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Abstract 16 

     Fungal mitospores may function as dispersal units and/ or spermatia, and thus play a role in 17 

distribution and/or mating of species that produce them. Mitospore production in 18 

ectomycorrhizal (EcM) Pezizales is rarely reported, but here we document mitospore production 19 

by a high diversity of EcM Pezizales on three continents, in both hemispheres. We sequenced the 20 

internal transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA from 292 spore 21 
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mats (visible mitospore clumps) collected in Argentina, Chile, China, Mexico, South America, 22 

and the USA between 2009-2012. We collated spore mat ITS sequences with 105 fruit body and 23 

47 EcM root sequences to generate operational taxonomic units (OTUs). Phylogenetic inferences 24 

were made through analyses of both molecular datasets. 25 

     Forty-eight OTUs from spore mats represented ≥ six independent EcM Pezizales lineages and 26 

included truffles and cup fungi. Seven OTUs within three putative lineages have no known 27 

meiospore stage. Mitospores failed to germinate on sterile media, or form ectomycorrhizas on 28 

Quercus, Pinus, and Populus seedlings, consistent with a hypothesized role of spermatia. The 29 

broad geographic range, high frequency, and phylogenetic diversity of spore mats produced by 30 

EcM Pezizales suggests that a cryptic mitospore stage may be an important biological feature of 31 

this group in terms of mating, reproduction, and/or dispersal.  32 

Introduction 33 

     Ectomycorrhizal (EcM) fungi are important plant symbionts that improve plant nutrient status 34 

(Baxter & Dighton, 2001), mediate drought effects (Warren et al., 2008), and enhance seedling 35 

establishment (Ashkannejhad & Horton, 2006; Nara, 2006). EcM fungi are diverse, and are 36 

comprised of an estimated 20,000–25,000 species from 66 lineages. Within the Pezizales 37 

(Ascomycota), the order that includes morels and truffles, EcM symbioses have evolved 38 

independently at least 16 times (Tedersoo et al., 2010). Although Basidiomycota often dominate 39 

EcM root communities, Pezizales are diverse and are dominant EcM symbionts in many 40 

ecosystems, particularly habitats subjected to drought (Gehring et al., 1998; Smith et al., 2007b) 41 

or frequent fires (Warcup, 1990; Fujimura et al., 2005). Some EcM Pezizales proliferate in 42 

response to disturbance and at forest edges (Dickie & Reich, 2005; Tedersoo et al., 2006b). 43 
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Many pezizalean EcM species show some degree of affinity for mineral soils or soils with high 44 

pH (Petersen, 1985; Tedersoo et al., 2006a; García -Montero et al., 2008; Iotti et al., 2010). 45 

Other pezizalean EcM taxa such as Tuber spp. are also frequently detected taxa in molecular 46 

studies of undisturbed forests (Walker et al., 2005; Morris et al., 2009) and managed tree 47 

plantations (Bonito et al., 2011).  48 

     Reproduction and dispersal in fungi is carried out through the production of mitospores 49 

(spores produced by mitosis) and/or meiospores. Previous research suggests that EcM fungi 50 

reproduce and disperse exclusively or primarily through meiospores produced inside or on the 51 

surface of fruit bodies (Hutchison, 1989). Types of fruit bodies produced by EcM fungi include 52 

above ground mushrooms, cup fungi, jelly fungi, and resupinate crusts from which meiospores 53 

are forcibly discharged to be dispersed in the wind; or below ground fruiting structures that in 54 

most cases are truffle-like (closed), lack forcible spore discharge, and disperse their meiospores 55 

passively or through animal mediation (e.g. earthballs, truffles) (Tedersoo et al., 2010). Many 56 

saprotrophic and pathogenic relatives of EcM fungi produce mitospores (Nobles, 1958; Walther 57 

et al., 2005), but it has been suggested that the EcM symbiosis may in some way be incompatible 58 

with mitospore production (Hutchison, 1989; Walther et al., 2005). However, most research on 59 

sporogenesis and spore dispersal in EcM fungi has focused on species of Basidiomycota 60 

(Hutchison, 1989); Ascomycota have received considerably less attention.   61 

      Even though Ascomycota are noted for their ability to form mitospores, many of these forms 62 

have not yet been linked to a meiosporic species (Shenoy et al., 2007). This disconnect may be 63 

due to spatial and temporal differences in production of these two spore types and also to the 64 
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difficulty of stimulating spore production in pure culture. In addition, some fungi may have lost 65 

the ability to form meiospores (Taylor et al., 1999). 66 

     The few reports of mitospore formation by EcM Pezizales in culture include. Tarzetta catinus 67 

(Dodge, 1937, as Peziza pustulata), Tricharina hiemalis, T. ochroleuca, Wilcoxina mikolae 68 

(Yang & Korf, 1985a) and Muciturbo reticulatus (Warcup & Talbot, 1989). Only a few EcM 69 

fungi have been unequivocally linked to mitosporic stages in nature. The first was Muciturbo, 70 

which forms a spore mat (clump of mitospore-bearing mycelium visible to the unaided eye) on 71 

the soil surface prior to fruit body formation (Warcup & Talbot, 1989). ITS sequences were used 72 

to link spore mats on soil to an unknown species in the /pachyphloeus-amylascus lineage 73 

(Norman & Egger, 1999), and two species of Tuber (Urban et al., 2004). ITS sequences of 74 

asexual spore mats also matched Fagus and Quercus EcM root tip sequences (Urban et al., 2004; 75 

Tedersoo et al., 2006b; Palmer et al., 2008).  76 

     In this paper, lineage nomenclature is preceded by a forward slash, and follows Moncalvo et 77 

al. (2002), while Pezizales lineage circumscription follows Tedersoo et al. (2010). 78 

      During preliminary surveys of Pezizales spore mats in 2009, we found that mitospores of 79 

Pachyphloeus and Tuber are widespread and conspicuous in hardwood and mixed forests of the 80 

Eastern USA. These findings led us to ask the following: 1) What proportion of EcM Pezizales 81 

lineages produce spore mats? 2) What habitats are EcM Pezizales spore mats produced in? 3) 82 

What is the distribution of EcM Pezizales that produce spore mats? 4) Can EcM Pezizales 83 

mitospores form ectomycorrhizas on forest trees? We discovered that the majority of known 84 

lineages of EcM Pezizales commonly produce spore mats; spore mats are produced mainly on 85 

exposed soil or woodland debris; and they are distributed on four continents, in both 86 
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hemispheres. We encountered novel examples in the /fischerula, /hydnobolites, /hydnotrya, 87 

/pachyphloeus-amylascus, /terfezia-peziza depressa and /tuber-helvella lineages. Our results call 88 

for a reassessment of the life stages of EcM Pezizales. 89 

Materials and Methods 90 

Fungal material – During spring, summer, and fall of 2009-2011 spore mats were encountered 91 

in a variety of habitats with EcM trees, such as forested hiking trails, washes, creek edges, parks, 92 

and urban wooded areas. We opportunistically collected these spore mats across the Eastern 93 

USA during 2009-2011, in northeast Mexico and southeast China in August and September of 94 

2010, and in Chile and Argentina in March and April of 2012. Surveyed forest types included 95 

broadleaf deciduous, oak-savanna, mixed broadleaf-Pinaceae, and pure Pinaceae forests. Spore 96 

mats were photographed in the field, placed in clean plastic containers or wrapped in aluminum 97 

foil. Collecting implements were cleaned between uses to prevent cross-contamination. For all 98 

collections we recorded the date, location, the EcM canopy plants, and basic habitat information. 99 

Specimens were dried in a forced air dryer or in a closed plastic container with silica gel drying 100 

beads (Henkel et al., 2006). Each collection was glued to archival paper cards and stored in 101 

herbarium boxes for morphological examination, molecular study, and voucher accession. 102 

Specimens are deposited in the Duke University Herbarium (DUKE), the Farlow Herbarium at 103 

Harvard University (FH), the Herbarium Jose Castillo Tovar (ITCV) Mexico, Kunming Institute 104 

of Botany (KUN), and the University of Minnesota Herbarium (MIN).  105 

     In order to assess whether meio- and mitospores are produced concurrently, we also collected 106 

truffles and other Pezizales fruit bodies in the vicinity of spore mats. These were examined 107 

microscopically for identification and ca. 3 mm
3
 of clean tissue was sampled for DNA. EcM root 108 
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tips were collected as described in Guevara et al. (2012 in press) in Mexico in Aug. 2008 and 109 

Eastern US in Jul. 2010. To obtain broader diversity and better phylogenetic placement of our 110 

samples, fruit body collections of EcM Pezizales were incorporated into this study. These 111 

included personal herbaria materials, and loans from the following institutions: the Farlow 112 

Herbarium at Harvard University (FH), Oregon State University (OSC), Cornell University 113 

Herbarium (CUP), University of Bergen (BG), and Real Jardín Botánico-CSIC (MA). Voucher 114 

information is listed in Table S1.  115 

Molecular protocols - DNA was extracted from spore mats, fruit bodies, and EcM root tips 116 

using a modified CTAB protocol (Gardes & Bruns, 1993) or an Extract-N-Amp Plant PCR kit 117 

(Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer’s instructions, but with 20% 118 

of the recommended volume. For the remaining spore mats, we added small pieces of tissue to 119 

PCR reactions for direct amplification (Bonito, 2009).  120 

     PCR products were run on 1.5% agarose gels containing ethidium bromide or stained with 121 

SYBR Green I (Molecular Probes, Eugene, OR, USA). Amplicons were digested with the EXO 122 

and AP enzymes (Glenn & Schable, 2005), or cleaned by standard ethanol precipitation. 123 

Amplicons were sequenced in both directions with an ABI Big Dye Terminator Sequencing Kit 124 

(v3.1) and run on an ABI 3730xl capillary sequencer (Applied Biosystems, Foster City, CA, 125 

USA) at the Duke University sequencing facility and the University of Minnesota Biomedical 126 

Genomics Facility. Sequences were trimmed, edited, and assembled in Sequencher v. 4.10.1 127 

(Gene Codes Inc., Ann Arbor, MI, USA).  128 

Species determination and phylogenetic analysis of ITS – The ITS region of rDNA, an 129 

official barcode for fungal species identification (Schoch et al., 2012), has proven effective for 130 
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delimiting Pezizales at the species level (Smith et al., 2007a; Bonito et al., 2010). We used PCR 131 

to amplify the entire ITS rDNA repeat with combinations of primers ITS1, ITS1F, ITS5 132 

(forward) and ITS2, ITS4, or LR3 (reverse) (White et al., 1990; Gardes & Bruns, 1993). After 133 

sequences were obtained and assembled, we performed BLAST searches on all and downloaded 134 

similar sequences from GenBank for phylogenetic comparisons. Lastly, to find closely related 135 

EcM fungal sequences, we used the Emerencia “genus search” function to search for 136 

insufficiently identified sequences using queries for Fischerula, Hydnobolites, Hydnocystis, 137 

Pachyphloeus, Peziza, Ruhlandiella, Scabropezia and Tuber  (Nilsson et al., 2005; Ryberg et al., 138 

2009). We then trimmed all sequences to begin at the “CATTA” motif of ITS1 and end at the 139 

“CAATAAGC” motif of ITS2. We uploaded trimmed sequences into a Sequencher file, and 140 

sorted them into OTUs based on 96% sequence similarity using the “dirty data” algorithm. 141 

Phylogenetic relationships among closely related OTUs were inferred within the four most 142 

speciose genera. Sequences from each OTU were selected to represent unique geographic 143 

localities and isolation sources. Four sets of ITS sequences were aligned including 41 sequences 144 

of Hydnobolites from the /marcelleina-peziza gerardii lineage (from 14 fruit bodies, 10 EcM 145 

roots, and 17 spore mats); 94 sequences of /pachyphloeus-amylascus (from 36 fruit bodies, 25 146 

EcM roots or environmental samples, and 33 spore mats); 45 sequences of Tuber from the /tuber-147 

helvella lineage (from 19 fruit bodies, 16 EcM roots, and 11 spore mats); and 45 sequences of 148 

/terfezia-peziza depressa (from 12 fruit bodies, 16 EcM roots, and 17 spore mats). Sequences 149 

were aligned in MAFFT v 6.822 (Katoh and Toh, 2010), and alignments manually improved in 150 

Se-Al v 2.0a11 (Rambaut, 2007). Ambiguously aligned regions were excluded in GBlocks using 151 

the least stringent setting (Castresana, 2000; Talavera & Castresana, 2007). Phylogenetic 152 
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inferences from alignments were estimated under Bayesian posterior probability (BP) and 153 

maximum likelihood (ML) analyses. ML was estimated using RAxML 7.2.8 (Stamatakis 2006) 154 

with a GTR + G model of nucleotide substitution. Rapid bootstrapping (Stamatakis et al., 2008) 155 

was implemented with 1000 replicates. The best scoring ML tree and bootstrap (BS) values ≥ 156 

70% are reported. For Bayesian analysis, a model of substitution and the priors were determined 157 

in JModelTest 0.1.1 (Posada, 2008) under the Akaike Information Criterion, and posterior 158 

probabilities were estimated using MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001). Two million 159 

generations were run in two parallel searches on four chains, and trees sampled every 100 160 

generations. The first 25% of samples in each set were discarded as burnin. Stationarity was 161 

evaluated based on the standard deviation of split frequency (less than 0.01) and mixing behavior 162 

of the chain was checked in Tracer (Rambaut & Drummond, 2007), to ensure that coverage was 163 

adequate. Posterior probability (PP) values > 95% were considered significant. ML and BP were 164 

run on XSEDE on the CIPRES web portal (Miller et al., 2010). Our ITS datasets included 171 165 

newly generated sequences (supplementary Table S1) and 99 sequences downloaded from 166 

GenBank (supplementary Table S2). 167 

Placement of OTUs within a phylogenetic context - After unique OTUs were determined, we 168 

examined diversity of mitospore producing Pezizales within a phylogenetic context based on 169 

domains D1 and D2 of the LSU. The LSU was selected because many representative Pezizales 170 

sequences are available in GenBank. The LSU has also been well-sampled in previous 171 

phylogenetic analyses of the Pezizales, providing a backbone of taxa representing known 172 

lineages within the order (Hansen & Pfister, 2006; Tedersoo et al., 2006a; Perry et al., 2007). 173 

From these previous studies, we chose representative sequences from each major clade to 174 
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provide a framework to place our newly generated sequences. The LSU was amplified and 175 

sequenced for representative spore mats from each OTU with combinations of primers ITS3, 176 

ITS5 or LROR (forward) and LR3, LR5 (Vilgalys & Hester, 1990; White et al., 1990) or LR5F 177 

(reverse) (Tedersoo et al., 2008). Our LSU dataset included 192 sequences: 66 newly generated 178 

for this study (supplementary Table S1) and 126 downloaded from GenBank (supplementary 179 

Table S2). In addition to taxa used to build the phylogenetic framework, downloaded sequences 180 

also included those from EcM root tips and nonmycorrhizal mitosporic Pezizales. Due to 181 

difficulty in aligning across the order, we aligned sequences in two subsets: subset one with the 182 

Pezizaceae, and subset two with the Pezizales exclusive of the Pezizaceae. Subset one had 135 183 

sequences from 72 fruit bodies, 23 EcM roots, and 40 asexual spore mats with 816 basepairs 184 

(bp). Subset two had 76 sequences from 61 fruit bodies, 4 EcM roots, and 11 asexual spore mats 185 

with 761 bp. The LSU sequences were aligned by hand in SeAl. Orbilia vinosa served as the 186 

outgroup in phylogenetic analyses for both subsets. Ambiguous region exclusion, selection of 187 

model of substitution, and phylogenetic analyses of the LSU dataset were as described for the 188 

ITS region except that for BP the data sets were run for 20 million generations.  189 

Culturing Protocol - Intact fruit bodies of Pachyphloeus and Hydnobolites were surface 190 

sterilized by submergence in 10% bleach for 10 minutes, rinsed three times in sterile water, 191 

broken open using sterile technique, and interior tissue removed and placed on Modified Melin 192 

Norkrans Agar, Malt Extract Agar (1/2 strength), and modified Woody Plant Medium (1/2 193 

strength). These agar media were supplemented with 10 mg/L each of the antibiotics 194 

Streptomycin and Chloramphinicol. Direct culturing and dilution plating of asexual spore mats 195 

on these same media were carried out in order to germinate the spores and grow these fungi. 196 
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Direct culturing entailed sampling of spores and/or mycelia (Hydnobolites, Pachyphloeus, 197 

Pezizaceae 2, and Tuber) directly and plating with sterile technique either embedded in the 198 

media or on the surface. For dilution plating, a small clump of spores was homogenized in an 199 

eppendorf tube with 2ml of sterile water and left to sit for 1 hr. Three serial dilutions were made 200 

(10
-3

) and 30 µl was plated and spread evenly with a sterile glass rod. Cultures were maintained 201 

in a growth chamber, and examined weekly over the following six months.   202 

EcM root inoculation – Quercus, Pinus, and Populus species are dominant EcM hosts in 203 

Northern hemisphere forests and in many cases asexual spore mats were present near these hosts. 204 

Consequently, we chose Quercus phellos, Pinus taeda, and Populus deltoides for our inoculation 205 

experiments. One batch of inoculum was made with fresh spores harvested from spore mats the 206 

same day, and a second batch of inoculum was made with spores that had been air-dried at room 207 

temperature for 3-days. Plant roots were inoculated at Duke University following similar 208 

methods used by Bonito et al. (2011) for inoculating seedlings with truffle spores. Briefly, a 209 

given mass (0.20 – 1.20 g) of spores was mixed into an appropriate volume of double autoclaved 210 

soil-less potting mixture composed of vermiculite, perlite, peat, and kaolin clay (4:4:1:1). We 211 

used five OTUs from four different lineages, representing the /tuber-helvella, /pachyphloeus-212 

amylascus, hydnotrya, /terfezia-peziza depressa lineages. We included five seedling replicates 213 

for each treatment. Spore inoculum level was calculated for a subsample of spores in a 214 

hemacytometer, with the addition of 0.1% tween 20 (to reduce spore clumping and surface 215 

tension). Spore inoculation densities ranged between 100 million to 1.0 billion spores per plant. 216 

Seedlings (oak & pine) and cuttings (poplar) were planted in “cone-tainers” containing a soil 217 

volume of ca. 250 ml
2 

(Stuewe & Sons, Inc., Tangent, OR, USA). Plants were maintained in the 218 
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Duke greenhouses and were watered every 3 days. After 180 days of growth (18 hr days/8 hr 219 

nights) plants were harvested and the roots were washed clean. Root tips were then examined 220 

under a stereoscope for EcM colonization by pezizalean fungi, characterized by a smooth, thin, 221 

brown mantle and lack of rhizomorphs. Observed EcM root tips were collected and the ITS 222 

region of rDNA was sequenced. 223 

Measurement of spores and spore mats - Spore mats were photographed in-situ. To measure 224 

and quantify mitospores, twenty spores from representative spore mats from each lineage were 225 

measured in 2.5% KOH and their size ranges and averages determined. Spore densities 226 

(spores/area) for representative OTUs of each of the major clades were quantified with a 227 

hemacytometer (Propper Manufacturing Co., Long Island City, NY), according to manufacturer 228 

instructions, by suspending 2.5 mm
2
 cores into 100ml of a 0.1% solution of Tween20. Count 229 

averages are reported from three excised plugs per sample of three representative OTUs from the 230 

four most speciose clades (/marcelleina-peziza gerardii, /pachyphloeus-amylascus, /terfezia-231 

peziza, and /tuber-helvella). The areas of imaged spore mats were found using Image J64 232 

(Rasband, 2011).  233 

Results 234 

Species determination - A total of 245 spore mats, 83 sporocarps, and 10 EcM root tips from 235 

the North America, Europe, South America, and China, were sequenced for this study (Table 236 

S1). Sequences of ITS were sorted into 48 OTUs based on 96% similarity (Table 1). Independent 237 

phylogenetic analyses based on ITS placed them as follows: the cup fungus Scabropezia (1 238 

OTU), the truffle genus Pachyphloeus (14 OTUs), close to Pachyphloeus or Scabropezia 239 

sequences, but not matching fruit body sequences (8 OTUs), all within the /pachyphloeus-240 
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amylascus lineage (Pezizaceae); the truffle genus Hydnobolites (13 OTUs) in the /marcelleina-241 

peziza gerardii lineage (Pezizaceae); the truffle genus Tuber (3 OTUs) in the /tuber-helvella 242 

lineage (Tuberaceae); the truffle genus Fischerula (1 OTU); the truffle genus Hydnotrya (1 243 

OTU) in the /hydnotrya lineage (Discinaceae); a Ruhlandiella-like species (1 OTU) in the 244 

/terfezia-peziza depressa lineage; Pezizaceae taxa within the /terfezia-peziza depressa lineage 245 

that could not be placed in any known genus, and are henceforth referred to as Pezizaceae 2-1, -246 

2, -3, and -4 (4 OTUs); and Pezizaceae taxa that could not be placed in any known lineages and 247 

are referred to as Pezizaceae 1-1 and -2, and Pezizaceae 3 (3 OTUs).   248 

     The /pachyphloeus-amylascus lineage (21 OTUs) accounted for 43% of species diversity of 249 

sequenced spore mats (Table 1). Among the /pachyphloeus-amylascus OTUs, fifteen spore mat 250 

sequences matched fruit bodies, fourteen matched EcM root tip sequences, and thirteen matched 251 

both (Fig. 1, Table 1). Four of the 21 /pachyphloeus-amylascus spore mat OTUs matched 252 

described species, while 17 represent unknown or undescribed species. The most frequently 253 

collected and widely distributed species of the /pachyphloeus-amylascus lineage was P. thysellii. 254 

Pink-colored spore mats (Fig. 8c) of this species were collected in the USA and China, and also 255 

detected on EcM roots or environmental samples from Canada and Europe. Pachyphloeus 256 

citrinus also has a broad geographic range that includes Europe, Mexico and the USA. Species in 257 

the /pachyphloeus-amylascus lineage were associated with several genera of angiosperm host 258 

plants (Table 1).  259 

     The Pezizaceae 1 and Pezizaceae 3 OTUs were not highly similar to any fruitbody sequences, 260 

and were not included in the ITS analyses because their sequences were too divergent to be 261 

aligned.  262 
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     Twenty-five percent (13) of the OTUs were in the /marcelleina-peziza gerardii lineage, and 263 

highly similar to Hydnobolites sequences (Pezizaceae) (Table 1). Hydnobolites (Fig. 8i) is a 264 

truffle genus with only two accepted species (H. californicus and H. cerebriformis) and no 265 

previous reports of mitospore production. Sequences from the two described species did not 266 

match spore mats whereas five spore mat sequences matched fruit bodies of undescribed 267 

Hydnobolites species (Smith and Healy, unpublished data), and two matched European orchid 268 

mycorrhizae sequences (Epipactis, Table 1).   269 

     Three OTUs in the /tuber-helvella lineage were allied with the genus Tuber (Tuberaceae) but 270 

could not be assigned to any described species (Table 1). Tuber 1 was common and fruited in 271 

extensive patches, but did not match sequences from fruit bodies or EcM roots. Phylogenetic 272 

analyses placed this OTU close to T. borchii and T. dryophilum, for which spore mats were 273 

previously described (Urban et al., 2004). Tuber 2 and Tuber 3 matched fruit body sequences of 274 

undescribed Tuber species from MN that are nested within the /maculatum and the /puberulum 275 

lineages (Fig. 5) of Bonito et al. (2010). Tuber 2 matched German Epipactis orchid root tips, and 276 

Tuber 3 matched NA Quercus EcM root tip sequences (Table 1, Fig. 3). These results constitute 277 

the first report of spore mats in the /maculatum lineage and double the number of species with 278 

mitosporic states previously reported in the /puberulum lineage.  279 

     A single spore mat of a Hydnotrya sp. (/hydnotrya lineage, Discinaceae), and a single spore 280 

mat of Fisherula (/fischerula lineage, family uncertain) were discovered in Fall 2010 and 2011, 281 

respectively (Figs. 8l-m). The growth forms of both were similar to that of Tuber (Table S4). The 282 

/fischerula and /hydnotrya spore mat sequences did not match any fruit body or EcM root tip 283 

sequences, and were not included in the ITS analyses. The ITS from a single spore mat of the 284 
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truffle genus Hydnocystis (Pyronemataceae), discovered in Fall of 2011, matched a fruit body 285 

from the same woods. However, Hydnocystis is not known to be EcM, and so is not included in 286 

any further discussion of EcM Pezizales.  287 

     Two clades with spore mat sequences are in the /terfezia-peziza depressa lineage. One OTU 288 

from spore mats collected in Argentina and Chile was shared with a fruitbody of an undescribed 289 

Ruhlandiella-like species (/terfezia-peziza depressa lineage) collected previously in Chile (Smith 290 

& Pfister, unpublished data). Four spore mat OTUs (Pezizaceae 2-1 to 2-4) were similar or 291 

identical to sequences from EcM roots but not close to any fruit body sequences. The /terfezia-292 

peziza depressa lineage (Pezizaceae) includes both truffles (Terfezia, Mycoclelandia, Tirmania, 293 

Cazia, Peziza in part) and epigeous cup fungi (Peziza in part spp.) (Fig. 4). Pezizaceae 2-1 and 2-294 

2 are geographically widespread as spore mats in the Eastern USA (Table 1) and have been 295 

sequenced from EcM root tips in Europe and Argentina. Pezizaceae 2-1 and 2-2 also have a 296 

broad host range including woody broadleaf, and Pinaceae trees, as well as herbaceous species. 297 

The Pezizaceae 2 clade of spore mats did not share any well-supported nodes with available fruit 298 

body sequences (Fig. 4).   299 

Phylogenetic analysis of LSU - Topologies of strongly supported nodes resulting from ML and 300 

BP analyses were similar. Except for the /leucangium clade, there was no major disagreement 301 

among strongly supported nodes in our analyses or with previous analyses by Læssøe & Hansen 302 

(2007), Perry et al. (2007), or Tedersoo et al. (2006a). The Pezizaceae ML tree is shown in Figs. 303 

5 and 6. The ML tree of Pezizales excluding Pezizaceae is shown in Fig. 7. The /leucangium 304 

lineage identified in Tedersoo et al. (2010) included Fischerula, based on strong maximum 305 

parsimony (MP) bootstrap support in a study by Hansen & Pfister (2006). In agreement with 306 
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Tedersoo et al. (2010), our analyses (Fig. 7) lacked strong support for a monophyletic 307 

relationship between Fischerula and Leucangium. We refer Fischerula taxa to a putatively 308 

independent /fischerula lineage.  309 

     Here we report mitospore production by five defined EcM fungal lineages and three putative 310 

lineages that are yet to be defined. Mitospores from defined EcM lineages include: 311 

/pachyphloeus-amylascus  (Fig. 5); /marcelleina-peziza gerardii, and /terfezia-peziza depressa, 312 

(Fig. 6); /hydnotrya, and /tuber-helvella (Fig. 7). Undefined lineages include /fischerula (Fig. 7), 313 

Pezizaceae 1 and Pezizaceae 3 (Fig. 5). While Pezizaceae 1 occurs in a strongly supported clade 314 

with EcM root tips, there is no evidence for the trophic status of Pezizaceae 3. Since 315 

phylogenetic analyses of the LSU places this OTU among EcM clades, we suspect an EcM status 316 

for Pezizaceae 3, and include it in our analyses. Spore mats were previously unknown in the 317 

/marcelleina-peziza gerardii, /hydnotrya, and /fischerula lineages. When these results are 318 

compiled with previous reports of mitospore production by EcM Pezizales species, (indicated by 319 

“+” in Figs 5-7), the LSU analyses suggest that at least nine of the sixteen EcM Pezizales 320 

lineages identified in Tedersoo et al. (2010) and three additional lineages preliminarily identified 321 

in this study can produce mitospores: /pachyphloeus-amylascus (Fig. 5), /marcelleina-peziza 322 

gerardii, /terfezia-peziza depressa (Fig. 6), /geopora, /hydnotrya, /fischerula, /sphaerosporella, 323 

/tarzetta, /tuber-helvella, and /wilcoxina (Fig. 7), Pezizaceae 1, and Pezizaceae 3 (Fig. 5).  An 324 

additional 25 saprotrophic or biotrophic species and five pathogenic species that produce 325 

mitospores are included in the phylogeny to illuminate potential phylogenetic patterns of 326 

mitospore production. Among families with EcM lineages that produce spore mats, 43 of 48 327 
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OTUs were Pezizaceae (Figs. 5-6), three were Tuberaceae, one was Discinaceae, and one was of 328 

uncertain family (Fig. 7). 329 

Biogeography, phenology, habitat, and spore mat size - Spore mats of pezizalean EcM fungi 330 

were diverse and common over a wide geographic area in the Northern Hemisphere, including 331 

the Eastern USA (6 lineages, 40 OTUs), Mexico (1 lineage, 3 OTUs), China (3 lineages, 7 332 

OTUs), Argentina (2 lineages, 2 OTUs) and Chile (1 lineage, 1 OTU) (supplementary Fig. S1). 333 

There was a lag time in production of spore mats in MN compared to NC, by at least one month 334 

(supplementary Fig. S2). Spore mat production roughly corresponded to above freezing 335 

temperatures and moderate precipitation. Collections during 2011 expanded the fruiting dates 336 

from April in NC to Oct. in MN and Dec. in NC (Table S1). Spore mats were not found under 337 

drought conditions. At the other extreme, heavy rainfall tended to obliterate the mats, washing 338 

away the spores. In general, spore mats were collected on bare soil, rocks or woodland debris on 339 

the ground. They were most diverse and abundant in woodlands that included EcM hardwoods, 340 

or a mixture of hardwoods and Pinaceae. They were not found under Pinaceae where heavy duff 341 

layers were present (Table 1). The most ubiquitous OTUs were Pezizaceae 2-1, Pezizaceae 2-2, 342 

and P. thysellii, found on multiple continents in woodlands protected from human disturbance 343 

(although usually on bare soil due to natural disturbance), as well as human-disturbed areas 344 

(Table 1, Fig. S1). Spore mats produced between 1.5 x 10
3 

and
 
11 x 10

3
 spores/mm

2
, depending 345 

on the lineage (supplementary Table S3). In general, Pezizaceae spore mats were dense with 346 

sporogenous hyphae, and determinate in growth, forming cushion-like mounds on the soil (Fig. 347 

8a,c,e,g,i,j), while /fischerula, Discinaceae, and Tuberaceae spore mats were single to sparsely-348 
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layered, and grew indeterminately, and effusely in a dendroid pattern over the surfaces of soil, 349 

leaves, rocks, and twigs (Fig. 8k,m; Table S3).  350 

Culturing of asexual spores and EcM root inoculation – Attempts to culture the mitospores 351 

from spore mats were unsuccessful, producing only bacteria, non-target fungi, or no growth. 352 

Ectomycorrhizae failed to establish from mitospore inoculation with any OTU. 353 

Contaminating fungi - Multiple genera of spore mats from MN, NC, and Mexico collected 354 

during humid weather were contaminated by one of three species in a complex around 355 

Paecilomyces penicillatus (Hypocreales) (supplementary Table S4). These were not included in 356 

analyses of anamorph-producing EcM Pezizales. 357 

Discussion 358 

     Contrary to previous suggestions that EcM fungi generally do not produce mitospores, our 359 

data demonstrate that a majority (nine) of the 16 EcM Pezizales lineages defined by Tedersoo et 360 

al. (2010), plus three putative lineages identified here, produce mitospores. We show that the 361 

production of spore mats is widespread geographically, includes a high diversity of cup fungi 362 

(including a preponderance of truffles), and includes known EcM lineages for which sporocarp 363 

records are lacking. Collections from Eastern USA, Mexico, China, and South America, along 364 

with previous reports from Europe indicate that mitospore-producing EcM Pezizales occur with 365 

EcM angiosperms in temperate zones on at least four continents, and in both hemispheres.  366 

     Our analyses suggest that mitospores are a common feature among Pezizales in general, 367 

regardless of lifestyle. The Orbiliales, which have many mitosporic species, are inferred as basal 368 
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to the Pezizales (James et al., 2006; Kumar et al., 2012), implying that the production of 369 

mitospores in the Pezizales is a plesiomorphic condition.    370 

     By including sequences derived from spore mats and EcM root tips in phylogenetic analyses 371 

we were able to improve resolution of fine scale phylogenies in /marcelleina-peziza gerardii, 372 

/pachyphloeus-amylascus, and /terfezia-peziza; and to match life cycle stages (i.e. 373 

ectomycorrhizae, fruit bodies, and mitosporic forms) in taxa of /marcelleina-peziza gerardii, 374 

/pachyphloeus-amylascus, /terfezia-peziza depressa, and /tuber-helvella. Spore mat data 375 

contributed to geographic distribution and habitat profiles for specific taxa, and also revealed a 376 

greater diversity of cryptic truffle-like species than was previously known in Hydnobolites (16 377 

undescribed species), Fischerula (one undescribed species), Hydnotrya (one undescribed 378 

species), a Ruhlandiella-like taxon (one undescribed species), and species in the truffle-cup 379 

fungus lineage of /pachyphloeus-amylascus (21 undescribed species). Truffles are produced 380 

belowground, so they can be difficult to find, but spore mats are readily visible on the soil 381 

surface. Unlike fruit bodies, mitospores are apparently produced over a full season, given 382 

adequate moisture, thereby increasing their chances of detection. Among pezizalean families, the 383 

large, brightly colored Pezizaceae spore mats are the most obvious, which may be why they were 384 

the most commonly collected in this study (43 out of 48 OTUs). Spore mats of /tuber 385 

(Tuberaceae, 3 OTUs), /hydnotrya (Discinaceae, 1 OTU), and /fischerula (1 OTU) are less 386 

noticeable, and collected infrequently. Since our survey turned up such high diversity while 387 

being carried out over a relatively short time, it is possible that there are other lineages, 388 

(particularly in Europe, Asia, and in the Southern Hemisphere), that produce spore mats that 389 
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were either not encountered during this study, were not in the geographic areas we searched, or 390 

were overlooked. 391 

     Asexual spore mats allowed us to detect cryptic diversity in several well-known ECM 392 

lineages but also revealed a geographically widespread clade within the /terfezia-peziza depressa 393 

lineage that was previously known only from a single spore mat and numerous EcM root tips. 394 

Although the terfezia-peziza depressa lineage includes both truffles and cup fungi, our analyses 395 

gave no strong support for a sister lineage to the Pezizaceae 2 clade and therefore a putative 396 

fruiting body form cannot be predicted for these species. Pezizaceae 1 and Pezizaceae 3 cannot 397 

be confidently placed in any known lineages, and so a fruiting body form cannot be predicted for 398 

these OTUs either. 399 

     The function(s) of the EcM spore mats collected during this study remains unknown. One 400 

working hypothesis is that spore mats are an ecologically adaptive mechanism for contacting and 401 

colonizing new flushes of fine roots. It is known that pezizalean fungi are adapted to disturbed, 402 

or edge habitats (Petersen, 1985; Egger, 1986). One possible advantage of mitospore production 403 

is the ability to reproduce quickly following rainfall. If the soil with extramatrical mycelium is 404 

bare, the mycelium in upper soil horizons would have a greater chance of capturing incident rain 405 

water necessary for mitospore production. High numbers of mitotic propagules could serve as a 406 

quick means for colonizing roots, an idea that is compatible with the ruderal strategy previously 407 

hypothesized for Pachyphloeus (Dickie & Reich, 2005; Tedersoo et al., 2006a). Woodlands that 408 

experience litter-clearing disturbances, such as fire, may provide similar conditions favorable for 409 

EcM fungi that produce spore mats.  410 
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     Testing of such hypotheses should be possible for EcM Pyronemataceae. Mitospores from 411 

Tricharina hiemalis and Wilcoxina mikolae germinated and produced fruit bodies in culture 412 

(Yang & Korf 1985a, 1985b). Only polyspore isolates produced fertile fruit bodies of W. mikolae 413 

(Yang & Korf, 1985a), consistent with heterothallism (obligate outcrossing). Two conidia of 414 

Tarzetta germinated in culture after heat shock, but only one, an unusually large mitospore, 415 

developed into normal mycelium (Dodge, 1937). These reports suggest that mitospores in the 416 

Pyronemataceae may serve as propagules in some cases, but may be involved as spermatia in 417 

other cases. It should be noted that the mitospores of Tricharina and Wilcoxina are intercalary in 418 

the filaments, and these species do not form obvious spore mats. We did not find any EcM 419 

Pyronemataceae spore mats in our surveys. 420 

      Muciturbo reticulatus is apparently the only EcM Pezizaceae species reported to produce 421 

mitospores in culture, although the spores did not germinate (Warcup & Talbot, 1989). Attempts 422 

to germinate mitospores of other EcM Pezizales have likewise been unsuccessful (Table S5). To 423 

understand the role of mitospores in EcM Pezizales, it may be useful to ascertain the role of 424 

mitospores in close relatives that are saprobic or plant-pathogenic. Mitospores of at least thirteen 425 

Pezizaceae species have been produced in culture, mitospores of five of these germinated (Table 426 

S5), and Cleistoiodophanus formed fruit bodies in culture. Although mitotic spores were 427 

produced abundantly in the same culture as fruiting bodies were formed, there was no male 428 

structure observed in the formation of fertile tissue (Bezerra & Kimbrough, 1976). Since the 429 

mitospores could germinate, and eventually give rise to fruiting bodies, they could act as 430 

dispersal units. The lack of observation of a male structure participating in the formation of 431 

fertile tissue does not preclude its participation in a less obvious manner. Thus, as in the 432 
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Pyronemataceae, there are at least two possible roles that mitospores may play in 433 

Cleistoiodophanus. The requirements to axenically manipulate mitospores of most other 434 

Pezizaceae are elusive (see Table S5 for unsuccessful attempts). The failure to germinate EcM 435 

Pezizales mitospores in culture in previous studies and in our study, and the failure to form 436 

mycorrhizae in the presence of fine roots suggests an alternative function to a propagative unit. A 437 

hypothesis posed by Urban et al. (2004, for Tuberaceae spore mats) is that these spores serve as 438 

spermatia, necessary for fertilization in sexual reproduction.  439 

      Only recently was it verified with molecular evidence that Tuber species outcross, but how 440 

this occurs is still a mystery (Riccioni et al., 2008). It is possible that for heterothallic species, 441 

establishment of the dikaryotic phase in truffles such as Tuber may be impeded by subterranean 442 

location. We propose that mitospores produced on the soil surface, and subsequently carried by 443 

rainwater, arthropods or other animals to EcM hyphae in the soil, facilitate the coming together 444 

of compatible nuclei. A function of spermatia for outcrossing, has been suggested for mitospores 445 

in other ascomycetes (Kohn, 1993).   446 

     Either function, to provide for genetic exchange or to disperse propagules to infect new root 447 

tips, may help to explain why spore mats were rarely found in Pinaceae forests, and then only on 448 

bare soil. A thick duff layer may prevent the dissemination of nuclear donors or propagules or 449 

perhaps prevent spore mat formation all together.   450 

     Morphologies of most Pezizaceae spore mats reported here fit previously described 451 

mitosporic forms (reviewed in Hennebert, 1973). Mitosporic forms were previously classified as 452 

form genera, thus the saprobic cup fungus Peziza ostracoderma has a mitosporic state that was 453 

named Chromelosporium fulvum (Hennebert & Korf, 1975). Woodland terricolous species 454 
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described in Hennebert (1973) are morphologically similar to some of the mitosporic forms 455 

sequenced here. Spore mats of both the /terfezia-peziza depressa and /pachyphloeus-amylascus 456 

lineages have previously been classified under Chromelosporium (Palmer et al., 2008). 457 

Glischroderma, another form genus, has also been tied to Pachyphloeus (Norman & Egger, 458 

1999). Glischroderma spore mats were described as having a covering (Malençon, 1964), which 459 

was not detected on Pachyphloeus spore mats in this study, although the long hyphal projections 460 

can sometimes cause the spore mat to appear covered when the projections are matted down.  461 

     Although the role(s) of mitospores of EcM Pezizales was not fully established in this study, 462 

the discovery of spore mats for Pachyphloeus and Tuber, and for four additional hypogeous 463 

lineages (/hydnobolites, /hydnotrya, /fischerula, and a Ruhlandiella-like taxon in /terfezia-peziza 464 

depressa) signals that the lifecycle of these truffles is more complex than previously known. The 465 

high diversity and broad geographic distribution of EcM Pezizales that produce spore mats 466 

suggests that production of mitospores is more important in the life history of this ecological 467 

guild of fungi than has previously been appreciated. 468 
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Supporting Information 654 

Table S2 Downloaded sequences used in phylogenetic anaylses in this study. Table S3 655 

Morphological comparisons of asexual spore mats in six lineages of ectomycorrhizal Pezizales. 656 

Table S4 Spore mat contaminant OTUs, based on 96% similarity of ITS sequenced from spore 657 

mats of diverse EcM Pezizales lineages. Table S5 Reports on Pezizales that have produced 658 

mitospores under axenic conditions; and results of attempts to germinate mitospores, and 659 

to produce fruiting bodies from mito- or meiospores. Fig. 1 Geographic distribution of OTUs 660 

of EcM pezizalean spore mats and fruit bodies collected in the Eastern USA, Northeastern 661 

Mexico, and Southeastern China. Fig. 2 Monthly spore mat diversity as measured by number of 662 

OTUs, juxtaposed with monthly precipitation (in inches) in North Carolina and Minnesota in 663 

2011. 664 

Figure Legends 665 

Figs. 1-7   Best ML trees calculated with 1000 boostrap replicates. All ML analyses were based 666 

on the GTR+G model of nucleotide substitution. Support values on branches indicated on the left 667 
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side for MB posterior probablilities > 95%, and on the right side for ML bootstrap proportions ≥ 668 

70%. 100% support indicated by “*”. Sequences derived from fruit bodies are italicized, spore 669 

mats are bolded, and ectomycorrhizal or Epipactis orchid mycorrhizal root tips are preceded by 670 

“EcM”, or “EpM” respectively. Sequences from previously reported asexual spore mats are 671 

indicated by “+”. Countries of origin, in parentheses, are abbreviated as follows: AR (Argentina), 672 

AT (Austria), AU (Australia), CA (Canada), CH (Chile), CI (Canary Islands), CN (China), DK 673 

(Denmark), DR (Dominican Republic), EE (Estonia), FR (France), GL (Greenland), GR 674 

(Germany), HU (Hungary), IL (Israel), IT (Italy), LY (Libya), JP (Japan), KW (Kuwait), MX 675 

(Mexico), NO (Norway), NZ (New Zealand), PG (Papua New Guinea), PL (Poland), PR (Puerto 676 

Rico), PT (Portugal), SAf (South Africa), SP (Spain), UK (United Kingdom), US (United 677 

States). 678 

Fig. 1 Best ML (-ln 6351.238547) phylogram of 102 taxa, 579 bp of the ITS rDNA in the 679 

/pachyphloeus-amylascus lineage rooted with Amylascus. Model of evolution selected for 680 

Bayesian analysis was TVM + I + G. Numbers to right of phylograms refer to OTUs listed in 681 

Table 1. 682 

Fig. 2 Best ML (-ln -4486.473) phylogram of 43 taxa, 625 bp of the ITS rDNA in the 683 

Hydnobolites clade of the /marcelliena-peziza gerardii lineage. Model of evolution selected for 684 

Bayesian analysis was HKY + I + G. Numbers to right of phylograms refer to OTUs listed in 685 

Table 1. 686 
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Fig. 3 Best ML (-ln 3127.582 ) phylogram of 46 taxa, 727 bp of ITS rDNA in the Tuber clade in 687 

the /tuber-helvella lineage. Model of evolution selected for Bayesian analysis was TIM2 + I + G. 688 

Numbers to right of phylograms refer to OTUs listed in Table 1. 689 

Fig. 4 Best ML (-ln 4808.387664) phylogram of 54 taxa, 572 bp of the ITS rDNA in the 690 

/terfezia-peziza lineage. GTR + G selected as model of evolution for Bayesian analysis. 691 

Phylogram includes sequences from Peziza collected in the vicinity of spore mats during this 692 

study. 693 

Figs. 5 - 6  The best ML phylogram from 135 taxa, 816 bp of the LSU rDNA from Pezizaceae (–694 

lnL=10873.195389). Model of evolution selected for Bayesian analysis was TIM3ef + G (Fig. 5 695 

Pezizaceae part 1, Fig. 6 Pezizaceae part 2). The outgroup was Orbilia vinosa. 696 

Fig. 7 The best ML phylogram from 77 taxa, 884 bp of the Pezizales exclusive of Pezizaceae (-697 

lnL=12207.201668). Model of evolution selected for Bayesian analysis was GTR + I + G.  The 698 

outgroup was Orbilia vinosa. Taxa where asexual forms are known are in bold type, and their 699 

lineages indicated at their phylogram nodes. Taxa where asexual states were reported in previous 700 

studies are indicated by ”+”. “?” indicates discrepancy in the literature regarding mitospore 701 

production. Sporocarp forms from which sequences were derived are indicated by filled circles 702 

for hypogeous (truffle) fruit bodies and open circles for above ground fruit bodies. The trophic 703 

status for each taxon, as designated by shade in the key at the top left, is displayed on the bar to 704 

the right of the phylogram.  705 

Fig. 8a-h Spore mats and corresponding fruit bodies of representative OTUs of EcM Pezizales.  706 

8a Spore mat of /pachyphloeus-amylascus 21 (RHAM15), bar = 0.5 cm. 8b Pachyphloeus fruit 707 
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body of /pachyphloeus-amylascus 21 (MX32624), bar = 1 cm. 8c Spore mat of P. thysellii 708 

(RHAM116), bar = 0.5 cm. 8d Fruit body of P. thysellii (RH1180), bar = 1 cm 8e Spore mat of 709 

/pachyphloeus-amylascus 22 (RHAM126), bar = 1 cm. 8f Pachyphloeus fruit body of 710 

/pachyphloeus-amylascus 22 (RH735), bar = 1 cm. 8g Spore mat of /pachyphloeus-amylascus 4 711 

(RHAM102), bar = 1 cm. 8h Scabropezia flavovirens (RH1209), bar = 1 cm. 8i  Spore mats of 712 

Hydnobolites 12 (RHAM483) with fruit body of matching ITS sequence (RH1358), bar = 0.5 713 

cm. 8j Spore mat of Tuber sp. 3 (RHAM226), bar = 1 cm. 8k Fruit body of Tuber sp. 3 714 

(RH1279), bar = 1 cm. 8l Spore mat of /terfezia-peziza depressa 2-1 (RHAM371), bar = 1 cm. 715 

8m Spore mat of Fischerula (RHAM489). 8n Close up image of 8L taken through a dissecting 716 

microscope, bar = 1 mm. 717 
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Table 1  Asexual spore mats, fruit bodies and ectomycorrhizal root tip matches based on ≥ 96% similarity in ITS region of   718 

              nuclear ribosomal DNA 719 

 720 

Lineage/ OTU  

 Rep. 

seq.  

Seq 

Nos
a
. 

 Habitat
b
    Geographic range of sequence source

c
 and EcM hosts

d
    

         spore mat             fruitbody                         EcM                          host             

/fischerula  

 

JX414173 1/0/0 A  US      

/hydnotrya  

 

JN102492  1/0/0 A  US      

/marcelleina-peziza gerardii 1  

 

JN102392  1/0/0 P  US      

/marcelleina-peziza gerardii 2  

 

JN102436  2/0/0 M  CN      

/marcelleina-peziza gerardii 3  

 

JN102390  4/2/0 A, M, P 

  

US  

  

US     

/marcelleina-peziza gerardii 4  

 

JN102425  1/0/0 M  US      

/marcelleina-peziza gerardii 5  

 

JN102440  3/1/0 M  CN   CN     

/marcelleina-peziza gerardii 6  

 

JN102384  1/3/0 A 

  

US   US     

/marcelleina-peziza gerardii 7  

 

JN102388  2/0/0 A 

  

US      

/marcelleina-peziza gerardii 8  

 

JN102372  1/0/0 A 

  

US      

/marcelleina-peziza gerardii 9  JN102394 1/0/0 A  US      

/marcelleina-peziza gerardii 10  

 

JN102377  4/0/0 A 

  

US      

/marcelleina-peziza gerardii 11  

 

JN102393  6/1/0 A, S 

  

US   MX     

/marcelleina-peziza gerardii 12  

 

JX414187 2/5/0 A 

  

US   US     

/marcelleina-peziza gerardii 13  

 

JX414188 1/0/2 A 

  

US    G, IT   EP   

Pachyphloeus citrinus  JN102363  8/9/1 A, D  MX, US   IT, MX, UK, US    G   CP, FG, TL    

Pachyphloeus marroninus  JN102364  5/4/2 A, S US  MX, US   MX   QC   

Pachyphloeus thysellii  

 

JN102370  24/7/4 All  CN, US   US   CA (env), CN, EE   Al, QC   

/pachyphloeus-amylascus 5  JN102389  2/0/0 A  US      
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/pachyphloeus-amylascus 6  

 

JN102414  1/0/0 A, M 

  

US      

/pachyphloeus-amylascus 7  

 

JN102432  1/0/0 D 

  

US      

/pachyphloeus-amylascus 8  

 

JN102431  1/1/2 M 

  

US   US   MX, US   QC   

/pachyphloeus-amylascus 9  

 

JN102430  6/3/3  M  MX, US   SP, UK   DK, EE, IT   FG    

/pachyphloeus-amylascus 10  

 

JN102368  6/0/0 M  US      

/pachyphloeus-amylascus 11  

 

JN102439  1/0/1 A, M, S  CN    MX   QC   

/pachyphloeus-amylascus 13  

 

JN102395  3/4/2 D 

  

US   US   US   QC   

/pachyphloeus-amylascus 14  

 

JN102435  1/0/1 A, D, S  CN      

/pachyphloeus-amylascus 15  

 

JN102367  5/1/0 M 

  

US  US    

/pachyphloeus-amylascus 16  

 

JN102433  11/0/2 S  US    US    

/pachyphloeus-amylascus 17  

 

JN102421  11/16/2 M  MX, US   MX, US   MX   QC   

/pachyphloeus-amylascus 18  

 

JN102404  6/1/0 A  US      

/pachyphloeus-amylascus 20  

 

JN102409  11/16/0 A  MX, US   MX, US     

/pachyphloeus-amylascus 21  

 

JN102380  5/14/2  A, D, M  US   MX, US     

/pachyphloeus-amylascus 22  

 

JN102375  13/4/1 A, D  US   US   US    

/pachyphloeus-amylascus 23  

 

JN102434  1/4/1 A, M  CN   EU   JP   CP   

Pezizaceae 1-1  

 

JN102379  1/0/0 A 

  

US    US (env)    

Pezizaceae 1-2  

 

JN102406  2/0/0 M 

  

US    US (env)    

 

Pezizaceae 2-1  

 

JN102366  

 

49/0/10 

 

M 

  

US   

 EE, G, NZ, PL, 

US  

 LX, PN, QC, 

SX   

Pezizaceae 2-2  

 

JN102422  33/0/5  A, D, M, S  US    G, PL, US  

 BT, PN, HM, 

QC   

Pezizaceae 2-3  

 

JN102438  5/0/0 A, D, M, S  CN      
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Pezizaceae 2-4  

 

JN102426  2/0/1 M  US    US (env)    

Pezizaceae 3 JX414201 3/0/0 A AR     

Ruhlandiella sp. nov. JX415205 16/1/0 A AR, CH     

Scabropezia flavovirens  JN102402 4/3/1 A 

  

US   EE   Al    

Scabropezia sp. JN121319  3/0/0 A 

  

US  FR, US     

/tuber helvella 1  

 

JN102420  22/0/0 A  US      

/tuber helvella 2  

 

JN102385  1/2/1 A, M 

  

US  

  

US   G   EP   

/tuber helvella 3  

 

JN102387  4/5/3 A 

 

 US  

  

US   G, MX, US   EP, CY, QC   
 

 

a Sequence sources for OTU are listed in the order: asexual spore mat/ fruit body/ ecomycorrhizal root tip. 

b Habitats are listed for asexual spore mat collections only. Abbreviations: A (angiosperm dominated woods); D (disturbed 

angiosperm wooded lot such as campus lawn, and picnic ground in park); M (mixed Pinaceae and angiosperm); P (Pinaceae   

woods); S (oak savanna). 

c Countries: AR (Argentina), CA (Canada), CH (Chili), CN (China), DK (Denmark), EE (Estonia), FR (France), GR (Germany),  

   IT (Italy), JP (Japan), MX (Mexico), NZ (New Zealand), PL (Poland), SP (Spain), UK (United Kingdom),. 

d Hosts: Al (Alnus), BT (Betula), CP (Carpinus), CY (Carya), EP (Epipactis), FG (Fagus), HM (Helianthemum), LX (Larix), PN  

   (Pinus), QC (Quercus), SX (Salix), TL (Tilia). 

 721 
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Fig. 8a-h Spore mats and corresponding fruit bodies of representative OTUs of EcM Pezizales.  8a Spore mat 
of /pachyphloeus-amylascus 21 (RHAM15), bar = 0.5 cm. 8b Pachyphloeus fruit body of /pachyphloeus-

amylascus 21 (MX32624), bar = 1 cm. 8c Spore mat of P. thysellii (RHAM116), bar = 0.5 cm. 8d Fruit body 

of P. thysellii (RH1180), bar = 1 cm 8e Spore mat of /pachyphloeus-amylascus 22 (RHAM126), bar = 1 cm. 
8f Pachyphloeus fruit body of /pachyphloeus-amylascus 22 (RH735), bar = 1 cm. 8g Spore mat of 

/pachyphloeus-amylascus 4 (RHAM102), bar = 1 cm. 8h Scabropezia flavovirens (RH1209), bar = 1 cm. 
8i  Spore mats of Hydnobolites 12 (RHAM483) with fruit body of matching ITS sequence (RH1358), bar = 

0.5 cm. 8j Spore mat of Tuber sp. 3 (RHAM226), bar = 1 cm. 8k Fruit body of Tuber sp. 3 (RH1279), bar = 
1 cm. 8l Spore mat of /terfezia-peziza depressa 2-1 (RHAM371), bar = 1 cm. 8m Spore mat of Fischerula 

(RHAM489). 8n Close up image of 8L taken through a dissecting microscope, bar = 1 mm.  
203x254mm (300 x 300 DPI)  
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