INSTITUTO POLITÉCNICO NACIONAL

 CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS
ECONOMICAL AND BIOLOGICAL CONSEQUENCES OF APPLYING A CONSTANT CATCHABILITY VALUE

IN A SEQUENTIAL FISHERY

> Presenting
> Fernando Aranceta Garza
> Juan Carlos Seijo \& Francisco Arreguín-Sánchez

*Small scale shrimp fleet, Teacapán, Sinaloa, México

$<>$
NAAFE FORUM 2017, March 22-24 La Paz, BCS, México

Importance of catchability parameter " q " in the fishery dynamics

A vital parameter in the

fishing mortality coefficient
(F) used in fishery models:

"F" $\boldsymbol{C}=\boldsymbol{q}=\boldsymbol{q}^{*} \boldsymbol{S}^{*} \boldsymbol{N}^{*} \boldsymbol{f}$

Population dynamics

$$
\widehat{C}_{t}=N_{t} \cdot\left[\frac{F_{t}}{F_{t}+M_{t}}\right] *\left[1-e^{-\left(F_{t}+M_{t}\right)}\right]
$$

Baranov's catch equation

Most fishery models do not estimated directly the q coefficient adopting constant values; this can be applied to: fisheries with similar q in individuals (i.e. Adult target fisheries); same environmental conditions; same quality fishing effort; \& closed population.

Constant q values: Reduces quality and resolution to fishing models with the assumptions: a) the vulnerability is constant to the total population (i.e. between larvae, young \& adults) \& CPUE is independent of resource density; b) Abundance independent of environment (i.e. No natural population fluctuations.

Catchability parameter $" \not \subset$ in sequential

fisheries
 (study case: Mexican Pacific shrimp l

" q " variability sources in sequential fisheries:
a) Variation in distribution;
b) Reproductive seasonality;
c) Environmental variability;

PREADULT

d) Size dependent behavior (ie. migrations, reproductive aggregations,);
e) Different fleet's fishing power affecting different components of the population structure.

Most sequential fishery modelling uses constant q values because they lack high quality information, especially in total number of effort units per fleet and size-structured capture per fleet.

Research questions

1) In sequential fisheries, which are the biologic and economic consequences of using constant q over an aged-dependent q parameter in a fishery model ?
2) Are the consequences of similar magnitude between the fleets and among species?

Methodology

Shrimp fishery data in Sinaloa sur for the 2014-2015 season:
*Fleet effort in days/number units

* Catch structure in sizes per species per fleet *Biological data (growth, weight, reproduction).

Based Model:
Construction of an aged-structured bioeconomic model with:
*Mand q-at-aged parameters
*Multifleet \& multispecies

* Distributed delay model (gamma PDF) for recruitment seasonality (Anderson and Seijo, 2010).

Methodology

Estimation of q - at-age

Using a CATCHABILITY software

Data input: K, r,
CPUE $_{t}$ CPUE $_{t+1}$ size-structure or " $N_{(l, t+1)}$ ", $M \& f$.

Uses a transitional matrix $\left(A_{(l, k)}\right)$ depending on individual growth " C " and survival " S ", which solves for q minimizing differences

between $N_{(l, t+1)}$ and $N_{(l, t)}$ (Arreguín Sanchez, 1996).

$$
N_{(l, t+1)}=A_{(l, k)} N_{(l, t)}
$$

$$
* N_{(l, t+1)}=\sum_{k} G_{(l, k)} e^{-\left[M+\boldsymbol{q}_{(k, t)} s_{(k)} E_{(t)}\right]} N_{(k, t)}
$$

Results

Catchability parameter: constant q vs q-at-age

Population structures changes through time mainly by fishing mortality which reduces the stock abundance and reduces q-at-age values

Results

Catchability parameter: constant q us q-at-age

Using a constant q value, assigning the same vulnerability to the size/age population structure, will overestimate at early ages, and underestimate towards the adulthood q-atage values. Globally, using a constant q value will overestimate the inshore fishery.

Results

Catchability parameter:
constant q vs q-at-age

Marine population structure changes in time with the entry of new recruits to the fishery (rf) or with the reproductive aggregations (ra) reflected in the q-at age values.

Results
Catchability parameter: constant q vs q-at-age

Constant q values denies any change in the population structure by assigning the same vulnerability \& densities to the population through time.

Results
Model economic outputs

* Per season

	Using constant q		Magnitude
Fishery	overestimation	+0.3 x	+24 million USD
Offshore fleet	overestimation	+0.34 x	+26 million USD
Inshore fleet	underestimation	-3 x	-2.3 million USD

Results Model biological outputs

	Using constant \boldsymbol{q}	Magnitud	e Quantity
Recruitment (Ind yr ${ }^{\mathbf{1}}$)			
Brown	overestimation	+0.02x	+432 million
White	underestimation	-0.01x	-26 million
Blue	underestimation	-0.15 x	- 257 million
SSB (ton Vr^{-1})			
Brown	overestimation	+0.07 x	+4,800 ton
White	underestimation	-0.05x	-568 ton
Blue	underestimation	-0.35x	-2,700 ton

We observed different outcomes in a multispecies fishery; associated to population dynamics and fleet selectivity affecting \boldsymbol{q}.

Conclusions

1) In sequential fisheries we observed biased values in biological (i.e. shrimp recruitment and spawning stock biomass) an in economic variables (i.e. NPV \& profit per effort unit) when using constant \boldsymbol{q}.
2) The magnitude outcomes differ between fleets (i.e. inshore = underestimation; offshore fleet = overestimation) and among the species (i.e. white \& blue biomass were underestimated \& brown shrimp was overestimated). These will depend upon the specific stock and fishing fleet spatial dynamics.

Consejo Nacional de Ciencia y Tecnología

Contact info:

fer_aranceta@yahoo.com Mobile: 6121366595

