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Perturbed angular correlation (PAC) spectra of fully yttria-stabilized (cubic)

zirconia with Y203 contents of 35.4 wt. %, 27.8 wt. %, and 16.9 wt. %,

respectively, were measured using the isotope 181Ta as probe nucleus.

PAC spectra in cubic zirconia are characterized by a wide frequency

distribution due to contributions of dopant cations (Y) and oxygen vacancies. The

jump rate for oxygen vacancies in the lattice is several orders of magnitude higher

than for the cations. In the entire temperature range (24°C to 1300°C) the cations

can be considered static, whereas the mobility of the anion vacancies is strongly

temperature-dependent. The spectra show that the electric field gradient (EFG) is

static at highest (T > 1200°C) and lowest (T < 500°C) temperatures. The

contributions to the EFG due to oxygen vacancies average to zero for the highest

temperatures because of the fast vacancy jump rate. At the lowest temperatures, the

vacancy jump time is greater than the lifetime of the intermediate state (10.8 ns),

resulting in a static EFG. A relaxation phenomena arising from diffusion of

oxygen vacancies was observed for intermediate temperatures.



The relaxation parameter, X., has a maximum at about 850°C. In the high-

temperature region (T > 850°C), has an activated form. The activation energy for

the oxygen vacancy motion, Ea, is 1.06 eV (± 0.07 eV) and is independent of the

Y203 concentration which contradicts results obtained from ionic conductivity

measurements found in the literature.

The EFG increases by a factor of three with decreasing temperature from

1200°C to 500°C. It is proposed that this is caused by dynamical screening: at

elevated temperatures oxygen vacancies jump into higher-energy positions closer to

the PAC probe, reducing the cationic contribution to the EFG. The activation

energy for this process is 0.2 eV (± 0.02 eV).

PAC measurements on samples heated up to different temperatures show

that the material must be annealed for about 24 hours at 1300°C. Even though the

Y203 concentrations were 16.9 wt. % and higher, the samples were

inhomogeneous without annealing.

A computer simulation of the angular perturbation function, G2(t), was

developed, and the results for a static EFG, the XYZ model, and rapidly jumping

vacancies in a simple cubic lattice are presented. The simulation assumes that (i)

the atoms of Zr and Y are randomly distributed, (ii) the oxygen vacancies can be

described as point ions, (iii) there are no interactions between the oxygen vacancies

and no interactions between the vacancies and Zr or Y, (iv) the vacancies can only

jump to next-nearest-neighbor sites, and (v) the vacancies never occupy nearest-

neighbor sites to the PAC probe.

The results from the static EFG and the XYZ model are in agreement with

theoretical calculations. The transition probability, W, between two particular EFG

states per unit time is proportional to the inverse of the average correlation time, tic,

and the number of possible EFG states, N.
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Perturbed Angular Correlation Investigation

of Cubic Zirconia

1. Introduction

Ceramics are encountered quite frequently in every-day life. Toilet bowls, bath

tubs, cookware and many other things made out of ceramics have been used for

decades. But it took a Nobel prize to emphasize the scientific value of ceramics. In

fact, it was not until the discovery of high Tc superconductivity in La-Ba-Cu systemsl

that many scientists focused their attention on ceramics. Nevertheless, ceramics such as

Zr02, SiC, Si3N4 have always been a field of scientific study.

Ceramics possess useful properties such as low wear, good dielectric properties,

high resistance against heat and aggressive chemicals, and extreme mechanical stiffness

and hardness which is in general retained at higher temperatures than metals. A lot of

work has been done particularly on zirconia (Zr02), since it has been found to be a

structural toughener in improving the crack resistance of ceramics. Not only has

zirconia been used as an additive to improve mechanical properties of other ceramics,

but it has also been used as the major constituent for ceramics. A wide range of

technological applications for zirconia-based ceramics include cutting tools, machinery

wear parts, thermal barrier coatings, piezoelectric devices, and magnetohydrodynamic

generators. Zirconia alloys also are very good oxygen conductors at high temperatures

and have therefore often been used, for example, as oxygen sensors and fuel cells.2,34
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1.1. Zirconia

Research activity on zirconia ceramics has been very intense in the past several

decades due to its potential applications. A conference, held every three years, is

devoted to the exchange of research information on these materials 2'3,4 A very helpful

yet concise booklet on the general properties of zirconia has been compiled by Stevens.5

1.1.1. Occurrence and Processing

The element zirconium (Zr) is present at a level of 0.02 to 0.03 % in the

earth's crust and is more abundant than copper, nickel, lead, or zinc. The two main

mineral sources of zirconium are baddeleyite and zircon.

Baddeleyite is the mineral form in which zirconium was discovered in 1892 in

Brazil. Today it is extracted as uranium, copper, and phosphate minerals are

processed.

Zircon ( ZrO2 SiO2 ) is the most abundant zirconium mineral. It is found as

secundary deposits with other minerals in river and beach sands and it contains

small amounts of titanium oxide, ferric oxides, and aluminum.

Crude grades of zirconia can be produced by thermal treatment of zircon. But

higher purity zirconia, which is of interest for scientific use, must be chemically

processed. In this process zircon must first be decomposed and then treated. Pure

zirconia is then isolated and finally calcined. The resulting zirconia is the basis for

further research.
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1.1.2. Structure

In different temperature regions pure zirconia exhibits three well - defined

polymorphs. These phases are stable at the following temperatures:

monoclinic below 1170°C.

tetragonal between 1170 and 2370°C.

cubic between 2370°C and 2680°C (melting point )

The unit cells of various phases of zirconia are generally considered to be

derivations of the cubic fluorite structure. It has also been shown that at room

temperature with pressure above 40 kbar zirconia can transform into an orthorhombic

form.6

Monoclinic ZrO2 has four formula units in the unit cell and has the space group

P2i/c.7 The atomic arrangement in the unit cell is8

±(xyz; +1 / 2,1 / 2 z)

with the cell dimensions9

a= 5.145 A; b= 5.028 A; c= 5.311 A; b = 99.2° .

The Zr4+ ion is sevenfold coordinated by two types of oxygen atoms with the Oil

coordination nearly tetrahedral. The Zr atoms are positioned at (0.2758, 0.0411,

0.2082), Oj are located at (0.070, 0.342, 0.341), and Ojj are located at (0.442, 0.775,

0.479). At room temperature, the average ZrOf range from 2.05 to 2.16A and for Zr-

011 from 2.15 to 2.29A. The thermal expansion of monoclinic ZrO2 is very anisotropic,
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with the expansion coefficient for the a and c axes an order of magnitude higher than

that of the b axis.10

In the tetragonal phase the space group is P42/nmc. Instead of describing the

tetragonal cell in terms of a face centered lattice, for tetragonal pure zirconia a primitive

tetragonal unit cell is often found in the literature.11,12 The atomic arrangement in the

unit cell is

2 Zr : (0, 0, 0); (1/2, 1/2, 1/2)

4 0 : (1, 1/2, z); (1/2, 0, z); (0, 1/2, 1/2+z); (1/2, 0, 1/2z) .

The unit cell dimensions are

a = 3.64 A; c = 5.27 A ,

with z = 0.185 at 1250°C. Each oxygen atom is coordinated by four zirconium atoms

and each Zr atom is eightfold coordinated with four 0 atoms at a distance 2.455A and

four at 2.065A. The latter four oxygen atoms form a flattened tetrahedron with the

zirconium, while the former four 0 atoms and Zr form a more elongated tetrahedron

rotated by 90° with respect to the first one.

The phase transformation between the monoclinic and the tetragonal phases is of

both scientific and technological importance. Pure zirconia undergoes a volume

contraction on heating and a corresponding expansion on cooling, typically 3-5%,

through the monoclinic<=>tetragonal transformation. This large volume change is often

accomplished by cracking, causing the zirconia to crumble. Thus pure zirconia is not

suitable for structural applications. However it was realized that this disruptive

transformation can be used to increase the strength and toughness of other ceramics.13



5

The monoclinic<=>tetragonal transformation of pure Z102 was first suggested by

Wolten14 to be martensitic in nature. Some of the experimental observations that led to

that conclusion are:15

The tetragonal phase cannot be quenched to room temperature.

The transformation exhibits a large temperature hysteresis loop.

The transformation is athermal, i.e., it does not take place at a fixed temperature but

over a range. The amount of transformed phase changes with temperature but not as

a function of time at a fixed temperature.

Above 2370°C up to the melting point at 2680°C, the zirconia takes on the cubic

form. This phase is a fluorite structure, with the spacegroup symmetry Fm3m The

atomic arrangement in the unit cell is

Zr : (0, 0, 0)

0: (±1/ 4, ±1/4, ±1/4)

with a unit cell dimension of

a = 5.198 A.

Each Zr atom is eight-fold coordinated by equidistant oxygen atoms, and the 0 atoms

are tetrahedrally coordinated by four zirconium atoms with a Zr-0 distance of 2.251 A

(Fig. 1.1.).

There is evidence from neutron-diffraction studies that the oxygen positions are shifted

similar to the tetragonal cell but to a smaller extent.16
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O
ZircOnium

Oxygen

Fig. 1.1 The first oxygen coordination shell for Zr in cubic zirconia
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1.1.3. Zirconia Alloys

For practical applications, ZrO2 has often been alloyed with other oxides to

modify its properties. Binary oxide alloys of Zi02 with CaO, MgO, Y203, 1n203, and

rare earth oxides lower the temperatures where the monoclinic4=>tetragonal and

tetragonal<=>cubic phase transformation occur.17,18 The phase diagrams of the systems

Zr02 MgO, Zr02CaO, and Zr02Y203 have been reviewed by Stubican.19 The

Zr02 Y203 binary system,20 which is the matter of investigation in this research, is

shown in Fig. 1.2.

When alloyed with more than 17 mol.% of Y203, the cubic phase is stable

from room temperature to the melting point. This composition region, which is the

subject of investigation in the following chapters, is commonly known as fully

stabilized zirconia (FSZ), or with reference to the stabilizing agent, yttria stabilized

zirconia (YSZ), calcia stabilized zirconia (CSZ), etc.

Partially stabilized zirconia (PSZ) , which is a mixture of cubic and tetragonal

(or monoclinic) zirconia, occurs when the dopant concentration is less than is needed for

complete stabilization.

The incorporation of alloying metal oxides also decreases the linear thermal

expansion coefficient of the twophase zirconia and the volume change associated with

the monoclinic= tetragonal transformation. The PSZ, thus, has better thermal shock

resistance than fully stabilized and pure monoclinic zirconia.15

Besides the modification of mechanical properties when doped with metal

oxides, oxygen vacancies are also introduced as charge compensators for lower valence

cation dopants. One oxygen vacancy is created for every divalent cation dopant (e.g.

Ca2+, Mg2+) or for every two trivalent cation dopants (e.g. Y3+, Sc3+). Every two

pentavalent cation dopants (e.g. Ta5+, Nb5+), however, introduce one oxygen
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Fig. 1.2. Phase diagram for the Zr02Y203 system.
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interstitial. Therefore the concentration of oxygen vacancies or interstitials can be

manipulated by doping with appropriate species of dopant cations. Similar to other

fluorite oxides, oxygen vacancies are the dominant carriers for ionic conductivity in

ZrO2. The oxygen diffusion motion in the zirconia is an activated process and exhibits

an Arrhenius behavior with an activation energy of about 1 eV. More details of this

process will be discussed later in this work.

1.1.4. Applications of Zirconia Ceramics

As already mentioned, there are numerous technological applications of zirconia

ceramics. Among these are the following:

Wear components in combustion engines. Fine tetragonal zirconia particles

incorporated in other ceramics such as alumina or silicon carbide increase their

strength and fracture toughness.

Thermal barrier coating in gas turbine engines. Thin layers of YSZ on

metal parts allow an increase of the operating temperatures and result in an increased

efficiency of the engines.

Heating elements in furnaces which operate above 2000°C. After

preheating the zirconia element to about 1000 °C, the ionic conductivity is sufficient

for self-heating.

Oxygen sensors. Because of the excellent heat resistance of zirconia, oxygen

sensors can even be used at high temperatures. If the opposite sides of a zirconia

electolyte are exposed to different partial oxygen pressures p1 and p2 respectively, a

voltage across the electolyte is created, which is proportional to In (p1 /p2 ).
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Imitation diamonds. A high refractive index of cubic zirconia is responsible for

its use as imitation diamonds. It is even possible to produce large-sized optical-

quality single crystals with diameters up to 10 cm.21 Colored gemstones can be

manufactured by adding rare earth or transition metal oxides.

1.2. Perturbed Angular Correlation Spectroscopy ( PAC )

The angular distribution of radiations from an atomic or nuclear system,

decaying in a cascade of successive 7rays, have their characteristic patterns with

respect to a chosen axis.22 Usually the first 7ray is used to establish the quantization

axis against which the direction of the second Itray is correlated. Studies of the

angular correlation of such successive radiations have been a very useful tool in nuclear

physics. This tool provides a method for the determination of properties of the nuclear

levels, of the radiation emitted, and of the interactions governing the emission.23 PAC

measurements have also been used in solid state physics, since they yield interesting

information about materials and defects. The peculiarity of PAC is that it is a local

probe which does not average over macroscopic dimensions, as x-ray diffraction or

bulk-conductivity measurements do. Among the various types of angular correlations,

they-7 correlation is the one most often employed due to the penetrating power of the

gammaray in condensed matter. The y---7 perturbed angular correlation spectroscopy

has been used to study phenomena such as the defectimpurity association in

metals,24,25,26,27 internal oxidation in metals,28,29 impurity effects in

semiconductors30,31 and phase identification in compounds.32,33 An extended

compilation of TDPAC measurements on compounds has been performed by Lerf and

Butz,34 and a similar compilation for metals was done by Vianden.35
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The electric and magnetic fields originating from the surrounding matter are

present at the nuclei. These perturbing fields interact with the electric and magnetic

moments of the nuclei and often alter the angular correlation pattern of the successive

radiations. Through analyzing the perturbed angular correlation, patterns physical

quantities like the following can be obtained :

Strength of local electromagnetic moments. The characteristic PAC-

frequency 0)1 is propotional to Vzz, the component of the field gradient.

Symmetry of electric field gradient (11). ri depends on the ratio of the PAC-

frequencies 0) 1, o)2, and (02 The ratio 0)1:0)2:0) 3 equals 1:2:3 for axial

symmetry, whereas 0)2 < 20)1 for nonaxial symmetry .

Quality of crystals or microcrystals. Comparing the linewidth of the PAC-

frequency distribution yields information about the quality of different samples.

Jump frequency of defects. The relaxation rate X in the perturbation function

G2(t), which describes the relaxation rate of the probe, is proportional to is or

1 /ta, for high or low temperatures respectively.

Energy barriers for motion of defects or trapping energies (E). The

temperature dependence of the relaxation rate, A. e-+E/kT
, is used to find the

energy barrier.

1.2.1. 181Hf /181Ta PAC Measurements in Zirconia

One of the major difficulties in PAC experiments is incorporating the desired

radioactive tracer into the materials to be investigated. In the 181tiv181Ta PAC

experiments involving zirconia ceramics, this problem has been solved nicely by nature.
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Most of the ores containing zirconium also contain about 1 at % or more of

hafnium. Owing to the remarkable chemical similarity between zirconium and hafnium,

this Hf content is still found in the zirconia ceramics, unless special procedures were

taken to remove the hafnium impurity. The similarity between Zr and Hf is due in part

to the electronic configurations in the outer shells (4d25s2 and 5d26s2 for both

zirconium and hafnium) and to the near identity of the atomic radii: 1.452 A and 1.442

A, respectively.

The natural 180Hf is transformed into radioactive 181Hf by irradiation with

thermal neutrons (see 3.1.6). The unstable isotope 181Hf decays by emission with a

half-life of 43 days to an excited state of 181Ta (Fig. 1.3.). After a half life of 18 Rs,

this state decays to the ground state by emitting several gamma rays. In this work the

cascade emitting yi with 133 keV and y2 with 483 keV and a spin sequence of 1/2*

5/2-3 7/2 is used. The intermediate state, which is the actual PAC probe, has a large

quadrupole moment (Q=2.5 b) which interacts with the extra-nuclear field during the

state's 10.8 ns half-life (see Table 1.1.). Just as the Hf parent nuclei, the Ta nuclei

occupy zirconium sites. The only interaction which has to be taken into account in

zirconia ceramics is the electric quadrupole interaction. So PAC with 181Hv181Ta

probes samples the electric field gradients (EFG) at a zirconium site.

Ta PAC measurements have been made on various zirconia samples in

order to understand, microscopically, the local structures and vacancy dynamics in this

system.36,37,38 181Hf /181Ta PAC measurements have also been used to determine the

phase diagram of zirconia-yttria-alloys and the relative number of sites in mixed phase

materials.38,39

It should be mentioned that instead of 181Ta, 111Cd and other tracers have also

been used. 38,41 It is interesting to compare the results gained by various probe nuclei.

The interaction between the chosen probe and oxygen vacancies, which have an
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Fig. 1.3. The 181y1fto181Ta decay schematic diagram.43

Unit of Energies is keV. Of interest in this work is the 133 keV-482 keV

y-ray cascade.
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Table 1.1. Summary42 of relevant nuclear characteristics of 181Ta.

Parent halflife (18111f) 42.5 d

Energies of cascade y rays:

Yi 133 keV

Y2 482 keV

Nuclearspin sequence 1/24. -9 5/24- ) 7/24-
Angularcorrelation coefficients:

A2 -0.295(5)

A4 -0.069

Intermediate nuclear state:

Halflife 10.8 ns

Electric quadrupole moment + 2.5 b

effective charge of +2 in the anionic sublattice, depends on the effective charges of the

probe nuclei in the zirconia cationic lattice. Whereas 181Ta has a 5+ ion core, and thus

an effective charge of +1, 111Cd has a formal charge of 2+, meaning an effective charge

of -2. By simply considering the Coulomb interaction, one expects that the 181Ta probe

repels oxygen vacancies, and divalent dopants like 111Cd attract them. Experiments

support this hypothesis.37,3839

In cubic zirconia (stabilized with Y203 in this experiment), the observed 181Ta

PAC spectra exhibit a nonoscillatory pattern.3739,40 The EFG experienced by a probe

nucleus results from a static contribution due to the surrounding dopant cations and a

fluctuating contribution due to the diffusive motion of the oxygen vacancies due to the

diffusive motion of the oxygen vacancies.
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The fluctuating part of the EFG is negligible near room temperature and above

1200°C. At room temperature, the oxygen diffusion motion is very slow, and therefore

the environment is approximately static during the lifetime of the probe. Above 1200°C,

the oxygen diffusion is very fast and the fluctuating EFG averages to zero. Thus the

EFG is primarily contributed by the static background due to the lattice in these two

regimes.

At intermediate temperatures, the relaxation of the probe becomes significant

because the oxygen vacancy jump times become comparable to <o 2 > -1t2, the average

characteristic interaction time of the probe with the EFG.

As a result of the temperature dependance of the relaxation, the relaxation

constant X shows slow and fast relaxation regimes when plotted as a function of inverse

temperature between room temperature and 1300°C. The maximum relaxation occurs

near 800°C to 850 °C. The slope of the relaxation constant above 850°C is

approximately three times that at low temperatures. Such asymmetry has often been

attributed to the existence of two relaxation mechanisms that cross over near the

maximum of X.37 A more physical explanation suggests that at the long jump time

region, the contributions of the vacancies in the more distant shells are not

negligible.39,40 Properly summing the contributions of the different shells does not

modify the short jump time region, but changes the slope in the long jump time region.

Based on this model, only a single activation energy is needed. The physics of this

process is still a matter of interest.
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2. Theory of y-y Perturbed Angular Correlations

If an atomic or nuclear system decays in a cascade of successive v -rays, the

angular distribution of the radiation has a characteristic pattern.22 This pattern is

influenced by interactions of the intermediate states with their environment. PAC makes

use of this feature to yield information about local environments inside the material. In

this experiment Zr02 (zirconia) in its cubic form was investigated using a 181Hf/181Ta

PAC probe. The only important interaction between the PAC probe and the extra-

nuclear field in this experiment is the interaction between the quadrupole moment of the

probe and the electric field gradient (EFG) in the lattice. The reason for that is (i) higher

order electric interactions are negligible, (ii) Zr02 is a nonmagnetic material and

therefore no magnetic interactions have to be taken into account, and (iii) the 181Ta PAC

probe has a closed electronic shell (spherical symmetry) and therefore no magnetic or

electric dipole moments.

The formalism for static EFGquadrupole interaction that will be presented in

this chapter follows very closely that given by Frauenfelder and Steffen,44 as

summarized by Jaeger38 and Su39. A more modern treatment is given by Steffen and

Adler45 in a form that is more suitable for low temperature work. For the fluctuating

EFG's the time-dependent electric quadrupole interaction in liquids46 and a stochastic

mode147 are described.

2.1. The Generalized Angular Correlation Function W(ki, k2, t)

The probe nuclei of y-y PAC measurements decay through a cascade Ii > I >

If, emitting two gamma rays yi and y2. The first y-ray is used to establish the
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quantization axis against which the direction of the second 7-ray is correlated. The three

nuclear states with spins Ii, I, and If have sublevels in' which are populated with

unequal probabilities during the decay. The angular correlation function W(ki, k2, t) is

defined so that W(ki, k2, t)dQ1d.(22 is the probability that yi and y2 are emitted in

directions k1 and k2 within the solid angles dni and c1 22. The time "t" in the perturbed

angular correlation function W(ki, k2, t) is the time separation between these two

successive radiations, meaning tf:I is the time at which 71 is emitted.

Using the density matrix formalism, pin refers to the system in its initial state.

At t = 0, 71 with polarization al is emitted. Using the creation and annihilation

operators A+(kl, al) and A(ki, al), respectively, the system immediately after

emission of 71 is described by p(k 1, 0) = A+(ki, CYO pin A(ki, 01). In the presence of

extra-nuclear perturbations, the density matrix of the system after emission of yi will

evolve with time, meaning p(k1,t) = A(t)p(kb0)A +(t), where A(t) is the time

evolution operator of the system. After time t, 72 with polarization 02 is emitted,

described by A+(k2, (52) and A(k2, a2), respectively. W(k 1, k2, t) in its most general

form can then be written as

W(ki ,k2,t) = ETr [A+(k2, a2)A(t)A+(k1, al) pin A(ki, cri)A+(t)A(k2, a2)]

6162

E Trip(k2, t)p(ki, ,

a1,62 (2-1)

where p(k2,0= A(k2,a2)pfinaiA+(k2,a2)=A(k2,a2)1A+(k2,a2) (2-2)
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is the density function of the system immediately before emission of y2. These

equations look quite simple, but this entire chapter will be devoted to finding

W(ki,k2,t). In fact, for slowly fluctuating EFGs in solids, the problem of finding an

analytical expression for W(k1, k2, t) still remains unsolved.

To calculate the trace of the product of the two density matrices in equation (2-1)

we consider the sublevels These sublevels form a complete set of eigenstates

of 12 and L. The angular correlation function is therefore

W(k1, k2 , 0 E E < milp(ki , t)Im1' ><mflp(k2, t)Imi > . (2-3)
a1,a2 m1m1'

If the interaction Hamiltonian which describes the extra-nuclear perturbations is

K(t), the time evolution operator of the system, A(t), obeys the equation

at
d A(t) .--K(t)A(t) , with A(0)=1 . (2-4)

Using this time evolution operator, A(t), and the closure relation for m2 and mat, the

matrix element <mlip(ki,t)Imit> becomes

< , t)I mit >. y< A(t) I m2 m2I p(ki , 0)1 m2' > < mf I A(t) I > * . (2-5)

m2m2'
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In PAC measurements the polarization of the radiation is not observed (expressed by the

sum over ai and a2). In that case, using the Wigner-Eckart theorem, the matrix

elements of p(ki, 0) and p(k2, t) can be calculated to be

< m21p(14,0)1m2'>=

q1N1

E A, (1) I
-11 2' -m2 N1

and

x-r47c Yg11v1(01,$1)

k2

442 N2

<millp(k2,t)Imi>= I (-1)k2-If-ml Aq2(2)
ml' -m1 N2

x-/-47r Yq2 N2(02702)

(2-6)

(2-7)

where the Wigner 3-j symbols48 enter each of these expressions. The Yq*INI(01,01) and

Yq2N2(02,02) are the spherical harmonics. The numbers Aq1(1) Aqi(LiLi'IiI) and

Aq2(2)E- Aq2(L2L2'If I) depend only on the spins of the nuclear states involved in the

transition and the multipolarities of the emitted radiations. The overall normalization is

A0 = 1. We assumed that no polarizations of the radiation are observed. In that case the

angular correlation function W(ki, k2, t) is also called the directional correlation

function. Using the expressions (2-6,7) for the matrix elements of the density matrices,

W(k 1, k2, t) becomes

w(ki, k2, 0.47c E E [(2k1+1)(2k2+ 1)] 2 Ak1(1) Ak2(2) GkNilkN22(t)

k2 NI N2

x Yki (°1,01) Yk2N2(02,02) (2-8)
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Equation (2-8) defines the so-called perturbation function GNki1kN: (t), which contains all

the information about the interaction between the PAC probe and the extra-nuclear field:

,IsTI /%11 2I+m +m 1 I ki
(t)= I (....i) 1 2

ICI k2 [(2ki + 1) (2k2 + 1)12
n12 -1112 NO

m1m1' In2 M2'

x
ml'

I

m1 N
k2

<milA(t)1m2><mflA(t)Im2'> . (2-9)
2

The name "perturbation" indicates that this interaction perturbs the angular correlation of

a free nucleus.

2.2. Angular Correlation for Free Nuclei

If there are no interactions between the intermediate state of the PAC probe and

the environment during the transition Ii --> I --> If, the time evolution operator A(t), as

defined in (2-2), becomes unity. Therefore

<MilA(01M2><111111A(t)IM2'> = Otni m2 51111' irli

So ml = m2, and we can use the orthogonality of the 3j-symbols:36

, I ki)r, I k2,
.., ,, ,m1 m1 No .,f _mu N2,

(2-10)

= (21C1-1- i)-i 614 k28NIN2 (2-11)



NiN2
1 2

Now equations (2-9, 10, 11) give a simple expression for Gk k (t) :

GNIN2
kik2 k kik2L'NIN2
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(2-12)

The physical averaging over the directions of k1, keeping only the information about the

angle 9 between k1 and k2, reduces the summation over N1 and N2 in (2-8) to (2k+1).

Furthermore, equation (2-12) for free nuclei reduces the general formula for

W(k 1, k2, t) considerably, because it allows us to use the Addition theorem for

spherical harmonics to obtain

kmax kmax

W(e) = E A k(1 ) A k(2) Pk(cos 0) = I Ak kPk(cos 0) .
k =0, even k =0, even

(2-13)

The Pk(cos0), the usual Legendre polynomials, contain all the angular dependence of

the unperturbed (free nuclei) angular correlation function. The selection rule of the 3-j

symbols restricts the value of the summation index k:

0 (2-14)

For spin 1=5/2 states, as used in this experiment, kmax is equal to 4, and the angular-

correlation coefficient A4 is much smaller than A2. The reason that the summation

contains only even values of k up to kmax is that the circular polarization of the emitted

radiation is not observed.



22

2.3. Static Perturbations

2.3.1. Static Perturbations of Single Nuclei

If there is an interaction (perturbation) between the probe nucleus and its

environment, but the interaction does not change during the lifetime of the intermediate

state I, the time evolution operator (2-2) becomes

A(t) = exp(-*Kt) . (2-15)

The time-independent interaction Hamiltonian K can be diagonalized by a unitary

operator U. The diagonal elements are the energy eigenvalues En. The time evolution

operator A(t) can then be written as

_i EtA(t)=U e A U ,

and the matrix elements of A(t) become

(2-16)

<m11A(01m2 >. I <nlin1 >*<nlm2> exp(-*Ent) , (2-17)
n

where the vectors In> are the eigenstates of the diagonalized Hamiltonian, describing the

nth sublevels of the intermediate state. So the result of the angular perturbation function

(2-9) for a single nucleus in the case of a static perturbation is:
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1 I ki )riNiN2, E EH.2I+m
-kk ki-).-- , ii-m2[(2ki+i)(2k2+1),-T

inf M1 NO
inlini'm2m2 nn'

MY

I

M2
k2

N2
i(Iexp[-w(En En,)t] < nimi > * < nlm2 >< n'Imi'>< n'Im2'> *.(2-18)

2.3.2. Static Perturbations in Polycrystalline Materials

A powder can be considered as a large number of randomly oriented

microcrystals. So the principal axes in the various microcrystals have different

directions. Let D(S2) be the rotation matrix that transforms from the lab coordinate

frame z through a set of prescribed Euler angles Q = (4), 0, y) to the principal axes

system z' of a microcrystal:

K(z') = D(0) K(z) D-1(0) . (2-19)

If U is the unitary operator which diagonalizes K(z'), then the matrix elements of A(t)

become

A(t) = D-1(S2) U-lexp(--k Et) U D(L1) ,

and the matrix elements of A(t) can be rewritten as

(2-20)

<m1lA(t)Ini2>. I <nlm'> *
< ril m2' > exp(--kEn t)Dimi,mi

*

(S2) DIm2,m2(0) . (2-21)
m1'm2'n
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The terms of type Dimi,mi = I D(S2) I m1> are the matrix elements for the rotation

operator. For these matrix elements we can apply a very useful contraction relation:48

Jl J2

mli m2'
)Di ,*. ymf Min

ml
m1 m2

J2 J )Dji Dj2
m2 m

rnimi m2m2

Using (2-23) and summing over all sublevels mi, ml', m2 and ma', we find the

perturbation function of each of the microcrystals:

i2Gkik2 (t). 1, (-1)2I+mi+m2 rki 1)(2k2 + 1)] 2 eXp[I(En Eif)t]
m1m2 nn'

i)(
x(I

k i I
k2)Dk1*Apk,,2m (u)

-m1 Pi )m2' m2 P2 ig r2-2

x < >*< n1m2 >< n'Im2'>*

(2-22)

(2-23)

Each one of the microcrystals has a different rotation matrix. To obtain the perturbation

function of the whole powder, we have to average over all contributions, corresponding

to the different orientations of the principal axis. If we use the orthogonality relation for

the rotation matrices,

J
Dil (0) Di2 (a) = j j 8m m 8nal m1 m2m2 +1 1 2 1 2 M1 M2

2i1

the resulting angular perturbation function is

(2-24)
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I k k(.421..1+,112 I
Gk k(t) = ml N) 0 )12' m2 Nm1m2 nn'

ml

x exp[ 1-( En En,)t] < nl mi >*< n'l nl m2 >< n' 1 m21>* . (2-25)

This can be written as

Gk k(t) = 8k1k2 8111 N28pip2 y, Snn' exP[ I(En Elf)t] , (2-26)
nn'

using the coefficients Sknnk, which are defined as

sk1k2 I (_1)2I+mi+m2
nn

mim2

mi'mi

I 1 1c1)

ml' ml N )

(I I

fl12' m2 N

x < nlml > < n' I mit >< nl m2 >< n' I m2' > . (2-27)

Comparing (2-25) with the single-crystal result in (2-17), the perturbation function for

the polycrystalline sample can be regarded as the average of the perturbation function of

the single-crystal in the following way:

GNN(t)Gk = 2k
1

+ 1
E kk
N

The sum in (2-26) over all sublevels n and n' can be separated and the equation

rewritten as

(2-28)



Gk k(t) = I
sknnk cosi(En En.)ti

Lnon' h
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(2-29)

Inserting (2-29) in the expression for the angular correlation function (2-8), the

summation over N1, N2 can be performed since the perturbation function is independent

of N1 and N2. The addition theorem for the spherical harmonics can also be applied to

(2-8), and the angular correlation displayed by a polycrystalline sample has the form

W(0, t) = I Akk Gkk (t) Pk(cos 0) .

k=0,even
(2-30)

An important feature of the perturbation function (2-29) for the polycrystalline sample is

the time independent term Sn n
kk Because of this term, the angular correlation of a

polycrystalline sample is never completely destroyed under the influence of static

perturbing fields. For this reason, this term has historically been called the "hardcore".

2.4. The Static Electric Quadrupole Interaction

To find the energies En and En, which are needed to calculate the angular

perturbation function for a static perturbation in a powder source (2-29), the

Hamiltonian for the static electric interactions between the nucleus of the PAC probe and

its environment has to be considered. Since Zr02 is a nonmagnetic material, no

magnetic interactions have to be taken into account. Assuming the nucleus is

surrounded by point charges, the Hamiltonian for the static interaction can be written as



eiej
HEI Iri rjl
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(2-31)

where the quantities with index "i" are the charges and coordinates of the nucleus and

the quantities with index j are those of its environment. Using the usual multipole

expansion for the case rj > ri, the Hamiltonian becomes

eiejri
Pk(cosoi j) .HEI 2_, 2. k+1

i j k=0 rj

(2-32)

Here eij is the angle between a pair of ri and rj. Applying the addition theorem of

spherical harmonics to (2-33) yields

1 (2-33)HEI= 47t 44 2k + I (-1)11 ei ric Yk 1/(ei 4i) ei 1÷+Ir- Yk-1/(°i'(1)j)=0

To achieve a more compact form, the tensor operators of the nuclear moments, q(k), and

of the electric fields, VO),.are introduced.49 The definitions for these tensor operators

are

rik and Vi2c) e r1k+ Yk .)
1 1'

Using the definition of the scalar product of two tensor operators,

(2-34)



k

V(k)q
(k) V" V (DP- q(k) v(k)

p,
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(2-35)

the Hamiltonian can now be expressed as a product of two factors: a nuclear factor and

an external field factor

4 n (k) (k)
HE' 2k + 1 q

v
k=0

(2-36)

The only term that needs to be retained in this infinite sum is the the electric quadrupole

term and its corresponding interaction. The reason for that is that (i) the odd-order

electric moments vanish due to the requirement of parity conservation under reflection,

and (ii) the effects of nuclear electric hexadecapole moment or higher order terms are too

small to be considered. The remaining Hamiltonian ILQI is

4 (2) q(2) _ 4 ic V (-1)4 (11P 1/(211 .HQ I=VEV q z-d
11=-2

(2-37)

In (2-37), q(2) is the second-rank tensor operator of the nuclear quadrupole moment.

The quadrupole term in the multipole expansion of the electric field, V*(2), is often called

the classical electric field gradient operator (EFG). The matrix elements of the

quadrupole Hamiltonian (2-37) are



47c 2
< E lin lq(2)1 imi> y(2)
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(2-38)

The matrix elements of the quadrupole moment tensor qg(2) can be evaluated using the

Wigner-Eckart theorem:

2<1m1q(2)itin,>_ (_1)I-m (I
m'

I

-m
j.t) < Illq(2)III > .

11

The conventional definition of the nuclear quadrupole moment,50

(2)eQ=11-167c <IIIqo III> ,

allows us t o calculate the reduced m a t r i x element < I I I q(2) I II >

eQ
< >=11_16n

5 I -I 0

Equations (2-39) and (2-41) then yield the matrix elements of the the quadrupole

moment tensor:

(2-39)

(2-40)

(2-41)

< Imlq(2)1Im`>= (-1)I-11111-1- e
I 2 I I 21

(2-42)
167c m' -m 11))(0 I 0
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With this result, only the terms of the form Vg(2) remain to be calculated in equation (2-

38). Using the definition of the tensor operator V(k) from (2-34), we can write the

contribution of an external charge ej to V(2) as

Vg(2) = 7e.i Y2 (0,0) (2-43)

These spherical components Vg(2) can be written in terms of the Cartesian derivatives

a2 v
v,00 vxy, and V?, where the notation, Vxy =axay, etc., is used. In a principal-axis

system, the cross derivatives equal zero, and conventionally the coordinate system is

chosen such that I Vxx I I Vyy I I Vzz I. If we define the asymmetry parameter as

Vxx Vyy
11 =

Vzz
(2-44)

then EFG components (Cartesian components of VIP)) can be characterized by two

parameters, the magnitude Vzz and the asymmetry parameter II:

V(2) =11-5 V
16rc zz

V(2) 0

5 5V12= (Vxx Vy y Vzz

(2-45a)

(2-45b)

(2-45c)

Expressing the EFG components in Cartesian derivatives and using the conventional

definition of the quadrupole frequency COQ,



e Q Vzz

(13Q 41 (21-1)h

the nonvanishing matrix elements of the quadrupole Hamiltonian (2-38) are

<1m±2IHQIIIm >. ho)Q 2 [(I ±m +1)(I m +2)(I Tm+1)(ITm)]2

and

<1m I HQ I >= hwQ [ 3m2 I(I + 1)] .
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(2-46)

2.4.1. Static Electric Quadrupole Interaction for Axially Symmetric EFG

(2-47)

(2-48)

For the axially symmetric case, I1 = 0, the non-diagonal matrix elements of the

quadrupole Hamiltonian (2-47) are equal to zero. The Hamiltonian is diagonal with

eigenvalues (2-48):

Em = /1030:-.? [3m2 I(I + 1)] . (2-49)

There are (2 I + 1)/2 ( for halfinteger I) or I +1 (for integer I) distinct energy values

since the ± m levels are doubly degenerate. The perturbation function (2-30) for a

polycrystalline sample with axially symmetric electric quadrupole interaction is therefore

k k k
GkIc(t) = Sm m + Jna COS[ 30)Q (m

2 m'2 )t ] .

m m#>m'

(2-50)
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Introducing a new index n = I m2 m' 21/2 (for halfinteger I) or n = I m2 m' 2 I (for

integer I) and defining

I smk km,
Skn =

PJmm mm m

the angular perturbation function (2-50) becomes

Gk k(t) = Sko + Skn cos(moot) .

n>0

(2-51)

(2-52)

The angular frequency coo, equivalent to the smallest nonvanishing energy difference,

is equal to 6o (for halfinteger I) or 3o D4Q (for integer I). Because of the definition of

Gkk(t), we have E Skn =1.

2.4.2. Static Electric Quadrupole Interaction for Non-Axially Symmetric EFG

for the Case of an Intermediate State with I = 5/2

If the interaction Hamiltonian is not axially symmetric, it has to be diagonalized

to find the energy eigenvalues. In general it is difficult to diagonalize the Hamiltonian

matrix. To simplify the task, we will concentrate only on the case I = 5/2, which is the

nuclear spin of the intermediate state in 181Ta, used in this experiment. The

Hamiltonian (2-47) and (2-48) in matrix form for I = 5/2 is



HQI = h0)(2

(10 0 MO 0 0 0

0 -2 0 3Tha 0 0

mill) 0 -8 0 3Thrf 0

0 3114-f 0 -8 0 miff)

0 0 3Thii, 0 -2 0

,0 0 0 ibrif) 0 10

The secular equation of this Hamiltonian is

E3 - 28E{rig + 31(h(0)2 160 {1- r12}(hco)3= 0 .
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(2-53)

(2-54)

The eigenvalues of the quadrupole Hamiltonian in the case of non-axial symmetry are

therefore found by solving this cubic equation and can be expressed in the form

E+5=2ancoQcos[3 cos-1
, (2-55a)

2

1E.+, 3 =-2ahcoQcos[7(7c+cos 13)] , (2-55b)
2

E+1=-2aho)Qcos[7(n-cos-1 p)] , (2-55c)
2

with 0.12 80 (1 - ri2) (2-56)
3 a3

As before, we introduce the index n = I m2 2 V2, and the expression of the

perturbation factor for polycrystalline samples (2-30) becomes

3

Gk k(t) = Sk 0(r1) + I Sk n(11) cos [ con(11)t
n=1

(2 -57)
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The PAC frequencies con are the differences of the energy eigenvalues in (2-57)

1E3/2 - E1/2 I
col = = 2-s,/§a0),Q sin[i- cos-113 l , (2-58a)

w2=
1E512 -E312 I r_

2.0 acoQ sinr-i- (7c cos-1 (3)1 , (2-58b)

1E512 - /21
(03 = ' 2A/3 acoQsin[i(n+ cos-1 , (2 -58c)

with the sum rule (03 = 0)1 + (02. Note that these frequencies are functions of a and

and therefore also functions of the asymmetry parameter T1 (2-56). The eigenvalues of

HQI and the PAC frequencies of the quadrupole interaction as a function of tl for I = 5/2

are shown in Fig. 2.1.

The coefficients Skn in equation (2-58) can be expressed in terms of the

coefficients
'

kSk , which we defined for the general angular perturbation functionnn

(2-27):

Skn = Skn(1l) =
mm'

(2-59)

The ri-dependance of Skn has been calculated51 and the coefficients Skn for several

values of v are given in Table 2.1.

In equation (2-58) for the angular perturbation function Gkk(t), both con and Skn

are functions of So Gkk(t) itself depends on the asymmetry parameter i of the EFG

in a sample. Calculated perturbation functions G22(t) for different values of tl are

shown in Fig. 2.2.
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Fig. 2.1. (a) Eigenvalues and (b) PAC frequencies of the HQI as functions of r for I =
5/2. The eigenstates are doubly degenerate.
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Table 2.1. Coefficients Skn (k = 2, 4) for a general static HQI as a function of Ti with
I = 5/2.

11 S20
S40

S21
S41

S22
S42

S23
S43

0.0 0.2000 0.3714 0.2857 0.1429
0.1111 0.2381 0.2857 0.3651

0.1 0.2024 0.3688 0.2855 0.1432
0.1098 0.2395 0.2858 0.3649

0.2 0.2090 0.3617 0.2850 0.1443
0.1061 0.2435 0.2861 0.3643

0.3 0.2181 0.3517 0.2844 0.1458
0.1010 0.2491 0.2864 0.3634

0.4 0.2280 0.3405 0.2840 0.1474
0.0955 0.2553 0.2867 0.3625

0.5 0.2373 0.3296 0.2841 0.1490
0.0904 0.2613 0.2866 0.3617

0.6 0.2451 0.3198 0.2847 0.1504
0.0860 0.2668 0.2863 0.3609

0.7 0.2511 0.3113 0.2861 0.1515
0.0827 0.2715 0.2855 0.3603

0.8 0.2552 0.3044 0.2882 0.1522
0.0804 0.2753 0.2844 0.3599

0.9 0.2576 0.2988 0.2910 0.1526
0.0791 0.2784 0.2828 0.3596

1.0 0.2583 0.2945 0.2945 0.1528
0.0787 0.2808 0.2808 0.3596
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11 = 0.0

Fig. 2.2. Theoretical G22(t) for a static HQI with I = 5/2 as a function of
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11 = 0.5

11 = 0.9

11= 1.0

Fig. 2.2. (continued)
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2.4.3. Line Broadening of EFG Distribution

So far we have assumed that all the microcrystals contained in a polycrystalline

sample are perfect. But in real materials, there are always random imperfections such as

impurities or lattice defects. Small variations of the electric field gradient result from

these imperfections. Consequently, the Fourier transforms of the experimentally

measured angular distribution functions display a distribution of frequencies, rather than

an ideally sharp frequency spectrum with frequencies (on. To account for these random

variations, several distribution models for the EFG have been proposed.38,39,52

In this research, a Gaussian distribution was used. Let P(w coo) be the

normalized distribution function

2
P(w

1 (co 030)0)(0=
arc a

exp
- [ 1/-2 a I

(2-60)

where coo is the peak frequency, and a is the distribution width or standard deviation.

Then the model for the measured perturbation function Gaeasured is the convolution of

the theoretical perturbation function GrrY (2-58) and the distribution function

P(o) coo):

Gmeasured(t) = clo) Gkkthe°rY (t) P(0) 0)0) .
Jk k (2-61)



If we define the relative width of the frequency distribution, 5=a ' where the
(00

frequencies (0° are the peak frequencies, obtained from computer fits to the

experimental data (see 4.2.2.), then the solution of the integral (2-61) is

3
Gnasuredi

lt) Sk 0(r1) + I Sk n(r) cos [4(n)ti exp
n=1

(8 oP t)
2

n

2
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(2-62)

This model for the measured perturbation function can be regarded as the solution for

the ideal perturbation function multiplied by a Gaussian damping term. Due to this

damping, the higher frequency terms, (02 and (03, damp out faster than the lower

frequency term (01.

2.5. Time-Dependent Perturbations

If the environment of the PAC probe changes during the lifetime of the

intermediate state, the Hamiltonian H(t) which describes the extra-nuclear perturbations

becomes time-dependent. The time-evolution operator, A(t), governing the evolution of

the system, obeys the equation

d
A(t) = H(t) A(t) .

dt
(2-63)

To find A(t) and the corresponding matrix elements in the case of time-dependent extra-

nuclear fields is not as easy as it was for free nuclei (2-10) or for static perturbations
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(2-14). The reason for the complications is that the Hamiltonian at time ti H(ti) does

not in general commute with the Hamiltonian H(t2) at a different time t2.

Nevertheless, the problem has been solved for liquids46 and for fast fluctuating

EFGs in powder sources.47

2.5.1. Time-Dependent Electric Quadrupole Interaction in Liquids

The time-dependent interaction due to random Brownian motion of ions in

liquids is discussed here, because it reveals interesting features of the angular

perturbation function for fluctuating EFGs, which will be of interest for solid materials

also.

Abragam and Pound calculated the angular perturbation function Gid(t) for

liquids46 under the assumption that the fluctuation rate of the EFG, lite, is much higher

than the the transition rate, co< Q2 >-1t2, between the sublevels of the intermediate state

I. Another way to express that is to say that the observation time, meaning the lifetime

of the intermediate state, < 0)Q2 >1/2, is long compared to the characteristic fluctuation

time of the perturbing fields, tie. This assumption is reasonable, because for

nonviscous liquids such as water or dilute aqueous solutions, tic 10 -11 s, which is

considerably shorter than the lifetime of the intermediate state of typical PAC probes (for

181Ta tc = 10 -8 s).

Within the lifetime of the intermediate state of the nucleus many uncorrelated

fluctuations of the EFG occur. Because liquids are isotropic, the randomly fluctuating

interaction establishes no preferred direction in space. This means that in equation (2-8)

only spherical harmonics of the form Yki p have to taken into account (Ni = N2 =
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Using the addition theorem for spherical harmonics, expressing the final result in terms

of Legendre polynomials, the angular correlation function W(ki, k2, t) becomes:

w(e,t)= I AkimAk2(2)G?°k2copk2(cose) . (2-64)
k1 k2

The selection rule for the 3j-symbols requires for N1 = N2 = 0 that ml = ml' and

m2 = my in (2-9). So the matrix elements of the time-evolution operator reduce to:

< milA(t)Im2>< mi'lA(t)Im2' = l< mil A(t)I m2 >12 . (2-65)

The matrix element I< mil A(t)1m2 >12 = Pm1m2 describes the probability Pmt of

finding the nucleus in the state Im2> at time t, if it was in state Iml> at time t=0. This

transition probability Pmt was calculated for electric quadrupole interactions in

liquids by Abragam and Pound46:

I r IiI r II (_1)-2 I- a-b (2r (
m1 0 m11 m2 0 m 2r

Here Xr, the relaxation constant, is defined as:

Xr = 35-tc < 0)Q2 > r(r +1)(41(I +1) qr +1)-11 . (2-67)

So for liquids, using (2-66) and (2-67) together with the orthogonality relation of the

(2-66)



3j symbols, the general angular perturbation function (2-9) reduces to a very simple

form:

Gk k(t) = e- Att

43

(2-68)

2.5.2. Rapidly Fluctuating Electric Quadrupole Interaction in Polycrystalline Materials

The problem of finding an analytical expression for the angular perturbation

function Gid(t) for solids with time-dependent electric field gradients is rather

complicated. Attempts53,54 to derive analytical descriptions have achieved some

success in the past, but due to the complexity of this problem, assumptions and often

arbitrary simplifications were made which cast some doubt on the applicability of the

results.

Recently, the stochastic theory of PAC spectra due to Blume55 and Winkler and

Gerdau57 has been used to calculate the angular perturbation function G2(t) for spin

1=5/2 nuclei in the limit of a rapidly fluctuating EFG.` 6 The model assumes a static

EFG which is symmetric about the z-axis and an additional axially-symmetric EFG

whose symmetry axis fluctuates randomly among the x, y, and z directions. It is further

assumed that the three states, describing the three directions of the EFG, are equally

probable (this is the so-called XYZ+Z model):

P1 = P2 = P3 = 3 - (2-69)
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Then the Hamiltonian, 11(t), describing the time-dependent interaction can be written in

terms of the Hamiltonians of the three possible states. If Kj is the Hamiltonian of the jth

static-EFG state, then the total Hamiltonian is

3

H(t) = If fj(t)Ki .

j =1

(2-70)

We used the function fj(t) to account for the fact that the system is fluctuating. At each

time t one of the fj(t) is one, while the other two are zero. If the probability of a

transition from a state m to a state m' is independent of past transitions and only a

function of the time interval between two transitions, then the time-evolution operator,

A(t), obeys an equation similar to equation (2-63):

dA(t) = (--iHx(t) + R)A(t) .
dt st (2-71)

Here we used the time-independent, non-Hermitian "effective Hamiltonian",

(-- lixt +Rj, which is also called the Blume matrix. The so-called Liouville operators

Hsxt is composed of the three static interaction Hamiltonians, Kj, representing the three

EFG states, and R is the Liouville relaxation operator, a matrix of transition-

probabilities between the three EFG states. Note that this is a phenomenological

approach justified by time-dependent perturbation theory, since the system cannot be

described rigorously by a Hamiltonian, as it is evident from the fact that the Blume

matrix is not hermitian. The time-evolution operator A(t) then becomes:
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A(t) = exp{(---iesxt+R)t} . (2-72)

With these assumptions, the matrix elements of A(t) in the general equation for the

angular perturbation function (2-9) have to be replaced by the sum over all the possible

matrix elements weighted with the probabilities pj. Then the angular perturbation

function for a polycrystalline source is given by:

G2 (t)= (_1)2I+m,,m2 (I
Ilml

minv m2m2'

I 2 I
ml N my m2 N

3

x I Pa < b m2 mylexp{(--Hst+R)t}la mf> . (2-73)
a,b=1

The eigenvalues of the Blume matrix are (-Xq + icoq). Each of the complex eigenvalues

has its own frequency coq and relaxation rate Xq. The perturbation function can then be

written as a sum of terms corresponding to these complex eigenvalues:

G2(t) = I G2(q)e(--Aq+itoq)t

q

(2-74)

If the fluctuation rate is small, the effect of R is small, and the only frequencies which

contribute to G2(t) with significant weight are the frequencies coq, corresponding to the

static states among which the system fluctuates. In the limit for very rapid fluctuations,

on the other hand, all the static contributions due to Hsxt average to zero, and G2(t) is a

purely exponential decay, similar to the result for liquids (2-69).



In the rapid fluctuation regime, where the effect of the static frequencies is still

noticeable, the numerical result of the angular perturbation function is described by:

3

G2(t)=S20eX°t S20e-4t S2icos(wit) e alt ,

46

(2-75)

where S20 = 0.131, S20' = 0.069, and the other geometrical factors S2i and frequencies

04 are the same as for the static interaction alone. There are fixed relations between the

five relaxation constants, and they can be expressed as:

X07X0 = 3.525 , (2-76a)

X1/0 = 2.343 , (2-76b)

X2/4 = 3.071 , (2-76c)

X3/0 = 5.899. (2-76d)

The same as for static interactions (2.4.3), we have to take small variations of

the EFG due to imperfections into account. After convolution with a Gaussian

distribution (2-60), the measured angular distribution function for polycrystalline

sources with a rapidly fluctuating EFG becomes

3

(6(°22t)2}

(2-77)Gmeasurect,)=S20eX°t2 ±S20eXot S2jeXit[cos(coio]exp
i=1

It is interesting to note that the perturbation function for static interactions,
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(2-29), contains a time-independent term, the so-called hard core, which does not decay

with time. The perturbation of the angular correlation for static interactions is therefore

never completely destroyed. Equation (2-78) shows that the time-dependent

perturbation function does not contain such a hard core. This means that for a

fluctuating EFG, contrary to the static case, after a time of the order of 1A0 there will be

no more perturbation of the angular correlation between the successive gamma-rays.
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3. Experimental Arrangements

3.1. PAC Spectrometer

The spectrometer used in this work is a four detector PAC spectrometer which

has been developed and improved in our lab over the last three to four years.38,39,57

Instead of the more conventional multichannel analyzer (MCA), a Tandy/Radio Shack

Color Computer (Co Co) was used to control the spectrometer. Although standard

features easily available in a MCA must first be programmed when using a computer,

such a set up is much more flexible than a traditional MCA-based spectrometer.

The functions of a y-y PAC spectrometer are to detect the two correlated

cascade gamma-rays emitted by a tracer nucleus and to determine the time separation

between them. The functional block diagram of the spectrometer is illustrated in Fig.

3.1. The four gamma-ray detectors are placed at 90° angle intervals in a plane with the

source at the center. Each detector is driven by its own high voltage power supply and

provides two signals for each absorbed photon: dynode signal (used for energy

information), and anode signal (used for timing information). The timing signal is

correlated with the time that the gamma-ray enters the detector, and the energy signal is

proportional to the energy of the absorbed photon.

3.1.1. Coincidence Electronics

The purpose of the coincidence electronics is to identify events in which a y-ray

with the energy of yi enters one detector and a y-ray with the energy of y2 enters

another detector. Such an event is called valid, and the time interval between the
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detection of the two yquanta is recorded.

The timing outputs of detector 0 and detector 1 are connected to a signal mixer.

The signal is then shaped by a constantfractiondiscriminator (CF'D) (EG&G Ortec,

Oak Ridge TN, model 583). For every timing signal from the anode of the

photomultiplier tube that exceeds the threshold of the C1-D, a standard NIM pulse,

whose timing is correlated to the time the gamma ray was absorbed in the detector, is

generated and then fed into the 'Start' input of a timetoamplitude-converter (TAC)

(EG&G Ortec, model 566).

In the same way, the timing pulses of detector 2 and 3 are connected to a mixer.

But before the signals of these two detectors enter the CFD, they are delayed by a delay

unit (EG&G Ortec, model 416A), so that a prompt event (71 and 72 are detected

simultaneously) is recorded near midrange of the TAC. This allows one to accumulate

not only a "normal" but also a "reverse" spectrum. The signal then gives the 'Stop' for

the TAC.

After the TAC has received a 'Start' and a 'Stop' pulse, the CI-lls are gated off

until the conversion is completed to avoid interference caused by the incoming CFD

signals. For each successful conversion, the TAC will generate a unipolar pulse whose

pulse height is proportional to the time interval between the 'Start' and 'Stop' pulses.

This pulse then is digitized by an ADC (EG&G Ortec, model 800), which is set to

convert a full height linear pulse (10 V) into 1024 channels. As soon as the ADC starts

the conversion, a busy signal is generated to gate off the TAC until the ADC is free for

the next job. Eventually the ADC is read by the computer through the interface board.

The energy pulses from each detector are shaped and amplified by their own

linear amplifiers (EG&G Ortec, model 575A , and Canberra, model 2012), then the

resulting bipolar pulses are fed into a laboratorybuilt twin singlechannel analyzer

(TSCA). Each TSCA is adjusted to detect both yi and y2. The two signals from each
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TSCA are fed into a laboratorybuilt encoding/routing circuit to determine the sequence

of the correlated events (the so-called routing information). The "encoding/routing"

circuit is designed such that the simultaneous detection of more than one start and/or

stop events is considered invalid.

A conversion is accepted as a valid "normal" event only if a TSCA of detector 0

or 1 indicates that a yi was absorbed and a TSCA of detector 2 or 3 indicates that a y2

was absorbed. If a y2 is detected by detector 0 or 1 and yi is detected by detector 2 or 3

then it is called a valid "reverse" event. In case of invalid events, a valid-gating circuit

prevents the ADC-complete signal from interrupting the computer and automatically

resets the system, reducing the dead-time of the spectrometer.

As soon as a valid event is flagged, the computer is interrupted and the digitized

time separation of the two cascade gammarays and their routing information is

collected by the interrupt service routine of the operating software and stored in the

proper location of the computer memory. While the computer is waiting for the

interrupts, it can perform some simple tasks. For example, the raw data may be

displayed on an oscilloscope and on-line analyses can take place while the experiment is

in progress. With this configuration, it is very easy to monitor the progress of the

experiment and to detect the faults in the spectrometer or sample in the early stage and

take proper measures to correct them accordingly. During an experimental run, the data

are saved several times to prevent the loss of data due to power failure or computer

crash.

3.1.2. Operating Software

A Tandy/Radio Shack Color Computer (Co Co) is used in this experiment to

control the spectrometer and store the results on a disk. The coincidence electronics as
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described above is connected to the Co Co via a bus expansion box (Basic Technology,

Ortonville, MI, model BT 1000) using a peripheral interface adapter (PIA) chip

(Synertek, Santa Clara, CA, type SY 6522).

Most of the spectrometer software is written in BASIC, but the timecritical

parts are written in machine language. The most timecritical part is the interrupt service

routine, because the time spent in reading the PIA ports largely determines the dead

time of the system. The interrupt service routine saves the processor register, status and

return address on the stack. After the PIA registers are read, the ADC is reset and the

next interrupts can occur while the computer is still processing the previous one. This

sets an upper limit on the rate at which interrupts can be accepted. If the interrupt rate

becomes too high, the stack overflows and the computer crashes. In practice, this has

not been a problem because the activity of the samples was low enough not to cause too

many interruptions. For additional safety, an interrupt service routine examines the

VALID bit (most significant bit of the routing information) and returns immediately

from interrupt if the event is invalid.

In the case of a valid interrupt, a memory location is determined by the data

received from the PIA input lines. The computer's random access memory (RAM) is

divided into 16 sectors corresponding to the pairs of detectors that detected yi and Y2.

For example, sector 0/2 holds the spectrum of events for which yi is detected in

detector 0 and 72 in detector 2, etc. Of the possible 16 sectors, only 8 sectors are

actually used. These are sectors 0/2, 0/3, 1/2, and 1/3 for the "normal" spectrum, and

sectors 2/0, 2/1, 3/0, and 3/1 for the "reverse" spectrum. Each sector consists of 512

channels and each channel is represented by two bytes. The routing information

identifies the memory sector, while the ADC conversion result designates the offset of a

particular event in that sector. As soon as the channel which corresponds to the detected
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events is identified, the count in that channel is increased by one and the routine returns

from interrupt. The channel representing timezero (of a prompt event) is located near

midrange of the TAC (channel 256), so that in addition to the "normal" spectra the

"reverse" spectra can be accumulated.

For a typical run, about 5x104 to 6x104 counts per channel at the peak of the

spectrum are accumulated, so a total of 107 counts are accumulated for each sector. A

typical run takes about 24 to 48 hours to accumulate two statistically independent spectra

("normal" and "reverse"). When sufficient data have been collected, the spectra and

relevant information such as sample name, date, temperature and calibration data are

saved to a floppy disk for later analysis on an Apple Macintosh II computer.

3.1.3. Spectrometer Calibration

At regular intervals, the energy and time calibration of the spectrometer had to be

checked and adjusted when necessary.

Performing the energy calibration means adjusting the TSCA's in such a way

that they cut out the desired energies of yi and )02 of the total spectrum of the 181Ta

The energy calibration is done with the sample which is currently being investigated and

a multichannel analyzer (MCA) connected to the output of the linear amplifier. Fig. 3.2.

shows a typical energy spectrum accumulated in the MCA. For a zirconia sample

containing 18114081Ta tracer, four prominent peaks can be recognized. The large low

energy peak is mainly due to 133 keV photons from the 1/2 -> 5/2 decay (see Fig. 1.2.

and Fig. 3.2.), but note that the 136 keV peak from the 9/2 to ground state decay is not

resolved from the one at 133 keV. The two smaller high energy peaks result from the

346 keV decay of the intermediate state to the 9/2 state and the 482 keV gamma from the
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Fig. 3.2. Typical energy spectrum of 181Ta recorded by a MCA unit using a BaF2
scintillator detector. The PAC transitions yi and12 are the 133 keV and the
482 keV peaks, respectively.
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intermediate to ground state transition, respectively. The low-energy peak near 70 keV

is probably the result of K x-rays from 181Ta. With the MCA gated by the output signal

of the TSCA, the windows of the TSCA are set so that only the 133 keV (Ti) or 482

keV (y2) peak is detected.

The energy spectrum of the zirconia-alloy samples in this experiment (Fig. 3.2.)

is not only a result of the decay. In fact, the relative intensity of the peaks

turned out to be dependent on the time since the irradiation with neutrons, which

indicated that other isotopes with different half-lives contributed to the spectrum. The

intensity of the 346 keV peak relative to the "Stop"-peak (482 keV) increased from 85%

for a strong sample (immediately after irradiation) to about 100% after two to three half-

lifes. In strong samples a high energy peak at about 740 keV showed an intensity

relative to the "Stop"-peak of 11%, whereas this percentage rose to 34% for weak

samples. These increases could be caused by 95Zr decaying to 95Nb with a half life of

64 days (724 keV and 756 keV) and 1751-1f which decays to 175Lu (343 keV) with a

half-life of 70 days.43 It is not unlikely that these isotopes occur naturally in the

materials used for the samples and their contribution becomes more and more important

with age of the samples since their half-lives are longer than 181W (42.4 days).

The task of time calibration consists of three parts: (i) adjusting the cable lengths

in the fast branch so that the timezero channels for all memory sectors are the same, (ii)

determining the time scale of the TAC, and (iii) determining the time resolution of the

spectrometer. Before the time calibration can be performed, the energy windows of the

TSCA must be adjusted very carefully to respond to the appropriate energy peaks of the

PAC nuclide being used in the experiment.

The timezero channel for a prompt event in each memory is aligned using a

22Na source, which decays with a halflife of 2.6 years through 13+ emission to its

daughter isotope 22Ne. The positron eventually annihilates with a electron in the
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surrounding material. In most of the cases, two photons, each with energy of 511 keV,

are created simultaneously and emitted in opposite directions. Occasionally, the photon

pair will be absorbed by two detectors, and the resulting prompt spectrum accumulated

in the corresponding memory sector should ideally resemble a deltafunction. In

reality, the prompt peaks have a Gaussianlike distribution due to the finite time

resolution of the spectrometer. By adjusting variable delay lines between the mixers and

CFDs, the timezero channels of all memory sectors are aligned to within a few tenths

of a channel width.

After prompt spectra for each detector pair have been accumulated for the same

time interval, a program determines location and full width at half maximum (FWHM)

for every prompt peak and computes the instrumental resolution function for both the

normal and reverse spectrum. The instrumental resolution function, used during data

analysis to account for the finite time resolution of the spectrometer, is the sum of the

prompt peaks in each of the four channels before and after the timezero channel and is

normalized to 255 in the timezero channel itself.

Special care needs to be taken to ensure that the prompt peak counts for each

detector pair are as close as possible in order to get a statistically equal weighted

contribution from each pair. The FWHM of the resolution function is as wide as the

prompt peak belonging to the worst detector pair, assuming that the prompt peaks are

lined up perfectly. The FWHM in this work is about two channels. Because the

resolution is 0.4 ns/channel, the overall time resolution of the spectrometer is 0.8 ns.

A time calibrator (EG & G Ortec model 462) is used to determine the absolute

time scale of the TAC. The time calibrator generates 'Start' and 'Stop' pulses separated

by integer multiples of a chosen constant period. These peaks are fed directly into the

TAC inputs, and a calibration program accumulates the periodic repeating peaks and

evaluates the time calibration by doing a least square fit. The time calibration gives the
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absolute time scale for the TAC. For the data collected in this work the time calibration

was 0.42 ns/channel with an error of less than 0.4%. Timezero channel, instrumental

time resolution function and time calibration are stored in the computer's RAM and

saved with experimental spectra to a floppy disk so that this information is available

when the spectra are analyzed.

3.1.4. GammaRay Detectors

Each gammaray detector consists of a 1.5" x 1.5" cylindrical barium fluoride

(BaF2) scintillator (Harshaw/Filtrol Partnership, Solon, OH) mounted on a Hamamatsu

photomultiplier (Hamamatsu, H 3177 , Japan). The base and the tube are mounted

together as one unit, and the detector is already covered by the manufacturer with

magnetic shielding to prevent the external magnetic field from penetrating the detector.

High voltage power for each detector is provided by two power supply units (Fluke,

Seattle, WA) and a laboratory-built voltage splitter, which allows individual setting of

the voltages for all four detectors.

Due to the interaction of a photon entering the scintillator with the material, the

energy of the y-ray is converted to fluorescent light in the scintillator crystal. The

intensity of the resulting fluorescent light is proportional to the energy the photon

absorbed in the scintillator. The fluorescent light then enters the window of the

photomultiplier and hits the cathode, coated with photoelectric material, and frees

electrons which are then accelerated and multiplied along the dynode chain.

In using y-y TDPAC techniques to probe microscopic properties of condensed

matter, a set of scintillators with both good energy and timing resolution is essential.

NaI(Tl) scintillators used in most TDPAC experiments have a high efficiency and good
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energy resolution but their time resolution (mostly in 2 to 3 ns range) is poorer than of

BaF2 crystals. Because the half-life of the intermediate state in our PAC probe nuclei is

only 10.8 ns, a good time resolution of the spectrometer has to be achieved and

therefore BaF2 crystals have been used in this research. The fluorescent spectrum of

BaF2 shows a fast component in the ultra violet at 220 nm and a slow component at 310

nm. The fast component carries about 20% of the total light intensity and has a decay

time of 0.8 ns. In comparison, Nal scintillators show a decay time of 230 ns at 413

nm. Some selected properties of the BaF2 scintillator are listed in Table 3.1.

Table 3.1. Some selected data of BaF2 scintillator.60

Light yield relative to Nai(Tl):

fast component 50%

slow component 20%

Wavelength of maximum emission:

fast component 220 nm

slow component 310 nm

Decay constant:

fast component 0.8 ns

slow component 620 ns

Index of refraction at 325 nm 1.49

Thermal coefficient of linear expansion 18.4x10 6/K
Density 4.88 g/cm3

Melting Temperature 1627 K

Hygroscopic no
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Due to the memory limitations of the Co Co in use at this moment and the transit

time spread in the photomultiplier tubes, we are unable to fully utilize the good timing

resolution of the BaF2 crystal. The timing resolution of the spectrometer in this work is

about 0.8 ns, which is still very good. Since the fast component of the fluorescent light

from the BaF2 is in the ultraviolet region, a photomultiplier with a quartz window like

the Hamamtsu H-3177 must be used.

The density of BaF2 is 4.88 g/cm3, compared to 3.67 g/cm3 for NaI. This

results in a higher absorption efficiency for yquanta in BaF2 . The energy resolution

of a detector is defined as R = AE/E , where AE is the full width at half maximum and E

the mean energy of the peak. While E is proportional to the number of electrons created

at the cathode, AE is proportional to the standard deviation of the number of

photoelectrons. Since Nal detectors yield about 50% more photoelectrons than BaF2,

the energy resolution for BaF2 is about a factor of 4f worse than for Nal scintillators.

An energy resolution of 15% for 511 keV gammarays can be achieved with our

spectrometer which is comparable to the published results.58,59

A detailed study of the properties and characteristics of BaF2 scintillator has

been reported in the literature61, and the applications of the BaF2 in the yy TDPAC

measurement of condensed matter have been reported by several groups.36,58

The face and the sides of the scintillator were covered with 3 layers

of proprietary ultraviolet light reflecting Teflon tape (Harshaw/Fitrol) and a

layer of aluminum foil to increase the light output. The crystal was

mounted on the photomultiplier window using General Electric Viscasil

600-000 silicone fluid as optical coupling fluid, which exhibits a near unity

transmissivity for light with wavelength greater than 190 nm. All four detectors are

attached to aluminum frames and are free to slide along tracks at 90° angles from each

other.
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3.1.5. Furnace

Furnace development has been a major effort in this laboratory over the past

several years.39 Because measurements were taken in a temperature range between

room temperature and 1300°C, the furnace must satisfy several conditions in order to

allow proper work. Some of these conditions are: (i) the outer surfaces of the furnace

must be at room temperature so that detectors work at the same temperature independent

of the sample temperature, (ii) the furnace body should be thin and constructed using a

material of low atomic number so as not to reduce the intensity of the gamma-rays

emitted by the sample significantly, and (iii) the furnace must work reliably at 1300°C or

even higher continuously over several weeks.

The furnace, which is used in this work, is built around a one-end-closed

alumina furnace tube (McDanel Refractory Co, Beaver Falls, PA, type 998) with an

inner diameter of 3/8" and an outside diameter of 1/2". The heating element is cut from

a 5/1000" thickness graphite foil with the help of a predrawn paper pattern (Fig. 3.3(a)).

The heating element is wrapped around the furnace tube and covered with one

layer of alumina thermal insulation and two layers of zirconium foil. The insulation

material has been heated to about 1200 °C for 48 hours in order to burn off organic

binder contained in the material. This binder would otherwise carbonize at elevated

temperatures during the run of the experiment and begin conducting, ruining the effect

of the heating element. The zirconium foil serves two purposes: heat shielding and

oxygen "gettering" to prevent the heating element from oxidizing. Two pieces of copper

foil are used as the current leads which are connected to the vacuum feed-through.

The heating unit is mounted in an aluminum housing surrounded by a water-

cooled jacket (Fig. 3.3(b)). A laboratory-built AC power supply is used to power the

furnace. The open end of the furnace tube is exposed to the air, and the sample and a
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PtPt/10%Rh thermo couple is placed in the center of the tube. The temperature is

controlled by a proportional controller (Omega Engineering, Stamford CT, model 49)

connected to the thermocouple. It was found that a moderate vacuum (ca. 15 mTorr) is

sufficient to prevent the heating element from oxidizing. A wellconstructed furnace

will typically last for 3-6 months, operating at temperatures up to 1300°C.

Temperature profiles of the furnace have been measured over various

temperatures up to 1400°C38. The temperature differences between all sides of a

sample are slightly less than 10°C at 1400°C. The mentioned temperature controller has

an analog temperature display to show the local temperature at the position of the

sample. This display was calibrated using a PtPt/10%Rh thermocouple and an

accurate voltmeter. Fig. 3.4. shows a linear relationship between displayed and actual

temperature, but a correction factor has to be taken into account. Even though the

temperature cycle of the temperature controller is smaller than 3°C, the temperature

uncertainty should be considered to be about 10°C at 1300°C.

3.2. Sample Preparation

Three different zirconia-yttria alloy samples were used in this work with Y203 contents

of 35.4 wt % , 27.8 wt %, and 16.9 wt %, respectively. As mentioned in 1.1.2., the

cubic phase is stabilized in alloys with an Y203 content above 16 wt %, so all samples

used in this experiment are cubic, fully yttria stabilized. All sample materials were

obtained from Teledyne Wah Cheng, Albany, Oregon and contained roughly 1 at %

hafnium. Of each of the three materials, samples of 100 mg and 200 mg were made and

placed in cylindrical alumina capsules of 4 mm inner diameter and a height of 25 mm.

For use in the spectrometer, the samples had to be irradiated with thermal neutrons in
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order to create the radioactive isotope 181Hf out of the natural 18011f. This was done at

the Oregon State University Triga reactor, which had a thermal neutron flux of 4x1012

n/(cm2 s) at 1 MW. For additional safety, the alumina containers were sealed in a

nuclear grade polyethylene vial during irradiation.

In addition to 181Hf, a number of short-lived isotopes were produced also. The

samples were allowed to rest for at least three days for these isotopes to decay. The

remaining 181Hf activity, typically 15 to 25 !Xi, was adequate to permit PAC

measurements with good statistics to be taken within one to two days. Because of the

long half-life of 181, a sample retains sufficient activity to be used for about 40 to 60

days.
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4. Data Reduction and Data Analysis

After sufficient data have been collected for a spectrometer run, the coincident

counts of each of the sectors for the "normal" and "reverse" spectra are saved to a

floppy disk by the Co Co. Information about the calibration of the spectrometer (see

3.1.3.) is saved together with the spectra. The analysis of these raw data is basically

done in two steps:

Calculating of A2G2(t) (Data Reduction). The raw data are read into an IBM

XT computer where the experimental perturbation function G2(t) multiplied by the

effective anisotropy A2 is calculated using a laboratory-built program.

Fitting the experimental A2G2(t) to different fitting models (Data

Analysis). The A2G2(t), calculated from the data, is transferred to an Apple

Macintosh II computer where a laboratory-built program is used to fit the results to

different fitting models. The resulting fitting parameters are used for further

analyses.

4.1. Data Reduction

The spectrum of each sector as it is saved on a Co Co-disk and read by the IBM

XT is the number of counts per channel. Given the time calibration (in this experiment

0.4 ns/channel), this can be interpreted as a time dependent spectrum. Each sector i/j

contains also a certain amount of background counts (B1) due to accidental

coincidences. The background for the "normal" spectrum is found by taking the

average of counts in channels corresponding to events which occurred 35 to 80 ns

before time-zero. Because these channels accumulate events at negative times, they just
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contain random background. For the "reverse" spectrum, the background is taken from

channels corresponding to positive times.

If 0 is the angular separation between the ith and jth detector, and ei, ej, the

efficiencies of each detector, then the raw data contained in its corresponding memory

sector i/j can be expressed as:

1 --1--13--(0,t) = e 'Ne.e- NoW(0,0+ii 1 i 131.1
TN

(4-1)

Here No is the decay rate of the parent isotope (in this experiment 181Hf) and tN is the

mean life of the intermediate state (5/2+ state of the 181Ta, tN= 10.8ns). W(0,t) is the

angular correlation function which contains all the information about the interaction of

the probe and the environment as it is discussed in chapter 2. For PAC experiments in

polycrystalline materials using a probe with a 5/2 intermediate state and neglecting

higher order terms, we derived the angular correlation function (2-70):

W(0,0 --:-- 1+ A2 G2(t) P2(cos CO . (4-2)

The first step in the data reduction is to subtract the background counts (Bij) from the

data (DO in each sector. The average backgroundper channel is subtracted, beginning

at time-zero channel until the signal-to-noise ratio becomes smaller than one. At that

channel, the spectrum is cut and the succeeding channels are not considered in further

analysis. The background-corrected counting rate is

1Cij(0,t) = Dij Bii = e TN eiej N0W(0,t) .

TN
(4-3)



Under the assumption that the efficiencies ei and ej are the same for each detector, the

experimental angular perturbation function A2G2(t) is equal to the so-called spectra-

ratio, R(t), which is defined for the "normal" spectrum as62

N1/2 ,
L.ri

r, N1/2
(CO2 k-

ri
13 ) k03 L-12 )Rn(t)= 2 = A2G2(t)normal

(CO2 C13)
1/2

+ 2 (CO3 C12)1/2

and for the "reverse" spectrum as

C301/2 1/2
Rr(t)= 2 (C20 (C30 C21)

= A2G2(Oreverse
(C20 C31)

1/2 + 2 (C30 C21)1/2

(4-4)

(4-5)
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So the experimental A2G2(t) function for both the "normal" and the "reverse" spectrum

was calculated and saved to their corresponding files.

4.2. Data Analysis

The experimental angular perturbation function A2G2(t), calculated by an IBM

XT computer, was transferred to an Apple Macintosh II computer. Laboratory-built

programs were used to fit A2G2(t) to different models and to take the Fourier transform

of both A2G2(t) and the fitted functions.
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4.2.1. Fourier Transformation

A Fast Fourier Transformation (1-1-1) of the angular perturbation function

A2G2(t) was performed for some of the samples as additional information about sample

quality (homogeneity) and phase transformations in the samples.

For a PF1 of the A2G2(t), the timedomain datawere multiplied by a time

domain window to reduce the spurious peaks in the Fourier spectrum due to the finite

extension of the data. The windowed time data were reflected to negative time to

increase the data range. A cosine window was used in finding the s for the A2G2(t)

functions throughout this work.

To ensure accurate fits, the PP 1 of the experimental A2G2(t) and the I-1-1 of the

fitted function were compared.

4.2.2. Fitted and Derived PAC Parameters

A nonlinear leastsquares fitting routine 63 based on Marquardt's algorithm was

used to fit the experimental A2G2(t) function to an appropriate theoretical expression.

To account for the finite instrumental resolution of the spectrometer, the time resolution

function of the system is worked into the fitting routine. The distribution of the EFG is

assumed to be of Gaussian shape (see 2.4.1.). For a converging and meaningful fit, a

hard copy of the fitted parameters and a plot of the fitted function was obtained.

The fitting parameters could be chosen to be either fixed to a certain value during

the fit, or to'be adjusted by the fitting routine. These parameters are:

The observed effective anisotropy (Ar). The true A2 is reduced by solid

angle correction factor and by other known or unknown sources and is called Ar.
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The relaxation constants (4.k). Time dependent fluctuations of the EFG give

rise to terms like e kt in the perturbation function G2(t) (see 2.5.).

PAC frequencies 401, (02) . The PAC frequencies depend on the quadrupole

frequency 0)Q and the asymmetry ri of the EFG (2-57, 2-68). The frequencies col,

(1)2 are therefore a measure of the interaction between the nuclear quadrupole moment

of the nucleus and the EFG due to the environment.

The relative distribution (8) of the EFG. 8 = Oct
also called the line

width and is related to the distribution of cations and oxygen vacancies.

Other physical quantities can be derived from these fitting parameters. Of

interest for this work is especially (i) the quadrupole frequency 0),Q, (ii) the magnitude

of the electric field gradient Vzz, and (iii) the energy barrier for motion of defects Ea.

(i) The quadrupole frequency 0)Q can be directly obtained from the PAC

frequencies col and 0)2 using equation (2-58):

w1,2 a (0Q (4-6)

(ii) Vzz, the magnitude of the electric field gradient, is proportional to (.0Q. We

eQVzz
recall: (0Q (2-46) . Since the quadrupole moment Q of the

4I (2I-1)h

intermediate state is known to be 2.5 barn, equation (4-6) together with (2-46) show

that Vzz is proportional to the PAC frequencies. The fitted parameters 01 and (02 are

therefore a direct measure of the magnitude of the electric field gradient at a probe site.

It must be noted that the EFG, with which the quadrupole moment of the

intermediate state of the PAC probe interacts, is not only due to ion cores of nearby
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atoms. In general, electronic contributions arising from the influence of covalent bonds,

conduction electrons, filled and unfilled electronic shells of the probe atom are also to be

taken into account.64

In this experiment, covalent bonds are not expected to contribute considerably to

the EFG. Charge density plots indicate that the oxygen charge distribution is mostly

directed towards the zirconium atoms,65 so the influence of the covalent bonds is to

change the effective charge of the oxygen atoms. But these changes are not dominant.

Because Zr02 is an insulator, there are no contributions due to conduction

electrons.

The closed electron shells of the probe atoms are usually distorted from spherical

symmetry by nearby charges, causing an additional field gradient at the nucleus. This

indirect contribution of the electron shells to the field gradient can be one to two orders

of magnitude larger than the EFG due to the surrounding charges. To account for this

additional contribution due to polarization of the core electron shells, the EFG -as it is

"seen" by the PAC probe- is usually parameterized as64

vzz = (1 yoe)vzzi°n , (4-7)

where yo. is the Sternheimer anti-shielding factor and V the EFG due to

neighboring ion cores. yy is negative for most ion cores. Extensive tables of anti-

shielding factors for ions with closed shells, calculated using a relativistic Hartree

FockSlater electron theory, can be found in the literature.66 However, yo.:, for the

TaS+ ion could not be found in the literature, and so the value y. = 61 was chosen by

interpolating between the numbers quoted for HO+ and W6+.66

(iii) The energy barrier for motion of defects Ea can be derived using the

temperature dependence of the relaxation constant X,. For high temperatures (above
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about 850° C) the relaxation constant X is proportional to e+Ea/kT (see 5.4.1.). In a

plot of ln(?) versus la, the slope of the resulting curve is proportional to the energy

barrier Ea.
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5. Results of PAC Measurements

5.1. The Fitting Procedure

As described in 4.2., the experimental angular perturbation function (G2)

multiplied by the anisotropy (A2) was obtained from the data accumulated during a run

of the spectrometer. The result of A2G2(t) was fitted to analytical expressions

containing adjustable parameters.

The data for high temperatures (T > 700°C) were fitted to a dynamic quadrupole

relaxation term (2-78), which was obtained by a stochastic model valid for rapidly

fluctuating EFGs:

A2G2(t) =A2
3

S20 eX°t S2'0 e_-40t + trS2ie tcos(wit)lexP
i =1

Sco On t )2

(5 -1)
2

The relaxation constants Xi can be expressed in terms of X0:

Xot = 3.525 X0 (5-2a)

Xi = 2.343 Xo

= 3.071 X0

(5-2b)

(5-2c)

X3 = 5.899 ko (5-2d)

A Gaussian EFG-distribution accounted for random variations of the EFG due to

defects and impurities.

The low-temperature data (T < 700°C) were fitted to the expression,



A2G2(t) = A2 eXt
3

S20 + I S2i[cos(coit)]exp
i=1

(8030n

2
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(5-3)

This expression has been used for PAC spectra in viscous liquids due to slowly varying

interactions.67 Although this equation is not precisely applicable in cubic zirconia, it

was used because there is presently no other valid analytical expression available for

powder samples with slowly fluctuating EFGs. Equation (5-3) can be considered to be

the perturbation function for a static interaction in a powder sample (2-63) multiplied by

an exponential damping term accounting for the slow motion of oxygen vacancies. The

decay-constant is the inverse of the fluctuating EFG correlation time.

5.2. The Effective Anisotropy, A2eff, of 181T a

The experimentally measured anisotropy A2 of the gammarays cascade for the

PAC probe (181Ta) does not agree with the value given in literature (Table 1.1.).

Ideally, A2 depends only on the spins of the nuclear levels and multipolarities of

the radiations involved in the processes and is therefore independent of the environment

of the probe atom. However, in a real experiment many sources influence A2. Because

it is impossible to account for all the factors which might result in the A2-variation, it is

more practical to determine an "effective anisotropy" for the PAC spectrometer.

The effective anisotropy, A2eff, the value of A2G2(t) at time t = 0 because G2(t =

0) =1 (2-9), was used as one of the fitting parameters when the results of A2G2(t) were

fitted to analytical expressions (see 4.2. and 5.1).
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Besides unknown factors, A2eff includes phenomena which are known to cause

the anisotropy A2 to deviate from its true value. These phenomena include:

Finite size of both detectors and samples. To obtain equation (4-4, 4-5), we

assumed the angles 0 appearing in the Legendre-polynomials of the angular correlation

function (2-31) to be exactly 90° and 180°. If the finite sizes of the sample and the

detectors are taken into account, 0 has to be replaced with an average of all the angles

within a range of 0-A0 < 0 < 0+A0. The spectra-ratio R(t) from equation (2-4, 5) then

becomes

R(t) -= Ar G2(t), (5-4)

and in first order the effective anisotropy is given by

Aeff2 A2
2

f< cos2(180°) >< cos2(90°) >1.
3

An empirical formula, assuming a point sample but finite size detectors, has been

proposed by Collins:68

Ar A2 {1 1.1 sin2(a)} ,

(5-5)

(5-6)

where a = tan-l(r/d) with r being the radius of the scintillator and d the sample-detector

separation. The influence of the finite size of the sample and the detectors reduces A2.

Compton scattering. Gamma-rays scattered through small angles without losing

significant energy can enter the detectors. Because the energy-shift is small, they still

pass the windows of the TSCAs, but due to the reflection, the gamma-rays can enter the
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scintillation crystal with large angles. Therefore, Compton scattering reduces A2 in the

same way that finite size attenuation does.

Sample self-absorption.69 This phenomenon occurs most often in high-Z

samples. The absorption of gamma-rays depends on the distance the gamma-ray travels

in the sample and results in an increase of A2.

To obtain a result of A2eff for the 181Ta probe without the influence of

surrounding Y or Zr atoms, PAC spectra of a "pure" Hf wire were collected. Since it

was not possible to purchase a sample with 100% Hf, a wire with 2.86 wt% Zr

(Teledyne Wah Chang, Albany, Oregon) was used. The weight of the Hf-sample, 1

mg, was equal to the Hf content in the zirconia samples (typical weight: 100 mg. Hf

content: about 2 wt %). The wire was irradiated with thermal neutrons to obtain the

radioactive isotope 181Hf in the same way as the zirconia-alloy samples. Of special

interest was the question of how A2eff is influenced by the fact that the y-rays have to

penetrate the furnace. For that purpose, spectra were obtained with the wire being

placed both in the furnace and outside. To investigate the effect of varying sample-

detector distances, PAC spectra were collected for distances between 3.8 cm and 6.5 cm

in steps of 0.5 cm. Fig. 5.1. shows a typical PAC spectrum calculated from the data in

our spectrometer and Fig. 5.2. gives the results of the fitting parameter A2eff.

Two aspects of the result are rather surprising. First, the effective anisotropies,

A2eff, differ considerably depending on the location of the wire: inside or outside the

furnace. Second, the effective anisotropies A2eff for "normal" and "reverse" spectra are

not identical. To obtain conditions comparable to the experiments on zirconia, the Hf

wire was placed in an alumina capsule similar to the ones used for the zirconia samples.

For the data taken outside the furnace, this capsule was placed in an alumina tube, as

used in the furnace. Unexpectedly, the elements of the furnace (graphite foil, thermal

insulation, zirconium foil, water and the alumina container) reduced A2 dramatically. A
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Fig. 5.1 (a) The time-domain spectrum with computer fit, and
(b) the Fourier spectrum for 181Hf/Ta PAC of a Hf wire with 2.68 wt% Zr.
The data were collected at a detector-sample distance of 3.8 cm.
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Fig. 5.2. The effective anisotropy, A2eff, obtained from computer fits to experimental
data, as a function of the sample-detector distance.
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possible explanation for this behavior is Compton scattering of y-rays (see Compton

scattering). Some parts of the furnace were only 7 mm apart from the detectors. So g-

rays scattered with small angles, which would have otherwise not been detected, entered

the detector with larger angles than unscattered rays. Since their energy had not shifted

significantly, they pass the TSCA windows. Similar to the discussion of fmite detector

and sample size, the Compton-scattered gamma-rays result in an average of angles in the

spectra-ratio R(t), reducing A2eff.

Compton scattering is also a possible source for the difference of the effective

anisotropies, A2eff, for "normal" and "reverse" spectra. If y-rays are not equally

scattered in all directions and the setting of the TSCA windows is not identical, then

differences in A2eff are likely to occur. This behavior could also be caused by the

electronics of the spectrometer, but unfortunately all efforts to detect any errors have

failed. Therefore, in the analyses of the zirconia samples, an average of the values

obtained for "normal" and "reverse" spectra was used to reduce possible systematic

errors.

5.3. Results of Measurements on Cubic Zirconia

Zirconia samples with Y203 concentrations of 35.4 wt %, 27.8 wt %, and 16.9

wt % were used in this experiment. As mentioned in 1.1.2., the cubic phase is

stabilized in alloys with an Y203 content above 16 wt %, so all samples used in this

experiment were cubic, fully yttria stabilized. Of each of the three materials, 100 mg

and 200 mg samples were made and placed in cylindrical alumina capsules. After

irradiation with thermal neutrons to obtain the radioactive isotope 181Hf, the samples

were put in the PAC furnace and PAC spectra accumulated for about 24 to 48 hours. A
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heating element in the furnace, connected to a temperature-controller, allowed regulation

of the temperature of the sample. PAC spectra were collected in a temperature range

from room temperature up to 1300°C. The experimental function A2G2(t) was

calculated from these data (4.2.) and fitted as described in 5.1.

The spectrometer geometry was not changed for the different temperature runs

of one sample. Therefore, the effective anisotropy, A2eff, is the same for all

temperatures. To find the appropriate value of A2eff for each sample, the anisotropy

was first kept variable in the fits in addition to the relaxation constant X, the PAC-

frequency, col, and the linewidth, S. In Fig. 5.3. the temperature-dependence of the

fitting parameter A2eff, as it was found for all samples, is shown. Since there is no

physical explanation for the minimum of A2eff at about 600°C, the v-shape of the curve

must be caused by the fitting routine itself. It can also be seen, as mentioned in 5.2.,

that A2eff is not identical for the "normal" and "reverse" spectrum. For further analyses,

A2eff was therefore fixed to the average value for high temperatures (the horizontal line

in Fig. 5.3.). The high-temperature average of A2eff for all three samples was

consistent with the value obtained for the Hf wire at a sample-detector distance of 3.8

cm, the distance used for all zirconia samples.

After finding the parameter A2eff, A2G2(t) was fitted again, now with fixed

anisotropy, A2eff. The ratio 04:(02:w3 was set to be 1:2:3, corresponding to axial

symmetry. The reason for choosing this ratio, even though the sites have actually

random symmetry, is because an arbitrary but fixed value is more consistent for fitting

other parameters and it did not influence the fits considerably. So the variables,

adjusted by the fitting routine were (i) the relaxation constant, X, (ii) the PAC

frequency, Col, and (iii) the linewidth of the EFG distribution, 5, accounting for

imperfections in the crystal.
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Fig. 5.3. The fitting parameter A2eff as a function of temperature.
The data were obtained from the zirconia sample with 16.9 wt % Y203.
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In Fig. 5.4.and 5.5. typical PAC spectra (with computer fits) and Fourier

transforms for lowest (24°C) and highest temperatures (1300°C) are shown. The

Fourier spectra show a wide continuum of frequencies, which is shifted towards lower

frequencies for the high-temperature runs. The function A2G2(t) in these spectra does

not decay to zero but approaches a constant value (hard core), which indicates a static

interaction (2-29).

Spectra of intermediate temperatures (Fig. 5.6) show a decaying angular

correlation, typical for time dependent interactions (2-77). The relaxation constant, X,

increases from room temperature up to a maximum at about 800°C and decreases for

higher temperatures. In Fig. 5.7., where X is plotted as a function of the inverse

temperature, the two temperature regions can be clearly seen. The slopes of the curves

are similar for all samples, but note that it is considerably smaller for the low-

temperature data than for high temperatures. The maximum of X, is shifted towards

lower temperatures for higher Y203-concentrations.

The results for A2G2(t) in Fig. 5.5. and 5.6. indicate a temperature dependence

of the frequencies in the angular perturbation function. The PAC frequency, cal, (Fig.

5.8.) is largest for lowest temperatures and almost constant up to about 400°C. For

higher temperatures col decreases, but the curve flattens again above about 1200°C.

Since 64 is directly proportional to the strength of the EFG interacting with the PAC

probes, Fig. 5.8. also reveals the temperature dependence of the electric field gradient,

EFG.

Fig. 5.9. shows the temperature dependence of the relative EFG distribution (or

linewidth of the EFG distribution), 8. Even though the data fluctuate considerably, the

tendency of 8 to increase for higher temperatures is obvious. The average relative

linewidth at 1300°C is about twice as big as at room temperature.
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Fig. 5.4. PAC time spectra for 181Hf/Ta PAC of cubic zirconia (16.9 wt % Y203) at
lowest (24°C) and highest(1300°C) temperatures. The lines are fits discussed in
the text. A2G2(t) approaches a constant value (the hard core), indicating a static
interaction.
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Fig. 5.5. Fourier spectra for 181Hf/Ta PAC of cubic zirconia (16.9 wt % Y203) at
lowest (24°C) and highest (1300°C) temperatures.
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Fig. 5.6. PAC time spectrum for 181Hf/Ta PAC of cubic zirconia (27.8 wt % Y203) at
intermediate temperatures (550°C, 850°C, 1100°C). A2G2(t) decays to zero,
indicating a time-dependent interaction.
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Fig. 5.7. Relaxation parameter, X., as a function of the inverse temperature for
181Hf/Ta PAC of cubic zirconia.
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Fig. 5.8. PAC frequency, col, as a function of temperature for 181Hf/Ta PAC of cubic
zirconia. Note that wi is proportional to Vzz.
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Fig. 5.9. Relative EFG distribution, 8, as a function of temperature for 181Hf/Ta PAC
of cubic zirconia.
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5.4. Discussion of Results of PAC Measurements on Cubic Zirconia

The three different zirconia samples in this experiment were doped with 35.4

wt%, 27.8 wt%, and 16.9 wt% Y203. For dopant cations with a lower valence than

four, the valence of Zr, oxygen vacancies are formed as charge compensating defects.

Because Y is three-valent, one oxygen vacancy is created for every two Y atoms added.

Therefore, the EFG at a cation site in fully stabilized (cubic) zirconia consists of two

parts. The contributions are due to (i) the surrounding dopant cations with a negative

effective charge, and (ii) the oxygen vacancies with a relative charge of +2.

In cubic zirconia the jump rate for oxygen vacancies is several orders of

magnitude higher than for the cations. In fact, compared to the characteristic interaction

time of the PAC probe with the EFG, <co2Q>- 1/2 (for 181Ta about 15 ns), the cations

can be considered static in the entire temperature range (24°C to 1300°C). The lattice

part of the EFG experienced by the PAC probe is therefore static and temperature-

independent.

The mobility of the oxygen vacancies on the other hand depends strongly on the

temperature. For temperatures above 1200°C, the vacancy jump-rate is much higher

than <o)2Q>-12, so that the occupation of all the anion sites around the probe are equally

probable. Due to the cubic symmetry, the contributions of the vacancies average to

zero, leaving only the static, temperature independent interaction due to the cations.

This behavior can be seen especially for the sample with 16.9 wt% Y203 in Fig. 5.8.,

where col does not continue to decrease for temperatures above 1200°C.

As the temperature is lowered, the jump-rate of the vacancies decreases and the

vacancy EFG does not average to zero. The time-dependent vacancy contribution to the

EFG increases with decreasing temperature (see 5.4.2.) until the time between two

successive vacancy jumps becomes greater than the lifetime of the 181Ta intermediate
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state. Further decrease in temperature below about 500°C leaves the EFG unchanged,

and the interaction between PAC probe and EFG is static.

Equations (2-29) and (2-77) describe the interesting feature in which A2G2(t)

decays to zero for time-dependent interactions, whereas it approaches a constant value

(hard core) for static EFGs. Fig. 5.4 and 5.6. show the hard core for lowest (24°C) and

highest (1300°C) temperatures (static EFG) as well as the decay of A2G2(t) for

intermediate temperatures (fluctuating EFG due to vacancy jumps).

In stabilized cubic zirconia each individual PAC probe nucleus experiences a

different EFG resulting from the particular dopant and vacancy distribution in the

neighborhood of the probe site. The PAC spectra therefore consist of a wide frequency

distribution (Fig.5.5.) resulting in a nonoscillatory behavior of the angular perturbation

function G2(t) (Fig. 5.4. and 5.6.).

5.4.1. The Activation Energy, Ea, for the Oxygen Vacancy Motion

Electrical transport in cubic zirconia occurs by thermally activated hopping of

oxygen ions via empty anion sites. The motion of oxygen ions can be described in

terms of the motion of vacant anion sites, oxygen vacancies. It is equivalent to consider

either an oxygen ion moving to a neighboring empty site, or the vacancy jumping to the

site previously occupied by the ion. Due to the mobility of oxygen vacancies in cubic

zirconia, it shows, like other fluorite structured oxides, a high ionic conductivity.

The frequency of the thermally activated vacancy hopping can be empirically

described by



v=voexpf---4-E ,
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(5-7)

where vo is the attempt frequency, Ea is the activation energy, T is the temperature and k

the Boltzmann constant. The characteristic fluctuation time of the perturbing field, tie, is

then

En
=

1
= To exp{=

kT
} , (5-8)

with to = 1/vo. For high temperatures, meaning fast jumping vacancies and therefore

rapidly fluctuating EFGs, the PAC relaxation constant, A., is proportional to to in the

Abragam-Pound limit (2-67). So A. expressed in terms of the activation energy, Ea, is

ec to expf -AE
kT

(5-9)

Experimental results of the PAC relaxation constant, A., as a function of

temperature are shown as a logarithmic plot in Fig. 5.10. According to equation (5-9),

the slope of the curve is proportional to Ea. The lines are exponential fits to the data.

Results of these Ea measurements are listed in Table 5.1.

The most important feature is that Ea does not depend on the concentration of

doped Y203 (Fig. 5.11). This is in clear contradiction to all bulk ionic conductivity

measurements. Even though there is a considerable scatter of the data from different

authors,70-81 they all agree in the fact that the activation energy, Ea, increases with the

Y203 concentration in cubic zirconia samples.82 In Fig. 5.11. the result of Ikeda et

al70, 82 is shown as a representative result for bulk ionic conductivity measurements. It
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Fig. 5.10. Relaxation parameter, X., as a function of the inverse temperature for
181Hfaa PAC of cubic zirconia. The lines are exponential fits to the data. The
activation energy, Ea, is proportional to the slope of the lines.
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Fig. 5.11. Activation energy for oxygen vacancy hopping in cubic zirconia, Ea, as a
function of Y203 concentration. The straight line for the bulk ionic conductivity
measurements is a fit to data as reported by S. Ikeda et al.70
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Table 5.1. Activation energy, Ea, for oxygen vacancy hopping in cubic zirconia. The
PAC results were obtained from computer fits to the 181Ta PAC relaxation
constant, X. The conductivity results were taken from bulk ionic conductivity
measurements as reported by S. Ikeda et al.70

wt % Y203 vacancy Ea (PAC) Ea (conductivity)

concentration (%) (eV) (eV)

16.9 4.54 1.09 1.17

27.8 7.47 1.06 1.41

35.4 9.51 1.02 1.58

has been reported that Ea goes through a minimum at about 9 wt% Y203 (partially

stabilized zirconia), but this is presently still a matter of controversy.

Starting with the simplifying assumption of a random distribution of dopant

yttrium ions within the cation sublattice, the incorporation equation reads:

Y203 --921"zr +30;1-V0 . (5-10)

From an electrostatic consideration, the mobile carriers, the oxygen vacancies,

experience two kinds of interactions at large defect concentrations: either attractive with

respect to aliovalent dopant cations, or repulsive with respect to other positively charged

carriers. In the simplest approach, attractive interactions between vacancies and yttrium

ions can be described in the Kroger-Vink notation as:

Y'zr + V0 > (Yzr, vor . (5-11)
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In this case, the defect structure consists of simple (Yzr, V0)' clusters or complexes and

'ZrY ions distributed statistically. For higher dopant concentrations it is not meaningful

to consider only simple complexes such as (YZr, Vo)* since, even with a random

distribution of dopant ions, the probability that a vacancy has more than one Y ion in its

immediate vicinity, as a nearest or next-nearest neighbor, becomes quite

significant.83,84 The sites with two or more Y ions as nearest neighbors are expected to

act as deeper traps for oxygen vacancies, at least from a simple Coulombic

consideration. The formation ofa complex with two dopant ions can be written as:

2Y'zr + V(7). --> (2Yzr, vo)' . (5-12)

Atomistic calculations performed by Butler et al.85 yield a maximum binding energy for

complexes with two Y ions. According to their calculations, the complex (Yzr, V0)*

has a binding energy of 0.28 eV compared to 0.63 eV for (2Yzr, V0)' with respect to

the total energy of the isolated defects.

It must be noted that in all of these considerations a random distribution of

dopant ions is assumed, which has been questioned by many investigators86 and has

not been solved satisfactorily at the present time. In fact, Auger electron spectroscopy

was used to determine the composition near grain boundaries, and an enrichment with Y

was observed with respect to the bulk with an enrichment factor of 1.5.87

All these arguments do not explain an increase of the conductivity with the

dopant concentration in cubic zirconia, obtained by bulk ionic conductivity

measurements. Even if the mobility of vacancies trapped into associates is strongly

diminished compared to a free vacancy, the formation of complexes decreases only the

relative and not the absolute number of free defects. Many different models have been

developed to explain the conductivity variation. The basic concept of these models is (i)
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to attribute a larger binding energy to a complex formed by a vacancy and several dopant

ions and (ii) to generate a distribution of binding energies according to the respective

positions of the vacancy and dopants lying in its neighborhood.84 Some models predict

at least qualitatively the experimental results for the conductivity, but it seems as if the

conclusion which is drawn from these considerations, namely an increase of the

activation energy with increasing dopant concentrations, is rather vague.

As opposed to conductivity measurements, PAC spectroscopy does not average

over macroscopic regions. So all bulk- and surface-effects, which could vary with the

Y concentration and change the results for the conductivity, have no influence on our

results. We therefore propose that the activation energy is independent of the dopant

concentration, and that explanations for the behavior of the ionic conductivity, other

than a concentration-dependence of Ea, have to be found.

5.4.2. The Temperature Dependent EFG

In Fig. 5.8. the PAC frequency coi is shown as a function of temperature. For

cubic zirconia where the asymmetry parameter 11 is equal to zero, col is according to (2-

46, 2-58):

e Q
(01 = 6°)Q = 6 41(21 1)h

(5-13)

As discussed above, for temperatures above 1200°C and below about 500°C the EFG is

time independent and does not vary considerably with temperature. For intermediate

temperatures the motion of oxygen vacancies cause the EFG to fluctuate and the PAC
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probe experiences a time-dependent interaction. In this temperature region, the EFG is

not only time-dependent but also varying with temperature. The PAC spectra of all

Y203 concentrations investigated in this work show a decreasing Vn for increasing

temperatures (example for 16.9 wt % in Fig. 5.12.).

A possible explanation for this behavior is EFG shielding due to occupation of

higher energetic vacancy sites near the Ta PAC probe. Since both the 181Ta ions and

the oxygen vacancies have positive effective charges, they repel each other and the

energy of a 181Ta first neighbor oxygen site is higher than the energy of an oxygen site

next to a Zr ion by an amount of AE. The measured EFGs are too small to admit the

possibility of first neighbor oxygen vacancies, even at room temperature. If the

vacancies were distributed randomly before the B-decay of 181H1 to 181Ta, they must

have therefore been forced out of their next-neighbor positions during the B-decay. So

immediately after the decay, vacancies do not occupy sites next to the PAC probe.

At temperatures below 500°C where the jump time of the oxygen vacancies is

larger than the characteristic interaction time of the PAC probe with the EFG, <o02Q>-1/2

(for 181Ta about 15 ns), the vacancy configuration appears to be static, meaning the

vacancies have no time to jump back into next neighbor sites during the lifetime of the

intermediate state. The EFG in this temperature region is therefore primarily due to Y

ions.

As the temperature rises and the jump time becomes comparable to <t Q >-1/2 ,

the interaction time is long enough for vacancies to jump back to next neighbor positions

of the PAC probe. The probability of occupying these sites is proportional to

exp (-AE/kT} and increases with temperature. Due to electrostatic attraction, sites with

one or more Y neighbors will be occupied first. The vacancy contribution to the EFG at

the probe site reduces the EFG due to the Y ions since they have opposite effective

charges. At higher temperatures more and more of these next neighbor sites are
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Fig. 5.12. Typical magnitude of the EFG component Vzz of cubic zirconia (data for
sample with 16.9 wt % Y203). The line is a guide to the eye.
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occupied by vacancies, gradually reducing the EFG (Fig. 5.12.).

In Fig. 5.13. and 5.14. the logarithm of Vzz is plotted versus the inverse

temperature, and it can be seen that the data for temperatures above 600°C can be fitted

to an exponential (note that occupation probability of next neighbor sites is proportional

to exp (-AE/kT)). Fits to expressions of the form Nizz + rzz*exp{AE/kT} yield an

asymptotic value of V'zz = 0.39*1017 V/cm2, and a energy difference AE of about

0.2 eV.

To estimate the screening, the contributions to the EFG due to a single Y and

and the surrounding vacancies is considered. If the Ta ion is at the origin, then oxygen

sites neighboring both the Ta and the Y ion are at (±1,±1,1) and the Y at (0, 0, 2). The

contribution to the EFG due to the Y ion with the effective charge -1 is 0.0078 e,

whereas vacancies (charge +2) on the four oxygen sites contribute 1.3 e. Let p be the

occupation probability, which is very small since even for 1300°C exp (-AE/kT) is only

0.16. The reducing EFG due to oxygen vacancies is therefore about 166p times the

EFG due to the Y.

At low temperatures p is zero, and the EFG at the probe site is primarily due to

the Y ions. As the temperature and therefore p rises, the EFG is reduced by the negative

vacancy contribution, which could even become larger than the Y contribution.

Fig. 5.15. shows Vzz as a function of the Y203 concentration for five different

temperatures between 24°C and 1300°C. For higher dopant concentrations, meaning

also vacancy concentrations, the EFG has the tendency to increase.
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Fig. 5.13. Typical magnitude of the EFG component Vzz of cubic zirconia (sample with
16.9 wt % Y203) as a function of the inverse temperature. The line is an
exponential fit to the high temperature data (T>600°C).
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Fig. 5.14. Magnitude of the EFG component Vz, of cubic zirconia as a function of the
inverse temperature. Data for temperatures T>600°C. The lines are exponential
fits to the data.
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5.4.3. Annealing of Samples

A comparison of PAC results, using the same sample but with a different

"history", reveals an important fact: the samples were not homogeneous unless they

were heated up to at least 1300°C for several hours.

Since the Y203 content was 16.9 wt % and more, one would have expected to

obtain fully stabilized (cubic) zirconia. But PAC Fourier spectra of samples which were

not annealed (Fig.5.16.) showed an additional site with discrete frequencies besides the

typical result for cubic symmetry (wide frequency distribution). This site resulted in a

noticeable oscillation of the angular perturbation function G2(t).

The frequencies of the additional site in Fig. 5.16. (um is about 700 Mrad/sec at

room temperature) could be caused by a fraction of monoclinic zirconia in the material.

The monoclinic phase is not stable at higher temperatures (see Fig. 1.2.), which would

explain the annealing of the samples. There are many other possible sources for the

differences in the PAC spectra. It is not unlikely, for example, that high temperatures

enlarge the grains in the material. The Y content near grain boundaries is higher than in

the bulk,87 resulting in an inhomogeneous Y distribution which is temperature-

dependent.

Also the PAC frequency (pi of the cubic site is influenced by the annealing

process. Fig. 5.17. shows wl, corresponding to the Fourrier spectra in Fig. 5.16.

After a spectrum was taken at room temperature (spectrum a), the temperature of the

material was gradually raised to 1300°C and then kept at 1600°C for 24 hours and

quenched to room temperature within 5 min (spectrum c). The sample was then heated

to 1300°C again and very slowly (3 weeks) cooled down to 24°C (spectrum b). PAC

spectra were accumulated for various temperatures during these cycles and Fig. 5.17.

gives the resulting values for col. It is striking that col shows the behavior of a
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Fig. 5.16. Fourier spectra for 181Hf/Ta PAC of cubic zirconia (16.9 wt % Y203) at
24°C:
(a) without preheating
(b) 3 weeks after heating up to 1300°C for 24 hours (slowly cooling)
(c) immediately after heating up to 1600°C for 24 hours.
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hysteresis.

To find a way of sufficiently annealing the materials, a sample was heated up to

1300°C and PAC spectra taken for three days. The spectra as well as the Fourier spectra

of the second day did not differ from the ones taken on the first or third day and no

second site could be detected. We therefore concluded that the material is annealed after

about 24 hours at 1300°C and all the data presented in this work were taken from

samples which have been annealed for at least one day at 1300°C.
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6. Computer Simulation of PAC Spectra

Complementary to experimental measurements of PAC spectra, a program was

developed to obtain computer-simulated results for the angular perturbation function,

G2(t), of zirconia. By simply adjusting the appropriate parameters, this method allows

investigation of how different conditions in the simulated "sample" effect the function

02(t). Computer simulations provide a useful tool in the attempt to answer questions

which can presently not be solved by fitting experimental data to theoretically calculated

models. As mentioned in 2.5., there are even cases for which no satisfactory analytical

fitting function exist. An example of such an unsolved question is the time-dependent

angular perturbation function in the low-temperature region in powder samples.

The simulated angular perturbation function was obtained in two steps:

Simulating a fluctuating EFG.

Calculating the angular perturbation function 02(t).

6.1. Simulation of a Fluctuating EFG

On an Apple Macintosh II computer, a crystalline lattice was set up with the

PAC probe located at the center of the crystal. Vacancies were randomly distributed in

the lattice and were then allowed to jump to neighboring sites. After each jump, the five

components of the EFG (meaning: Vxx, Vyy, Vxy, Vxz, and Vyz) were calculated and

saved to a disk together with the corresponding time-variable.

The time-dependent EFGs were simulated under some simplifying assumptions. The

assumptions, compared to the situation in a real lattice are listed in Table 6.1.
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Table 6.1. Assumptions in the simulation, compared to the situation in a
real lattice.

Assumptions in the simulation Situation in a real lattice

The cationic sublattice of the oxygen

atoms is cubic.

The atoms of Zr and Y are randomly

distributed. As a result of this, all the

contributions to the EFG due to Zr and

Y average out to zero. Thus for the

calculation of the EFG, only oxygen

vacancies with an effective charge of +2

have to be taken into account.

The oxygen vacancies can be described

as point-ions.

There are no interactions between the

oxygen vacancies and no interactions

between vacancies and Zr or Y. As a

result, the distribution and motion of the

vacancies is totally random.

The vacancies can only hop to next-

nearest-neighbor sites.

In cubic zirconia, the oxygen-lattice is

actually a fluorite structure.

Replacing a Zr4+ with a Y34- results in

an EFG different from zero because the

cubic symmetry is broken. Because the

jump-rate of Y3+ is several orders of

magnitudes smaller than of the

vacancies, the EFG due to Y3+ can be

considered to be static.

Exact electronic structures and charge-

distributions have to be considered in a

realistic calculation.

For very low doping concentrations the

interactions might be negligible, but

there is clear experimental evidence for

different interactions between Y ions

and oxygen vacancies.82, 84, 85, 86

Diagonal' jumps might happen in a real

lattice, but they are not expected to

change the fluctuating EFG

qualitatively.
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Table 6.1. continued

The PAC probe repels oxygen Experimental results of PAC spectra

vacancies so that they never occupy using a 181Ta probe seem to support this

nearest neighbor sites to the probe. assumption.

In a later stage of this work, more realistic conditions could replace some of these

assumptions.

The program to simulate the fluctuating EFG was written in PASCAL (Light-

speed-Pascal), which is a clearly structured language and was divided into several

subroutines, called procedures. This allowed easy access to parameters, which could be

adjusted for the different conditions under which the EFGs were desired to be

simulated. These parameters included the size of the crystal, the crystallographic

configuration (cubic, FCC, BCC, etc.), the concentration of vacancies in the crystal, the

number of vacancy-jumps, and the seed for the random-number generator (RNG).

In early stages of this work, a random number generator following Knuth's

algorithm88 was used, but this turned out to be much slower than using the Macintosh

built-in RNG. Results, obtained by the different RNGs, do not vary substantially,89

and so for all simulations presented in this work, the built-in RNG was used. The first

seed for the RNG was chosen by the user at the beginning of the program and all the

other seeds, necessary for random-numbers for the random doping with vacancies and

the random jumps, were derived from the start-seed.

A flow-chart of the program is given in Fig. 6.1. The first step in the program

was to establish a crystal lattice with randomly doped vacancies. For this purpose, the

user was asked to input the size of the crystal, the vacancy concentration m, and the first
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seed for the RNG. According to the chosen concentration, a random-number decided at

every possible site in the crystal, if a vacancy was positioned at this particular site. If a

site was decided to be doped with a vacancy, its coordinates were stored in an array as

integer multiples of the lattice parameter a, and its contributions to the components of the

EFG were calculated. The contributions of all the vacancies were added up to yield the

total EFG-components at time t4, meaning before the vacancies start to jump.

The program then informed the user about the number of vacancies in the crystal

and asked for input of the number of jumps desired for a simulation.

An abstract time variable which continuously added a '1' to its value was used to

record the time. Later in the process, when the angular perturbation function 02(t) was

calculated from the time-dependent components of the EFG, the user could choose to

assign any "real" meaning to this variable. During every time-step there was a chance of

20% for any vacancy in the crystal to jump.

Once the random-number decided whether a vacancy jumped, another random-

number determined which of the vacancies was hopping. The RNG was again used to

decide in which direction the vacancy was moving. Before the contributions to the

EFG-components due to the old position were deleted and the ones due to the new

location added, a subroutine checked if the vacancy had jumped out of the chosen size

of the crystal, or if it had jumped on a site that was already occupied by a vacancy. In

the case of a jump on an already doped site, the vacancy simply hopped back to the old

position. The case of jumping out of the crystal was a bit more complicated and two

different boundary conditions have been used.



110

( START )
i

Input:
-size of crystal
-vacancy concentration m
-seed for RNG

Get random number (RN)

Dope this site with a vacancy
es -Calculate EFG and

add to total EFG
-Store coordinates

Time-variable:=
Time-variable+1

Get random number

(RN)

Get random number

Is RN
smaller

than

0.2 ?

RN decides which vacancy jumps

A

( )

Get random number

from next page
li Go to ($) on next page

Fig. 6.1. Flow-chart of the simulation-program.
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-Check if new position is already doped with a vacancy. If so, jump back.
-Check if new position is within the first shell. If so, jump back.
-Check if new position is outside crystal. If so, reflect 'spherical'.

Go to (*) on previous page

no

$
-Delete EFG due to old position.
-Add EFG due to new position.
-Store new coordinates

$
Output:

-Time variable
-Vxx, Vyy, Vxy, Vxz, Vy

( STOP

Fig. 6.1. (continued)
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(i) An "elastic" boundary. This means that the vacancy, instead of hopping outside,

bounced off the edge and moved towards the center of the crystal. (ii) A "periodic"

boundary. This condition made use of the fact that the contributions to the EFG of a

vacancy at position (x, y, z) is the same as a vacancy at position (-x, -y,- z). So, if a

vacancy reached the edge of the crystal, instead of jumping outside (eg.: x', y', z'+1), it

was reflected to the spherical-diagonal position (eg.: -x', -y',- z'+1).

After each jump, the new coordinates of the vacancy were stored and the time-

variable together with the five components of the EFG (meaning: Vxx, Vyy, Vxy, Vxz,

and Vyz) were saved to a disk:

3 xi xi 8ii
Vx. xj =

r5

with

r2 = x2+y 2+z2
.

(6-1)

(6-2)

In Fig. 6.2 an example is given of the x-y-coordinates of all the vacancies

immediately after doping the lattice as well as after 5500 jumps in a cube with 9x9x9

sites. Fig. 6.3. plots the x-coordinate of a vacancy during the simulation for both the

elastic and the periodic boundary in a simulation with 5500 jumps (27500 time steps).

To get a visual impression of the "randomness" of the RNG, Fig.6.4. shows which

vacancy was hopping at each jump.
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Fig. 6.2. Projection of the position of all vacancies in a 9x9x9 lattice on the x-y-plane:
(a) immediately after doping the lattice.
(b) after 5500 jumps.
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6.2. Calculation of the Angular Perturbation Function, G2(t)

The simulated data (6.1.), the components of the electric field gradient as a

function of time, were transferred to a Ridge 32/130 computer. A laboratory-built

program,90 written in FORTRAN, calculated the angular perturbation function G2(t),

which then could be compared with experimental results. The algorithm for the

calculation followed very closely the description in chapter 2. With the matrix elements

of the time-evolution operator

<m1IA(t)Im2 >= E < nlm >*< n1m2 > exp( En t) Dim 1*(0) Dimim2(a) , (2-22)

we obtained the angular perturbation function for polycrystalline samples:

Gk kW =
E E (....1)2I+mi+m2

m1m2 nn'
mi'mi

1 I k )

mf m1 N)

(I I k1

n2i m2 N

xexp[4(En En,)t] < nImi >*< ntlmf>< n1m2 n'Im2f >* . (2-28)

Before the program started to actually calculate G2(t), the user had to specify the

abstract time-variable of the simulation in units of 1/(0Q (see 6.3.).

The next step in the program was to calculate the Clebsch-Gordan coefficients,

which are expressed as 3j-symbols in equation (2-28). The Clebsch-Gordan

coefficients were time-independent, so they could be evaluated at the beginning of the

program and be used throughout the whole process.
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For each time-step, the EFG-components and the time-variable were read into

the program. Then the Hamiltonian corresponding to these values of the EFG was

diagonalized to find En and En', and the scalar products of the form <nlmi> were

calculated. This means, physically, that the matrix elements of the density matrix were

obtained for every instant at which the EFG was changing.

The total time for the simulation was divided into 512 time-intervals. So even

though the matrix elements of the density matrix were calculated for every time-step in

the simulation, the resulting G2 was only obtained for 512 equidistant times. All the

constants in the program were chosen in such a way that the output-time was given in

units of 1 /off.

The result of these calculations, the angular perturbation function, G2(t), caused

by a simulated fluctuating electric field gradient, was saved to a disk for further

analyses.

6.3. Results of Computer Simulation

As described in 6.1. and 6.2., the angular perturbation function, G2(t), was

obtained by first simulating the five components of the EFG (meaning: Vvo Vyy, Vxy,

Vxz, and Vyz) for both static and dynamic systems and then calculating G2(t). The

resulting G2(t) was compared with theoretical analytical calculations.

The constants in the calculations were chosen in such a way that the resulting

time scale is given in terms of 1/wQ, if the abstract time variable was also specified in

units of 1/wQ. Here oNQ is the quadrupole frequency (2-46) corresponding to a nearest-

neighbor vacancy, meaning Vzz = 2 (eqn 6-1).
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6.3.1. Static EFG

The angular perturbation function, G2(t), for a static EFG is well known (see

2.4.). Comparing the results from our calculations with the expected values was a good

check of the program calculating G2(t) (6.2.), and was helpful to determine the

necessary constants in the program.

The five EFG components due to a vacancy at an arbitrary position in the lattice

were calculated and a "static EFG" created by simply copying the same EFG

components for different time-steps. This was then read into the program on the Ridge

computer to calculate G2(t). As expected, the results depend only on the magnitude and

not on the direction of the EFG.

An example for a vacancy located at the lattice position (0, 0, 1) can be seen in

Fig. 6.5. Since the EFG due to one vacancy is axially symmetric, the results agree with

the predicted angular perturbation function, G2(t), for = 0 (see Fig. 2.2.). The EFG

component Vzz for a vacancy at (0, 0, 1) is 2 in our units (6-1). Since the time variable

is given in units of 1/0)Q, the period T of G2(t) is

27t 2/r ic 1= = _
(

col 6coQ 3 (.1)Q

which agrees with the result in Fig. 6.5.

(6-3)
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Fig. 6.5. Simulated angular perturbation function, G2(t), for a static EFG as a function
of time.
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6.3.2. XYZ Model

The XYZ model is a special case of the XYZ+Z model (see 2.5.2.) in which the

static EFG is zero. The EFG components are therefore due to a vacancy jumping

randomly between the positions (±1,0,0), (0,±1,0), and (0,0,±1), and the symmetry axis

of the EFG fluctuates among the x, y, and z directions.

Such a system was simulated, and the resulting perturbation functions, G2(t),

are shown in Fig. 6.6, 6.7, and 6.8. The time variable of the simulated EFG was an

abstract integer number with time steps At=1 (see 6.1.). In order to compare G2(t) with

theoretical calculations, this variable had to be given a physical meaning. As an

average, after every five time-steps the simulated EFG was changing (meaning: a

vacancy was jumping). The average correlation time, tc, of the system is therefore

tic 5At (6-4)

If W is defined as the transition probability between two particular EFG states

per unit time, then W can be written in terms of 'Cc :91

1 1W =
11tc N5it

(6-5) .

where N is the number of possible states of the EFG. Since for the calculation of G2(t)

only the magnitude and not the direction of the EFG is relevant, there are three possible

states (N = 3) for the XYZ model.

The timestep At was a variable to be specified in the program and Fig. 6.6 and

6.7. show the results for At = 0.01 (W = 6.67), whereas Fig. 6.8 is the result of
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Fig. 6.6. Simulated angular perturbation function, G2(t), for the XYZ model
(correlation time tic = 0.05/coQ). Data shown are the average of 10 simulations for
times smaller than 1/(0Q (20 jumps). The standard deviation and the theoretical
expression are discussed in the text.
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Fig. 6.7. Simulated angular perturbation function, G2(t), for the XYZ model
(correlation time tic = 0.05/coQ). Data shown are the average of 10 simulations for
times smaller than 5/a)Q (100 jumps). The standard deviation and the theoretical
expression are discussed in the text.
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Fig. 6.8. Simulated angular perturbation function, G2(t), for the XYZ model
(correlation time tic = 0.01/coQ). Data shown are the average of 10 simulations
(100 jumps each). The standard deviation and the theoretical expression are
discussed in the text.



choosing At to be 0.002 (W = 33.3).

For both values of W, 02(t) was calculated from ten statistically independent

"simulation samples". Besides the average of G2(t), the standard deviation, a, was

calculated for each data point to obtain information about the statistics of the results:

1 2
-y(xi (k) _xi)
n .

1.1
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(6-6)

As "error bars" in Fig. 6.6., 6.7., and 6.8., the values for the average G2(t) plus and

minus a are plotted.

As discussed in chapter 2.5., there is presently no general analytical expression

available for G2(t) due to time dependent EFGs in polycrystalline material. But

recently, G2(t) has been described for rapidly fluctuating EFGs (W>20) as91

-41 7 -11. 1G2(t) = 0.5714 exp{ \\*, t1+0.3032exp{
w

-70. 1010.0968exp 1 t1+0.0286expl tl
W (6-7)

This function has been calculated for the appropriate values of W and is plotted in Fig.

6.6., 6.7., and 6.8. For W = 6.67, the results of (6-7) lies within the uncertainty,

except for very small times (T<0.2/coQ) where the simulated data are larger than the

calculated values. It is not surprising that (6-7) does not fully describe the data since it

is actually only valid for more rapidly fluctuating EFGs (W>20).

In the case of W = 33.3, where expression (6-7) is really applicable, the data are

excellently described by the theoretical values. In fact, when W is kept variable in a
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least squares fit of eqn (6-7) to the data, W turns out to be 33.15.

The obtained data show that for rapidly fluctuating EFGs already a small number

of simulations is sufficient for a qualitative analysis. Nevertheless, further research has

to be done to achieve better statistics and a bigger variety of correlation times, tc.

So far, our results obtained from simulated EFG fluctuations support the theory

that the perturbation function, G2(t), caused by fast fluctuating EFGs can be described

by (6-7).

6.3.3. General Time-Dependent EFG

To simulate a system which is closer to "real life" than the XYZ model, a simple

cubic crystalline lattice of 9x9x9 sites was set up and doped with vacancies

(concentration of vacancies was chosen to be 5%). These vacancies then were allowed

to move, creating a fluctuating EFG (see 6.1.). The angular perturbation function,

G2(t), calculated from these data for correlation times,tc, of 0.1/coQ and 0.001/wQ are

given in Fig. 6.9. and 6.10., respectively.

Oxygen vacancies were not allowed to occupy next neighbor positions since

PAC measurements indicated that during the lifetime of the intermediate state no

vacancies would be found on nearest neighbor positions.

As already mentioned, there is presently no theory available which these data

could be compared with. Nevertheless, some features of the results may be noted.

More than for the XYZ model, a non-exponential hyperbolic term in G2(t) is

visible for small times. Even in the case of is = 0.001/0)Q, meaning the lifetime of the

intermediate state of the PAC probe is considerably longer than a single jump time of a

vacancy, the hyperbolic part is dominant up to 0.25/coQ, where G2(t) has a value of 0.7.
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Fig. 6.9. Simulated angular perturbation function, G2(t), for a simple cubic crystal
(9x9x9 sites). The correlation time, "cc, is tic = 0.001/wQ. Data shown are the
average of 9 simulations (1375 jumps each). The standard deviation is discussed
in the text.
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Fig. 6.10. Simulated angular perturbation function, G2(t), for a simple cubic crystal
(9x9x9 sites). The correlation time, 'cc, is tie = 0.1/wQ. Data shown are the
average of 10 simulations (8 jumps each). The standard deviation is discussed in
the text.
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A possible explanation is small values of W due to many possible directions, meaning N

is considerably larger than for the XYZ model. This is especially reasonable because

the first shell was excluded for vacancy positions. The second shell already has 12

positions, and the contributions due to vacancies in the third shell (which has even more

positions) are not negligible. Future simulations using different lattice structures may

yield useful information to solve this problem.

Even though pure exponential fits are not very meaningful (because of the shape

of the curves discussed above), it is clear that the decay rate increases with increasing

tc. This is qualitatively the same behavior which was observed for the XYZ model.

The purpose of presenting the data for the general time dependent EFG (6.3.3.)

is not to give a full analysis, but rather to give a flavor for how the developed simulation

method can be used for future research. It provides a powerful tool which complements

laboratory experiments.
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