## AN ABSTRACT OF THE THESIS OF

Robert Steven Giles for the degree of Master of Forestry in Forest Engineering presented on May $1,1986$. Title: LOGCOST a Harvest Cost Model for Southwestern Idaho. Abstract approved:


LOGCOST is an interactive computer program that predicts stump to mill logging costs, stumpage and net present value of a harvest based on stand data, pond value and logging parameters, entered by the user. The program is intended for use by foresters to evaluate the economics of different stand management strategies. It is also useful in deciding whether commercial thinning of existing stands is profitable. The current version is designed for use in southwestern Idaho, but minor changes could be made which would extend the applicability to other parts of the USDA, Forest Service, Intermountain Region.

Approximately two minutes is required to enter data, and program execution takes approximately 15 seconds, using an $I B M$ Personal Computer. LOGCOST is compiled in BASIC and
will run on microcomputers that have at least 256 K RAM and are IBM compatible. Documentation of the model and a Users' Guide are included in the Appendices.

Felling and bucking, as well as yarding production, computed by LOGCOST compared favorably with other studies. Stump to truck logging costs are significantly lower than the cost estimated by the Intermountain Region Timber Appraisal Handbook.

Preliminary testing of this harvest cost model, using stand data from the Boise National Forest in southwestern Idaho, suggests that the model is sensitive to such variables as tree size, species, volume per acre cut, logging system, terrain, and distance to the mill.

Differences in thinning intensity, and past stand history (precommercial thinning) also result in differences in harvest cost per mbf, when modeled by LOGCOST. The results of alternative stand management strategies tested suggest that precommercial thinning may be necessary to produce profitable stands on average sites, if rotations less than 100 years are desired.

# logcost a HARVEST COST MODEL FOR SOUTHWESTERN IDAHO 

by

Robert Steven Giles

A PAPER
submitted to

College of Forestry Oregon State University

```
in partial fulfillment of the requirements for the degree of Master of Forestry
```


## APPROVED:



Date paper is presented: May 1,1986
Typed by Judith Sessions for Robert S. Giles

## ACRNOWLEDGEMENTS

It is with sincere appreciation that $I$ thank Dr. Julian Sessions, my major professor, for his guidance and advice. I also thank the other members of my committee, Dr. Eldon Olsen and Dr. Douglas Brodie, for their careful review of this project.

I am also grateful to my supervisor Donald Studier and to the USDA, Forest Service employees on the Boise and Payette National Forests for their help and encouragement.

A special acknowledgement is in order to Boise Cascade Corporation, Boise, Idaho, for the data and advice offered. Much of their data filled in the gaps in the Forest Service data.

I also thank my wife Kathleen and children, Karen and Steven, for their moral support and patience throughout this project.

## TABLE OF CONTENTS

Page
MANUSCRIPT
Abstract ..... 1
Introduction ..... 1
Model Structure ..... 3
Model Validation - Comparison ..... 7
Implications ..... 13
Conclusions ..... 18
Literature Cited ..... 19
APPENDICES
A. Cut Tree Parameters ..... 20
B. Felling and Bucking ..... 24
C. Yarding ..... 26
D. Loading ..... 54
E. Hauling ..... 57
F. Road Construction, Reconstruction, Maintenance, Environmental, and Move-In, Move-out Costs.. 63 ..... 63
G. Model Validation - Comparison.
H. Hourly Costs of Felling and Bucking and Yarding Systems. ..... 72
I. LOGCOST Program List ..... 75
J. User's Guide to LOGCOST ..... 98

## LIST OF TABLES

Table
Page

1. Characteristics of four ground-based systems and two skyline systems modeled by Logcost 7
2. Mean roundtrip minutes per mile for pared and unpared surfaces in southwestern Idaho 7
3. Dianeter height relationship and corresponding volume per tree for ponderosa pine from a typical site in southwestern Idaho15
4. Predicted outhaul velocity of small and large skidder on slopes steeper than 10 percent ......... 41
5. Equations to predict inhaul velocity of a small and large skidder on a five percent favorable grade, flat grade, and two adverse grades, as a function of the logarithm of payload42
6. Efficiency, hourly and daily costs (including operator and landing sawyer) of a small and large crawler tractor, and a small and large rubber-tired skidder45
7. Effective hour for a small and large skyline yarder operating in low and moderate cut volume per acre52
8. Hourly and daily cost of a small and medium size

 ..... 53
9. Species regression equation to predict standby
time per trip, and $R^{2}$ value ................................ 58

* B Estimated truck standby time. This time includes a 20-minute waiting time, an ll-minute unload time, and variable load time. (Reproduction from USDA, Forest Service) ........ 59

10. Mean roundtrip minutes per mile for paved and
unpaved surfaces, based on a sample for 48
timber sales in southwestern Idaho ..................... 61

## LIST OF FIGURES

Figure Page

1. Stand data input ..... 4
2. Logging system input ..... 4
3. Environmental and administration input ..... 5
4. Output summary ..... 5
5. Comparison of LOGCOST versus felling and bucking production from industy ..... 9
6. Comparison of LOGCOST versus felling and bucking cost from industry ..... 9
7. Skidding production of LOGCOST versus Siefert ..... 10
8. Skyline yarding production from LOGCOST versus Hochrein ..... 10
9. Felling and Bucking Costs from LOGCOST versus Region 4, USDA, Forest Service ..... 12
10. Skidding costs from LOGCOST verus Region 4, USDA, Forest Service ..... 12
11. Effect of tree size on ponderosa pine harvest cost ..... 14
12. Relationship of ponderosa pine tree size and stand age predicted by PROGNOSIS ..... 14
13. Effect of Lodgepole pine tree size on harvest cost ..... 17
14. Effect of Haul Distance on ponderosa pine harvest cost ..... 17
15. Flowchart of Lateral Yarding Simulation for Ground-based Systems ..... 31
16. Typical Ground-based System Cut Block ..... 33
17. Flowchart of lateral yarding simulation for skyline systems ..... 46
18. Typical skyline system cut block ..... 49

## LIST OF FIGURES (continued)

Figure Page
19. Comparison of LOGCOST verus felling and bucking production from industry ..... 67
20. Comparison of LOGCOST versus felling and bucking cost from industry ..... 67
21. Skidding production of LOGCOST versus Siefert ..... 69
22. Skyline yarding production from LOGCOST versusHochrein69
23. Felling and bucking costs from LOGCOST versusRegion 4, USDA, Forest Service .................... 7024. Skidding costs from LOGCOST versus Region 4 ,USDA, Forest Service70

# Harvesting Factors Affecting Financial Feasibility of Thinning in Southwestern Idaho <br> Robert Giles, USDA, Forest Service Boise National Forest, Lowman, Idaho <br> John Sessions <br> Department of Forest Engineering Oregon State University <br> Corvallis, Oregon 

ABSTRACT

The financial feasibility of thinning in southwestern Idaho is not well established. A logging cost model, LOGCOST, was developed to estimate harvesting costs for seven major tree species. The financial feasibility of thinning depends heavily upon species, tree size, skidding or yarding method, topography, and haul distance. In order to provide financially feasible thinnings, biologically similar stands may have to be managed quite differently if haul distance or terrain vary significantly.

## INTRODUCTION

The economics of forest management have become increasingly important in the Rocky Mountain area and there has been considerable debate concerning "deficit" timber sales. Much of this debate centers around the cash flow or financial feasibility of timber management. To be financially feasible, a thinning must be able to pay for itself. Large areas of southwestern Idaho are being considered for precommercial or commercial thinning over the next decade (Morelan, 1985; Jacobsen, 1985). The financial feasibility of these thinnings is not well established. In addition, attempts have been made to identify the

silvicultural prescriptions which would maximize value either through traditional timber appraisal or mathematical optimization (Johnson, 1985). Both approaches require that the user supply cost and revenue information.

Costs and revenues have typically been derived from the USDA, Forest Service, Region 4 Timber Appraisal System. This system is based on historical cost data. Appraisal variables are the number of logs per thousand board feet, average yarding distance, timber haul characteristics, scaling defect, and volume removed per acre, with limited reference to tree diameter and tree volume. No differentiation is made between tractor and rubber-tired skidding. From the silviculturist's point of view, the important variables are the species, number of trees per acre and tree sizes to be removed, and the number and sizes of trees to be left. The logging engineer shares these same concerns, with the addition of terrain, yarding distance, and haul distance.

To increase the manager's ability to distinguish between alternative silvicultural prescriptions and to decrease the effort required to estimate logging costs and revenues, LOGCOST, a harvesting cost model was developed. The LoGCOST model is specifically calibrated for southwestern Idaho. A similar approach could be used in other areas. This paper describes the structure of the LOGCOST model and the application of the model to a typical, well-stocked, immature stand. The financial implications of
thinning are discussed in terms of the silvicultural and logging cost variables.

LOGCOST has been programmed on an IBM PC, 256 K system in Microsoft BASIC. The program requires the use of one 51/4 inch disk drive for operation. A User's Guide and a diskette containing the program are available from the Department of Forest Engineering, Oregon State University. Examples of the inputs needed to run LOGCOST are shown in Figures $1-3$. An example of the harvest summary output is shown in Figure 4.

MODEL STRUCTURE
Timber yield data is derived from sources that include a timber cruise, stand examination, or growth model such as. the STAND PROGNOSIS MODEL (Wycoff, et. al., 1982). Harvest stand variables are tree species, number of trees per acre, gross volume per acre, quadratic mean diameter, and average total height. Terrain variables are average yarding distance, skidding or yarding equipment, average percent slope in direction of yarding, maximum payload, and haul route characteristics. Pond values are distinguished by species. Seven important southwestern Idaho tree species are considered: ponderosa pine (Pinus ponderosa Dougl. ex Laws. var. ponderosa), Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), lodgepole pine (Pinus contorta Dougl. ex Loud.), grand fir (Abies grandis (Dougl. ex D. Don) Lindl.) subalpine fir (Abies lasiocarpa (Hook.)

```
(1) STAND DATA AND CUT TREE CHARACTERISTICS
-----------------------------------------------
ENTER THE ANALYSIS YEAR, HARVEST YEAR - (_-m------)
FOR EXAMPLE, 1986,1995 -->1986,1995
ENTER THE STAND ACRES -->40
ENTER THE STAND AVERAGE SCALING DEFECT (IN PERCENT) -->5
ENTER SPECIES CODE (PP,DF,LP,GF,AF,ES,WL) - (TYPE END TO QUIT) --)PP
ENTER THE FOLLOWING DATA POR THE TREE SPECIES HARVESTED: (BF) - (AC, GROSS VOL/AC (BF), -->70.12600
```



```
ENTER THE POND VALUE (LOG PRICE FOB, MILL)-`=`=- -->125
ENTER SPECIES CODE (PP,DF,LP,GF,AF,ES,WL) - (TYPE END TO QUIT) --)END
```


## FIGURE 1. Stand Data Input

## (2) LOGGING System and terrain inputs

ENTER THE YARDING TYPE
GBS = GROUND BASED SYSTEM, SKY $=$ SKYLINE SYSTEM -->GBS
enter a skidding machine
STRAC $=$ SHALL CRAWLER TRACTOR, LTRAC $=$ LARGE TRACTOR
SRTS
SHALL RUBBER TIRED SKIDDER, LRTS
LARGE SKIDDER
ENTER THE AVE SLOPE IN THE DIRECTION OF LOADED SKIDDER
(CHOOSE $-30,-25,-20,-15,-10,-5,0,+5,+10$ )
-->-15
enter the ave scope yarding distance in feet
-->500
enter the one-way miles of paved haul road
--> 20
ENTER THE ONE-WAY MILES OF UNPAVED HAUL ROAD
-->10
enter the miles of road construction or reconstr chargeo
to this stand (INCLUDE BOTH SPECIFIED AND tEMPORARY ROADS)
-->0
enter the hiles of road to be maintained
-->10
enter the ave variable cost for road maintenance (\%/MBF-MILE) --).50

FIGURE 2. Logging System Input
(3) Environhental and adhinistrative cost data

## (3) ENVIRONKENTAL

enter the sale area improvement cost/ac
-->10
ENTER THE EROSION CONTROL COST/AC
-->5
enter the slash disposal costiac
-->10
enter the sale prep and adhin costiac
--)100

FIGURE 3. Environmental and Administration Input

| stand area | ,) |  | acres |
| :---: | :---: | :---: | :---: |
| NET VOLUHE | -) | 479 H | HBF |
| NET VOLUME PER ACRE | --) | 2.0 m | MBF |
| TREES PER ACRE |  | 70 | TPA |
| guadratic mean diameter | --) | 161 | Inches |
| average total height | --) | 75 | FEET |
| average gross log volume | --) | 180 |  |
| average stem Leng th | --) |  | FEET |
| Yarding system | --) | SRTS |  |
| average slope yarding distance | --) |  | PET |
| average scope | --) |  | PERCENT |
| yarding and loading production | --> |  | hbf/day |
| DISTANCE TO THE MILL | --> |  | ILES |
| FELLING AND BUCXING COST | --> | 13.6 | 62 / HBF |
| Yarding and loading cost | --> | 26.5 | 34 \% HBF |
| hauling cost | --> | 31.1 | 19 / MBF |
| GENERAL LOGGING OVERHEAD COST | --> | 8.4 | 42 / $/ \mathrm{MBF}$ |
| STUMP TO MILL LOGGING COST | --) | 79.7 | /7/ HBF |
| SPEC AND TEMP ROAD COST | --> | 5.0 | (1/MBF |
| SAI, EC AND bD cost | --) | 2.0 | //4BF |
| TOTAL HARVEST COST | --) | 86.8 | 6/MAF |
| PROFIT AND RISK (12 PERCENT) | --) | 13.3 | 3/ $/ \mathrm{MBF}$ |
| average pond value | --) | 125.00 | \#/MBF |
| ESTIMATED Stumpage | --) | 24. | \%/MBF |
| Sale prep and admin cost | --) | 100 | //aCRE |
| NET REVENUE (NOT DISCOUNTED) | --) | 196 | /ACRE |
| NET PRESENT VALUE (1 - 4*) |  | 138 | //ACRE |

FIGURE 4. Output Summary

Nutt.) , Engelmann spruce (Picea engelmannii Parry ex Engelm.), and western larch (Larix occidentalis Nutt.).

Estimates of average piece size and weight to board foot ratio are computed using the harvest stand variables and regression equations derived from southwestern Idaho studies. Felling and bucking costs are based upon USDA, Forest Service production studies from southwestern Idaho. Skidding and yarding costs combine both stochastic and deterministic elements. The stochastic procedure used here distributes the felled trees or bucked logs throughout the stand to simulate the spatial distribution. Cycle time elements are calculated using the results from studies by Siefert (1982), the mobility model developed by 0lsen and Gibbons (1983) for ground based systems, and Hochrein's study (1986) for skyline systems. Turn volume is estimated stochasticly using an approach similar to Sessions (1979) to provide estimates of logs per turn for all systems, total winch distance, intermediate move distance and number of intermediate moves per turn for ground-based systems, as well as to estimate production. Six machines, two cable and four ground based systems, are considered. Their characteristics are listed in Table l. For the cable systems, hot loading is assumed; for ground skidding, loading is from cold decks.

Table 1. Characteristics of Pour Ground-Based Systems and Two Skyline Systems Modeled by Logcost.

| Machine Type | Max. Payload (pounds) | Net Flywheel Horsepower (hp) | $\begin{gathered} \text { Max. } \\ \text { Span } \\ (\text { feet }) \end{gathered}$ | Tower Height (feet) |
| :---: | :---: | :---: | :---: | :---: |
| Small crawler tractor. | 13,000 | 78 | -- | -- |
| Large crawler tractor | 20,000 | 140 | -- | -- |
| Small rubbertied skidder | 7,000 | 70 | -- | -- |
| Large rubbertired skidder | 10,000 | 120 | -- | -- |
| Small skyline | 2,000 | 65 | 1,000 | 23 |
| Medium skyline | Entered by User | 284 | 2,000 | 48 |

Using appraisal data, a simplified approach to estimating log hauling cost was derived by computing roundtrip travel times in minutes per mile for paved and unpaved roads in each of 48 timber sales. From this sample, mean roundtrip travel times were estimated for paved and unpaved roads. The results are displayed in Table 2.

Table 2. Mean Roundtrip Minutes per Mile for Paved and Unpaved Surfaces In Southwestern Idaho.

| Surface | Mean Roundtrip | Standard | Standard Error |
| :--- | :---: | :---: | :---: |
| Type | Minutes per Mile | Deviation | of the Mean |
| Paved | 3.92 | .36 | .052 |
| Unpaved | 5.38 | .59 | .086 |

MODEL VALIDATION - COMPARISON
Some logging costs, such as loading associated with ground-based systems and timber haul, modeled by LOGCOST are nearly the same as the Region 4 Appraisal Handbook, and are assumed to be representative of typical costs experienced by
industry in southwestern Idaho. Because the felling and bucking and yarding cost centers use a different approach, they were compared with other studies and with the USDA, Forest Service Region 4 Appraisal estimates.

Felling and bucking daily production, predicted by LOGCOST, was compared with production for trees ranging in size from 14 inches to 24 inches dbh experienced by private industry in southwestern Idaho. To compare with LOGCOST, industry's measure of production, trees per hour, was multiplied by eight hours per day, and by the average volume per tree in mbf. Figure 5 shows that daily production predicted by LOGCOST matches industry's estimates throughout the range of tree sizes most commonly harvested. For trees 14-24 inches in diameter, the difference between industry's felling and bucking cost and LOGCOST is less than 10 percent (see Figure 6). LOGCOST uses felling and bucking costs of $\$ 18.33$ per hour, derived from local labor and machine rates. Skidding and cable logging production computed using stochastically-derived estimates of turn volumes by LOGCOST compared favorably with production reported by the Siefert (1983) and Hochrein (1986) studies. Siefert estimated daily production, based on the average study conditions and cycle time equations. Using similar stand conditions, LOGCOST matched Siefert's estimates of production for each of the three machines Siefert studied within 10 percent (Figure 7). Skyline yarding production was compared with Hochrein's time study results for two different stand conditions (see.


FIGURE 5. Comparison of LOGCOST Versus Felling and Bucking Production From Industry.


FIGURE 6. Comparison of LOGCOST versus Felling and Bucking Cost from Industry.


FIGURE 7. Skidding Production of LOGCOST versus Siefert.


FIGURE 8. Skyline Yarding Production From LOGCOST versus Hochrein.

Figure 8). The cut volume per acre and average log size were 11.5 mbf and 55 bf for the high stocked stand, and 5.4 mbf and 65 bf for the lower stocked stand. Hochrein's study found a slight decrease in productivity when thinning the lower stocked stand. LOGCOST predicted nearly the same daily production; this is probably because the fewer logs per turn (a function of fewer cut trees per acre) was offset by the larger volume per log. LOGCOST matched production estimates from Hochrein's time study within 13 percent.

Felling, bucking and yarding costs computed by LOGCOST for ponderosa pine were also compared with the Region 4 Timber Appraisal Handbook costs (1985). Figures 9 and 10 contrast the differences for different cut tree sizes. All other harvest variables were held constant; 70 trees per acre were cut and skidded 500 feet. The southwestern zone average scaling defect of five percent was assumed. In general, LOGCOST predicts higher costs for the smallest tree size, but lower costs for the medium to large tree sizes. Trees 10 inches and 12 inches in diameter (16, and 57 board feet, respectively) are so small that the number of gross 16 foot logs per mbf, computed for these trees, is beyond the limits of the Region 4 Skidding Cost Adjustment Table. Consequently, the Appraisal Handbook skidding cost adjustment is not appropriate when tree size is very small because no further adjustment is made for log sizes beyond the range. of the table. If rubber-tired skidders can be used to skid 16-inch diameter trees, the skidding cost per mbf predicted


FIGURE 9. Felling and Bucking Costs from LOGCOST versus Region 4, USDA, Forest Service.


FIGURE 10. Skidding Costs From LoGCOST versus Region 4 , USDA, Forest Service.
by LOGCOST is approximately half the cost estimated by the Region 4 Timber Appraisal Handbook. Appraisal costs for skidding large timber (20 inches in diameter) begin to converge with those estimated by LOGCOST.

IMPLICATIONS
To test the sensitivity of harvesting cost to species, tree size, yarding system, and haul distance, a probable thinning prescription was simulated. Figure ll shows the effect of tree size on harvest cost when all other variables are held constant; 70 ponderosa pine trees per acre (the most common tree species planted in southwestern Idaho) were cut, skidded or yarded 500 feet by rubber tired skidder or skyline yarder, and hauled 30 miles to the mill. Average tree heights, diameters and corresponding volume per tree for ponderosa pine were obtained from timber inventory data on the Boise National Forest in southwestern Idaho, and from Forest Service Region 4 volume tables ${ }^{1}$ (see Table 3).

[^0]


FIGURE 12. Relationship of Ponderosa Pine Tree Size and Stand Age Predicted by PROGNOSIS.

Table 3. Dianeter Height Relationship and Corresponding Volume per Tree for Ponderosa Pine Fron A Typical Site in Southwestern Idaho.

| Diameter at Breast Height (inches) | Total Height (feet) | $\underset{(b f)}{\text { Volume/Tree }}$ |
| :---: | :---: | :---: |
| 10 | 55 | 16 |
| 12 | 62 | 57 |
| 14 | 69 | 112 |
| 16 | 75 | 180 |
| 18 | 83 | 273 |
| 20 | 90 | 382 |

For these specific conditions, commercial thinning of ponderosa pine, using skidders, was feasible when the average tree size was 14 inches (112 bf) or larger; however, skyline thinning was only marginally feasible at a diameter of 16 inches ( 180 bf ). PROGNOSIS was then used to project how long an unmanaged, well-stocked plantation of ponderosa pine must be grown to reach these break even sizes. Figure 12 shows that this stand will not reach a commercial size for harvesting by rubber-tired skidder until age 95; a similar stand growing in steep mountainous terrain would not reach a commercial size for skyline yarding within the 100 year period. The culmination of mean annual increment (measured in cubic feet) occurred at age 80. For these stand conditions and a 30 mile haul, precommercial thinning would be required if a financially feasible thinning is anticipated for stands younger than 90 years.

In addition to size, tree species also affects harvesting costs and revenues. Ponderosa pine is heavier than most conifers in southwestern Idaho. Because of lumber
degrade problems associated with juvenile wood, it also has the lowest pond value for immature trees. These two factors result in a larger tree size required to break even when thinning young ponderosa pine stands. Lodgepole pine is representative of the conifers that have moderate pond values and low green wood densities. To illustrate the differences in harvest cost and stumpage between these two species, the ponderosa pine tree sizes used in Table 3 were also used for lodgepole pine. The same stand and harvesting conditions described above were also used. Figure 13 shows the effect of a lighter, higher-value species on the tree size-harvest cost curves. More opportunities exist for commercial thinning lodgepole pine stands at an earlier age. Higher pond values and lower harvest costs result in a smaller break-even tree size in lodgepole pine for both skyline or ground-based systems than ponderosa pine.

Haul distance from the mill is also an important factor. Haul distance was varied from 10 miles to 70 miles to test the sensitivity of the break-even tree size of ponderosa pine to distance from the mill. Three different tree sizes, 12 inches ( 57 bf ), 14 inches (112 bf) and 16 inches ( 180 bf), were commercially thinned using the model with harvest variables assumed for the examples above. In this case, only ground skidding using rubber-tired skidders was simulated. Figure 14 shows that all three of the tree sizes are profitable if the stand is 10 miles or less from the mill. However, stands with an average tree size of 16


FIGURE 13. Effect of Lodgepole Pine Tree Size on Harvest Cost.

inches or less that are further than 70 miles from the mill may not be financially feasible to thin. Under these conditions, silvicultural prescriptions for young stands growing in the same productivity zone may be different if haul distance is significantly different; stands closer to the mill have more opportunity to yield a commercial thinning.

The risk of a financially infeasible thinning is particularly important in the ponderosa pine and lodgepole pine timber types, because of their susceptibility to bark beetle outbreaks when stand density is high (Thier, 1986; Cahill, 1986). Precommercial thinning may be required to produce timber stands with adequate tree size to ensure financial feasibility.

CONCLUSIONS
The LOGCOST model significantly decreases the time required for foresters to estimate the cost of thinning the major species in southwestern Idaho. Costs are more sensitive to stand and terrain variables than the present appraisal system. Stratifying stands by species, tree size, topography, and log haul distance to the mill is essential. Achieving pest management guidelines may depend heavily upon the financial feasibility of thinning. Data from LOGCOST should provide valuable information for stand optimization models which seek to identify the most economical prescription to meet management objectives.

## LITERATURE CITED

Hochrein, P. 1986. Prebunching Versus Full-Cycle Yarding in Different Thinning Intensities. M. F. Paper, College of Forestry, Oregon State University, Corvallis, Oregon.

Olsen, E., and D. Gibbons. 1983. Predicting Skidder Productivity: A Mobility Model. Research Bulletin 43. College of Forestry, Oregon State University, Corvallis, Oregon.

Sessions, J. 1979. Effects of Harvesting Technology Upon Optimal Stocking Regimes of Forest Stands in Mountainous Terrain. Ph.D. Thesis. College of Forestry, Oregon State University, Corvallis, Oregon.

Siefert, J. 1982. Production Rates and Residual Stand Impact for Four Skidding Machines During Overstory Removal. M. S. Thesis. College of Forestry, Oregon State University, Corvallis, Oregon.

USDA, Forest Service, Region 4 Timber Appraisal Handbook. August, 1985.

## PERSONAL COMMUNICATIONS

Cahill, D. 1986. Forest Pest Management Specialist, State and Private Forestry, Boise Field Office, Region 4.

Jacobsen, G. 1985. Forester, USDA, Forest Service, Payette National Forest, Region 4.

Johnson, K. N. 1985. Assoc. Professor of Forest Management, College of Forestry, Oregon State University, Corvallis, Oregon.

Morelan, L. 1985. Forester, USDA, Forest Service, Boise National Forest, Region 4.

Thier, R. 1986. Forest Pest Management Specialist, State and Private Forestry, Boise Field Office, Region 4.

APPENDICES

APPENDIX A
Cut Tree Parameters

## APPENDIX A.

Characteristics of the cut trees, such as gross volume per tree, average piece size and pound to board feet ratio, are computed in the cut tree parameter subroutine before LOGCOST begins computing the logging costs. The cut tree parameters are computed for each species separately, and then weighted averages or totals are computed for the stand.

The equations used to compute cut tree parameters are similar for the seven species considered in LOGCOST. The equations and variables for ponderosa pine are discussed below.

Total net volume in mbf is computed first:
NVPP $=($ GVPAPP $x(1-S C D E F) \times \operatorname{ACRES}) / 1000$
Where NVPP is the net volume harvested, GVPAPP is the gross cut volume per acre, a user input,

SCDEF is the scaling defect, a user input expressed as a decimal, ACRES is the stand area entered by the user.

Average gross volume per tree is then computed in board feet, by dividing the gross volume per acre by the trees per acre.

Next, the merchantable length is determined; this is the length of the tree from the stump (assumed to be one foot high) to the merchantable top, which is six inches in diameter, inside the bark. USDA, Forest Service, Region 4
developed equations which predict merchantable length as a function of total height and diameter at breast height, for each of the seven tree species (Intermountain Region Timber Appraisal Handbook, 1985).

MLPP $=.8381 \times \mathrm{THPP}+7.299 \mathrm{x} \mathrm{SQR}(Q M D P P)-41.14$
Where MLPP is the merchantable length in feet,
THPP is the average total height in feet, of the cut trees, a user input,

SQR(QMDPP) is the square root of the quadratic mean diameter, in inches, of the cut trees. QMDPP is a user input.

The number of gross 16 feet logs per mbf (an indicator of tree size) is then computed.

LPMPP $=($ MLPP/16)/(AVPTPP/1000)
Where LPMPP is the number of gross logs per mbf, and AVPTPP is the average gross volume per tree in board feet.

Equations developed by private industry in southwestern Idaho are used by LOGCOST to predict the number of pieces per tree, and the average piece size in board feet. This information is then used to predict the pound to board feet ratio as a function of tree size for each species.

The number of pieces (bucked logs) per tree is a function of the total height and quadratic mean diameter.

PCPTPP $=.1469+.01954 \mathrm{x} T H P P+.0002468 \mathrm{x}$ QMDPP x THPP - 2.717/QMDPP

Where PCPTPP is the number of pieces per tree,

Average piece size in board feet is then computed:
PCSZPP $=$ AVPTPP/PCPTPP
where AVPTPP is the average gross volume per tree in board feet.

The pound to board feet ratio, a function of piece size, for a given species, is then computed: LBBFPP $=12.09-.01397 \times \operatorname{PCSZPP}+8.81 E-06 \times \operatorname{PCSZPP} 2$ + 187.6/PCSZPP

LOGCOST repeats this sequence for each species harvested and then computes the stand totals and averages.

Gross volume per acre in board feet is the sum of the gross volumes of each species harvested. Net volume per acre is then computed.

NVOLPA $=$ GVPA $\times(1-S C D E F) / 1000$
Where NVOLPA is the net volume per acre in mbf, and GVPA is the gross volume per acre in board feet.

The total number of cut trees per acre and the net volume in mbf are computed by summing the values of the individual species together.

The quadratic mean diameter of all the cut trees is then computed by first computing the average basal area per tree in square inches, and then computing the square root of the quantity, average basal area per tree divided by . 7854 .

The stand average gross volume per tree is computed by dividing the total gross volume per acre by the total number of cut trees per acre.

Stand average gross 16 feet logs per mbf, piece size in board feet, and pound to board feet ratio are computed using a weighted average. Each species' parameter is weighted by its gross volume per acre. These products are summed together and the total is divided by the total gross volume per acre. The stand average total height and merchantable length are computed in a similar manner, except each species' parameter is weighted by the number of trees per acre instead of gross volume. The products are summed together and then divided by the total number of cut trees per acre.

The average number of bucked logs per acre is computed by dividing the gross volume per acre by the average piece size, both in board feet.

Average weight per tree and weight per log are computed by multiplying the average gross volume per tree, and average gross volume per log, by the average pound to board feet ratio.

Stand average pond value is computed by summing the products of each species' value times its net volume, and then dividing this sum by the total net volume.

## APPENDIX B

Felling and Bucking

## APPENDIX B

The Intermountain Region, USDA, Forest Service, developed an equation to predict the average felling and bucking time per thousand board feet (mbf) for trees in southwestern Idaho. The time (minutes per mbf) is assumed to be delay-free, and is a function of the diameter at breast height (dbh), and the net board feet volume (Scribner Decimal C) of a tree:

FBTPM $=-53.24-(1.205 \quad x \quad$ QMD $)+(.07987 x \quad$ NVPTSDC $)$
$+110.9 \times \log _{10}(\mathrm{QMD})+28.31 /\left(\log _{10}\right.$ (NVPTSDC)) - $42.09 \quad x \quad \log _{10}(N V P T S D C)$

Where $\operatorname{FB} \mathrm{C}_{\mathrm{P}}$ is the delay-free time in minutes per mbf, QMD is the quadratic mean diameter, NVPTSDC is the net volume per tree measured in Scribner Decimal C scale.

The average delay free time/mbf is used by the Forest Service to adjust the average felling and bucking cost up or down, depending on whether the sale average tree size is larger or smaller than the southwestern Appraisal Zone average.

LOGCOST does not use the adjustment procedure described above; it computes the cost per mbf based upon hourly production and cost.

To compute the total time per mbf to fell and buck, a 25 percent delay time is used, based on Gebhardt's study (1977) of felling and bucking in eastern Oregon. Such activities as walking between and swamping around cut trees, saw sharpening, personal delays and other miscellaneous delays are included in the estimate of total delay. Total time per mbf, including delays, is estimated by the following equation:

TFBTPM $=($ FBTPM) $/(1-D E L A Y F B)$
where DELAYFB is the delay factor . 25 .

A total cost per hour (CPHBF) of $\$ 18.33$, is used to compute felling and bucking cost per mbf (FBCPM):

FBCPM $=(\mathrm{CPHFB} / 60) \quad \mathrm{x} \quad \mathrm{TFBTPM}$

## APPENDIX C

Yarding

## APPENDIX C

Ground based systems and skyline yarding systems are modeled by LOGCOST. The user may choose a yarding system within the following constraints:
(1) Crawler tractors may be chosen if the slope is less than or equal to 45 percent. Adverse skidding up to 10 percent is allowed.
(2) Rubber tired skidders are permitted on slopes up to 30 percent. Adverse skidding is limited to slopes less than or equal to 10 percent.
(3) Only skyline yarding is allowed on slopes steeper than 45 percent. Downhill skyline logging is not considered. If desired, skyline yarding may be selected for gentler terrain.

LOGCOST provides flexibility in selecting a yarding machine so that the equipment size can be matched to the average size of timber. For example, on gentle slopes a small rubber tired skidder might be selected for a commercial thin. The following yarding machines are available:
(1) small crawler tractor
(2) large crawler tractor
(3) small rubber tired skidder
(4) large rubber tired skidder

78 horsepower
140 horsepower
70 horsepower
120 horsepower

## Skyline systems

(l) small skyline yarder
(2) medium skyline yarder

The Koller K300 was selected as the small yarder representative of European standing skylines designed to yard small logs at distances less than l,000 feet. The mechanically clamping carriage is designed to support loads up to 2,000 pounds. The tower height is approximately 23 feet. The Madil 071 represents the medium skyline yarder. This yarder is used on slopes up to 2,000 feet, and can be rigged with a haulback for yarding across a canyon. The tower height of the Madil 071 is approximately 48 feet.

Regression equations were used to predict cycle times for both ground based and skyline yarding systems. The equations for crawler tractors and rubber tired skidders are based on Siefert's (1982) study in northern Idaho. The skyline equations were developed by Hochrein (1986) from data collected in western Oregon. The equations are applicable to partial cutting and would probably underestimate production in clear cut harvests.

Siefert's study did not include small rubber tired skidders; rather than extrapolate from the large skidder, a mobility model developed by Olsen and Gibbons (1983) was used to predict inhaul and outhaul velocity. The lateral cycle time, decking and miscellaneous elements of the total cycle time are assumed to be similar for the small and large rubber tired skidder; Siefert's equations for the large skidder are used to estimate these elements of the cycle time for both skidders. Olsen and Gibbons previously validated the mobility model using field data collected for the large skidder by Siefert.

Each yarding machine is assigned a maximum payload in pounds. The maximum payloads were estimated using the following criteria:
(1) the vehicle can travel up a 10 percent slope;
(2) excessive slip (greater than 30 percent for skidders) does not occur;
(3) a speed greater than or equal to one mile per hour can be maintained;
(4) the Caterpillar Performance Handbook (edition 14) was used to predict mobility and speed of crawler tractors, for the purpose of computing maximum payload;
(5) the Skidder Mobility Model by Olsen and Gibbons was used to predict mobility and speed of skidders.

Skyline system maximum payloads are a function of the terrain and system capabilities; the small skyline yarder's carriage is limited to payloads up to 2,000 pounds. Since most skyline settings can achieve this payload, the maximum payload for the small yarder is assumed to be 2,000 pounds. The larger yarder's payload may be limited by terrain in many cases; for this reason the user will supply an estimate of the maximum payload. Skyline payload analysis programs such as "LOGGER", can be used to predict payload for a given yarder and skyline profile. Field data or topographic maps can be used to generate skyline profiles.

Maximum payloads used by LOGCOST are listed below.
Ground based systems

| Large crawler tractor | 20,000 pounds |
| :--- | ---: |
| Small crawler tractor | 13,000 pounds |
| Large rubber tire skidder | 10,000 pounds |
| Small rubber tire skidder | 7,000 pounds |

Skyline yarding systems
Large skyline yarder Input by user
Small skyline yarder $\quad 2,000$ pounds

Lateral yarding time is a significant part of the total cycle time of ground based and skyline yarding systems. Cycle time equations of LOGCOST use variables such as logs per turn, that are dependent upon cut tree characteristics such as piece size (board feet), cut trees per acre, and tree species. LOGCOST determines variables such as logs per
turn by simulating lateral yarding in the stand conditions (cut tree characteristics) the user inputs. The lateral yarding simulation is similar for ground based and skyline yarding systems; 100 logs are laterally yarded and the average number of logs per turn is computed.

Crawler tractors and skidders yard tree length logs in LOGCOST. Siefert's cycle time equations were based on tree length skidding. Although some tree species are more susceptible to skidding damage caused by logs rubbing against trees, it is not clear from a review of the literature or from field observations, that tree length skidding in young stands results in more stand damage than conventional log length skidding (Murphy, 1986). Yarding productivity is generally increased in young stands when tree length logs are skidded.

Figure 15 is a flow chart of the lateral yarding simulation subroutine for ground based systems. First, the logs are randomly distributed throughout the rectangular cutblock. Maximum lateral yarding distance is assumed to be 50 feet. Next, the logs are sorted by their $X$ coordinate, from closest to farthest from the landing (measured in the X direction). The skidding machine is moved to the back of the cutblock at a point 7.5 feet in the $X$ direction from the last log (see Figure 16). Candidate logs are then identified; these are logs that lie within a 15 by 50 foot rectangular band perpendicular to the designated skid trail.

FLOWCHART OF LATERAL YARDING SIMULATION FOR GOUND BASED SYSTEMS


Figure 15. Flowchart of lateral yarding simulation for ground-based systems


Figure 15 (continued)

## TYPICAL GROUND BASED SYSTEM CUT BLOCK



Note: Only 25 logs are shown in this diagram to simplify the illustration. LOGCOST simulates the lateral yarding of 100 tree length logs.

Because sliders are often used to build maximum payloads, the dimensions of the narrow band are designed to minimize stand damage caused by winching logs that are too spread out. Most leave tree spacing in commercial thins is greater than 15 feet.

Once candidate logs have been identified, they are sorted by distance from the skidding machine (closest first), and then the model tests to see if (1) the maximum allowable payload will be exceeded or (2) all of the chokers are full. If not, the log is hooked. If either of the two conditions occur, the log is not hooked, and the turn is ended.

Sometimes, there are too few logs in the 15 by 50 foot band to fill the chokers or achieve maximum payload; when this occurs, the machine will move up the designated skid trail toward the landing (Siefert calls this an intermediate move and the distance moved is an independent variable in the cycle time equation). The machine is moved to a point 7.5 feet ahead of the $X$ coordinate of the next log, and a new band is established to identify more candidate logs. Siefert's study observed an average of 2 or more intermediate moves by the large tractor in order to fill all of the chokers. LoGCOST permits up to two intermediate moves per turn. Once the machine is moved it begins building turns as described above.

After all the logs have been laterally yarded, the total winch distance, intermediate distance, number of intermediate moves, and the total number of logs are divided by the number of turns to compute the average total winch distance, intermediate distance, number of intermediate moves, and average logs per turn.

Delay-free cycle time is then computed using Siefert's cycle time equations. Cycle time is divided into the following components:
(1) Travel time
(2) Position time
(3) Winch time
(4) Hook time
(5) Intermediate travel time
(6) Landing time
(7) Pile slash time

For the large crawler tractor, the cycle time equations for the components listed above are as follows:
(1) Travel time

TRAVEL $=.03+.002705 \times 0 I D I S T+.000105 \times N W E I G H T$
Where TRAVEL is in minutes.
OIDIST is the outhaul plus inhaul distance, in feet.

OIDIST $=(2 \times A Y D x(1+$ WEAVE $))-I M D P T$

Where $A Y D$ is the average yarding distance in feet, and is input by the user, WEAVE is the factor . 10 , IMDPT is the intermediate distance per turn, in feet, and is computed in the lateral yarding subroutine.

NWEIGHT is the net turn weight in pounds. NWEIGHT $=$ WTPTx(1-SCDEF)xLOGSPT

Where WTPT is the average weight per tree length log in pounds,

SCDEF is the average scaling defect for the stand, input by the user, (decimal) LOGSPT is the number of tree length logs per turn, computed in the lateral yarding subroutine.
(2) Position time

Siefert reported a normalized position distance
equal to 50 feet and position occurrence of . 5341 for all machines.

Using these values, the position time in minutes, POSITION $=.5341 \times(.41+.01063 \times 50)$ $=.3878$
(3) Winch time

LOGCOST assumes winch occurs every cycle with designated skid trails. The normalized winch slope Siefert observed, 11 percent uphill, is also used for all machines.

WINCH $=.13+.0252 \times T W D P T+.0001577 \times T W D P T x 11$
$=.13+.02693 \times T W D P T$
Where WINCH is in minutes, TWDPT is the total winch distance per turn in feet, computed in the lateral yarding subroutine.
(4) Hook time

HOOK = . $10+1.041 \times L O G S P T+.01933 \times T W D P T$
Where $H O O K$ is in minutes.
(5) Intermediate travel time

LOGCOST assumes intermediate travel also occurs every cycle; if cut tree density is high and intermediate moves are not common, the average intermediate distance per turn predicted by the
lateral yarding subroutine will be small.
Consequently, the intermediate travel
time would also be a small portion of the total cycle time, even though it is assumed to occur each turn.

IMTRAVEL = .OI+.0048xIMDPT+. $258 \mathrm{x}(\mathrm{HKSITESPT}-1)$
Where IMTRAVEL is in minutes,
IMDPT is the average intermediate distance per turn in feet, computed in the lateral yarding subroutine and

HKSITESPT is the number of hook sites per turn, also computed in the lateral yarding subroutine.
(6) Landing time

The average deck height and total limb factor per stem reported by Siefert were three feet, and . 46, respectively, for all machines.

LANDING $=.66+.6710 \times L O G S P T+.1556 \times .46 \times L O G S P T+.2 \times 3$
$=1.26+.7426 \times L O G S P T$
Where LANDING is in minutes.
(7) Pile slash time

Average occurrence is . 1791 for all machines.
PSLASH $=.1791 \times .87$
$=.1558$
Where PSLASH is in minutes.

The cycle time equations for the small crawler tractor are as follows:
(1) Travel time

Siefert found that the outhal time was related to the slope for the small tractor if the slope in the direction of the unloaded vehicle was positive. When the unloaded tractor is traveling uphill, the variable OUTSLOPE, applies. TRAVEL $=.35+.00309 \times$ OIDIST $+.000147 \times$ NWEIGHT
$+.0000398 \times \mathrm{xADx}(1+$ WEAVE) xOUTSLOPE

Where OUTSLOPE is the positive or absolute value of slope, and only applies if the unloaded tractor is moving uphill during outhaul.
(2) Position time

POSITION $=.5674 \times(.16+.01273 \times 50)$
$=.4519$
(3) Winch time

WINCH $=.31+.0335 \times T W D P T$
(4) Hook time

HOOK $=-.18+.9315 \times L O G S P T+.0119 \times T W D P T+.2251 \times H K S I T E S P T$
(5) Intermediate travel time

IMTRAVEL $=.06+.00623 \times I M D P T+.2468 \times(H K S I T E S P T-1)$
(6) Landing time

LANDING $=.52+.4242 \times L O G S P T+.3116 \times .46 \times L O G S P T+.1095 \times 3$
$+.00014 \times N W E I G H T$
$=.8485+.5675 \times L O G S P T+.00014 \times N W E I G H T$
(7) Pile slash time

```
PSLASH \(=.1791 \times 1.20\)
    \(=.2149\)
```

The cycle time components for the rubber-tired skidders are the same as for the crawler tractors; however, travel time is based on the mobility model discussed earlier. The assumptions used to predict travel time are as follows:
(1) The maximum allowable velocity in miles per hour (considering such factors as operator comfort and safety) for an unloaded skidder is 7.9. Siefert reported this as the average velocity for an unloaded skidder on flat ground. The skidder is assumed to operate on a designated skid trail.
(2) The maximum allowable velocity for a loaded skidder is 6.0 miles per hour.
(3) The average tree length log is approximately 50 feet long.
(4) The average cone index for the soil in the skid trail is 100.

Using these assumptions, the mobility model was used to establish a relationship between outhaul velocity and slope, and a regression equation for predicting inhaul velocity as a function of payload for each slope class.

Using the mobility model, predicted outhaul velocity was always greater than the safe operating speed (7.9 miles
per hour) on slopes less than 15 percent; if the slope in the direction of outhaul is less than 15 percent, LOGCOST sets the inhal velocity to 7.9 miles per hour. For other slopes, the predicted outhaul velocities are listed in Table 4 for the small and large skidders.

Table 4 Predicted outhaul velocity of a small and large skidder on slopes steeper than 10 percent.

| Outhaul <br> Slope <br> (Percent) | Velocity of <br> Small Skidder <br> (mph) | Velocity of <br> Large Skidder <br> (mph) |
| :---: | :---: | :---: |
| 15 | 6.43 | 6.56 |
| 20 | 5.34 | 5.45 |
| 25 | 4.58 | 4.68 |
| 30 | 4.04 | 4.13 |

The mobility model predicted speeds greater than 6.0 miles per hour for loaded skidders operating on favorable grades steeper than five percent; on these slopes, LOGCOST sets the inhal velocity to 6.0 miles per hour. Table 5 lists the regression equations developed from output of the mobility model that are used to predict inhaul velocity on adverse grades, flat terrain, or a five percent favorable grade. The $R^{2}$ values were greater than .990 for all equations.

Table 5 Equations to predict inhaul velocity of a small and large skidder on a five percent favorable grade, flat grade, and two adverse grades, as a function of the logarithm of payload.

| Inhaul Slope (Percent) | Velocity of Small Skidder (mph) | $\begin{gathered} \text { Velocity of } \\ \text { Large Skidder } \\ \text { (mph) } \end{gathered}$ |
| :---: | :---: | :---: |
| -5 | 54.23-5.56xLOG(WEIGHT) | 56.73-5.58xLOG (WEIGHT) |
| 0 | 38.08-3.856xLOG(WEIGHT) | 40.4-3.93xLOG (WEIGHT) |
| +5 | 28.36-2.834xLOG (WEIGHT) | 29.97-2.877xLOG(WEIGHT) |
| $+10$ | 20.39-1.982xLOG (WEIGHT) | 22.27-2.095xLOG(WEIGHT) |

LOGCOST tests the output of the equations in rable 5 above to see if predicted velocities are greater than the assumed safe operating speed; if they are, the inhaul velocity is set to 6.0 miles per hour.

Next, the inhaul and outhaul travel times are computed as follows:
(1) Velocity is converted to feet per minute.

VELOUT $=$ (the velocity in mph) $\times 5280 / 60$
Where VELOUT is the outhaul velocity in feet per minute.
VELIN $=$ VMPHx5280/60
Where VELIN is the inhal velocity in feet per minute and VMPH is the inhaul velocity in miles per hour.
(2) Outhaul and inhaul distances are computed in feet.

ODIST = AYDX(1+WEAVE)
Where ODIST is the outhaul distance.
IDIST = ODIST-IMDPT
Where IDIST is the inhaul distance.
(3) Outhaul and inhaul times in minutes are then computed. OUTHAUL $=$ ODIST/VELOUT

INHAUL = IDIST/VELIN.
TRAVEL $=$ OUTHAUL+INHAUL

LOGCOST then computes the other cycle time components using Siefert's equations for the large skidder:
(2) Position time

POSITION $=.5674 \times(.29+.00747 \times 50)$

$$
=.3765
$$

(3) Winch time

WINCH $=.25+.0221 \times T W D P T+.000202 \times T W D P T x 11$
$=.25+.02432 \times$ TWDPT
(4) Hook time

HOOK = . $24+.5926 \times L O G S P T+.007 \times T W D P T+.35 \times H K S I T E S P T$
(5) Intermediate travel time IMTRAVEL $=.07+.00316 \times$ IMDPT+. $13 \times($ HKSITESPT-1)
(6) Landing time

LANDING $=.44+.2171 \times L 0 G S P T+.2248 \times .46 \times L O G S P T+.0784 \times 3$

$$
+.000082 \times \mathrm{NWEIGHT}
$$

$$
=.6752+.3205 \times \text { LOGSPT }+.000082 \times \text { NWEIGHT }
$$

(7) Pile slash time

PSLASH $=.1791 \times .87$
$=.1558$

The total cycle time in minutes is then computed for the ground based system selected:

CYCLETIME = TRAVEL+POSITION+WINCH+HOOK +IMTRAVEL+LANDING+PSLASH

Daily production measured in thousand board feet (mbf) and yarding cost per mbf are computed as follows: Daily production, NVYPD, (mbf)

```
NVYPD = (480xEFFxLOGSPTx(1-SCDEF)x(AVPT/1000)x.9756)/
``` CYCLETIME

Where EFF is the efficiency of the machine, AVPT/ 1000 is the average gross volume per tree length log, in mbf, and . 9756 represents the ratio of the logs landed and decked, to the logs hooked.

Cost per mbf, YCPM
\(Y C P M=F D C / N V Y P D\)

Where \(F D C\) is the fixed daily cost of the machine, operator, and landing sawyer.

Table 6 lists the machine efficiency, and the hourly and daily costs including operator and landing sawyer. Values for efficiency are from Siefert (1982). The efficiency of the small rubber-tired skidder (not studied by Siefert), is assumed to be similar to the large skidder.

Table 6 Efficiency, hourly and daily costs (including operator and landing sawyer) of a small and large crawler tractor, and a small and large rubber-tired skidder.
\begin{tabular}{lccccc} 
Skidding & \multicolumn{2}{c}{ Net flywheel } & \multicolumn{2}{c}{ Cost } \\
Machine & Horsepower & Efficiency & Hourly (\$) Daily (\$) \\
\hline & & & & & \\
Small tractor & 78 & .79 & 38.51 & 308 \\
Large tractor & 140 & .78 & 54.56 & 436 \\
Small skidder & 70 & .74 & 34.84 & 279 \\
Large skidder & 120 & .74 & 40.18 & 321 \\
\hline
\end{tabular}

Skyline yarding production and cost per mbf are computed by first determining the number of logs per turn using simulation, and then computing production using Hochrein's cycle time equations. The lateral yarding simulation used to model skyline systems is similar to the ground-based simulation, except the carriage is not allowed to move (no intermediate moves) up and down the corridor to hook more logs during a single turn. Figure 17 is a flow chart of the lateral skyline model in LOGCOST.

Bucked logs are randomly distributed throughout the rectangular cutblock. Maximum lateral yarding distance is set equal to 125 feet. Next, the logs are sorted by their \(X\) coordinate, from closest to farthest to the landing (measured in the \(X\) direction). The carriage is moved out the skyline corridor approximately one choker length beyond the log closest to the landing (measured in the \(X\) direction). Effective choker lengths used in LOGCOST include a ten foot travel allowed by using sliders. The effective choker

\section*{FLOWCHART OF LATERAL YARDING SIMULATION FOR SKYLINE SYSTEMS}


Figure 17. Flowchart of lateral yarding simulation for skyline systems.


Figure 17 (continued)
lengths are 18 feet for the small yarder and 22 feet for the medium yarder. Some operators may pull the mainline further than 10 feet of travel between chokers, but more stand damage is likely. The \(X\) and \(Y\) coordinates of the butthook are then identified: the \(X\) coordinate is equal to the \(X\) coordinate of the carriage, and the \(Y\) coordinate is equal to the \(Y\) coordinate of the first log (see Figure 18).

Next, candidate logs within reach of twice the chokers effective length are identified and sorted by distance (closest first) from the butthook. A circular area with radius equal to twice the effective choker length is searched.

Although LOGCOST computes the average log size in board feet and average log weight in pounds, bucked logs in the woods are not all the same size or weight. To approximate this field condition, an exponential distribution of log weights is used. Sessions (1979) and Peters (1973) observed distributions of log sizes (log weight is simply the board feet volume times the pound to board feet ratio) that approximates an exponential distribution. The smallest log size permitted in the distribution is ten board feet and the largest log size is five times the mean log size. Before a log is hooked, it is randomly assigned a log weight from the exponential distribution.
\[
\text { RLOGWT }=-W T P L x L O G(1-R N D)
\]

\section*{TYPICAL SKYLINE SYSTEM CUT BLOCK}


Note: \(\quad R=2\) times the effective choker length
\(R=2 \times 18=36 \mathrm{ft}\) for the small yarder, and \(2 \times 22=44 \mathrm{ft}\) for the medium yarder.
Only 25 logs are shown in this diagram to simplify the illustration. LOGCOST simulates the lateral yarding of 100 logs.

Figure 18. Typical skyline system cut block,

Where RLOGWT is the randomly assigned log weight in pounds, WTPL is the average weight per log, and RND is a random number between zero and one.

Using this type of distribution, small logs are more common than larger logs, a phenomenon commonly observed in the woods (Murphy, 1986).

Next, the simulation model tests to see if (1) the maximum allowable payload will be exceeded or (2) all of the chokers are full. If not, the log is hooked. If either of the two conditions occur, the log is not hooked, and the turn is ended. The model continues hooking logs and testing the two conditions above until a turn is completed, then the model begins a new turn by repositioning the carriage and identifying a new set of candidate logs. This process is continued until all of the logs in the cutblock are yarded. LOGCOST models the lateral yarding of 100 logs per simulation. At the end of the simulation, the average logs per turn is computed by dividing the number of logs yarded by the number of turns.

Delay-free cycle time is then computed using Hochrein's equations. For the small skyline yarder, the cycle time in minutes is computed below:
```

CYCLETIME = 3.587+.003672xAYD+.01657xALYD+.2337xLOGSPT
-.01009xABS(SLOPE)

```

Where \(A Y D\) is the average slope yarding distance in feet, entered by the user, ALYD is the average lateral yarding distance, which is assumed to be 50 feet \({ }^{1}\), LOGSPT is the average number of logs per turn determined by the lateral simulation model discussed above, and SLOPE is the average percent slope of the skyline unit. The average lateral yarding distance of 50 feet is based on Hochrein's observations (1985) where trees were felled towards the skyline corridor and the average spacing between skyline landings was about 250 to 300 feet.

Cycle time for the medium size yarder is computed as follows:

CYCLETIME \(=1.838+.003403 \times A Y D+.0236 x A L Y D+.1903 x L O G S P T\)

Hochrein found the effective hour, expressed as a decimal, varied by the cut volume per acre for both yarders studied. Table 7 below lists effective hours for two different yarders in two different cut volumes per acre.

\footnotetext{
\({ }^{1}\) Although landing spacing was often greater than 250 feet (external lateral yarding distance equals 125 feet), the average lateral yarding distance reported by Hochrein was less than 50 feet. Presumably, felling to lead, decreased the lateral distance from 62.5 feet to 50 feet.
}


Effective hour includes all delays associated with landing and skyline road changes as well as other delays. Only the move-in and move-out delay, expressed as a fixed cost, needs to be added in.

LOGCOST tests to see whether the cut volume is closer to the low or high cut volume studied by Hochrein, and then selects the appropriate effective hour for the yarder modeled. If the cut volume is greater than 7.5 mbf per acre, the higher effective hour associated with the 10 mbf cut volume is used. If cut volume per acre is less than 7.5 mbf , the lower effective hour is used.

The hourly production, including delays, is computed next:

NVYPH \(=(E F H R S Y \times 60 / C Y C L E T I M E) \times(L O G S P T X P C S Z X(1-S C D E F) / 1000)\)
Where NVYPH is net volume per hour in mbf, EFHRSY is the appropriate effective hour (decimal), EfHRSS is the effective hour of the small yarder, EfHRMSY is the effective hour of
the medium yarder, and PCSZ is the board feet volume of the average bucked log.

The average yarding cost per mbf is then computed:
YCPM \(=\) FHCSY/NVYPH
Where YCPM is the yarding cost per mbf, and
FHCSY is the fixed hourly cost of the skyline yarder modeled (Table 8).

LOGCOST also computes net daily production, assuming an eight hour day, for the output summary.

Table 8. Hourly and Daily Cost of A Small and Medium Size Skyline Yarder, Loader and Crew.
\begin{tabular}{|c|c|c|c|c|}
\hline Skyline Yarder & Crew & & & \\
\hline Size & Size & Hourly & \$ & Daily \$ \\
\hline small & 4 & 94.99 & & 760.00 \\
\hline medium & 6 & 222.45 & & 1,780.00 \\
\hline
\end{tabular}

APPENDIX D
Loading

\section*{APPENDIX D}

Loading costs for ground based systems are computed using the technique currently in use by the Intermountain Region of the USDA, Forest Service. Schneider (1978) analyzed loading production data from the Boise, Payette, and Salmon National Forests and developed equations to estimate volume and loading time as a function of gross 16 feet logs per mbf. These equations, along with others to account for scaling defect, are used to adjust the average loading cost per mbf in the Southwestern Appraisal Zone.

LOGCOST uses the following Southwestern Zone Averages listed in the Region 4 Timber Appraisal Handbook, August 1985:
\begin{tabular}{ll} 
average loading cost, SWZALC & \(=\$ 10.53 / \mathrm{mbf}\) \\
average scaling defect, SWZAVG7 & \(=.05\) \\
average 16 feet logs per mbf, SWZAVG8 & \(=13.20\)
\end{tabular}

The zone average loading cost is adjusted up or down based upon the timber size (gross logs per mbf) and the scaling defect. A stand of timber that is larger than the zone average, having the same scaling defect, would have a lower loading cost; smaller timber would have a higher than average loading cost. If a stand has a scaling defect less than the zone average, the adjustment for defect lowers the loading cost.

LOGCOST first computes the timber size adjustment factor. Loading time per mbf is computed for the zone average conditions listed above and for the specific stand to be harvested. The timber size adjustment factor is equal to the ratio of the stand loading time per mbf to the zone average loading time per mbf, minus one. If the timber size is larger than the zone average, this adjustment factor is negative; if the timber is smaller than average, the adjustment factor is positive.

The scaling defect adjustment factor is then computed. The ratio defined below is computed for the zone average and the stand:

1/(1-scaling defect)
where scaling defect \(=.05\) for the \(z o n e\) average and is a variable for the stand to be harvested.

The scaling defect adjustment factor is equal to the following ratio:

1/(1-scaling defect of the stand) 1/(1-zone average scaling defect)

The loading adjustment factor is equal to the sum of the timber size adjustment factor, the scaling defect adjustment factor, and one.

The stand average loading cost per mbf for ground-based systems is equal to the Southwestern Zone average loading cost times the loading adjustment factor.

Skyline yarding systems usually require a loader be present to hold logs while the chaser unhooks the chokers. A loader is also used to build decks on or below the road. For these reasons, loader production is usually limited to skyline yarding production. To compute the skyline loading cost per mbf, the hourly fixed and variable costs of the loader and operator are divided by the net hourly production of the skyline yarder.

APPENDIX E
Hauling

\section*{APPENDIX E}

The average hauling cost per mbf is computed using a procedure similar to the Region 4 Appraisal System. The haul assumptions below are from the Region 4 Timber Appraisal Handbook, August, 1985 :

Net legal highway load \(=52,000 \mathrm{lb}\)
Fixed daily cost log truck \(=\$ 15,885 / 147\) haul days
Fixed daily cost log truck driver \(=\$ 198.25\),
Variable cost per paved mile \(=\$ .3909\)
Variable cost per unpaved mile \(=\$ 1.1728\)
Average haul day \(=720\) minutes

LOGCOST first computes the net volume and average standby time per truckload. These averages vary by tree species and by timber size. For example, green ponderosa pine is denser than lodgepole pine, \(45 \mathrm{lb} / \mathrm{ft}^{3}\) verses 39 lb/ft \({ }^{3}\) (USDA Handbook No. 72, Wood Handbook). Because the volume is measured in board feet, truckloads of small timber have less volume than large mature timber (the pound to board feet ratio is higher for small timber). Standby time includes the variable load time, a constant 20 minute waiting time, and an 11 minute unload time. Schneider (1978) found load time was proportional to the number of pieces per truckload.

Average net volume per truckload is computed for each species using the generalized equation below:
```

Net volume/truckload = (52,000 pounds/(pound/board feet)
1000 board feet/mbf

```

The pound to board feet ratio used above is computed for each species harvested in the cut tree subroutine and is a function of tree size for a given species.

The number of loads is then computed for each species by dividing the net species volume in mbf, by the net volume per truckload.

Estimated truck standby time is a function of the gross 16 feet logs per mbf. The Forest Service uses Table B to estimate standby time. Values listed in Table B were used to develop linear regression equations for each species or species group. Equations are used in lieu of the table to permit estimating standby times for small timber where no table values exist (for example, 40 logs/mbf for ponderosa pine. Table 9 displays the species, regression equation and adjusted \(R\) squared values.

Table 9. Species Regression Equation to Predict Standby Time Per Trip, and \(R^{2}\) Value
\begin{tabular}{lllr}
\hline Species or Species Group & \begin{tabular}{l} 
Standby time/trip \\
Regression Equation
\end{tabular} & R2 \\
\hline
\end{tabular}

Table 8-Estimated Truck Standby Tine. This time includes a 20-minute waiting time, an 11 -minute unload time, and variable load time.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Grose 15' Loge/M & PP & LF-AF & DF-ML & ES & LP \\
\hline 2 & 44 & & & & \\
\hline 3 & 47 & & & & \\
\hline 4 & 49 & & & & \\
\hline 5 & 50 & & & & \\
\hline 6 & 52 & & 51 & & \\
\hline 7 & 53 & 53 & 53 & 57 & \\
\hline 8 & 54 & 54 & 55 & 59 & \\
\hline 9 & 55 & 55 & 57 & 60 & \\
\hline 10 & 56 & 56 & 58 & 62 & \\
\hline 11 & 57 & 57 & 59 & 64 & \\
\hline 12 & 58 & 58 & 61 & 65 & \\
\hline 13 & 59 & 59 & 62 & 67 & 68 \\
\hline 14 & 60 & 60 & 63 & 68 & 69 \\
\hline 15 & 61 & 61 & 64 & 69 & 70 \\
\hline 16 & 62 & 63 & 65 & 71 & 72 \\
\hline 17 & 63 & 64 & 66 & 72 & 73 \\
\hline 18 & 65 & 65 & 67 & 73 & 75 \\
\hline 19 & 66 & 66 & 68 & 74 & 75 \\
\hline 20 & & 67 & 69 & 75 & 77 \\
\hline 21 & & & 71 & 77 & 78 \\
\hline 22 & & & 71 & 77 & 79 \\
\hline 23 & & & 72 & 79 & 80 \\
\hline 24 & & & 74 & 80 & 81 \\
\hline 25 & & & 74 & & 82 \\
\hline 26 & & & 75 & & 83 \\
\hline 27 & & & 76 & & 84 \\
\hline 28 & & & 78 & & 85 \\
\hline 29 & & & 78 & & 85 \\
\hline 30 & & & 79 & & 86 \\
\hline 31 & & & 80 & & 87 \\
\hline 32 & & & 81 & & 88 \\
\hline 33 & & & 82 & & 89 \\
\hline 34 & & & 84 & & 90 \\
\hline 35 & & & 85 & & 91 \\
\hline 36 & & & 86 & & 92 \\
\hline 37 & & & & & 93 \\
\hline 38 & & & & & 94 \\
\hline 39 & & & & & 94 \\
\hline 40 & & & & & 95 \\
\hline
\end{tabular}

Total standby time is computed for each species by multiplying the average standby time per roundtrip by the number of truckloads.

The stand average volume per truckload is computed by dividing the total stand net volume by the total number of truckloads. Average standby time per truckload is equal to the total standby time divided by the total number of truckloads.

Next, LOGCOST computes the total roundtrip travel time, including delays. Average roundtrip delay-free minutes per one-way mile was computed, based on appraisal data, for both paved and unpaved surfaces for each of 48 timber sales (25 from the Boise National Forest, and 23 from the Payette National Forest) sampled in southwestern Idaho. Mean values were then computed for each National Forest and compared using an unpaired t-test. Forest averages were not statistically different; consequently, the data was combined to compute the zone average roundtrip minutes per mile for paved and unpaved surfaces (see Table 10).


Roundtrip travel time per truckload equals 3.92 times the one-way paved miles plus 5.38 times the one-way unpaved miles plus the average standby (delay) time.

The number of truckloads per day is equal to 720 minutes per day divided by the total round trip travel time per load. Net volume hauled per day is the product of the number of truckloads per day and the net volume per load.

The total daily cost of timber haul is equal to the fixed daily cost of the log truck and driver plus the variable cost per mile for paved and unpaved surfaces. The variable cost is computed as follows:

VCPDH \(=(2 x M I P x V C P M I P+2 x M I U P x V C P M I U P) x N T L P D\)
where MIP is the number of one-way paved miles, MIUP is the number of one-way unpaved miles, VCPMIP is the variable cost per paved mile of travel, \$.3909,
```

    VCPMIUP is the variable cost per unpaved mile of
    travel, $1.1728, and
    NTLPD is the number of truckloads per day.
    Average haul cost per mbf equals the total cost per day
    divided by the net volume hauled per day.

```

\section*{APPENDIX F}

Road Construction, Reconstruction, Maintenance, Environmental, and Move-In, Move-out Costs

\section*{APPENDIX \(F\).}

Road construction, reconstruction and maintenance costs associated with timber harvest are entered by the user as a variable cost per mile for construction/reconstruction and as a cost per mbf-mile for maintenance. LOGCOST then computes the total road cost per mbf, based on the variable costs and the miles of road to which they apply.

Environmental costs directly associated with a timber sale may also be included. Costs per acre for sale area improvement (abbreviated as SAI), erosion control (EC) and slash disposal (BD) are optional input. LOGCOST assumes these variable costs are charged to all of the acres in the stand when it computes the total environmental cost per mbf. If only a portion of the stand is to be treated, the cost per acre should be lowered so the total cost is correct. For example, if the total stand area is 40 acres, only 15 acres are to be planted, and the average planting cost is \(\$ 300 / a c r e, ~ t h e ~ u s e r ~ s h o u l d ~ f i r s t ~ c o m p u t e ~ t h e ~ a d j u s t e d ~ S A I ~\) cost per acre as follows.

Adjusted Cost/Acre \(=\frac{\text { acres treated } x \text { per acre cost }}{\text { total stand acres }}\)
\(=\frac{15 \text { Acres } x \$ 300 / \text { Acre }}{40 \mathrm{acres}}\)
\(=\$ 112.50 / \mathrm{acre}\)

Then the adjusted SAI cost per acre of \(\$ 112.50\) is entered, and LoGCoST computes, the cost per mbf by multiplying \(\$ 112.50\) x 40 and dividing this product by the total net volume harvested from the stand.

Miscellaneous logging costs, such as the move-in and move-out of large equipment, are also considered. LOGCOST assumes the move cost will be spread over 250 acres (the estimated area harvested per logging season by a single yarding system). Fight et al. (1983) estimated the move cost for skyline yarders and loaders typically used to thin Douglas-fir in western Oregon with the following equation.

Move Cost \(=1240+12.55 x\) Roundtrip miles

LOGCOST assumes that the move costs of ground based systems, such as crawler tractors or skidders, and skyline systems, are similar; consequently, the above equation is used to compute the move-in, move-out cost of any yarding system.

One change is made to avoid double counting the move cost of the loader, only if a ground based system is selected. When the user selects any ground based system, the move cost is divided by two to represent only the cost of moving the skidder or crawler tractor. The Region 4 zone average loading cost already includes the loader's move-in, move-out cost.
```

Move costs are generally less than ten dollars per acre, and often less than one or two dollars per mbf. For example, if 10 mbf per acre was harvested from a 40-acre stand, 30 miles from the mill, using a skyline system, the move cost per acre is equal to:
$(1240+12.55 \times 60) / 250$
$=1,933 / 250$
$=\$ 7.73$
the move cost per mbf is:
7.73/10
$=\$ .77$.

```

\section*{APPENDIX G}

\section*{Model Validation - Comparison}

\section*{APPENDIX G}

Some activities, such as log loading associated with ground based systems, and timber haul, are modeled by LOGCOST nearly the same as the Region 4 Timber Appraisal Handbook, and are assumed to be representative of typical costs experienced by industry in southwestern Idaho. Because the felling and bucking and yarding cost centers use a different approach, they were compared with other studies and with the Forest Service, Region Four Appraisal Estimates.

Felling and bucking daily production predicted by LOGCOST was compared with production experienced by private industry in southwestern Idaho, for trees ranging from 14 inches to 24 inches dbh; industry's measure of production, trees per hour, was multiplied by eight hours per day, and by the average volume per tree in mbf, to compare with LOGCOST. Figure 19 shows that daily production predicted by LOGCOST matches industry's estimates throughout the range of tree sizes most commonly harvested. If an hourly cost of \(\$ 18.33\) is used to compare felling and bucking cost per mbf, the difference between industry's cost and LOGCOST is less than 10 percent for all tree sizes reported (see Figure 20).


Figure 19. Comparison of LOGCOST Versus Felling and Bucking Production From Industry.


Figure 20. Comparison of LOGCOST versus Felling and Bucking Cost from Industry.

Yarding production for both ground based and skyline systems, computed by LoGCoST compared favorably with production reported by two studies. Siefert (1983) estimated daily production for three different machines that can be modeled by LOGCOST, based on average study conditions and cycletime equations. Using similar stand conditions, LOGCOST matched Siefert's production within 10 percent for each of three machines (see Figure 21).

Skyline yarding production was compared with Hochrein's time study results for two different stand conditions (see Figure 22). The cut volume per acre and average log size were 11.5 mbf and 55 bf for the high volume stand, and 5.4 mbf and 65 bf for the lower volume stand. Hochrein's study found a slight decrease in productivity when thinning the lower volume stand. LOGCOST predicted nearly the same daily production; this is probably because the fewer logs per turn (a function of fewer cut trees per acre) was offset by the larger volume per log (65 bf for the lower volume stand versus 55 bf). LoGCOST matched time study production reported by Hochrein within 13 percent.

Felling, bucking and yarding costs computed by LOGCOST were also compared with the Region 4 Appraisal Costs. Figures 23 and 24 contrast the differences. The assumed conditions were as follows: average yarding distance, 500 feet, cut trees per acre, 70, distance to the mill (for move-in, move-out cost), 30 miles, scaling defect, five


Figure 2l. Skidding Production of LOGCOST versus Siefert.


Figure 22. Skyline Yarding Production From LOGCOST versus Hochrein.


Figure 23. Felling and Bucking Costs from LOGCOST versus Region 4 , USDA, Forest Service.


Figure 24. Skidding Costs From LOGCOST versus Region 4, USDA, Forest Service.
percent. In general, LOGCOST predicts higher costs for the smallest tree. Ten inch and 12 inch diameter trees (16, and 57 board feet, respectively) are so small that the number of gross 16 foot logs associated with these trees is beyond the limits of the chart used by the Region 4 Timber Appraisal Handbook. For this reason, the skidding cost adjustment associated with logs per mbf is not meaningful when tree size is very small. In addition, LOGCOST estimates about a \$l5/mbf lower cost for both felling, bucking, and skidding 16-inch trees (with a large crawler tractor) than the Region 4 Timber Appraisal. If rubber-tired skidders can be used, skidding costs computed by LOGCOST are about onehalf the cost estimated by the appraisal handbook for 16 -inch trees. Appraisal costs for skidding large timber \((20\) inches in diameter) begin to converge with those computed by LOGCOST.

\section*{APPENDIX H}

Hourly Costs of Felling and Bucking and Yarding systems

APPENDIX H.

The felling and bucking hourly cost includes one faller with saw, transportation, and supervision. Labor and saw rental costs are from the Region 4 Timber Appraisal Handbook, August, 1985.
1. Direct Labor Cost \(=\$ 9.90 / h o u r\). This includes health, welfare, holiday, and vacation costs.
2. Overtime pay for travel:
\(\$ 9.90 /\) hour \(\times 1.5 \times 1\) hour/day \(=\$ 14.85 / h o u r\)
3. Total Direct Labor Cost, based on an eight hour field day:
( \(\$ 9.90 / h o u r x 8\) hours \(+\$ 14.85\) x lhour)/8 hours \(=\$ 11.76 / h o u r\), charged eight hours per day.
4. Supervision \(=25 \%\) of Direct Labor Cost
\(=.25 \times \$ 11.76 / h o u r\)
\(=\$ 2.94 /\) hour
5. Total Labor Cost \(=(\$ 11.76+\$ 2.94) /\) hour \(=\$ 14.70 /\) hour
6. Saw Rental \(=\$ 2.69 /\) hour
7. Transportation Cost:
\(\frac{(25 \text { miles one-way } x 2) \times(\$ .30 / \text { mile })}{\text { crew of } 2}\)
\(=\$ 7.50\) per person, per day
Hourly transportation cost per person
\(=(\$ 7.50 /\) person) \(/(8\) hours/person)
\(=\$ .94 /\) hour
8. Total Cost Per Hour \(=(\$ 14.70+\$ 2.69+\$ .94) /\) hour

HOURLY AND DAILY COSTS OF GROUND-BASED SYSTEMS
Small Crawler Tractor - International Harvester TD-8E with operator, landing sawyer and saw.
1. Depreciation \(=\$ 5.44 /\) hour
2. Operating Costs \(=\$ 9.88 / h o u r\)
3. Labor \(=\$ 23.19 /\) hour

Total
\$38.51/hour
Total Daily Cost \(=\mathbf{\$ 3 0 8}\)

Large Crawler Tractor - Caterpillar D6D with operator, landing sawyer and saw.
1. Depreciation \(=\$ 13.12 / h o u r\)
2. Operating Costs \(=\$ 18.12 /\) hour
3. Labor \(=\$ 23.19 / \mathrm{hour}\)

Total \(\$ 54.56 /\) hour
Total Daily Cost \(=\$ 436\)

Small Rubber-Tired Skidder - John Deere 440 with operator, landing sawyer, and saw.
\begin{tabular}{ll} 
1. Depreciation & \(=\$ 4.13 / \mathrm{hour}\) \\
2. Operating Costs & \(=\$ 7.52 / \mathrm{hour}\) \\
3. Labor & \(=\$ 23.19 / \mathrm{hour}\) \\
& Total
\end{tabular}

Total Daily Cost \(=\mathbf{\$ 2 7 9}\)

Large Rubber-Tired Skidder - Caterpillar 518 with operator, landing sawyer, and saw.
1. Depreciation \(=\$ 6.80 /\) hour
2. Operating Costs
\(=\$ 10.19 /\) hour
3. Labor \(=\$ 23.19 /\) hour

Total
\$40.18/hour
Total Daily Cost \(=\$ 321\)

\section*{HOURLY COSTS OF SRYLINE SYSTEMS}

Small Skyline System - Koller \(K 300\) with small truck-mounted loader.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \[
\begin{gathered}
\text { Yarder } \\
(\$ / \text { hour }) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Loader } \\
\text { (\$/hour) } \\
\hline
\end{gathered}
\] & Yarder and Loader (\$/hour) \\
\hline 1. & Depreciation & 5.08 & 4.14 & 9.22 \\
\hline 2. & Maintenance, Repair, Fuel and Lube & 4.51 & 6.80 & 11.31 \\
\hline 3. & Lines \& Chokers & . 51 & - & . 51 \\
\hline 4. & Labor & 54.23 & 19.72 & 73.95 \\
\hline & Total & 64.33 & 30.66 & 94.99 \\
\hline
\end{tabular}

Medium Skyline System - Madil 071 with medium size selfpropelled crawler mounted loader.

Yarder and
Yarder Loader Loader (\$/hour) (\$/hour) (\$/hour)
1. Depreciation
28.34
12.50
40.84
2. Maintenance, Repair, Fuel and Lube
3. Lines \& Chokers
4.24
-
4.24
4. Labor
107.93
173.57
19.72
127.65

Total
48.88
222.45

\section*{APPENDIX I \\ LOGCOST Program List}
```

10 REM
20 REM
30 REM THIS IS AN INTERACTIVE PROGRAM THAT COMPUTES LOGGING COSTS, STUMPAGE
40 REM AND NET PRESENT VALUE FOR EVENAGED TIMBER STANDS IN SOUTHWESTERN IDAHO.
50 REM FIE NAME IS "LOGCOST" DATE 4-16-86 AUTHOR ROBERT S. GILES
60 REM
70 REM
80 REM
90 REM
100 REM ***** DIMENSION ARRAYS *****
110 REM
120 DIM X(101),Y(101),A(101),B(101),STACK(12)
130 DIM KOUNT(101),X1(101),Y1(101),D1(101)
140 REM
150 CLS : KEY OFF
160 PRINT
170 PRINT
180 PRDNT TAB(36) "LOGCOST"
190 PRINT
200 PRINT
210 PRINT TAB(17) "A TIMBER HARVEST ECONOMIC MODEL WHICH ESTIMATES"
220 PRINT TAB(18) "LOGGING COSTS, STUMPAGE AND NET PRESENT VALUE'
230 PRINT
240 PRINT TAB(16) "LOGCOST WAS DEVELOPED FOR USE IN EVEN-AGED STANDS"
250 PRINT TAB(30) "IN SOUTHWESTERN IDAHO"
260 PRINT
270 PRINT TAB(31) "BY ROBERT S. GLES"
280 PRINT
290 PRINT TAE(26) "USFS ADVANCED LOGGING SYSTEMS"
300 PRINT TAB(27) "TECHNICAL TRAINING PROGRAM"
310 PRINT TAB(32) "CORVALLIS, OREGON"
320 PRINT
330 PRINT TAB(35) "MARCH, }198
340 PRINT
350 PRINT TAB(23) "MAKE SURE THE CAPS LOCK KEY IS ON!"
360 TLX=5:TRX=75:TLY=2:BLY=23
370 GOSUB 11400
380 LOCATE 22,26: INPUT "PRESS RETURN TO CONTINUE 一>",REY1\$
390 CLS
400 LOCATE 5,12 : PRINT "THREE TYPES OF USER INPUT ARE REQUIRED TO RUN THE MODII
:"
410 LOCATE 9,15 : PRINT "(1) STAND AND CUT TREE DATA"
420 LOCATE 12,15: PRINT "(2) LOGGING AND ROAD CONSTRUCTION DATA"
430 LOCATE 15,15 : PRINT "(3) ENVIFONMENTAL AND ADMINISTRATIVE COST DATA"
440 TLX=5 : TRX=75 : TLY=2 : BLY=23
450 GOSUB 11400
460 LOCATE 22,25: INPUT "PRESS RETURN TO CONTINUE 一>",REY25
4 7 0 ~ C L S ~
480 PRINT "(1) STAND DATA AND CUT TREE CHARACTERISTICS"
4 9 0 ~ P R I N T ~ " '
500 PRINT
510 INPUT "ENTER THE ANALYSIS YEAR, HARVEST YEAR - (_->,___)
",ANYEAR,HARVYEAR
52O INPUT "ENTER THE STAND ACRES ->
",ACRES

```
```

530 INPUT "ENTER THE STAND AVERAGE SCALING DEFECT (IN PERCENT) ->
",PSCDEF : SCDEF=PSCDEF/100
540 INPUT "ENTER SPECIES CODE (PP,DF,LP,GF,AF,ES,WL) - (TYPE END TO QUIT) ->
",SPECIES\$
550 F}\mathrm{ SPECIESS="END" THEN 680
560 PRINT "ENTER THE FOLLOWING DATA FOR THE TREE SPECIES HARVESTED:"
570 INPUT "ENTER CUT TREES/AC, GROSS VOL/AC (BF) - (_______) ->
",ZTPA,ZGVPA
580 INPUT "ENTEK QUAD MEAN DBH, AVE TOTAL HEIGHT - (_0,_) -->
",ZQMD,ZTH
590 INPUT "ENTER THE POND VALUE (LOG PRICE FOB, MLL)
",ZPV
600 IF SPECIESS="PP" THEN TPAPP=ZTPA:GVPAPP=ZGVPA:QMDPP=ZQMD:THPP=ZTH:PVPP=ZZV
610 FF SPECIES="DF" THEN TPADF=ZTPA:GVFADF=ZGVPA:QMDDF=ZQMD:THDF=ZTH:PVDF=ZPV
620 FF SPECIES }=\mathrm{ "LP" THEN TPALP=ZTPA:GVPALP=ZGVPA:QMDLP=2QMD:THLP=ZTH:PVLP=ZZV
630 TF SPECIES ="GF" THEN TPAGF=ZTPA:GVPAGF=ZGVPA:QMDGF=ZQMD:THGF=TTH:PVGF=ZPV
640 IF SPECIES ="AF" THEN TPAAF=ZTPA:GVPAAF=ZGVPA:QMDAF=ZQMD:THAF=ZTH:PVAF=ZPV
G50 IF SPECIESS="ES" THEN TPAES=ZTPA:GVPAES=ZGVPA:QMDES=ZQMD:THES=ZTH:PVES=ZPV
660 IF SPECIES$="WL" THEN TPAWL=ZTPA:GVPAWL=ZGVPA:QMDWL=ZQMD:THWL=ZTH:PVWL=ZPV
G70 GOTO 540
60 CLS
690 PRINT "(2) LOGGING SYSTEM AND TERRAIN INPUTS"
700 PRINT
710 PRINT
720 INPUT "ENTER THE YARDING TYPE
    GBS = GROUND BASED SYSTEM, SKY = SKYLINE SYSTEM 
",YARDSYSS
730 IF YARDSYS$="SKY" THEN 830
740 INFUT "ENTER A SKIDDING MACHINE
STRAC = SMALL CRAWLER TRACTOR, LTFAC = LARGE TRACTOR
SRTS = SMALL RUBEER TIRED SKIDDER, LRTS = LARGE SKIDDER }
",GBSYS\$
750 IF GESYSS="STRAC" THEN }80
750 IF GBSYSs="LTRAC" THEN 800
770 INPUT "ENTER THE AVE SLOPE IN THE DIRECTION OF LOADED SKIDDER
(CHOOSE -30,-25,-20,-15,-10,-5,0,+5,+10) -)
",SLOPE
780 INPUT "ENTER THE AVE SLOFE YARDING DISTANCE IN FEET ->
",AYD
790 GOTO }89
800 INPUT "ENTER THE AVE SLOPE IN THE DIRECTION OF LOADED CRAWLER TRACTOR
(CHOOSE -45,-40,-35,-30,-25,-20,-15,-10,-5,0,+5,+10) -
",SLOPE
810 INPUT "ENTER THE AVE SLOFE YARDING DISTANCE IN FEET 列
",AYD
820 GOTO }89
830 INPUT "ENTER A SKYLINE YARDER - (SMALL OR MED) -->
",SKYSYSt
840 IF SKYSYS:="MED" THEN \$60
350 GOTO:370
860 INFUT "ENTER YOUR ESTIMATE OF MAKIMUM SKYLINE PAYLOAD --
",MPLMSY
870 INPUT "INTER THE AVE PERCENT SLOFE, (ABSOLUTE VALUE OF SLOPE)
(CHOOSE 10,20,30,40,50,60,70,30,90) ->
",SLOPE
880 INPUT "ENTER THE AVE SLOPE YAFDING DISTANCE IN FEET

```
(MAXIMUM EXTERNAL YARDING DIST IS 1000 FEET FOR SMALL
AND 2000 FEET FOR MEDIUM SKYLINE YARDERS) —>
", AYD
890 PRINT
900 INPUT "ENTER THE ONE-WAY MLLES OF PAVED HAUL ROAD
" MIP
910 INPUT "ENTER THE ONE-WAY MILES OF UNPAVED HAUL ROAD —
" \({ }^{\text {,MIUP }}\)
920 PRINT
930 INPUT "ENTER THE MLLES OF ROAD CONSTRUCTION OR RECONSTR CHARGED TO THIS STAND (INCLUDE BOTH SPECIFIED AND TEMPORARY ROADS) \(\rightarrow\)
",RCMI
940 IF RCMI=0 THEN 960
950 INPUT "ENTER THE COST PER MILE FOR ROAD CONSTRUCTION/RECONSTR
(\$/MILE) \(\quad \rightarrow\)
",RCCPMI
960 INPUT "ENTER THE MIIES OF ROAD TO EE MAINTAINED ——
",MTCMI
970 IF MTCMI=0 THEN 990
980 INPUT " ENTER THE AVE VARIABLE COST FOR ROAD MAINTENANCE (\$/MEF-MLE) ——
",VMTEE
990 CLS
\(1000^{\circ}\) PRINTT"(3) ENVIRONMENTAL AND ADMINISTRATIVE COST DATA"
1010 PRINT "
1020 PRINT
1030 INPUT "ENTER THE SALE AREA IMPROVEMENT COST/AC —
\(>"\),SAICPA
1040 INPUT "ENTER THE EROSION CONTROL COST/AC
\(>"\) ECCPA
1050 INPUT "ENTER THE SLASH DISPOSAL COST/AC
\(\geqslant "\),BDCPA
1060 INPUT "ENTER THE SALE PREP AND ADMIN COST/AC
\(>", A D M I N C P A\)
1070 REM

1090 REM DEFINE STATIE VARLABLES RESIDENT TO THE PROGRAM

1110 REM
1120 REM ***** FELLING AND BUCKING VARIABLES *****
1130 REM
1140 DELAYFB \(=25\) 'DELAY AS FRACTION OF TOTAL TIME
1150 CPHFE=18.33 'HOURLY COST (\$)
1150 REM
1170 REM
1130 REM ***** AVERAGE GROUND BASED SYSTEM OR SKYLINE SYSTEM ACRES *****
1190 REM
1200 AVSYSAC=250 'AVERAGE GROUND BASED SYSTEM OR SKYLINE
1210 REM 'SYSTEM ACRES HARVESTED PER LOGGING SEASON
1220 REM
1830 REM ***** GROUND BASED YARDING SYSTEM VARIABLES *****
1240 REM
1250 WEAVE \(=.1\)
'WEAVE FACTOR
'EFFICIENCY, LARGE CRAWLER TRACTOR
'EFFICIENCY, SMALL CRAWLER TRACTOR
1270 EFFSTRAC=.79
'EFFICIENCY, RUBBER TIRE SKIDDER
1280 EFFRTS \(=.74\)
1290 FDCLTRAC=436
'FIXED DAIL Y COST, LARGE TRACTOR (\$)
\begin{tabular}{|c|c|}
\hline 1300 FDCSTRAC \(=308\) & 'FIXED DAILY COST, SMALL TRACTOR (\$) \\
\hline 1310 FDCLRTS \(=321\) & 'FIXED DAIL Y COST, LARGE SKIDDER (\$) \\
\hline 1320 FDCSRTS \(=279\) & 'FIXED DAILY COST, SMALL SKIDDER ( () \\
\hline \multicolumn{2}{|l|}{1330 REM} \\
\hline \multicolumn{2}{|l|}{1340 REM ***** SKYLINE YARDING SYSTEM VARIABLES *****} \\
\hline \multicolumn{2}{|l|}{1350 REM} \\
\hline 1360 MPLSSY=2000 & 'MAXIMUM PAYLOAD, SMALL SKYLINE YARDER (LBS) \\
\hline 1370 ALYD=50 & 'AVERAGE LATERAL YARDING DISTANCE (FT) \\
\hline 1380 FHCSSY \(=94.99\) & 'FIXED HOURLY COST, SMALL YARDER (\$) \\
\hline 1390 FHCMSY \(=222.45\) & 'FIXED HOURLY COST, MEDIUM YARDER (\$) \\
\hline \multicolumn{2}{|l|}{1400 REM} \\
\hline \multicolumn{2}{|l|}{1410 REM ***** LOADING VARIABLES *****} \\
\hline \multicolumn{2}{|l|}{1420 REM} \\
\hline 1430 SWZAVG7 \(=.05\) & 'SW ZONE AVE SCALING DEFECT (DEC) \\
\hline 1440 SWZAVG8=13.2 & 'SW ZONE AVE GROSS 16 FT LOGS/MBF \\
\hline 1450 SWZALC \(=10.53\) & 'SW ZONE AVE LOADING COST ( \(3 / \mathrm{MBF}\) ) \\
\hline \multicolumn{2}{|l|}{1460 REM} \\
\hline \multicolumn{2}{|l|}{1470 REM ***** HAULING VARIABLES *****} \\
\hline \multicolumn{2}{|l|}{1480 REM} \\
\hline 1490 NLHWY=52000! & 'NET LEGAL HIGHWAY LOAD (LBS) \\
\hline 1500 RTMPMIP \(=3.92\) & 'AVE ROUNDTRIP MIN/MI ON PAVED SIJRFACES \\
\hline 1510 RTMPMIUP \(=5.38\) & 'AVE ROUNDTRIP MIN/MI ON UNPAVED SURFACES \\
\hline \(1520 \mathrm{FDCLT}=15885 / 147\) & 'FIXED DAILY COST, LOG TRUCK (\$) \\
\hline 1530 FDCLTD \(=198.25\) & 'FIXED DAIL Y COST, LOG TRUCK DRIVER (1) \\
\hline 1540 VCPMIP \(=3909\) & 'VARIABLE COST/MI, PAVED SURFACES (\$/MD \\
\hline 1550 VCPMIUP \(=1.1728\) & 'VARIABLE COST/MI, UMPAVED SURFACES (\$/MI) \\
\hline \multicolumn{2}{|l|}{1560 REM} \\
\hline \multicolumn{2}{|l|}{1570 REM ***** GENERAL LOGGING OVERHEAD *****} \\
\hline \multicolumn{2}{|l|}{1580 REM} \\
\hline 1590 GLOHCFM \(=8.42\) & 'GENERAL LOGGING OVERHEAD (\$/MBF) \\
\hline 1600 REM & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{1620 REM COMPUTE CUT TREE PARAMETERS FOR MERCHANTABLE TREES} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1640 CLS}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{1660 GOSUB 3290} \\
\hline \multicolumn{2}{|l|}{1670 REM} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{1690 REM COMPIUTE VARIABLE LOGGING COSTS IN \$/MBF, STUMP TO MILL} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(1700 \mathrm{REM}===\)}} \\
\hline & \\
\hline 1720 PRINT " & PROGRAM IS COMPUTING LOGGING COSTS" \\
\hline \multicolumn{2}{|l|}{1730 PRINT} \\
\hline 1740 PRINT " & PLEASE WAIT* \\
\hline \multicolumn{2}{|l|}{1750 REM} \\
\hline \multicolumn{2}{|l|}{1760 REM ***** COMPUTE FALLING AND BUCKING COST PER MBF *****} \\
\hline \multicolumn{2}{|l|}{1770 REM} \\
\hline \multicolumn{2}{|l|}{1780 GOSUB 5320} \\
\hline \multicolumn{2}{|l|}{1790 REM} \\
\hline \multicolumn{2}{|l|}{1300 REM ***** COMPUTE YARDING COST PER MBF *****} \\
\hline \multicolumn{2}{|l|}{1310 REM} \\
\hline \multicolumn{2}{|l|}{1820 IF YARDSYS \(\$=\) "GBS" THEN 18850 'GROUND BASED SYSTEM SELECTED} \\
\hline \multicolumn{2}{|l|}{1330 GOSUB 7140 'SKYLINE YARDING SYSTEM SELECTED} \\
\hline \multicolumn{2}{|l|}{1840 GOTO 1920} \\
\hline 1850 REM & \\
\hline
\end{tabular}
```

1860 GOSUB 5580
1870 REM
1880 REM ***** COMPUTE LOADING COST PER MBF *****
1890 REM
1900 GOSUB 10010
1910 REM
1920 REM ***** COMPUTE HAULING COST PER MBF *****
1930 REM
1940 GOSUB }1040
1950 REM
1960 REM ***** COMPUTE MOVE IN MOVE OUT COST, YARDING AND LOADING *****
1970 REM ***** PRODUCTION, AND TOTAL LOGGING COST PER MBF *****
1980 REM
1990 IF YARDSYS s=" SKY" THEN MOVECOST=1240+12,55*(2*DISTMLL) ELSE MOVECOST=,5*(1
240+1ジ55*(2*DISTMML))
2000 MOVECPA=MOVECOST/AVSYSAC
2010 MOVECPM=MOVECPA/NVOLPA
2020 IF YARDSYS\$="GBS" THEN YLPPD=NVYPD : ELSE: YLPPD=NVYPH*8
2030 YLCPM=MOVECPM+YCPM+LCPM : LOGCPM=FBCPM+YLCPM+HCPM+GLOHCPM
2040 REM

```

```

2060 REM COMPUTE COST OF ROAD CONSTRUCTION, RECONSTRUCTION AND
2070 REM MAINTENANCE, INCLUDING TEMPORARY ROADS, IN \$/MBF

```

```

2090 REM
2100 RCCPM=RCMI*RCCPMI/NVOL
2110 MTCCPM=MTCMI*VMTCC
2120 RCPM=RCCPM+MTCCPM
2130 REM

```

```

2150 REM COMPUTE ENVIRONMENTAL AND ADMINISTRATIVE COSTS PER MBF

```

```

2170 REM
2180 REM ***** COMPUTE ENVIRONMENTAL COST PER MBF *****
2190 REM
2200 SAICPM=SAICPA*ACRES/NVOL : ECCPM=ECCPA*ACRES/NVOL : BDCPM=BDCPA*ACRES/NVOL
2210 ENVICPM=SAICPM+ECCPM+BDCPM
2\&20 REM
2230 REM ***** COMPUTE ADMINISTRATIVE COST PER MBF *****
2240 REM
2250 ADMINCPM=ADMINCPA*ACRES/NVOL
2250 REM

```

```

2280 REM COMPUTE TOTAL HARVEST COST, GRIOSS STUMPAGE AND NET PRESENT VALJE

```

```

2300 REM
2310 THCPM=LOGCPM+RCPM+ENVICPM
2320 PRRI=,1071*PDVALUE
2330 GSTUMFAGE=PDVALUE-(THCPM+PRRI)
2340 NRETURN=(GSTUMPAGE-ADMINCPM)*(NVOLPA)
2350 DTIME=HARVYEAR-ANYEAR
2350 NPVPA=NRETURN*(1/1,04`DTIME)
2370 REM
2380 REM ================================
2390 REM PRINT OUT THE SUMMARY OF RESULTS

```

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{2410 CLS} \\
\hline 2420 PRINT & \\
\hline \multicolumn{2}{|l|}{2430 PRINT TAB（16）＂TIMBER HARVEST PRODUCTION，COST，AND REVENUE SUMMARY＂} \\
\hline \multicolumn{2}{|l|}{2440 PRINT TAB（16）＂} \\
\hline \multicolumn{2}{|l|}{2450 PRINT} \\
\hline \multicolumn{2}{|l|}{2460 PRINT} \\
\hline 2470 F1s＝＂ &  \\
\hline 2480 F2s＝＂ &  \\
\hline 2490 F3s \(=\) a & NET VOLUME PER ACRE \(\quad\)－＞\＃\＃\＃\＃MBF＂ \\
\hline \(2500 \mathrm{~F} 48=\)＂ &  \\
\hline 2510 F 5 \＄\(=\)＂ & QUADRATIC MEAN DIAMETER \(\mathrm{S}^{\text {a }}\)－＞\＃\＃\＃\＃INCHES＂ \\
\hline 2520 F6s＝＂ & AVERAGE TOTAL HEIGHT－－＞\＃\＃\＃\＃FEET \\
\hline \(2530 \mathrm{~F} 7 \mathrm{~s}=\) & AVERAGE GROSS LOG VOLUME \\
\hline 2540 F8s＝＂ &  \\
\hline 2550 G1\％\(=\)＂ & YARDING SYSTEM－＞\＂ \\
\hline 2560 G2\％＝＂ &  \\
\hline 2570 G38＝ & AVERAGE SLOPE－－\＃\＃\＃\＃PERCENT＂ \\
\hline 2580 G45＝＂ & YARDING AND LOADING PRODUCTION - －\＃\＃\＃\＃\＃MBF／DA \({ }^{\text {＂}}\) \\
\hline 2590 G5\％＝＂ & DISTANCE TO THE MILL \\
\hline 2600 H1才 \(=\)＂ & FELLING AND BUCKING COST \\
\hline 2610 H2\％＝＂ & YARDING AND LOADING COST－－＞\＃\＃\＃\＃．\＃\＃\＄／MBF＂ \\
\hline 2620 H3\％＝＂ &  \\
\hline 2630 01\％＝＂ & GENERAL LOGGING OVERHEAD COST \(->\# \# \# \#\) \＃\＃\＃\({ }^{\text {／}}\)／MBF＂ \\
\hline 2640 H45＝＂ & STUMP TO MLLL LDGGING COST \(-->\# \# \# \# . \# \# \$ / \mathrm{MBF}^{\prime \prime}\) \\
\hline 2650 H5 \({ }^{\text {c }}\) & SPEC AND TEMF ROAD COST－－＞\＃\＃\＃．\＃\＃§／MBF＂ \\
\hline 2660 H5s＝＂ & SAI，EC AND ED COST \\
\hline 2670 H7\％\(=\)＂ & TOTAL HARVEST COST－－＞\＃\＃\＃．\＃\＃\＃／MBF＂ \\
\hline 2630 H \({ }^{\text {at }}=\) & PROFIT AND RISK（12 PERCENT）－－＞\＃\＃\＃，\＃\＃\％／MBF＂ \\
\hline 2690 「1ま＝＂ & AVERAGE POND VALUE \\
\hline 2700 125＝＂ & ESTIMATED STUMPAGE \\
\hline 2710 H9 \(=\)＂ & SALE PREP AND ADMIN COST－－\＃\＃\＃\＃\＃\＃／ACRE＂ \\
\hline 2720 13 \(=\)＝ & NET REVENUE（NOT DISCOUNTED）－＞\＃\＃\＃\＃\＃t／ACRE＂ \\
\hline \(2730145="\) &  \\
\hline \multicolumn{2}{|l|}{2740 PRINT USING F1\％；ACRES} \\
\hline \multicolumn{2}{|l|}{2750 PRINT USING F2s；NVOL} \\
\hline \multicolumn{2}{|l|}{2760 PRINT USING F3t；NVOLPA} \\
\hline \multicolumn{2}{|l|}{2770 PRINT USING F4s；TPA} \\
\hline \multicolumn{2}{|l|}{2730 PRINT USING F5t；QMD} \\
\hline \multicolumn{2}{|l|}{2790 PRINT USING F6\％；AVETH} \\
\hline \multicolumn{2}{|l|}{2300［F YARDSYS \(=\)＝＇GES＂THEN PRINT USING F7\％；AVPT ：GOTO 2820} \\
\hline \multicolumn{2}{|l|}{2310 PRINT USING F7\％；FCSZ} \\
\hline \multicolumn{2}{|l|}{28ED PRINT USING Fis\％；AVEML} \\
\hline \multicolumn{2}{|l|}{2830 PRINT} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{E35ij PRINT USING G1F；SKYSYSt＋YARDSYS} \\
\hline \multicolumn{2}{|l|}{2860 PRINTT USING G2\＃AYD} \\
\hline \multicolumn{2}{|l|}{2870 PRINT USING G3\＄；SLOPE} \\
\hline \multicolumn{2}{|l|}{2S80 PRINT USING G4t；YLPPD} \\
\hline \multicolumn{2}{|l|}{2390 PRINT USING G5\％；DISTMLL} \\
\hline \multicolumn{2}{|l|}{2900 PRINT} \\
\hline \multicolumn{2}{|l|}{2910 FRINT} \\
\hline 2920 INPUT＂ & PRESS RETURN TO CONTINJE－＞＂，KEY3\％ \\
\hline \multicolumn{2}{|l|}{2930 ILS} \\
\hline \multicolumn{2}{|l|}{} \\
\hline 2950 PRINT & ＇TIMBER HARVEST PRODUCTION，COST，AND REVENJE SUMMARY＂ \\
\hline 2960 PRINT & \\
\hline
\end{tabular}
```

2970 PRINT TAB(35) "(CONTINUED)"
2980 PRINT
2990 PRINT
3000 PRINT USING H1 %;FCPM
3010 PRINT USING H25;YLCPM
3020 PRINT USING H3*;HCFM
3030 PRINT USING D1$;GLOHCPM
3040 PRINT USING H4%;LOGCPM
3050 PRINT USING H5$;RCPM
3060 PRINT USING H6$;ENVICPM
3070 PRINT USING H7$;THCPM
3030 PRINT USING H8\$;PRRI
3090 PRINT USING II $;PDVALUE
3100 PRINT USING IE%;GSTUMPAGE
3110 PRINT
3120 PRINT USING H9$;ADMINCPA
3130 FRINT USING I3*;NRETURN
3140 PRINT USING I4$;NPVPA
3150 PRINT
3160 PRINT
3170 INPUT " PRESS H AND RETURN FOR HARD COPY OF SUMMARY, PRESS RETURN TO CO
NTINUE - >",HCOPY& : IF HCOPY%=" H" THEN 3190
3180 GOTO 3200
3190 GOSUB 11530
3200 CLS
3210 INPUT "DO YOU WANT TO TRY ANOTHER LOGGING SYSTEM (YES, NO) -`";ANOTHER$
3220 IF ANOTHER =" YES" THEN 680
3230 INFUT "DO YOU WANT TO START OVER OR QUIT (START, QUIT) ->";QUIT\#
3$40 IF QUIT$="START" THEN 3250 ELSE 3260
3250 RUN 10
3260 END
3270 REM
3280 REM
3290 REM ***** SUBROUTINE TO COMPIJTE CUT TREE PARAMETERS *****
3300 REM
3310 REM THIS SUBRIUUTINE COMPUTES CUT TREE PARAMETERS FIDR THE FALLING
3320 REM AND BUCKING, YARDING, LOADING, AND HAULING SUBROUTINES.
3330 REM
3340 REM ***** TEST TO SEE IF PONDEROSA PINE TREES WERE CUT *****
3350 REM
3360 IF TPAPP=0 THEN 3710
3370 REM
3380 REM ******************************************************
3390 REM COMFUTE PIDNDEROSA PINE CUT TREE PARAMETERS
3400 REM ******************************************************
3410 REM
3420 REM ***** COMPUTE TOTAL NET VOLUME IN MBF *****
3430 REM
3440 NVPP=(GVPAPP*(1-SCDEF)*ACRES)/1000
3450 REM
3460 REM ***** COMPUTE AVERAGE GROSS VOL/TREE IN BF *****
3470) REM
3480 AVPTPP=GVFAPP/TPAPP
3490 REM
3500 REM ***** COMMPUTE MERCHANTABLE LENGTH IN FEET *****
3510 REM

```
```

3520 MLPP=,8381*THPP+7,299*SQR(QMDPP)-41,14
3530 REM
3540 REM ***** COMPUTE GROSS 16 FT LOGS/MBF *****
3550 REM
3560 LPMPP=(MLPP/16)/(AVPTPP/1000)
3570 REM
3580 REM ***** COMPUTE AVERAGE NUMBER OF PIECES/TREE *****
3590 REM
3600 PCPTPP =,1469+.01954*THPP+,0002468*QMDPP*THPP-2,717/QMDPP
3610 IF PCPTPP<1 THEN PCPTPP=1
3620 REM
3630 REM ***** COMPUTE AVERAGE PIECE SIZE IN BF *****
3640 REM
3650 PCSZPP=AVPTPP/PCPTPP
3660 REM
3670 REM ***** COMPUTE POUNDS/BOARD FOOT RATIO *****
3680 REM
3690 LBBFPP=12,09-.01397*PCSZPP+8,809999E-06*PCSZPP * 2+187,6/PCSZPP
3700 REM
3710 REM ***** TEST TO SEE IF DOUGLAS-FIR TREES WERE CUT *****
3720 REM
3730 IF TPADF=0 THEN 3870
3740 REM
3750 REM *********************************************************
3760 REM COMFUTE DOUGLAS-FIR CUT TREE PARAMETERS
3770 REM *******************************************************
3780 REM
3790 NVDF=(GVPADF*(1-SCDEF)*ACRES)/1000
3800 AVPTDF=GVPADF/TPADF
3810 MLDF=,8919*THDF+5,658*SQR(QMDDF)-35,62
3820 LPMDF=(MLDF/15)/(AVPTDF/1000)
3830 PCPTDF=-2,037+.04311*THDF-3,9E-07*THDF^3+64,64/THDF+9,78E-06*QMDDF*3-3,843/
QMDDF : IF PCPTDF<1 THEN PCPTDF=1
3840 PCSZDF=AVPTDF/PCPTDF
3850 LEEFDF=11.56-.01517*PCSZDF+1.295E-05*PGSZDF*2+101.%/FIOSZDF
3360 REM
3870 REM ***** TEST TO SEE TF LODGEPOLE PINE TREES WERE CUT *****
3880 REM
3890 IF TPALP=0 THEN 4030
3900 REM
3910 REM ************************************************************
3920 REM COMFUTE LODGSPOLE PINE EUT TREE PARAMETERS
3930 REM *********************************************************
3540 FEM
3950 NVLP=(GVFALP*(1-SCDEF)*ACRES)/1000
3960 AVFTLF=GVPALP/TPALP
3970 MLLP=.6488*THLP+15.54*SQR(QMDLP)-50,41
3360LFMLP=(MLLP/16)/(AVFTLP/1000)
3990 PCPTLF =,7838+1,034E-05*QMDLP*THLF*z : IF PCFTLF<1 THEN PCFTLF=1
4000 PESZLF=AVPTLP/PCPTLF
4010 LBEFLP=11,38-.03304*PCSZLF+67.73001/PCSZLP
4020 REM
4030 REM ***** TEST TO SEE IF GRAND FIR TREES WERE CUT *****
4040 REM
4050 IF TPAGF=0 THEN 4200
4050 REM

```
```

4070 REM **************************************************
4080 REM GOMPUTE GRAND FIR CUT TREE PARAMETERS
4090 REM ***************************************************
4100 REM
4110 NVGF=(GVPAGF*(1-SCDEF)*ACRES)/1000
4120 AVPTGF=GVPAGF/TPAGF
4130 MLGF=,7691*THGF+3.18*SGR(QMDGF)-39.82
4140 LPMGF = (MLGF/16)/(AVPTGF/1000)
4150 PCPTGF=.9309+.01639*THGF+1.3E-07*THGF*3-8.533/QMDGF
4160 IF PCPTGF<1 THEN PCPTGF=1
4170 PCSZGF=AVPTGF/PCPTGF
4180 LEBFGF=8,105+370,4/PCSZGF
4190 REM
4200 REM ***** TEST TO SEE IF SUBALPINE FIR TREES WERE CUT *****
4210 REM
4220 IF TPAAF=0 THEN 4370
4 2 3 0 ~ R E M
4240 REM *******************************************************
4250 REM COMPUTE SUBALPINE FIR CUT TREE PARAMETERS
4260 REM ********************************************************
4270 REM
4280 NVAF=(GVPAAF*(1-SCDEF)*ACRES)/1000
4290 AVPTAF=GVPAAF/TPAAF
4300 MLAF=.6175*THAF+9.004501*SQR(QMDAF)-33.62
4310 LPMAF=(MLAF/16)/(AVPTAF/1000)
4320 PCPTAF=.9309+.01639*THAF+1,3E-07*THAF`3-8.533/QMDAF
4330 IF PGPTAF\&1 THEN PGPTAF=1
4340 PCSZAF=AVPTAF/PCPTAF
4350 LBBFAF=8.105+370.4/PCSZAF
4360 REM
4370 REM ***** TEST TO SEE IF ENGELMANN SPRUCE TREES WERE CUT *****
4380 REM
4390 IF TPAES=0 THEN 4530
4400 REM
4410 REM ***********************************************************
4420 REM COMPUTE EHGELMANN SPRUCE CUT TFEE PARAMETERS
4430 REM *************************************************************
4440 REM
4450 NVES=(GVFAES*(1-SCDEF)*ACFES)/1000
4460 AVPTES=GVPAES/TPAES
4470 MLES=.7887*THES+6.\&505*SQR(QMDES)-36.75
4480 LPMES=(MLES/16)/(AVPTES/1000)
4490 PCPTES=-.4128+.02441*THES+.0007364*QMDES*2:IF PCPTES<1 THEN PCPTES=1
4500 PCSZES=AVPTES/PCPTES
4510 LBEFES=8.439-.004477*PCSZES+199.9/PCSZES
45EO REM
4530 REM ***** TEST TO SEE IF WESTERN LARCH TREES WERE CUT *****
4540 REM
4550 IF TPAWL=0 THEN 4710
4560 REM
4570 REM **********************************************************
4530 REM COMFUTE WESTERN LARCH CUT TREE PARAMETERS
4590 REM ***********************************************************
4600 REM
4610 NVWL=(GVPAWL*(1-SCDEF)*ACRES)/1000
46%0 AVPTWL=GVFAWL/TFAWL

```
```

4630 MLWL=.767*THWL+11.1*SQR(QMDWL)-53!
4640 LPMWL=(MLWL/16)/(AVPTWL/1000)
4650 PCPTWL =-.1998+.0158*THWL+.0007924*QMDWL*THWL-E,08E-6*QMDWL*THWL*2
4660 IF PCPTWL<1 THEN PCPTWL=1
4670 PCSZWL=AVPTWL/PCPTWL
4680 LBBFWL=11.66-.01517*PCSZWL+1.295E-05*PCSZWL^2+101.8/PCSZWL
4 6 9 0 ~ R E M
4700 REM ************************************************************************
4710 REM EOMPUTE TOTAL OR WEIGHTED AVERAGE SUT TREE PARAMETERS
4720 REM *************************************************************************
4730 REM
4740 REM ***** COMPUTE GROSS VOLUME/AC IN BF AND NET VOLUME/AC IN MBF *****
4 7 5 0 ~ R E M
4760 GVPA=GVPAPP+GVPADF+GVPALP+GVPAGF+GVPAAF+GVFAES+GVPAWL
4770 NVOLPA=CVVPA*(1-SCDEF)/1000
4 7 8 0 REM
4790 REM ***** COMPUTE TOTAL TREES PER ACRE *****
4800 REM
4810TPA=TPAPP +TPADF+TPALP+TPAGF+TPAAF+TPAES+TPAWL
4820 REM
4830 REM ***** COMPUTE TOTAL NET VOLUME IN MBF *****
4840 REM
4850 NVOL=NVPP+NVDF+NVLP+NVGF+NVAF+NVES+NVWL
4860 REM
4879 REM ***** COMPUTE QUADRATIC MEAN DIAMETER IN INCHES *****
4380 REM
4890 BAPTREE= (TPAPP*.7854*QMDPP*2+TPADF*.7854*QMDDF*2+TPALP*.7854*QMDLP*2+TPAGF*
.7854*QMDGF*2+TPAAF*.7854*QMDAF`2+TPAES*.7854*QMDES^&+TPAWL*.7854*QMDWL`2)/TPA
4900 QMD=SQR(BAPTREE/.7854)
4910 REM
4920 REM ***** COMPUTE AVERAGE GROSS VOL/TREE IN BF *****
4930 REM
4940 AVPT=GVPA/TPA
4950 REM
4960 REM ***** COMPUTE AVERAGE GROSS 16 FT LOGS/MBF *****
4 9 7 0 ~ R E M
4980 LPM= LLPMPP*GVFAPP+LPMDF*GVPADF+LPMLP*GVPALP+LPMGF*GVFAGF+LPMAF*GVFAAF+LPMES
*(GVPAES+LPMWL*GVPAWL)/GVPA
4990 REM
5000 REM ***** COMPUTE AVERAGE PIECE SIEE IN EF *****
5010 REM
5020 PCSZ=(PCSZPP*GVPAFP+PGSZDF*GVPADF+PCSZLP*GVPALF+PCSZGF*GVFAGF+FCSZAF*GVFAAF
+PCSZES*GVPAES+FCSZWL*GVPAWL)/GVPA
5030 REM
5040゙ REM ****** COMPUTE AVERAGE MERCHANTAELE LENGTH AND TOTAL HEIGHT ******
5050 REM
5060 AVEML=(MLPP*TPAPP+MLDF*TPADF+MLLP*TPALF+MLGF*TPAGF+MLAF*TPAAF+MLES*TPAES+ML
WL*TPAWL)/TFA
5070 AVETH=(THPP*TPAFF+THDF*TPADF+THLF*TFALF+THGF*TPAGF+THAF*TPAAF+THES*TPAES+TH
WL*TPAWL)/TPA
5080 REM
5090 REM ***** COMPUTE AVERAGE NUMBER OF BUCKED LOUS FER ACRE *****
5100 REM
5110 FLOGSPA = GVFA/FCSZ
5120 REM
5130 REM ***** COMPUTE AVERAGE POUND/BOARD FOOT RATIO *****

```
```

5140 REM
5150 LBBF=(LBBFPP*GVPAPP+LBBFDF*GVPADF+LBEFLP*GVPALP+LBEFGF*GVPAGF+LEBFAF*GVPAAF
+LBBFES*GVPAES+LBBFWL*GVPAWL)/GVPA
5160 REM
5170 REM ***** COMPUTE AVERAGE WEIGHT/TREE IN LBS *****
5180 REM
5190 WTPT=AVPT*LBEF
5200 REM
5210 REM ***** COMPUTE AVERAGE WEIGHT/LOG IN LBS *****
5220 REM
5230 WTPL=PCSZ*LEBF
5240 REM
5250 REM ***** COMPUTE WEIGHTED AVERAGE POND VALUE *****
5850 REM
5270 PDVALUE=(PVPF*NVPP+PVDF*NVDF+PVLP*NVLP+PVGF*NVGF+PVAF*NVAF+PVES*NVES+FVWL*N
VWL)/NVOL
5280 REM
5290 RETURN
5300 REM
5310 REM -_**** SUERGUTINE TG EOMPUTE FELLING AND BUCKING EOST PER MEF *****
5330 REM
5340 REM
5350 REM ***** COMPUTE AVE NET VOL/TREE (SCRIBNER DEC C) *****
5360 REM
5370 NVPTSDC=(AVPT*(1-SCDEF))/10:IF NVPTSDC\1.1 THENVNVPTSDC=1.1
5380 REM
5390 REM ***** DEFINE LOG EASE TEN OF QMD AND NVPTSDC *****
5400 REM
5410 LGTQMD=LOG(QMD)/2.303
5420 LGTNVPTSDG=LOG(NVPTSDG)/2.303
5430 REM
5440 REM ***** COMPUTE DELAY FREE FALLING AND BUCKING TIME IN MIN/MBT *****
5450 REM
5460 FBTPM=-53.24-1.205*QMD+.07987*NVPTSDC+110.9*LGTQMD+25.31/LGT:NVFTSDC-42.09*L
GTNVPTSDG
5470 REM
5480 REM ***** COMPUTE TOTAL FALLING AND BUCKING TIME INCLUDING DELAYS *****
5490 REM
5500 TFETFM=FETFM/(1-DE|AYFB)
5510 REM
5520 REM ***** EOMPUTE AVERAGE FALLING AND BUCKING COST/MEF *****
5530 REM
5540 FBCPM=(CPHFB/60)*TFBTPM
5550 RETURN
5560 REM
5570 REM
55:0 REM ***** SUBROUTINE TO GOMPUTE YARDING EOST FER MBF FOR *****
5590 REM ***** GFOUND BASED SYSTEMS INCLUDING SMALU AND MEDIUM *****
5G00 REM ***** SILE ERAWLEF TRACTORS AHD RUEBER TIFED SKIDDERS ******
5610 REM
5620 REM
5530 REM ***** ASSIGN MAXIMUM FAYLOAD IN LBS TO THE SELECTED SYSTEM *****
5b40 REM
5650 IF GBSYS\$="LTRAC" THEN MAXPL=20000
5660 IF GESYS%="STRAC" THEN MAXPL=13000

```
```

5670 IF GBSYS$="LRTS" THEN MAYFL=10000
5680 IF GBSYSt="SRTS" THEN MAYPL= 7000
5690 REM
5700 REM ***** GO TO LATERAL YARDING SUBROUTINE *****
5710 REM
5720 GOSUB 7530
5730 REM
5740 REM ***** GO TO THE GROUND BASED SYSTEM SELECTED *****
5750 REM
5760 IF GBSYS*="LTRAC" THEN 5820
5770 IF (IBSYS$=" STRAC" THEN G050
5780 IF GBSYS$="LRTS" THEN 6290
5790 [F GBSYS$="SRTS" THEN G¢00
5800 REM
5810 REM ***********************************
5820 REM LARGE CRAWLER TRACTOR
5830 REM ***********************************
5040 REM
5850 REM ***** COMPUTE CYCLE TIME *****
5860 REM
5870 OIDIST=(2*A YD*(1+WEAVE))-IMDPT
58%0 NWEIGHT=WTPT*(1-SCDEF)*LOGSPT
5390 TFAVEL =.03+.002705*OIDIST+.000105*NWEIGHT
5900 POSITION=.3878
5510 WINCH=,13+.02693*TWDPT
5920 HOOK=,1+1,041*LOGSPT+,01933*TWDPT
5530 IMTRAVEL =.01+.0048*IMDPT+.258*(HKSITESPT-1)
5940 LANDING=1.26+,7425*LOGSPT
5950 PSLASH=.155:
5550 CYCLETIME=TRAVEL +POSITON+WINCH+HOOK+IMTRAVEL+LANDING+FSLASH
5970 REM
5930 REM ***** COMPUTE DAIIY PRODUCTION AIND YARDING COST PER' MBF *****
5990 REM
5000 NVYPD=(480*EFFLTRAC*LOGSPT*(1-SCDEF)*(AVPT/1000)*.9756)/CYCLETIME
GO10 YCPM=FDCLTRAL/NVYPD
5020 RETURN
G030 REM
6040 REM ***********************************
GO50 REM SMALL CRAWLER TFACTOR
6050 REM ******************************:******
G070 REM
6080 REM ****** GOMPUTE CYCLE TIME ******
G090 REM
6100 OIDIST=(2*AYD*(1 +WEAVE))-IMDPT
6110 NWEIGHT=WTPT*(1-SCDEF)*LOGSPT
6120 IF SLOPE<0 THEN OUTSLOPE=AES(SLOPE) ELSE OUTSLOPE=0
S130 TFAVEL =.35+.00309*OIDIST+,0001 47*INWEIGHT+,0000398*AYD*(1+WEAVE)*OUTSLOPE
6140 POSITION=.4519
6150) WINCH=,31 +,0335*TWDPT
6160 HOOK=-.18+.9315*LOGSPT+.0119*TWDPT+.2251*HKSITESPT
6170 IMTRAVEL=.06+.00523*IMDPT+.246:3*(HKSITESPT-1)
6180 LANDING=.8435*.5675*LOGSPT+.00014**NWEIGHT
6190 PSLASH=.2145
G200 CYCLETIME=TRAVEL+POSITION+WINCH+HOOK+IMTRAVEL+LANDIHG+FSLASH
6210 REM
6220 REM ***** COMPUTE DAILY PFODUCTION AND YARDING COST PEF MBF *****

```
```

6230 REM
6240 NVYPD=(480*EFFSTRAC*LOGSPT*(1-SCDEF)*(AVPT/1000)*.9756)/LYCLETIME
6250 YCPM=FDCSTRAC/MVYPD
6250 RETURN
6270 REM
6280 REM **************************************
G290 REM LARGE RUBBER TIRED SKIDDER

```

```

6 3 1 0 ~ R E M
6320 REM ***** COMPUTE OUTHAUL VELOCITY IN FEET PER MINUTE *****
6330 REM
5340 OUTSLOPE=-1*SLOPE
6350 [F DUTSLOPE<15 THEN VELOUT=7.9*5280/60
6360 [F OUTSLOFE=15 THEN VELOUT =6,56*5E80/60
6370 IF OUTSLOPE=20 THEN VELOUT }=5,45*5280/6
6380 IF OUTSLOPE=35 THEN VELOUT }=4.68*5280/6
6390 IF OUTSLIDPE=30 THEN VELOUTT =4.13*5280/60
6 4 0 0 ~ R E M
6410 REM ***** COMFUTE INHAUL VELOCITY IN MPH *****
6420 REM
6430 WEIGHT=WTPT*LOGSPT
5440 IF SLOPE<-5 THEN VMFH=5
6450 IF SLOPE=-5 THEN VMPH=56,73-5,58*LOG(WEIGHT)
6450 IF SLOFE= 0 THEN VMPH=40.4-3.93*LDG(WEIGHT)
6470 IF SLDFE= 5 THEN VMPH=29,97-2,877*LOG(WEIGHT)
6480 IF SLDPE= 10 THEN VMFH=*:.27-2,095*LOG(WEIGHT)
6490 REM
5500 REM ***** IF PREDICTED VEL > 6 MPH, SET IT = 6 MFH *****
6510 REM
6520 IF VMPH>6! THEN VMPH=6!
6530 REM
6540 REM ***** COMPUTE INHAUL VELOCITY IN FEET PER MINUTE *****
6550 REM
6560 VEIN=VMMP*5E\$0/60
5570 GOTO 6900
6530 REM
6590 REM **************************************
G600 REM SMALL RIJEBER TIRED SKIDDER
6610 REM **************************************
6620 REM
5630 REM ***** COMFUTE OUTHAUL VELOCITY IN FEET PER MINUTE ******
6540 REM
6650 OUTSLOFE=-1*SLOPE
5660) IF OUTSLOPE<15 THEN VELOUT=7.9*5230/50
6670 IF OUTSLOPE =15 THEN VELOUT =5,43*5\&80/60
6680 IF OUTSLOPE=20 THEN VELOUT }=5.34*5\$30/5
6690 IF OUTSLOPE =25 THEN VELOUTT =4.58*5*SO/50
6700 IF OUTSLIOPE=30 THEH VELOUT=4,04*5280/60
S710 REM
6720 REM ***** COMPUTE INHAUL VELOCITY IN MPH *****
6730 REM
6740 WEIGHT=WTPT*LOGSPT
5750 IF SLOFE<-5 THEN VMPH=5!
6750 IF SLOPE =-5 THEN VMFH=54.*3-5.56*LOG(WEIGHT)
5770 IF SLOPE= 0 THEN VMPH=33.03-3.355*LOG(WEIGHT)
6780 IF SLOPE= 5 THEN VMPH=\$3.35-2.334*LOG(WEIGHT)

```
```

6790 IF SLOPE=10 THEN VMPH=20,39-1,932*LOG(WEIGHT)
6800 REM
6810 REM ***** IF PREDICTED VEL > 6 MPH THEN SET IT = 6 MPH *****
6820 REM
6830 IF VMPH>6! THEN VMPH=6!
6840 REM
G850 REM ***** COMPUTE INHAUL VELOCITY IN FEET PER MINUTE *****
6860 REM
6870 VELIN=VMPH*5280/60
6:330 REM
6890 REM *****************************************************
6900 REM SMALL AIND LARGE RUGBER TIRED SKIDDERS
6910 REM ********************************************************
6920 REM
6930 REM ***** COMPUTE CYCLE TIME *****
6940 REM
6950 NWEIGHT= WTPT*LOGSPT*(1-SCDEF) : ODIST=AYD*(1 +WEAVE) : IDIST=ODIST-IMDPT
6960.OUTHAUL=ODIST/VELOUT: INHAUL=IDIST/VEIIN
6970 TRAVEL=OUTHAUL+INHAUL
6980 POSITION=.3765
6990 WINCH=,.55+,02432*TWDPT
7000 HOOK=,24+,5926*LOESPT+,007*TWDPT+,35*HKSITESPT
7010 IMTRAVEL =.07+.00316*IMDPT +.13*(HKSITESPT-1)
7020 LANDING=.675*+,3205*LOGSPT+,0O0082*NWEIGHT
7030 PSLASH=,155:
7040 CYCLETIME=TFAVEL+POSITION+WINCH+HOOK+IMTFAVEL+LANDING+PSLASH
7050 REM
7060 REM ***** COMPUTE DAIL Y PRODUCTION AND YARDING COST PER MEF *****
7070 REM
7080 INVYPD=(480*EFFRTS*LOGSFT*(1-SCDEF)*(AVPT/1000)*,9756)/CYCLETIME
7090 [F GBSYS $="LRTS" THEN FDCRTS=FDCLETS ELSE FDCRTS=FDCSRTS
7100 YCPM=FDCRTS/NVYPD
7110 RETURN
7120 REM
7130 REM
7140 REM ***** SUEROUTIHE TO COMPUTE YARDING COST PER MBF FOR *****
7150 REM ***** SMALL AND MEDIUM SIZE SKYLINE SYSTEMS *****
7160 REM
7170 REM
71B0 REM ***** ASSIGIN MAXIMIMM PAYLOAD IN LES TO THE SELECTED SYSTEM *****
7190 REM ***** AND GO TO THE LATERAL YARDING SUBROUTINE ***:*
7200 REM
7%10 IF WTPL`1000 THEN SKYSYS ="MED" ; GOTO 7230
7E20 IF SKYSYS ="SMALL" THEN MAXFL=MPLSSY:CL=3+10
7230 IF SKYSYS =="MED" THEN MAXPL=MFLMSY:CL=12+10
7240 IF MAXPL =Ö THEN MAXPL =5000
7250 GOSUE 9290
7*60 REM
7270 REM ***** GO TO THE SKYLINE SYSTEM SELECTED *****
7230 REM
7290 IF SKYSYS$="MED" THEN 7440
7300 REM
7310 REM ****************************************
7320 REM SMALL SKYLINE YARDING SYSTEM
7330 REM ****************************************
7340 REM

```
```

7350 REM ***** COMPUTE CYCLETIME, HOURLY PRODUCTION, AND COST/MBF *****
7360 REM
7370 CYCLETIME=3.587+.003672*AYD+.01657*ALYD+.2337*LOGSPT-.01009*ABS(SLOPE)
73:30 IF GVPA>7500 THEN EFHRSSY=.73 ELSE EFHRSSY=.63
7390 NVYPH=(EFHRSSY*60/CYCLETIME)*(LOGSPT*PCSZ*(1-SCDEF)/1000)
7400 YCPM=FHCSSY/FVYPH
7410 RETURN
7420 REM
7430 REM *****************************************
740 REM MEDIUM SKYLINE YARDING SYSTEM
7450 REM *****************************************
7460 REM
7470 CYCLETIME= 1.836+.003403*AYD+.0235*ALYD+,1903*LOGSPT
7480 [F GVPA>7500 THEN EFHRMSY=.74 @LSE EFHRMSY=.66
7490 NVYPH=(EFHRMSY*SO/CYCLETIME)*(LOGSPT*PCSZ*(1-SCDEF)/1000)
7500 YCPM=FHCMSY/NVYPH
7510 RETURN
7520 REM
7530 REM
7540 REM ***** SUEROUTINE TO SIMULATE LATERAL YARDING OF GROUND *****
7550 REM ***** EASED SYSTEMS SUCH AS TRACTORS AND SKIDDERS *****
7550 REM
7570 REM THIS SUBROUTINE SIMULATES THE LATERAL YARDING PORTION OF
7580 REM GROUND BASED SYSTEMS SUCH AS CRAWLER TRAGTORS AND SKIDDERS,
7590 REM
7600 REM ***** INITIALIEE KEY VARIABLES *****
7610 REM
7620 NTURNS=0 : HKSITES=0 : NLDGS=0:CS=10:WDMAX=0;TWD=0:IMD=0:N1=0
7630 WI=50:CN=5:N=100
7640 REM
7650 REM ***** COMPUTE THE LENGTH OF CUT ELOCK TO BE MODELED *****
7650 REM
7570 LE=(43560!*N)/(WI*TFA)
7630 REM
7690 REM ***** GENERATE LOCATION OF FELLED TREES *****
7700 REM
7710 FOR I=1 TON
77*0 X(I)=RND*LE
7730 Y(I)=RNI*WI
7740 NEXT I
7750 REM
7760 REM ***** SORT TREES EY THEIR X COORDINATE *****
7770 REM
7750 cOSUB 3450
7790 REM
7:SOO REM ***** IDENTIFY LOCATION DF MACHINE FOR THE FIRST TUEN *****
7310 REM
7820 D= (N)
7830 ML=D-7.5
7840 REM
7850 REM ***** IDENTIFY CAHDIDATE LOGS AND CREATE LOG ARRAY *****
7%51 REM
7570 N1=1)
7SOU FORI=1 TON
7390 IF X(I)=0 THEN 7960
7900 IF ABS(X(D)-ML)7.5 THEN 7960

```
```

7910 N1=N1+1
7920 KOUNT(N1)=I
7930 X1(N1)=X(I)
7940 Y1(N1)=Y(I)
7950 D1(N1)=SQR((X(I)-ML)^2+Y(I)*2)
7960 NEXT I
7970 GOSUB 9030
7980 REM
7990 REM ***** BEGIN BUJIDING TURN *****
8000 REM
8010 FOR I=1 TO N1
80%O FAYLOAD=FAYLOAD+WIPT
8030 IF FAYLOAD)MAXPL THEN }831
8040 CS=CS+1
8050 IF CS`CN THEN }831
8050 NLOGS=NLOGS+1
2070 WD=D1(I)
\$0:30 IF WD:WDMAX THEN WDMAX=WD
8090 X(KOUNT(D)}=
8100 IF MOGS=N THEN 2310
8110 NEXT I
3120 REM
8130 REM ***** TEST TO SEE IF MACHIIE SHOULD CONTTINUE BUILDING TURN *****
8 1 4 0 ~ R E M
8150 TF CS=CN THEN S310 'TF CHOKERS ARE FULL, END THE TURN
8150 NEXTPL=FAYLOAD+WTPT 'LOOK AHEAD TO SEE TF NEXT LOG WILL EXCEED
8170 TF NEXTPL>MAXPL THEN }8310\mathrm{ 'MAX PAYLOAD. IF IT DOES, END THE TURN
3180 IF NMOVES=\& THEN 3310 GONY THREE HOOKSITES FER TURN ARE ALLOWED
8 1 9 0 ~ R E M
3200 REM ***** MOVE MACHINE *****
82100 REM
8220 NMOVES =NMOVES +1:N1=0
3230 GOSUB 9190
8240 REM
8250 REM ***** COMPUTE INTERMEDIATE TURN STATS, CONTINUE BUILDING TURN *****
8250 REM
s270 STIMD=STIMD +MLOLD-ML : STTWD=STTWD+WDMAX
8230 HKSITES=HKSITES+1:IMD=IMD+MLOLD-ML :TWD=TWD+WDMAX : WDMAX=0
8290G0T0 7350
8300 REM
8310 REM ***** END THE TURN, COMPUTE STATS, SET VARIABLES=0, MOVE MACH *****
3320 REM
8330 NTURNS=NTURNS+1: HKSTTES=HKSITES+1:TWD=TWD+WDMAX
8340 IF NLOGS=N THEN 3390
3350 CS=0: FAYLOAD=0 : WDMAX=0:N1=0: NMOVES=0
8350 GOSUB 9190
3370 coT0 7850
8350 REM
8390 REM ***** COMPUTE SIMULATION STATISTICS *****
3400 REM
s410 LOGSFT=NLOGS/NTURHS:TWDPT=TWD/NTURNS
E420 IMDFT=IMD/NTURNS : HKSITESFT=HKSITES/NTURNS
3430 RETURN
8440 REM
8450 REM ***** "QUICKSORT"' SUBROUTINE *****
8450 REM

```
```

8470 FOR I=1 TO N
8480 A(I+1)=X(D)
8490 B(I+1)=Y(D)
3500 NEXT I
8510 M=9
8520 A(1)=0 :B(1)=0
8530 L=2
8540 R=N+1
8550 P=1
8560 I=L+1
8570 J=R+1
85:0 V=A(L): V1=B(L)
8590 GOTO 8630
8500 SWAP A(I),A(J)
8610 SWAF B(D,B(J)
85%0 I=I+1
8630 IF A(I)<V THEN }862
3540 J=J-1
8650 If A(J)>V THEN 8640
3bj0 IF I<J THEN 3600
3570 SWAF A(I),A(J)
8630ं SWAP B(I),B(J)
8690 IF (R-J)>(J-L) THEN 8770
8700 IF (J-L)<=M THEN :3840
8710 IF (R-J)<=M THEN }882
37%0 F=F+2
S730 STACK(P)=L
8740 STACK(P+1)=J-1
8750 L=J+1
3760 GOTO 3550
8770-IF (R-J)<=M THEN }884
8780 IF (J-L)<=M THEN 3750
8 7 9 0 ~ P = P + 2 ~
3\$00 STACK(P)=J+1
8310 STACK(P+1)=R
3\$20 R=J-1
830 GOTO :560
8;40 L=STACK(F)
8350 R=STACK(P+1)
8560 P=P-2
8370 IF P<0 THEN 8890
3380 GOTO \$550
OS90 FOR I=2 TON
8夕00 IF A(I+1)>=A(I) THEN 3970
S910 V =A(I+1):V1=B(I+1)
8920 J=I
8930 A(J+1)=A(J):B(J+1)=B(J)
8940 J=J-1
3950 IF A(J)>V THEN 8930
8960 A(J+1)=V:B(J+1)=V1
8970 NEXT I
89:0 FOR I= 1 TO N
8990 X(I)=A(I+1)
9000 Y(I)=B(I+1)
9010 NEXT I
9020 RETURN

```
```

9030 REM
9040゙ REM ***** SORT CANDIDATE LOGS BY DISTANCE FRDM MACHINE *****
9050 REM
9060 N2=N1-1
9070 FOR I=1 TO N2
9080 I1=I+1
9090 FOR J=I1 TO N1
9100 IF (D1(I)-D1(J)<<=0 THEN 9150
9110 SWAF X1(I),X1(J)
9120 SWAF Y1(I),Y1(J)
9130 SWAF D1(I),D1(J)
9140 SWAP KOUNT(I),KOUNT(J)
9150 NEXT J
9 1 6 0 ~ N E X T ~ I ~
9170 RETURN
9180 REM
9190 REM ***** SUBROUTINE TO MOVE MACHINE *****
9200 REM
9210 MLOLD=ML
9220 FOR K=N TO 1 STEF -1
9230 IF X(K)>O THEN 9250
9240 NEXT K
9250 D= Y(K):ML=D-7.5 : IF ML<=0 THEN ML=.001
9\&60 RETURN
9 . 2 7 0 ~ R E M
S230 REM
9250 REM ***** SUBROUTINE TO SIMIJLATE LATERAL YARDING OF SKYLINE *****
9300 REM ***** SYSTEMS INCLUDING SMALL AND MEDIUM YARDERS *****

```

```

9320 REM
9330 REM ***** INITIALILE KEY VARIABLES *****
9340 REM
9350 NTURNS=0:MLOGS=0:CS=0:TLYD=0:N1=0
9360 WI=125:CN=5:N=100
9 3 7 0 ~ R E M
9380 REM ***** COMPUTE THE LENGTH OF THE CUT BLOCK *****
9390 REM
9400 LE=(43560!*N)/(WI*MLOGSPA)
9410 REM
9420 REM ***** GEMERATE RANDOM LOCATION OF LOGS *****
9430 REM
940 FOR I=1 TO N
9450 X(D)=RND*LE
9460 Y(I)=RND*WI
9470 NEXT I
9480 REM
9490 REM ***** SORT LOGS BY THEIR X COORDINATE *****
9501) REM
9510 GOSUE 3450
9520 REM
9530 REM ***** BEGIN LATERAL YARDING *****
9540 REM
9550 REM ***** LOLETE CARRIAGE AND EUTTHOOR, IDENTIFY LOGS WITHIN REAICH *****
9560 REM
9570 FOR I=1 TON
9580 IF X(I)=0 THEN 9B00

```
```

9590 CALO=X(I)+CL: XBH=CALO : YBH=Y(I):GOTO 9610
9500 NEXT I
9610 FOR I=1 TO N
9620 IF X(I)=0 THEN 9670
9630 DIST=SQR((X(I)-XBH)^2+(Y(I)-YBH)^2)
9640 IF DIST>\&*CL THEN 9570
9650 N1=N1+1: KOUNT(N1)=I
9560 X1(N1)=X(L) ; Y1(N1)=Y(I): D1(N1)=DIST
9670 NEXT I
9680 REM
9690 REM ***** SORT LOGS WITHIN REACH BY DISTANCE FROM BUTTHOOK *****
9700 REM
9710 GOSUB 9040
9720 REM
9730 REM ***** BEGIN HOOKING LOGS *****
9740 REM
9750 FOR I=1 TO N1
9760 RLOGWT=-WTPL*LOG(1-RND)
9770 IF RLOGWT<10*LBEF THEN 9750
9780 IF RLOGWT>5*WTPL THEN 9750
9790 FAYLOAD=PAYLOAD+RLOGWT
9800 IF PAYLOAD\MAXPL THEN 9880
9810 CS=CS+1
9820 IF ES`CN THEN 9800 9:330 NLOGS=NLOGS+1 9840 X(KOUNT(1))=0 9850 IF NLOCS=N THEN 988O 9850 NEXT I 9870 REM 9880 REM ***** EIND THE TURN, COMFUTE STATS, SET VARLABLES = 0 ***** 9890 REM 9900 NTURNS=NTURNS+1 9910 IF NLGGS=N THEN 9950 9920 CS=0 : FAYLOAD=0:N1=0 9930 GOTO 5550 9940 REM 9950 REM ***** COMPUTE SIMULATION STATISTICS ***** 9960 REM 9970 LOGSPT=NLOGS/NTURNS 99:30 RETURN 9990 REM 10000 REM 10010 REM ***** SUJBROUTINE TO COMPUTE LOG LOADING COST FER MBF ***** 10020 REM 10030' REM THIS SUBROUTINE COMFUTES AVEFAGE LOG LOADING COST PER MBF BASED 10040 REM ON THE EQUATIONS USED BY THE REGION FOUR AFFRAISAL HANDBONK FOR 10050 REM THE SOUTHWESTERH APFRAISAL ZOHE, 10060 REM 10070 REM ***** COMPUTE LOADING ADJUSTMENT FACTOR *:**** 10080 REM 10090 DEFAVG=SWZAVG7 10100 ZONAVG=SWZAVG3 10110 VOLAVG=4,3545+9,9256/2OHAVG 10120 VOLFG=4,3545+S.9855/LPM 10130 IF ZONAVG)26! THEN TIMAVG=12.262+1.681*2ONAVG 10140 IF ZONAVG`6! AND ZONAVG<26! THENTIMAVG=37.252+1.631*ZONAVG-ZONAVG

```
```

10150 IF ZONAVG<6! THEN TIMAVG=32.262+1.681*ZONAVG
10160 [F LPM>26! THEN TIMPG=12,262+1,681*LPM
10170 IF LPM>6! AND LPM<26! THEN TIMPG=37.E6% +1.681*LPM-LPM
10180 IF LPM<6! THEN TIMPP=32.262+1.681*LPM
10190 ZONTIM=TIMAVG/VOLAVG
10%00 PGTIM=TIMPG/VOLPG
10210 DIF=PGTIM/ZONTIM
10220 ALLOWL=DIF-1!
10230 REM
10240 REM ***** COMPUTE DEFECT ADJUSTMENT FACTOR *****
10250 REM
10260 ZDEF=1!/(!!-DEFAVG)
10270 PGDEF=1!/(1!-SCDEF)
10280 DEFECT=(PGDEF/ZDEF)-1!
10890 REM
10300 REM ***** COMPUTE TOTAL LOADING ADJUSTMENT FACTOR *****
10310 REM
10320 ADJLD=ALLOWL+DEFECT+1!
10330 REM
10340 REM ***** COMFUTE LOADING COST PER MBF *****
10350 REM
10360 LCPM=SWZALC*ADתD
10370 RETURN
10380 REM
10390 REM
10400 REM ***** SIJBROUTINE TO COMPUTE HAIJL COST PER MEF *****
10410 REM
104%0 REM
10430 REM ***** COMPIJTE AVE NET VOL/TRUCKLOAD, NUMBER OF LOADS, *****
10440 REM ***** AND TOTAL STANDBY TIME FOR EACH SPECIES *****
10450 REM
10450 REM **************************
10470 REM PONDEROSA PINE
10480 REM **************************
10490 REM
10500 IF TPAPP=0 THEN 10550
10510GVFLFP=(NLHWY/LEBFPP)/1000 : NVPLPP=GVPLPP*(1-SCDEF)
10520 NLOADSPP=NVPP/NVPLPP
10530 SETPP=NLOADSPP*(44!+1.159*LPMPP)
10540 REM
10550 REM ***********************
10560 REM DOUGLAS-FIF
10570 REM ***********************
10580 REM
10500 IF TPADF=0 THEN 10650
10600 GVPLDF=(NLHWY/LEEFDF)/1000):NVFLDF=GVPLDF*(1-SCDEF)
10610 NLIADSDF=NVDF/NVPLDF
10680 SBTDF=NLOADSDF*(47!+1.086*LPMDF)
10530 REM
10640 REM ***************************
10650 REM LODGEFOLE FINE
10660 REM **************************
10570 REM
10580 IF TPALP=0 THEN 10740
10590 GVPLLP=(NLHWY/LBEFLP)/1000; NVFLLF=GVPLLP*(1-SCDEF)
10700 NLOADSLP=NVLP/NVPLLP

```
```

10710 SETLP=NLOADSLP*(56,46+.9893*LPMLP)
10720 REM
10730 REM ***********************
10740 REM GRAND FIR
10750 REM ***********************
10760 REM
10770 IF TPAGF=0 THEN 10830
10780GVPLGF=(NLHWY/LBBFGF)/1000:NVPLGF=GVPLGF*(1-SCDEF)
10790 NLOADSGF=NVGF/NVPLGF
10800 SBTGF=NLOADSGF*(45,0\&+1,099*LPMGF)
10810 REM
10820 REM ***************************
10530' REM SUBALPINE FIR
10840 REM *\#\#\#\#\#**********************
10350 REM
10360 IF TPAAF=0 THEN }1092
10870 GVPLAF=(NLHWY/LBEFAF)/1000 : NVPLAF=GVPLAF*(1-SCDEF)
10880 NLOADSAF=NVAF/NVPLAF
10390 SBTAF=NLIDADSAF*(45.02+1.099*LPMAF)
10900 REM
10910 REM ******************************
10920 REM ENGELMANN SPRUCE
10930 REM ******************************
10940 REM
10950 IF TF'AES=O THEN 11010
10950 GVPLES=(NLHWY/LBBFES)/1000): NVPLES=GVPLES*(1-SCDEF)
10970 NLOADSES=NVES/NVPLES
10930 SBTES=HLOADSES*(4%,37+1.324*LPMES)
10990 REM
11000 REM ***************************
11010 REM WESTERN LARCH
11020 REM **************************
11030 REM
11040 IF TPAWL=0 THEN 11090
11050 GVPLWL=(NLHWY/LBBFWL)/1000:NVPLWL=i_VPLWL*(1-SCDEF)
11060 NLOADSWL=NVWL/NVPLWL
11070 SBTWL=NLOADSWL*(47!+1.086*LPMWL)
11080 REM
11090 REM ***** COMPUTE AVE NET VOL IN MBF AND STANDBY TIME PER LIJAD ******
11100 REM
11110 NLOADS=NLOADSPP+NLOADSDF+NLOADSLP+NLOADSGF+NLOADSAF+NLOADSES+NLOADSWL
11180 HVPLOAD=FVOL/NLOADS
11130 SBT=SBTPP+SBTDF+SETLPP+SBTGF+SBTAF+SBTES+SETWL
11140 SBTPLDAD=SBT/NLOADS
11150 REM
11160 REM ***** COMPUTE TOTAL ROUND TRIF TRAVEL TIME INCLUDING DELAYS *****
11170 REM
11180 RTTTP=MIP*RTMFMIF : RTTTUP=MIUP*RTMPMIUP
11190 TRTTT=RTTIP+RTTTUP+SETPLOAD
11200 REM
11210 REM ***** COMPUTE NET VOL IN MBF HAULED PER DAY *****
11220 REM
11230 NTLPD=720/TRTTT
11\dot{40}}\mathrm{ NVHPD=NTLPD*NVPLOAD
11250 REM
11260 REM ***** COMPUTE TOTAL HAUL COST PER DAY *****

```
```

11270 REM
11280 FCPDH=FDCLT+FDCLTD
11290 VCPDH=(2*MIP*VICPMIP+2*MIUP*VCPMIUP)*NTLPD
11300 TCPDH=FCFDH+VCPDH
11310 REM
11320 REM ***** COMPUTE HAUL COST PER MBF *****
11330 REM
11340 HCPM=TCPDH/NVHPD
11350 REM
11360 REM ***** COMPUTE THE DISTANCE TO THE MILL (ONE-WAY) *****
11370 REM
11380 DISTMILL=MIP+MIUP
11390 RETURN
11400 REM
11410 REM
11420 REM ***** SUJROUUTINE TO CREATE GRAPHICS - WINDOWS AROIJND PAGES *****
11430 REM
11440 REM
11450 BLX=TLX :BRX=TRX : TRY=TLY : BRY=BLY
11450 LOCATE TLY,TLX: PRINT CHR$(201): LDCATE TRY,TRX : PRINT CHR*(187)
11470 LOCATE BLY,BLX: PRINT CHRs(200) :LOCATE BRY,BRX :PRINT CHRs(188)
11480 FOR I=TLX+1 TO TRX-1
11490 LOCATE TLY,I PRRINT CHRs(205)
11500 LOCATE BLY,I : PRINT CHR$(205)
11510 NEXT I
11520 FOR J=TLY+1 TO BLY-1
11530 LOCATE J,TLX: PRINT CHR$(186)
11540 LOCATE J,TRX: PRINT CHR$(186)
11550 NEXT J
11560 RETURN
11570 REM
11580 REM
11590 REM ***** SIJEROIJTINE TO PRINT A HARD COPY OF THE SUMMMARY *****
11600 REM
11610 REM
11620 LPRINT
11630 LPRINT
11640 LPRINT
11650 LPRINT TAB(16)"

```
\(\qquad\)
```

11650 LPRINT TAB(16) "TIMBER HARVEST PRODUCTION, COST, AND REVENIJE SUMMARY"
11670 LPRINT TAB(16)"
115:30 LPRINT
11690 LPRINT
11700 LPRINT USING F1;AICRES
11710 LPRINT USING F2$;NVOL
11720 LPRINT USING F3%;NVOLPA
11730 LPRINT USING F4*;TFA
11740 LPRINT USING F5*;QMD
11750 LPRINT USING F6q;AVETH
11750 IF YARDSYS ="GBS" THEN LPRINT USING F7%;AVPT : GOTO 117:30
11770 LPRINT USING F7%;FCSZ
11780 LPRINT USING F8$;AVEML
11790 LPRINT
11300 IF YARDSYSs=" GBS" THEN LPRINT USING G1%;GESYS%:GOTO 11820
11810 LPRINT USING G1%;SKYSYS\&+YARDSYS%
11320 LPRINT USING G2\$;AYD

```
11830 If YARDSYS \(\$=" G B S "\) THEN LPRINT USING G3\$;SLOPE : GOTO 11850
11840 LPRINT USING G3 \(\$\);SLOPE
11850 LPRINT USING G4\$;YLPPD 11860 LPRINT USING G5 \(\$\);DISTMLL
11870 LPRINT
11880 LPRINT
11890 LPRINT
11900 LPRINT USING H1\$;FBCPM 11910 LPRINT USING H \(2 \$\);YLCPM 11920 LPRINT USING H3s;HCPM 11930 LPRINT USING 01\$;GLOHCPM 11940 LPRINT USING H4*;LOGCPM 11950 LPRINT USING H5\$;RCPM 11960 LPRINT USING H6 \(\$\);ENVICPM 11970 LPRINT USING H7\$;THCPM 11980 LPRINT USING H8\$;PRRI 11990 LPRINT USING II \(\$\);PDVALUE 12000 LPRINT USING I2 \(\$\);GSTUMPAGE 12010 LPRINT 12020 LPRINT USING H9\$;ADMINCFA 12030 LPRINT USING I3 \(\$\);NRETURN 12040 LPRINT USING I4\$;NPVPA 12050 RETURN

APPENDIX J
User's Guide to LOGCOST

\section*{APPENDIX J}

\section*{USER'S GUIDE TO LOGCOST}

Introduction
LOGCOST is an interactive computer program that predicts stump to mill logging costs, stumpage and net present value of a harvest based on stand data, pond value, and logging parameters, entered by the user. The program is intended for use by foresters to evaluate the economics of different stand prescriptions. It is also useful in deciding whether commercial thinning an existing stand is profitable. Although LOGCOST was developed for use in evenaged stands in southwestern Idaho, minor changes could be made which would extend the applicability to other parts of the USDA, Forest Service, Intermountain Region.

Approximately two minutes is required to enter data, and program execution takes approximately 15 seconds, using an \(I B M\) Personal Computer. LOGCOST is compiled in BASIC and will run on microcomputers that have at least 256 K RAM and are \(I B M\) compatible. Documentation of the model is included in the appendices of the MF Paper LOGCOST, A Harvest Cost Model for Southwestern Idaho, by Robert S. Giles, 1986 , College of Forestry, Oregon State University.

\section*{Description of Example Problem}

Suppose you wanted to decide if thinning a 14-inch diameter ponderosa pine stand on gentle terrain will yield positive stumpage. In addition, you want to identify the least cost skidding machine that would meet silvicultural and environmental objectives. Assume the cut tree characteristics are as follows.
(1) Trees per acre, 70
(2) Gross volume per acre, 7840 bf
(3) Quadratic mean diameter, 14 inches
(4) Average height, 69 feet
(5) Pond value is \(125 / \mathrm{mbf}\)

First, a small 70 horsepower rubber tired skidder will be used. Assume the following logging parameters apply.
(1) Average slope, -15 percent (downhill)
(2) Average yarding distance, 500 feet
(3) All haul roads are in place; miles of road construction and reconstruction \(=\) zero.
(4) Distance to the mill is 30 miles, 20 miles paved, 10 miles unpaved.
(5) Road maintenance cost is \(\$ .50\) per mbf/mile for the 10 mile unpaved road system.

Environmental, sale preparation, and administrative costs per acre are listed below.
(1) Sale area improvement (SAI), \$10 per acre
(2) Erosion control (EC), \(\$ 5\) per acre
(3) Slash disposal (BD), \$10 per acre
(4) Sale preparation and administration, \(\$ 100\) per acre

After this yarding system is evaluated, the program will be run again with the same data, except a small 78 horsepower crawler tractor will be used.

\section*{Running the Program}

Example Problem \#1
Load your DOS (Disk Operating System) disk in the \(A\) drive and the LOGCOST disk in the \(B\) drive. Turn the computer on; enter the date and time. Wait for the prompt A and then type B:LOGCOST to load the program. The program credits will appear on the screen, and at the bottom of the screen a notice reminds you to "MAKE SURE THE CAPS LOCK KEY IS ON"--the program does not recognize lower case letters used in response to Input Statements. Depress the return key (enter key) to proceed. The next screen lists the three types of data required to run LOGCOST. Depress the return key to continue.

Now you are ready to enter data. This screen will prompt for all of the input associated with stand data and cut tree characteristics.

\section*{(1) STAND DATA AND CUT TREE CEARACTERISTICS}
```

GNTER THE ANALYSIS YEAR, HARVEST YEAR - (----, ----)
For Example, 1986,1995
For Problem \#l, assume the harvest will take place this gear.
Enter 1986,1986.
ENTER THE STAND ACRES
Assume the stand is 40 acres; Enter 40.
ENTER THE STAND AVERAGE SCALING DEPECT (in percent)
Possible defect values range from 0 to 99 percent
Enter the Southwestern Appraisal Zone Average, 5 for this example.
ENTER SPECIES CODE (PP,DF,LP,GF,AF,ES,WL) - (TYPE END TO QUIT)
Enter the two letter alpha code for a tree species harvested.
Enter PP for this example.
ENTER THE FOLLOWING DATA POR TEE TREE SPECIES HARVESTED:
ERTER COT TREES/AC, GROSS VOL/AC (BF) - (----, ---)
Note: This data only applies to the species selected above, PP.
Cut trees and volume per acre may be estimated from cruise records,
stand examinations, or obtained from a growth model such as
PROGNOSIS. Commas can not be used within a number, but must be
used to separate the two numbers, trees per acre and gross volume
per acre. Enter 70,7840.
ENTER QUAD MEAN DBH, AVE TOTAL HEIGET - (----,----)
Quadratic mean diameter of the cut trees may be entered to the
nearest tenth of an inch, for example, 14.0, and total height may
be entered to the nearest foot. Enter 14,69.
ENTER TEE POND VALUE (LOG PEICE, FOB, MILL)
Pond value is the average price the mill pays for delivered logs
(free on board at the mill) for a particular tree species. These
values are published quarterly for the, Southwest Zone in the
Primary Wood Processors' Log Price Report.l Enter 125.

```

1 Idaho Forest Products Marketing Bulletin; Department of Forest Products, College of Forestry Wildife and Range Sciences and Cooperative Extension Service, University of Idaho, Moscow, Idaho, 83843
```

ENTER SPECIES CODE (PP,DF,LP,GF,AF,ES,WL) - (TYPE END TO QUIT)
Many stands are composed of several tree species in southwestern
Idaho. If you want to harvest more than one species, enter the
alpha code of the next tree species. The program will then prompt
you for the cut tree data associated with that species. You may
enter tree data, in this manner, for up to seven species. For this
example, only ponderosa pine will be harvested; enter END to move
to the next screen.
Now enter the logging and terrain data. The following prompts will
appear on this screen.

```

\section*{(2) LOGGING SYSTEM AND TERRAIN DATA}
```

ERTER THE YARDING TYPE
GBS = GRODHD BASED SYSTEM, SRY = SKYLINE SYSTEM
These are the machines available if you choose GBS:
small crawler tractor, 78 horsepower
large crawler tractor, 140 horsepower
small rubber-tired skidder, }70\mathrm{ horsepower
large rubber-tired skidder, 120 horsepower
If you choose, SKY, then two yarders are available:
small skyline yarder, 65 horsepower, 23 foot tower
medium skyline yarder, 284 horsepower, 48 foot tower
(small skyline can yard up to 1,000 feet spans
medium yarder up to 2,000 feet).
Enter GBS
ENTER A SKIDDING MACHIEE
STRAC = Small Grapler Tractor, LTRAC = Large Tractor
SRTS = Small Rubber Tired Skidder, LRTS = Large Skidder
Enter SRTS
ENTER THE AVE SLOPE IN THE DIRECTION OF LOADED SKIDDER
(Choose - 30,-25,-20,-15,-10,-5,0,+5,+10)
Note: Positive numbers, +5 or +10 represent adverse skidding,
negative numbers are for favorable (downhill) skidding. Enter the
slope to the nearest five percent from the choices listed above.
Enter-15.
ENTER THE AVE SLOPE YARDING DISTANCE IN FEET

```
    Enter 500

ERTER THE ONE-WAY MILES OF PAVED HAUL ROAD
Enter 20
ENTER THE ONE-WAY MILES OF DHPAVED HAUL ROAD
Enter 10
EATER THE MILES OF ROAD CONSTRDCTION OR RECONSTRUCTION CHARGED TO THIS
STARD (Include both Specified and Temporary roads)


ENTER THE MILES OF ROAD TO BE MAINTAINED
```

These are only roads which the timber sale maintains--for example,
county roads and stare highways are not included.
Enter 10.
GETER THE AVE vARIABLE COST FOR ROAD MAINTENANCE (\$/MBP-MILE)

```

Road maintenance costs charged to a timber sale are a function of the miles of road to be maintained, and the number of loads (volume of timber) hauled. Maintenance records often report this cost as dollars per mbf-mile. The user should enter the total miles of haul road maintenance required for timber to be hauled from this stand; and the cost per mbf-mile.

If maintenance costs average \(\$ 5 / m b f\) in your area, you can compute the cost per mbf-mile by dividing the average cost per mbf by the total miles of road maintenance required by the stand. In problem \#l, this would be ( \(\$ 5 / \mathrm{mbf}\) ) / ( 10 miles) \(=\$ .50 / \mathrm{mbf-mile}\).
Enter. 50
The next screen prompts you for the environmental costs and sale
preparation/administration costs. Although these costs are preparation/administration costs. Although these costs are
```

optional, most stands will require some cost per acre for one or
more of these activities. Environmental costs, sale area
improvement (SAI), erosion control (EC), and slash disposal (BD)
are charged against the sale as a harvest cost; they do affect the
stumpage price. Sale preparation and administration do not affect
stumpage price but are included in the calculation of net revenue
per acre and net present value per acre.

```

\section*{(3) ENVIRONHENTAL AND ADHINISTRATIVE COST DATA}

\section*{ERTER TER SALE AREA IMPROTEMENT COST/AC}

There may be only a small cost associated with commercial thinning-- maybe just the cost of inspecting the stand a few years later to see if the trees are responding to the thinning. Enter 10 .

ENTER THB EROSION CONTROL COST/AC

Enter 5.
ENTER THE SLASH DISPOSAL COST/AC
Assume lopping and scattering is the only fuels treatment needed Enter 10.

ENTER TEE SALE PREP AND ADHIN COST/AC
Enter 200.
The next screen will display the following message:
PROGRAM IS COMPDTING LOGGING COSTS
PLEASE WAIT

After approximately 15 seconds, the first output screen will appear. See upper half of Figure 23. This screen summarizes harvest and production data. If ground based systems are selected, the gross log volume is the same as the average gross volume per tree, because tree length logs are skidded. The average stem length (merchantable tree length) is reported so foresters can determine if residual stand damage would be a problem. When skyline systems are selected, the average gross log volume is the volume of the average bucked log (often referred to as average piece size). Yarding and loading production is reported to the nearest mbf and assumes an eight hour day; production is net mbf/day.

Depress the return key to continue.

This screen reports the stump to mill logging costs, pond value, stumpage and net present value. See bottom half of Figure 23. It is intended to serve as a simplified appraisal to aid foresters in
```

    evaluating not only the net present value per acre, but also the
    probability of selling the timber sale. Negative stumpage implifes
    that the harvest costs exceed the pond value. If stumpage is -
    50/mbf, it is highly unlikely the sale will be purchased.
    The road maintenance cost per mbf is included in the SPBC AND TBMP
    ROAD COST row. The discount rate used to determine the net present
    value is 4%.
    For Problem #l, the stumpage is positive, $8.46/mbf, and the net
    present value per acre is negative, s-37/acre. To get a hard copy
    of this output, type H and depress the return key. Figure 23
    represents the one page summary of the Harvest output.
    After the printer is finished, the next screen will ask:
dO YOD HANT TO TRY AMOTEER LOGGING SYSTEM (YES, NO)?
Answer YES and depress the return key. This response allows you to
use the same stand and cut tree data with a new logging system.
Next, we will try Problem \#2 to determine if the small crawler
tractor is a lower cost alternative. The program will prompt:
(2) LOGGING SISTEM AND TERRAIN DATA
ENTER tBE gARDING tyPE
GBS = GRODND BASED SYSTEM, SKY = SkYLINE SYSTEM
Enter GBS
enter A SRIDDIRg macgine
STraC = SMall Crawler tractor, ltrac = large tractor
SrtS = SMALL robber tired Skidder, lrtS = large Skidder
Enter STRAC
gATER TEE AVE SLOPE IN TER DIRECTION OF LOADED CRANLER TRACTOR
(CHOOSE -45,-40,-35,-30,-25,-20,-15,-10,-5,0,+5,+10)
Enter -15
gnter teg ave Slopg yarding distance in fert
Enter 500
The rest of the data would be entered exactly as in Problem \#l,
above.
The output (Figure 24) shows that the small crawler tractor
produces about 4 mbf/day less than the rubber-tired skidder and

```
```

costs (approximately \$ll/mbf more. For these stand and terrain
conditions, the rubber-tired skidder is the least cost alternative:
To begin the analysis of a new stand, answer the lst prompt NO and
the second prompt START:

```
```

DO YOD WANT TO TRY ANOTHER LOGGING SYSTEM (YES, NO)
DO YOD WANT TO TRY ANOTEER LOGGING SYSTBM (START, QUIT) START

```
After START is entered, the program begins with the credit screen,
and the user may proceed as in Problem fl. If gou wanted to exit
LOGCOST, you would have typed QUIT, and depressed the return key.```


[^0]:    ${ }^{1}$ pond values were estimated from average values reported quarterly for southwestern Idaho. Ponderosa pine immature trees have a pond vale of $\$ 125 / m b f$, while mature trees have a pond value of $\$ 221 / m b f$. Generally, immature trees are smaller than 200 bf and mature trees are larger than 300 bf (18-20 inches dbh). We assumed the pond value increases linearly with tree size.

