

INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS

ECONOMICAL AND BIOLOGICAL CONSEQUENCES OF APPLYING A CONSTANT CATCHABILITY VALUE IN A SEQUENTIAL FISHERY

Presenting Fernando Aranceta Garza Juan Carlos Seijo & Francisco Arreguín-Sánchez

*Small scale shrimp fleet, Teacapán, Sinaloa, México

NAAFE FORUM 2017, March 22-24 La Paz, BCS, México

Importance of catchability parameter """ in the fishery dynamics

A vital parameter in the fishing mortality coefficient (*F*) used in fishery models:

$$\mathbf{F}^{"}=C=q^*s^*N^*f$$

$$\widehat{C}_t = N_t \cdot \left[\frac{F_t}{F_t + M_t}\right] * \left[1 - e^{-(F_t + M_t)}\right]$$

Baranov's catch equation

Most fishery models do not estimated directly the *q* coefficient adopting constant values; this can be applied to: fisheries with similar *q* in individuals (*i.e.* Adult target fisheries); same environmental conditions; same quality fishing effort; & closed population.

Constant *q* values: Reduces quality and resolution to fishing models with the assumptions: a) the vulnerability is constant to the total population (*i.e.* between larvae, young & adults) & CPUE is independent of resource density; b) Abundance independent of environment (*i.e.* No natural population fluctuations.

Most sequential fishery modelling uses constant *q* values because they lack high quality information, especially in total number of effort units per fleet and size-structured capture per fleet.

Research questions

1) In sequential fisheries, which are the biologic and economic consequences of using **constant** *q* over an **aged-dependent** *q* parameter in a fishery model ?

2) Are the consequences of **similar** magnitude between the fleets and among species ?

Methodology

Shrimp fishery data in **Sinaloa sur** for the 2014-2015 season : *Fleet effort in days/number units *Catch structure in sizes per species per fleet *Biological data (growth, weight, reproduction).

Based Model:

Construction of an aged-structured bioeconomic model with :

*Mand q-at-aged parameters *Multifleet & multispecies *Distributed delay model (gamma PDF) for recruitment seasonality (Anderson and Seijo, 2010). 3FC3

Methodology

Estimation of *q- at-age*

Using a CATCHABILITY software Data input: *K*, *r*, CPUE_t CPUE_{t+1} size-structure or " $N_{(l,t+1)}$ ", *M* & *f*_t.

Uses a transitional matrix $(A_{(l,k)})$ depending on individual growth "G" and survival "S", which solves for q minimizing differences between $N_{(l,t+1)}$ and $N_{(l,t)}$ (Arreguín Sanchez, 1996).

$$N_{(l,t+1)} = A_{(l,k)}N_{(l,t)}$$

(Arreguín-Sánchez, 1996)

*
$$N_{(l,t+1)} = \sum_{k} G_{(l,k)} e^{-[M + \mathbf{q}_{(k,t)} S_{(k)} E_{(t)}]} N_{(k,t)}$$

Catchability parameter: constant *q* vs *q*-at-age

Population structures changes through time mainly by fishing mortality which reduces the stock abundance and reduces *q*-at-age values

```
Catchability parameter: constant q vs q-at-age
```


Using a constant q value, assigning the same vulnerability to the size/age population structure, will overestimate at early ages, and underestimate towards the adulthood q-atage values. **Globally, using a constant q value will overestimate the inshore fishery**.

Catchability parameter: constant *q* vs *q-at-age*

b

Marine population structure changes in time with the entry of new recruits to the fishery (rf) or with the reproductive aggregations (ra) reflected in the *q-at age* values.

Catchability parameter: constant *q* vs *q*-at-age

Constant q values denies any change in the population structure by assigning the same vulnerability & densities to the population through time.

Results Model biological outputs

	Using constant q	Magnitude	Quantity
Recr <u>uitment (Ind yr ¹)</u>			
Brown	overestimation	+0.02x	+432 million
White	underestimation	-0.01x	-26 million
Blue	underestimation	-0.15 x	- 257 million
SSB <u>(ton</u> Brown White	vr ⁻¹) overestimation underestimation		+4,800 ton •568 ton
Blue	underestimation		2,700 ton
We observed different outcomes in a multispecies fishery; associated to population dynamics and fleet selectivity affecting <i>q</i> .			

Consequences of using constant "q " in sequential fisheries

Conclusions

 In sequential fisheries we observed biased values in biological (*i.e.* shrimp recruitment and spawning stock biomass) an in economic variables (*i.e.* NPV & profit per effort unit) when using constant *q*.

2) The magnitude outcomes differ between fleets (*i.e.* inshore = underestimation; offshore fleet = overestimation) and among the species (*i.e.* white & blue biomass were underestimated & brown shrimp was overestimated). These will depend upon the specific stock and fishing fleet spatial dynamics.

Special thanks to :

Consejo Nacional de Ciencia y Tecnología

Contact info: fer_aranceta@yahoo.com Mobile: 6121366595

