SUMMARY OF PULPING AND PAPERMAKING EXPERIMENTS ON EUCALYPTUS

1926 to June 1957

September 1958

SUMMARY OF PULPING AND PAPERMAKING EXPERTMENTIS ON EUCALYPIUUS ${ }^{-}$

(1926 to June 1957)

Forest Products Laboratory, ${ }^{2}$ Forest Service
U. S. Department of Agriculture

Introduction

Eucalyptus is native to Australia, but it is now being planted extensively throughout the world. About 600 species of eucalyptus are known. Only 10 or 12 are used commercially, however. Large plantations of eucalyptus are grown for lumber and other wood products in South Africa, Brazil, Argentina, Chile, and other countries.

The eucalypts are the principal woods used for papermaking in Australia. Smaller amounts are used in South Africa, Chile, Brazil, Spain, and Portugal. The South American and South African plantations are now well stocked and capable of yielding important quantities of pulpwood in addition to other products. The Forest Products Laboratory has tested several species of eucalyptus for pulp and papermaking. This report is a summary of the results of these studies for the past 31 years.

Chemical Analysis, Fiber Measurements, and Physical Tests on Wood

The chemical analysis, fiber measurements, and physical tests made on several of the samples of eucalyptus are given in table 1 .

Sulfite Pulping

Sulfite pulping tests were made on E. tereticornis and E. saligna from Brazil. The pulps were of a quality satisfactory for use as the chemical pulp component in newsprint and similar printing paper. The cooking conditions and the yields, strengths, and bleachabilities of the pulps are given in table 2.

[^0]Data on the sulfate pulping of E. tereticornis, E. saligna, and E. kertoniana from Brazil are given in table $\overline{3}$. These pulps compared favorabl \bar{y} in strength with good-quality sulfate pulps made from other hardwoods, and undoubtedly they could be used in a wide variety of paper products. The properties of a sample of commercial E. regnans bleached sulfate pulp received from Australia are also given in tabie 3 .

The semibleached E. saligna pulp was made into a newsprint~type paper without the addition of groundwood or other kinds of pulp, but with clay added to improve the opacity of the paper. The paper was slightly stronger than comercial newsprint but more absorbent and porous, and somewhat less opaque. The data for this experiment are given in table 4, machine run No. 3692.

Other sulfate and sulfate semichemical pulping experiments on E. saligna are discussed on pages 4 and 5.

The E. regnans sulfate pulp from Australia was used in making creped tissue paper. The properties of the paper are shown in table 5 in comparison with a similar kind of paper made from commercial hardwood sulfate pulps in the United States. The eucalyptus paper had high absorbency (low test value) and good strength.

Cold Soda Pulping

Cold soda pulping experiments were made on a mixture of equal parts, by weight, of E. saligna, E. kertomiana, E. tereticornis, and E. alba from Brazil. By this process the chips were steeped in a caustic soda solution for about 2 hours at atmospheric temperature, washed, and fiberized. The yield of pulp was about 90 percent. The conditions used in these tests are given in table 6. Increasing the caustic soda concentration from 50 to 100 grams per liter decreased the pulp yield slightly. The pulps were bulky and slightly darker and weaker than the average of cold soda pulp made from hardwoods grown in the United States.

A newsprint-type paper was made from a furnish consisting entirely of the semibleached pulp. The properties of the paper are given in table 4, machine run No. 3672. The overall quality of the paper was comparable to standard newsprint paper, though it was low in opacity and in oil penetration (a measure of receptivity to ink in printing).

Rept. No. 2126

Neutral Sulfite Semichemical Pulping
E. gigantea from Tasmania was readily pulped by the neutral sulfite semichemical process to produce pulps in yields of 70 to 75 percent. The pulping data are given in table 7.

The unbleached pulps were fairly strong although, except for tearing strength, they were weaker than aspen semichemical pulp, which is considered to be among the strongest of hardwood semichemical pulps.

The eucalyptus pulp made at 70 percent yleld was bleached to a brightness of 85 percent with an increase in strength. In relation to bleached aspen pulp that was comparably prepared, the bleached eucalyptus pulp was weaker in bursting and tensile strength, about equal in folding, and stronger in tearing strength. The strength data are given in table 8.

The unbleached E. gigantea pulps were converted into linerboard. The board made from the lower yield pulp (digestion No. 5296) was slightly over general requirements in bursting strength for this product, and that made from the higher yield pulp (digestion No. 5291) was slightly under. The data are given in table 9. The experimental aspen linerboard included for comparison barely meets the bursting strength requirement. 4 These hardwood Iinerboards were considerably lower in tearing strength and folding endurance, but higher in compression resistance, than a commercial southern pine kraft linerboard.

A sample of E. robusta from Puerto Rico (see table l for chemical analysis and physical test data) was digested by the neutral sulfite semichemical process to about 74 percent yield. The tearing strength of the pulp was higher than is usually associated with the other strength properties, and its stiffness was good. The pulping conditions and pulp property data are given in tables 7 and. 8.
E. robusta chips were mixed with an equal volume of Inga vera chips (commonly called guaba in Puerto Rico) and cooked to a 74 percent yield under conditions similar to those used for the eucalyptus alone (digestion No. 5620, table 7). The strength of this pulp (table 8) was slightly lower than the average of the two species when cooked separately to the same yield. The eucalyptus-guaba pulp mixture was made into nine-point corrugating board. Though the strength of the board (table 10) did not equal, in all respects, similar board made from aspen, its strength was adequate and its stiffness (as measured by the flat-crush resistance test) was good.

The conditions used for pulping a sample of E. saligna from Brazil by the neutral sulfite semichemical process are given in table $\frac{7}{7}$, and the properties of the pulp are given in table 8. The strength of this pulp was equal to that obtained

[^1]Rept. No. 2126 -3-
from such dense hardwoods as oak, birch, and maple. This pulp was also comparable to a sulfate semichemical pulp (table ll) made from the same sample of wood. The ring-compression and flat-crush resistance of boards made from these two pulps are given in table 10. There was no important difference between the two, and both boards were higher in ring compression than commercial corrugating-grade pulp used for comparison.

> Sulfate, Soda, and Groundwood Pulping of E. Saligna from Brazil

The wood used in this investigation (sample (J) 1397, table 1) corresponded closely in chemical composition and physical properties to other samples of eucalyptus received from Brazil.

Pulps covering a wide range in yield were prepared by the sulfate and soda processes. The cooking data and pulp properties are given in table 11. The following were of particular interest:
(1) A hot-refined sulfate pulp was cooked to a yield of 60 percent, using 10 percent of chemicals calculated as sodium oxide. The pulp had strength characteristics suitable for wrapping papers.
(2) A high-strength sulfate pulp was obtained at a yield of 54 percent, using 12 percent of chemicals calculated as sodium oxide. The strength of this pulp developed rapidly in the beater and was adequate for either use of the pulp alone, or as a high proportion of blends with long fiber in most kraft papers.
(3) A bleachable-grade sulfate pulp (with a chlorine requirement of less than 5 percent) produced a yield of 50 percent, using 19 percent of chemical calculated as sodium oxide. The pulp was strong and soft but required longer beating than the higher yield pulps to develop its maximum strength.
(4) A high-strength soda pulp was cooked to a yield of 52 percent, using 14.7 percent of chemical calculated as sodium oxide.
(5) A bleachable-grade soda pulp (with a chlorine requirement of less than 5 percent) was cooked to a yield of 46 percent, using 26 percent of chemical calculated as sodium oxide.

The sulfate and soda pulps were equal to, or higher in strength, than similar types of pulps made from North American hardwoods. The sulfate pulps were stronger than soda pulps of the same grade and had the added advantages of higher yield and lower chemical requirement for pulping.

A conventional three-stage process was used for bleaching certain pulps that had been cooked for easy bleaching. Pulp loss due to bleaching was less than

5 percent in all instances. The bleached sulfate pulps were stronger, and the soda pulps were equal in strength, to a conmercial bleached sulfate pulp made from hardwoods from the northeastern United States (table 1I). The bleached pulps were also equal to the commercial pulp in such qualities as opacity, bulk, porosity, and softness.

Two weights of wrapping paper were made from blends of the eucalyptus sulfate pulp and a commercial northern pine sulfate pulp. The papers had good formation and bursting strengths were comparable to paper made from southern pine sulfate pulp, but their tearing resistances were lower. A book paper that had good quailty characteristics was made from a furnish consisting of 89 percent bleached sulfate pulp from eucalyptus, and 11 percent bleached sulfate pulp from commercial western softwood (percentages based on fiber furnish). A writing paper containing 89.5 percent eucalyptus bleached sulfate pulp and 10.5 percent of the softwood bleached sulfate pulp had characteristics of a No. I bond paper (table 12).

At a 75 percent yield from E. saligna, sulfate semichemical pulp required 6.3 percent of chemicals calculäted as sodium oxide (table 11). A comparison of this pulp with one made by the neutral sulfite semichemical process is given on page 4.

The groundwood pulps made from the E. saligna were too weak for use in papermaking, except in very limited amounts. For bleaching, the groundwood pulp required about 10 percent available chlorine (as calcium hypochlorite) to reach 60 percent brightness, and 15 percent for 70 percent brightness. This pulp was also bleached to 60 percent brightness with 1.5 percent of sodium hydrosulfite. The chemigroundwood pulps were also weak and were extremely difficult to bleach. Brightnesses obtained were 55 percent with 20 percent of calcium hypochlorite and 37 percent with 5 percent of sodium hydrosulfite. No further increase in brightness was obtained with higher amounts of chemical.

holnture-fice ball.

[^2]

Properties	: Machine run No. : A commercial$:-3692: 3672:$ newsprint		
Furnish:	:	:	:
E. saligna sulfate pulp (semibleached)..f. percent	: 100	.	
Eucalyptus cold sode pulp (semibleached) ${ }_{\text {E }}$.percent		100	
Cley (based on pulp)........................percent	: 15	:...	
	- 37	: 36	36
Thiclmess...mils	3.1	: 4.6	3.0
Bursting strength:	:	: 6.6	:
Mullen. . . . \quad. ${ }^{\text {pts. }}$: 10.5	: 6.6	8.2
Per pound per ream...............................pts.	. 27	: . 18	. 22
Tearing resistance.................gm. per lb. per rm.	$: 1.07$: $\quad .50$. 66
Tensile strength......................lb. per in. width	: 9.7	: 7.7	7.5
Oil penetration......................................sec.	6	: 10	43
Opacity... ${ }^{\text {percent }}$: 84.4	: 80.9	90.3
Brightness...percent	: 76	: 70	62
Density.....................................gm. per cc.	: . 66	: . 43	. 69

[^3]Table 5.--Properties of creped tissue paper containing E. regnans sulfate pulp. Job 1078.

Paper machine run No	2897	2896
Furnish:		:
Eucalyptus sulfate pulp (bleached)........percent:	50	
Aspen sulfite pulp (bleached)..............percent:		50
Spruce sulfite pulp (blegched)............percent:	50	: 50
	14	: 16
Thickness.... ...mils:	2.9	3.0
Density...................................gm. ${ }^{\text {ger }}$ cc.	. 26	. 29
Bursting strength. ${ }^{\text {a }}$...........Pts. per lb. per rm.:	. 15	: . 15
Tearing resistançe ${ }^{\text {- }}$. gm. per 1 b . per rm.:	59	: 57
	93	: 97
Absorbency...sec.	27	: 44
${ }^{1}$ The eucalyptus pulp was manufactured in Australia. The aspen and spruce pulps were commercially made in the United States.		
${ }^{2}$ Ream of 500 sheets, each 25 by 40 inches. ${ }^{3}$ Average of in- and across-machine directions.		

Table 6.--Cold soda pulping of eucalyptus species ${ }^{1}$ from Brazil. Job 1246.

Table 7. --Neutral sulfite semichemical pulping of E Yeateg (Job 1083), E. robusta (Job 1387), and E. 日aligna (Job 1097).

${ }^{\text {I Equal parts by volume of } E \text {. robusta and Inga vera. }}$
${ }^{\text {Ener }} 100$ pounds of moisture-free wood.
3^{3} Before introduction of impregnating liquor, the wood was steamed for $1 / 2$ hour at atmospheric pressure.
${ }_{-}^{4}$ Moisture-free basis.
Table 8. -wtrength properties of E. glgantea, E. robusta, and E. saligna neutral
sulfite semichemical pulps (Jobs 1083,1387 , and 1397 respectively).

[^4]Table 9.--Properties of eucalyptus and other linerboards

${ }^{-}$Ream of 500 sheets, each 25 by 40 inches.
Table 10.--Properties of corrugating board made from E. robusta and E. saligna semichemical pulps

[^5]Table 11.--Sulfate and soda pulping of Eucalyotus salimns from Brazil. Job 1397
 Cooking condficis other than tabulated were: sulfidity of aulfate digeations, 20 percent (based on active alkali); liquor-to-wood ratia,
sure (except where otherwlae noted) $165^{\circ} \mathrm{C}$; time from $30^{\circ} \mathrm{C}$. to maximum temperature, 90 minutes; time at maxfin temperature, 90 minutes. Sased on chemicaia chargec. ${ }^{3}$ Besed or molature-Free wond.
4 Beatér test data values at 250 milliliters freeness are interpolated from curves. Tests made on unbleached pulp unless otherwise noted. ${ }^{5}$ Ream size 500 sheets, each 25 by 40 inches.
${ }^{6}$ Total yield cooked chips Piberized and not screened. $I_{\text {Volues in }}$ this line were obtained on bleached pulp. Goxinam temperature, $170^{\circ} \mathrm{C}$.
Table 12. --Data on paper made from Eucalyptur sall gma sulfate pulp. Job 1397

Northern pine sulfate rule used fon wrapping paper rung; Western softwood sulfate used in book and writing paper rwns.
3_{15} percent' rosin size adied at bester.
${ }_{1} .1$ percent gogin size, 16.7 percent clay, 1.1 percent titanium oxide (based on pulp) added at beater. ${ }^{4}$ pulap bleached.
-1. 6 percent y \quad ain aime, 7.9 percent clay, bsed on pulp added at beater. Surpace coated at size press with 5 percent starch (2 parts)-titanium oxide

SUBJECT LISTS OF PUBLICATIONS ISSUED BY THE

FORESY PRODUCIS IABORATORY

The following are obtainable free on request from the Director, Forest Products Laboratory, Madison 5, Wisconsin:

List of publications on Box and Crate Construction and Packaging Data

List of publications on Chemistry of Wood and Derived Products

List of publications on Fungus Defeots in Forest Products and Decay in Trees

List of publications on Glue, Glued Products, and Veneer

List of publications on Growth, Structure, and Identification of Wood

List of publications on Mechanical Properties and Structural Uses of Wood and Wood Products

List of publications on Fire Protection

List of publications on Logging, Milling, and Utilization of Timber Products

List of publications on Pulp and Paper

Iist of publications on Seasoning of Wood

List of publications on Structural Sandwich, Plastic Leminates, and Wood-Base Aircraft Components

List of publications on Wood Finishing

List of publications on Wood Preservation

Partial list of publioations for Architeots, Builders, Engineers, and Retall Lumbermen

Partial list of publications for Furniture Manufacturers, Woodworkers and Teachers of Woodshop Practice

Note: Since Forest Products Laboratory publications are so varied in subject no single list is issued. Instead a list is made up for each Laboratory division. IWice a year, December 31 and June 30, a list is made up showing new reports for the previous six months. This is the only item sent regularly to the Laboratory's mailing list. Anyone who has asked for and received the proper subject lists and who has had his name placed on the mailing list can keep up to date on Forest Products Laboratory publications. Each subject list carries descriptions of all other subject lists.

[^0]: ${ }^{\text {IThis }}$ report previously issued as a Pulp and Paper Division report of Iimited distribution.
 SMaintained at Madison, Wis., in cooperation with the University of Wisconsin.

[^1]: 4 The yield of aspen pulp from which this board was made was relatively high (80 percent). A pulp made at a little lower yleld would have undoubtedly proved to be more satisfactory.

[^2]: 2 onsum in single-stage hypochlorite bleaching test.
 ${ }^{3}$ Ninety percent eucalyptus puip and 10 percent commercial spruce sulfite pulp. ${ }^{4}$ Per 100 pounds moisture-free wood.
 ${ }^{5}$ Ream of 500 sheets, each 24 by 36 inches.

[^3]: ${ }^{1}$ Spruce sulfite 20 percent, spruce groundwood 80 percent.
 kertoniana,
 国
 weight (molsture-free basis) of
 alba woods. alba wocds.
 $3_{\text {Ream of }} 500$ sheets, each 25 by 40 inches.

[^4]: -Ream of 500 sheets, each 25 by 40 inches.
 Frreeness and other pulp tests on unprocessed pulp.

 ${ }^{4}$ Chlorine consumption 22 percent by a 3 -stage bleaching process.
 ${ }^{5}$ Pulp made from equal parts by volume of E. robusta and Inga vera.

[^5]: IA commercial aspen corrugating grade of pulp made into handsheets for comparison with handsheets - made from E. saligna pulps.

