

and c°H°VHc < b°H°VHb for some V E CT. Thus eV-
Z

c < b°V
Z

b

for all V z E ctf z and c°V c < b°Vzb for some VZ E C Z' i.e.,

13°Z / az' which is a contradiction. Thus CY E e. ,
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Now let t°Y E a . Thus t = Hb for some b and

t'Y =13°Z. Assume 13°Z jaz. Thus there exists a'Z with

X = Gia = X °Fla such that a°V ZZ Z
a < b°V b for all V

Z
E e..f and

a°V.
Z

a < WV
Z

b for some V
Z

E V'
Z.

Let h = Ha. Then

1-i'Vh < t'Vt for all V E V and h'Vh < tVti ° for some V E C i) ,

i, e. , t°Y i aa which is a contradiction. Hence

aac

Proposition (3.1.8). If there exists a set of covariance

matrices
o

such that ce C (3kr0 C spcti and

[4k.p0
] {Ek p.V.: p. > 0}, then (3, is minimal essentially corn-

i=1 J J J

plete.

Pf. Let a'Y and b °Y be both in 0,
Oc-

such that

a°V a =1:3°Vb for all V E AS . We should prove that a = b. By the

definition of an a and b are both in a . Hence there exist

c and d such that a = He and b = Hd. Consider the linear

model 1111
Z

and notice that c °Z (=alY) and d°Z (=WY) are both

in a Assume there exists a set of covariance matrices t)
Z 0

such that V C C sp f and [`!P ] = {El( p.V.:p. > 01. Hence
0 i=1 J J J

1-11VH C VoH C sp HIalfH and FlIctro]1-1 = {Ek p. > 0},
J J J
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i. e. , c& c °LP c sp cu, and [V1
J

] = {Ek pH.: p. > 0} where
Z 1 Z i=1 J J

H. = H°V.H, ckYz = HVH, V1 = HAr0H and [V1] = HIV0]H
3 3

(see (3. 3.7)). By (3. 1. 6), R(G, H°VmH) = Rq which implies that
k

R(G , H
1

. .. Hk ) = Rq since H °V mH E [ V
Z

] C [ Cif
1

] and E
3. =1

H.

is a maximal element in [V
1

]. Hence 61..? C
1

C sp 41.? and

rkfl = {E. p.H.: p. > 01 where R(G, H1, , Hk) Rq. Apply
3=1 3 J

(5. 2. 3) to conclude that c = d. n

Remark (3. 1. 9). By (3. 1.4) it suffices to consider 029_ when

estimating X°13. Proposition (3.1.7) says that Cii= Otz where

is the class of all admissible lue's of X'13 under the trans-

formed model 'yy) Therefore, estimation problems concerning

model cyn can be translated in terms of model 111 The

is that it satisfies (3. 1. 6) which is useful inadvantage of Yr

Chapter IV.

Now let ekl) + XX° = {V+XX° :V EV }. Then

Proposition (3. 1.10). a (q) (ce+xx°).

Pf. Note that for all a°Y E
0

we have

Var(a°Y1V+XX°) = aVa + a.°X.X°a = Var(a°YIV) +

for all V E Cti) Hence the notions of as good as" and "better than"

w. r. t. cki are the same as w. r. t. etf + xx,.
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Remark (3.1.11). As remarked in (3. 1.9) we can always

change from model 41T to model By. By (3. 1. 10),

= CA
Z

(
Z

+GG °). Note that z + GG ° contains a p. d. matrix

HIV mH + GG °. This gives us the interesting result that we can always

reformulate the estimation problem so that there exists a p. d. covari-

ance matrix, as noted by LaMotte (1977).

3.2. Best lue's and Admissibilit

In this section Zyskind's Theorem (see Zyskind, 1967) will be

used to establish some more general facts concerning admissibility.

A restatement of this theorem is given without proof.

ZyskincVs Theorem. Let E be a n. n. d. matrix. Then for

any matrix A and vector h such that A'h = 5, we have

h°Eh = min 13°Eb if and only if Eh E R(A).
A°b=5

Proposition (3.2.1). Let E be any n. n. d. matrix and A

and F be any matrices such that R(F) = N(A°). Then

R(A, EF) = R(A, E).

Pf. Note that R(A,EF) C R(A, E). It suffices to show

r(A, EF) = r (A, E). But r(A, E) = r (A) + r(E) dim[R(A)rmR(E)].

Also r(A, EF) = r(A) + r(EF) because R(A)rmR(EF) = {0}. (If

Ab = EFd, then 0 = F'Ab = VEFd, so EFd = 0.) Note that
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i.(EF) = r(VE) = r(Z) dim[R(Z)N(F')]

= r(E) - dim[R(E)rmR(A)].

Now let V ... V r be non-zero matrices in etf and define

G3 V
1

= fb E GO: b IV lb = min Vla} ,

a.°Y E
0

(3? (V V 2) b E a
1

b b = min a °V
2

al
a'Y E 3

( V
1

. Vm ) = {13 E 3m-1: b V mb = min alIT a},
atY E

1

where am = a (v ... , Vm) for m = 1,2, ... , r. Note that when-

ever a°Y and blY E la then aIV. a = b IV.b, i = 1, 2, ... , r.
i i

Let F1, ... , Fr be such that It(F1) = .1>J(X°) and

R(Fi) = N(X °)rN(V 1)n. . . rN(Vi_ 1), i = 2, 3, ... r. Then

Proposition (3.2.2). R(X,ViFi,...,VrFr) = R(X,Vi, ...,Vr).

Pf. The result will be proved by induction. For r = 1, the

result is established using (3.2. 1) with A = X, E = V1 and F = F1.

For r > 2, assume the result holds for r-1, i.e., assume

R(X,V1F1, = Lt(X,V1, ...,Vr-1). Thus we have

.R(X V F . . ,V F ,V F ) = R(X,V ,V F ) and the
1 1, r-1 r-1 r r 1 r-1 r r

result holds using (3. 2. 1) with A = (X, V , V r- 1),
E = V r and

F = Fr together with the fact that



N(A°) = N (Xl)rN(V1)r... rN(V r = R F EI
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Proposition (3.2.3). G3r = {WY E a
r -1

:Vrb E R(X,V
1

Vr - )}.

Pf. The result will be proved by induction. For r = 1, use

Zyskind's Theorem with A = X, Z = V1 and b = X. to obtain

Thus,

1
= E

o
:1D'V b min a °V{a}

a°Y E

= {b'Y E
0 1

:V b E Et (X )}

= {b'Y E cso :vivo = 01= fhty:(x,viFi)'b = oo.

For r = 2, the proof will be given for clarification.

= {b'Y E
1

: b 2b = min a IV 2a}
a.°Y E (2)

1

= {10 1Y. E :bivzb = min a'Vza} ,
A'a=5

where A = (X, V 0.'1) and 5 = (X.', O)'. Apply Zyskind's Theorem

with Z = V2 to have

= {WY E (33.1 :V2b E 13.(X,V1F1)}

and the result holds using (3.2.1). Note that



that

Then
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3
2

= {W
1

Y E :F
°2

V
2
b =

= {1D'Y :(X,V1FI,V2F2)% = (X.°, 0, O)'} .

For r > 3, assume the result holds for r-1, i.e. , assume

fb'Y

ar - I E

Thus, we have

:V b E R(X,V ... V .-2 r-1 1 r-2

:FI V b =
r- 1 r -1

= {WY": (X,ViFi, = .

ar = {13°Y E r-1:b°Vrb = min a'V ra}a'Y Ear-1

= {WY E rb = min aVra} ,
A'a= 5

where A = (X,V1F1 ,,Vr-lFr-1) and 5 = 0, , 0)°.

Applying Zyskind's Theorem with E = Vr we have

G3r = {b'Y E E R(X,V1F1,...,Vr_iFr 1)} ,

and the result holds using (3. 2. 2).

Remark (3. 2.4). Note that from the proof of Proposition

(3. 2.3) we have



G3r = {WY: (X V
1
F .. V rF r = (X.r, 0, , O)'} .

Proposition 3.2.5). Let b0 be any vector such that

Then,

= {WY: b E b
0

N(X °)(mN(V
1

. . nN(V r )} .

Pf. Since 13'
0
YEarC (33 0' then X°13 = X if and only if

b E b0 -1-*LT(X'). Remark (3.2.4) implies that

= {WY: (X,V
1
F

1
... V rF r = (X', 0, , O)°}

= {WY:X°b F =r r

= {WY: b E (30+N(X 2))/MN(F ...rmN(FrIVr)}

= {b b E b
0

+ N(X')rN(F'V
1

rN(F °V r )}
1

since b
0

E N((V
1
F

1
,V r F r )'):= N(F'V

1
)n...rN(FIV r . Using

1 r

(3. 2.2) we have

N(X-r)(mN(FirVi)rs,...rmN(FrfVr) = R(X,V1F1,...,VrFr)

= R(X,V1,...,Vr) = N(X')(mN(Vi)rm...rN(Vr).

Proposition (3. 2. 6).

13(X,V1,...,Vr)=Rn.

has only one element if and only if

18

Pf. Proposition (3. 2. 5) implies that WoY is the only element



in if and only if N(X°)nN(Vi)n...nN(Vr) = {0}. El

Corollary (3. 2. 7). If b'y e

then b°Y. is admissible.

19

with R(X V ... V r ) Rn' 1,
Pf. Let a.°Y be another element in a

0
such that a°Y is

better than 13°Y w. r. t. ckf . By the definition of a a°Y E r'
By (3. 2.6), a.°Y = b°Y which is a contradiction. D

Corollary (3. 2. 8). If b E r with V r p. d. , then b'Y

is admissible.

Proposition (3. 2. 9). Ci3 (V 13 2

if R(V r )C

Pf. By (3.2.3) we have lo'Y E

, V ) = (2, (v , v )
r- 1 r 1 r-1

if and only if b E

and Vrb E
1,

,Vr 1) . Thus 13°Y E (3?) if and only if

E -1 since Vrb E R(V r ) C R(X, V1, , V r - 1)
for all

b E Rn.

Proposition (3. 2. 10). If b E . , V r) and if

V is n. n. d. such that R(V) C R(X, V1, , V r), then a°V a = blVb.

Pf. Proposition (3. 2. 9) implies that

a(V
1

... V r' V) a (V1 , V r ), and the result holds by the

definition of ,...,Vr,V). 0



For f=1, . h with h < r, let K. C 1, 2, , r}.
1

Let 31 = K1 and Jm K ,..1n. -1K
i
, m = 2, ... , h.m

Proposition (3. 2.11).

3(E. V.,...,E. V.) =31-ci 3Kh V.,...,E. V.).
Ejl 3

jEJh

Pf. The result will be proved by induction. For h = 1 the

result is obvious since K1 J1. To continue the proof, define
m-1

Lm Km 11=1
K.), m = 2, , h. For h = 2 the proof will be

given for clarification. By (3.2.3) we have

<=>

<=>

13°Y E

E. V,E. V.)
3E.n., 3 JEK2

V.)

and (E. V .)b E R(X, E. V.)
JEK2 3 JEK, 3

biY E 01(E.jEJ
1

and (E. V.)b E R(X,E. V.)jEJ2 JEJi 3

20

since J1 = K1 and K2 = L vJ
2

with L2 C K
1

which implies that

E. V. = E. V. and R(E. ,. V.) C R(E. V.).
JEJi 3 je.ni 3 3E1..2 3 3E.n1

Thus
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Hence
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For h > 3 assume the result holds for h-1, i.e. , assume

<=>

<=>

V.9 v.) am. v.,...,E. v.).jeK
1

j 3Kh-1 3 JEJ1 3 3EJh-1 3

bYY E. V.,...,E. V.)
3 en. 3

1
3 .n.h 3

beY E (E. v., E. .r.. V.)
E.N1. 3 3E11h-1

and

(E. V .)b E R(X, E. V ., . , E. V.)
JEAh E

1
3 E h-1

a (E. V.,...,E. V.
3Ej1 3 3Ejh-1

and

(E V.)b E R(X,E V.,...,
jEjh 3

J 3
1

V.)3,Th-1 3

since Kh = LhvJ h with Lh C h-
K. which implies that

1=1

1

1

R(E. V . ) C R(E, T y . V . °
V . ) fl

31_,h 3 3E/, 3
1"

3
1

311-
1

This last proposition says, for example, that

cv
1
+v

2
+v 3' v

1
+V

3
+V

4
(V

1
+V

2
+V

3
, V 4 ) ,

which might be a useful simplification.

The next two propositions will be used extensively in Chapters

V and VI.
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Proposition (3.2.12). Let a°Y E (33
o

and b'Y E OZ )

If alY is as good as WY w. r. t. 411 , then aVa = b°Vb for

all V in U

Pf. Note that aVa < 13°Vb for all V E 6k1) Assume there

exists V
11

in such that b lb a°V. a. Thus

a °V a < WV lb which implies that b'Y ' CQ (V), contradiction.

Proposition (3.2.13). If a.°Y E and b E CQ (4.9) are

such that aVa -= b°Vb for all V in , then a°Y E 02 Cti

Pf. Assume a:Y. 1 02 (V). Then, by the completeness of 0.

there exists h°Y admissible such that 11°Vh < aVa for all

V E cti) and h°Vh < aVa for some V E . But aVa = b °Vb for

all V E 61..P. Hence h°Y is better than b w. r. t. `k.? i.e.

b / Q (%) which is a contradiction.

3.3. Alternative Representations for rk..Pzb [V ] and N

Consider the linear model `rn introduced in Section 3.1.

Recall that cki = {H °VH :V E tr } and R(V) C R(H) = R(X,Vm)

for all V E [ 4ti ] In this section we will prove that [VZ] 1414tnH

and obtain alternative representations for [V] and rel f j° where

[V]c) is the relative interior of [V]. To begin the proof, let B

be a subset of a real finite dimensional vector space. Then
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Proposition (3.3.1). If B is a convex cone, then B is.

Pf. Since the closure of a convex set is convex (see Eggleston,

1963), it suffices to show that B is a cone. Let b E B and

a > 0. We should prove that ab E B. Since b E B, then

b = lim bn with bn E B for all n. Thus ab = ab E B

n'00 n'00
since abn E B. II

Now, let Bscc be the smallest convex cone containing B,

i.e., the intersection of all convex cones containing B. Then

Proposition (3.3.2). Bscc = a. > 0,b. E B}.
1 1 1 1 1

Pf. It can be verified that the right hand set, G say, is a

convex cone. Note B C G. Let C be any other convex cone con-

taining B. Note that C > c. C }. Now if b E G,1- 1

then b .a.b, with a, > 0 and b. E BCC and hence b E C.1 1

Thus G C C and so G =Bscc
El

Proposition (3. 3. 3). [B] = Bscc

Pf. Note that [B] is a convex cone containing B. Thus,

Bscc

which implies that Bscc C [B] = [B] since [B] is closed. Note
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also that B C Bscc Bscc and B
cs c is a closed convex cone by

(3. 3. 1), so

[B] c Bs"

Proposition (3.3.4). If r is a compact convex set not con-

taining zero, then Er] = {aye a > 0, y E

Pf. Propositions (3. 3. 3) and (3. 3. 2) say that
rscc

cwith r scc = iz.a.y. a. > 0, y. E r}. Let G = {cry:a > 0, y e r}.
1 1 1 1- 1

Thus, it suffices to show that r scc
= G and that G is closed.

Clearly G C r scc
. Now, let E,a.y. E r cs c Hence

E.a.y. = (E.a.)E.(a. /E.a.).y. = ay, with a = E.a . > 0 andill 111 1 331 1 1

'V = E.(a./E.a.)y. E r since r is convex, yi E r and
1 1 3 3 I

(a. /Z. a.) > 0 for all i with E. (a. /Z. a, ) = 1. Hence, E. a. y. E G,
1 J J 1 1 3 3 1 1 1

scci. e. , rscc ,--
G. Thus r = G. To prove that G is closed,

let {a
n

yn} be a convergent sequence in G. Then an > 0 and

Y E r are such that an n
h. We should prove that h E G, i. e.,

h = ay with a > 0 and y E r. Note that r is a compact set not

containing zero. Hence there exists a > 0 such that

where II II
is the Euclidean norm. Since {an yn}

a < < 00

is convergent,

then there exists c < 00 such that Ian! 11 `in 11 = II anYnll < c which

implies that lant < c/a < 00, i. e. , {an} is a bounded sequence.

Note that {yn} is an infinite sequence in the compact set F. Hence



there exists a subsequence {Nn.} such that 'y -' E F. Also,
n.

3

since {a } is bounded, then the subsequence {an.
} is bounded.

Hence there exists a sub-subsequence {a }n,
J.

3

such that

an. a with a > 0 since {a } > 0, Note that
n.

Ji 3.

Since an n h, then an. n.h. But a Nn.

J. J. Ji
1 1

hence h= ay with a> 0 and y E F

Proposition ctiscc tusccH.

and
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Pf. By (3. 3. 2) we have ,\ftS C C : as > 0,H. E }. We
3 3 3 3 3

can write H. = H°V.H for some V. E V. Using (3. 3. 2) we have
3 3

cut S C C = {H°(E.a,V.)H sa. > 0,V. E }
J J 3 3

= H°{ E.a.V. as > O,V, E H
3 3 3 3 J

C C

Proposition (3. 3.6). HVH = 0 if and only if V = 0, for all

V E [GT].

Pf. Clearly if V = 0, then 1-1°VH = 0. Now, suppose

HIVH = 0. Then VH = 0 which implies that R(H) C N(V). But

R(V) C R(H) for all V E [V]. Hence we have R(V) C N(V) which

implies that V2 = 0 and the result holds.



26

Theorem (3. 3. 7). [Vz] 1-1°N.F1111

Pf. By (3. 3. 3) and (3. 3.5), [ V ] = gpsscc vsccHe

Applying (3. 3. 3) again we have HIV1H = H ° VsccH. Hence we

should prove that L(Vs cc
) = L(ckis

cc
), where L(V) = H'VH. Note

that L is linear and continuous. By Dugundji (1966),
vSCC) L(ceCC). To prove the other containment, it suffices to

show that L(Vscc
) is closed since L(vSCC). By

Lemma 3.5 in Olsen, Seely and Birkes (1976) there exists a compact

convex set F not containing zero such that [V] = [F]. Hence, by

(3. 3. 3), we have

L(Vscc) = L([ce]) =

Using (3. 3.4) twice together with the linearity of L we have

L([r]) = L( {pv e p> 0,V E r})

= {pL(v)°. p > 0, L(V) E L(F)} = [L(r)]

which is closed. For this last equality, notice that L(F) is com-

pact because L is continuous, convex because L is linear and

does not contain zero by (3. 3.6). 0

Now, let
1

, Sk be n x n real matrices and let Q be

a subset of Rk such that W(p) E. p.5 is n. n. d. for all
3 3 3

p E O. Define
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{W(p):p E } = W(Q)

and notice that W is a linear mapping from Rk to , the vec-

tor space of all n x n real matrices.

Proposition (3. 3.8). W([S2]) C [W(S-2)].

Pf. We will begin by proving that W 1 ([W(0)]) is a closed

convex cone containing O. Clearly, S2 C W-1([W(S2 )]) because

W(Q) C [W(C2)] Also, WlaW(C2)1) is closed in Rk since W

is continuous and [W(2)] is closed in Now, let

pl9
E W-1([W(S2)]) and a1, be nonegative numbers.

Note that E.a.W(p.) E [W(C2 )]. By the linearity of W,

E1 a.W(p.)
1

W(E,a.p.). This implies that W(E.a.p.) E [WP )], so
1 1 1

rEi
i i

ap E W
-1

(LW(S-2 )]). Hence W -1
([WP )]) is a closed convex cone

containing 0 which implies that [C2] C W-1([W(Q)]). Therefore,

w([c2 ]) C [-sAr(c )].

Proposition (3. 3.9). If W([0]) is closed, then

[W(c)] C w([c21)

Pf. Since s2 C [a], then W(0)C W([0]) where w([0])

is a convex cone because W is linear and [0] is a convex cone.

Hence W(S2
)scc C i) Now assume that W(M) is closed.

Then, by (3. 3. 3), we have
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[w(c2)] = W(c2)5" C wad) = W([ 2]) .

Theorem (3. 3. 10). If V[s_2] is closed, then V, = ].V[c2]

Pf. Recall that 'LP
EQ

W([Q ]) and

apply (3.3.8) and (3.3. 9). fl

[ vQ] = [w(Q)] and

Proposition (3.3.11). If there exists a compact convex set

G C [Q] such that [G] = [Q] and 0 W(G), then IPV[Q]

Pf. Notice that the zero vector is not in G since the zero

matrix is not in W(G). Hence G is a compact convex set not con-

taining zero. Also, W(G) is a compact convex set not containing

zero. It is compact because W is continuous and G is compact,

convex because W is linear and G is convex, and not containing

zero by assumption. Applying (3. 3. 4) twice together with the lin-

earity of W we have

[W(G)] = {aW(N) a > 0, W(Y) E W(G)}

{IN" (cry) : > 0, E G}

{W(a'y) cry E [G]}

= W([G]) = w([c21).

The last equality holds because [G] = [C2]. Hence `ki)[0] = W([2])

is closed. Apply (3.3. 10). D
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Proposition (3. 3. 12). If S1, ...,Sk are linearly independent,

then V[Q] = ].

Pf. Assume that S
1 Sk

are linearly independent. Then

W :Rk W(Rk) is one-to-one and onto linear mapping. Hence,

V[Q] W([2]) is closed since [S2] is closed and W is a one-to-

one and onto continuous map. Apply (3. 3. 10).

Assumption. Hereafter we will assume that S1,
S1 k

are

linearly independent, i. e. W : R
k

W(R
k) is a one-to-one and

onto linear mapping which implies that its inverse W-1 exists and

is linear. Hence W is a continuous map whose inverse is continu-

ous, W is a homeomorphism and hence preserves topology

as well as linear structure. Of course W-1, also, preserves

topology and linear structure.

Now for any set B in a real finite dimensional vector space

let aff(B) and B° denote the affine hull of B and the interior of

B relative to its affine hull. Hence B°

tained in B and open in aff(B).

Proposition (3. 3. 13). W(aff(B))=--- aff(W(B)).

Pf. Apply the linearity of W. D

Proposition (3. 3. 14). W(B°) = (W(B))°.

is the largest set con-
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Pf. Note that B° is the largest set contained in B and

open in aff(B). Since W preserves topology, then W(B°) is the

largest set contained in W(B) and open in W(aff(B)) = aff(W(B))

(see (3.3.13)). Also, by definition, (W(B))° is the largest set con-

tained in W(B) and open in aff(W(B)). Hence W(B°) = (W(B))°.

Theorem (3. 3. 15). V[o]o = [Vc2]°

Pf. Recall that 1.? = W([0]°) and, by (3. 3. 12),

[ Vo]o = (kr[2])° (W([2]))°. Apply (3. 3. 14) with B = [0] to con-

clude that W([2] °) (W([2]))°.

W(P) E

Let y) be the set of all n x n n. n. d. matrices. Then

Proposition (3. 3. 16). If W(p) E 1 for all

for all p E [2].

Pf. Recall that W:R k W(Rk). Hence

P then

C {P W(P) E r) } {p: W(p) E r-,W(Rk)} = 1(11 r-W(Rk)), which is

a closed convex cone. It is closed because r is closed in ). , so

6n,w(Rk) is closed in W(Rk), and W-1 preserves topology. It

is a convex cone because 11 and Rk are convex cones and W

and W-1 preserve linear structure. Hence

[Q] c W-1(4nrThW(Rk))
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3.4. Topological Properties of a

In this section, some topological properties of 02, will be

studied. The topology of the set of linear estimators b E Rn,

will be taken to be the topology of the coefficient vectors b, i. e.,

the topology of R
n

. We prove through a counter example that

may not be compact. However, a is shown to be compact when

(XX°+V) is p. d. for all non-zero V E [if].

Proposition (3.4.1). If V is p. d. for all non-zero V E [V],

then 0 is compact.

Pf. If V is p. de for all V E [V] \{0}, then

C32,
E[V ] vola(V)

In this case, E (V) if and only if b = V -1X (X tV -1X )-1X

By Lemma 3.5 in Olsen, Seely and Birkes (1976), there exists a com-

pact set F not containing zero such that

[V] = {aV > 0,V E r }.){0 }. Note (aV) z a(V) for a > 0, so

= V E r
a (V). Define f(V) = V -1

X (X IV
-1X)- 1

X . Thus f is a

continuous map from F onto the coefficient vectors of 02 . The

result holds since the image of a continuous function on a compact set

is compact.



Proposition (3.4. 2). If R(X , V ) = Rn for all non-zero V

is compact.in [V], then

Pf. Olsen, Seely and Birkes (1976) proved that

V E
ran vo} a (V). Proposition (3. 1. 10) says that

o=0 (1P+XX°). Note that (XX ° +V) = Vx is p. d. for all non-zero

V
X

E [CtiX and the result holds if we apply (3.4.1) to

a(ckf+xx,).

Proposition (3. 4. 3). Suppose X 0. If f is the class of

all p. d. matrices, then

32

Pf. Clearly a C Now let b E Rn be such that

X°13 = X. Then bb° is n. n. d. matrix such that R(b13°) = R(b),

N(bb') = N(V), r(bb°) = 1 and n(bb°) = n-1. Let Q be such that its

columns form a basis for N(bb°) and consider the matrix

(XX °+QQ°). Then (XX °+QQ°) is n. n. d. with

r(XX °+QQI) = r((X, Q)(X, Q) °) = r(X, Q)

r(X) + r(Q) dim[R(X)(ThR(Q)]

r(X) + n(13°) dim[R(X)rmN(b°)] = n,

since n(13°) = n-1 and 1 = r(b °X) = r (X ) - dim[R(X)r)N(b °)]. Thus

(XX °+QQ°) is p. d. Note that

(XX °+QQ°)b = XX °b + QQ = XX E R (X)
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since 13°Q = 0 = Q'b. Thus b E Rn is such that X ID = X and

(XXI-1-QQ?)b E R(X). Zyskindis Theorem implies that

b'Y E (2)(XX 7+QQ 7). Note that b'Y is the only element in

63(XX l+QQ °) since (XX 1-1-QQ °) is p. d. Thus b E , which

implies that

pact.

Note that (3. 4. 3) gives an example where 0 (V) is not com-

Remark. If cti is the class of all n. n. d. matrices then

since the closure of the class of all p.d. matrices is the

class of all n.n.d. matrices.
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IV. ADMISSIBILITY WHEN [V] ASSUMES
A POLYHEDRAL STRUCTURE

4. 1. Model and Notation

Throughout this chapter let eV' be such that

[V] {E.
=1 3

P.W. P. > o}

where the W. °s (j = 1, 2, ... k) are known n x n n n. d. matrices.

In the first four sections we assume that R(X, W1, . , Wk) = Rn

This range condition is relaxed in Section 5. Note that fixed, mixed

and random effect ANOVA models all have covariance structure like

the one assumed in this chapter.

Suppose jr 3.2' jh are nonempty pairwise disjoint subsets

of J = {1,2, k}. Let Jh = Si. Suppose J' is non-

empty. Set

(4. 1. 1) 0\40 = {.
a
p.W p. > 0} .

(Jh J J J

Consider a given set of positive numbers a., j = 1, 2, , k. Set

V. = E. a.W. (i = 1, 2, , h) and
nn

=G(V1, . . ,Vh). NotejEji j j

that the results of Section 3.2 hold for

=0(v) = 02([af]).

and recall that



4.2. A Characterization of Ce

(33h

Suppose b is in

35

11.
We say that b'Y is admissible in

w. r. t. 9 if and only if no element in is better than

; and we say that b'Y is V-best inb'Y w. r. t.

only if biVb < aVa for all a'Y E

in

Then,

63h

Gh if and

Thus b'Y is an element

if and only if b'Y is V h -best in 3h-1'

Proposition (4.2.1). Let b'Y and a'Y be both in

(i) b'Y is as good as at w.r.t. [V] if and only if b

is as good as a'Y w.r.t. Wh

(ii) b'Y is better than a'Y w. r. t. ] if and only if b'Y

is better than a'Y w. r. t. h
(iii)(iii) b'Y is admissible in w. r. t. [.P] if and only if

b'Y is admissible in w. r. t. rsih

Pf. By (3.2.10), b °W.b = a°W.a for all j E vh
1

J. because
1=

whenever j E J., we have
1

So

R(Wj) C 4(vi) C R (x, vi, ,vh).

b'(E, , p.W.)b < a?(E. p.W.)a
3=.1. 3 3 3()

if and only if



"/jEju P.W.)b <
(<)

E J
h 3 3

'PW )a"
This proves (i) and (ii). Part (iii) holds using (ii) together with the

definition of admissibility in Ch

Proposition (4. 2. 2). If b is admissible in

then b'Y is V-best in

G3h
w. r. t.

for some non-zero V EWh.
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Pf. By (iii) of (4. 2.1) we conclude that WY is admissible in

w. r. t. V)h. Now, consider the linear model

E(T) = Glp , Cov(T) E Wh,

where T is an n x 1 random vector, G = (X,V
1
F

1
,...,VhFh)

with F. and V. (i = 1, 2, ... , h) as defined in Section 3. 2 and LIJ

a vector of g unknown parameters with g as the number of col-

umns in G. Set 5 .---. (Xi, 0, ... , 0)i. Then 5 iip is an estimable

parametric function if and only if there exists a vector b in Rn

such that G = (X, V 1F F ... VhFh
= (X', 0, ... Let °LI h

be

the set of all lue's of 5i1p, i. e. ,

h = {b (X
' 1 l . .V F V hFh

= (X 0, , Or} .
'

Note that (3. 2. 4) implies that b E

Moreover for V E

h if and only if biT E

, V ar(b 'Y I V) = b iVb = V ar(b IV ). Since
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b'Y is admissible in C2) h w. r.t. b'T is admissible in

clAh under " h Applying Proposition 3. 6 in Olsen, Seely and

Birkes (1976) to the linear model 4-m we conclude that b'T is

V-best in ctkh for some non-zero V E Hence b'Y is

V -best in

Definition (4.2. 3). P = (Jr, J2' .. Js) is an ordered parti-

tion of J = {1, 2, ... k} if and only if

(i) J. is nonempty for all i = 1, 2, , s,

(ii) J.rmj. is empty for all i j,

(iii) J = v. J..
1=1 1

Let be the set of all ordered partitions of J. Then,

Proposition (4. 2. 4). If (J1, , J s) is an ordered partition

and cr. > 0 for all j = 1, 2, ... k, then

G(E. a.W.,...,E. a W.) C ce

JEJi 3 3
j EJ ,j' 3

Pf. Because a, > 0 for all j we have
3

R(X, E. a.W.,...,E. oe.W.) = ...,Wk) = R
3EJ1 3 3 JEJ 1

and the result holds from (3. 2.7). D



Proposition (4. 2. 5).

a > E. a.W., , E. a.W.)
JEJ1 3 3 JEJs 3 3
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Pf. Assume b'Y E 02.. Then Proposition 3.6 in Olsen,

Seely and Birkes (1976) implies that b'Y E 03(v 1) for some non-

zero V1 E [I]. Write V = E. a.W., a. > 0 for all
1 J EJ1 J J J

Since b'Y is in (33(V1) C G® and is admissible in
0

[Y], then b °Y is admissible in a(v
1)

w. r. t. [V]. If

J1 J, we can form

E

w. r. t.

as in (4. 1. 1). By (4.2.2) there exists

a non-zero matrix V2 E YV
1

such that b'Y E (2)(V 1'
V2) . Write

V2 = E. a.W., a. > 0 for all Jz. Then b'Y is admissible
3 E J2, J J J

in (V , V2) w. r. t. [\f']. Note that JinJ2 = (1). If J]*.)J2 i J,

we can form w, as in (4.1.1). Again by (4.2.2) there exists a

non-zero matrix V3
2

such that b'Y E 133(V 1' V
2

DV
3

). Write

V = E. a.W., a, > 0 for all j E J. Continue for s steps
3 JEJ3 3 3 3

until we get Ji.)J21/4-)...-)J5 7-- J. So,

b E. a.W.,...,E, a W.)
JEJ1 3 3 jEJ 3 j

where (Jr j2' JS) is an ordered partition of J and a. > 0

for all j.
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Theorem (4. 2.6).

P E
a.W., E. a. W.) .

JEJ1 3 3 jEJ j j

Pf. Apply (4. 2. 4) and (4. 2. 5). 0

Remark (4. 2. 7). Note that, by (3. 2. 9),

2,(E. E. a.W., ,E. oe.W.)

3Ejl 3 3 3Ejh 3 3
E Jas 3

= a,W., , E. a.W.)
3Ej1 3 3

E Jh 3 3

whenever R (X, W. . . , W. ) = Rn J..with {j . . , it} =
1=131 it

Theorem (4. 2. 8). a v vkpn,

V. E[411]
1

Pf. By (4. 2. 6) it suffices to show that

r(X, V v )=n, @(\T 1, . Vk)

1

, ,
Vk)

E a.W., , E. a.W.)
E 31 3 3

JEJS 3

Choose P E and a, > 0 (j = 1, 2, ... k) arbitrary but fixed.

Write V. = E. a.W., = 1, 2, ... s. Thus,
1 3 E 3 3
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6?)(E CY.W., E. CYW.) = (5?)(V , , v).
E j.1 " j E j j

Note that r(X, V
1

, , Vs) = r(X, W 1" Wk) = n. Proposition

(3. 2. 6 ) says that aj (V
1,

... , V s) has only one element. Thus

CVE. aW.D E. a.W.)
JEJ1 3 3

7 j j

)

r(X,V
1

, V )=n,
.. ,V k ) .

V.E{V]
1

k (i)
For the opposite containment let V. = E. a. W., with

1 Jul 3 3

(i)a > 0 for all i and j, be such that r(X,V1,...,Vk) = n. Let

{j a(i) > 0}, 1 = 1, 2, ... k.

h -1
Set J1 = Ll and Jh L h \ 1=1

Li, h = 2, ..., k. Retain only the

sets Jh that are nonempty and renumber them so that J1,

are pairwise disjoint subsets of J {1,2, kb Let

Jm+1 = J J.. By (3. 2. 11) we have
1=1 1

CB (V V ) & aE. (1)
T W., DE.

(k)a W.)
1 j 3 j E Lk 3

(1) (m)3(E. a W., E. a W.)
JEJ1 JEJm 3 3



where r(X, W. , W. ) = r(X,V ,Vk) = n with
31 t 1

{iv it} vi=1 Ji . By (4. 2. 7) we have

(53,(z. ax , E. a.W,)jEJ, EJ j j

= &E.
1

a.W., , E. a.W., E.
JEJ j JEJm 3 j 3Jm+1 a.W.)

J J

where (J1, ,Jrn+i) is an ordered partition of J = {1, 2, ...

a, = a(i) > 0 for all j, i. e.
j

a,(v , Vk)

C

4.3. Example

aW., Z. aW.,E. ce,W.)
JEJ1 3 3

1
JEJm j 3 JEJ m+1 3 3

E. a W., a.W.)
PE (3/ ce.> 0 3E,31-1 3 3E,Js 3

Let be such that [V] W {ZJ PJ .WJ .: PJ . >
=1

where
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W1 = I, the identity matrix Note that the two-way additive or nested

random model has this covariance structure. The ordered partitions

of {1, 2, 3} are:

({1, 2, 3 }), ({1, 2}, {3}), ({3}, {1, 2 }), ({1, 3}, {2}), (121, {1, 3}),

({2, 3}, OD, al}, {2, 3}), ({1}, {2}, {3}), ({1}, {3}, {2}), ({2}, {1}, {3}),

({2}, {3}, {1}), ({3}, {1}, {2}) and ({3}, {2}, {1}).

By (4. 2. 6) we have
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=
a > 0 a(apa2w2+a3w3),,_, G(alI+a2W2,a3W3)

for all j
,_,) (a W a I+ce W )

3 3' 1 2 2
I+a3W3, a2W2)

1/4...) (cr
2
W2' a

1
I+a

3
W

3
CS(a W

2
+a

3
W3' a

1
I)

a2W2+a3W-3)
aIaW,aW)

Z 2 3 3

a,(all, a3W3, a2W2)k-, G(ce2W29 alI, a3W3)

2(a2w2' a3W3, a1I)v (a3W3, all' a2W2)

(a3W3' a2W2' ali)

By (4. 2. 7) we have, for example,

and

v a > 0

for all j

va > 0

for all j

a I+a2W2, a3W3) a 2> 0
a 1+a

2.
W2)

a I, a2W +a3W3) va > 0 ('-(a
1
I)

va > 0 (a
2

W
2
,a

1
I

3
W

3
)=va

1'
a

2
>0 (:-.8 (a

2
W

2
, a

1
I)

for all j

To obtain a shorter expression for , we will prove

Proposition (4. 3. 1). ... ahVh ) = (V V
h)

of

a. > 0 for all i.



Pf. The proof is by induction. Suppose b'Y E

h = 1 we have
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Then for

b E a(a
1
V

1)
<=> a b b<a a°11.

1
a

1
Y

1
for all a°Y E

0

<=->b°V
1
b < a°V la

<=>b°Y E aVi).

for all a'Y E

For h > 2, assume the result holds for h-1, i.e. , assume

that (2( aV a V )= (31(V . V ). Then
1 1 h-1 h-1 1' h- 1

b E (cy . ahVh) <=> ahb °Vhb < a a °Vha

for all a.°Y alV1' ' ah- 1Vh- 1 )

<=>b°Vhb < aVha

for all a.°Y. 1, Vh- 1)

<=>WY E (V. . . Vh).

Applying this result we have, for example,

CS (W2, W3, I) = va > 0 a(a
2
W2 a W a ;3' 1

for all j

3
> 0 C6(W

2
-FN

3
W3' I) = a. > 0 (a

2
W +a

3
W3, al I)

for all j
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and

> 0
W , I 4 W

2
) a > 0 333)(a

for all j

a
I
I+a

2
W2)

(-"(cr W a I)al, a > 0 \-40 3 3' 1

k..._) ail'. \I
2,

W
2

+N
3

W
3

) :-Ths_) a . > 0 ,,,,
1 2 2 3 3

(-", (a I+a W +a W )
3> 0\I , 11

3

for all j

>0 a I+a
2 W 2)

v,..) a a 3> 0 (a
1
I+a

3
W3)

a
1

> 0a(a 1I)

Applying (4. 2. 7) and (4. 3. 1) we have

CQ =
"--).11, -y3 > 0

(B(i-i-N
2

w
2

+N
3W

3
)--P'-)

.y3 > 0 Z(W2
+-\/

3
W3 , I)

.-).\/
(-(W ,I+y W -y_ 03(w-3, 1+,2w,)

3
> 2 3 3

....)0(W2, W3, I)k...) (1(W3, W2, I).

4.4. Calculating the Admissible lue

Let V V h be matrices in [V] such that

R(X , V Vh) = Rn. Proposition (3. 2. 6) says that

1h = C2. (V Vh) has only one element, b °Y. say. Corollary
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(3. 2. 7) says that b °Y is admissible. By (3. 2. 4) we have

b'Y E if and only if (X,V
1
F

1
, ,VhFh)°b = (X°, 0, ... 0)°

with F
1

. . , Fh as defined in Section 3. 2. Let

U = (X, V iFi, VhFh). Note that by (3. 2. 2),

R(U) = R(X, V1, . , V h) = Rn, i.e. , U has full row rank. Then

= (X°, 0, ... Or implies that b = (UU°)1U(X°, 0, . 0) °, i.e. ,

(4.4. 1) b = (XX °-f-V
1
F

1
F 11 + . +V

h
FhhFIV h

) - 1XX
.

To calculate F1, , Fh let H1, . Hh be such that the columns

of H. form a basis of R(X, V
1

, , V
i- 1

) (i = 1, 2, .. h). Notice

that H.(1-VI-1.)-
1H! is the orthogonal projection operator on

R(X, V
1'

. .. V
- 1

). Hence

(4. 4. 2) F. = I H. (H.°I-1.)-1H.° = 1, 2, ... h,

is such that R(Fi.) = N(X °)r-,,N(V1)rm... rmN(Vi_ 1) (i = 1, 2, ... h)

and F.F.° = F. =F. for all i. Thus

(4. 4. 3) b = (XX LEV iF IV 1+ . +VhFhVh)-1XX

4. 5. The Case Where R(X, W1, Wk) Rn

Let [`kr] tE.k p.W p. > and suppose that
3=1 J J J

R(X, W . . , Wk) Rn. Let H be such that its columns form a
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basis of R(X, W
1

Wk ) and let r(H) q. Consider the linear

model ffirl introduced in Section 3. 1. Recall that

= :V E CU)}. Applying (3. 3. 7) we have

[`krz] = H11..f1H =
1

{E. p.H.
3

p. > 0}
3= 3

where H, = j = 1, 2, ... k. By (3. 1. 6),
3

R(G, H
1

Hk
) Rq. Let a, be defined as in Section 3. 1. Then"

Theorem (4. 5. 1).

=
's-j

(IF-Vv
1
H,...,H°V

k
H) +

or(HIX,H"V H H
1

V, [E

Pf. Apply (3. 1. 3), (3. 1.7) and (4. 2. 8).



V. AN INTERSECTION RESULT

5. 1. Introduction and Notation

In this chapter let S1, Sic be n x n real matrices, not
knecessarily linearly independent, and let S2 be a subset of R

47

such that W(p) = E. p.S. is n.n.d. for all p E Q. Note that W
3=1 3 3

is a linear mapping from Rk to Consider the linear model

W, defined in Chapter II, with the covariance structure

= {W( p)e.p E 0} = W(0 ).

Under the assumption that S2 is contained in a polyhedral convex

set A, (see below), such that W(p) is n.n. d. for all p E A

we will characterize 02 (4s_2 ). The generality of this chapter and the

following one lies in the fact that we do not assume that [L° Q] has a

polyhedral structure.

Definition (5. 1. 1). For a subset A in Rk, A is a non-

empty finitely generated convex set if and only if there exist vectors

al, ... , am, (m > 1), such that for a fixed integer h, 0 < h < m,

A = {Em. X .a. Eh = 1, X. > 0, j = 1, 2, .. . ,
3=1 j=1 j 3

Note that if h = m then A is bounded and if h = 0 then A is
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a cone. Theorem (19.1) in Rockafellar (1970) implies that A is a

non-empty finitely generated convex set if and only if A is a non-

empty polyhedral convex set, i.e. , if and only if A is the non-

empty intersection of a finite number of closed half-spaces. Through-

out, the qualifier "non-empty" will be dropped when dealing with

non-empty polyhedral convex sets.

Now let A be a polyhedral convex set in R , i.e. , there

exist el, em and 0 < h < m such that

Then

A = {Em. X.e. :Eh. X. = 1, X. > 0, j = 1, ...,m}.
J=1 J J J=1 J

Proposition (5.1.2). [A] = {Ein. X e e A. > 0}.
3'1

Pf. Notice that {Ern. Xe tX > = B is a convex cone con-
J =1 j j j

t aining A. Theorem (19. 1) in Rockafellar (1970) says that B is

closed. Hence [A] C B, since [A] is the smallest closed convex

cone containing A. To prove the other containment let

D
{Em v e v >0 if v =

h
= v = 0 then v =...= v = 01

3'1 j 1 1 m

and apply (3. 3. 2) together with the definition of A to obtain

ASCC {cu: c > 0, u E A} {Ern.. (cX.)e. X. > 0, Eh. X. = 1, c > 3 D.
37-1 3 J 3=1 j

...110scc. Ascc 15,
Proposition (3. 3. 3) says that [A] Since it



suffices to show that D D B. Let b E B, then

b = Z. X.e., X. > 0. If X. > 0 for
J=1 J J J 3
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any 1< j< h, then b E D C D.

It remains to consider the case when Al = ...= Xh = 0, i.e.,

b = Z . X.e., X. > 0. Let b = Z. v. e. where
3=h+1 3 3 3 n 3=1 in 3

Vin n = 1,2, ...

Then {bn} is a sequence in D such that lirn b = Z. X.e= b,
n 3=11+1 3

.

n-." 00

i. e. , b E D.

Then

Suppose W(p) is n. n. d. for all p E A and let

DC = W(A) {Zin, , X.W Z , X. = 1, X. > .
3=1 3 3 3=1 3 J

Proposition ( 5 . 1 . 3 ) . [ VA] = {Em XiW(ei) Xi

2

Pf. Note that is isomorphic to Rn and apply (5.1.2). II

Proposition (5. 1. 4). [ VA1 cLr[A]

Pf. By definition (sk.f [A]
= W([A]). Apply (5.1.2) together with

the definition of W to obtain W([A]) = {E W(e ): X > 0 }. Then
J=1

> o} .

apply (5. 1. 3) . rj
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5.2. The Main Result

Proposition (5.2.1). Let

covariance matrices such that
V1 and V2

sP sP V2*

for all V E
1

if and only if aVa =1D°Vb for all V E 4kf .

be two sets of

Then a °V a = b °Vb

Pf. Assume that a°V a = b °Vb for all V E V
1

and let

V
1

... Vk
gbe a spanning set of sp ck.r

1 V
with E Ctr

J
.

j = 1,2, ...,k. Then a °VJa for all j = 1,2, ... ,k which

implies that a.a'V.a=a,,13°V.13 for all a. E R 1
. Hence

3 3 J 3

1
a.°(E. a V)a = b°(Z. a,V )b for all a, E R

J=1 J J J=1 J j

i.e., a'Va = b °Vb for all V E sp Then a°V a = b °Vb for all

V E gkr2 since J2 C sp °2 = sp 'Ur The opposite implication

follows similarly. El

Lemma (5. 2. 2). Let atil and V2 be such that

c\ri C °C2 C sp Then 02 (ck.c) C 01(V2)

Pf. Let b'Y E (101). By the completeness of 02(V2)

there exists a'Y E (6'2) such that alVa < b'Vb for all V E

Since C we conclude that a°Y is as good as b°Y w. r. t.

Ail. But b°Y E ( ) and so by (3.2.12) we have a°V a = b°Vb

for all V E Note that sp 4tfl = sp Hence (5.2. 1) implies
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that alVa = b'Vb for all V E gkr
2. Since a'Y EOZ (4192), (3. 2. 13)

implies that b'Y E O(ckfz). El

Proposition (5. 2. 3). Let and 40)2 be as in (5. 2. 2).

Furthermore, suppose rk..f ] = tZ.
k

V p, > 0} such that
3'1 3 3

R(X,V
1 9

... V ) R
n

. If a'Y and b are both in 02, (cfl)

such that a°V a = b'Vb for all V E
1

then a = b.

Pf. By (5. 2.2), a (f1) C 0 (kf)2
) which implies that a

and b'Y are both in 02(V2). Theorem (4. 2.6) says that aY

and b'Y are both in a(z. a.V,, ... , Z. a.V .) where
JEJ

1
3 3 JEJ

S
j 3

a O.> for all j and
3

Vy

R(X,Z, ce.V E. a.V.) = R(X,V .., V ) Rn .

3 EJ
1

3 3 E ,Ts 3 k

By (3. 2. 5) we have a = b + f with

that

f E N(X°)r-,N(V1)(m...rmIN.(Vk) = {0} .

Assume there exists a polyhedral convex set A in Rk such

C A and W(p) is n. n. d. for all p E A. By intersecting

A with sp S2 if necessary, we can suppose A C sp O. Let

be the set of all such A's. Then

Theorem 5. 2. 4). a
(ThA Cli( `VA)



Pf. Since Q CAC sp Q, W(Q ) C W(A) C W(sp Q). By the

linearlity of W we have W(sp Q) = sp W(Q) Thus we can apply
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(5.2.2) to conclude Now let
() ( VS-2) C (ThA El....P ( atfA )

b'Y E rm A El..,
0 (VA). By the completeness of 02 (c1.?0 ), there

exists a'Y E OZ ( Vs.2 ) such that a'W(p)a < b'W(p)b for all p E Q.

Choose A in and let Al = {p E A: a'W(p)a < b'W(p)b }.

Notice that S2 C Al C A . Since A is a polyhedral convex set,

then A = rmc. where is a closed half-space
3=1 " J

(j = 1,2, .. , c). Note that )4c+1
{p E R k a'W(p)a < b'W(p)b} is

a closed half-space. Hence A = rm.
c+1 )( with

1 3=1 3

Q C Al C A C sp S2, Hence Al CI. is such that

a'W(p)a < b'W(p)b for all p E Al and b'Y E ( ). By
1

(3.2.12) we have a'W(p)a = b'W(p)b for all p E A1.
1

Since Q C

then a'W(p)a = b'W(p)b for all p E Since a'Y

(3.2.13) implies that b'Y E ( ) i.e. ,

rm ( ) 02(V ).A El_ A

Recall that for any polyhedral convex set A, defined as in

Section 5.1, we have

[ `l.P A] = {z m X.W(e.): X..> ,
J J

which has a polyhedral structure. Also, 02 ( oLpA) = VA]) .

Hence (22(1.PA) can be characterized using (4.5.1).
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VI. A UNION RESULT

6. 1. Introduction and Notation

For the purpose of this chapter let W(p) = E._ p.S. be n. n. d3-1 3

for all p E Q where S2 is a subset of Rk and S1, Sk are

linearly independent n x n real matrices. By (3.3.16), W(p) is

n. n. d. for all p E [0]. In the linear model `Yrl, defined in Chapter

II, let

= {W(P) : P e Q} W(S2 )°

By the results of Section 3. 3 we have

[Vj
be used to represent (Vc2 ) and

tively. Hence (0 ( [0 ]).

6k?
[0]

= [9f
0]

and

Throughout this chapter 02 (Q) and 02 ([0 ])

(co[, ]) = a cu), ])

will

respec-

Now let A be a polyhedral convex set defined as in (5. 1. 1).

Let e , em be vectors in Rk and 0 < h < m be such that

A = {Ern X e Eh m}
3=1 j j J -1 j J

and recall (5. 1.2) which says that [A] = {Ein. X e.: X. > 0}. Again
J=1 J J J

by the results of Section 5. 1 we have

4 k.f ) = {Em X.W(e.) : Eh. X. = 1, X. > 0 = 1 m}
A J J J=1 J J '3

and
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)W(e3 > ,] = = {E X.3
A [A]

ni

which has a polyhedral structure.

6.2. The Main Result

In this section we will assume that there exists p
0

E [S.2 ] such

that R(X,W(p ° )) R
n

. We will also assume that there exists a poly-

hedral convex set C2
1

such that S2 C 01 with W(p) n. n. d for

all p E C21. By intersecting
1

with sp S2 if necessary, we can

suppose 01 C sp S2. Let {AN} be an increasing sequence of poly-

hedral convex sets such that po E A1, AN C [S-2 C sp AN and

[O]o C
N

A
N

. Note that V[c2 = W([0]°) C N
W(A

N
). Set

Hence

ct.r = W(A N) = {W(p) p e A }

N C ; +1 C
ckr[Q] for all N.

Proposition (6.2. 1). OZ (A ) C 02(0) for all N.

Pf. Apply Lemma (5. 2. 2) and the fact that

Cl( -) = 02([c1)

Let a'Y E CZ and for each N define

KN = {b E a+N(X ') 'W(p)b < a'W(p)a for all p E AN }.
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Hence, for all N, we have KN+1 C KN since AN C A N+l'

i.e. , {KN} is a decreasing sequence.

Proposition (6.2.2). KN is compact for all N = 1,2, ...

Pf. Recall that {AN} is constructed such that p
0

E AN and

R(X, W(p0)) = Rn. Apply the proof of Lemma 3.2 in Olsen, Seely and

Birkes (1976) with VI= N(X°) and = N(X°)(mN(W(P0)) {0}

to get the result. fl

Proposition (6. 2.3). O(S2) C ,Ncp(AN) .

Pf. Let a'Y E (52 . By the completeness of a (AN) there

exists bNY E OZ(AN) such that b I W(p)b
N

< aV(p)a for all

p E AN. Note that bN E KN C K
1.

Thus {b
N

} is an infinite

sequence in the compact set K
1.

Then there exists a subsequence

{bN} such that bN b
0

for some b
0

E K
1.

Let V E 4o
be artibrary but fixed. Note V E

N
W ( A

N
) and {W(AN)} is an

increasing sequence. Then for sufficiently large N., V E W(A N)
3

3

and so we have bN Vb
N.

< a°V a which implies that
J J

b ° Vb
0

< a°V. a. Since V is arbitrary in V[Q]o' then

'DI
0
Vb

0
< a°V a for all V E k.? . Thus[Qr

tk?[Qr C {V :13Vb < a'Va}
0 0

which is closed. Hence by (3. 3. 12),

(3.3.15) and Eggleston (1963), p. 11, we have



rv> r ot p p
L -[s-2]o {V:ID'Vb < aVa}

[0] C2 0 0

i.e., bl0 Vb
0

< for all VE [0]'
By (3. 2. 12) we have

56

= alVa for all V E since a'Y E (Q). Proposition

(3. 2. 13) says that 13'0Y E (32 ( Q ) . It suffices to show that a = b0.

Let SZ be a polyhedral convex set such that 0 C 01 C sp 0

with W(p) n. n. do for all p E 0 . Then [C2 ] has a polyhedral

structure of the form {Eni. k e X > 0} and
3=1 i i i

p0 E Al C [0] C [0 1] is such that R(X, W(p0)) = Rn. Hence

R(X, W(e ), . . . , W(e )) = R(X, W(p )) = Rn Em W(e)since is a
0 j=1 3

maximal element in which contains 4t.r 1 . Apply (5. 2. 3)Vic, 1

1"1-1 L111-I

with V1 V[0] and V '=". cl.f[o to get the result. 0

1

Proposition (6. 2. 4). k-)N (ZAN) C (0 ).

Pf. By (6.2. 1), a(A ) C a(S2) for all N. Hence

vNaz(AN) C oz(2 ) C G(2) and the result follows. fl

Theorem (6. 2. 5). a(C2) = vN OZ(AN)

Pf. Apply (6. 2. 3) and (6. 2. 4). 0

Recall again that ct.?[A] has a polyhedral structure and hence

02(AN) can be characterized using (4. 2. 8).
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VII. AN APPLICATION TO THE TWO VARIANCE
COMPONENT PROBLEM

7.1. Introduction

In this chapter we let Y be an n x 1 random vector having a

multivariate normal distribution with zero mean and a covariance

matrix V
0

= 0 I + 0
Z
V where V is a known n x n n. n. d.

matrix and 8 = (01,02)° is a vector of unknown parameters called

the variance components with 01 > 0 and 82 > 0. Our interest is

to characterize the class a of admissible estimators of a given

linear parametric function of the form X °E) when attention is

restricted to the class °LI
0

of all quadratic unbiased estimators.

Note that if Y has a non-zero vector 14 , then a reduction via

invariance will lead to a model with zero mean (see Olsen, Seely and

Birkes, 1976).

Recently, Olsen, Seely and Birkes (1976) reduced 1.1
0

via

sufficiency to a minimal complete class which allowed them to char-

acterize a using linear model techniques. In this chapter we will

consider this problem directly through 40. The approach we adopt

will follow the general framework established in Seely (1970a), Seely

(1970b) and Seely and Zyskind (1971).

Now let be the vector space of all n x n real symmetric

matrices and let the associated inner product be the trace inner



product defined by (A, B ) = tr(AB ) for all A, B E Hence

we have

{(A,YV):E(A,YY°) = X.°0, A E
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Remark (7. 1. 1). Notice that .tef is isomorphic to Rn(n+1) /2

and that 6ti0 may be expressed in the form

6U0
{a'U :E(a.°U) X°0, a E Rn(11+1 ) 12}

with U = (Y 1, ... ,Y
n
2

,Y1 Y Z'...,Y1Yn,...,Yn-1 Y n) °. Hence con-

sidering quadratic unbiased estimators of the form (A, YY °) = Y °AY,

A E -lef, is equivalent to considering lue's of the form a.°U,

a E Rn(n+1)/2, when estimating a parametric function of the form

Ve. Thus the results of Chapters III, IV, V and VI can be applied to

the problem of estimating the variance components.

7.2. The Linear Model

Using the normality of Y and the results of Seely (1970a),

Seely (1970b) and Seely and Zyskind (1971) together with the fact that

YY' is a random matrix in -id!, we have for arbitrary A, B E td

E(Y'AY) = E(A,YY°) = (A, E(YV)) = (A, V0)

and
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Cov[Y °AY, Y °BY] = Cov[(A, YY °), (B, YY °)] = 2(A, V BYE))

= 20
1 '

B ) + 20102(A, VB+BV) + 202(A, VBV)

= 201(A, r
1B

) + 40102(A, F 2B ) + 20 2(A, r
3

B

where F
1,

F2 and r3 are the linear operators on defined by

F'
1
B = B, r2B = /2)(vB+Bv), F3B = VBV, for all B

Note that r1, r
2

and r
3

are n.n.d. linear operators on and

rl is a p. d. linear operator. Hence we have

E(YY °) = 01 I + 02V, Co v(YY ) = Ee
1

= 202r + 40
10 2

r
2

+ 20
2

2F3

Define Z = YY ° and let H be the linear transformation from

R2 to -4 defined by Ha all + a2V, for all a = a2) ° E RZ.

Then we have the model

cyri:E(z) = HO, Cov(Z) = Ze ,

where 0
1

> 0 and 02 > 0. More precisely (0,E
0

) is an element

of the parameter space which has the form

e = {[(e
19

0
2
)°, 2(er

1
+ze

1
e

2
r

2 2
2+0r

1
]:e1 > 0 , 0 > 01

and is contained in R2 x y) where 11 is the set of all n.n.d
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linear operators on -Z. Hence we have a situation where the

possible 0 vectors do not form an affine set and where the mean

vector and the covariance structure have a known functional relation-

ship. Let D = {0 (0, Ze) E IS for some Ze} and note that

sp D = R2. Hence, by Remark (7. 1. 1) and by Olsen, Seely and Birkes

(1976), the linear model techniques can be applied to model rill.

Thus concerning admissibility we may act like we have the linear

model

°M2 = HO, Cov(Z) E

where 0 E R2, H is defined as before and

Vs_2 = {al r i+a2r2+a3r3 e (al, a2, a )

with

SZ= {2(52., 25
1

5
2

,
zr :5 > 0

9

5
2

>
2 1

Now let A be the triangle in R3 with extreme points

el =; (1, 0, O)°, e2 = (0, 1, Or and e3 = (0, 0, 1)° and let us regard

the line joining el and e
3

as the base of the triangle. Let S2
0

be the convex set in A whose boundary consists of the curve

{(1+p)-2[1, 2p, 132P p > and the base of the triangle. Let F be

the linear operator from R3 to the vector space of all linear

operators from -12 to .-ef defined by
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(7.2.1) F(S) = 511-1 + 5
2

F2 + 531-3 = F6 for all 5 E R3 .

By Olsen, Seely and Birkes (1976),

[ f ] = {ar a > 0 5 ES2 }.

By (3.3.4), [C20] = ka5: a > 0, 6 E and so

[V2] = F([Q 0]) = 4\-?[cl which is closed. Apply (3.3.10) to get
0

[ = [ ti ]. Hence

(7.2.2) 0 = 02(0 ) = at(0 0)

Thus, concerning admissibility, we can always talk about C20

instead of C2. Notice also that r is p. d. for all

SE C2
1

= C20\ {e
3

}.

7.3. The Admissible Class 0

In this section we will characterize the class Ce of all

admissible quadratic unbiased estimators of N.10. We will continue

using the notion of the sets r ) defined in Chapter

III with quadratic unbiased estimators and their respective variances

in mind. By Proposition 3. 6 in Olsen, Seely and Birkes (1976) we

conclude that

OC _)5E 0a (1-s) E
1

C2,(F 3)
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By (3. 2. 8),

5 E 521. Hence

(7. 3. 1) 02 =
5 E S-2

1

) C since r is p. d. for all

(Th a(r 3)]

In order to investigate (a rm (2)(r3), we use the fact that

C20 C b.. This implies that [C2 0] C [A] = {E.
3

=1 1
a.e. :a .> 0}, and so

[4112] = rac2 01) C r([z11) {E3. a.r. a.
1

> 0}. We use the notation
1=1 1

[A]
= 11[A]). Since sp[C20] = sp[A] = R3, then we use the

linearity of r to obtain

sp[V.] = spr([Sy) = F(sp[00]) = F(sp[A]) = spr([6]) = sp ctr[A] .

Hence applying (5.5.2) we have

(7.3.2) 02 = ([`1P0]) C Gt `1.?[,6 ])

Since 4k.?
[L]

= {E3=1 air e a > 0} has a polyhedral structure with
1

R(H) + E.3
=1

R(ri = R(F
1

) the results of Chapter IV can be

applied to a ( ).
ELd

Let 1_, be the set of all polyhedral convex sets A in R3

such that S2 C A and sp A = R3 and let be the subset of

A E "1 such that AC A . Note that A E "j..22. By (5. 2. 4),

Qt =
E

Azi
(

A
). Given A E let A* = A (-)A. Hence

A* E . Notice that 00 C A* C A and



sp A = sp 00 = R 3 sp A*. So by (5. 2. 2), 0 (V )C a ( vA).

Thus we see

(7 3' 3) rmA* Eljt a( VA*)

We will begin by proving that any A* E :';1 should have el, e3

and ae2 + (1-a)e3, for some
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0 < a < 1, as three of its extreme

points. Since the base of 6, is in the boundary of 0' it is clearCZ

from a picture of A that any A* E -12; must have el and e3

as two of its extreme points. To prove that ae
2

+ (1-a)e
3

is an

extreme point of A*, for some 0 < a < 1, we will prove that

the line connecting
2

and e3 is the tangent of 00 at e3.

Recall that the curve {(1+p)-2[1, 2p, p2]°: p > 0} = C is in the

boundary of 0 TheThe projection of ,6 from the (x, y, z) space to

the (x,y) plane preserves the linear structure of 4 . In particular,

tangent lines are preserved. The projection of C is

{(1+p)-2[1,2p]° p > 01 and the points el, e2 and e
3

are pro-

jected to the points (1, 0) °, (0, 1) ° and (0, 0)' respectively. Thus

we need to prove that the line joining (0, 1)° and (0, 0)° is the

tangent of the projection of
o

on R2 at (0, 0)'. For any given

p > 0 2, let x = (l+p) -2 and y = 2p(l+p) . Hence y = 2px with

p = (1R/x) - 1 which implies that y = 2(Nix -x). The derivative of

y w. r. t. x is given by (dy/dx) (10N/x) - 2 which tends to
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infinity as x tends to zero. Thus the line connecting (0, 1) ° and

2
(0, Or is the tangent of the projection of S20 on R at (0, O)°.

Thus we have proved the following:

Proposition (7. 3.4), If A* E then el, e3 and

ae + (1-a)e3, for some 0 < a < 1, form a subset of its extreme

points.

Now, for any A* e let VA* -7, r(A*) with r as

defined in (7. 2. 1). By (5. 1. 3), [ cl.PA*] has a polyhedral structure.

By (7. 3. 4) and (7. 2. 1), Fi, F3 and art + (1-a)F3 are in the gen-

erating set of [ 4k.FA*] with R(H) + R (F
1
) = R(r 1) = . Hence,

for all A* E the results of Chapter IV can be applied to

ON[VA*]).

Proposition (7. 3. 5). 03(r
29

r 1) C

Pf. Pick any A* E sj..2 and recall that the results of Chapter

IV are applicable to a ([VA*]). By (4.2.8) we have

CS(r3, arz+0 -cor3, r1) C Ql ([VA*]), 0 < a < 1. By (3.2. 11) and

(4. 3. 1) we have

C8 (r3, ar2+(1 -a)r3, r1 ) _ CB(r3, cer2,1-1) = (1-3, r2, r1)

Now apply (7.3.3).
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By (7. 3. 2) we have 02, a(F3, F2) C cp(v[6 1)n F2).

Proposition (4. 2. 2) implies that 0 CI.% ])(Th Ci3(F3, r2) C 3 (r3, F2F1)

Hence we conclude that

Q r(1-'3' F2) C Gra(F3,1-2,1-1) (1-3' F2, r1)

using (7. 3. 5). Notice that (r r r1) C (Th ()(F3, F2). Thus we

have proved the following:

Proposition (7. 3. 6). 0 n G3(1-3, F2) = (r3, F2,

Proposition (7.3.7).

ra(F3) -)5E ( (F3' r5)-)Ct(r r1)
1

Pf. Note that for any 5 E S2
1

we have

(1-3, ro) = rm ar3, r C 0 rm ar3)

since r is p. d. Also, by (7. 3. 6)

3 (1- 3,r 2,F

Hence we have

= 0 r-,(1(r3, r2) C (Th (3(r3)

jo51 E S2 03(1. 3,1-6),-iar r2' r 1) C 02 (Tha(F3).
1

To prove the other containment we use (7.3. 2) to obtain



arm ar3) C 0(cl?
,6

)(Th CB(F
3{1 By (4. 2. 2) we conclude that

0 cAl
]
)(Th (8(r 3) C a a 2.>

Note that

not both zero

al' a2 o
a(r39airli-a2r2)

not both zero

3, a 1F 1-Fa Zr 2) .

(r3, 1) a(F 1-2)al' a 2> 03(F3,airi+ce2r2)

Applying (4. 3. 1) and (3. 2. 11) we have

1
, a

2
> Oar3, alr 1+a 2F2)

F i+ars 2+a2 4-1F )
> oal(r3, Fl+ar2) a > 05(1-3, 3

= va > 0a(r 3' (1+a/2)-2(r
1
+ar

2
+a

241 F3))

C s-2 ar3,1-8)
1

This implies that

0133(F3, alrl+a21-2) C Qj(r3, F5K.)3(F3, F2)

not both zero

Thus we have

0 01 )(Th C(r3) C E
a(r

3[A
1

r6KJa(r3, r2)
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which implies that

r G)(r3) C vS au r5),-,[02 n a(r 3, r2 )]
1

Apply (7.3.6) to obtain

01)r ) C voe (r3, r 5K.) law3'
r 2' r 1) U
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Theorem (7.3.8). = a[a(1-6) -i'r3,F5)] ar3,r2,r

Pf. By (7.3.1) we have

Apply (7.3.7).

0 ',.)5E 3(1-5K[O na(r3)].
1

To calculate the admissible estimators in r > 1, apply

(4. 4. 1) or (4. 4. 3) with the trace inner product in mind.

In 1976, Olsen, Seely and Birkes reduced the problem of

quadratic unbiased estimation of X '0 to considering linear combina-

tions of the minimal sufficient statistics T . . Tm where m is

the number of the distinct eigenvalues of V and Tk = Y'EkY

k = 1, , m, with Y defined in Section 1, rk the multiplicity

kthof Xk' the k distinct eigenvalue of V, and Ek the ortho-

gonal projection operator on the subspace associated with the eigen-

vector of X k. Then, for > 2, they characterized the admis-

sible class a using the linear model



where

E(T) = GO, Cov(T) E = {-yD6: Y > 0, 6 E

1

X.1 X2 Xm-
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1'T = (T .. , Tm )° , 0
0

as defined in Section 2 and D
6

= E.3
=1

&D.
1 i i

i-1 1-1
dwithD. = iag{X1 /r1, ..., X. /r }, i = 1, 2, 3. Note that

1 m m
N(OrmN(Do) = {0}. They proved that

_.)
E S2 3(D6)

0

In our characterization of the admissible class (2 we con-

sidered the problem of the admissible quadratic unbiased estimators

of \le directly through tkl0' the class of all quadratic unbiased

estimators of X°O. We were able to use this direct approach because

our main results in Chapters III, IV and V do not require that

N(H')nN(1-5) = {0} for all 6 E S-20
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