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Chapter 1 – Introduction

A core tenet of software engineering is the benefit of software reuse [Krueger,
1992]. Current research on software product lines [Pohl et al., 2005], gener-
ative programming [Czarnecki and Eisenecker, 2000], and feature-oriented
software development [Apel and Kästner, 2009] seek to maximize reuse
within a family of related programs by promoting and enabling the devel-
opment of massively variational software. A massively variational software
system represents a potentially huge number of related program variants.
Each variant can be individually generated from a shared set of resources to
include a particular set of features or run in a particular environment. In this
way, variational software can be used to efficiently produce and maintain
programs that are customized for different platforms, domains, tasks, or even
individual users.

The major contribution of this thesis is the choice calculus, a fundamental
representation of variation that supports foundational research on the cre-
ation, evolution, analysis, and verification of massively variational software.
The choice calculus is a formal language that is simple, generic, extensible,
and instantiable in order to support theoretical research on a wide range of
applications [Erwig and Walkingshaw, 2010, 2011b]. In the next section we
define and motivate each of these qualities. We also argue why the choice
calculus is needed and describe the potential long-term impact of this work
on the state of software variation research.

In addition to a formal description of the choice calculus itself, this thesis
also presents several language extensions and theoretical results related to
the choice calculus. Section 1.2 enumerates the specific contributions in the
context of an outline of the structure of the rest of the thesis.
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1.1 Motivation and Impact

The development of massively variational software is an active area of re-
search with a huge variety of goals and challenges. Essentially any traditional
software engineering or programming language issue is complicated by the
presence of variation and so has its own line of research in the software prod-
uct line community. For example, in addition to creating variational software,
there is work on evolving [Figueiredo et al., 2008], testing [Cohen et al., 2008,
Perrouin et al., 2010], parsing [Kenner et al., 2010], model checking [Classen
et al., 2011], and typing [Apel et al., 2010, Kästner et al., 2012a] variational
software. These examples are of course just the tip of the iceberg.

Aside from software product lines and related research, effectively dealing
with variation is important in many other areas of computer science. For
example, version control systems are concerned with managing variation in
software over time [Tichy, 1985], metaprogramming systems provide a way
to programmatically vary software at compile-time [Sheard, 2001], and union
types are used to indicate that the runtime representation of a value can vary
[Pierce, 1991]. There is also a huge range of applications for variational data
structures. Variational trees can form the basis for search algorithms, while
variational graphs are useful for navigation and path-finding systems.

The amount and diversity of this work has naturally led to the develop-
ment of an equally diverse set of tools and languages for supporting it. Each
tool or language reflects a particular view of the shared problem of managing
variation, each with its own way of indicating which parts of an artifact vary
and how a particular variant is produced. While the diversity of variation
representations is not inherently a problem, there are many opportunities for
the reuse of ideas and theoretical results between these fields that are missed
by current approaches. Indeed, it is not clear whether researchers in many
of these disparate areas even recognize their work as facets of a common
problem. Additionally, by focusing on specific instances of the problem and
using languages tailored to those instances, researchers may miss insights
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that can only be gained by consider variation from a broader, more abstract
point of view.

The choice calculus addresses these issues somewhat paradoxically by
adding “yet another language” to the pile. However, it has several qual-
ities that make it well-suited as a common language of discourse and shared
research platform for researchers working on different views of the problem of
effectively dealing with variation.

1. The choice calculus is generic. That is, it is a metalanguage for describing
variation that is independent of any particular object language (see
Section 2.1). This is important for two reasons. First, it allows the choice
calculus to be applied in a broad range of contexts and to many different
artifact types. Second, by abstracting away from the details of specific
programming languages and data formats, it supports the development
of transformations and theoretical results that can be reused across
applications and fields. Genericity is achieved in the choice calculus by
the object structure construct described in Section 3.3.1, which encodes
the underlying artifact being varied as an abstract tree.

2. On the other hand, the choice calculus is instantiable. That is, the
generic abstract tree model of the core choice calculus can be replaced
by the specific abstract syntax of any object language. This is important
since details of the object language are of central importance for some
applications, such as many kinds of variational analyses. For example, a
variational type inference algorithm must necessarily take into account
how to infer types in the underlying object language (see Section 9.1.1).
Section 3.3 shows how the choice calculus can be instantiated by an
arbitrary object language.

3. The choice calculus is simple. That is, it provides a direct and mini-
malistic view of variation that is easy to analyze and manipulate. The
representation is direct in the sense that it encodes variation extension-



4

ally by enumerating the differences between variants (see Section 2.3).
The choice calculus is minimalistic in that the core language provides
just three orthogonal constructs—choices for locally capturing points
of variation; dimensions for scoping, organizing, and synchronizing
choices; and object structures for encoding the object language, as de-
scribed above. The small number of constructs is important since it
minimizes the number of cases that must be considered in rigorous
theoretical work. Orthogonality is also a desirable language quality for
formal reasoning [Scott, 2009, p. 328]. More specifically, orthogonality
is important for the choice calculus since it supports a compositional
semantics that is critical to the next quality.

4. While the choice calculus is simple, it is also extensible. That is, new
language features can be modularly added to the simple core. This
is important since some applications will require variation features
not provided by the minimalistic core. The compositional semantics
of the choice calculus allows the language to be extended in a way
that preserves existing definitions and results. Chapter 4 and Chap-
ter 5 demonstrate how the choice calculus can be extended to provide
new language features. These modular extensions can be arbitrarily
included or not in a particular application of the choice calculus. More
importantly, however, they provide a template for other researchers
to define their own extensions. The simplicity of the choice calculus
combined with its extensibility enable researchers to consider only the
precise set of features that they need, minimizing the number of cases
that must be considered in rigorous theoretical work.

The genericity and simplicity of the choice calculus supports analytical rigor.
By stripping the representation of variation down to its barest form, we
can identify and prove basic facts and relationships between variational
expressions that can be reused in a broad range of contexts. Many such
results are provided in Chapter 3. However, the ability to instantiate the
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choice calculus with different object languages and extend it with different
language features, means that the choice calculus can also be applied in
contexts where more specific or featureful languages are needed. In this way,
the choice calculus describes a family of related languages for representing,
transforming, and analyzing variation. Since these languages are all based
on a shared core, ideas and results can be shared more easily between them.

The value of having a language to fill this role in variation research
is evidenced by the lambda calculus in programming language and type
theory research. In this field, a new typing feature can be presented by
systematically extending the lambda calculus with a new construct, then
extending a set of standard typing rules to type that construct. This allows
other researchers familiar with the lambda calculus to see the effects of the
new feature immediately and possibly to combine it with other extensions
developed in a similar way. In this way, building on a common theoretical
foundation lowers the barrier of entry to working on harder, more interesting
problems, and makes sharing and reusing the results of that research easier.

Although informed by existing research, the choice calculus is an attempt
to address the variation management problem from first principles. While
solving a concrete problem has the benefit of being immediately useful,
a general, theoretical perspective can reveal underlying patterns, expose
uncovered territory, and suggest new solutions for old problems. A long-term
sign of success will be if these insights percolate back into more application-
oriented research. In fact, we have observed success of this kind already with
the choice calculus. In a recent paper on type-checking #ifdef-annotated C
programs, Kästner et al. write: “the implementation of our type-checking
mechanism inside modules with alternative types was particularly inspired
by the structures of the choice calculus” [2012b].

The choice calculus and its associated theory can also directly support the
construction of tools by providing an established core to build on. The advan-
tages of building tools around a shared core are similar to the advantages for
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research. Libraries of reusable code can be developed, lowering the barrier
of entry to new tools and ensuring that basic functionality is consistent and
correct. The choice calculus can also serve as an intermediate language to
support interoperability between tools.

Chapter 9 briefly describes how we have successfully applied the choice
calculus to solve the problem of extending the Damas-Milner type-inference
algorithm to variational programs [Chen et al., 2012, 2013]. This provides a
case study illustrating many of the benefits claimed above. In particular, we
used multiple different instantiations of the choice calculus and were able
to reuse many of the theoretical results from our previous work [Erwig and
Walkingshaw, 2011b].

1.2 Contributions and Outline of this Thesis

The high level goal of this thesis is to present the choice calculus in a way
that supports its use by other variation researchers. Therefore, in addition
to the formal definition of the language itself and its various extensions, for
each language feature we also discuss the rationale behind important design
decisions and explore alternative definitions. This not only motivates our
particular design, but also suggests avenues for future research. We also
present several operations on choice calculus expressions and theoretical
results that form an initial base of knowledge that can be reused in future
applications. In later chapters, we show how the choice calculus can be
applied, demonstrating its value and providing a template for future users of
the language.

The rest of this section describes the structure of this thesis, enumerating
the specific contributions that each chapter makes.

Chapter 2 (Background) introduces several concepts and terms that will be
used throughout the thesis. It distinguishes between object languages and
metalanguages, describes the major roles of languages in existing variation
research, and discusses the major approaches to representing variation. It
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also also motivates some of the high-level design decisions underlying the
choice calculus.

Chapter 3 (The Choice Calculus) introduces the choice calculus as a simple
formal representation of static, annotative variation in tree-structured data
[Erwig and Walkingshaw, 2011b]. In the choice calculus, a choice encodes a
variation point in the tree while dimensions structure and synchronize choices.
In addition to the language itself, this chapter makes several important
contributions.

1. A syntactic well-formedness property on choice calculus expressions
that ensures that every choice is bound by a corresponding dimension
and has the correct number of alternatives.

2. A denotational semantics for the choice calculus. The denotation of a
choice calculus expression is a mapping from decisions to the individual
plain tree variants those decisions produce. The semantics is defined
compositionally in order to support modular language extensions.

3. A complete set of semantics-preserving transformation laws for choice
calculus expressions, enabling the merger or commutation of syntactic
forms within choice calculus expressions. A mechanized proof of these
laws for a simplified version of the choice calculus is provided in
Appendix A.

4. The identification of strategic normal forms for core choice calculus
expressions. These can serve as representatives of the equivalence
classes defined by the transformation laws. They also have practically
desirable properties, such as maximizing sharing between variants.

5. A semantics-based design theory for identifying and removing “dead”
subexpressions and superfluous variation in core choice calculus ex-
pressions.
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Less formally, the chapter provides a rationale for the design of the choice
calculus and a comparison with other annotative variation representations.
It also informally describes how the choice calculus (and its associated
properties and transformations laws) can be instantiated by different object
languages.

Chapter 4 (Extensions to Support Reuse) presents two extensions of the
choice calculus with language features to support reuse. One extension
supports the sharing of subexpressions that have already been configured,
while the other supports the reuse of subexpressions that can be configured
separately at each point of use. The chapter provides a detailed discussion of
the motivation and design challenges associated with these extensions. The
syntax and denotational semantics of the extensions are formally defined in a
modular way with respect to the core choice calculus, enabling the extensions
to be included arbitrarily together or separately without changing the existing
language definition. The well-formedness property is also extended to the
new features. Finally, several new transformation laws are introduced to
commute the new extensions with each other and with the existing syntactic
forms of the core choice calculus.

Chapter 5 (Internalized Selection) presents an extension of the choice calcu-
lus with a language feature to support the configuration of choice calculus
expressions from within the choice calculus itself [Erwig et al., 2013a]. We
provide a detailed discussion of the design challenges associated with this
extension, and motivate the chosen design. As with the reuse extensions, this
extension is formally defined in a modular way, so that it can be included or
not in the choice calculus without changing the existing language or other
modular extensions. We also introduce new transformation laws to commute
the new extension with existing syntactic forms. The most significant contri-
bution of this chapter is an extension of the well-formedness property into a
configuration type system that both ensures that an expression is well formed
and reveals its dimension structure by its associated configuration type.
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Chapter 6 (Compositional Choice Calculus) presents the compositional choice
calculus (ccc), a formal language that extends the choice calculus with
metaprogramming and compositional variation features [Walkingshaw and
Erwig, 2012]. The chapter motivates the design of ccc and illustrates how
it can be used to address several recurring problems related to effectively
representing variation. Formal contributions include a denotational semantics
for ccc, and a formal demonstration that the language unifies the annotative
and compositional approaches to variation implementation, addressing an
open problem in FOSD [Kästner and Apel, 2009]. This demonstration shows
that ccc is more locally expressive [Felleisen, 1991] than either approach in
isolation.

Chapter 7 (Variational Programming) presents a domain-specific language
based on the choice calculus and embedded in Haskell to support variation
programming [Erwig and Walkingshaw, 2012a]. This language represents
an application of the choice calculus in a less formal and more exploratory
setting. The chapter introduces the idea of variational data structures, which
have potentially many applications in a huge range of contexts. The chapter
explores the representation and manipulation of variational lists in some
detail. Finally, it explores how variational Haskell programs can be created
and edited from within the DSL, providing a glimpse of how the choice
calculus can support sophisticated tools for working with variation software.

Chapter 8 (Related Work) collects research related to each of the above
contributions that was not discussed in context or in Chapter 2. It also
provides a detailed comparison of the choice calculus to the C Preprocessor,
which is the most used annotative variation tool in practice.

Finally, Chapter 9 (Conclusion) briefly presents some successful applica-
tions of the choice calculus that demonstrate its viability as a platform for
research on variational software. In particular, it describes how we were
able to reuse many results and theoretical machinery from Chapter 3 in
the definition of a type system and type inference algorithm for variational
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lambda calculus. The chapter closes with a summary of the most important
contributions and some directions for future work.
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Chapter 2 – Background

At the core of this thesis is the choice calculus, an annotative metalanguage
for describing the implementation and organization of static variation in tree-
structured artifacts. The goals of this chapter are twofold: first, to establish a
context and terminology for discussing variation languages like the choice
calculus, which will make the meaning of the above description clear; second,
to motivate the high-level design decisions that led us to choose this as a
foundation for a general theory of variation.

Section 2.1 describes the differences between object languages and meta-
languages, and Section 2.2 discusses the three main roles of metalanguages
in the context of creating and managing variation. Section 2.3 describes three
approaches to representing variation in software, discusses desirable qualities
for a variation representation, and analyzes the trade-offs between each of
the three approaches in terms of these qualities. Section 2.3 also argues in
favor of a structured annotative approach as a basis for the choice calculus
on the grounds that the qualities it supports are most important for the goal
of establishing a rich theory of variation.

2.1 Object Language vs. Metalanguage

In principle, we can make any kind of artifact variational. We can use
a type constructor V to represent the incorporation of variability into an
otherwise non-variational artifact. Thus, a variational artifact of type V a
(that is, V applied to a) represents potentially many different plain artifacts
of type a. For example, a variational Java program represents many different
plain Java programs. The creation of a variational artifact typically involves
the interplay of more than one language, and we can distinguish between
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two kinds of languages: (1) object languages used to describe the artifacts
themselves (corresponding to the type a), and (2) metalanguages used to
describe the variability within them (corresponding to V).

1. An object language is a language used to describe a single, non-
variational artifact. Typical programming languages like C, Java, or
Haskell are object languages. More generally, we can consider the
abstract syntax of data structures like trees or graphs to be object
languages. A variational graph would then represent many differ-
ent specific graphs, each of which would be represented in the object
language of the abstract syntax of graphs.

2. A metalanguage (also called a variation language), is a language used
to describe the variability in a variational artifact. There are many
possible relationships between an object language and a metalanguage;
these will be discussed in the rest of this chapter. One possibility is
that the metalanguage can be embedded within the object language.
For example, the C Preprocessor language (CPP) [CPP] is a widely
used metalanguage for describing variability. Through the use of its
conditional compilation directives—#ifdef, #if, #elif, #else, and
#endif—object language code can be conditionally included or not in
the preprocessed program, depending on the values of various user-
and system-defined variables used in the conditions.

A CPP-annotated Java program is therefore a variational Java program, where
CPP is the metalanguage and Java is the object language. Running the
preprocessor produces a single, plain Java program that can be compiled and
run in the usual way. This program is just one of potentially many different
variants that can be generated from the variational program.

This thesis focuses on developing and extending the choice calculus, an
annotative metalanguage for describing static variation in a similar way as
CPP. In general, the choice calculus can be applied to any object language with
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a tree-structured syntax. Section 3.3.1 describes the abstract representation
of object languages in the choice calculus, which is based on a generic
representation of abstract syntax trees.

With compositional metalanguages (see Section 2.3), knowing the syntactic
structure of an object language is not sufficient to encode variation. These
approaches must also be able to combine different pieces of object language
code in order to assemble a particular variant. An example of this is aspect
weaving in aspect-oriented programming [Kiczales et al., 1997]. This leads to
a tighter coupling and blurrier separation between object and metalanguage;
for example, the aspect-oriented metalanguage AspectJ [Kiczales et al., 2001]
is tightly coupled to the object language of Java. Chapter 6 describes an
extension to the choice calculus to support compositional variation. This
includes a parameterized composition operator that allows us to maintain a
clear separation between object and metalanguage, and to still treat object
languages in a generic way.

2.2 Modeling, Implementation, and Configuration

Variation languages can be further organized according to their role in the
process of creating and managing variational artifacts. Many metalanguages
fulfill multiple roles and so cannot be uniquely classified, but it is instructive
to consider each of the roles separately.

The three main roles of metalanguages are: (1) modeling the variation space;
(2) implementing the variability in the artifact; and (3) selecting, generating, or
configuring a particular variant. The distinction between these roles is perhaps
best understood in the context of feature-oriented software development
(FOSD) [Apel and Kästner, 2009]. In FOSD, the basic unit of variation is a
feature. One or many features can be combined with a base program in order
to form a particular variant, called a product. The set of all products that
can be generated is called a product line. In our terminology, a product line
corresponds to a variational artifact, and a product to a single variant.
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1. A variation modeling language describes the high-level constraints be-
tween features. For example, a common constraint is that the inclusion
of one feature depends on the inclusion of another. The set of all such
constraints in a product line is called a feature model. Features models
can be expressed as diagrams [Kang et al., 1990], algebras [Höfner et al.,
2006], propositional formulas [Batory, 2005], and more. The Kconfig
language [Kconfig, She and Berger, 2010], used to organize configura-
tion options in the Linux kernel, is a prominent example of variation
modeling in a large-scale, real-world application [She and Berger, 2010,
She et al., 2010].

2. A variation implementation language describes the realization of the
features in terms of the object language. For example, CPP is a variation
implementation language. To implement a feature f , introduce a new
CPP variable name F, then wrap all object language code corresponding
to f in CPP directives of the form #ifdef F . . . #endif. Now feature
f can be included by defining F when running the preprocessor. Note
that if f depends on another feature g (realized by the CPP variable
G), this constraint will likely not be expressed in the CPP-annotated
source code. The implementation language of CPP describes only what
object language code is associated with which feature, while a separate
modeling language could be used to describe which combinations of
features are valid.1

3. Finally, a selection or configuration language describes how to produce a
particular variant from a variational artifact. In the simplest case, this
may be just be a list of features to include. However, often the task
of assembling a product is more complicated. In the compositional
approach described in Section 2.3, the order that features are incorpo-

1Unfortunately, most actual CPP-annotated software projects do not provide corresponding
feature/configuration models, making it difficult to determine which combinations of
features are expected to produce complete, working programs.
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rated is often significant, so the selection language must take this into
account. In conjunction with CPP, the Make language [Make] can be
considered a configuration language. A Make target corresponding to
a single product would define the CPP variables corresponding to the
product’s features, and possibly include only the relevant source files
as well.

In the choice calculus, the dimension declaration construct, defined in Sec-
tion 3.3.2, is the primary mechanism for variation modeling. In the past we
have considered selection to be external to the calculus itself, however, more
recently we have explored language-level support for selection; this is the
focus of Chapter 5. Variation implementation is achieved with the choice
construct from which the calculus takes its name, discussed at length in
Chapter 3.

2.3 Approaches to Representing Variation

In general, there are three ways to represent variation in software, which we
will refer to as (1) annotative, (2) compositional, and (3) metaprogramming-based.
The differences between these approaches are most pronounced when com-
paring the metalanguages used to implement variability and select individual
variants. Often the same modeling languages, such as feature diagrams, are
used in the context of multiple different approaches.

1. In the annotative approach, object language code is varied in-place
through the use of a separate annotation metalanguage. Annotations
delimit code that will be included or not in each program variant.
When selecting a particular variant from an annotated program, the
annotations and any code not associated with that variant are removed,
producing a plain program in the object language. The most widely
used annotative variation language is CPP, described in the previous
section. An example in research is the CIDE tool, which associates
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blocks of object language code with features through the use of back-
ground colors [Kästner et al., 2008a]. The choice calculus is principally
annotative, though support for the other approaches described below
are considered in Chapter 7.

2. The compositional approach emphasizes the separation of variational
software into its component features and a shared base program, where a
feature represents some functionality that may be included or not in
a particular variant. Variants are generated by selectively applying a
set of features to the base program. This strategy is usually used in the
context of object-oriented languages and relies on language extensions
to separate features that cannot be captured in traditional classes and
subclasses. For example, inheritance might be supplemented by mixins
[Bracha and Cook, 1990, Batory et al., 2004], aspects [Kiczales et al.,
1997, Mezini and Ostermann, 2003], or both [Mezini and Ostermann,
2004]. Relationships between the features are described in separate
configuration files [Batory et al., 2004], or in external documentation,
such as a feature diagram. These determine the set of variants that can
be produced, and may also describe how to assemble them.

3. The metaprogramming-based approach encodes variability using meta-
programming features of the object language itself. This is a common
strategy in functional programming languages, such as MetaML [Taha
and Sheard, 2000], and especially in languages in the Lisp family, such
as Racket [Flatt and PLT, 2010]. In these languages, macros can be used
to express variability that will be resolved statically, depending on how
the macros are invoked and what they are applied to. Different variants
can be produced by altering the usage and input to the macros.

Each of the three approaches to representing variation has its strengths and
weaknesses. These are summarized in Figure 2.1. The qualities in the table
are expressed positively (that is, “High” is always good), but they are not
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Quality Annotative Comp. Meta.
Object language independence High Low None
Separation of concerns None/Virtual High None
Variation explicitness High Medium Low
Variation visibility High Low Medium
Supports crosscutting variation Low High Medium
Ease of adoption High Low High

Figure 2.1: Summary of trade-offs between representation approaches.

weighted equally and their relative importance will vary depending on the
user and task. Below is a brief summary of the meaning of each quality
and why it matters to the design of a fundamental variation language and
associated theory. A longer assessment of each approach in terms of these
qualities follows.

• Object language independence indicates whether the ideas and tools asso-
ciated with a strategy can be easily applied to many different artifact
types. This is important in order to produce generalizable results that
are not tied to a particular object language or usage context.

• Separation of concerns characterizes the modularity of the representation
with respect to units of variation. For example, whether it can be used
to encapsulate individual features and supports working on a single
feature, independently of others. This is a generally useful quality that
supports abstraction and scalability [Tarr et al., 1999].

• Variation explicitness indicates whether the representation of variability
in an artifact is structured, precise, and straightforward to traverse and
manipulate. This quality supports the analysis and transformation of
variational structures.

• Relatedly, variation visibility indicates whether a representation makes it
easy to determine which parts of the artifact are variational and how.
This is important for the understandability of variational software.
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• Support for crosscutting variation characterizes the ease of creating and
maintaining variation that affects many different parts of an artifact in
a similar way. The classic example of crosscutting variation in software
is an optional logger, which may require extending every method in
the program with an optional logging statement.

• Finally, ease of adoption indicates how easily a variation representation
can be incorporated into an existing, non-variational artifact.

Although somewhat maligned in research [Spencer and Collyer, 1992, Pohl
et al., 2005], we argue that the annotative approach achieves the best combi-
nation of these qualities for the goal of a general theory of variation, and is
therefore a good basis for the choice calculus.

Annotative approaches have the highest degree of language independence.
For example, CPP can be used with almost any textual object language, as
long as its syntax does not interfere with the #-notation of CPP. Software
projects usually consist of several different artifact types, such as source code,
build scripts, documentation, etc. Language independence makes it easy to
manage and synchronize variation across all of these different artifact types,
and trivial to incorporate variation in new artifact types. Some compositional
approaches, like the AHEAD tool suite [Batory et al., 2004], provide a degree
of language independence through parameterization. By identifying an
appropriate representation of a refinement for each object language type, and
implementing an operation for composing refinements, the system can be
extended to support new object languages. Metaprogramming approaches
are usually tightly coupled to their object languages and so cannot be applied
to other artifact types.

Of course, language independence comes at a cost. Since CPP knows
nothing about the underlying object language, it is easy to construct varia-
tional programs in which not all variants are even syntactically correct, and
this usually cannot be detected until the variant is generated and run through
a compiler. This problem has been addressed in research by operating on the
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abstract syntax tree of the object language, rather than annotating the con-
crete syntax directly. This is the approach used by the annotative CIDE tool
[Kästner et al., 2008a] and in the choice calculus [Erwig and Walkingshaw,
2011b], and will be discussed in greater detail in Section 3.3.1. This solution
maintains a high degree of language independence while providing structure
that ensures the syntactic correctness of all program variants.

Compositional approaches are strongly motivated by traditional software
engineering pursuits such as separation of concerns (SoC) and stepwise refinement
[Batory et al., 2003, 2004, Mezini and Ostermann, 2004, Prehofer, 1997]. These
represent the ideals that the code corresponding to a feature should be in
some way modular, understandable independently of other features, and
able to be added to a software system without changing the existing source
code. Neither annotative nor metaprogramming-based approaches directly
support SoC, although Kästner and Apel [2009] propose the idea of a “virtual
separation of concerns” (VSoC) where some of the benefits of SoC are brought
to annotative systems by providing tool support for working with projections
of annotated artifacts.

VSoC is only possible because annotative approaches provide an explicit
representation of variation in an artifact. That is, variability is expressed in
a precise and consistent way, revealing a variational structure that can be
traversed and manipulated. This is an important but often overlooked feature
of annotative variation since it supports the analysis and transformation
of variability in the artifact. As can be seen in the list of contributions in
Section 1.2, such analyses and transformations are a major theme of this
thesis. Compositional approaches also provide a structured view of variation
by encapsulating variable parts in modules, but the resulting variational
structure is not as precise (often requiring significant redundancy) and usually
more complicated than in annotative approaches. Metaprogramming-based
approaches provide essentially no directly observable variation structure
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since the variants that can be generated are determined by arbitrary macro
computations.

The trade-off in variation explicitness between annotative and composi-
tional approaches reflects the fact that annotative approaches are extensional
while compositional and metaprogramming-based approaches are intensional.
That is, annotative approaches simply enumerate the differences between
each variant, while the intensional approaches describe variation in terms
of transformations (in the form of refinements, aspects, or macros) from a
base program to a new program containing the desired set of features. While
the intensional view is more powerful, the extensional view is simpler and
easier to analyze. Even basic analyses like counting or enumerating variants,
or ensuring that a variation implementation conforms to its model, are trivial
in structured annotative representations,2 but difficult or impossible in the
other approaches.

Related to this is the issue of variation visibility, which is the ability to
determine exactly which parts of an artifact are variational and the impact
of that variation. This is difficult in metaprogramming-based approaches
because it is not always clear which macros represent variational concerns. It
is very difficult in compositional approaches since the addition of some kinds
of components (such as aspects) can have far-reaching effects on existing,
previously non-variational code. In contrast, annotations explicitly designate
a part of the artifact as variational, and localize the effects of that variation.

Following from the intensional/extensional distinction, compositional ap-
proaches can provide better support for crosscutting variation than annotative
representations. In FOSD, there are many examples of features that affect
many different parts of a program in similar ways. For example, a security
feature may require the insertion of code that performs an authentication
check at the beginning of every sensitive method. Such use cases motivate

2Structured annotative representations include CIDE and the choice calculus, but not
CPP [Kästner et al., 2008a, Erwig and Walkingshaw, 2011b].
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transformative components, such as aspects, that provide the relevant code
once and describe all of the points it should be inserted. In annotative
approaches the variation associated with a crosscutting feature must be repli-
cated at each of these points. Crosscutting variation can be implemented
by metaprograms without the repetition of the annotative approach, but
metaprogramming systems typically do not provide special support for this,
which limits the benefit [Roychoudhury et al., 2003].

Finally, the simple extensional model of annotative variation, and the abil-
ity to use a single metalanguage with many different object languages, makes
annotative approaches easier to adopt into existing non-variational software
projects. When working with an object language with metaprogramming
support, it is also easy to add variability (at least for one kind of artifact). In
contrast, compositional approaches are more difficult to adopt since the soft-
ware must be carefully structured in order to incorporate variation. Varying
part of an existing program is likely to require refactoring.

While the annotative approach scores well on the majority of qualities
discussed in this section, the two qualities it lacks—support for separation
of concerns and crosscutting variation—are those most traditionally valued
in software engineering research. Because of this there has been a tendency
in research to value compositional approaches (which score well in these
areas) over annotative approaches. However, annotative approaches remain
extremely widely used in practice. For example, conditional compilation
is used in essentially all large C projects, and as much as 22% of code in
real C projects is made up of CPP directives [Ernst et al., 2002]. CPP is also
used in large-scale Haskell projects, such as the Glasgow Haskell Compiler
[GHC], and in many other contexts. For its widespread use alone, annotative
variation is worthy of study.

More importantly, annotative approaches provide a good foundation for
a formal language and general theory of variation. Our previous work on
extending Hindley-Milner type inference to a variational lambda calculus
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(vlc) illustrates the usefulness of annotative variation in the development of
a non-trivial variational analysis [2012, 2013]. Many of the above qualities
feature prominently in the type system for vlc. For example, object language
independence allows us to use the same metalanguage for describing varia-
tion in both vlc expressions and in types, and the explicit variation structure
enables type simplification during the inference process to improve efficiency.
By providing a language independent, highly structured, and visible model of
variation, annotative approaches best separate variational concerns from the
object language and support the analysis and transformation of variational
artifacts.
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Chapter 3 – The Choice Calculus

This chapter will provide the core language and theory of the choice calculus.
In order to be as general as possible and support the broadest range of
applications, the core language is intentionally minimalistic and designed
to be easily extended and instantiated for use in different contexts. In fact,
the only essential construct in the choice calculus is the choice—all other
language features can be optionally included or not in a particular instance
of the choice calculus, making the representation extremely customizable.

Section 3.1 introduces the core concepts and constructs of the choice
calculus, namely choices and their synchronization by dimensions of variation.
The design of the language is motivated in Section 3.2, while Section 3.3 gives
a formal definition of its syntax and a description of how this syntax can
be extended and instantiated for different tasks. A denotational semantics
for the choice calculus is defined in Section 3.4. The semantics definition
is compositional, supporting extensibility in the language. In subsequent
chapters we make use of this quality to add new features in the choice
calculus without requiring major changes to the existing language definition.
A compositional semantics definition is possible because the constructs in
the choice calculus are highly orthogonal—that is, each construct does one
thing, and constructs can be used in almost any combination. Orthogonality
is a highly desirable quality in language design [Scott, 2009, p. 328].

However, not every syntactically generable term is a valid choice calculus
expression. Section 3.3.3 defines a well-formedness condition for the basic
choice calculus. This condition will be extended as we add new features to
the language, culminating in a type system for the choice calculus presented
in Chapter 5, where the type of a choice calculus expression encodes the
potential decisions that expression represents.
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The same variational program can be expressed in several different ways
in the choice calculus. This is a useful quality since different representations
are useful for different purposes. In Section 3.5 we define an equivalence
relation for choice calculus expressions. This relation can be used to perform
semantics-preserving transformations between choice calculus expressions.
This relation will be extended with each new language feature introduced in
this thesis.

Finally, in Section 3.6 we develop a design theory for choice calculus ex-
pressions, identifying semantic criteria to identify redundant choice calculus
expressions and transformations to improve them.

3.1 Introduction to the Choice Calculus

In this section we will introduce the main concepts and constructs of the
choice calculus. We use a running example of varying a simple program in
the object language of Haskell, but the choice calculus is generic in the sense
that it can be applied to any tree-structured document.

Consider the following four implementations of a Haskell function named
twice that returns twice the value of its argument.

twice x = x+x twice y = y+y

twice x = 2*x twice y = 2*y

These definitions vary in two independent dimensions with two possibilities
each. The first dimension of variation is in the name of the function’s
argument: the variants in the left column use x and those in the right column
use y. The second dimension of variation is in the arithmetic operation used
to implement the function: the variants in the top row use addition, those in
the bottom use multiplication.

We can represent all four implementations of twice in a single choice
calculus expression, as shown below.



25

dim Par〈x, y〉 in
dim Impl〈plus, times〉 in
twice Par〈x, y〉 = Impl〈Par〈x, y〉+Par〈x, y〉, 2*Par〈x, y〉〉

The example begins by declaring the two dimensions of variation using
the choice calculus dim construct. The syntax dim Par〈x, y〉 declares a new
dimension of variation Par with tags named x and y. The tags represent
the possibilities in the dimension, in this case, the two possible parameter
names. We can refer to the tag x in dimension Par as Par.x. This is called
a dimension-qualified tag, or usually just a qualified tag. The in keyword
introduces the scope of the dimension declaration, which extends to the
end of the expression if not explicitly indicated otherwise (for example, by
parentheses).

Each point of variation between the different implementations of twice
is captured in a choice that is bound by one of the declared dimensions.
For example, Par〈x, y〉 is a choice bound by the Par dimension with two
alternatives, x and y. Note that x and y are terms in the object language of
Haskell (indicated by monospaced font), while the tags x and y are identifiers
in the metalanguage of choice calculus (indicated by italics).

Each dimension represents an incremental decision that must be made in
order to resolve a choice calculus expression into a single program variant
in the object language. The choices bound to a dimension are synchronized
according to this decision. This incremental decision process is called tag se-
lection. When we select a tag from a dimension, the corresponding alternative
from every bound choice is also selected, and the dimension declaration itself
is eliminated. For example, if we select the y tag from the Par dimension—
that is, if we select the qualified tag Par.y—we would produce the following
choice calculus expression in which the Par dimension has been eliminated
and each of its choices has been replaced by its second alternative.

dim Impl〈plus, times〉 in
twice y = Impl〈y+y, 2*y〉
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If we then select Impl.times, we obtain the plain Haskell function below.

twice y = 2*y

In this way, we can select each of the four variant implementations of twice
by making each possible combination of selections in the dimensions Par
and Impl. This conceptual mapping from sequences of tag selections to plain
object language variants is the basis for the formal semantics of the choice
calculus defined in Section 3.4.

3.2 Design of a Variation Representation

Having introduced the main concepts of the choice calculus, in this section
we motivate its design by discussing the rationale and significant design
decisions we encountered along the way.

3.2.1 Semantics-Driven Design

Traditionally, the definition of a language proceeds from syntax to semantics.
That is, first a syntax is defined, then a semantic model is decided upon,
and finally the syntax is related to the semantic model [Felleisen et al., 2009,
Fowler, 2005]. Elsewhere, however, we have proposed an inversion of this
process, where the semantic domain of the language is identified first, then
syntax is added incrementally and mapped onto this domain. We argue that
this semantics-driven approach to language design leads to more principled,
consistent, and extensible languages [Erwig and Walkingshaw, 2011a, 2012b].
In this subsection, we show how the semantics-driven approach motivates
aspects of the design of the choice calculus.

The first step in the semantics-driven design process is to identify a
semantic core that captures the essence of the domain as simply and generally
as possible. This is obviously not a deterministic process, requiring insight
and creativity by the language designers. For the domain of variational
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software, the fundamental operation seems to be selecting a program variant.
That is, the essential property of a variational program is that, through some
decision process, we can produce from it multiple different-but-related plain
programs. Generalizing this idea of selection to arbitrary variational artifacts,
we get as the basis for a denotational semantics a mapping from decisions to
plain artifact variants represented in some object language.

The next step of the semantics-driven design process is to identify a
minimal set of syntactic forms that support the creation of the denotations.
While ultimately we want to support many different features, it is important
to get this minimal core right first. An initial idea is to just represent the
mapping from decisions to variants explicitly, in a single construct. For
example, we might represent our twice example from the previous section
as a choice between the four different variant definitions, each labeled with a
unique name, as shown below.

〈x-plus: twice x = x+x, x-times: twice x = 2*x,

y-plus: twice y = y+y, y-times: twice y = 2*y〉

However, this representation clearly misses a key aspect of our domain,
which is that the we expect the variants of a variational artifact to be related,
otherwise there would be no advantage to combining them in a single
representation. This shows up in the above representation of the twice

example by a high percentage of repeated code.
Therefore, we want to capture the variation between related artifacts

locally, allowing us to reuse the shared context. Thus we need at least two
constructs: one to represent localized variation points, and one to support
the embedding of these variation points within a common context in the
object language. In the choice calculus, we call these constructs choices and
structures, respectively, and together they define the minimal core of the
choice calculus (see Section 3.3).
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This leaves us with several open language design questions. Recall that
the basis of our semantics is a mapping from decisions to variants. One
question is how to associate the decisions in this mapping with the resolution
of individual variation points (choices). What does a variation point look
like, and how does a decision resolve it into a non-variational expression?
Should a single decision affect many variation points, and if so, how? These
design questions are considered in Section 3.2.2. More fundamentally, we
can ask how do we represent variation and what kinds of variability should
a variation point express? This is the focus of Section 3.2.3.

3.2.2 Synchronizing Variation Points

As its name implies, the fundamental concept in the choice calculus is the
choice. A choice captures a point of variation within an artifact by explicitly
enumerating a list of alternative expressions, exactly one of which will be
included in any particular program variant.

As seen in Section 3.1, we associate a dimension name with each choice
in order to facilitate the resolution of choices into alternatives. When a tag is
selected from a dimension, each bound choice is replaced by the alternative
it contains that corresponds to the selected tag. This effectively synchronizes
every choice in the same dimension.

However, we can imagine many alternative ways of resolving choices
and organizing the variation space. One possibility is to simply let each
choice stand on its own. Then each variation point represents an independent
decision that must be made to produce a plain object language term from a
variational expression. For example, our twice program from the previous
section could be represented by stand-alone choices as follows.

twice 〈x, y〉 = 〈〈x, y〉+〈x, y〉, 2*〈x, y〉〉

Of course, this represents not just the four variants we originally intended,
but many other variants of dubious merit, such as twice x = 2*y, generated
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by selecting the first alternative in the first choice, and the second alternative
in other choices until a term with no variation is achieved. Although in this
case we can imagine factoring out the choices related to the parameter name
and reusing them in some way (for example, see Chapter 4), this solution
only works in the special case where all of the choices we want to synchronize
have exactly the same alternatives. Therefore, it seems clear that we want
some ability to synchronize the resolution of multiple choices.

Another possibility is to represent a choice as a direct mapping from tags
to alternative expressions. Choice synchronization is then supported through
overlapping choice domains—if the tag x is selected, every choice containing
x in its domain is replaced by the corresponding alternative. For example,
we can represent the twice program in this direct-tagging style as follows.

twice 〈x: x, y: y〉 = 〈plus: 〈x: x, y: y〉+〈x: x, y: y〉, times: 2*〈x: x, y: y〉〉

This implementation captures the exact same set of variants as the choice
calculus representation from the previous section.

The direct tagging approach is quite flexible and expressive. For example,
suppose we extend our twice example with a new function thrice that triples
the value of its argument, whose implementation is partially synchronized with
twice. (We also fix the parameter name to x for improved clarity.)

twice x = 〈plus: x+x, times: 2*x〉
thrice x = 〈times: 3*x, twice: x+twice x〉

Observe that the implementations of the two functions will be synchronized
if we select the times tag, but only twice supports the plus implementation,
while thrice provides an implementation that reuses twice, tagged twice.

However, such partial synchronization is highly dependent on the order
in which tags are selected. For example, observe that if we select either plus
or twice first, this will eliminate one of the two choices; we can then select the
times alternative in the remaining choice, revealing that the times alternatives
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are not really synchronized at all. Since different subsets of choices are
eliminated by different tags, it is impossible, in general, to enforce that the
selection of a tag will select every alternative associated with that tag. This
makes it hard to ensure that even basic properties are satisfied by all program
variants. This suggests that the direct-tagging approach is too unstructured
to be a foundation for theoretical research.

Organizing tags into dimensions provides a simple solution. Dimensions
are a bit like a type system for choices. By grouping the tags plus and times
into a single dimension Impl, we say that every choice in dimension Impl
must provide an alternative corresponding to each of those two tags. In other
words, all choices that have to do with the same variational concern must
have the same form. With this requirement, we no longer need to associate
tags with alternatives directly, relying instead on each alternative’s position
within the choice.

3.2.3 Alternative vs. Optional Variation

An even more fundamental question is whether sets of alternative expressions
are the best way to express variation points within an artifact. In Section 2.3
we have already made the case for extensional variation representations over
intensional ones. That is, representations where the differences between
variants are listed explicitly, rather than those based on transforming one
variant into another. However, even within the extensional view there are
many possible ways to capture these differences.

One alternative representation of variation points that must be considered
is one based on optionality rather than choices between alternatives. For
example, in the CIDE tool [Kästner et al., 2008a], variation points are indicated
by colored blocks of code that can either be included or not in each variant.
If a given feature is included in a variant, all blocks of the corresponding
color are included, otherwise they are excluded.
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Compared to alternative-based variation, optional variation is less expres-
sive since only syntactically optional subexpressions can be made variational.
For example, choosing C as an object language, statements and function
definitions can be marked optional since omitting them will still yield a
syntactically valid program, but many kinds of C expressions cannot be
varied since omitting them will produce a syntax error. Alternatives subsume
optionality as a special case. An optional expression is a choice between the
expression and a (meta)syntactic marker in the object language that repre-
sents an “empty” expression. This enforces that optional variation occurs
only where it is syntactically valid. We usually use the symbol ◦ to represent
an empty expression, but a more concrete example might be the empty
statement ; in the object language of C. For more on representing optional
variation in the choice calculus, see Section 6.1.2.

Many optionality-based approaches support arbitrary boolean inclusion
conditions on code that is marked as optional. For example, an optional
statement s may be associated with an inclusion condition such A ∧ (B ∨ C),
indicating that the statement should be included whenever features A and B
or features A and C are included. Any such inclusion condition can be repli-
cated in the choice calculus through choice nesting. For example, assuming
the left alternatives of dimensions A, B, and C indicate that the corresponding
feature is included, then A〈B〈s, C〈s, ◦〉〉, ◦〉 represents a statement s with the
inclusion condition above. However, complex conditions can require quite
large choice structures with many redundancies. The sharing constructs in
Chapter 4 can help, but ultimately, this represents a trade-off between the
simple regularity and expressiveness of the choice calculus compared to the
flexibility of arbitrary boolean inclusion conditions.

The implementation of choices by Kästner et al. [2011b] in TypeChef com-
bines the expressiveness of alternative-based approaches with the flexibility
of boolean inclusion conditions. The cost is a more complex choice structure.
As in CPP, in TypeChef there are no dimensions structuring the tag space.
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Instead, each alternative in a choice is labeled with a boolean combination of
tags, and the labels are constructed such that for any valid selection of tags,
exactly one label is true. This representation is maximally expressive but
makes structural analyses and transformations more difficult. Once again,
we prefer the simpler dimension-oriented structure, but there are advantages
to each approach.

3.3 Syntax of the Choice Calculus

Having introduced the main concepts of the choice calculus and the rationale
behind its design, in this section we define its syntax formally. This section
also shows how the choice calculus can be instantiated with different object
languages and extended with different language features to produce variant
choice calculi tailored to the needs of specific tasks. In fact, the dimension
declaration construct introduced in Section 3.1 is an optional extension
to support local dimension scoping and the naming of alternatives in a
dimension as tags. It can also be omitted, producing a choice calculus
with global dimension scoping and numbered alternatives. We make use of
such a variant to represent the types of variational programs in our work
on variational typing [Chen et al., 2012, 2013]. Thus, the choice calculus
presented in this chapter defines the kernel of an arbitrarily extensible family
of languages for representing variation in tree-structured artifacts.

3.3.1 Representing the Object Language

The goal of the choice calculus is to provide a formal model to represent
variation in all kinds of languages and documents. To this end, we employ a
simple tree model to represent the object language of the underlying artifact.
This allows us to focus on the variational aspects of the representation, while
providing a general and structured model to build on.
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e ::= a�e, . . . , e� Object Structure
| D〈e, . . . , e〉 Choice

Figure 3.1: Core choice calculus syntax.

When the object language is a programming language, this tree model
corresponds to an abstract syntax tree. In the twice example, although we
show the choice calculus notation embedded within the concrete syntax of
Haskell, this is not a textual embedding in the way that, for example, CPP’s
#ifdef statements annotate arbitrary lines of text in a program’s source code.
Instead, choices and dimensions annotate the abstract syntax tree of the
program. This imposes constraints on the placement and structure of choices
and dimensions. For example, every alternative of a choice must be of the
same syntactic category.

Although the underlying model always has this tree structure, whenever
possible we render examples using concrete syntax for readability, as we
did in Section 3.1. Sometimes, however, it is necessary to represent the
underlying tree structure of the object language explicitly, which we do
with Y-brackets. For example, we can render the AST for twice x = x+x as
=�twice, x, +�x, x��, that is, the definition is represented as a tree that has
the = operation at the root and three children, (1) the name of the function
twice, (2) its parameter x, and (3) the RHS, which is represented by another
tree with the operation + as a root, and its two arguments x and x as children.

More generally, an object language expression is given by some con-
stant information a and a possibly empty list of subexpressions, written
a�e1, . . . , en�. In this context, the term “expression” includes anything that
can be represented in the object language. Note that we usually omit the
brackets from the leaves of these expressions. So we write, for example,
+�x, x� rather than +�x��, x���, to explicitly represent the expression x+x.
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e ::= x Variable
| λx.e Abstraction
| e e Application
| D〈e, . . . , e〉 Choice

Figure 3.2: Variational lambda calculus.

The most minimal version of the choice calculus is shown in Figure 3.1,
consisting of the structure construct for representing object language terms
and choices for representing variation points. All other versions of the
choice calculus are either instantiations or extensions of this core language.
Instantiations replace the generic structure constructs with more specific
constructs related to a particular object language (see below). Meanwhile,
extensions add new functionality to the choice calculus. For example, local
dimension scoping can be added by the dimension declaration construct
introduced in Section 3.1, which is the focus of the next subsection.

The core choice calculus can be viewed as a rose tree with two different
types of nodes—choice nodes, which contain a dimension D, and structure
nodes, which contain some information a, specific to the object language.
This tree-view of choice calculus expressions is often useful. For example, we
have used it to describe many aspects of our variational unification algorithm
for inferring variational types in variational lambda calculus [Chen et al.,
2012, 2013].

Instantiating the choice calculus amounts to replacing the generic tree
structure construct, a�e, . . . , e�, with the constructs of a particular object
language. From another perspective, we can say that any object language
can be made variational by incorporating the desired constructs of the choice
calculus (at the minimum, choices). For example, Figure 3.2 shows the syntax
of a variational lambda calculus. This language can be viewed as either the
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e ::= ε Empty List
| cons a e Cons
| D〈e, . . . , e〉 Choice

Figure 3.3: Variational lists.

core choice calculus instantiated by the untyped lambda calculus, or the
untyped lambda calculus extended with choices.

The concept of instantiation is also a basis for variational data structures.
Essentially, any data structure that can be represented by an algebraic data
type can be made variational by simply extending the data type with a
construct for choices. For example, Figure 3.3 gives the syntax of variational
lists. With this language we can write expressions like cons 1 A〈cons 2 ε, ε〉,
which represents either the list [1,2] or the list [1], depending on the
selection in the dimension A.

Variational data structures have many applications. Obvious examples are
to support tools and analyses related to variational software [Classen et al.,
2011, Kenner et al., 2010]. but many more general examples are discussed in
Chapter 7. Elsewhere, we have described the utility of variational graphs and
data structures that support variational graph algorithms [Erwig et al., 2013b].
Although we mostly focus on variational software here, these applications
emphasize the fact that the choice calculus is not just about software, but
about identifying a general model of variation that applies in a broad range
of contexts.

3.3.2 Structuring the Variation Space

As motivated in Section 3.2.2, choices are organized and synchronized
through the use of dimensions of variation. It is important to separate
the concept of a dimension from the dimension declaration construct dim,
introduced in Section 3.1. While the dimension name associated with each
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e ::= a�e, . . . , e� Object Structure
| dim D〈t, . . . , t〉 in e Dimension
| D〈e, . . . , e〉 Choice

Figure 3.4: Choice calculus with local dimension declarations.

choice is a fundamental feature of the choice calculus, dim declarations can
be considered an optional extension to the core choice calculus defined in
the previous subsection (albeit one that has been a part of the language since
the beginning [Erwig and Walkingshaw, 2011b]).

In the absence of local dimension declarations, we can assume that all
dimensions in a choice calculus expression are globally scoped. This is sig-
nificant because local dimension declarations can complicate many kinds
of analyses. A motivation for globally scoped dimensions in the context of
variational type inference is given in our previous work [Chen et al., 2013].
Alternatively, we can imagine many other kinds of dimension declaration and
scoping mechanisms, aside from the dim construct. For example, we might
associate dimensions with modules and allow more complex constraints
between dimensions, as in the model by Kästner et al. [2012b].

With all of that said, throughout most of this thesis, we assume a choice
calculus including local dimension declarations. This is not a limiting assump-
tion since we can simulate global dimension scoping by simply declaring all
dimensions once, at the top of an expression, then proceeding as if dimen-
sions are globally scoped.

The syntax of the core choice calculus extended with the dim construct
is given in Figure 3.4. This is the version of the choice calculus we will
use in the rest of this chapter. The well-formedness property, denotational
semantics, equivalence rules, and variational design theory are all defined in
terms of this syntax. It is also the basis for the language extensions described
in Chapters 4 and 5.
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One useful feature of local dimension declarations is that a dimension can
be dependent on a decision in another dimension. For example, consider the
following three alternative implementations of twice, where the variants in
the bottom row implement the function with a lambda expression, while the
variant in the top row uses Haskell’s operator section notation to define the
function in a pointfree way (that is, without explicitly naming the variable).

twice = (2*)

twice = \x -> 2*x twice = \y -> 2*y

Once again we have two dimensions of variation. We can choose a pointfree
representation or not, and we can also choose the parameter name. In this
case, however, it doesn’t make sense to select a parameter name if we choose
the pointfree style, because there is no parameter name! In other words, the
parameter name dimension is only relevant if we choose “no” in the pointfree
dimension. In the choice calculus, a dependent dimension is realized by
nesting its declaration in an alternative of a choice in another dimension, as
demonstrated below.

dim Pointfree〈yes, no〉 in
twice = Pointfree〈(2*), dim Par〈x, y〉 in \Par〈x, y〉 -> 2*Par〈x, y〉〉

If we select Pointfree.yes, we get the variant twice = (2*), with no more selec-
tions to make. However, if we select Pointfree.no we must make a subsequent
selection in the Par dimension in order to fully resolve the choice calculus
expression into a particular variant.

In this way, the dim construct not only provides a scoping mechanism for
dimension names, but also a way to do some basic variation modeling (see
Section 2.2) by controlling which decisions are independent and which are
dependent on a particular selection in another dimension.
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W-Obj

Γ ` e1 wf . . . Γ ` en wf

Γ ` a�e1, . . . , en� wf

W-Dim

Γ, D : n ` e wf n > 0

Γ ` dim D〈t1, . . . , tn〉 in e wf

W-Chc

D : n ∈ Γ Γ ` ei wf

Γ ` D〈e1, . . . , en〉 wf

Figure 3.5: Well-formedness judgment.

3.3.3 Well Formedness and Other Static Properties

There are a few syntactic constraints on choice calculus expressions not
captured by the syntax. (1) Each dimension must declare at least one tag.
(2) All tags declared in a single dimension declaration must be pairwise
different. (3) Each choice must be bound by a corresponding dimension
declaration. (4) There must be exactly as many alternatives in a choice as
there are tags in its binding dimension declaration. We call an expression
that satisfies all of these constraints well formed.

The well-formedness property is defined by the judgment Γ ` e wf, which
states that expression e is well formed in context Γ. The well-formedness
judgment is defined in Figure 3.5. The context Γ maps dimension names to
the number of tags/alternatives in that dimension. A structure node is well
formed if each of its subexpressions is well formed. A dimension declaration
is well formed if it defines at least one tag and its scope is well formed in the
context extended with the newly declared dimension. Finally, a choice is well
formed if it contains the appropriate number of alternatives and each of its
subexpressions is well formed.

Using this judgment, we can say that an expression e is well formed if it
is well formed in the empty context, that is, ∅ ` e wf.
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We can also refer to the dimensions that are bound or free in a given choice
calculus expression. The bound dimensions in expression e, written BD(e),
are the set of dimension names that are declared in e. Meanwhile, the free
dimensions in e, written FD(e), are the set of dimension names that are
referred to by choices in e that are not bound by a corresponding dimension
declaration. This is similar to the standard definition of “free variables”.

Note that it is possible for a single dimension name D to be both
bound and free in the same expression. For example, in the expression
D〈1, dim D〈t, u〉 in 2〉, dimension D is free since the choice referring to D is
not bound by a corresponding dimension declaration, but D is also a bound
dimension in D because of the dependent dimension declaration. In this case,
the free dimension D is a different dimension than the bound dimension D,
although there is no way to determine this from the name alone.

Figure 3.6 defines the functions BD(·) and FD(·) for computing the bound
and free dimensions of a choice calculus expression, respectively. In the
definitions, the notation xn can be expanded to the sequence x1, . . . , xn. The
notation i ∈ n means for every i ∈ {1, . . . , n}. Both of these notations will be
used throughout this thesis.

An expression e is called dimension linear if all bound dimensions in e
are pairwise different. The rationale for this definition is that a dimension
linear expression can be transformed into a useful normal form in which
dimension declarations are maximally factored (see Section 3.5.3). Note that
any expression can be made dimension linear by simply renaming conflicting
dimensions and their bound choices.

Finally, it is often useful to talk about choice calculus expressions that do
not include a particular syntactic category s. We say that such expressions are
s free. For example, a choice-free expression does not contain any choices (but
may still contain dimension declarations, structures, or any other syntactic
categories. Additionally, we say that an expression is variation free if it is
both dimension free and choice free. Finally, a choice calculus expression
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BD(a��) = ∅

BD(a�en�) = ∪i∈nBD(ei)

BD(D〈en〉) = ∪i∈nBD(ei)

BD(dim D〈tn〉 in e) = {D}

FD(a��) = ∅

FD(a�en�) = ∪i∈nFD(ei)

FD(D〈en〉) = {D} ∪ (∪i∈nFD(ei))

FD(dim D〈tn〉 in e) = FD(e)− {D}

Figure 3.6: Bound and free dimensions.

is considered plain if it contains only structure nodes—or only syntactic
categories related to the object language, if the choice calculus has been
instantiated by a particular object language. That is, a plain expression
represents a non-variational term in the object language (e.g. a plain Java
program). For now, all variation free expressions are also plain, but as we
add new syntactic categories by various language extensions, this will no
longer be the case.

3.4 Compositional Denotational Semantics

As established in Section 3.2.1, the semantics basis for the choice calculus is a
mapping from decisions to plain expressions, that is, a mapping from decisions
to the artifact variants that those decisions produce. Relating this to the
syntax, we see that dimension declarations define the decisions that must be
made, structure nodes describe pieces of the artifact that will be produced by
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[[dim A〈a, b〉 in dim B〈c, d〉 in A〈B〈1, 2〉, B〈3, 4〉〉]] =
{([A.a, B.c], 1), ([A.a, B.d], 2),

([A.b, B.c], 3), ([A.b, B.d], 4)}

[[dim C〈e, f 〉 in C〈1, dim D〈g, h〉 in D〈2, 3〉〉]] =
{([C.e], 1), ([C. f , D.g], 2), ([C. f , D.h], 3)}

Figure 3.7: Denotational semantics of some example expressions.

those decisions, and choices relate the two by associating alternatives with
the decisions made about the dimensions.

Formally, a decision is represented by a sequence of qualified tags, where
a qualified tag D.t is a tag t prefixed by its dimension D. We use the meta-
variable q to range over qualified tags, δ to range over decisions, and ε to
represent the empty decision containing no tags. Finally, we use adjacency,
such as qδ, to prepend a tag q to an existing decision δ, and to concatenate
two decisions δ and δ′, as δδ′.

The variant corresponding to a particular decision can be obtained from
a choice calculus expression through a process called tag selection. The
order that tags are selected from an expression is determined by the order
that dimension declarations are encountered during a pre-order traversal
of the expression. For example, consider the two example expressions in
Figure 3.7. The denotational semantics of each expression is given explicitly
as a set of decision/plain-expression pairs. Observe in the first example that
the tags in dimension A always appear before tags in dimension B since
the declaration of A occurs before the declaration of B. Strictly ordering
the tag selections reduces unnecessary selections and redundant entries in
the semantics. This can be observed in the second expression, where the
dimension D is dependent on the selection of C. f (see Section 3.3.2). When
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ba�e1, . . . , en�cD.i = a�be1cD.i, . . . , bencD.i�

bD′〈e1, . . . , en〉cD.i =

{
beicD.i if D = D′

D′〈be1cD.i, . . . , bencD.i〉 otherwise

bdim D′〈tn〉 in ecD.i =

{
dim D′〈tn〉 in e if D = D′

dim D′〈tn〉 in becD.i otherwise

Figure 3.8: Definition of choice elimination.

selecting tag C.e, the D dimension declaration is eliminated before it is
ever evaluated, so it does not appear in the decision of the first entry in
the semantics. In the other cases, when C. f is chosen, the declaration of
dimension D remains, so a tag must also be selected from D to produce the
variants 2 and 3.

Tag selection thus consists of (1) identifying the next dimension declara-
tion, (2) selecting a tag, (3) eliminating the choices bound by that dimension,
and then (4) eliminating the dimension declaration itself.

We call step (3) of the tag selection process choice elimination and define it
as follows. Given a dimension declaration dim D〈t1, . . . , tn〉 and a selected
tag ti, we write becD.i to replace every free choice D〈e1, . . . , en〉 in e with
its ith alternative, ei. A formal definition of choice elimination is given
in Figure 3.8. The case for structure nodes, non-matching choices, and
declarations of differently named dimensions just propagate the selection
to their subexpressions. There are two interesting cases: First, recursion
ceases if another declaration of dimension D is encountered, preserving local
dimension scoping. Second, after a matching choice is replaced by its ith
alternative ei we recursively apply choice elimination to ei. This means that
we can nest choices in the same dimension, such as D〈D〈1, 2〉, 3〉, and they
will always both be eliminated by any selection in D. This makes it impossible
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[[a��]] = {(ε, a��)}
[[a�en�]] = {(δn, a�e′n�) | ((δi, e′i) ∈ [[ei]])

i:1..n}
[[dim D〈tn〉 in e]] = {(D.ti δ, e′) | i ∈ {1, . . . , n}, (δ, e′) ∈ [[becD.i]]}

Figure 3.9: Denotational semantics of choice calculus expressions.

to select 2 from the nested choice above, so the second alternative of the inner
choice is unreachable and can be considered dead. In our Section 3.6, we
provide strategies for removing dead alternatives and other kinds of dead
subexpressions.

Armed with choice elimination, we define the denotational semantics of
the choice calculus in Figure 3.9. The semantics of a leaf node is trivial. For
an internal structure node a�en�, we effectively compute the n-ary product of
the semantics of the subexpressions by taking one pair (δi, e′i) from each [[ei]],
then forming a new pair by concatenating each decision δ1 . . . δn and building
the resulting plain expression a�e′1, . . . , e′n�. For a dimension declaration the
semantic function recursively computes the semantics of the scope for each
possible tag selection.

Note that there is no case for choices in the definition of [[·]]. This is
because the semantics is defined only for well-formed expressions. If an
expression e is well formed, then all of its choices are bound by a correspond-
ing dimension declaration. Since the semantics of a dimension declaration
recursively eliminates all of its bound choices, [[·]] will never be invoked on a
choice expression.

More generally, we express the fact that the semantics is defined for any
well-formed choice calculus expression in the following lemma.

Lemma 3.4.1. If ∅ ` e wf, then [[e]] is defined.
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This can be proved by induction on the structure of e using the argument
above and the fact that the well-formedness property ensures that choice
elimination will never be invoked on a choice with too few alternatives.

The important property of the semantics function is that it computes
denotations that are mappings from decisions to plain variants.

Theorem 3.4.2. If ∅ ` e wf, then ∀e′ ∈ rng([[e]]) : e′ is plain.

Proof. By induction on the structure of e. When e = a��, the only variant
is trivially plain. When e = a�en�, then for each resulting variant a�e′n�,
each subexpression e′i is plain by the induction hypothesis, so a�e′n� is also
plain. When e = dim D〈tn〉 in e′, the variability introduced by dimension
D is eliminated in each variant, which is otherwise plain by the induction
hypothesis. The case e = D〈en〉 cannot occur by Lemma 3.4.1.

The denotational semantics defined above is compositional in the sense
that the denotation of each expression is constructed from the denotations
of its subexpressions [Gunter, 1992, p. 21]. This is an important quality
because it supports modular language extensions. For any language extension,
assuming it can be mapped to the same semantics basis in a way that can
also be expressed compositionally, we need only define the semantics of the
new syntactic forms. Then we can reuse the semantics of existing forms
unchanged. This is one of the main motivations behind semantics-driven
language design (see Section 3.2.1), and it directly supports the view of the
choice calculus as a family of languages where we can selectively choose
which language features we want for a particular task or domain.

3.5 Semantics-Preserving Transformations

We can observe that the choice calculus representation is not unique, that
choices can be represented at different levels of granularity, and that dimen-
sion definitions can be moved around too. For example, the three expressions
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e = dim A〈a, b〉 in 5+A〈1, 2〉
e′ = dim A〈a, b〉 in A〈5+1, 5+2〉
e′′ = 5+dim A〈a, b〉 in A〈1, 2〉

Figure 3.10: Three semantically equivalent expressions.

in Figure 3.10 are all semantically equivalent, that is, [[e]] = [[e′]] = [[e′′]]. This
observation raises several questions: Does it matter which representation is
chosen? Is one representation strictly better than another? Or do we need
different representations and operations to transform between them?

It may be that different representations are useful for different purposes.
For example, maximally factored choices (as in e and e′′) isolate variability
and maximize the sharing of common contexts as much as possible; this
minimizes space requirements and avoids update anomalies during editing.
On the other hand, fewer and bigger choices that repeat common parts may
be better suited for comparing alternatives than many fine-grained choices.
Moreover, having dimensions as close to the top of the expression as possible
(as in e and e′) reveals the variational structure better than deeply nested
dimensions. This might be desirable or not, depending on the context.

In Section 3.5.1 we identify a complete set of equivalence rules between
choice calculus expressions that can be used to transform expressions into
a desired form without changing its semantics. As the choice calculus is
extended with new language features in future chapters, this equivalence
relation will be extended as well. If the choice calculus is instantiated by
a particular object language, the rules can be similarly instantiated. We
illustrate this in Section 3.5.2 by presenting the equivalence rules for the
variational lambda calculus, whose syntax is given in Figure 3.2. Finally, in
Section 3.5.3 we identify some useful normal forms and describe when and
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Chc-Obj

D〈a�en[i : e′j]�
j:1..k〉 ≡ a�en[i : D〈e′j:1..k〉]�

Chc-Dim

D 6= D′

D〈(dim D′〈tm〉 in ei)
i:1..n〉 ≡ dim D′〈tm〉 in D〈en〉

Chc-Chc-Swap

D〈D′〈[en[i : e′j]〉j:1..k〉 ≡ D′〈en[i : D〈e′j:1..k〉]〉

Figure 3.11: Choice commutation rules.

how they can be attained by applying the equivalence rules as semantics-
preserving transformations.

3.5.1 Equivalence Rules

A complete set of equivalence rules for the choice calculus can be obtained
by observing that in principle any syntactic form, that is, Object Structure,
Choice, or Dimension, can be commuted with any other. An attempt to
systematically enumerate all possibilities reveals further that not only can
we commute choices with other choices, we can also merge two choices in
the same dimension. The naming of rules presented in this section are based
on this enumeration, using a three-letter code for each syntactic construct
being commuted (Obj, Chc, and Dim, respectively), with an optional suffix
indicating further detail.

We present the rules in several groups. First, we show rules for factoring
and distributing choices across other syntactic constructs in Figure 3.11. The
rules make use of a notational convention to expose the ith element of a
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Chc-Idemp

(e ≡ ei)
i:1..n

D〈en〉 ≡ e

Chc-Chc-Merge

D〈en[i : D〈e′n〉]〉 ≡ D〈en[i : e′i]〉

Figure 3.12: Choice simplification rules.

sequence. The pattern notation en[i : e′] expresses the requirement that ei has
the form given by the expression (or pattern) e′. For example, en[i : e′+1] says
that ei must be an expression that matches e′+1, so the entire sequence en has
the form e1, . . . , ei−1, e′+1, ei+1, . . . , en.

When applied right to left (RL), the Chc-Obj rule lifts a choice out of the ith
subexpression of a structure, repeating the previously shared context in each
alternative. For example, given the expression 1�2, 3, A〈4, 5, 6〉�, applying the
Chc-Obj rule RL with i = 3 yields A〈1�2, 3, 4�, 1�2, 3, 5�, 1�2, 3, 6�〉. Applied
left to right (LR), the rule can be used to factor the shared parts of a structure
out of a choice. In a similar way, the Chc-Chc-Swap rule applied RL lifts
a choice out of the ith alternative of another choice (which may or may
not be in the same dimension). However, when commuting choices and
dimension declarations with rule Chc-Dim, we must ensure that they use
different dimension names, otherwise the choice will escape (when applied
RL) or be captured (when applied LR) by the dimension declaration, changing
the semantics of the expression. Also note in the Chc-Dim rule that the same
dimension declaration must occur in every alternative of the choice in order
to be factored out. Otherwise D′ is dependent on a subset of the tags in D
and so cannot be factored out without changing the semantics.

We can also observe that some choices are semantically meaningless and
can therefore be eliminated. The two choice simplification rules are given
in Figure 3.12. When applied LR, the Chc-Idemp rule states that if every
alternative of a choice is equivalent to some expression e, the choice can be
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replaced by e. Applied RL, it supports the introduction of a choice between
equivalent alternatives.

The Chc-Chc-Merge rules reveal the property that outer choices domi-
nate inner choices in the same dimension. For example, D〈D〈1, 2〉, 3〉 is
semantically equivalent to D〈1, 3〉 since the selection of the first alternative
in the outer choice implies the selection of the first alternative in the inner
choice. In this case, we say that the alternative 2 is dead since it can never
be selected. When applied LR, the Chc-Chc-Merge rule eliminates a domi-
nated choice by replacing it with the only live alternative e′i. When applied
RL the Chc-Chc-Merge introduces a dominated choice with arbitrary dead
alternatives.

Having enumerated the commutation of choices with all constructs, we
are left to consider the commutation of dimensions and structures. Note
that we cannot commute two dimension declarations since their order is
reflected in the semantics by the order that tags appear in decisions. We also
cannot, in general, commute structures with structures since it might change
the resulting variants. However, we can commute dimension declarations
with structures, as long as the commutation does not alter the scope of the
declaration or the ordering of dimensions. These conditions are reflected
in the premises of the Dim-Obj equivalence rule in Figure 3.13. Considering
the rule applied RL, the first premise ensures that lifting the dimension
declaration out of the structure does not capture any free choices in the other
subexpressions. The second premise states that if we lift the dimension out
of the ith subexpression of the structure, then there can be no dimension
declarations in subexpressions 1 through i− 1 since otherwise the ordering of
dimension declarations (determined by a preorder traversal of the expression)
would be altered. This means that in order to factor a dimension declaration
out of the ith subexpression, we must first factor all dimension declarations
out of the preceding subexpressions. This strategy is applied to achieve
dimension normal form in Section 3.5.3.
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Dim-Obj

D /∈ ∪j 6=iFD(ej) (BD(ej) = ∅)j:1..i−1

dim D〈tm〉 in a�en[i : e]� ≡ a�en[i : dim D〈tm〉 in e]�

Figure 3.13: Dimension-structure commutation.

Refl

e ≡ e

Symm

e ≡ e′

e′ ≡ e

Trans

e1 ≡ e2 e2 ≡ e3

e1 ≡ e3

Cong

e ≡ e′

C[e] ≡ C[e′]

Figure 3.14: Properties of the equivalence relation.

Finally, in Figure 3.14 we add reflexivity, symmetry, and transitivity rules
to make ≡ an equivalence relation. We also add a congruence rule to support
transformations within a common context.

The defining feature of the equivalence relation is that equivalent expres-
sions have the same semantics. That is, the equivalence relation is sound
(though we do not claim that it is complete). Equivalently, we can say that the
transformations defined by the the equivalence rules are semantics preserving.
This quality is captured in the following theorem.

Theorem 3.5.1. If Γ ` e wf, then e ≡ e′ =⇒ [[e]] = [[e′]]

A mechanized proof of this theorem for a simplified version of the choice
calculus is given in Appendix A. A more traditional proof (that also includes
proofs of the equivalence rules related to the share construct introduced in the
next chapter) can be found in our previous work [Erwig and Walkingshaw,
2011b].
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Chc-Abs

D〈λx.e1, . . . , λx.en〉 ≡ λx.D〈e1, . . . , en〉

Chc-App-l

D〈e1 e′, . . . , en e′〉 ≡ D〈e1, . . . , en〉 e′

Chc-App-r

D〈e e′1, . . . , e e′n〉 ≡ e D〈e′1, . . . , e′n〉

Figure 3.15: Chc-Obj equivalence rule instantiated by lambda calculus.

3.5.2 Instantiating the Equivalence Rules

This section will briefly illustrate how the equivalence rules can be instan-
tiated for a particular object language, demonstrating that the equivalence
rules are generic with respect to the underlying structure of the artifact.

Recall that we instantiate the choice calculus syntax by replacing the
structure construct with the constructs of the object language syntax. This was
illustrated in Section 3.3.1 by instantiating the choice calculus by the lambda
calculus. In this section we will show how choices and dimensions commute
with lambda calculus syntax. This amounts to instantiating the Chc-Obj

and Chc-Dim equivalence rules from Section 3.5.1 with the abstraction and
application constructs of the lambda calculus (the variable reference syntactic
form does not have any subexpressions, and so does not commute with
choices or dimensions).

Figure 3.15 shows the instantiation of the Chc-Obj rule. Note that the
instantiation produces three rules: one for the abstraction construct, and two
for the application construct since we can commute with either the left or
right subexpression of an application. The important quality of these rules is
that they are derived from the Chc-Obj rule—no additional insight about the
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Dim-Abs

dim D〈tn〉 in λx.e ≡ λx.dim D〈tn〉 in e

Dim-App-l
D /∈ FD(e′)

dim D〈tn〉 in e e′ ≡ (dim D〈tn〉 in e) e′

Dim-App-r
D /∈ FD(e) BD(e) = ∅

dim D〈tn〉 in e e′ ≡ e (dim D〈tn〉 in e′)

Figure 3.16: Dim-Obj equivalence rule instantiated by lambda calculus.

object language is required. Conceptually, we can map each form on the LHS
side of an instantiated equivalence rule to the generic structure representation
of the uninstantiated choice calculus, set the parameter i according to the
subexpression we want to commute with, perform the transformation using
the Chc-Obj rule, then transform the result back into the object language to
obtain the form on the RHS of the instantiated rule.

Figure 3.16 shows the instantiation of the Dim-Obj rule with the lambda
calculus, which is derived from the Dim-Obj rule in the same way that the
previous set of rules were derived from the Chc-Obj rule. Note that the
premises in all three rules are simplified, relative to Dim-Obj, by the fact that
in each case i is fixed and we have a known number of subexpressions. For
example, in the rule Dim-Abs, since we only have one subexpression, the
premises of Dim-Obj are trivially satisfied, so both can be omitted. Likewise,
in the rule Dim-App-l, since i = 1 the second premise of Dim-Obj is trivially
satisfied and thus omitted.
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3.5.3 Dimension and Choice Normal Forms

The rules presented in Section 3.5.1 can be used to transform expressions in
many different ways. In this section we identify three strategically significant
representations: dimension normal form, choice normal form, and dimension-choice
normal form. We then show that any expression can be transformed into choice
normal form and that any dimension-linear expression can be transformed
into dimension normal form and consequently, dimension-choice normal
form.

We say that an expression e is in choice normal form (CNF) if it contains only
choices that are maximally factored. That is, e is in CNF if no subexpression
of e matches the LHS of any of the choice commutation rules in Figure 3.11,
or the choice simplification rules in Figure 3.12, without violating a premise.
CNF is significant because it minimizes redundancy in the representation.

Similarly, we say that an expression is in dimension normal form (DNF) if
all dimensions are maximally factored. A dimension is maximally factored
if its declaration appears at the top of the expression, at the top of an al-
ternative within a choice, or directly beneath another maximally-factored
dimension. DNF is convenient because it groups dimensions according to
their dependencies. For example, all dimensions at the top of an expression
are independent—the selection of any tag in an independent dimension does
not affect the possible selections in other independent dimensions. Dimen-
sions grouped within an alternative are dependent on the tag corresponding
to that alternative being chosen—if the tag is not chosen, we need not make
a selection in any dimensions in the group.

Finally, we say that an expression is in dimension-choice normal form (DCNF)
if it is in choice normal form and in dimension normal form. DCNF combines
the benefits of both CNF and DNF, avoiding redundancy and clearly revealing
the dimension structure. We say that an expression is linearly dimensioned if it
is both well formed and dimension linear (see Section 3.3.3). In the following
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we will show that any linearly dimensioned expression can be transformed
into DCNF.

First, any expression e can be transformed into an equivalent expression e′

that is maximally choice factored (in CNF). This can be achieved by repeatedly
applying the rules in Figure 3.11 and Figure 3.12 from left to right.

Lemma 3.5.2. ∀e. ∃e′. e ≡ e′ ∧ e′ is in CNF.

Proof. The definition of CNF is based on the applicability of the transforma-
tion rules. For an expression e, there are two possibilities: Either no rule
can be applied, in which case e is in CNF already. Otherwise, a rule can be
applied, which yields an expression e′ to which the same reasoning can be
applied inductively.

Now we must only show that this induction terminates. To support this,
we define a measure, called the choice height of an expression e, as follows.
Viewing e as a tree, the height of an individual choice is the length of the
longest path from the choice to a leaf. Then the overall choice height of e is
the sum of the heights of all choices. Now we can observe that the minimum
choice height of an expression is 0, and that every rule Chc-* when applied LR

strictly reduces the choice height. The rules, Chc-Chc-Swap, Chc-Chc-Merge,
and Chc-Idemp all reduce the choice height by eliminating choices completely,
while Chc-Obj and Chc-Dim reduce the choice height by moving a choice
downward in the tree. Since the choice height of e is bounded and strictly
decreasing, the transformation terminates.

Lemma 3.5.2 is significant on its own, demonstrating that any expression
can be transformed into CNF, minimizing redundancy. However, only ex-
pressions that are linearly dimensioned can, in general, be brought into
dimension normal form.

Lemma 3.5.3. If e is linearly dimensioned, then ∃e′ in DNF such that e ≡ e′.

Proof. This result follows from the fact that we have a rule for moving a
dimension out of each syntactic category. The premises that would prevent
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the application of a rule are of two forms: Either they (1) prevent the capture
of free choices or they (2) constrain the order in which the rules can be
applied. Premises of form (1) will never fail since e is well formed and
also dimension linear. Premises of form (2) can be satisfied by factoring all
dimensions out of left subexpressions before factoring dimensions out of
right subexpressions.

From Lemma 3.5.2 and Lemma 3.5.3 the following result about dimension-
choice normal form follows directly.

Theorem 3.5.4. If e is linearly dimensioned, then ∃e′ in DCNF such that e ≡ e′.

Recall the three example equivalent expressions from this section’s lead,
given in Figure 3.10. Comparing these to the definitions above, we see that e
is in DCNF, while e′ is (only) in DNF and e′′ is (only) in CNF.

3.6 Variation Design Theory

We can observe that not every choice calculus expression is a good repre-
sentation of variation. A trivial example is a choice of the form D〈e, e〉 that
contains two identical alternatives. Since it does not matter which alternative
we select, the choice is superfluous and could simply be replaced by e.

In this section we will formalize several quality criteria for choice calculus
expressions that can serve as guidelines for the design of “good” represen-
tations of variation. In Section 3.6.1, we describe the difference between
syntactic and semantic approaches to deriving design criteria and motivate
the semantic basis used throughout this section. In Section 3.6.2, we develop
a semantic criterion for identifying equivalent alternatives in choices and
equivalent tags in dimensions. We describe how to determine when these
equivalent features are redundant and define transformations to remove
them when they are. In Section 3.6.3, we develop a semantic criterion for
identifying superfluous choices and dimensions and, again, transformations
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to remove them. Finally, in Section 3.6.4, we define a transformation for elim-
inating undesirable choice nesting patterns in order to remove unreachable
alternatives.

3.6.1 Syntactic vs. Semantic Design Criteria

There are two ways to approach the formalization of variation design criteria.
First, we can pursue a syntactic approach and identify patterns in choice
calculus expressions directly, as we have done with the example D〈e, e〉.
However, it is not always syntactically obvious when two expressions are
equivalent. Consider the following choice calculus expression abc.

dim A〈a, b〉 in (abc)
dim B〈c, d〉 in
dim C〈e, f 〉 in
A〈B〈C〈1, 2〉, C〈3, 4〉〉, C〈B〈1, 3〉, B〈2, 4〉〉〉

In this example, the dimension A is superfluous—that is, the two alternatives
of the only choice in A are equivalent, so it doesn’t matter which tag in
dimension A we choose—but this is difficult to see in the syntax. A proof is
given in Figure 3.17 by transforming the right alternative of the choice in A
into the left alternative through a sequence of applications of the semantics-
preserving transformation rules given in Section 3.5. This transformation is
described in detail below.

The high-level goal is to swap the nesting of the choices in dimen-
sions B and C. To do this we will have to apply the Chc-Chc-Swap and
Chc-Chc-Merge rules several times. We begin in step (1) by applying
Chc-Chc-Swap with i = 1, to lift the first choice in B to the root of the
expression. Now the two inner choices in B are dominated by the outer
choice (see Section 3.5), but we cannot eliminate them straightaway since
the only transformation rule that can eliminate a dominated choice is the
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C〈B〈1, 3〉, B〈2, 4〉〉 ≡ B〈C〈1, B〈2, 4〉〉, C〈3, B〈2, 4〉〉〉 (1)

≡ B〈B〈C〈1, 2〉, C〈1, 4〉〉, C〈3, B〈2, 4〉〉〉 (2)

≡ B〈B〈C〈1, 2〉, C〈1, 4〉〉, B〈C〈3, 2〉, C〈3, 4〉〉〉 (3)

≡ B〈C〈1, 2〉, B〈C〈3, 2〉, C〈3, 4〉〉〉 (4)

≡ B〈C〈1, 2〉, C〈3, 4〉〉 (5)

Figure 3.17: Proof that C〈B〈1, 3〉, B〈2, 4〉〉 ≡ B〈C〈1, 2〉, C〈3, 4〉〉.

Chc-Chc-Merge rule, which requires the dominated choice to be nested di-
rectly within the dominating choice. Therefore, we must apply Chc-Chc-Swap

twice more to setup our applications of Chc-Chc-Merge. In step (2), we apply
Chc-Chc-Swap with i = 2 to the first alternative of the previous result, and
in step (3), we do the same in the second alternative. Now the two inner
choices in dimension B are nested directly beneath the outer choice in B, so
we can apply Chc-Chc-Merge twice to eliminate them. In step (4) we apply
Chc-Chc-Merge to the root with i = 1. In step (5) we do the same with i = 2.

Since the two alternatives of the choice in dimension A are equivalent,
the expression abc is semantically isomorphic to the simple example D〈e, e〉.
Just as in the simple case, we can replace the choice in A with either of
its alternatives without changing the meaning of the expression. However,
unlike D〈e, e〉, this fact is not syntactically obvious in the expression abc, as
reflected by the non-trivial proof required to show that the two alternatives
are equivalent.

As a different approach, we can formulate design criteria based on the
semantics of choice calculus expressions. This means that we will attempt
to recognize “bad” expressions not by looking at their syntactic forms, but
by analyzing their semantics. This leads to a much simpler theory. For
example, in expression abc, the replacement of the choice in A with one of its
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[[abc]] = { ([A.a, B.c, C.e], 1), ([A.a, B.c, C. f ], 2),
([A.a, B.d, C.e], 3), ([A.a, B.d, C. f ], 4),
([A.b, B.c, C.e], 1), ([A.b, B.c, C. f ], 2),
([A.b, B.d, C.e], 3), ([A.b, B.d, C. f ], 4) }

Figure 3.18: Semantics of expression abc.

alternatives can be much more simply motivated by the fact that doing so
does not change its semantics.

However, requiring semantic equivalence seems too strong a basis for an
interesting design theory. With expression abc we can reasonably argue that
since the only choice in A can be removed, any selection in A is irrelevant so
the dimension itself should also be removed. The following expression bc is
not semantically equivalent to abc, but it seems a valid simplification by the
above argument.

dim B〈c, d〉 in (bc)
dim C〈e, f 〉 in
B〈C〈1, 2〉, C〈3, 4〉〉

Compare the semantics of expression bc, given explicitly below, to the seman-
tics of abc shown in Figure 3.18.

[[bc]] = {([B.c, C.e], 1), ([B.c, C. f ], 2), ([B.d, C.e], 3), ([B.d, C. f ], 4)}

Observe that although the simplification from abc to bc is not semantics
preserving, it is variant preserving in the following sense.

The variants of an expression e are the set of plain values that can be
selected from it, obtainable from the denotational semantics as rng([[e]]).
Based on this, we say that two expressions e and e′ are variant equivalent,
written e ∼ e′, if rng([[e]]) = rng([[e′]]). And we call a transformation that
maps e to e′ variant preserving if e ∼ e′.
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Since the goal of variational software is ultimately to represent a set of
related programs variants, variant equivalence seems a reasonable basis for a
variation design theory. Using this, we see that abc ∼ bc, since the variants
represented by each expression are {1, 2, 3, 4}. So the transformation from
abc to bc is variant preserving, and thus justified according to this criterion.

Compared to the syntactic approach, the semantic approach (based on
variant preservation) provides a simpler and more general basis for a varia-
tion design theory. This is because it flattens the potentially complex structure
of a choice calculus expression into a simple set of plain variants.

In the rest of this section we explore various redundancies that can occur
in choice calculus expressions and describe the corresponding simplifica-
tions that can eliminate them. In Section 3.6.2, we investigate the binary
equivalence of alternatives and tags. For equivalent tags, we define a variant-
preserving transformation that reduces the size of the affected dimensions
and choices. We explain why we do not do the same for equivalent alterna-
tives. In Section 3.6.3, we lift the equivalence relations to sets of alternatives
and tags, which correspond to choices and dimensions, and define variant-
preserving transformations to eliminate these when needed as well.

3.6.2 Equivalent Alternatives and Tags

The simplest form of equivalence we can observe is between different alter-
natives in a single choice. We say that two alternatives ei and ej of a choice
D〈e1, . . . , en〉 are equivalent in context C, written ei ∼C ej, iff the semantics of
the choice is unchanged by swapping the alternatives ei and ej.

Definition 3.6.1 (Alternative equivalence). ei ∼C ej ⇔
[[C[D〈en[i : ei, j : ej]〉]]] = [[C[D〈en[i : ej, j : ei]〉]]]

At first this definition may seem overly complicated. Why can’t we just
define alternative equivalence to be [[ei]] = [[ej]]? The reason is that we would
like to be able to compare alternatives that, although part of a well-formed
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expression, are not themselves well-formed. For example, consider the choice
A〈B〈1, 2〉, B〈1, 2〉〉. The semantics of both alternatives, [[B〈1, 2〉]], is undefined
since B is unbound. But we would like to say that both alternatives are
equivalent from a semantics perspective. Including a context C allows us
to compare the semantics of expressions containing free dimensions. For
C[ei] and C[ej] to be well-formed (and thus their semantics defined), C must
declare all dimensions in FD(ei) ∪ FD(ej).

We define the function αC/i(e) to perform the removal of the ith alternative
of a choice in context C within expression e. This function is defined only
if C is a context that matches a choice in e with at least i alternatives; that
is, we assume e = C[D〈e1, . . . , en〉] with n ≥ i. From this we can write a
straightforward definition of alternative removal.

αC/i(e) = C[D〈e1, . . . , ei−1, ei+1, . . . , en〉]

As an example, consider the following expression abx.

dim A〈a, b, x〉 in A〈1, 1, 9〉 (abx)

Using the context C = dim A〈a, b, x〉 in [], we can remove the second
alternative in the choice by applying αC/2(abx). This yields the expression
dim A〈a, b, x〉 in A〈1, 9〉, which is not well formed since the dimension
declares three tags but the choice contains only two alternatives.

The previous example demonstrates that we cannot simplify a choice with
equivalent alternatives in isolation. Since the number of alternatives in a
choice must match the number of tags in its binding dimension, reducing the
number of alternatives in a choice requires removing the corresponding tag
in the corresponding dimension. In this example, this would be fine since
there is only one choice bound by dimension A. But in cases where we have
other choices, the removal of the tag is possible only if all corresponding
pairs of alternatives in all those other choices are also redundant.
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On the dimension level, we can consider the equivalence of tags. As an
example, consider the following expression ab.

dim A〈a, b〉 in A〈A〈1, 1〉, 1〉 (ab)

In this expression, the tags a and b are equivalent in the sense that selection
with one tag yields the same result as selection with the other. Therefore, we
define that two tags ti and tj are equivalent in context C, written ti ∼C tj, iff
the semantics of the expression is unchanged by swapping tags ti and tj.

Definition 3.6.2 (Tag equivalence). ti ∼C tj ⇔
[[C[dim D〈tn[i : ti, j : tj]〉 in e]]] = [[C[dim D〈tn[i : tj, j : ti]〉 in e]]]

In one sense, tag equivalence is a stronger property than equivalence of
alternatives since a dimension that defines two equivalent tags can bind
many choices, and thus the equivalence has a broader scope. However,
equivalent tags do not imply that the corresponding alternatives of bound
choices are also equivalent. This can be seen in the following simple example.

dim A〈a, b〉 in A〈A〈1, 2〉, 1〉 (ab′)

In this example, selection with either A.a or A.b produces 1 as a result.
Therefore swapping the order of the tags would not impact the semantics, so
tags a and b are equivalent. However, if we look at the two choices bound
by the dimension A, neither pair of alternatives is equivalent, which we can
express as A〈1, 2〉 6∼C 1 and 1 6∼C 2.

Equivalent alternatives are not always a sign of fundamental redundancy.
Often a dimension with more than two tags will have a choice in one part of
the program with equivalent alternatives, but the corresponding alternatives
will not be equivalent in other choices. As an example, consider a dimension
for capturing differences related to the host operating system of a program:
dim OS〈Linux, Mac, Windows〉. Since Linux and Mac share a common her-
itage in Unix, there are bound to be some choices in this dimension where the
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first two alternatives are the same. For example, in a choice between newline
characters, OS〈"\n", "\n", "\r\n"〉, the first two alternatives are the same
since Linux and Mac use the same newline character, but choices elsewhere,
such as the location of a user’s default home directory, will be different.

In contrast, equivalent tags are always redundant with respect to each
other, and all but one of a set of a pairwise-equivalent tags can be removed
while maintaining variant equivalence. We define the function τC/u(e) to
perform the removal of tag u from the dimension declared at context C
within expression e. Similar to alternative removal, tag removal is defined
only if C is a context that matches a dimension declaration containing tag
u. Assume e = C[dim D〈tn[i : u]〉 in e′]. To remove tag u, replace the
dimension declaration with dim D〈t1, . . . , ti−1, ti+1, . . . , tn〉, in which tag u
has been omitted, then replace every choice D〈en〉 bound by the dimension
with D〈e1, . . . , ei−1, ei+1, . . . , en〉, in which the ith alternative has also been
omitted.

Applying tag removal to the equivalent tags in the examples in this section,
we can perform the following variant-preserving transformations.

τC/a(abx) = dim A〈b, x〉 in A〈1, 9〉 τC/b(abx) = dim A〈a, x〉 in A〈1, 9〉
τC/a(ab) = dim A〈b〉 in A〈1〉 τC/b(ab) = dim A〈a〉 in A〈A〈1〉〉

τC/a(ab′) = dim A〈b〉 in A〈1〉 τC/b(ab′) = dim A〈a〉 in A〈A〈1〉〉

The fact that removing a tag that is equivalent to another in the same context
is always variant preserving is captured in the following theorem.

Theorem 3.6.3. ti ∼C tj =⇒ τC/tj(e) ∼ e

Proof. Following from Definition 3.6.2, we know that for every mapping
(δ, e′) ∈ [[C[e]]] where tj ∈ δ, there exists another mapping to the same plain
expression (δ′, e′) ∈ [[C[e]]] where ti ∈ δ′, otherwise switching the order of ti

and tj in the dimension declaration at C would have changed the semantics
and ti 6∼C tj. Because of the existence of (δ′, e′), we can remove the mapping
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(δ, e′) while preserving the variant e′. The function τC/tj(e) just removes each
such mapping (δ, e′) and is therefore variant preserving when ti ∼C tj.

Obviously, Theorem 3.6.3 applies to our examples ab, ab′, and abx. We can
also apply it to the expression abc from the previous subsection, removing
either tag a or b from dimension A. In all of these examples except for expres-
sion abx, the tag removal produces a dimension that contains only one tag
and corresponding choices with only one alternative each. Such dimensions
and choices are trivially superfluous and can therefore be eliminated. We
will consider this kind of transformation in the next subsection.

3.6.3 Removing Pseudo-Choices and Pseudo-Dimensions

A choice in which all alternatives are pairwise equivalent is not really a
choice at all since the decision of which alternative to pick has no impact on
the semantics of the expression. We call a choice with this property a pseudo-
choice. In the previous subsection we observed that a single pair of equivalent
alternatives cannot be removed, in general. In contrast, a pseudo-choice can
be safely replaced by any one of its alternatives. This fact is captured in the
following lemma.

Lemma 3.6.4. ∀i, j ∈ {1, . . . , n} : ei ∼C ej =⇒ [[C[D〈en〉]]] = [[C[ei]]]

We define the function γC(e) to replace the choice at context C within expres-
sion e with one of its alternatives. This operation is only defined when C
matches a choice in expression e; that is, when e = C[D〈en〉]. It is of course
only semantics-preserving when the matched choice is a pseudo-choice.

As an example, consider again the expression ab. Since both alternatives
A〈1, 1〉 and 1 are equivalent (that is, A〈1, 1〉 ∼C 1 with C = dim A〈a, b〉 in []),
we can replace A〈A〈1, 1〉, 1〉 by 1 (or A〈1, 1〉) by applying γC(ab). The same
also applies to the expression ab′.

Assume in both expressions the application of γ replaces the choice with
the simpler alternative 1, yielding dim A〈a, b〉 in 1. Since the dimension A
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has no choices, removing it has no impact on the variants the expression
represents. This fact is expressed more generally in the following lemma.

Lemma 3.6.5. D /∈ FD(e) =⇒ dim D〈tn〉 in e ∼ e

Even more generally, we can extend the notion of tag equivalence to arrive
at the notion of a pseudo-dimension, which is a dimension in which all tags
are pairwise equivalent. Like pseudo-choices, pseudo-dimensions can be
removed completely. Unlike with pseudo-choices, this transformation is not
semantics preserving, but it is variant preserving.

The dimension A is a pseudo-dimension in both of the expressions ab and
ab′ since the only tags in dimension A, a and b, are equivalent. In contrast,
the dimension A is not a pseudo-dimension in the expression abx since only
tags a and b are equivalent, but neither is equivalent with tag x.

To support the elimination of pseudo-dimensions, we define a function
ψC(e) that completely removes the dimension D declared at context C in e.
The function is defined only if C matches a declaration of dimension D, so
we can assume that e = C[dim D〈tn〉 in e′]. To remove the dimension, we
replace the dimension declaration with e′, then replace each choice D〈en〉
originally bound by D in e′ with one of its alternatives ei. We can reuse the
choice elimination operation from Section 3.4 to perform this second step.
Thus, we can define the dimension removal function as follows.

ψC(e) = C[be′cD.1] where e = C[dim D〈tn〉 in e′]

That fact that removing a pseudo-dimension in this way is variant preserving
is captured in the following theorem.

Theorem 3.6.6. ∀i, j ∈ {1, . . . , n} : ti ∼C tj =⇒ ψC(e) ∼ e

Proof. By induction over n. When n = 1, each choice bound by dimension D
will have only one alternative. Since each such choice D〈e1〉 trivially satisfies
the condition of Lemma 3.6.4, it can be replaced by e1. Subsequently there
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will be no choices bound by D, satisfying the condition of Lemma 3.6.5, so
the dimension can also be eliminated. When n > 1, choose tags tn−1 and
tn. These satisfy the conditions of Theorem 3.6.3, so we can eliminate tag tn

by applying τC/tn(e). Together these operations implement ψC(e), and since
each is at least variant preserving, ψC(e) is also variant preserving.

3.6.4 Removing Dominated Choices

Recall from Section 3.5 the Chc-Chc-Merge equivalence rule. When applied
from right to left, this rule supports the removal of a dominated choice—that
is, a choice that is nested within a choice in the same dimension. Since
all but one alternative of a dominated choice can never be selected, domi-
nated choices serve no real purpose, and the Chc-Chc-Merge rule seems a
good basis for improving choice calculus expressions. However, since the
rule is syntactic and can only be applied to immediately dominated choices,
eliminating an arbitrary dominated choice can require many preparatory
transformations. As illustrated in Section 3.6.1, this process can be quite
tedious, which was the motivation for pursuing semantically-driven design
criteria in the first place. So a natural question is: Can we express the idea
of choice merging in a more declarative way, based on semantic, rather than
syntactic, criteria?

A simple way to achieve this is by employing choice elimination, defined
in Section 3.4. Within the ith alternative of a choice, we can safely project on
the ith alternative of all nested choices in the same dimension. That is, if a
choice D〈en〉 is well formed in context C, then the following property holds.

[[C[D〈en[i : ei]〉]]] = [[C[D〈en[i :beicD.i]〉]]]

This is because selecting the ith alternative in the outer choice necessarily
implies the selection of the ith alternative in all nested choices in the same
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dimension. Generalizing this to project on all alternatives within a choice,
we get the following lemma.

Lemma 3.6.7. [[C[D〈en〉]]] = [[C[D〈be1cD.1, . . . , bencD.n〉]]]

This lemma describes a form of algebraic optimization reminiscent of constant
folding and propagation in compiler theory. Note also that this optimization
is semantics-preserving, and so can be applied in contexts where we not only
want to preserve the variants but the decisions a choice calculus expression
represents.

The design criteria described in this section provide several ways to
identify and eliminate incidental redundancy—that is, redundancy that serves
no useful purpose in the representation of variational artifacts. However,
some redundancy is essential and unavoidable using the choice calculus
as presented so far. In the next chapter, we present two extensions to the
choice calculus that support reuse in choice calculus expressions, enabling
the elimination of many kinds of essential redundancy as well.
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Chapter 4 – Extensions to Support Reuse

A truism of software engineering and programming languages is that any
significant bit of functionality should be implemented only once, then reused
wherever it is needed. This idea is known as the abstraction principle [Pierce,
2002, p. 339] or by the maxim “don’t repeat yourself” [Hunt and Thomas,
1999]. To support this, the choice calculus has provided a mechanism for
sharing since the beginning [Erwig and Walkingshaw, 2011b]. In subsequent
work, however, we have encountered many subtle issues surrounding this
feature. For example, the choice calculus as described in Chapter 3 has a
monadic structure [Erwig and Walkingshaw, 2012a] (also see Section 7.1),
but this is broken by the introduction of sharing. There are also some
challenges and non-obvious design decisions regarding when and how shared
expressions should be expanded, relative to dimensions and choices.

This chapter describes two different modular extensions to the choice
calculus: One that supports the sharing of variant subexpressions, and one for
the reuse of variational components. The distinction is mainly one of timing,
that is, when a shared expression is expanded relative to the variational
concerns expressed by choices and dimensions. This will be clarified in
Section 4.2. These extensions can be independently included or not in a
particular instance of the choice calculus, depending on which features and
properties are needed in the metalanguage.

The rest of this chapter is structured as follows: Section 4.1 describes
several scenarios that can benefit from sharing and reuse in the choice
calculus and informally introduces the extensions to support these scenarios.
Section 4.2 describes the fundamental staging distinction between the two
extensions. The syntax of the extensions is defined in Section 4.3, and the
well-formedness relation from Section 3.3.3 is extended correspondingly. The
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denotational semantics is extended in Section 4.4, and Section 4.5 enumerates
the semantics-preserving transformations involving the extensions.

4.1 Motivation

There are at least four choice calculus usage scenarios that can benefit from
language support for extracting and reusing subexpressions. These scenarios
are grounded in our own use of the choice calculus and in similar issues
encountered in related work, but they are intended to be more illustrative
than comprehensive or typical. The scenarios are described briefly below,
then in more depth in the rest of this section.

1. Reuse of variation points. A single dimension of variation can affect many
places in an expression in a similar way. Rather than repeat the same
choice over and over, we would like to extract and name the choice,
then reuse it at each location.

2. Reuse of alternatives. In a dimension of three or more tags, there can
be variation points where some (but not all) of the alternatives of a
choice are the same. We would like to extract and name such repeated
alternatives, then reuse them within the choice.

3. Reuse of a common subexpression. The variational part of an expression can
“wrap” a common shared part—for example, an optional conditional
statement around a shared code block. Rather than repeat the shared
subexpression in both alternatives, we would like to extract and reuse
it in each.

4. Reuse of variational components. The same variational component can
occur in different parts of an expression. Once again, we would like to
define this variational component once, then reuse it in each of these
different contexts while retaining the ability to configure it differently
at each place that it is reused.
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4.1.1 Reuse of Variation Points

The running example from Section 3.1, of the four variants of the Haskell func-
tion twice, contains a typical example of our first reuse scenario. The choice
calculus representation of this example is provided below, for reference.

dim Par〈x, y〉 in
dim Impl〈plus, times〉 in
twice Par〈x, y〉 = Impl〈Par〈x, y〉+Par〈x, y〉, 2*Par〈x, y〉〉

Observe that the choice Par〈x, y〉 is repeated four times. In fact, since the Par
dimension captures the variability of the parameter name, we would expect
every choice ever created in this dimension to be the same.

Although it is a minor issue in the case of parameter naming, the current
representation of repeated choices is clearly space inefficient. More significant
to this example, however, is that it is also error prone. The constraint that
every choice should be exactly the same is not actually captured by the
representation. If we want to change or extend the Par dimension, we must
make the exact same edit in many different places. For example, suppose we
extend our example with a third possible parameter name z, resulting in the
following six variants.

twice x = x+x twice y = y+y twice z = z+z

twice x = 2*x twice y = 2*y twice z = 2*z

Implementing this extension requires several edits to the choice calculus
expression. First we must extend the declaration of the Par dimension with a
new tag z, then we must extend every choice in Par with a new alternative
z. The resulting expression is shown below, with the newly added tag and
alternatives underlined.

dim Par〈x, y, z〉 in
dim Impl〈plus, times〉 in
twice Par〈x, y, z〉 = Impl〈Par〈x, y, z〉+Par〈x, y, z〉, 2*Par〈x, y, z〉〉
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Ideally, we could avoid such repetitive editing tasks. This problem, and the
space efficiency issues, will only be exacerbated in larger, more complex
choice calculus expressions.

The solution is of course to provide a mechanism that allows us to
write the repeated choice once, name it, and share its result everywhere the
parameter name is needed. For example, we can introduce a share construct
that allows us to rewrite the above expression as follows.

dim Par〈x, y, z〉 in
dim Impl〈plus, times〉 in
share v : = Par〈x, y, z〉 in
twice v = Impl〈v+v, 2*v〉

Now we need only add the alternative z in one place, and the result of the
extended choice will be reused everywhere the choice calculus variable v is
referenced in the definition of twice.

It is important to note that v is a variable in the metalanguage, not the
object language. The binding symbol : = is used to clearly distinguish choice
calculus bindings at the metalanguage level from Haskell definitions at the
object-language level.

4.1.2 Reuse of Alternatives

Another recurring scenario is that only some alternatives in a choice differ,
while others are the same. For example, a program that varies depending on
the choice of operating system—between Linux, Mac, and Windows—might
have many choices in which the cases for Linux and Mac are the same since
they share a common heritage in Unix. It would be inconvenient, error prone,
and inefficient to duplicate the common code in each of these cases.

We can use the same share construct introduced in the previous section
to solve this problem as well. Consider the following example of a simple
choice calculus expression with a duplicated alternative (repeated from
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newline =

#if LINUX || MAC

"\n"

#elif WINDOWS

"\r\n"

#endif

Figure 4.1: Alternative reuse in CPP.

Section 3.6.2). The expression is a variational Haskell program defining the
newline character, which is the same on Linux and Mac ("\n").

dim OS〈Linux, Mac, Windows〉 in
newline = OS〈"\n", "\n", "\r\n"〉

Using the share construct, the repeated alternative can be extracted and
named, then referenced twice in the choice.

dim OS〈Linux, Mac, Windows〉 in
share v : = "\n" in
newline = OS〈v, v, "\r\n"〉

As with repeated choices, the advantages of sharing repeated alternatives
grow as programs get larger and more complex.

As a technical aside, the need for this kind of sharing is a byproduct of the
choice calculus’s somewhat rigid alternative-based approach to representing
variation points, described in Section 3.2.3. Approaches based on arbitrary
boolean inclusion conditions tend to be more flexible. For instance, the
example above can be represented in CPP without duplication or sharing, as
shown in Figure 4.1.

This illustrates a trade-off between conditional and alternative-based
approaches. On the one hand, alternative-based approaches provide a simpler
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and more regular structure, and are usually more expressive since they are
not limited to varying syntactically optional expressions. On the other hand,
conditional approaches are more flexible in the conditions they can express on
optionally included code and so can avoid certain kinds of code duplication
related to variability.

However, of the four motivating use cases presented in this section,
only the reuse of alternatives is subsumed by arbitrary boolean inclusion
conditions, so it does not remove the need for sharing in general. The fact that
sharing can also express this use case without the more flexible conditional
representation provides an orthogonality argument for the simpler alternative-
based representation of variation points since it better decouples the issues
of sharing and variation.

4.1.3 Reuse of Common Subexpressions

The previous use case motivating the reuse of alternatives can be viewed as
an instance of a more general problem of reusing arbitrary subexpressions.

Repeated code can arise in all kinds of contexts that have nothing to do
with variability. For example, if we’re implementing a physical simulation,
we might have code related to collision detection in many places throughout
the system. Usually we would eliminate this kind of repetition using standard
software engineering techniques, such as extracting the repeated code out
into its own function or method. Of course, these cases are not the purview
of a variation language.

Other kinds of repetition are a direct result of variation, however. One
example is the optional wrapper problem described by Kästner et al. [2008b].
An optional wrapper is a variation pattern where the goal is to conditionally
wrap an expression in another construct, such as a conditional statement or
an exception handling construct.

For example, suppose there is a Java method, readFile that reads the
contents of a file into a string but will fail with a PermissionDenied exception
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if the user does not have permission to read the file. The signature of this
method is shown below.

String readFile(File file) throws PermissionDenied

In one variant of our program, we simply call readFile without any exception
handling, letting a PermissionDenied exception propagate up the call chain.
The result is stored in a String variable named contents defined elsewhere.
We’ll refer to this snippet of object language code as read.

contents = readFile(new File("TopSecret.txt")); (read)

In another variant we incorporate an extremely aggressive security feature,
initiating a self-destruct sequence if the user tried to access a file they don’t
have access to.

try {

contents = readFile(new File("TopSecret.txt"));

} catch (PermissionDenied e) {

System.selfDestruct();

}

How do we represent both of these variants in a single variational program?
Using CPP, this is trivial, we just conditionally include the lines correspond-
ing to the try-catch block if the security feature is included and exclude it
otherwise, as shown in Figure 4.2.

However, this kind of code—where conditionally included lines of text
do not correspond to whole statements or subexpressions—is exceptionally
error-prone since it ignores the underlying structure of the source code
[Spencer and Collyer, 1992, Liebig et al., 2011]. Recall from Section 3.3.1 that
the choice calculus and other structured annotative representations, such as
CIDE [Kästner et al., 2008a], instead annotate the abstract syntax tree of the
object language. This avoids many of the problems with the kind of text
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#ifdef SECURE

try {

#endif

contents = readFile(new File("TopSecret.txt"));

#ifdef SECURE

} catch (PermissionDenied e) {

System.selfDestruct();

}

#endif

Figure 4.2: Optional wrapper in CPP.

munging supported by CPP, guaranteeing, for example, that every variant
that can be generated is at least syntactically correct.

So how would we represent this variational program in the choice calcu-
lus? Since, in the abstract syntax tree, read is a child of the try-catch block
in the second variant, the only way to represent it without sharing is by
duplicating read, as shown in abbreviated form below.

dim Secure〈no, yes〉 in
Secure〈contents = ... , try { contents = ... } catch ...〉

This kind of repetition is undesirable for the same reasons as the previous
use cases—it is inefficient and error prone.

Since this is a common pattern, CIDE provides special support for optional
wrappers [Kästner et al., 2008b]. Certain kinds of nodes in the syntax tree
can be marked as wrappers, which allows their children to be marked as
non-optional, even if the wrapper itself is optional. Therefore, in CIDE,
starting from the second variant, the try-catch block would be marked as
optional and associated with the Secure feature. Then the contents ... line
within this optional block would be marked as non-optional.
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In the choice calculus, we can factor out the redundancy with sharing, as
shown below.

dim Secure〈no, yes〉 in
share read : = contents = readLine("TopSecret.txt"); in
Secure〈read, try { read } catch ...〉

This again illustrates the orthogonality of sharing in the choice calculus.
Using the same share construct we used to address the previous use cases,
we are also able to solve the optional wrapper problem, which requires
special support in other variation languages.

4.1.4 Reuse of Variational Components

The final kind of reuse we would like to support is the reuse of variational
components. That is, we would like to define a subexpression containing
variation once, then reuse it in such a way that it can be configured differently
in each place.

For example, consider the following variational Haskell program that
defines a variational function sort that sorts an arbitrary list of comparable
elements, then uses that function in multiple places later in the program. The
sort function varies in terms of the sorting algorithm it is implemented by.

sort = dim SortAlg〈select, merge, quick〉 in
SortAlg〈selectSort, mergeSort, quickSort〉

minimum = head . sort

maximum = head . reverse . sort

Observe that we can make a selection in the SortAlg dimension only once and
that decision will be reflected at each point that sort is used. For example, if
we select SortAlg.merge, the definition of sort will be fixed to mergeSort, so
every use of sort throughout our program will use the merge sort algorithm.
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macro sort : = dim SortAlg〈select, merge, quick〉 in
SortAlg〈selectSort, mergeSort, quickSort〉

in
minimum = head . sort
maximum = head . reverse . sort

Figure 4.3: Reuse of a variational component using macro.

However, different sorting algorithms have different qualities, so we might
want to select independently which sorting algorithm is employed at each
use of the sort function. In our example, selection sort will probably be the
fastest algorithm for the definition of the minimum function. Since Haskell
only lazily sorts the list as each element is needed, minimum is O(n) with
selection sort since it must only “sort” one element to find the first/smallest
element in the list. For the (admittedly silly) definition of maximum, however,
a more sophisticated algorithm like merge sort will perform better since the
use of reverse forces the whole list to be sorted. For still other cases, we
might prefer quick sort over merge sort, for example, if we don’t care about
stability and expect the input to be random.

In other words, what we want is the ability to reuse variational expres-
sions in a way that preserves the variability within those expressions. In the
choice calculus, this amounts to duplicating the corresponding dimension
declarations at each point of reuse. Each duplicated dimension will require a
separate selection in order to resolve the variational program into a single
program variant.

For this kind of reuse, we introduce a new construct macro. The distinc-
tion between share and macro is not yet clear but will be motivated in the
next section. Using the macro construct we can get the desired behavior
by replacing the Haskell sort function with a choice calculus macro sort,
as shown in Figure 4.3. The variational program in the figure is exactly
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equivalent to the following one, in which the sort macro has been textually
expanded into the definitions of the minimum and maximum functions.

minimum = head . dim SortAlg〈select, merge, quick〉 in
SortAlg〈selectSort, mergeSort, quickSort〉

maximum = head . reverse . dim SortAlg〈select, merge, quick〉 in
SortAlg〈selectSort, mergeSort, quickSort〉

However, in Section 4.4 we’ll see that the semantics of macro are a bit more
subtle than a simple textual expansion since we want to preserve the lexical
scope of free choices within a macro definition.

4.2 Staging Relative to Dimension Elimination

Let us return again to the twice example from Section 4.1.1. Consider the case
where we have selected Impl.plus, leaving us with the following variational
program with three variants.

dim Par〈x, y, z〉 in
share v : = Par〈x, y, z〉 in
twice v = v+v

Notice that although we have successfully extracted and reused the choice
of the parameter name, there is nothing preventing us from creating other
choices in the dimension Par. In Figure 4.4.a we extend our program with
an additional function thrice that triples the value of its argument. This
function also varies in terms of its parameter name by introducing a new
choice in the Par dimension. Since both choices are in the same Par dimension,
they will be synchronized. So, for example, whenever parameter name y is
used in twice, the corresponding parameter name b will be used in thrice.
Since y and b are in no way related, this may not be what we intended.

If we want the parameter names of the two functions to vary indepen-
dently, then we must declare a new parameter name dimension for the new
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dim Par〈x, y, z〉 in
share v : = Par〈x, y, z〉 in
twice v = v+v
share w : = Par〈a, b, c〉 in
thrice w = w+w+w

a. Synchronized choices.

dim Par〈x, y, z〉 in
share v : = Par〈x, y, z〉 in
twice v = v+v
dim Par〈a, b, c〉 in
share w : = Par〈a, b, c〉 in
thrice w = w+w+w

b. Independent choices.

share v : = dim Par〈x, y, z〉 in Par〈x, y, z〉 in
twice v = v+v
share w : = dim Par〈a, b, c〉 in Par〈a, b, c〉 in
thrice w = w+w+w

c. Independent, atomic choices.

Figure 4.4: Varying the parameter names of twice and thrice.

function thrice. One way to do this is to simply introduce a new dimension
declaration before the second share-expression, as shown in Figure 4.4.b.

While the example in Figure 4.4.a is not incorrect, it is easy to see how this
situation is potentially error prone. The assumption when Par is declared is
that it will only ever be used in the single choice Par〈x, y, z〉, but its scope is
actually much larger. As a solution, we can enforce the assumption using the
share construct by pushing the declaration of Par into the bound expression,
as shown in Figure 4.4.c. Now we cannot introduce new choices in the Par
dimension since the scope of the dimension declaration is precisely the single
choice associated with it. We call such single-choice dimensions atomic, a
concept that will be revisited in Section 7.1.

This example reveals the fundamental distinction between the share and
macro constructs introduced in the previous section. While macro sup-
ports the reuse of a variational expression in a way that lets us configure it
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differently at each use, share allows us to reuse the result of configuring an ex-
pression. Had we used macro instead of share in the example in Figure 4.4.c,
we would have seven separate selections to make—three corresponding to
each reference of v and four corresponding to each reference of w. Obviously,
this is not what we want since we want to ensure that all uses of a parameter
name in a single function are synchronized. Since the bound expressions
in Figure 4.4.a and Figure 4.4.b contain no dimension declarations, their
meaning would be unchanged by using macro.

The distinction between the two extensions can be more precisely un-
derstood in terms of staging [Sheard, 2001] relative to the elimination of
dimensions by tag selection (see Section 3.4): macro constructs are expanded
before dimension elimination (at an earlier stage), while share constructs
are expanded after dimension elimination (at a later stage). In previous
work we have experimented with both stage orderings. In the original choice
calculus paper we use late-stage sharing [2011b], while in more recent work
we use early-stage sharing [2013a]. Confusingly, we have used the keyword
let for both forms! Since there are distinct use cases for each, we present both
extensions here. The choice calculus can be extended with either or both
forms of reuse, as needed.

The staging view also reveals that macro and share form a complete set of
static reuse mechanisms with respect to dimension elimination since a reused
expression must be expanded either before or after dimension elimination.
However, in Chapter 6 we explore a more dynamic approach to reuse through
function abstraction and application.

4.3 Syntax and Well-Formedness

The syntax of the share and macro extensions is given in Figure 4.5. Note
that we use the same variable namespace for both extensions, and therefore
have only a single syntactic form for variable references. This form must
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e ::= . . .
| share v : = e in e Sharing Definition
| macro v : = e in e Macro Definition
| v Variable Reference

Figure 4.5: Syntax of share and macro extensions.

BD(share v : = e in e′) = BD(e) ∪ BD(e′)

BD(macro v : = e in e′) = BD(e) ∪ BD(e′)

BD(v) = ∅

FD(share v : = e in e′) = FD(e) ∪ FD(e′)

FD(macro v : = e in e′) = FD(e) ∪ FD(e′)

FD(v) = ∅

Figure 4.6: Extension of bound and free dimensions.

obviously be included in any variant of the choice calculus that includes at
least one of the two extensions.

For both share and macro expressions, we refer to the first subexpression
as the bound expression and the second as the scope. For example, in the
expression share v : = e in e′ the expression e is bound to v in scope e′.

Recall from Section 3.3 that an expression is considered variation free if it
is choice free and dimension free. Additionally, we say that an expressions is
reuse free if it is share free, macro free, and reference free. Since a plain expres-
sion corresponds to a plain term in the object language, a plain expression is
both variation free and reuse free.

We extend the definitions of bound and free dimensions to the new
constructs in the obvious way, as shown in Figure 4.6. Similarly, we can refer
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FV(a��) = ∅

FV(a�en�) = ∪i∈nFV(ei)

FV(D〈en〉) = ∪i∈nFV(ei)

FV(dim D〈tn〉 in e) = FV(e)

FV(share v : = e in e′) = FV(e) ∪ (FV(e′)− {v})
FV(macro v : = e in e′) = FV(e) ∪ (FV(e′)− {v})

FV(v) = {v}

Figure 4.7: Free variables.

to the free and bound variables in an extended choice calculus expression. We
use FV(e), defined in Figure 4.7, to denote the set of free variables in e. Note
that this definition reflects the fact that neither extension is recursive—that is,
in an expression share v : = e in e′, we cannot refer to v in e.

Finally, we extend the well-formedness property from Section 3.3.3 by
adding the additional requirement that a well-formed expression contains
no free variables. The extension to the well-formedness judgment is shown
in Figure 4.8. Note that we reuse the environment Γ to keep track of which
variables are in scope. For share and macro expressions we require that
the bound expression is well formed and that the scope is well formed in
the context extended by the new variable. Then a variable reference is well
formed if it is in the context.

4.4 Denotational Semantics

Recall that the semantics basis of the choice calculus is a mapping from
decisions to plain variants. In Section 3.4 we argued that the denotational
semantics of the choice calculus is compositional since the denotation of an
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W-Shr

Γ ` e wf Γ, v ` e′ wf

Γ ` share v : = e in e′ wf

W-Mac

Γ ` e wf Γ, v ` e′ wf

Γ ` macro v : = e in e′ wf

W-Var

v ∈ Γ

Γ ` v wf

Figure 4.8: Extended well-formedness judgment.

bshare v : = e in e′cD.i = share v : = becD.i in be′cD.i

bmacro v : = e in e′cD.i = macro v : = becD.i in be′cD.i

bvcD.i = v

Figure 4.9: Extension of choice elimination.

expression is constructed purely from the expression itself and the deno-
tations of its subexpressions. This is significant since it supports modular
language extensions. To add a new language feature, we must only (1) define
its syntax as an extension of the choice calculus, (2) extend the choice elimi-
nation operation, and (3) define its semantics in terms of the same semantic
domain and in a way that satisfies the compositionality property. Then we
can reuse all of the existing machinery unchanged.

The previous section (specifically Figure 4.5) shows the extension of the
syntax. The extension of the choice elimination operation is straightforward,
and given in Figure 4.9. For each of the new constructs, it just propagates
the selection to its subexpressions, if any. Most of this section will focus on
step (3), showing how the semantics of the share and macro extensions can
be defined compositionally.

Let us first consider the semantics of a macro expression. First note that
a macro expression cannot be simply textually expanded at any place in an
expression. Consider the following example, which we’ll refer to as ava.
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dim A〈a, b〉 in (ava)
macro v : = A〈1, 2〉 in
dim A〈c, d〉 in v

Observe that if we textually expand the macro expression, the choice that
was once bound by the first declaration of dimension A is now bound by the
second declaration, as shown below.

dim A〈a, b〉 in
dim A〈c, d〉 in A〈1, 2〉

We call this phenomenon choice capture. By expanding the macro expression,
the free choice in the bound expression is captured by a dimension declaration
in its scope. This sort of behavior is highly undesirable since it breaks the
lexical scoping of dimension names. The situation is analogous to the hygiene
issue in other metaprogramming systems [Kohlbecker et al., 1986], where
variable capture is known to be error prone.

While this means that we cannot expand macro expressions arbitrarily in
the middle of expressions, it turns out that we don’t need to worry about
choice capture when expanding macro expressions in the semantic function.
To see why this is, recall the semantics of a dimension declaration, repeated
below for convenience.

[[dim D〈tn〉 in e]] = {(D.ti δ, e′) | i ∈ {1, . . . , n}, (δ, e′) ∈ [[becD.i]]}

For each tag D.ti the dimension declares, we simulate the selection of that
tag in e, then recursively compute the semantics of the result. Since the
macro expression in example ava is nested within the scope of a dimension
declaration, the choice in its bound expression will be eliminated before we
compute the semantics of the macro expression.

More generally, we can observe that (1) the semantics is defined only
for well-formed expressions, (2) a well-formed expression contains no free
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choices, and (3) choice capture can only occur when there is a free choice in
the bound expression. Therefore, we can conclude that the semantic function
can expand macro expressions without the risk of choice capture. While it
is possible for the bound expression to contain locally free choices, as in the
example ava. These choices are ultimately bound higher in the expression by
a dimension declaration, and so will be eliminated before the semantics of
the macro expression is computed.

Since share expressions are resolved at a conceptually later stage than
dimensions and choices, there is no risk of choice capture since all variation
will have been eliminated by the time the share expression is expanded.

Finally, we give the denotational semantics of the macro and share exten-
sions in Figure 4.10. We use [e/v]e′ to represent the variable capture-avoiding
substitution of e for every occurrence of v in e′.

The staging distinction between the two constructs can be clearly observed
in the semantic function. For macro expressions, we expand the expression
first by substituting expression e1 for v in e2, then compute the semantics of
the result. Whereas for share expressions, we compute the semantics of the
bound expression and the scope first, then substitute each variant e′1 of the
bound expression for v in each variant e′2 of the scope. This is similar to the
distinction between the call-by-name and call-by-value evaluation strategies
for lambda calculus [Pierce, 2002, p. 57].

Note that we must also include a case for variable references, since
these must be temporarily preserved in the semantics of the scope of share
expressions, in order to perform the subsequent substitution. However, the
semantics remains undefined for expressions that are not well formed.

4.5 Semantics-Preserving Transformations

In this section we enumerate the semantics-preserving transformations in-
volving the extensions defined in this chapter. Recall from Section 3.5 that
we can enumerate these rules by considering every pairwise combination of
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[[share v : = e1 in e2]] = {(δ1 δ2, [e′1/v]e′2) | (δ1, e′1) ∈ [[e1]], (δ2, e′2) ∈ [[e2]]}
[[macro v : = e1 in e2]] = [[[e1/v]e2]]

[[v]] = {(ε, v)}

Figure 4.10: Denotational semantics of share and macro extensions.

constructs, along with constructs for introducing/eliminating each syntactic
form. Obviously this results in a multiplicative explosion of equivalence rules
as we add more and more constructs to the language, so this section will
contain quite a lot of rules!

Since the salient concerns for transforming share and macro macro expres-
sions are different, we break the presentation into three parts. In Section 4.5.1
we enumerate the rules involving the share construct, in Section 4.5.2 we enu-
merate those involving the macro construct, and in Section 4.5.3 we briefly
consider the commutation of the two constructs with each other.

4.5.1 Transformations Involving Sharing

Since share expressions are expanded after dimensions and choices are
resolved, and since the semantics is affected by the ordering of dimension
declarations in an expression, transformations involving share expressions
must be careful not to alter the ordering of dimension declarations. For
this reason, many of the rules in this subsection contain premises ensuring
that one subexpression or another is dimension free since a dimension-
free subexpression can be moved relative to another subexpression without
affecting the dimension order. To make these premises nicer, we introduce
the predicate free(e) to indicate that expression e is dimension free, otherwise
written BD(e) = ∅.
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Shr-Bnd

e ≡ share v : = e in v

Shr-Scp

v /∈ FV(e) free(e′)

e ≡ share v : = e′ in e

Figure 4.11: Sharing introduction/elimination rules.

Chc-Shr-Bnd

D〈(share v : = ei in e)i:1..n〉 ≡ share v : = D〈en〉 in e

Chc-Shr-Scp

D〈(share v : = e in ei)
i:1..n〉 ≡ share v : = e in D〈en〉

Figure 4.12: Choice-sharing commutation rules.

We begin in Figure 4.11 with rules for introducing or eliminating share
expressions when applied left to right (LR) or right to left (RL), respectively.
The Shr-Bnd rule applied LR can be used to name an expression so that it
can be reused later. The Shr-Scp rule applied RL can be used to eliminate a
shared expression that is never used. Note, however, that we cannot eliminate
the bound expression if it contains a dimension declaration, since this would
alter the domain (but not the range) of the denotation of the expression.
However, such a transformation would be variant preserving (see Section 3.6).

In Figure 4.12 we consider the extension of the choice commutation
rules from Figure 3.11 to commute choices with share constructs. These
rules are significant since applied LR they support the transformation of a
sharing-extended choice calculus expression into CNF (see Section 3.5.3). The
Chc-Shr-Bnd rule commutes a choice with the bound expression of a share
expression, while Chc-Shr-Scp commutes a choice with the scope. Note that
both rules require that every alternative of the choice on the LHS of the rule
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Dim-Shr-Bnd

D /∈ FD(e′)

dim D〈tn〉 in (share v : = e in e′) ≡ share v : = (dim D〈tn〉 in e) in e′

Dim-Shr-Scp

D /∈ FD(e) free(e)

dim D〈tn〉 in (share v : = e in e′) ≡ share v : = e in (dim D〈tn〉 in e′)

Figure 4.13: Dimension-sharing commutation rules.

contain a share expression that differs only in the alternatives of the choice
on the RHS. This is not such an onerous restriction since we can use the
introduction/elimination rules in Figure 4.11 to either introduce new share
expressions to set up a LR application of a Chc-Shr rule, or to eliminate
unwanted share expressions after a RL application of a Chc-Shr rule.

In Figure 4.13 we extend the dimension commutation rules from Fig-
ure 3.13 to commute dimensions and share expressions. Once again, we
can factor dimension declarations in either the bound expression or the
scope of a share expression. Considering the rules applied RL, we can lift
a dimension out of the bound expression (Dim-Shr-Bnd) only if doing so
would not capture a choice in the scope. Likewise, we can lift a dimension
out of the scope (Dim-Shr-Scp) only if it would not capture a choice in the
bound expression. In rule Dim-Shr-Scp we must also ensure that lifting the
dimension declaration out of the scope will not alter the order of dimension
declarations by requiring the bound expression to be dimension free.

Finally, in Figure 4.14 we consider the commutation of sharing with object
structures and with other share expressions. The rule for factoring a share
expression out of a bound expression (Shr-Shr-Bnd applied LR) is the simplest
since it does not affect the ordering of the subexpressions; we must only
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Shr-Shr-Bnd

w /∈ FV(e′′)

share v : = (share w : = e in e′) in e′′ ≡ share w : = e in share v : = e′ in e′′

Shr-Shr-Scp

v 6= w v /∈ FV(e′) w /∈ FV(e) free(e) ∨ free(e′)

share v : = e in share w : = e′ in e′′ ≡ share w : = e′ in share v : = e in e′′

Shr-Obj

v /∈ ∪j 6=iFV(ej) free(e) ∨ (free(e1) ∧ . . . ∧ free(ei−1))

share v : = e in a�en[i : e′]� ≡ a�en[i : share v : = e in e′]�

Figure 4.14: Remaining sharing commutation rules.

ensure that doing so does not capture a free w variable in e′′. When factoring
a share expression out of the scope of another share expression, however, we
must ensure that the order of dimensions is not altered. Since the expressions
e and e′ swap relative positions in the expression, this transformation is
semantics preserving only if either or both of the expressions e and e′ are
dimension free. For the same reason, when factoring a share expression
out of an object structure, we require that either the bound expression e is
dimension free, or that every subexpression of the structure occurring before
the share expression is dimension free. For both the Shr-Shr-Scp and Shr-Obj

rules, the remaining premises ensure that the transformation does not result
in any variables escaping or becoming captured.
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Mac-Bnd

e ≡ macro v : = e in v

Mac-Scp

v /∈ FV(e)

e ≡ macro v : = e′ in e

Figure 4.15: Macro introduction/elimination rules.

4.5.2 Transformations Involving Macros

In Figure 4.15, we begin as before with rules for introducing or eliminating
macro expressions, depending on whether they are applied LR or RL, respec-
tively. These rules are almost identical to the share introduction/elimination
rules in Figure 4.11, except that in Mac-Scp we do not require that e′ be
dimension free. The reason is that since macro expressions are expanded
before dimension elimination, if e does not reference v, then any dimensions
in e′ will be eliminated by the macro expansion before they have an effect on
the semantics.

More generally, in contrast to share expressions, when commuting macro
expressions we can ignore dimension ordering entirely. This is because the
order that dimensions are eliminated is determined by the location(s) that a
macro is referenced rather than the location it is defined. This makes commuting
macro expressions somewhat easier than share expressions.

Figure 4.16 shows the commutation of macros with both choices and
dimension declarations. As with share expressions, we require that every
alternative of a choice have a similar macro expression in order to commute
macros with choices. These can be introduced by the rules Figure 4.15 to
set up a LR application of the Chc-Mac-Bnd rules, or eliminated by the same
rules to clean up after a RL application of the Chc-Mac-Bnd rules.

Observe that we can freely commute dimension declarations in the scope
of a macro expression (Dim-Mac-Scp). However, there is no rule Dim-Mac-Bnd

since a dimension declaration bound in a macro expression can be potentially
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Chc-Mac-Bnd

D〈(macro v : = ei in e)i:1..n〉 ≡ macro v : = D〈en〉 in e

Chc-Mac-Scp

D〈(macro v : = e in ei)
i:1..n〉 ≡ macro v : = e in D〈en〉

Dim-Mac-Scp

macro v : = e in (dim D〈tn〉 in e′) ≡ dim D〈tn〉 in (macro v : = e in e′)

Figure 4.16: Commuting macros with choices and dimensions.

duplicated many times. In the special cases where v is referenced never or
once in the scope, we can apply a sequence of other rules to remove the
dimension declaration. For example, if v is referenced just once, we can push
the macro definition down to the reference of v, then eliminate it by a RL

application of Mac-Bnd.
Figure 4.17 considers the commutation of macros with other macro ex-

pressions and with object structures. These rules are very similar to the
corresponding rules for share expressions, presented in Figure 4.14, except
that we do not need to preserve the relative orderings of subexpressions that
contain dimension declarations. For example, in rule Mac-Mac-Scp, even if
e and e′ both contain dimension declarations, the semantics is unchanged
by the transformation since the macros are expanded before dimensions are
eliminated. Therefore, as long as we preserve which bound expression each
variable refers to, we can reorder subexpressions freely.
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Mac-Mac-Bnd

w /∈ FV(e′′)

macro v : = (macro w : = e in e′) in e′′ ≡ macro w : = e in macro v : = e′ in e′′

Mac-Mac-Scp

v 6= w v /∈ FV(e′) w /∈ FV(e)

macro v : = e in macro w : = e′ in e′′ ≡ macro w : = e′ in macro v : = e in e′′

Mac-Obj

macro v : = e in a�en� ≡ a�(macro v : = e in ei)
i:1..n�

Figure 4.17: Remaining macro commutation rules.

4.5.3 Commuting the Two Extensions

Finally, we consider how the two extensions can be commuted with each
other. Figure 4.18 enumerates all of the possible commutations of share and
macro expressions. Although the rules are again similar to the commutation
rules in Figure 4.14 and Figure 4.17, reasoning about the interaction of these
two constructs is complicated by the fact that they are expanded in different
stages relative to dimension declaration. However, we can exploit these same
staging constraints to simplify the situation. The trick is to simulate the
expansion of the macro definitions first, then compare the semantics on each
side of the equivalence.

Since most of the rules involve only a single share expression, the rela-
tive ordering of dimension declarations after macro expansion is preserved
without the need for additional premises. The exception is the Mac-Shr-Bnd

rule. When applied LR, this rule can duplicate the share expression bound
to v, resulting in potentially many copies of e. Therefore we must ensure that
e is dimension free. Note that although e′ is also duplicated by the macro
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Shr-Mac-Bnd

w /∈ FV(e′′)

share v : = (macro w : = e in e′) in e′′ ≡ macro w : = e in share v : = e′ in e′′

Shr-Mac-Scp

v 6= w v /∈ FV(e′) w /∈ FV(e)

share v : = e in macro w : = e′ in e′′ ≡ macro w : = e′ in share v : = e in e′′

Mac-Shr-Bnd

w /∈ FV(e′′) free(e)

macro v : = (share w : = e in e′) in e′′ ≡ share w : = e in macro v : = e′ in e′′

Mac-Shr-Scp

v 6= w v /∈ FV(e′) w /∈ FV(e)

macro v : = e in share w : = e′ in e′′ ≡ share w : = e′ in macro v : = e in e′′

Figure 4.18: Commuting sharing and macros.

expansion, it is duplicated on the RHS of the equivalence too, so it may
contain dimension declarations.
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Chapter 5 – Internalized Selection

In Section 2.2 we have described the three major roles that metalanguages
serve in the process of managing variation in software and other artifacts. In
terms of the choice calculus we can describe these roles as follows.

1. Metalanguages are used to organize or model the variation space by
defining the set of valid configurations. In the choice calculus this is
supported by separating the decision space into dimensions of variation.
Relationships between these dimensions (such as dependencies) can be
expressed by the nesting of dimensions within choices.

2. Metalanguages are used to implement the variation in the artifact. In the
choice calculus, variability is expressed by choices that locally capture
variation points between similar artifacts.

3. Metalanguages are used to configure an individual variant from a varia-
tional artifact. In the choice calculus this is achieved by the process of
tag selection, which can be used to eliminate dimensions of variation
until a particular plain variant is achieved.

The choice calculus as defined in Chapter 3 supports variation organization
and implementation as first-class concepts in the language itself but config-
uration is defined only externally through meta-theoretic operations. This
asymmetry is apparent in the syntax of the choice calculus, which provides
constructs for dimension declarations and choices, but not for selection.

In this chapter we extend the choice calculus with a syntactic form for
selection. This construct provides first-class support for configuration in the
choice calculus, resolving the asymmetry described above. We briefly intro-
duce the notation and high-level expectations of this extension in Section 5.1,
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and further motivate it in Section 5.2 by describing some specific benefits
and use cases.

As with sharing, the addition of a selection construct poses many chal-
lenging design questions. In Section 5.3 we present several possible inter-
pretations of selection, analyze their trade-offs, and explore how selection
interacts with other choice calculus constructs. In Section 5.4 we pick a
particular interpretation and formally define the syntax and denotational
semantics of the extension.

The addition of syntactic selection makes the well-formedness property
(see Section 3.3.3 and Section 4.3) much more interesting. In Section 5.5 we
expand this into a type system that associates a configuration type with each
well-formed choice calculus expression. A configuration type encodes the
structure of the decision space of an expression, revealing the sequences of
selections that must be made in order to resolve an expression into one of
the plain variants it encodes.

Finally, in Section 5.6 we enumerate the semantics-preserving transfor-
mations involving the new selection construct, just as we did for the reuse
constructs introduced in the previous chapter.

5.1 Representing Selection in the Choice Calculus

Although the formal definition of the language extension is deferred until
later in the chapter, in this section we briefly introduce the notation of
internalized selection and describe the intuition behind its expected behavior.
This intuition is the basis for the discussion in Section 5.2 and Section 5.3.

We use the syntax select D.t from e to represent the selection of tag t
from dimension D in the target expression e. The precise meaning of such an
expression will be explored in the next section and finalized in Section 5.4.
Intuitively, however, evaluating a select expression should correspond to the
tag selection operation that is part of the denotational semantics defined in
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Section 3.4. For example, consider the following simple expression eab that
declares a single dimension A.

dim A〈a, b〉 in A〈1, 2〉 (eab)

The expected semantics of selecting A.a in eab is clear.

[[select A.a from eab]] = {(ε, 1)}

When the select expression is evaluated, the dimension A is eliminated
from eab and all bound choices are replaced by their first alternative, which
corresponds to the tag a. Since the only declared dimension in eab was
eliminated by a select expression, there are no selections left to make, so the
semantics is just a mapping from the empty decision to the variant 1.

We call a dimension D exposed in an expression if a selection in D will have
some effect. For example, in the expression eab, the dimension A is exposed.
Dimension A is also exposed in 1+eab but not in select A.b from 1+eab since
the selection eliminates A and any subsequent selection in A would either be
an error or have no effect (see Section 5.3.1). Additionally, both dimensions
A and B are exposed in the expression dim B〈c, d〉 in eab since we can make
a selection in either or both dimensions.

5.2 Motivation

There are many practical and theoretical motivations for representing selec-
tion explicitly within the choice calculus itself. From a practical perspective,
one of the goals of the choice calculus is to model existing variation man-
agement systems, and many such systems provide a way to configure or
partially configure variants within the system itself. One simple example of
this is CPP’s #define directive, which can be used to change or set the value
of a CPP macro during the preprocessing phase. More generally, there is
research on nested software product lines, where product lines occur as reusable
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components within a larger product line that must be individually configured
at each use [Krueger, 2006, Rosenmüller et al., 2008, Rosenmüller and Sieg-
mund, 2010]. In order for the choice calculus to model such systems, it must
provide a language-level mechanism for configuring variational components.

From a theoretical perspective, internalizing selection greatly increases
our ability to study the nature of configuration, for example, by identifying
semantics-preserving transformations, defining type systems, and exploring
alternative semantics. Essentially, by promoting selection from an external
operation to a language feature, we can examine its effects and interactions
with other features more directly.

In the rest of this section we present a few more arguments and use
cases that demonstrate the utility of the select construct. In Section 5.2.1 we
show how the selection construct can be used to support tag and dimension
renaming. In Section 5.2.2 we describe how it can improve the modularity of
choice calculus expressions. And in Section 5.2.3 we describe how language-
level support for selection supports the definition of an operational semantics
for the choice calculus.

5.2.1 Dimension and Tag Renaming

The choice calculus’s dim construct provides a way to declare and scope new
dimensions of variation, and to associate tag names with each alternative in a
dimension. This provides quite a bit of flexibility in managing the namespace
of dimensions and tags. We can have multiple independent dimensions with
the same name in the same choice calculus expression, and we can have tags
with the same name in different dimensions.

However, once a dimension or tag has been declared, the only way to
change its name is to edit the choice calculus expression directly. This has
many drawbacks. In the case of renaming dimensions, the same edit must be
made at many places since we must also rename every choice bound by that
dimension. Although such a transformation could be automated, the fact is
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that renaming a dimension is quite an invasive operation potentially affecting
a lot of code. This invasiveness is a much bigger problem in a collaborative
setting since we may not even have access to the original expression to
perform the renaming operation.

More importantly, the lack of renaming fundamentally limits the potential
for reusing independently developed code that might inadvertently use
the same dimension names. Since selections in like-named dimensions are
resolved in a fixed, top-to-bottom, left-to-right order (see Section 3.4), clashing
dimension names can make it impossible to partially configure reused code in
the desired way. This issue is discussed in more depth in the next subsection.

As a solution, the select construct can be used to rename and reorder
dimension and tag names in a non-invasive way. For example, if expression
e exposes a dimension A with tags a and b, but we would rather expose a
dimension B with tags c and d, we can implement the renaming as follows.

dim B〈c, d〉 in
B〈select A.a from e, select A.b from e〉

This construction is not invasive since the implementation of e is unchanged.
If we also want to avoid duplicating e, we can also make use of the macro
extension from the previous chapter.

macro v : = e in
dim B〈c, d〉 in
B〈select A.a from v, select A.b from v〉

Note that this assumes, however, that macros are expanded at an earlier stage
than selections are resolved. This design decision is discussed in Section 5.3.5.

In addition to renaming dimensions and tags, the strategy applied above
can be used to partially reduce the variability in a dimension. For example,
if an expression e exposes a dimension A with tags a, b, and c, then we can
wrap e in a declaration of A with only tags a and b, using the strategy above
to effectively eliminate the alternatives corresponding to A.c.
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5.2.2 Modularity of Variational Components

In the previous subsection we saw how the select construct supports the reuse
of variational components by providing a mechanism for externally renaming
the exposed dimensions of a component. More generally, a syntactic form for
selection allows us to precisely control how the variability of a component
affects the overall variability of the system.

In terms of the choice calculus, a variational component is just a choice
calculus expression whose variability is expressed by its exposed dimensions.
A component may be reused in many places by a macro expression and
components may be nested within other components. The overall variability
of the system corresponds to the exposed dimensions of the whole choice
calculus expression.1

We can distinguish three ways that an exposed dimension in a compo-
nent can contribute to the overall variability of the system (or to the larger
component of which it is a part).

• An exposed dimension can directly contribute to the overall variability
of the system. That is, the dimension in the component is exposed to
clients of the overall system. This is the default behavior of the choice
calculus without syntactic support for selection.

• An exposed dimension can be locally resolved by a select expression.
That is, at the point that the component is reused, it is (partially or
fully) configured as an implementation detail of the system. The fact
that this variability ever existed is hidden from clients of the overall
system, ensuring proper information hiding.

• An exposed dimension can indirectly contribute to the overall variability
of the system. That is, the variability in the component is explicitly
mapped to one or more dimensions of variation exposed by the overall

1In Section 5.5 we will develop a more sophisticated representation of the variability of an
expression in the form of configuration types.
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system. This can range from a simple renaming or partial configuration,
as illustrated in Section 5.2.1, to the construction of complex depen-
dencies with several dimensions, which can be constructed in a similar
manner by nested dim and select expressions.

In this way, the select construct allows us to precisely control the configuration
interface that an expression presents to clients—that is, the set of decisions
that clients can make about an expression—even if we don’t have direct
access to each of the variational components used in the construction of that
expression. We believe that this kind of control is crucial to support code
reuse and for scaling applications of the choice calculus to large systems.

5.2.3 Operational Semantics

Finally, a syntactic form for selection provides a natural path toward defining
an operational semantics for the choice calculus in terms of syntactic trans-
formations on choice calculus expressions. For example, if we require that all
choice calculus expressions be fully configured in the sense that they expose
no dimensions of variation, then a structured operational semantics [Plotkin,
1981] might be defined by rules that:

1. Incrementally move select constructs closer to the dim declarations that
they resolve.

2. Eliminate select-dim sequences in the same dimension.

Such a reduction would eventually yield the single plain variant that the fully
configured choice calculus expression represents. We expect the elimination
of select-dim sequences to satisfy an equivalence like the following, where ti

represents the ith tag in the sequence tn.

select D.ti from (dim D〈tn〉 in e) ≡ becD.i
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Of course, we would also need rules for expanding macro and share expres-
sions, and congruence rules for other pairs of syntactic forms.

Even though we prefer a denotational semantics for the choice calculus
since it is simple, compositional, and extensible, an operational semantics has
certain advantages as well. For example, operational semantics correspond
more directly to implementations, which make it easier to reuse theoretical
results in the development of tools. Additionally, a structural operational
semantics can better reveal where an expression “went wrong” in cases where
the semantics is undefined by providing a partial reduction sequence.

We do not define an operational semantics here, but by internalizing
the operation for eliminating dimensions of variation from choice calculus
expressions, the select construct makes such a definition possible. This is
something we plan to pursue in future work.

5.3 Design Questions

In many scenarios, the intended meaning of a selection is not obvious. In this
section, we collect a number of challenges for a formal definition of selection.
We discuss the merits and drawbacks of each potential resolution, along with
the often subtle interactions between these design decisions.

5.3.1 Undeclared Dimensions

The first question is what to do when the dimension of a selected qualified
tag is not declared in the target of the selection. This is illustrated by the
following example.

select D.t from 1 + 2

The meaning of selection in an undeclared dimension can be defined in at
least two ways.
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1. The selection is considered ill-formed, in which case the semantics is
undefined and an error is reported.

2. The selection is idempotent, in which case our example is equivalent to
the expression 1 + 2.

On the one hand, the purpose of selection is to eliminate dimensions, so
a selection that does not do this can be considered anomalous and should
perhaps be identified as such. However, the idempotent behavior permits a
larger set of well-defined expressions and more semantics-preserving trans-
formations, as we will see later in this section. For this reason, we choose
that selections in undeclared dimensions be idempotent.

5.3.2 Multiple Matching Dimensions

The next question is what to do when there are multiple matching dimension
declarations in parallel. This situation is encountered when dimension
declarations are nested in different siblings of an object structure, as in the
following example.

select D.a from
(dim D〈a, b〉 in D〈1, 2〉) + (dim D〈a, c〉 in D〈3, 4〉)

There are at least four possible resolutions:

1. We allow a selection to be applied only directly to the declaration of
the dimension that it eliminates. Although restrictive, this prevents the
multiple matching dimension issue (and many other ambiguities) from
arising. In this case, the example is ill-formed and an error is reported.

2. A selection that matches multiple dimension declarations in parallel is
considered ambiguous. In this case, the example is ambiguous and an
error is reported.
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3. The leftmost matching dimension declaration is resolved. In this case,
the example is equivalent to 1 + (dim D〈a, c〉 in D〈3, 4〉). This inter-
pretation corresponds most closely to the external selection operation
that is the basis of the denotational semantics defined in Section 3.4.
We call this behavior of eliminating at most one dimension with one
selection modest selection.

4. All matching dimension declarations are resolved. In this case, the ex-
ample is equivalent to the plain expression 1 + 3. We call this behavior
of removing all matching, parallel dimension declarations with one
selection greedy selection.

Before we discard the first resolution as being too restrictive, it is worth
noting that it has some nice properties and parallels in other languages. For
example, requiring a select to be applied directly to the dim declaration
it eliminates is not so different from the lambda calculus, where lambda
abstractions are reduced only when applied directly to an argument. This
may help to enforce modularity since only a dimension declaration at the
root of an expression can be referenced and eliminated. In our previous work
on this extension we have explored a simple module system that relies on
and enforces this constraint [Erwig et al., 2013a].

However, the first resolution also leads to an extension that has low
orthogonality since the select construct cannot be combined freely with other
syntactic forms. It also leads to a situation where we cannot externally
configure variational components, which was one of the motivations for the
selection extension, described in Section 5.2.2. For these reasons we reject
this resolution to the multiple-matching-dimension design question.

We also reject the second resolution since it permits fewer valid expres-
sions than either modest or greedy selection, and it does not support the
modularity of variational components that declare multiple dimensions with
the same name.
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This leaves a choice between the modest and greedy forms of selection.
A simple observation is that both interpretations are equivalent when the
expression is dimension linear. Recall from Section 3.5.3 that an expression
is dimension linear if all of its declared dimensions have pairwise different
names. In the absence of dimension linearity, however, there are some
interesting trade-offs between the two approaches.

The first observation is that the greedy interpretation is more useful for
pushing selections down an expression, while modest selection is more useful
for lifting selections up an expression. To illustrate, observe that the greedy
interpretation suggests the following equivalence relation for commuting
selections and object structures.

select D.t from a�en� ≡ a�(select D.t from ei)
i:1..n�

Applied left-to-right, this relation can be used to push selection operations
down to the declarations of the dimensions that they affect, leading to a
simple, purely syntactic account of selection. Note that there is an interaction
here with the undeclared dimension design question from Section 5.3.1 since
the relation above only holds if we assume that the selection of an undeclared
dimension is idempotent.

With the modest interpretation, a selection can only be pushed down an
object structure by examining each of the subexpressions to determine which
subexpression declares the dimension that will be matched. Worse, in the
presence of macro expressions, the dimension that is matched may depend on
the context surrounding the select expression since a macro may be expanded
in a way that introduces new dimension declarations (see Section 5.3.5 and
Section 5.6 for more on this issue). In other words, pushing a selection down
an expression is not a local syntactic transformation [Felleisen, 1991]. This
makes greedy selection a better choice for a structural operational semantics,
as described in Section 5.2.3.
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To see how the modest approach better supports lifting selections up
an expression, consider the following expression with a selection in the ith
subexpression of an object structure.

a�en[i : select D.t from ei]�

With the greedy approach, the selection can only be factored out of the
object structure if none of the other subexpressions expose a dimension
named D, otherwise this dimension would be captured by the lifted selection.
In contrast, with the modest approach, we can factor out the selection by
prioritizing ei over the preceding subexpressions e1, . . . , ei−1 by introducing a
share construct, as shown below.

select D.t from
share v : = ei in a�en[i : v]�

The ease with which selections can be lifted reflects the fact that modest
selection more closely implements the external selection operation used in the
denotational semantics. Under this interpretation, the resolution of a select
expression at the top of an expression is equivalent to external selection.

Modest selection also better supports the modularity of variational com-
ponents. If a variational component declares two independent dimensions
with the same name, greedy selection forces them to be synchronized while
modest selection allows them to be configured separately.

The choice of greedy or modest selection interacts with many of the other
design questions described in this section, so we will refer back to both
of these interpretations of selection. Ultimately, however, we choose the
modest form of selection since it corresponds most directly to the external
selection operation we have assumed so far and since it supports the separate
configuration of independent dimensions in variational components.



104

5.3.3 Undeclared Tags

The next design question is what to do when the dimension referred to by a
selection is declared in the target, but the declaration does not contain the
selected tag. This problem is illustrated in the following example.

select D.a from
dim D〈b, c〉 in D〈1, 2〉

Taking into account that we consider selections in undeclared dimensions to
be idempotent, there are two ways to resolve selection with an undeclared
tag name:

1. The problem could be handled in the same way as selection with an
undeclared dimension. In this case, the selection of an undeclared tag
is idempotent and the example is equivalent to dim D〈b, c〉 in D〈1, 2〉.

2. The selection of an undeclared tag in a declared dimension could be
considered ill-formed, in which case an error is reported.

The argument for the first view is a simple appeal to consistency. The
argument for the second is more subtle, and is best viewed through the
interaction of this design decision with the treatment of parallel matching
dimension declarations, discussed in the previous subsection. Consider the
following example.

(dim D〈b, c〉 in D〈1, 2〉) + (dim D〈a, b〉 in D〈3, 4〉)

If we assume the first resolution, then this example exhibits a strange asym-
metry with both modest and greedy selection:

• With modest selection, observe that from the top of this expression we
can select either D.b or D.c from the left dimension, or D.a from the
right dimension, but not D.b from the right dimension (because it is
shadowed by the tag b in the first declaration of D).
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• With greedy selection, if we choose D.b, the two dimensions will be
synchronized as expected, but if we first choose D.a or D.c, then only
one of the dimensions will be eliminated and we can unilaterally choose
D.b in the remaining dimension.

The second resolution resolves the asymmetry for the case of modest selection.
By making the selection of D.a an error, we are forced to select tags from
the two dimensions in order, left to right. However, for greedy selection the
second resolution seems overly restrictive since it makes the selection of either
D.a or D.c an error, effectively forcing all parallel dimension declarations
with the same name to declare the same tags. There is no clear resolution of
the asymmetry for greedy selection.

Fortunately, since we have already chosen modest selection, we will also
choose the second resolution here since it does not exhibit the asymmetry of
the more consistent first resolution. Therefore, we consider the selection of
an undeclared tag in a declared dimension to be ill-formed.

5.3.4 Dependent Dimensions

The next design question is how to treat selection from a dimension that is
nested within a choice in a different dimension. Recall from Section 3.3.2
that the nested dimension is said to be dependent on the selection of the
corresponding tag(s) in the outer dimension. For example, in the following
expression the dimension B is dependent on the selection of either tag a1 or
tag a2 in dimension A.

select B.b1 from
dim A〈a1, a2, a3〉 in
A〈dim B〈b1, b2〉 in B〈1, 2〉, dim B〈b1, b2〉 in B〈3, 4〉, 5〉

There are several possible interpretations of this scenario.



106

1. We require that outer dimensions be resolved before dependent dimen-
sions. If a select expression refers to a dependent dimension there are
two possible interpretations.

(a) Since dependent dimensions cannot be selected, the situation is
analogous to selecting an undeclared dimension. By the design
decision in Section 5.3.1, the selection is idempotent.

(b) Selection in a dependent dimension is an error. In this case, the
example is ill-formed and an error is reported.

2. The matching dimension declaration in the leftmost alternative is re-
solved, preserving the other alternatives of the choice. The example is
equivalent to dim A〈a1, a2, a3〉 in A〈1, dim B〈b1, b2〉 in B〈3, 4〉, 5〉.

3. The selection is mapped across the choice so that matching dimension
declarations in every alternative are resolved. For alternatives that do
not expose a matching dimension, there are two possibilities.

(a) Alternatives that do not expose the dependent dimension are pre-
served. The example is equivalent to dim A〈a1, a2, a3〉 in A〈1, 3, 5〉.

(b) Alternatives that do not expose the dependent dimension are
removed. The example is equivalent to dim A〈a1, a2〉 in A〈1, 3〉.

The main argument for the first resolution is that it is most consistent with
the current external definition of tag selection. With external selection,
dimensions are strictly ordered so that dependent dimensions are always
selected after their dependencies are resolved. This ordering constraint seems
quite restrictive for internalized selection, however, and we have already
loosened it by allowing independent dimensions to be selected in any order.
Therefore a consistency argument might also be made for allowing dependent
dimensions to be selected.

Allowing selection in dependent dimensions also better supports the reuse
of variational components since it supports a form of conditional configuration.
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For example, suppose we are developing an application with variants for
Windows and Mac. A variational component e exposes a top-level dimension
dim OS〈Windows, Unix〉, and a dimension dim Flavor〈Linux, Mac〉 that is
dependent on the selection of OS.Unix. Now we can conditionally select
Flavor.Mac if OS.Unix is selected with the expression select Flavor.Mac from e.
This restricts e to the variants corresponding to Widows and Mac, removing
the variants corresponding to the Linux flavor of Unix.

Since conditional selections provide a practical use case for admitting
a larger class of expressions, and since we have already lifted some of
the ordering constraints imposed by external selection, we choose to allow
selections in dependent dimensions.

The second interpretation of selection in a dependent dimension (elimi-
nating the leftmost matching alternative) is at first appealing since it seems
consistent with the modest semantics we chose as a solution to the multiple
parallel dimensions design question in Section 5.3.2. However, consider the
following pair of expressions, which are equivalent by the Chc-Dim transfor-
mation law presented in Section 3.5.

dim C〈c1, c2〉 in dim C〈c1, c2〉 in
dim D〈d1, d2〉 in ≡ C〈dim D〈d1, d2〉 in D〈1, 2〉,
C〈D〈1, 2〉, D〈3, 4〉〉 dim D〈d1, d2〉 in D〈3, 4〉〉

Under the second interpretation, if we apply select D.d1 to each each expres-
sion, we will get different results despite the fact that the two expressions are
semantically equivalent. This is bad since it means the Chc-Dim rule is no
longer semantics-preserving in the presence of the select extension.

Therefore it seems that although we fold selections across object structures
until they are consumed, we must map selections across choices. This leads
us to choose the third interpretation of selection in a dependent dimension,
where we eliminate matching dimensions in all alternatives. However, we
must still decide what to do with alternatives that do contain a matching
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dimension declaration. The two possibilities are listed in interpretations 3(a)
and 3(b).

The argument for interpretation 3(b) is that selection in a dependent
dimension can be viewed as an implicit selection of the tags that dimension
is dependent on. As an example, consider the following excerpt from a
variational list of errands.

select BuyPie.yes from
dim VisitBakery〈yes, no〉 in
VisitBakery〈dim BuyPie〈yes, no〉 in BuyPie〈buy pie, say hi〉, . . .〉

Since we have decided to buy the pie (based on the selection of BuyPie.yes),
then we must necessarily visit the bakery. So we can consider the above
expression equivalent to the following, in which we are now forced to select
yes in the VisitBakery dimension.

dim VisitBakery〈yes〉 in VisitBakery〈buy pie〉

Note that we do not directly select VisitBakery.yes but only eliminate the
tag VisitBakery.no and its corresponding alternatives. The reason is that a
dimension can be dependent on more than one tag in the same dimension, as
in the example with dimensions A and B at the beginning of this subsection.
Filtering out unmatched alternatives will generalize to this cases, while
implicitly selecting dependencies will not. However, we might complement
the filtering step with a subsequent rule that eliminates dimensions with only
a single tag, as supported by Theorem 3.6.6, so that the above example is
equivalent to simply the plain expression buy pie.

The drawback of this interpretation is that it is quite complicated and
perhaps better described as a combination of more primitive operations. It
also removes the chance to make conditional selections, as described in the
OS example above.
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Therefore, by a process of elimination, we choose interpretation 3(a) where
selections in dependent dimensions are mapped across all of the alternatives
of a choice but unmatched alternatives are retained.

5.3.5 Staging and Scope of Selection

The final challenge is to determine at which conceptual stage select expres-
sions are resolved. This is significant to determine how selection interacts
with the reuse extensions presented in the previous chapter. Recall from
Section 4.2 that the evaluation of an expression in the fully extended choice
calculus consists of three conceptual stages, resolved in order: (1) macro
expansion, (2) dim elimination, and finally (3) share expansion. Where does
selection fit into this view?

Recall from Section 5.2.2 that one of the motivations for an internalized
selection operation is to support the modularity and (partial) configuration
of variational components. From this perspective, it only makes sense to
resolve select expressions after macro expressions since we may want to
configure variational components differently at each point where they are
reused. Additionally, in order to have an effect, select expressions must be
resolved before dim elimination. This establishes a clear stage between macro
expansion and dim elimination in which select resolution must occur.

However, resolving selections after macros leads to a subsequent issue
of whether the target of a selection should be determined lexically or dy-
namically. In other words, does the expansion of macros alter the set of
dimensions that can be selected at each point in the program? This issue can
be clearly seen in the following example.

macro v : = (dim A〈a1, a2〉 in A〈1, 2〉) in
select A.a1 from v

There are two possible ways to interpret this expression.
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1. The target of a selection is determined lexically. In this case, even though
the dimension declaration is expanded into the scope of the select
expression, the selection has no effect and the example is equivalent to
dim A〈a1, a2〉 in A〈1, 2〉.

2. The target of a selection is determined dynamically. In this case, the
macro expansion causes the declaration of A to be captured by the
select expression. The dimension A is eliminated and the example is
equivalent to 1.

On the one hand, to reuse a variational expression and configure it differently
in different locations seems to suggest a dynamically determined selection op-
eration. For example, with a dynamic interpretation, the following expression
would be equivalent to 3+4.

macro v : = (dim B〈b1, b2〉 in B〈3, 4〉) in
(select B.b1 from v) + (select B.b2 from v)

Although this expression could be equivalently represented without the need
for dynamic scoping, as shown below, this representation is more brittle since
the selections are not localized to the places where the variational expression
is reused.

select B.b1 from
select B.b2 from
macro v : = (dim B〈b1, b2〉 in B〈3, 4〉) in v+v

On the other hand, dynamic scoping is risky since dimensions can be unex-
pectedly captured by selections. This is similar to the issue of macro hygiene
in metaprogramming systems [Kohlbecker et al., 1986]. For example, in the
following expression where v is defined far away from the selection, the
author likely intended the selection to affect only the second declaration of
dimension C.
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macro v : = (dim C〈c1, c2〉 in C〈1, 2〉) in
. . .
select C.c1 from
v + (dim C〈c1, c3〉 in C〈3, 4〉)

This expectation is satisfied by a lexically scoped interpretation of selection,
which yields the following equivalent expression.

dim C〈c1, c2〉 in C〈1, 2〉 + 3

However, with dynamic scoping, the dimension exposed by the expression
bound to v will be captured by the selection, so the expression is equivalent
to the following.

1 + (dim C〈c1, c3〉 in C〈3, 4〉)

The unwanted dimension capture can be avoided by localizing the selection
to the intended dimension, such that v is no longer in scope of the selection.
Thus, we can rewrite our original example in the following way, which
behaves as expected under the dynamic interpretation.

macro v : = (dim C〈c1, c2〉 in C〈1, 2〉) in
. . .
v + (select C.c1 from dim C〈c1, c3〉 in C〈3, 4〉)

While unexpected dimension captures are bad, they can be avoided by
localizing selections as much as possible. In general, dynamic scoping better
supports the reuse of variational components since it allows us to locally
configure the component at each point where it is reused. Therefore we
choose this interpretation as the basis for our semantics.
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e ::= . . .
| select D.t from e Selection

Figure 5.1: Syntax of selection extension.

5.4 Syntax and Denotational Semantics

At this point, the syntax of select expressions is familiar, but for completeness
a formal definition is given in Figure 5.1. We also extend the definitions
of bound and free dimensions from Section 3.3, choice elimination from
Section 3.4, and free variables from Section 4.3, all in the obvious ways. We
do not extend the well-formedness property, as we have done for previous
extensions, because we introduce a more sophisticated type system in the
next section that subsumes this property.

Recall that the semantics basis of the choice calculus is a mapping from
decisions to plain variants. The impact of select expressions is that they
will reduce the number of entries in this mapping. For example, assuming
that expression e exposes a single dimension named D, then the domain of
the mapping [[select D.t from e]] contains no tag in dimension D, while the
range is restricted to the variants in [[e]] whose decisions contain the tag D.t.

Based on this intuition and taking into account the design decisions in
Section 5.3, the denotational semantics of the selection extension is defined
in Figure 5.2. As with the core choice calculus and its previous extensions,
the semantics is defined compositionally. This makes selection a modular
extension to the choice calculus in the sense that it requires no changes to
the existing definition and can be arbitrarily included or not in any variant
of the choice calculus.

The denotational semantics of a select expression is defined by recursively
computing the semantics of its target, then filtering the returned mapping.
The filtering step is based on the decision in each entry of the target’s
semantics, with the help of a recursively defined predicate S. Recall that a
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[[select D.t from e]] = {(δ\D.t, e′) | (δ, e′) ∈ [[e]], S(δ)}

S(ε) = true

S(D′.t′ δ′) =

{
t == t′ if D == D′

S(δ′) otherwise

Figure 5.2: Denotational semantics of selection extension.

decision δ is a list of dimension-qualified tags. On an empty decision ε, the
predicate S is true, reflecting the decision in Section 5.3.1 that selection of an
undeclared dimension is idempotent. For the recursive case with D′.t′ δ′, if
D′ is the selected dimension, then S is true if t′ is the selected tag (note that
we use == for dimension and tag equality). If t′ is not the selected tag, S is
false and the entry will be omitted from the semantics. Otherwise, if D′ is
not the selected dimension, we recursively examine the tail, δ′.

Finally, for entries that pass the filter defined by S, we remove the tag D.t
from the resulting decision. The notation δ\D.t removes the first occurrence
of D.t in decision δ. This operation is defined to be idempotent when δ does
not contain such a tag since decisions with no tag in dimension D will also
be included in the semantics.

Note that this definition implicitly satisfies the design decisions of folding
a selection across object structures (until it is consumed) and mapping a
selection across choices, motivated in Section 5.3.2 and Section 5.3.4, respec-
tively. Parallel declarations of a dimension D in an object structure show up
in the semantics as multiple tags qualified by D in a single decision. This is
because each declaration of D defines an independent dimension that must
be selected separately. Since the semantics of select matches and removes
only the first such tag, this corresponds to eliminating only the leftmost
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parallel dimension declaration in an object structure. Meanwhile, parallel
declarations of a dependent dimension D (in some choice) show up in each
each decision in the semantics as at most one tag qualified by D. This is be-
cause only one alternative of the enclosing choice will ultimately be included.
Thus, matching and removing a single tag corresponds to eliminating all
parallel dependent dimension declarations in a choice.

5.5 Configuration Type System

This section presents a type system for the fully extended version of the choice
calculus with both reuse constructs and internalized selection. The purpose
of the type system is twofold. First, it replaces the well-formedness property
defined in Section 3.3.3 and extended in Section 4.3. The type system ensures
that all choices are properly bound by a corresponding dimension declaration
of the appropriate arity, and that all variable references are bound by a share
or macro construct. Second, the type system tracks the configuration status
of choice calculus expressions. That is, the type of an expression will tell
us which decisions must still be made in order to resolve the variational
expression into a plain variant in the object language.

Note that this type system is fundamentally different in purpose and
structure from other variational type systems that try to ensure the type
safety of object languages in the presence of variation, such as the work of
Kästner et al. [2012a] on type checking CPP-annotated C programs, or our
own work on inferring types for variational lambda calculus [Chen et al.,
2012, 2013], which is briefly summarized in Section 9.1.

The configuration status of a choice calculus expression is captured by
a judgment of the form Γ ` e : ∆, which states that expression e has con-
figuration type ∆ in the context of the environment Γ. In Section 5.5.1 we
describe the structure and meaning of a configuration type. In Section 5.5.2
we describe the structure of the typing environment and the important prop-
erties that a configuration judgment can express. Finally, in Section 5.5.3
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∆ ::= Φ Fully Configured
| D〈t⇒ ∆, . . . , t⇒ ∆〉; ∆ Required Decision

Figure 5.3: Configuration types.

we present the typing rules that associate configuration types with choice
calculus expressions.

5.5.1 Configuration Types

A configuration type captures the structure of the dimensions that must still be
resolved in order to obtain a plain variant. Alternatively, a configuration type
can be viewed as a model of the decision space of a choice calculus expression
(see Section 2.2). The syntax of configuration types is given in Figure 5.3.
The constant Φ represents an expression that is fully configured in the sense
that there are no exposed dimensions of variation. A plain expression would
have configuration type Φ, as would an expression in which every declared
dimension is resolved internally by select expressions. Exposed dimensions
are reflected in configuration types by required decisions. A required decision
consists of two parts, separated by a semicolon.

• The first part D〈t1 ⇒ ∆1, . . . , tn ⇒ ∆n〉 represents an exposed dimen-
sion D with tags t1, . . . , tn. The nested configuration types ∆1, . . . , ∆n

capture dimensions that are dependent on the selection of the corre-
sponding tag(s) in D.

• The second part ∆ captures subsequent dimensions that are indepen-
dent of dimension D.

As an example, the expression dim A〈a1, a2〉 in A〈1, 2〉 would have the
configuration type A〈a1 ⇒ Φ, a2 ⇒ Φ〉; Φ. This reveals that we have a
required decision in dimension A, that neither of A’s tags have dependent
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Φ⊕ ∆′ = ∆′

(D〈. . .〉; ∆)⊕ ∆′ = D〈. . .〉; (∆⊕ ∆′)

Figure 5.4: Configuration type concatenation.

dimensions, and that after making a selection in A, we have no more decisions
left to make. For readability, we omit the dependencies of tags that have none
(that is, when t⇒ Φ), and omit the terminating Φ symbol of a sequence of
required decisions. Therefore we can write the type of the above expression
more succinctly as A〈a1, a2〉.

As a more complex example, consider the following expression in which
three dimensions A, B, and C are embedded into two branches of an object
structure, and dimension B is dependent on the selection of A.a2.

� dim A〈a1, a2〉 in A〈1, dim B〈b1, b2〉 in B〈2, 3〉〉,
dim C〈c1, c2〉 in C〈4, 5〉�

The configuration type of this expression is A〈a1, a2 ⇒ B〈b1, b2〉〉; C〈c1, c2〉,
which reveals the relationships between A, B, and C.

Often in the typing rules we need to express a sequence of two or more
configuration types. We use the syntax ∆⊕ ∆′ to express the sequence of
type ∆ followed by type ∆′. The ⊕ operator is associative and is isomorphic
to list concatenation. It is defined in Figure 5.4.

5.5.2 Typing Environment and Important Properties

In the configuration judgment Γ ` e : ∆, the environment Γ contains two
kinds of bindings. The first is the standard mapping from variables to
configuration types, written v : ∆. The second kind maps dimension names
to a pair of integers used to support the typing of choices. In a context that
contains the mapping D : (n, i), a choice in dimension D must have exactly n
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Γ ::= ∅ | Γ, D : (n, i) | Γ, v : ∆

Figure 5.5: Configuration typing environment.

alternatives, and the ith alternative is considered to have been selected. The
formal definition of Γ is given in Figure 5.5. In the typing rules, we use the
syntax v : ∆ ∈ Γ to lookup the type of v in Γ, and likewise use D : (n, i) ∈ Γ
to lookup the values of n and i associated with D.

In addition to revealing the decision structure of an expression through
its configuration type, there are two significant properties that a typing
judgment can express.

1. The judgment ∅ ` e : ∆ expresses the property that e is well formed.
Restated, a well-formed expression is one that is well typed in the empty
environment. Recall from Section 3.3.3 and Section 4.3 that a well-
formed expression contains no free variable reference and every choice
D〈e1, . . . , en〉 is bound by a corresponding dimension dim D〈t1, . . . , tn〉.

2. The judgment Γ ` e : Φ expresses the property that e is fully configured
in the context of environment Γ. An expression e is fully configured if it
exposes no dimension declarations and every free choice D〈e1, . . . , en〉
is selected by a corresponding entry D : (n, i) in Γ. Note that e may still
contain unexpanded macro or share constructs.

Of course, these two properties can be expressed together by the judgment
∅ ` e : Φ, which means that the expression is both fully configured and well
formed. In this case, the semantics of e is a trivial mapping from the empty
decision to a single plain variant in the object language.
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C-Leaf

Γ ` a�� : Φ

C-Obj

Γ ` e1 : ∆1 . . . Γ ` en : ∆n

Γ ` a�e1, . . . , en� : ∆1 ⊕ . . .⊕ ∆n

C-Dim

Γ, D : (n, 1) ` e : ∆1 . . . Γ, D : (n, n) ` e : ∆n

Γ ` dim D〈t1, . . . , tn〉 in e : D〈t1 ⇒ ∆1, . . . , tn ⇒ ∆n〉; Φ

C-Chc

D : (n, i) ∈ Γ Γ ` ei : ∆i

Γ ` D〈e1, . . . , en〉 : ∆i

C-Sel

Γ ` e : ∆ ∆ D.t
⇁ ∆′

Γ ` select D.t from e : ∆′

C-Shr

Γ ` e : ∆ Γ, v : Φ ` e′ : ∆′

Γ ` share v : = e in e′ : ∆⊕ ∆′

C-Mac

Γ ` e : ∆ Γ, v : ∆ ` e′ : ∆′

Γ ` macro v : = e in e′ : ∆′

C-Var

v : ∆ ∈ Γ

Γ ` v : ∆

Figure 5.6: Configuration typing rules.

5.5.3 Typing Rules

Finally, the typing rules that associate configuration types with choice calcu-
lus expressions are given in Figure 5.6.

The typing of object structures is split into two rules, C-Leaf and C-Obj.
The C-Leaf rule captures the fact that object structures with no subexpressions
are trivially fully configured. Otherwise, in the rule C-Obj, the configuration
type is constructed by concatenating the types of each of the subexpressions,
reflecting the fact that each subexpression must be configured separately.

Skipping ahead to the rules for the reuse extensions, the rules C-Shr

and C-Mac reflect the staging differences between these constructs. For an
expression share v : = e in e′, we configure the bound expression e exactly
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once, then configure the scope e′, which is reflected in the concatenation of
their types in the result type. When configuring e′, we add v to the typing
environment to indicate that it is in scope; however, the type associated with
v is Φ since the expression bound to v has already been fully configured.
Therefore, each reference to v will not affect the configuration of e′.

For an expression macro v : = e in e′, we may have to configure e several
times depending on how many times v is referenced in e′. Therefore, the
result type is the type of e′ extended with the mapping v : ∆. The C-Var rule
ensures that each time v is referenced, we will add another instance of ∆ to
the overall configuration.

The rule C-Dim introduces a new required decision for the declaration
of dimension D. The resulting dependent configurations are determined by
essentially simulating the selection of each tag in D by typing its scope n
times, with the environment extended by D : (n, i) for every i from 1 to n.
The C-Chc rule refers to these mappings, using n to ensure that the choice
has the correct number of alternatives, and using i to return the type of the
corresponding alternative.

For a selection select D.t from e, the C-Sel rule eliminates required
decision(s) in dimension D from the configuration type of its target e. It
does this with the help of a type reduction relation ∆ D.t

⇁ ∆′, defined in
Figure 5.7. The reduction relation essentially implements the strategy of
mapping over choices and folding over structures, outlined in Section 5.4,
but lifted to the type level. In this case, we map over the alternatives of a
required decision, and fold over sequences of required decisions until the
reduction is consumed. The first rule simply states that fully configured
types cannot be further reduced. The second rule implements the fold
over sequences by stating that if the reduction of a prefix has no effect, we
can attempt to reduce the suffix. The third rule implements the reduction
of a matched required decision in D by replacing it with the dependent
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Φ D.t
⇁ Φ

∆1
D.t
⇁ ∆′1 ∆2

D.t
⇁ ∆′2 ∆1 = ∆′1

∆1 ⊕ ∆2
D.t
⇁ ∆1 ⊕ ∆′2

D = D′ t = ti

D′〈t1 ⇒ ∆1, . . . , tn ⇒ ∆n〉; ∆ D.t
⇁ ∆i ⊕ ∆

D 6= D′ (∆i
D.t
⇁ ∆′i)

i:1..n

D′〈t1 ⇒ ∆1, . . . , tn ⇒ ∆n〉; ∆ D.t
⇁ D′〈t1 ⇒ ∆′1, . . . , tn ⇒ ∆′n〉; ∆

Figure 5.7: Configuration type reduction.

configuration corresponding to t. Finally, the last rule maps a reduction over
the alternatives of an unmatched required decision.

5.6 Semantics-Preserving Transformations

In this section we enumerate the semantics-preserving transformation laws
involving the extension defined in this chapter. Since selections are resolved
at a conceptually later stage than macro expressions, and since the target of a
select is determined dynamically rather than statically, commuting selections
is a delicate business. We must be careful not only of respecting which
dimension declaration a selection may affect, but also which variable refer-
ences it may affect. Additionally, while a matching dimension declaration
forms a hard lexical boundary, after which we know a selection will be con-
sumed, whether or not a variable reference will consume a selection cannot
be determined lexically. For example, consider the following expression.
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Sel

D /∈ BD(e) FV(e) = ∅

e ≡ select D.t from e

Sel-Sel

D 6= D′

select D.t from (select D′.t′ from e) ≡ select D′.t′ from (select D.t from e)

Figure 5.8: Selection introduction/elimination and commutation.

select A.a from
�v, w, dim A〈a, b〉 in e1, e2�

If the expression bound to v contains a declaration of dimension A, it will be
resolved by the enclosing select operation and the selection will be consumed
(that is, it will not affect any subsequent subexpressions). However, if the
expression bound to v does not contain a declaration of A, then the selection
may be consumed by the expression bound to w. If that expression also
does not contain a declaration of A, then the selection will resolve the
declaration of A in the third subexpression of the structure. Thus without the
enclosing context, we cannot determine which subexpression of the structure
consumes the selection. However, since we know that A is declared in the
third subexpression, we can be sure that the selection does not affect e2.

Because of this ambiguity, our semantics-preserving transformation laws
for the select construct must be quite conservative, taking into account all
of the subexpressions that could possibly be affected by the selection even
though only one of them ultimately will be.

In Figure 5.8 we present a rule for introducing and eliminating selections,
along with a rule for commuting two select constructs. Applying rule Sel

right to left (RL), we can eliminate a selection if we are sure that it cannot
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Dim-Sel

D 6= D′

dim D〈tn〉 in (select D′.t′ from e) ≡ select D′.t′ from (dim D〈tn〉 in e)

Chc-Sel

D〈(select D.t from ei)
i:1..n〉 ≡ select D.t from D〈en〉

Figure 5.9: Choice and dimension commutation rules.

affect the target expression. The rule Sel-Sel reveals that we can arbitrarily
commute select constructs as long as the two selections are in different
dimensions.

In Figure 5.9 we present rules for commuting selections with choices and
dimensions. These are the significant rules needed to achieve the normal
forms described in Section 3.5.3. Observe in rule Dim-Sel that we can com-
mute a selection and a dimension declaration as long as the two constructs
refer to dimensions with a different name, since otherwise the dimension
would be captured by (when applied RL) or escape (LR) the select operation.

Rule Chc-Sel describes the commutation of selections and choices. Ob-
serve that because selections are mapped across the alternatives of a choice,
the same selection must appear in every alternative of a choice in order to be
factored out. When such a selection does not appear in every alternative, we
may be able to setup the transformation by introducing new selections with
a LR application of the rule Sel.

Finally, Figure 5.10 describes the commutation of selections and object
structures. This transformation is broken into two rules, which implement
the constraints described at the beginning of this section. The rules are
perhaps best understood when applied LR. The rule Obj-Sel-1 addresses the
case where the selection is applied to a subexpression that explicitly declares
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Obj-Sel-1
D ∈ BD(ei) (D /∈ BD(ej))

j:1..i−1 (FV(ej) = ∅)j:1..i−1

a�en[i : select D.t from ei]� ≡ select D.t from a�en�

Obj-Sel-2
(D /∈ BD(ej))

j:1..i−1,i+1..n (FV(ej) = ∅)j:1..i−1,i+1..n

a�en[i : select D.t from ei]� ≡ select D.t from a�en�

Figure 5.10: Commuting selection and object structures.

the dimension D. In this case, ei will definitely consume the selection, so we
can factor the selection out of the object structure as long as every previous
subexpression e1, . . . , ei−1 contains no declarations of D and no free variables
(which might later be replaced by an expression that declares D). The rule
Obj-Sel-2 addresses the case where it is unclear whether ei will consume the
selection. In this case, the transformation is only semantics preserving if it is
impossible for the selection to affect any of the other subexpressions.
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Chapter 6 – Compositional Choice Calculus

As described in Chapter 2, in general, there are three ways to encode variabil-
ity in software: the annotative, compositional, and metaprogramming approaches.
The choice calculus as presented so far is an example of an annotative ap-
proach. However, these approaches excel at capturing different kinds of
variation and have complementary strengths and weaknesses. Therefore we
would sometimes like to incorporate aspects of each of these approaches into
a single variation representation.

This chapter will focus mostly on the advantages of combining the anno-
tative and compositional approaches, though the language we devise will
have some metaprogramming capabilities as well. The complementary na-
ture of the annotative and compositional approaches is most evident when
considering how to represent overlapping variability in multiple dimensions,
called feature interactions [Prehofer, 1997]. Compositional approaches excel
when interactions are widespread and regular, while annotative represen-
tations are best suited for a small number of irregular interactions. The
trade-offs involved will be illustrated in Section 6.1. Kästner, Apel, and their
collaborators have explored these trade-offs in depth [Kästner and Apel, 2008,
2009, Kästner et al., 2008a, 2009a,c] and identified the need for a way “to
combine annotation-based and composition-based approaches in a unified
and efficient framework” [Kästner and Apel, 2009].

In this chapter, we will present a variant of the choice calculus, the composi-
tional choice calculus (ccc), that generalizes and unifies the compositional and
annotative approaches to representing variation. Section 6.2 demonstrates
how we can interleave both strategies as needed, reducing feature interactions
to their inherent complexity and avoiding complexity introduced by bias in
the representation. This version of the choice calculus is more powerful than
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simply adding annotative variation to compositional components, however.
In Section 6.3, we introduce an abstraction construct that extends the calculus
into a variation metaprogramming system. The combination of annotative,
compositional, and metaprogramming approaches leads to new ways of
organizing variation in software and supports the definition of high-level
variation abstractions.

The syntax of ccc is defined in Section 6.4, and a denotational semantics
for the language is given in Section 6.5. The semantics is interesting because
it ensures the hygiene property [Kohlbecker et al., 1986] of variation abstrac-
tions through a novel compositional semantics definition, rather than by the
traditional renaming strategy.

In Section 6.6 we formally analyze the local expressiveness [Felleisen,
1991] of ccc relative to compositional and annotative representations. This
demonstrates that ccc is more locally expressive than either approach alone,
and also more expressive than a simple union of the two. Throughout
the chapter we provide examples that demonstrate how ccc alleviates the
feature interaction problem, can be used to define variation abstractions, and
supports the generation and organization of variational structures.

The next section provides the necessary background to motivate the
design of the calculus. To make the discussion more concrete, we couch it in
terms of feature-oriented software development (FOSD), but the representation
is not limited to this context. Some of the high-level background material is
repeated from Section 2.3, but we provide concrete examples here that will
be reused throughout the chapter.

6.1 Motivation

FOSD addresses the classic problems of structured software construction
and reuse by decomposing a system into the individual features it provides
and by making it possible to refer to and manipulate these features directly.
This strategy is useful for creating massively variable software. By adding
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a program generation step in which individual features can be selectively
included or excluded, a software product line (SPL) of distinct but related
programs can be produced [Apel and Kästner, 2009].

Variability is expressed in FOSD at two distinct levels. Feature model-
ing describes the high-level relationships between conceptual features in
the problem domain [Kang et al., 1990]. Feature implementation associates
conceptual features with the code and other artifacts that realize them in
the solution domain. The compositional and annotative approaches to rep-
resenting variability can be viewed as two different approaches to feature
implementation.

6.1.1 Compositional Approaches

As described in Section 2.3, compositional approaches are motivated by
traditional software engineering pursuits like separation of concerns and
stepwise refinement. They attempt to modularize each feature, separating its
code and data from other features and from the base program, which contains
no features (or only essential, non-variational features). To do this, they often
rely on a language’s native modularization mechanisms, such as classes and
subclasses in object-oriented languages, augmented with other abstraction
mechanisms like mixins or aspects. More generally, the compositional view
considers a feature something that can be applied to or composed with a program
in order to produce a new program incorporating the feature.

Figure 6.1 shows a simple SPL in the compositional style. This running
example is based on an example from Liu et al. [2006]. The base program b is
a simple integer buffer written in Java. Note that we use underlined names
to indicate plain (non-variational) expressions in an object language, such as
Java. We add to this an optional logging feature l, implemented as an aspect
in the AspectJ language [Kiczales et al., 2001]. The aspect adds a log method
to the Buffer class and inserts a call to this method before the execution of
every method in Buffer. Thus, our SPL has two products, the basic buffer b
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class Buffer {

int buff = 0;

int get() {

return buff;

}

void set(int x) {

buff = x;

}

}

a. Base program, b.

aspect Logging {

void Buffer.log() {

print(buff);

}

before(Buffer t) :

target(t) &&

execution(*) {

t.log();

}

}

b. Logging feature, l.

Figure 6.1: A small integer buffer SPL.

and the buffer with the logging feature added, obtained by applying l to b,
which we write l • b, following the style of Apel et al. [2008b].

In Figure 6.2, we implement two possible undo features as class refinements
in the Jak language of the AHEAD Tool Suite [Batory et al., 2004]. When
a refinement is applied to a class, new data members and methods in the
refinement are added to the class and existing methods are overridden,
similar to traditional inheritance. Each of the refinements in Figure 6.2
modifies the Buffer class by adding a new data member, adding a new
method undo(), and overriding the existing set method to incorporate some
new functionality (the statement beginning with Super calls the overridden
method). The uo feature adds the ability to undo one previous change to the
buffer, while um adds the ability to undo arbitrarily many changes. Now we
can, for example, generate the product l • uo • b, which is an integer buffer
with logging and one-step undo.

Note that we have used three different object languages in the creation of
this example: b is a Java class, l is an aspect in AspectJ, and uo and um are
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refines class Buffer {

int back = 0;

void set(int x) {

back = buff;

Super(int).set(x);

}

void undo() {

buff = back;

}

}

a. Undo-one feature, uo.

refines class Buffer {

Stack stack = new Stack();

void set(int x) {

stack.push(buff);

Super(int).set(x);

}

void undo() {

buff = stack.pop();

}

}

b. Undo-many feature, um.

Figure 6.2: Class refinements implementing undo features.

Jak class refinements. This reveals that the feature composition operator • is
overloaded—the operation it performs depends on the types of its arguments.
When we write l • b, the operator represents aspect weaving [Elrad et al.,
2001], while in uo • b it represents class refinement. This makes it possible
to extend the compositional approach to new object languages and artifact
types by simply adding new instances of the • operator [Batory et al., 2004,
Apel et al., 2008b].

6.1.2 Annotative Approaches and the Choice Calculus

Annotative approaches represent variation in-place, by directly marking the
code to be conditionally included if the corresponding features are selected.
The choice calculus as presented in Chapter 3 is a formal language for repre-
senting annotative variation. We call the variant introduced in this chapter
the compositional choice calculus because it adds compositional functionality
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dim Log〈yes, no〉 in
dim Undo〈one, many, none〉 in
class Buffer {

int buff = 0;

Undo〈int back = 0, Stack stack = new Stack(), ◦〉;
int get() { return buff; }

int set(int x) {

Log〈print(buff+"->"+x), ◦〉;
Undo〈back = buff, stack.push(buff), ◦〉;
buff = x;

}

Undo〈void undo() {

Log〈print(back+"<-"+buff), ◦〉;
buff = back;

},
void undo() {

Log〈print(stack), ◦〉;
buff = stack.pop();

}, ◦〉
}

Figure 6.3: Buffer with annotated logging and undo features.

to this annotative core. Likewise, when the distinction is significant, we refer
to the core choice calculus as the annotative choice calculus.

Figure 6.3 shows a version of our integer buffer SPL implemented in
the annotative style of the choice calculus. For illustrative purposes, the
logging feature differs from the aspect-based implementation in the previous
subsection. While the compositional logging feature l simply prints the
value of the buffer after each method call, the annotative logging feature
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implemented in Figure 6.3 prints a unique message whenever the value of
the buffer changes.

Our example contains two dimensions, Log and Undo. Choices in the Log
dimension have two alternatives, corresponding to whether change-logging
is included or not. Choices in the Undo dimension have three alternatives,
corresponding to two possible implementations of the undo feature (undo-
one or undo-many) and the case where no undo feature is included. For
example, to get an integer buffer with no logging and one-step undo, we can
select Log.no and Undo.one.

Recall from Section 3.3.1 that the choice calculus respects the tree structure
of the underlying artifact it varies, ensuring the syntactic correctness of all
variants. Formally, each node in the tree is encoded by a constant value
a from the object language and a possibly empty list of subexpressions,
written a�e1, . . . , en�. For example, we can represent the buffer’s get method
as get�(), return�buff��. We rarely show this tree structure explicitly,
preferring to embed the notation directly in the concrete syntax of the object
language, for readability. However, some of the later formalism will make
use of the formal representation of structure nodes.

All of the choices in our example contain the empty expression ◦ as
their last alternative. This is an element of the object language, not of the
choice calculus itself. This is important because it preserves the guarantee of
syntactic correctness—such a value can only be included as an alternative
where it is syntactically valid in the object language. For example, the choice
calculus expression 1+D〈2, ◦〉 is invalid since ◦ is not syntactically correct at
the position of the choice in the surrounding Java expression. However, the
choice calculus expression 1+D〈2, x〉 is valid. Even though the literal 2 and
variable x are different syntactic categories, both alternatives are syntactically
correct at the position of the choice.
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6.1.3 Representing Feature Interactions

The salient problem in FOSD is detecting, resolving, and managing the
interactions of a huge number of conditionally included features [Kästner
et al., 2009c]. This is a large problem that spans all stages of the software life
cycle. Here we consider only the much smaller subproblem of representing
intended feature interactions in a way that is structured and manageable.

Interactions are represented quite differently in the annotative and com-
positional approaches to feature implementation. In the annotative approach
exemplified by the choice calculus, interactions appear as nested choices. For
example, the Log choices inside of the Undo choice in Figure 6.3 capture the
interaction between the undo and logging features. This way of representing
feature interactions is simple and explicit. It is best suited for interactions
between a small number of features, where each interaction must be handled
uniquely.

However, many interactions are regular and cut across many features.
Generic logging is a classic example. For every feature that adds a new
method, we must also define its interaction with the logging feature. This
quickly leads to maintenance issues with even a small number of features.
The compositional approach addresses this problem through the creation of
new abstraction mechanisms. For example, the representation of the logging
feature l as an aspect in Figure 6.1.b demonstrates how cross-cutting, regular
interactions can be modularized by introducing a new kind of artifact, in this
case, aspects. As long as we apply l after including the undo feature, both
the base program and undo feature’s methods will be extended accordingly.

The logging feature as implemented in the annotative example in Fig-
ure 6.3 is less regular, however. Its interaction with the undo feature is messy
since it prints a different message depending on which variant of the undo
feature we select. Such irregular interactions are trivial in the annotative
approach but require special consideration in the compositional approach.
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refines class Buffer {

void set(int x) {

print(buff+"->"+x);

Super(int).set(x);

}

}

a. Add logging to b, lb.

refines class Buffer {

void undo() {

print(back+"<-"+buff);

Super().undo();

}

}

b. Add logging to uo, luo .

refines class Buffer {

void undo() {

print(stack);

Super().undo();

}

}

c. Add logging to um, lum .

Figure 6.4: Modularized feature interactions.

A solution to the problem of representing irregular interactions in the
compositional approach is described by Liu et al. [2006] and demonstrated
in Figure 6.4. Essentially, we split the representation of the logging feature
into several smaller refinements. The refinement lb adds logging to the base
program, while refinements luo and lum add logging to the undo-one and
undo-many features, respectively. The luo and lum refinements directly capture
the interaction of the logging and undo features. Now we can generate a
program with only the logging feature by applying lb • b, and add to this the
undo-one feature by applying luo • uo • lb • b.

By spreading a feature’s implementation across several modules, this
solution mortgages some of the benefits of feature modularity promised by
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the compositional approach. In the worst-case, there can be an exponential
explosion of such feature-interaction modules [Liu et al., 2006]

6.2 Integrating the Two Approaches

One of the goals of ccc is to unify the annotative and compositional ap-
proaches to feature implementation. Although the complete syntax of the
calculus is not presented until Section 6.4, the examples in this section and
the next are given in ccc and illustrate how it addresses several challenging
variation representation scenarios.

The compositional and annotative approaches to feature implementation
are highly complementary. Compositional approaches separate features at
the expense of variation granularity and flexibility. Annotative approaches
are highly flexible and granular, but do not separate features.

These trade-offs are evident even in our very simple integer buffer SPL.
The separated undo features uo and um in Figure 6.2 can be implemented
without changing the base program b, and b can be understood without
knowledge of the undo features. These qualities reflect the tenets of step-wise
refinement and separation of concerns, respectively, that the compositional
approach is founded on. In contrast, the annotative implementation of undo
in Figure 6.3 requires direct modification of the base program and clutters
its definition with code that is only sometimes relevant.1 However, the two
compositional undo features contain quite a lot of redundant boilerplate code
that is not needed in the annotative representation. This complicates the
maintenance of the compositional representation; for example, if we change
the name of the set method in the base program, we must also change its
name in both uo and um.

Figure 6.5 presents an obvious compromise, where we annotate a com-
positional feature implementation. This allows the two variants of the undo

1Better user interfaces can alleviate some of the readability concerns through a “virtual
separation of concerns” [Kästner and Apel, 2009, Le et al., 2011].
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dim Undo〈one, many〉 in
refines class Buffer {

Undo〈int back = 0, Stack stack = new Stack()〉;
void set(int x) {

Undo〈back = buff, stack.push(buff)〉;
Super(int).set(x);

}

void undo() {

buff = Undo〈back, stack.pop()〉;
}

}

Figure 6.5: Undo refinement u with annotative variation.

feature to share their common code while retaining separability with respect
to the base program. This new annotated refinement u was created by simply
merging uo and um, introducing a new dimension Undo to capture their
differences in synchronized choices.

In fact, it is possible to mechanically derive u from uo and um using the
semantics-preserving transformation laws presented in Section 3.5. We begin
with the following choice calculus expression.

dim Undo〈one, many〉 in Undo〈uo, um〉

Then we maximally factor the commonalities out of uo and um, for example,
using the Chc-Obj rule, effectively localizing the differences between the two
undo features. Since there is a semantics-preserving transformation from the
above expression to u, we can deduce that they are equivalent.

Introducing a top-level dimension to choose between uo and um sug-
gests the idea of using annotations not only in the code that implements
features, but also in the algebra that describes the composition of features
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into products. The non-commutativity of feature composition often leads to
ordering constraints between features at the implementation level that do
not exist at the conceptual feature modeling level. For example, the decision
of whether to include the logging feature l and the undo-many feature um

are conceptually independent, but l • um • b and um • l • b produce different
programs. In the second product, calls to methods in the undo feature will
not be logged since these are added only after the logging aspect is woven in.
These kinds of implementation-specific ordering constraints make assembling
components into products potentially error-prone.

To solve this problem, we can write a choice calculus expression that
encodes the ordering constraints and describes all of the products that can
be generated. This way, we just select a variant and the product will be
composed in the correct order. For example, if we introduce a “dummy”
feature id such that id • p ≡ p for any p, then we can describe all of the
products in our integer buffer SPL with the following expression.

(dim Log〈yes, no〉 in Log〈l, id〉) •
(dim Undo〈yes, no〉 in Undo〈u, id〉) • b

Note that the u component itself contains variation in a different dimension
named Undo (with tags one and many). So if we select Undo.yes we must also
make a selection in the nested Undo dimension to determine which variant
of the undo feature we want to include.

We can now obtain all of the products in our SPL by making selections
on the above expression. For example, selecting [Log.no, Undo.yes, Undo.one]
produces the integer buffer with one-step undo and no logging. If we select
no in the outer Undo dimension, then we do not make a selection in the inner
Undo dimension since the inner Undo dimension in u will not be included.

This solution does not eliminate the ordering constraints between features
but rather captures them once-and-for-all alongside constraints imposed by
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the feature model (for example, that logging and undo are optional). This
enables a concise definition of all generable variants, properly composed.

The primary motivation for integrating the annotative and compositional
approaches into a single representation is to provide maximal flexibility in
representing interactions between features. For example, the interaction of
the irregular logging feature and the two alternate undo features requires the
two refinements luo and lum in Figure 6.4. With an integrated representation,
we can combine these refinements in the same way we produced u from
uo and um. We could alternatively include the interactions directly in the
implementations of uo and um, using annotations. Either option would
reduce redundancy in the implementation and the specific choice of which
representation to use can be left to the features’ implementors.

6.3 Adding Variation Abstractions

The previous section described a straightforward mixture of annotative and
compositional approaches to feature implementation. This was enabled by
just applying the annotative choice calculus to compositional components
and to the feature algebras used to assemble these components.

In this section we further integrate the two approaches by introducing
an abstraction construct and generalizing feature composition to function
application. The result is the compositional choice calculus. These changes
support reuse, the minimization of redundancy, and extend the choice calcu-
lus with some basic metaprogramming capabilities. This section motivates
these extensions through several examples.

6.3.1 Reusable Optional Wrappers

A bit of unaddressed redundancy in our integer buffer example is the repeti-
tion of the undo method declaration in the first two alternatives of the Undo
choice in Figure 6.3. Although the body of the method differs, the declaration
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is the same, so we would like to abstract this commonality out. We cannot
just push the choice into the body of the method, however, because the third
alternative (corresponding to Undo.none) does not declare the method.

In Chapter 4 we introduced some extensions to the choice calculus that
can be used to solve this problem. Using the share construct, we can factor
the redundancy out as follows. For conciseness, we introduce the variables
bo and bm to refer to the body of the undo method corresponding to the
undo-one and undo-many features, respectively.

share udecl : = ( share ubody : = Undo〈bo, bm, ◦〉
in void undo() { ubody } )

in Undo〈udecl, udecl, ◦〉

This solution works but is troublingly inelegant. The problem is related to the
optional wrapper problem described by [Kästner et al., 2008b], and discussed
in Section 4.1.3. It describes a variation pattern where an expression is
conditionally wrapped in another construct, such as a conditional statement
or try-catch block. Since the code shared between variants is a subexpression
of the optional wrapper, it is difficult to mark only the wrapper as optional.
CIDE handles this pattern by designating certain constructs in the object
language as wrappers and treating them specially. The choice calculus’s
share construct is a more general solution that works well for single optional
wrappers—for example, we can optionally wrap the expression e in a try-
catch block as follows.

share v : = e in D〈try { v } catch { . . . }, v〉

But as our undo example demonstrates, it breaks down when we want to
reuse the wrapper in multiple alternatives.

In the compositional choice calculus, we split the share construct into
separate abstraction and application constructs, which we write in the style
of lambda calculus as λv.e and e e′, respectively. This allows us to capture
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the undo method declaration wrapper uw as follows.

λb. void undo() { b } (uw)

We can then rewrite the optional undo method from Figure 6.3 more simply
by applying uw to the two different method bodies within the Undo choice,
as Undo〈uw bo, uw bm, ◦〉.

Abstractions are useful for representing all sorts of variation patterns, not
just optional wrappers. Unlike the annotative choice calculus’s share con-
struct, which is expanded only after dimensions and choices are resolved, ccc

expressions are evaluated top-down, interleaving β-reduction and dimension
elimination as needed (see the semantics definition in Section 6.5). In this
way, it is more similar to the macro construct, also introduced in Chapter 4,
but even more powerful since functions can be passed as arguments to other
functions. Therefore, rather than just factoring redundancy, it is possible to
programmatically create and manipulate the variation structure (dimensions
and choices) of ccc expressions in the language itself. The next subsection
gives several examples of variation abstractions that do this.

6.3.2 Variation Metaprogramming

In addition to feature implementation, ccc can also abstract and modularize
high-level relationships between features. Consider the following higher-order
function opt that accepts two arguments: f is a function that implements a
feature, and b is a base program that f can be applied to.

λ f .λb. dim Opt〈yes, no〉 in (Opt〈 f , λx.x〉 b) (opt)

If we select yes in the enclosed Opt dimension, f will be applied to b, if we
select no, the identity function will be applied. In other words, this function
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modularizes the notion of feature optionality. We can take any feature f ′ and
make it optional by applying opt f ′.

Similarly, the following function modularizes the alternative relationship
between two features f1 and f2.

λ f1.λ f2.λb. dim Alt〈fst, snd〉 in (Alt〈 f1, f2〉 b) (alt)

Exactly one of the two features will be applied to b, depending on our
selection in the dimension Alt.

These examples illustrate how ccc can be used to directly relate the
implementations of features with their high-level organization in feature
models, providing a link between the problem and solution domains. As a
final demonstration of the potential of this approach, consider the following
expression arb.

λ f .λb.(λy.y y) (λr.dim Arb〈yes, no〉 in Arb〈 f (r r), b〉) (arb)

This function accepts a feature f and a program b, then recursively applies f
to b an arbitrary number of times. Each time the yes tag is selected from Arb,
a new copy of the Arb dimension is generated and another decision must be
made. The recursion will terminate only when no is finally selected. Thus,
arb represents a variational fixed point combinator with an interactive termi-
nating condition. This variational model of computation as an interaction
between functions and decisions could have applications far beyond FOSD.

6.4 The Compositional Choice Calculus

The syntax of the compositional choice calculus is given in Figure 6.6. The
first three constructs are from the annotative choice calculus, as presented
in Chapter 3. The first construct encodes the tree-structure of the object
language, choices introduce variation points within that structure, and di-
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e ::= a�e, . . . , e� Structure
| dim D〈t, . . . , t〉 in e Dimension
| D〈e, . . . , e〉 Choice
| λv.e Abstraction
| e e Application
| v Reference

Figure 6.6: Syntax of the compositional choice calculus.

mensions scope and synchronize choices and organize the variation space.
The next three constructs, borrowed from the lambda calculus, extend the
choice calculus with the separable, dynamic metaprogramming constructs
introduced in the previous section.

Although the concrete syntax is the same, the interpretation of the lambda
calculus constructs in ccc is fundamentally different than in the variational
lambda calculus (vlc), as introduced in Section 3.3.1 and used in our work
on variation typing [Chen et al., 2012, 2013]. In vlc, the lambda calculus is
the object language, whereas in ccc abstractions, applications, and variable
references are part of the metalanguage (see Section 2.1). The semantics of vlc

involves no computation—dimensions and choices describe static variability
in the object language of lambda calculus expressions. In contrast, the
functional constructs in ccc describe computations involving dimensions and
choices that, when evaluated, yield variants in some other object language.

Note that we do not syntactically restrict the LHS of applications to
abstractions. Obviously, we want to allow variable references here since
variables can be bound to functions, but in fact we can extend application
to all other syntactic categories as well—this is the key to unifying the
annotative, compositional, and metaprogramming approaches.

Application can be viewed as a generalization of the overloaded feature
composition operator • from Section 6.1.1. As a special case, when we apply
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App-Dim-l
D /∈ FD(e′)

(dim D〈t1, . . . , tn〉 in e) e′ ≡ dim D〈t1, . . . , tn〉 in e e′

App-Chc-l

D〈e1, . . . , en〉 e′ ≡ D〈e1 e′, . . . , en e′〉

App-Chc-r

e D〈e′1, . . . , e′n〉 ≡ D〈e e′1, . . . , e e′n〉

Abs-Chc

λv.D〈e1, . . . , en〉 ≡ D〈λv.e1, . . . , λv.en〉

Figure 6.7: New equivalence laws for ccc.

two plain expressions e e′, we defer to the instance of • determined by the
types of e and e′. This is the critical link between the compositional choice
calculus and the compositional approach to feature implementation.

The other cases are enumerated and defined formally in the semantics in
Section 6.5, but the idea is simple. When an application contains a dimension
or choice on the LHS, the result can be obtained by first distributing the
application across the dimension or choice, then recursively considering the
subexpressions. This suggests the new semantics-preserving transformations
laws shown in Figure 6.7, which extend the equivalence relation we have
developed throughout this thesis.

The law App-Dim-l distributes across dimension declarations in the LHS
of an application. Recall that the function FD(e) returns the set of free
dimensions in e. Since we change the scope of the dimension D, the premise
of App-Dim-l prevents the capture of choices in e′. The laws App-Chc-l and
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App-Chc-r distribute across choices in the LHS and RHS, respectively, of an
application. Note that although the commutation of choices and applications
is symmetric, the commutation of dimensions and applications is not. That is,
there no law App-Dim-r. This is because dimension declarations in the RHS of
an application can be duplicated during β-reduction, producing conceptually
distinct dimensions.

Finally, the law Abs-Chc straightforwardly commutes abstractions and
choices. There is no law for commuting abstractions and dimensions since
dimension declarations inside of abstractions can be duplicated. The arb
example in Section 6.3.2 is one such example.

To demonstrate the evaluation of an expression, consider a variational
program that optionally applies the undo-one feature uo to the basic integer
buffer b, then applies the logging feature l. This variational program can be
represented by the following ccc term.

l (opt uo b)

If we expand opt and perform β-reduction twice to consume its arguments,
we get the following expression in which the variability is more obvious.

l (dim Opt〈yes, no〉 in Opt〈uo, λx.x〉 b)

Selecting Opt.yes yields an integer buffer with both the undo-one and logging
features included:

l (uo b) ≡ l • uo • b

While selecting Opt.no yields an integer buffer with only logging:

l ((λx.x) b) ≡ l • b

While the reduction process described above is rather ad hoc, it captures the
essence of the semantics of ccc. Intuitively, the meaning of a ccc expression
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is the total set of plain variants it represents and the decisions that lead to
those variants, just as in the annotative choice calculus. We formalize the
relationship between decisions and variants in the next section.

6.5 Denotational Semantics

A ccc expression encodes a decision space, where dimensions describe the
decisions that must be made, and choices and computations determine the
results of those decisions. Just as we do for the annotative choice calculus,
we define the denotation of a ccc expression to be a mapping from decisions
to the plain artifacts those decisions produce. Determining this mapping is
complicated by the fact that function applications can duplicate and remove
dimension declarations, so we cannot statically determine the decisions that
must be made for a given ccc expression.

Conceptually, evaluating a ccc expression proceeds in normal order
(outermost, leftmost first) and consists of alternating between (1) reducing
application nodes and (2) eliminating dimension nodes. This leads to an
interactive view of evaluation where we reduce as far as we can, present a
decision point to some client, then proceed reducing based on its response.
For the purpose of defining a denotational semantics, we simulate this by
building a (potentially infinite) mapping that represents all possible decision
sequences and the plain expressions they ultimately produce.

In the next subsection we describe two challenges for the definition of
a denotational semantics for ccc, then sketch the solution at a high-level.
The rest of this section will develop the formal definition of the semantics in
several steps.

6.5.1 Challenges for a Formal Semantics

In Section 6.4 we resolved function application with standard lambda calculus
β-reduction. Because β-reduction relies on variable substitution, however,
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we can run into problems when choices are substituted across dimension
scopes. Consider the following expression, which contains declarations of
two different dimensions A.

(λ f .dim A〈a, b〉 in f A〈1, 2〉) (λx.dim A〈c, d〉 in x)

By applying β-reduction twice—first to the redex at the top of the expression,
then to the new redex created by the first reduction—we get the following
expression in which the choice in A is bound to the declaration of A with
tags c and d, rather than its original dimension with tags a and b.

dim A〈a, b〉 in dim A〈c, d〉 in A〈1, 2〉

Recall from Section 4.4 that we call this phenomenon choice capture, and it
is highly undesirable since it breaks the static lexical scoping of dimension
names. The situation is analogous to the hygiene issue in metaprogramming
systems [Kohlbecker et al., 1986].

Just as we cannot arbitrarily expand macro-expressions, we cannot arbi-
trary β-reduce redexes. By the same argument as in Section 4.4, however,
we need not worry about choice capture if we (1) assume that expressions
are well-formed, and (2) reduce expressions in normal order, interleaving
dimension elimination and β-reduction. This is because choice capture can
only occur when the RHS of a redex contains a locally free choice. Consider
our example after the first reduction.

dim A〈a, b〉 in (λx.dim A〈c, d〉 in x) A〈1, 2〉

The RHS of the new redex is a free choice from the local perspective of the
redex. However, since the expression is well-formed, it is not free in the
larger expression. Furthermore, since it is not free in the larger expression,
the evaluation of its corresponding dimension declaration will occur before
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the redex is encountered in a normal order evaluation. Therefore, the locally
free choice will be eliminated before the redex is resolved.

The other major challenge of a formal semantics for ccc is that we want
to directly reuse existing compositional feature implementation tools (such
as AHEAD) in a mixed annotative/compositional setting. Therefore, our
semantics should make use of the overloaded • operator to implement feature
composition, but this operator must only be applied to plain expressions.
If we satisfy this constraint in the semantics, we can substitute in any off-
the-shelf tool(s) to implement •, depending on the abstractions and artifact
types we care about. However, this constraint should not be reflected at the
syntactic level. That is, given a feature f and a base program b, we must be
able to evaluate f b even if f and b both contain annotations.

With these constraints in mind, the semantics of application is defined by
first computing the partial semantics of each subexpression, which resolves
each subexpression into a mapping from decisions to values, where a value
is either a function or a plain expression. These mappings are then combined
with the help of a partial semantics composition function ./, which performs a
pairwise combination of values, invoking either β-reduction or the • operator
depending on the type of the values. By computing the partial semantics of
the expressions separately, then combining the results, we can ensure that
we both preserve the lexical scoping of dimension names and invoke the •
operator only on plain expressions.

In the rest of this section we will build up the formal semantics definition
in three steps. Section 6.5.2 describes the process of dimension and choice
elimination, which is based on the semantics definition of the annotative
choice calculus, presented in Section 3.4. Section 6.5.3 defines the structure
of a partial semantics mapping and defines the ./ operator for composing
them. Finally, Section 6.5.4 defines how to compute the partial semantics of a
ccc expression.
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ba�e1, . . . , en�cD.i = a�be1cD.i, . . . , bencD.i�

bdim D′〈tn〉 in ecD.i =

{
dim D′〈tn〉 in e if D = D′

dim D′〈tn〉 in becD.i otherwise

bD′〈e1, . . . , en〉cD.i =

{
beicD.i if D = D′

D′〈be1cD.i, . . . , bencD.i〉 otherwise

bλv.ecD.i = λv.becD.i

be e′cD.i = becD.i be′cD.i

bvcD.i = v

Figure 6.8: Extended choice elimination.

6.5.2 Dimension and Choice Elimination

Recall from Section 3.4 that a decision δ is represented by a sequence of
qualified tags, where a qualified tag q = D.t is a tag t prefixed by its
dimension D. We use ε to represent the empty decision, and use adjacency
to prepend a tag q to an existing decision δ, as in qδ, and to concatenate two
decisions δ and δ′, as in δδ′.

The order that tags are selected from an expression is determined by
the order that dimension declarations are encountered during a normal-order
evaluation strategy. This ordering constraint is needed since function applica-
tions can eliminate dimension declarations, or multiply a single declaration
into many independent dimensions. An example of this phenomenon is
demonstrated by the function arb in Section 6.3.2. Therefore, we must not
eliminate dimensions too early, or these effects will be lost.

Tag selection thus consists of (1) identifying the next dimension to be
selected from, if any, (2) selecting a tag, (3) eliminating the choices bound
by that dimension, and then (4) eliminating the dimension declaration itself.
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ϕ ::= e Plain Expression
| (λv.e, ρ) Closure

Figure 6.9: Partial semantics values.

When computing the semantics, each of these steps but the third is handled
by the partial semantics function defined in Section 6.5.4. Recall that step (3)
is called choice elimination, and is defined as follows. Given a dimension
declaration dim D〈t1, . . . , tn〉 and a selected tag ti, we write becD.i to replace
every free choice D〈e1, . . . , en〉 in e with its ith alternative, ei. Figure 6.8
extends the definition of choice elimination from Section 3.4 to ccc. The first
three cases are as before, while the new cases simply propagate the selection
to their subexpressions, if applicable.

6.5.3 Composing Partial Semantics

The partial semantics, S, of an expression is a mapping from decisions to
values, where a value ϕ is either a plain expression, or a closure. The represen-
tation of values is defined in Figure 6.9. A closure is a ccc abstraction, λv.e,
paired with its static environment, ρ. Somewhat unusually, the environment
stored in a closure does not map variables to plain values, but rather variables
to partial semantics mappings. That is, ρ has type v→ S. We use the notation
(v, S)⊕ ρ to map variable v to partial semantics S in environment ρ.

To compute the partial semantics of an expression e within the environ-
ment ρ, we write Vρ(e). Thus, V has type (ρ, e)→ S. The implementation of
this function will be given in the next subsection.

Given expressions el and er in environment ρ, we can compute the seman-
tics of the application el er by computing the partial semantics of el and er

individually, then composing the results. We use the operator ./ to repre-
sent the composition of two partial semantics mappings. That is, assuming
Vρ(el) = Sl and Vρ(er) = Sr, then the semantics of el er is Sl ./ Sr. Since el
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Sl ./ Sr =
⋃ {(δl, ϕl) / Sr | (δl, ϕl) ∈ Sl}

where
(δl, e′l) / Sr = {(δlδr, e′l • e′r) | (δr, e′r) ∈ Sr}

(δl, (λv.e, ρ)) / Sr = {(δlδ
′, e′) | (δ′, e′) ∈ V(v,Sr)⊕ρ(e)}

Figure 6.10: Partial semantics composition.

and er can be arbitrarily large ccc expressions representing potentially many
variants each, partial semantics composition can be viewed as the pairwise
application of every variant of el to every variant of er.

The composition operation is formally defined in Figure 6.10. The opera-
tion is defined in terms of a helper function / that applies each entry in Sl

to the partial semantics Sr. That is, we map the partially applied function
(· / Sr) across the entries in Sl, then take the union of the results.

Each entry in Sl consists of a decision δl and a value ϕl. There are two
cases to consider based on the structure of ϕl. These are reflected by the two
cases of the / operation.

1. If the value ϕl is a plain expression e′l, then we require that every value
ϕr ∈ rng(Sr) must also be a plain expression e′r. Now we can compose
e′l with each e′r using the object language composition operator •. We
must also concatenate the decision that produced e′l with the decision
that produced e′r to create the decision that produces the combined
expression. Note that if ϕl is plain but there is a value ϕr ∈ rng(Sr) that
is not plain, then the semantics is undefined.

2. Otherwise, ϕl is a closure (λv.e, ρ). In this case, we simulate β-reduction
by adding the mapping (v, Sr) to the environment and computing the
partial semantics of the body of the abstraction, e. We then iterate over
the results, adding each to our resulting partial semantics.
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Vρ(v) = ρ(v)

Vρ(e e′) = Vρ(e) ./ Vρ(e′)

Vρ(λv.e) = {(ε, (λv.e, ρ))}
Vρ(a��) = {(ε, a��)}

Vρ(a�e1, . . . , en�) = {(δ1 . . . δn, a�e′1, . . . , e′n�) |
(δ1, e′1) ∈ Vρ(e1), . . . , (δn, e′n) ∈ Vρ(en)}

Vρ(dim D〈tn〉 in e) = {(D.tiδ, e′) | i ∈ {1, . . . , n}, (δ, e′) ∈ Vρ(becD.i)}

Figure 6.11: Computing partial semantics.

6.5.4 Computing the Semantics

The final piece needed to define the denotational semantics of ccc expressions
is the function Vρ(e), which computes the partial semantics of e in the context
of environment ρ. The definition of this function is given in Figure 6.11.
Because of the groundwork laid in the previous subsections, there should be
few surprises.

For the three lambda calculus constructs, the definition is very straightfor-
ward. For a variable reference v, it returns the partial semantics bound to v in
ρ. For an application, it computes the partial semantics of each subexpression
and composes the results as described in Section 6.5.3. For an abstraction, it
produces a trivial mapping to a closure. Note that if an unbound variable is
encountered, lookup will fail and the semantics is undefined.

There are two cases for object structures. For a leaf, we return the empty
decision mapped to the leaf. For an internal node we compute the partial
semantics of each subexpression and concatenate all combinations of the results.
This effectively computes the product of the semantics of the subexpressions.
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For a dimension declaration, we select each tag ti in turn, compute the
partial semantics of becD.i, and prepend D.ti to each decision in the result.
This will eliminate all choices bound by D. In the event of an unbound choice,
the entire semantics is undefined.

Finally, we can use the function in Figure 6.11 to define the semantics of
ccc expressions as [[e]] = V∅(e), where ∅ is the empty environment. Note
that [[e]] is also undefined whenever rng(V∅(e)) contains a closure since we
require [[·]] to map to plain expressions.

6.6 Comparison of Relative Local Expressiveness

We have claimed that the compositional choice calculus subsumes the annota-
tive and compositional approaches to feature implementation and is indeed
more powerful than either approach on its own. We have provided example-
based evidence of these claims throughout the chapter. In this section, we
make these comparisons more formally and directly, using Felleisen’s frame-
work for comparing the relative local expressiveness of languages [1991].

Local expressiveness is not the same as computational expressiveness—
given two Turing-complete languages L1 and L2, it is possible for L1 to be
more locally expressive than L2 if L1 contains expressions that cannot be locally
transformed into operationally equivalent expressions in L2, and the reverse
is not also true. Two expressions in different languages are operationally
equivalent if they resolve to the same denotations according to the semantics
functions of their respective languages.

We compare three languages: the compositional choice calculus (ccc),
the annotative choice calculus extended with the share construct (acc) to
represent annotative approaches, and a new language, the computational
feature algebra (cfa) to represent compositional approaches. We define cfa

to be the set of all variation-free (no dimensions or choices) ccc expressions.
Thus, cfa is a conservative extension of the AHEAD feature algebra [Batory
et al., 2004] (see Section 6.1.1), which consists of only the application and
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structure constructs of ccc. The additional lambda calculus constructs give
cfa metaprogramming capabilities not available in AHEAD’s feature algebra,
making cfa at least a fair representation of the compositional approach.

Lemma 6.6.1. ccc is more locally expressive than cfa.

Proof. ccc is a conservative extension of cfa, by construction. Therefore, we
must show that the additional constructs in ccc, dimensions and choices,
cannot be locally transformed into operationally equivalent cfa expressions.
We do this in several steps.

(1) A ccc choice D〈e1, e2〉 must be represented in cfa by an application
of some function d to e1 and e2. Application is the only viable choice of
construct here since both e1 and e2 must be represented, and it must be
possible to reduce the choice to one of these two subexpressions.

(2) Dimension declarations must be represented by an abstraction. In
order to resolve the choice d e1 e2, some selector must be substituted for d.
Since d must be scoped and since potentially many choices in the dimen-
sion corresponding to d must be synchronized, d must be a lambda-bound
variable.

(3) Following from (1) and (2), tag selection must be represented by
applying the abstraction binding d to some selector. For example, to select e1

from the choice bound by dimension d, we can write (λd.(d e1 e2)) (λx.λy.x).
(4) Consider the following ccc expression in which e1 and e2 are both

variation free.
eccc = dim D〈t1, t2〉 in D〈e1, e2〉

Assume that it is possible to locally transform eccc into an operationally
equivalent cfa expression ecfa. Then, given a context C (which we assume
without loss of generality is also variation free), C[eccc] is operationally
equivalent to C[ecfa]. From (1) and (2), ecfa has the following form.

ecfa = λd.(d e1 e2)
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However, C[eccc] is not operationally equivalent to C[ecfa] since it violates
(3). Specifically, the context C prevents us from applying the abstraction to a
selector. The only way to resolve this is by lifting the abstraction out of the
context.

ecfa

′ = λd.C[(d e1 e2)]

Now ecfa

′ is operationally equivalent to C[eccc] but the transformation is
non-local, since it escapes the context C. Thus, by contradiction, eccc cannot
be locally transformed into an operationally equivalent expression in cfa.

Lemma 6.6.2. ccc is more locally expressive than acc.

Proof sketch. This case is harder since ccc is not a conservative extension of
acc—the share construct exists in acc but not in ccc. Furthermore, the acc

expression eacc = share v : = e in e′ is not operationally equivalent to the ccc

expression eccc = (λv.e′) e, as we might expect, because of staging differences
in the languages’ semantics. Suppose a dimension D is declared in e and
that e′ contains n > 1 references to v. In acc, we will make just one selection
in D since share expressions are expanded only after all dimensions have
been eliminated. In ccc, however, β-reduction and dimension elimination
are interleaved, so the declaration of D will be multiplied n times when eccc

is reduced, requiring up to n separate selections in D.
To show that there is no loss of expressiveness from acc to ccc, we must

provide a local transformation from eacc to an operationally equivalent ccc

expression. We only describe this transformation at a high level here. The
individual steps, however, are just applications of the semantics-preserving
transformation laws for acc expressions, defined in Section 3.5 and Sec-
tion 4.5, and proved correct in our previous work [2011b]. (Note that we will
apply the transformation laws only to the acc expression, prior to converting
it to ccc, so these previous results can be reused in full.)

We begin by observing that if the bound expression e is dimension free,
then eacc and eccc are already operationally equivalent since no dimensions
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will be multiplied when eccc is reduced. Therefore, the transformation con-
sists of two steps. First, we use the transformation laws to transform eacc

into a semantically equivalent acc expression in which all dimension decla-
rations have been factored out of the bound expression. Second, we replace
each share expression resulting from this transformation with an abstraction-
application pair, completing the transformation to an operationally equivalent
ccc expression.

The preconditions of the transformation laws reveal that the first step
of the above transformation is potentially complicated by the presence of
(1) dependent dimensions in e since dimensions cannot be factored out of
their enclosing choices, and (2) free choices in e′ since they can be captured
when factoring dimensions out of e. Both problems can be resolved by first
factoring the offending choices out of the share expression. Arbitrary choice
factoring is also supported by the transformation laws.

Because there is a local transformation of eacc into operationally equiva-
lent ccc, and since all other constructs are the same, ccc can macro express
acc [Felleisen, 1991]. Observe that the reverse is trivially false since ccc is
Turing complete (see below) and acc is not. Therefore, ccc is more locally
expressive than acc.

Lemma 6.6.3. ccc is more locally expressive than acc ∪ cfa.

Proof. This follows directly from Lemma 6.6.1 and Lemma 6.6.2, combined
with the observation that there are expressions in ccc that cannot be locally
transformed into either acc or cfa. Such an example can be constructed by
combining the examples from the previous proofs.

In addition to the results above, we observe that: (1) plain expressions
exist in both acc and cfa (acc∩ cfa 6= ∅), (2) dimension declarations exist in
acc but not cfa (acc− cfa 6= ∅), and (3) lambda abstractions exist in cfa but
not acc (cfa− acc 6= ∅). Putting it all together, we can construct the Venn
diagram in Figure 6.12, which illustrates the relative local expressiveness
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CCC

ACC CFA

Figure 6.12: Relative local expressiveness of choice calculus variants.

of the three languages. Furthermore, we can observe that both ccc and
cfa are Turing complete, since their semantics reduce to the normal-order
reduction of lambda calculus terms in the absence of structures, dimensions,
and choices.

The compositional choice calculus provides a formal basis for the com-
bination of the compositional and annotative approaches to feature imple-
mentation, making it possible to utilize their strengths while mitigating
their weaknesses. While we have motivated and introduced ccc from the
perspective of FOSD, its intended scope is more general and applies to all
kinds of variation representations. The compositional choice calculus is part
of our larger goal to explore the potential of variation programming, which
is concerned with writing programs to generate, query, manipulate, and
analyze variation structures. This is the focus of the next chapter.
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Chapter 7 – Variational Programming

The semantics of the choice calculus is based on selection, which reduces
variability by eliminating choices and dimensions. Although selection is an
essential operation, it is only one example of potentially many interesting
operations. In this chapter, we will explore the intersection of variation
representations and functional programming, which will suggest many more
transformations and analyses of variation structures.

The exploration will be supported by a domain-specific embedded lan-
guage (DSEL) [Hudak, 1998] in Haskell for representing variation, based
on the choice calculus. This will allow us to define many sophisticated
operations on choice calculus expressions as plain Haskell functions. In
Section 7.1, we will present the integration of Haskell and the choice calculus,
highlighting the important properties (and some potential problems) of this
implementation. This chapter is based on a Generative and Transformational
Techniques in Software Engineering Summer School tutorial. The accompanying
source code is available online.1 It contains the implementation of the DSEL,
all of the examples presented in this chapter, and more.

The integration of the choice calculus with a powerful metalanguage
like Haskell provides a way to write programs that query, manipulate, and
analyze variation structures. We call this variational programming. In Sec-
tion 7.2, we introduce the basic elements of variational programming by
writing functions on variational lists. We illustrate how to generalize stan-
dard list functions to work on variational lists, and how to write functions that
manipulate choices and dimensions within variational lists. In Section 7.3,
we introduce a simplified version of variational Haskell that supports the
exploration of operations specific to maintaining variational software.

1https://github.com/walkie/CC-GTTSE

https://github.com/walkie/CC-GTTSE
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This chapter represents the interaction of many different languages. Un-
derstanding which languages are involved, what roles they play, and how
they are related to one another is important to keep a clear view of the
different representations, their purpose, and how variational programming
works. Here is a brief summary of the languages involved.

• The choice calculus is a generic variation language that can be applied
to, or instantiated by, many different object languages. Given an object
language L, we write V(L) for the result of instantiating the choice
calculus with L, as described in Section 3.3.1.

• An object language, such as a list data type or Haskell, can be used
to represent plain, non-variational terms, such as lists and Haskell
programs. An object language can be made variational by instantiating
the choice calculus with it.

• A variational language is the result of instantiating the choice calculus
with an object language. We write VL for the variational version of
the object language L, that is, VL = V(L). For example, we can refer
variational lists as VList, and variational Haskell programs as VHaskell.

• We also use Haskell as a metalanguage to do variational programming.
We represent the choice calculus, object languages, and variational lan-
guages all as data types in Haskell to facilitate the writing of variational
programs.

More extended discussions of the latter three of these terms can be found in
Section 2.1.

Finally, in this chapter we assume some basic familiarity with Haskell.
Specifically, we assume knowledge of functions and data types and how to
represent languages as data types. Knowledge of monads and type classes is
useful, but not strictly required.
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7.1 A Variation DSEL in Haskell

The choice calculus, as presented in Chapter 3 and Chapter 4 is an entirely
static representation. It allows us to precisely specify how a program varies,
but we cannot use the choice calculus itself to edit, analyze, or transform
a variational program. Throughout this thesis, we have defined operations
on the choice calculus using mathematical notation—for example, defining
choice elimination to support the definition of the denotational semantics
in Section 3.4. In some regards, math is an ideal metalanguage since it
is infinitely extensible and extremely flexible—we can define almost any
operation we can imagine. However, it is difficult to test an operation defined
in math or to apply it to several examples quickly to observe its effect. In
other words, it is hard to play around with mathematical definitions. This is
unfortunate since playing around can often lead to challenged assumptions,
clever insights, and a deeper understanding of the problem at hand.

In this section, we introduce a DSEL for constructing and manipulating
variational data structures. This DSEL is based on the choice calculus, but
is much more powerful since we have the full expressiveness of our met-
alanguage (Haskell) at our disposal. Using this DSEL, we can define all
sorts of new operations for querying and manipulating variational artifacts.
Because the operations are defined in Haskell, certain correctness guarantees
are provided by the type system, and most importantly, we can execute
the operations and observe the outputs. In this way, the DSEL supports
a hands-on, exploratory approach to variation research. It also allows us
to explore the interaction of variation representations and strongly typed
functional programming.

In the DSEL, all of the relevant languages are represented as Haskell
data types. This includes the choice calculus and any object languages we
might want to instantiate it with. The representation of the choice calculus
in the DSEL is given in Figure 7.1. It adapts the dimension declaration and
choice constructs from the choice calculus into Haskell data constructors, Dim
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type Dim = String

type Tag = String

data V a = Obj a

| Dim Dim [Tag] (V a)

| Chc Dim [V a]

Figure 7.1: The choice calculus as a Haskell data type.

and Chc. The Obj constructor will be explained below. Dimension and tag
names are captured by the Dim and Tag types, which are just synonyms for
the predefined Haskell type String.

The V a data type serves as the generic representation of variation within
our DSEL. The type constructor name V is intended to be read as “variational”,
and the type parameter a represents the object language to be varied. So,
given a type Haskell representing Haskell programs, the type V Haskell

would represent variational Haskell programs (see Section 7.3).
The Obj constructor is roughly equivalent to the object structure construct

from the choice calculus. However, here we do not explicitly represent the
structure as a tree, but rather insert an object language value directly. An im-
portant feature of the DSEL is that it is possible for the data type representing
the object language, corresponding to the type parameter a, to itself contain
variational types (created by applying the V type constructor to its argument
types), and operations written in the DSEL can query and manipulate these
nested variational subexpressions generically. This is achieved through the
use of the “scrap your boilerplate” (SYB) library [Lämmel and Peyton Jones,
2003, 2004] which imposes a few constraints on the structure of a. These
constraints will be described in Section 7.2.1. In the meantime, we will only
use the very simple object language of integers, Int, which cannot contain
nested variational subexpressions.
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One of the advantages of using a metalanguage like Haskell is that we
can define functional shortcuts for common syntactic forms. In Haskell, these
are often called “smart constructors”. For example, we define the following
function atomic for defining atomic dimensions—that is, a dimension with a
single choice as an immediate subexpression.

atomic :: Dim -> [Tag] -> [V a] -> V a

atomic d ts cs = Dim d ts $ Chc d cs

Since we will be presenting a lot of examples throughout this chapter, we
also introduce a couple smart constructors to make these examples shorter.
First we define a smart constructor for declaring a dimension A with tags a1

and a2.

dimA :: V a -> V a

dimA = Dim "A" ["a1","a2"]

And also a smart constructor for creating choices in this dimension.

chcA :: [V a] -> V a

chcA = Chc "A"

Both the dimA and chcA smart constructors are defined by partially applying
the constructors Dim and Chc respectively.

Note that we have omitted the sharing-related constructs introduced in
Chapter 4 from the definition of the V a data type. This decision was made
primarily for two reasons. First, the features provided by the choice calculus
macro construct are provided by Haskell directly, for example, through
Haskell’s let and where constructs. In fact, sharing is much more powerful
in Haskell than in the choice calculus since we can also share values via
functions. Second, the inclusion of an explicit share or macro construct
greatly complicates some important results later. In particular, we will show
that the V type constructor is a monad. It is unclear whether this is true
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when the V a data type contains explicit sharing constructs. Several other
operations are also more difficult to define with choice calculus-level sharing
and macros.

However, there are some subtle implications and drawbacks to relying
on Haskell for sharing, compared to the extensions presented in Chapter 4.
The first is that it is quite difficult to reproduce the semantics of the share
construct. Recall that sharing introduced by share is expanded only after all
dimensions and choices in an expression have been resolved. This allowed us
to, for example, write an expression like the following, where only a single
selection is made for dimension A, and the result of the choice is reused at
both uses of v.

share v : = (dim A〈a1, a2〉 in A〈1, 2〉) in v+v

This example has just two variants: 1+1 and 2+2. However, a similar expres-
sion in our DSEL, shown below, has four variants since the let expression is
conceptually expanded before any subsequent operation on the term.

let v = dimA (chcA [Obj 1, Obj 2]) in v+v

In fact, there is no easy way to translate a share expression that contains
dimensions in the bound expression into an equivalent expression in our
DSEL. An expression with the same semantics can be achieved by factoring
all dimensions out of the bound expression, but this increases the scope of
the dimension, potentially causing other problems.

As the previous example demonstrates, Haskell’s let expression is more
similar to the macro construct introduced in Chapter 4 since it will duplicate
any dimension declarations in its bound expression. However, it is not
precisely equivalent. In particular, the lexical scoping of dimensions is not
preserved in the DSEL. In the choice calculus, the dimension that binds a
choice can always be determined by examining the static context that the
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choice exists in. For example, in the following choice calculus expression, the
choice in A is unbound.

macro v : = A〈1, 2〉 in dim A〈a1, a2〉 in v

While in the corresponding DSEL expression, the choice in A is bound by
the dimension surrounding the variable reference. This is demonstrated
by evaluating the following DSEL expression (for example, in GHCi), and
observing the pretty-printed output.

> let v = chcA [Obj 1, Obj 2] in dimA v

dim A<a1,a2> in A<1,2>

Once again, there is no way to enforce lexical scoping since the let expression
is not observable to any operation subsequent operation on the term.

The lack of lexical scoping can lead to the problem of choice capture
described in Section 4.4. It is not just a problem with let expressions, but
a fundamental issue related to scoping in DSELs. It is especially serious
when a choice intended to be bound by one dimension ends up being bound
by another. As an example, consider the following operation insertA that
declares a dimension A, then inserts a choice in A into some expression,
according to the argument function.

insertA :: (V Int -> V Int) -> V Int

insertA f = dimA (f (chcA [Obj 1, Obj 2]))

The author of this operation expects the inserted choice to be bound by
the dimension declared in this definition, but if the argument function also
declares a dimension A, the choice could be captured, as demonstrated below.

> insertA (\v -> Dim "A" ["a3","a4"] v)

dim A<a1,a2> in dim A<a3,a4> in A<1,2>



162

Now the choice is bound by the dimension in the argument, rather than the
intended dimension declared in the insertA function.

One way to avoid the problem of choice capture in our DSEL would
be to reuse the naming and scoping mechanisms of Haskell to implement
the declaration and scoping of choice calculus dimensions. This is a DSEL
implementation technique known as higher-order abstract syntax [Miller, 2000].
However, this ends up losing the choice and dimension structure of vari-
ational expressions entirely, and so does not serve our primary goal of
exploring operations on this structure. The compositional choice calculus
from Chapter 6 does not exhibit this problem since we have complete control
over the evaluation semantics. In ccc we can define the insertA function
as λ f .dim A〈a1, a2〉 in f A〈1, 2〉 and the choice in A will always be bound
to the declaration that lexically encloses it. Since we do not have the same
amount of control over Haskell, however, choice capture is a problem that
we must simply acknowledge and cope with.

An important quality of the V type constructor, and one of the main
motivations for excluding explicit sharing constructs, is that it is both a
functor and a monad. Functors and monads are two of the most commonly
used abstractions in Haskell. By making the variation representation an
instance of Haskell’s Functor and Monad type classes, we make a huge body
of existing functions and knowledge instantly available from within our
DSEL, greatly extending its syntax. Functors are simpler than (and indeed a
subset of) monads, so we will present the Functor instance first below. The
Functor type class contain one method, fmap, for mapping a function over a
data structure while preserving its structure.

fmap :: Functor f => (a -> b) -> f a -> f b

For V, this operation consists of applying the mapped function f to the values
stored at Obj nodes, and propagating the calls into the subexpressions of Dim
and Chc nodes.
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instance Functor V where

fmap f (Obj a) = Obj (f a)

fmap f (Dim d ts v) = Dim d ts (fmap f v)

fmap f (Chc d vs) = Chc d (map (fmap f) vs)

Consider the following variational integer expression ab, where dimB and
chcB are smart constructors similar to dimA and chcA.

> let ab = dimA $ chcA [dimB $ chcB [Obj 1, Obj 2], Obj 3]

> ab

dim A<a1,a2> in A<dim B<b1,b2> in B<1,2>,3>

Using fmap, we can, for example, increment every object value in a variational
integer expression.

> fmap (+1) ab

dim A<a1,a2> in A<dim B<b1,b2> in B<2,3>,4>

Or we can map the function odd :: Int -> Bool over the structure, produc-
ing a variational boolean value of type V Bool.

> fmap odd ab

dim A<a1,a2> in A<dim B<b1,b2> in B<True,False>,True>

The definition of the Monad instance for V is similarly straightforward. The
Monad type class requires the implementation of two methods: return for
injecting a value into the monadic type, and >>= (pronounced “bind”) for
sequentially composing a monadic value with a function that produces
another monadic value.

return :: Monad m => a -> m a

(>>=) :: Monad m => m a -> (a -> m b) -> m b
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instance Monad V where

return = Obj

Obj a >>= f = f a

Dim d t v >>= f = Dim d t (v >>= f)

Chc d vs >>= f = Chc d (map (>>= f) vs)

Figure 7.2: Monad instance for the V type constructor.

The monad instance for V is given in Figure 7.2. The return method is
trivially implemented by the Obj data constructor. For the >>= method, at an
Obj node, we simply return the result of applying the function to the value
stored at that node. For dimensions and choices, we must again propagate
the bind downward into subexpressions.

The effect of a monadic bind is to replace every value in the structure with
another monadic value (of a potentially different type) and then to flatten
the result. The concatMap function on lists is a classic example of this pattern
(though the order of arguments is reversed). In the context of variation
representations, we can use this operation to introduce new variability into
an expression. For example, consider again the expression ab. We can add a
new dimension S, indicating whether or not we want to square each value
(the line break in the output was inserted manually).

> let chcS i = Chc "S" [Obj i, Obj (i*i)]

> Dim "S" ["n","y"] (ab >>= chcS)

dim S<y,n> in dim A<a1,a2> in

A<dim B<b1,b2> in B<S<1,1>,S<2,4>>,S<3,9>>

Each value in the original expression ab is expanded into a choice in dimen-
sion S. The resulting expression remains of type V Int. If we had instead
used fmap instead of >>=, the result would have been of type V (V Int),
illustrating the flattening quality of monadic bind.
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Finally, the DSEL provides several functions for analyzing variational
expressions. For example, the function freeDims :: V a -> Set Dim returns
the set of all free dimensions in a given variational, that is, the dimensions
of all choices not bound by a corresponding dimension declaration. Several
other basic static analyses are also provided. Most importantly, a semantics
function for variational expressions, sem, is provided. This is based on the
semantics of the choice calculus presented in Section 3.4. Similarly, the
semantics of a variational expression of type V a is a mapping from decisions
(lists of qualified tags) to plain expressions of type a. More commonly, we use
a function psem which computes the semantics of an expression and pretty
prints the results. For example, the pretty printed semantics of the expression
ab is shown below.

> psem ab

[A.a1,B.b1] => 1

[A.a1,B.b2] => 2

[A.a2] => 3

Each entry in the semantics is shown on a separate line, with a decision on
the left of each arrow and the resulting plain expression on the right.

While this section provided a brief introduction to some of the features
provided by the DSEL, the following sections on variational programming
will introduce many more. In particular, Section 7.2.1 will describe how to
make a non-trivial data type variational, Section 7.2.2 and Section 7.2.3 will
present a subset of the language designed for the creation of complex editing
operations on variational expressions.

7.2 Variational Lists

We start exploring the notion of variational programming with lists, which
are a simple but expressive and pervasive data structure. The familiarity
with lists will help us to identify important patterns when we generalize
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traditional list functions to the case of variational lists. The focus on a simple
data structure will also help us point out the added potential for variational
programming. We present variational programming with lists in several
steps.

First, we explain the data type definition for variational lists and present
several examples together with some helper functions in Section 7.2.1. Second,
we develop variational versions for a number of traditional list functions in
Section 7.2.2. In doing this we observe that, depending on the types involved,
certain patterns of recursion become apparent. Specifically, we will see that
depending on the role of variation in the types of the defined functions,
variational parts have to be processed using fmap, effectively treating them in
a functorial style, or using >>=, treating them as monadic values.

In Section 7.2.3 we turn our attention to editing operations for variational
lists. While the adapted standard list functions will naturally produce varia-
tional results (such as lists, numbers, etc.), this variation is incidental. That
is, the results are variational because the arguments passed in were varia-
tional, but no new variation is introduced. In contrast, list editing operations
introduce or change the variation structure purposefully. We will present in
Section 7.2.4 some comments and observations on the different programming
styles employed in Section 7.2.2 and Section 7.2.3.

As a motivating example consider how to represent menu preferences
using choices and dimensions. Suppose that we prefer to order meat or pasta
as the main course in a restaurant and that with meat we always order French
fries on the side. Also, if we order pasta, we may have cake for dessert. Using
the choice calculus we can represent these menu options as follows (here ε

represents an empty token that, when selected, does not appear in the list as
an element but rather disappears).

dim Main〈meat, pasta〉 in
Main〈[Steak,Fries], [Pasta,dim Dessert〈yes, no〉 in Dessert〈Cake, ε〉]〉
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Here we have used a simple list notation as an object language. This notation
leaves open many questions, such as how to nest lists and how to compose a
variational list and a list without variations. We will look at these questions
in more detail in the following.

7.2.1 Representing Variational Lists

Lists are typically represented using two constructors: one for an empty
list and one for adding a single element to a list. Since lists are the most
important data structures in functional programming, they are predefined in
Haskell and supported through special syntax. While this is nice, it prevents
us from modifying the representation in order to define variational lists.
Therefore, we have to define our own list representation first, which we then
can extend in a variety of ways to discus the transition to variational lists. A
standard definition of a list data type is given below.

data List a = Cons a (List a)

| Empty

To create variational lists using the V a data type, we have to apply the V

type constructor somewhere in this definition. One possibility is to apply V

to a thus making the elements in a list variable.

data List a = Cons (V a) (List a)

| Empty

While this definition allows us to vary the elements within a list, it does not
allow us to vary lists themselves. For example, we cannot represent a list
whose first element is 1 and whose tail is a either [2] or [3,4]. Moreover, if
this definition were sufficient, we would could use it with the built-in Haskell
lists since it defines a data type equivalent to the type [V a].
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The limitation described above results from the fact that we cannot have a
choice in the second argument of Cons. This shortcoming can be addressed
by adding another application of V to the tail.

data List a = Cons (V a) (V (List a))

| Empty

This representation avoids the above problem and is indeed the most general
representation imaginable. However, the implementation of our DSEL re-
quires that V not be applied to different types within the same data type. This
is a technical limitation related to our use of the SYB library.2 Fortunately, as
the eventual solution will show, this feature is not needed for variational lists
or for many other interesting applications of variational programming.

A drawback of either of the two previous approaches is that changing
the types of constructors can break existing code. This drawback is signifi-
cant when variation is added post hoc to existing data structures. In such
situations we would like to be able to continue using existing functions with
minimal changes to existing code.

Therefore, we choose the following representation in which we simply
add a new constructor, which serves as a hook for introducing any kind of
variation. This satisfies the constraint that V be applied to only one type
within the List data type and is also maximally expressive.

data List a = Cons a (List a)

| Empty

| VList (VList a)

This definition yields what we call an expanded list, where “expanded” means
that it can contain variational data. However, this expansion is not enough,

2It is possible to lift this constraint, but doing so requires quite complex generic program-
ming techniques that make the language more difficult to use. A maximally generic
implementation, illustrating how the constraint can be avoided, is available online at
https://github.com/walkie/CC-Generic.

https://github.com/walkie/CC-Generic
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we also need a type for variational lists, that is, lists that are the object of the V

type constructor. We introduce a type abbreviation for this type.

type VList a = V (List a)

The two types List a and VList a for expanded and variational lists, re-
spectively, depend mutually on one another. Through this recursion they
accomplish the lifting of the plain list data type into its fully variational
version. Note that we use the convention of using the same name for the
additional constructor as for the variational type, in this case VList. This
helps to keep the variational code more organized, in particular, in situations
where multiple variational data types are used.

With the representation of variational lists settled, let us return to the
menu example from earlier in this section and see how we can represent it
within the DSEL. First, we introduce a data type for representing the various
food items involved.

data Food = Steak | Pasta | Fries | Cake

Although it is not shown, note that in the Haskell definition of this data
type we derive instances for the Eq, Show, Data, and Typeable type classes.
Instances of Data and Typeable are required for the SYB library to work,
while Eq and Show instances are derived for the usual reasons. Unless stated
otherwise, every data type used throughout this chapter also derives instances
for these classes.

We also introduce several smart constructors and auxiliary functions to
make writing variational lists more concise. These are listed in Figure 7.3.
The functions single and many build expanded lists from a single element
or a plain Haskell list of elements, respectively. The function list lifts an
expanded list to a variational list—we will return to this simple definition in a
bit. The value vempty represents an empty variational list, vsingle constructs
a variational list containing one element, and vcons adds an element to
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list :: List a -> VList a

list = Obj

single :: a -> List a

single a = Cons a Empty

many :: [a] -> List a

many = foldr Cons Empty

vempty :: VList a

vempty = list Empty

vsingle :: a -> VList a

vsingle = list . single

vcons :: a -> VList a -> VList a

vcons x = list . Cons x . VList

vlist :: [a] -> VList a

vlist = list . many

Figure 7.3: Smart constructors for expanded and variational lists.

the beginning of a variational list. Finally, the function vlist transforms a
regular Haskell list into a VList, which lets us reuse Haskell list notation in
constructing variational lists.

Although the list smart constructor is just a synonym for the Obj data
constructor, this trivial definition serves two useful purposes. First, it has a
more constrained type than Obj—the argument to list must be an expanded
list, whereas Obj accepts arguments of any type. This is useful since, for
example, it can help improve error location in the event of a type error.
Second, it is more evocative in the sense that it explicitly indicates that a
list is being lifted to the variational level, making functions that manipulate
variational lists more readable. We use similar synonyms for other object
languages (for example, int or haskell, for the object languages of integers
and Haskell code). For consistency of capitalization, we also use the synonym
obj for generic values.

Now we can define our menu preferences example as a variational list
within our DSEL; this is shown in Figure 7.4. A value of type Menu is a
variational list of food items, while the term menu represents our specific
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type Menu = VList Food

dessert :: Menu

dessert = atomic "Dessert" ["yes","no"] [vsingle Cake,vempty]

menu :: Menu

menu = atomic "Main" ["meat","pasta"]

[vlist [Steak,Fries],Pasta ‘vcons‘ dessert]

Figure 7.4: Menu preferences as a variational list.

menu preferences. We can examine the variational expression we have built
by evaluating menu, which will pretty print the variational list (the line breaks
were inserted manually).

> menu

dim Main<meat,pasta> in

Main<[Steak;Fries],

[Pasta;dim Dessert<yes,no> in Dessert<[Cake],[]>]>

Note that we have defined the pretty printing for the List data type to be
similar to ordinary lists, except that we use ; to separate list elements. In this
way we keep a notation that is well established but also provides visual cues
to differentiate between plain Haskell lists and expanded/variational lists in
our DSEL.

We can print the semantics of menu in order to enumerate all of the
possible menus and the selections necessary to produce them.

> psem menu

[Main.meat] => [Steak;Fries]

[Main.pasta,Dessert.yes] => [Pasta;Cake]

[Main.pasta,Dessert.no] => [Pasta]
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Recall that dependent dimensions are only relevant if the tags they are
dependent on are also selected. In this case, we only choose whether to have
dessert if we chose pasta for a main course.

Before we move on to discuss variational list programs, we show a couple
of operations to facilitate a more structured construction of variation lists.
These operations are not very interesting from a transformational point of
view, but they can be helpful in decomposing the construction of complicated
variational expressions into an orderly sequence of steps.

In the construction of menu we can identify two patterns that warrant
support by specialized operations. First, in the definition of dessert we
introduced a dimension representing something that is optional. Since this
is a common use case, we define a smart constructor opt for introducing an
optional feature in a straightforward way.

opt :: Dim -> a -> VList a

opt d x = atomic d ["yes","no"] [vsingle x,vempty]

Second, the structure of dimension declarations forces us to separate tags and
the elements they label, even for atomic dimensions. A more modular defini-
tion of the menu example can be given if we define the different menu options
separately, then combine them to form menu. This idea is quite similar to the
“direct tagging” approach to representing choices, discussed in Section 3.2.2.
The only difference is that we will represent tagged alternatives separately,
then combine them later to form a choice. To support this approach, we first
introduce a simple representation of tagged alternatives as a pair of a tag
and a variational value.

type Tagged a = (Tag, V a)

Then we introduce some syntactic sugar for defining tagged alternatives, in
the form of an infix operator <:.
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dessert = opt "Dessert" Cake

meat = "meat" <: vlist [Steak,Fries]

pasta = "pasta" <: Pasta ‘vcons‘ dessert

menu = alt "Main" [meat,pasta]

Figure 7.5: Alternative definition of menu with tagged alternatives.

infixl 2 <:

(<:) :: Tag -> V a -> Tagged a

t <: v = (t,v)

Finally, we can define an operation alt that combines a list of tagged alterna-
tives into the declaration of an atomic dimension.

alt :: Dim -> [Tagged a] -> V a

alt d tvs = atomic d ts vs where (ts,vs) = unzip tvs

Putting this all together, we can redefine our menu example using tagged
alternatives as shown in Figure 7.5. This definition produces a syntactically
identical variational list as our original definition above, but we have achieved
the ability to separate each course into its own definition. This makes it easier
to define new kinds of menus by combining existing courses in new ways.

7.2.2 Standard Variational List Functions

In this subsection we will illustrate how to implement for variational lists
some of the standard functions for transforming and aggregating lists. We
will do this at first through direct pattern matching and recursion. Later, we
will introduce more general variational list operations, such as map and fold.

Let us start by implementing the function len to compute the length
of a variational list. The definition of this functions is given in Figure 7.6,
which we’ll analyze in depth. The first thing to notice is that the return
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type of the function is not just Int but rather V Int since a variational list
may represent plain list variants of different lengths. The implementation
of the leng function proceeds by pattern matching. There are three cases to
consider for the Empty, Cons, and VList constructors.

• The length of the empty list is zero. However, we must be careful to
not just return 0 since the return type of the function must be V Int.
Therefore we lift the plain integer 0 into a variational integer using the
int function. This is just a type synonym for Obj, as motivated in the
discussion of the function list in the previous subsection. Note that
we could also have used the method return from the Monad type class.

• For the Cons case, the length of a non-empty list is given by the length of
the tail plus one. Again, because of the variational return type of len we
cannot simply add one to the result of the recursive call. Since len xs

can produce, in general, an arbitrarily complex variation expression
overs integers, we have to make sure to add one to all variants. This
can be accomplished by the functor method fmap.

• For the VList case, we must compute the length of a variational list (of
type V List) directly. We do this by mapping the len function across
the variational list and flattening the result, which corresponds to the
monadic bind observation. We might initially think of using fmap again
here, but examining the types reveals that this is not the right approach
since it would lead to a result of type V (V Int), when we actually
want a result of type V Int.

Note that in each of the above cases, the correct implementation was moti-
vated primarily by the types involved.

Returning to our menu example from the previous subsection, observe
that we cannot apply len directly to menu since the types do not match
up—len expects an argument of type List a, but menu has type VList Food.
Therefore, it seems we need an additional length function that can be applied
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len :: List a -> V Int

len Empty = int 0

len (Cons _ xs) = fmap (+1) (len xs)

len (VList vl) = vl >>= len

Figure 7.6: Computing the variational length of an expanded list.

to values of type VList a. In fact, we have defined such a function already
in the VList case of len, so we can simply reuse that definition.

vlen :: VList a -> V Int

vlen vl = vl >>= len

However, it turns out that we need to perform such a lifting of an argument to
a variational type quite often, so we define a general function for that purpose.
The function liftV takes a function from some type a to a variational type
V b and returns a function of type V a -> V b, where the argument has been
made variational.

liftV :: (a -> V b) -> V a -> V b

liftV = flip (>>=)

With liftV we can redefine vlen equivalently as follows.

vlen :: VList a -> V Int

vlen = liftV len

We generally use this naming convention for functions. Given a function f

whose input is of type T we use the name vf for its lifted version that accepts
arguments of type V T.

We can now test the definition of vlen by applying it to the variational
list menu defined in Section 7.2.1.



176

> vlen menu

dim Main<meat,pasta> in

Main<2,dim Dessert<yes,no> in Dessert<2,1>>

As expected the result is a variational expression over integers. It represents
the number of food items we have depending on our decisions about the
menu. Computing the semantics of this expression makes the mapping from
decisions to number of food items more obvious.

> psem $ vlen menu

[Main.meat] => 2

[Main.pasta,Dessert.yes] => 2

[Main.pasta,Dessert.no] => 1

Comparing this output to the semantics of menu in the previous subsection, it
is easy to confirm that the result is correct.

We have explained the definition of len in some detail to illustrate the
considerations that led to the implementation. We have tried to emphasize
that the generalization of a function definition for ordinary lists to variational
lists requires mostly a rigorous consideration of the types involved. In other
words, making existing implementations work for variational data structures
is an exercise in type-directed programming in which the types dictate (to a
large degree) the code [Wadler, 1989].

We examine one other basic list operation in detail before moving on to
more general functions on variational lists. This will highlight an important
pattern in the generalization of list functions to the variational case.

A function cat for concatenating expanded lists is given in Figure 7.7.
The cases for Empty and Cons are easy and follow the definition for ordinary
lists—in the case of Empty, return the second list, for Cons, recursively append
the second list to the tail of the first. However, the definition for a variational
list is not so obvious. If the first list is given by a variational expression vl,
we have to make sure that we append the second list to all of the lists that
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cat :: List a -> List a -> List a

cat Empty r = r

cat (Cons a l) r = Cons a (l ‘cat‘ r)

cat (VList vl) r = VList (fmap (‘cat‘ r) vl)

Figure 7.7: Concatenating expanded lists.

are represented by vl. We have seen that we have, in principle, two ways to
do that, namely fmap and >>=. Again, a close look at the involved types will
tell us what the correct choice is. First we observe that the result of cat is the
same as the type of its arguments, List a. Therefore we can simply apply
the function cat at every List a nested within vl, and we do not need to
do any subsequent flattening. This corresponds to the function fmap. The
situation for len was different because its result was a variational type, which
required flattening the newly created V structures with >>=.

As with len, we also need a version of cat that works for variational lists,
and not just expanded lists. A simple solution is to inject the variational list
arguments into the List type using the VList constructor, facilitating a direct
application of cat.

vcat :: VList a -> VList a -> VList a

vcat l r = list $ cat (VList l) (VList r)

To show vcat in action, assume that we extend Food by another constructor
Sherry which we use to define the following variational list representing a
potential drink before the meal.

aperitif :: VList Food

aperitif = opt "Drink" Sherry

When we concatenate the two variational lists aperitif (with two variants)
and menu (with three variants), we obtain a variational list that contains a
total of six variant lists.
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nth :: Int -> List a -> V a

nth _ Empty = undefined

nth 1 (Cons x _) = obj x

nth n (Cons _ xs) = nth (n-1) xs

nth n (VList vl) = vl >>= nth n

Figure 7.8: Indexing into an expanded list.

psem $ vcat aperitif menu

[Drink.yes,Main.meat] => [Sherry;Steak;Fries]

[Drink.yes,Main.pasta,Dessert.yes] => [Sherry;Pasta;Cake]

[Drink.yes,Main.pasta,Dessert.no] => [Sherry;Pasta]

[Drink.no,Main.meat] => [Steak;Fries]

[Drink.no,Main.pasta,Dessert.yes] => [Pasta;Cake]

[Drink.no,Main.pasta,Dessert.no] => [Pasta]

Since the evaluation of vcat duplicates the dimensions in menu, the resulting
term structure becomes quite difficult to read and understand. Therefore we
show only the semantics of the result.

All of the functions we have considered so far have only lists as arguments.
Of course, programming with variational lists should integrate smoothly
with other, non-variational types. Figure 7.8 defines an indexing function nth

to compute the nth element of a variational list. Observe that although the
integer argument passed to nth is not variational, the result V a is variational,
since the element at position n may be different in each variant list.

As usual, we must lift nth to work on variational lists. We can reuse the
liftV function for this.

vnth :: Int -> VList a -> V a

vnth = liftV . nth

Note that the index remains non-variational through the function composition—
once again the desired type motivates this definition.



179

fold :: (a -> b -> b) -> b -> List a -> V b

fold _ b Empty = obj b

fold f b (Cons a l) = fmap (f a) (fold f b l)

fold f b (VList vl) = vl >>= fold f b

Figure 7.9: Right fold on an expanded list.

As a final example of how to generalize standard list functions to vari-
ational lists, and as an example of generalizing a higher-order function,
consider the ubiquitous list fold operation (also known as “reduce”). The
definition of a right fold operation on expanded lists is given in Figure 7.9.
Structurally, it is identical to the len operation, where the aggregating func-
tion has been abstracted from + to f. With this in mind, we can redefine len

in terms of fold as follows.

len :: List a -> V Int

len = fold (\_ s -> succ s) 0

Many more functions on variational lists can be found in the source code
accompanying this chapter.

7.2.3 Edit Operations for Variational Lists

The menu example that we introduced in Section 7.2.1 was built in a rather
ad hoc fashion in one big step from scratch. More realistically, variational
structures develop over time, by dynamically adding and removing dimen-
sions and choices in an expression, or by extending or shrinking choices or
dimensions. Additionally, the semantics-preserving transformation laws for
choice calculus expressions (see Chapter 3) suggest a number of operations
for refactoring variational expressions, such as factoring choices or hoisting
dimensions.
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In this section we will present several operations that can be used to
incrementally build and evolve variational lists. Most of these operations are
generic in the sense that they can also be applied to other kinds of variational
structures. We will demonstrate this by reusing some of them in Section 7.3.

As a motivating example suppose that in our menu example we want
to decide first about the dessert and not about the main course. In other
words, we want to obtain an alternative representation of our menu with the
declaration of the Dessert dimension at the top, rather than the declaration
of Main. Since we don’t want to rewrite our menu from scratch, we want
some way to hoist the Dessert dimension to the top without changing the
variants that the menu represents.

We can break down a generalized version of this operation into the
following steps. Assume that e is the expression to be refactored and d is the
name of the dimension declaration that is to be moved.

1. Find the declaration of the dimension d that is to be moved.

2. If the first step is successful, cut out the found dimension declaration
Dim d ts e’ and remember its context c, that is, an expression with a
hole. For now, assume c is a simple function that takes an expression of
the type required at the hole, and produces an expression of the type
of the overall expression.

3. Keep the scope of the found dimension declaration, e’, at its old
location, which can be achieved by applying c to e’.

4. Finally, move the dimension declaration to the top of the expression,
which is achieved by wrapping it around the already modified expres-
sion obtained in the previous step; that is, we produce the expression
Dim d ts (c e’).

To implement these steps we need to solve some technically challenging
problems. For example, finding a subexpression in an arbitrary data type
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expression, removing it, and replacing it with some other expression requires
some advanced generic programming techniques.

To support these generic transformations, we employ the SYB [Lämmel
and Peyton Jones, 2003, 2004] and the “scrap your zipper” (SYZ) [Adams,
2010] libraries for Haskell. Since a detailed explanation of these libraries is
beyond the scope of this thesis, we only briefly describe the most relevant
functions as we encounter them.

At a high level, the approach is based on a type C a, which represents a
context in a type V a. Essentially, a value of type C a represents a pointer to
a subexpression (the hole) within a value of type V a, allowing us to extract
the subexpression and also replace it.

A context is typically the result of an operation to search for (or “locate”) a
subexpression within a variational expression. We introduce a type synonym
Locator for such functions.

type Locator a = V a -> Maybe (C a)

The resulting Maybe type indicates that a search for a context may fail.
Our search for a particular subexpression is typically based on finding

a subexpression that has some property, indicated by satisfying a predicate.
We introduce another type synonym Pred for representing predicates on
variational expressions.

type Pred a = V a -> Bool

Using these types, we introduce the type of a function find that performs a
preorder traversal of an arbitrary variational expression, locating the topmost,
leftmost subexpressions that satisfies the given predicate.

find :: Data a => Pred a -> Locator a

We omit the implementation of find since it relies on details of the SYZ
library; this is also the reason for the Data type class constraint on a.



182

The function find realizes the first step of the transformation sequence
needed for hoisting the Dessert dimension to the top of the variational list
menu. menu. All we need is a predicate to identify a particular dimension d,
which is straightforward to define.

dimDef :: Dim -> Pred a

dimDef d (Dim d’ _ _) = d == d’

dimDef _ _ = False

Now we can find the declaration of the Dessert dimension in menu by apply-
ing find (dimDef "Dessert") menu.

The second step of cutting out the dimension declaration is realized by the
function extract, which returns as a result a pair consisting of the context
and the subexpression at that context.

extract :: Data a => Pred a -> Splitter a

extract p e = do c <- find p e

h <- getHole c

return (c,h)

The function extract is an example of a class of functions that split an
expression into two parts, a context plus some additional information about
the expression in the hole. In the case of extract that information is simply
the expression itself. We introduce a type synonym Splitter to represent
the type of such functions.

type Splitter a = V a -> Maybe (C a, V a)

The definition of extract uses find to locate the context and then simply
extracts the subexpression stored in the context using the SYZ function
getHole.

The third step of applying the context to the scope of the dimension ex-
pression requires the function <@, whose definition is based on SYZ functions
that we don’t show here.
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hoist :: Data a => Dim -> V a -> V a

hoist d e = withFallback e $ do

(c,Dim _ ts e’) <- extract (dimDef d) e

return (Dim d ts (c <@ e’))

Figure 7.10: Dimension hoisting operation (unsafe).

(<@) :: Data a => C a -> V a -> V a

The function <@ can be understood as simply replacing the expression at the
hole specified by the first argument with the expression passed as the second
argument.

Finally, we can combine all of these functions to define a function hoist

in Figure 7.10 for hoisting dimension declarations. Note that the function
withFallback is a synonym for fromMaybe, which we use to return the origi-
nal expression as a default if the lifting process fails.

Now we can apply hoist to menu to lift the Dessert dimension to the top
of the choice calculus expression, producing the expected result. (We save
the new menu as a dMenu for future reference.)

> let dMenu = hoist "Dessert" menu

> dMenu

dim Dessert<yes,no> in dim Main<meat,pasta> in

Main<[Steak;Fries],[Pasta;Dessert<[Cake],[]>]>

There are two obvious shortcomings of the current definition of hoist. One
problem is that moving the dimension might capture free Dessert choices.3

The other problem is that the decision in the Dessert dimension might be
made for nothing since it does not have an effect when the next decision in
the Main dimension is to select meat.

3Capturing free desserts actually sounds appealing from an application point of view. :-)
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safeHoist :: Data a => Dim -> V a -> V a

safeHoist d e = withFallback e $ do

(c,Dim _ ts e’) <- extract (dimDef d) e

if d ‘Set.member‘ freeDims e

then Nothing

else return (Dim d ts (c <@ e’))

Figure 7.11: Capture-avoiding dimension hoisting operation.

The first problem can be easily addressed by extending the definition of
hoist by a check for capturing unbound Dessert choices that returns failure
(that is, Nothing) if d occurs as a free dimension in e. This failure will be
caught eventually by the withFallback function that will ensure that the
original expression e is returned instead. A definition of this “safe” version
of hoist is given in Figure 7.11. Recall from Section 7.1 that the function
freeDims returns a set (as Haskell’s built-in Data.Set type) of the dimension
names of unbound choices.

The second problem with the definition of hoist can be observed by
comparing the semantics of dMenu with the original semantics of menu (shown
in Section 7.2.1).

> psem $ dMenu

[Dessert.yes,Main.meat] => [Steak;Fries]

[Dessert.yes,Main.pasta] => [Pasta;Cake]

[Dessert.no,Main.meat] => [Steak;Fries]

[Dessert.no,Main.pasta] => [Pasta]

It is clear that the decision in the Dessert dimension has no effect if the
decision in the Main dimension is meat. The reason for this is that the
Dessert choice appears only in the pasta choice of the Main dimension. We
can fix this by pushing the Main choice plus its dimension declaration into
the no alternative of the Dessert choice.
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prioritize :: Data a => Dim -> Dim -> V a -> V a

prioritize b a e = withFallback e $ do

(dA,ae) <- extract (dimDef a) e

(cA,Chc _ [a1,a2]) <- extract (chcIn a) ae

(cB,Chc _ [b1,b2]) <- extract (chcIn b) a2

return $ dA <@ (Chc b [cB <@ b1,cA <@ (Chc a [a1,cB <@ b2])])

Figure 7.12: Transformation to eliminate a class of redundant decisions.

This modification is an instance of the following slightly more general
transformation schema, which applies in situations where we have two top-
level dimension declarations of A and B, but a choice in dimension B is
contained in just one alternative of all choices in A. (For simplicity, we show
only the special case where A has one choice with two alternatives.)

dim B〈b1, b2〉 in dim A〈a1, a2〉 in A〈[a1], [a2;B〈b1, b2〉]〉
 dim B〈b1, b2〉 in B〈[a2;b1], dim A〈a1, a2〉 in A〈[a1], [a2;b2]〉〉

The first expression is transformed so that the selection of b1 is guaranteed to
have an effect. That is, when b1 is selected, we effectively trigger the selection
of a2 by copying the alternative a2 without the surrounding dimension
and choice. This transformation makes the most sense in the case when B
represents an optional dimension, that is, b1 = yes, b2 = no, and b2 = ε,
because in this case the selection of b2 = no makes no difference, regardless
of whether we choose a1 or a2.

This transformation can be easily extended to the case where dimension
A has more than two tags and more than one choice. This requires that each
choice in A contains the choice in B in the same alternative.

In Figure 7.12 we define a function prioritize that can perform the re-
quired transformation automatically. The argument dimension b corresponds
to B above, and a corresponds to A. For simplicity we assume that the choice
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in b to be prioritized is contained in the second alternative of the choice in
a. The function’s structure is typical of the generic transformations we can
write with the DSEL; it works as follows. First it decomposes the expression
to be transformed into a collection of nested contexts and expressions, then it
uses these to rebuild the result expression. Specifically, we find the location
of the dimension definition for a, remembering it as context dA. Then we
find the context cA of the a choice, and the choice to be prioritized in the
second alternative of the a choice, a2. Finally, having isolated all of the
required subexpressions, we can assemble the result by applying the contexts
following the RHS of the above transformation schema.

The contexts of the two choices are found using the extract function with
a predicate chcIn that finds a particular choice. It’s definition is given below.

chcIn :: Dim -> Pred a

chcIn d (Chc d’ _) = d == d’

chcIn _ _ = False

This is very similar to the dimDef predicate for finding a particular dimension
declaration.

Note that the transformation prioritize does not preserve the semantics;
in fact, the reason for applying it is to make the semantics more compact.
However, the transformation is variant preserving in the sense described in
Section 3.6; that is, the range of the semantics is unchanged, only the desci-
sions needed to generate each variant have changed. This can be observed by
comparing the semantics of dMenu shown above with the semantics of dMenu
with the Dessert choice prioritized over the Main choice.

> psem $ prioritize "Dessert" "Main" dMenu

[Dessert.yes] => [Pasta;Cake]

[Dessert.no,Main.meat] => [Steak;Fries]

[Dessert.no,Main.pasta] => [Pasta]



187

The prioritization of the Dessert choice has removed the decision about
whether to have meat if we choose yes for Dessert since we can only have
pasta if we choose to have dessert.

As a final example we illustrate how to combine the two transformations
we have defined so far, hoist and prioritize. In terms of the choice calcu-
lus, combining dimension hoisting and dimension prioritization leads to a
transformation that we call dependency inversion.

dim A〈a1, a2〉 in A〈[a1], [a2;dim B〈b1, b2〉 in B〈b1, b2〉]〉
 dim B〈b1, b2〉 in B〈[a2;b1], dim A〈a1, a2〉 in A〈[a1], [a2;b2]〉〉

Reusing hoist and prioritize, the definition of inversion is straightforward.

invert :: Data a => Dim -> Dim -> V a -> V a

invert b a = prioritize b a . hoist b

The definition of invert demonstrates that we can build more complicated
variational programs out of simpler components, illustrating the composi-
tional nature of our variation DSEL.

7.2.4 Variational Programming Modes

To close this section, we share a few thoughts on the nature of variational
programming. Section 7.2.2 and Section 7.2.3 have illustrated that making
data structures variational leads to two different programming modes or
attitudes. On the one hand, the focus can be on manipulating the underlying
variant data structures that are represented, in which case the variational
structure is maintained but not essentially changed. This is what Section 7.2.2
was all about. On the other hand, the focus can be on changing the variability
within the variational data structure, in which case the existing represented
objects are kept mostly intact. This is what Section 7.2.3 was concerned with.
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Okasaki [1998] classifies the different ways of processing edits to data
structures under the name of persistence. Imperative languages typically
provide no innate support for persistence; that is, edits to data structures are
destructive, making old versions inaccessible. In contrast, data structures
in purely functional languages are by default fully persistent; that is, old
versions are in principle always accessible as long as a reference to them
is kept. (There are also the notions of partial persistence and confluent
persistence that are not of interest here.)

Variational data structures add a new form of persistence that we call
controlled persistence because it gives programmers precise control over what
versions of a data structure to keep and how to refer to them. In contrast to the
other forms of persistence (or non-persistence), which happen automatically,
controlled persistence requires a conscious effort on part of the programmer
to create and retrieve different variants of a data structure. Also uniquely,
controlled persistence maintains the structure and relationship of all of the
variants in the form of dimensions and choices, which the programmer can
see and exploit.

7.3 Variational Software

A major motivation of the choice calculus was to represent variation in soft-
ware. Having uncovered some basic principles of variational programming in
Section 7.2, we are finally in a position to look at how we can put the choice
calculus to work, through variational programming, on variational software.

As a running example we pick up the twice example that was introduced
way back in Section 3.1. We will introduce a representation of (a simplified
version of) Haskell as an object language in Section 7.3.1, together with a
number of supporting functions. After that we will consider in Section 7.3.2
several simple example transformations for variational Haskell programs.
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7.3.1 Representing Variational Haskell

Following the example given in Section 7.2.1 we first introduce a data type
definition for representing Haskell programs, then extend it to make it
variational. It is important to note that throughout this section we will
be using Haskell as both the metalanguage of our DSEL and as an object
language. The object language version of Haskell will not resemble Haskell
syntax very closely, being represented instead as a (metalanguage) Haskell
data type. Because of the technical limitations of the DSEL, described in
Section 7.2.1, we have to make a number of simplifying assumptions and
compromises in our definition of Haskell as an object language.

The major constraint is that within a data type definition the V type
constructor can be applied to only one type. This has several implications.
First, we cannot spread the definition of Haskell over several data types. We
would have liked to have, for example, different data types for representing
expressions and declarations, but since this is not possible, we are forced to
represent function definitions using a Fun constructor as part of the expression
data type. Second, ordinarily we would represent the parameter names of a
function definition by simple strings. However, since we want to consider
in our example the renaming of function parameters, and since we can’t
have subexpressions of both the type V Haskell and V String, we must
push the representation of parameter names also into data type representing
expressions. We will use smart constructors to ensure that we only build
function declarations that use variable names as parameter names, but this
representation is obviously less than ideal.

With these restrictions in mind, we give the relevant parts of our simple
representation of Haskell in Figure 7.13. Assume in this definition that Name
is just a type synonym for String. As before, we extend the representation
of the object language with a new constructor, VHaskell, for embedding
variational Haskell expressions into object language expressions. Thus, the
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type VHaskell = V Haskell

data Haskell = App Haskell Haskell

| Var Name

| Val Int

| Fun Name [Haskell] Haskell Haskell

...

| VHaskell VHaskell

Figure 7.13: Definition of variational Haskell.

Haskell data type represents the expanded object language of Haskell, and
the VHaskell type synonym represents variational Haskell.

Before we construct our twice example, we introduce a few more abbre-
viations and auxiliary functions to make working with variational Haskell
programs more convenient.

First, we introduce a function that turns a string representation of a binary
function into a constructor for building expressions using that function.
For example, consider the simple Haskell expression 2*x. When we try to
represent this expression with the Haskell data type, we have quite some
work to do. First, we have to turn 2 and x into Haskell expressions using
the constructors Val and Var, respectively. Then we have to use the App

constructor twice to form the application. In other words, we have to write
the following expression.

App (App (Var "*") (Val 2)) (Var x).

The function op defined below performs all of the necessary wrapping for us
automatically.

op :: Name -> Haskell -> Haskell -> Haskell

op f l r = App (App (Var ("(" ++ f ++ ")")) l) r
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haskell :: Haskell -> VHaskell

haskell = Obj

choice :: Dim -> [Haskell] -> Haskell

choice d = VHaskell . Chc d . map haskell

(.+) = op "+"

(.*) = op "*"

x,y,z :: Haskell

[x,y,z] = map Var ["x","y","z"]

Figure 7.14: Auxiliary definitions for variational Haskell programs

Less importantly, this function also adds enclosing parentheses around the
function name. This is exploited by the pretty printer to display operators
with an infix representation.

In Figure 7.14 we define several other auxiliary functions and values that
will make the definition of our twice example look nicer. First we introduce
haskell as a synonym for Obj, as we did with list and int. We also provide
a smart constructor choice for building choices within the Haskell data
type more conveniently. We provide two infix operators .+ and .*, defined
in terms of op, that allow us to write infix addition and multiplication
expressions of type Haskell. Finally, we provide three parameter names x, y,
and z, for using within Haskell expressions.

Finally, we define a function fun, for defining top-level Haskell functions
with an empty scope.

fun :: Name -> [Haskell] -> Haskell -> VHaskell

fun n vs e = haskell $ Fun n vs e emptyScope

where emptyScope = Var ""
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In the Haskell data type, each function declaration has a corresponding
scope in which the function is defined. Since in our example we are only
interested in the definition of twice and not its uses, we pass a dummy value
emptyScope to complete the expression.

With all these preparations in place, we can now represent the variational
Haskell function twice in our DSEL as follows.

twice = Dim "Par" ["x","y"]

$ Dim "Impl" ["plus","times"]

$ fun "twice" [v] i

where v = choice "Par" [x,y]

i = choice "Impl" [v .+ v, Val 2 .* v]

For comparison here is the original definition of the example given in Sec-
tion 3.1.

dim Par〈x, y〉 in
dim Impl〈plus, times〉 in
twice Par〈x, y〉 = Impl〈Par〈x, y〉+Par〈x, y〉, 2*Par〈x, y〉〉

To check that this definition corresponds to the original, we can evaluate
twice to view its pretty printed representation.

> twice

dim Par<x,y> in

dim Impl<plus,times> in

twice Par<x,y> = Impl<Par<x,y>+Par<x,y>,2*Par<x,y>>

To check that the definition actually represents the four variant implementa-
tions of the twice function that we expect, we can compute its semantics.
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> psem twice

[Par.x,Impl.plus] => twice x = x+x

[Par.x,Impl.times] => twice x = 2*x

[Par.y,Impl.plus] => twice y = y+y

[Par.y,Impl.times] => twice y = 2*y

Looking at the definition of twice in our DSEL, notice that we have used
Haskell’s where clause to factor out parts of the definition. Whereas the
definition of i is not really essential, the definition of v is needed to avoid
repeating the choice in Par. In Chapter 4 we have seen how the share exten-
sion to the choice calculus enables common subexpressions to be factored
out. In Section 7.1 we said that we do not include sharing in the V a data
type. However, we can see here how Haskell’s naming mechanisms can be
reused to simulate these missing features (at least to some degree). Here is a
slightly modified definition of twice that comes closer to the example using
share given in Section 4.1.1.

twice = Dim "Par" ["x","y"] $

Dim "Impl" ["plus","times"] $

let v = choice "Par" [x,y] in

fun "twice" [v] (choice "Impl" [v .+ v, Val 2 .* v])

But recall from Section 7.1 that there are some important differences between
Haskell’s let and the share and macro extensions to the choice calculus, the
most significant of which is the potential for choice capture.

7.3.2 Edit Operations for Variational Haskell

As with variational lists, we also want to build variational Haskell programs
incrementally. This is especially important for variational software since
variability is often introduced to address changing requirements, introduce
new features, or for other reasons that cannot be anticipated in advance.
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In this section we will define several editing operations for variational
Haskell programs that allow us to build up our twice example in several
steps, starting from a single variant. While the example is simple, this process
introduces several generic editing operations that could be implemented by
a variation editor or development environment to support the evolution of
variational software.

We begin with a single plain variant of the twice function with the
parameter name x, implemented by the + operation.

xp = fun "twice" [x] (x .+ x)

Let us first consider the variation of the parameter name. In order to trans-
form xp into a variational program where the parameter name can be either
x or y, we need to do two things.

1. Add a declaration for the Par dimension.

2. Replace references to x by choices between x and y.

The first step is easy. It can be done by simply wrapping xp in a dimension
declaration introduced with the Dim data constructor.

The second step requires a traversal of the abstract syntax tree representing
the twice function, applying a transformation at each place where a variable
x is encountered. This can be accomplished by employing the everywhere

traversal function of the SYB library. All we need is to define a transformation
that identifies occurrences of x variables and replaces them with choices. Such
a transformation is easy to define.4

addPar :: Haskell -> Haskell

addPar (Var "x") = choice "Par" [x,y]

addPar e = e

4Here the fact that we have to represent parameters as expressions is to our advantage since
we do not have to distinguish the different occurrences of variables (definition vs. use) and
can deal with both cases in a single equation.
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We can use this transformation as an argument for the everywhere traversal.
Since everywhere is a generic function that must be able to traverse arbitrary
data types and visit and inspect values of arbitrary types, the transformation
passed to it as an argument must be a polymorphic function. The SYB library
provides the function mkT that performs this task; that is, it generalizes the
type of a function into a polymorphic one.

Combining both steps, we can define the following transformation varyPar

on variational Haskell programs that introduces a new dimension Par and
replaces every variable x in the original program with a choice in dimension
Par between x and y.

varyPar :: VHaskell -> VHaskell

varyPar = Dim "Par" ["x","y"] . everywhere (mkT addPar)

We can confirm that varyPar has the desired effect by applying it to xp and
observing the result.

> varyPar xp

dim Par<x,y> in

twice Par<x,y> = Par<x,y>+Par<x,y>

A limitation of the transformation as shown is that it renames all found
variable names x and not just the parameters of twice. In this example, this
works out well, but in general we have to limit the scope of the transformation
to the scope of the variable declaration that is being varied. We can achieve
this using the function inRange that we will introduce later.

The next step in transforming xp into the full-fledged twice example is to
replace the addition-based implementation with a choice between addition
and multiplication. This transformation works in essentially the same way,
except that the function addImpl for matching and transforming the addition
expression(s), has to do a more elaborate form of pattern matching.
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addImpl :: Haskell -> Haskell

addImpl e@(App (App (Var "(+)") l) r)

| l == r = choice "Impl" [e, Val 2 .* r]

addImpl e = e

With addImpl we can define a transformation similar to varyPar that declares
a new dimension Impl and introduces choices through a combination of
everywhere and addImpl.

varyImpl :: VHaskell -> VHaskell

varyImpl = Dim "Impl" ["plus","times"] . everywhere (mkT addImpl)

To verify the effect of varyImpl we can apply it directly to the plain variant
xp and confirm that it produces a variational program that varies only in the
Impl dimension.

> varyImpl xp

dim Impl<plus,times> in

twice x = Impl<x+x,2*x>

Or we can apply it to the variational program obtained from varyPar xp

to produce the full twice example that varies in both the Par and Impl

dimensions.

> varyImpl (varyPar xp)

dim Impl<plus,times> in

dim Par<x,y> in

twice Par<x,y> = Impl<Par<x,y>+Par<x,y>,2*Par<x,y>>

We can see that this result is not syntactically identical to twice since the
dimensions are declared in a different order. However, if we reverse the order
that we apply our two variation editing operations, we can verify that they
indeed produce the same result as the hand-written definition for twice.
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> varyPar (varyImpl xp) == twice

True

To take this example further, considering extending the parameter name di-
mension another option z, as we we did in Section 4.1.1. This transformation
involves the following steps.

1. Extend the tags of the dimension declaration for Par by a new tag z.

2. Extend all Par choices that are bound by the dimension declaration by
a new alternative z.

The first step is not difficult. It can be implementing using a similar strategy
to the one we used throughout Section 7.2.3; that is, we can find and extract
the dimension declaration, extend it with the new tag, then put it back using
the context that we obtained during the extraction.

However, to change all bound choices is more complicated. This is because
we do not know in advance how many choices are bound to Par, so we cannot
easily use extract for this purpose. Additionally, we don’t want to extend
all choices in the Par dimension because we might end up extending choices
that are not actually bound by the dimension that we extended.

To deal with both of these issues, we define a function inRange that applies
a transformation to selective parts of a variational expression. Although the
implementation of inRange is quite elegant and not very complicated, it is
based on navigational function in the underlying SYZ library, so we don’t
show it here. Instead, we show only the type and argument names to
support the discussion. The full implementation can of course be found in
the accompanying source code.

inRange :: Data a =>

(V a -> V a) -> (Pred a, Pred a) -> V a -> V a

inRange f (begin, end) e = ...
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The inRange function takes three arguments: a transformation f, a pair of
predicates on variational expressions, begin and end, and the expression e to
transform. The predicates indicate the regions in e where f is to be applied.
The expression e is traversed until a node nb satisfies the begin predicate.
Then the transformation f is applied to every node descended from nb until
a node ne is found that satisfies the end predicate. The transformation will
continue applying f to other siblings of ne, but will not descend beneath
ne. When all paths descending from nb have either been transformed or
terminated by a matching end node, the traversal continues until another
node satisfying begin is found. In this way, the predicates begin and end

effectively act as switches to turn the transformation f on and off.
With the help of inRange we can now implement the transformation for

extending a dimension. This function takes four parameters: the name of the
dimension d, the new tag t, a function f to extend the bound choices, and
the expression e in which to perform the update.

extend :: Data a => Dim -> Tag -> (V a -> V a) -> V a -> V a

extend d t f e = withFallback e $ do

(c, Dim _ ts e’) <- extract (dimDef d) e

let e’’ = f ‘inRange‘ (chcFor d, dimDef d) $ e’

return (c <@ Dim d (ts++[t]) e’’)

The extend function works as follows. First, it locates the declaration of
dimension d and remembers the position in the context c. It then performs
the extension of all choices bound by d by applying the function inRange

to the scope of the found dimension, e’. Finding all relevant choices is
accomplished by the two predicates passed as arguments to inRange. The
first, chcFor d, finds choices in the scope of d, and the second dimDef d stops
the transformation at places where another dimension declaration for d ends
the scope. In this way the shadowing of dimension declarations is respected.
Finally, we construct the result by inserting into c a dimension declaration
with the new tag t and the transformed expression e’’.
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Now all we need to extend twice with a new possible parameter name z

is a function for extending choices with new alternative expressions. This is
accomplished with the following function addAlt.

addAlt :: V a -> V a -> V a

addAlt a (Chc d as) = Chc d (as ++ [a])

Putting it all together, we can extend our twice example with the new
parameter name by employing extend and addAlt as shown below.

> extend "Par" "z" (addAlt (haskell z)) twice

dim Par<x,y,z> in

dim Impl<plus,times> in

twice Par<x,y,z> = Impl<Par<x,y,z>+Par<x,y,z>,2*Par<x,y,z>>

The pretty printed result shows the expected choice calculus expression.
The ability to programmatically edit variation representations is an im-

portant aspect of variational programming and our DSEL that we have barely
scratched the surface of in this chapter. Identifying, characterizing, and imple-
menting variation editing operations is an important area for future research
since it directly supports the development of tools for creating, evolving, and
maintaining variational software.
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Chapter 8 – Related Work

Much of the work related to this thesis has been discussed already in Chap-
ter 2. To briefly review, that chapter described the three main roles of
languages in managing variation: implementing variability in the artifacts,
modeling the variation space, and configuring individual variants. In the choice
calculus, each of these roles is expressed through different constructs. Varia-
tion implementation is achieved by choices embedded in object structures,
while local dimension declarations, and the nesting of dimensions within
choices, support variation modeling. In the core choice calculus, the config-
uration of variants is supported externally by tag selection, but Chapter 5

introduced an extension for configuring choice calculus expressions from
within the language itself.

Chapter 2 also introduced and qualitatively compared the three main
approaches to implementing variation, called the annotative, compositional, and
metaprogramming approaches. The complementary nature of the annotative
and compositional approaches was explored in more depth in Section 6.1,
focusing in particular on how they represent intended, structural feature
interactions.

This chapter collects and discusses related research that has not been
covered elsewhere in the thesis. Section 8.1 discusses the C Preprocessor,
including how it is used and how it relates to the choice calculus and its
extensions. Section 8.2 looks at the problem of organizing the variation space
in more detail, comparing other approaches to dimensions in the choice
calculus. Section 8.3 looks at other languages that provide internal support
for configuration, comparing these to the select construct in Chapter 5, and
discusses the problem of variant configuration more generally. Section 8.4
describes other attempts to combine the annotative and compositional ap-
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proaches to variation implementation, comparing these to the compositional
choice calculus in Chapter 6.

8.1 Comparison with the C Preprocessor

Although it is not state-of-the-art from a research perspective, the C Pre-
processor [CPP] is by far the most widely used tool for managing static,
code-level variability in real software. Therefore it is worthwhile to consider
how CPP is used and how it relates to the choice calculus. Virtually every
large-scale C or C++ software project uses CPP. In an empirical study of CPP
usage in real C projects, Ernst et al. [2002] found that CPP directives make
up an average of 8.4% of total lines of code (ranging from 4.5% to 22% in the
26 projects analyzed), and that 37% of C lines are enclosed by conditional
compilation constructs.

Of course, CPP is used for many reasons besides representing variation. In
particular, the management of header files relies on conditional compilation
but is not related to variation in the sense we are interested in. A separate
study of 40 projects by Liebig et al. [2010], focusing on CPP-implemented
variation, found 23% of non-header source code to be variational on average,
with variational code exceeding 50% in some projects. They also observed
that the rate of variational code tends to increase as the overall size of the
project increases, suggesting that variability increases in a software project
over time. This study strongly supports the long-standing assumption that
CPP is widely and heavily used for managing variation in practice.

In many ways, CPP exemplifies the benefits of annotative variation lan-
guages, which probably explains its success. Any text-based artifact can
be arbitrarily varied, making it flexible and expressive. The ability to work
with multiple different object languages makes it possible to, for example,
synchronize variation in source code and documentation.

However, CPP is also a very unstructured language that is widely con-
sidered a common source of errors [Spencer and Collyer, 1992, Favre, 1995,
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Ernst et al., 2002]. The ability to arbitrarily vary text can lead to situations
where only some variants are even syntactically correct, let alone type or
semantically correct. With standard build tools, a bad variant can only be de-
tected by individually generating, compiling, and testing it. Since the number
of variants grows exponentially with respect to the number of CPP macros
used in conditional compilation directives, it is almost always impossible to
generate and test each variant in this way.

A formal notion of “disciplined” CPP use was introduced by Kästner
et al. [2009b] to identify a subset of CPP usage that is guaranteed to produce
syntactically valid variants. A study by Liebig et al. [2011] found that
approximately 86% of existing uses of CPP are disciplined. (Note that not
all undisciplined usage leads to syntactically incorrect variants since the
definition is conservative.) By operating on the level of abstract rather than
concrete syntax (see Section 3.3.1), the choice calculus avoids the problem
of syntactically incorrect variants altogether—a syntactically valid choice
calculus expression can only produce syntactically valid variants in the
object language. This is a quality shared also by the CIDE tool [Kästner
et al., 2008a], which restricts variation to syntactically optional elements in
the object language syntax. The differences between the choice calculus’s
alternative-based model of variation and CIDE’s optionality-based model
have been discussed in Section 3.2.3.

A loose correspondence between the concepts and constructs of the choice
calculus and those in CPP are summarized in Figure 8.1. The first row
in the table contrasts the view of the object language from within each
metalanguage, as described above. Recall from Section 3.3.1 that the choice
calculus can also be instantiated by a particular object language, replacing
the generic AST representation of object structures with the specific abstract
syntax of the object language.

The next row shows a correspondence between choice calculus tags and
CPP macros (a macro in this sense is just a variable used by CPP conditional
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Choice Calculus C Preprocessor

a�e1, . . . , en� Plain text
Tags: t, u Macros: T, U
dim D〈t, u〉 N/A
D〈e1, e2〉 #if T/ e1 / #elif U/ e2 / #endif

macro v : = dim D〈t, u〉 . . . N/A
share v : = dim D〈t, u〉 . . . #if T/ #define V . . . / #elif U/

#define V . . . / #endif

select D.t #define T 1

Figure 8.1: Correspondence of choice calculus and CPP concepts.

compilation directives). In the choice calculus, a configuration is identified
by a particular selection of tags; in CPP a configuration corresponds to a
particular definition of the macros used in conditional compilation directives.

Dimensions impose a structure on the configuration space that is not
present in CPP, and choices ensure that this structure is respected at each
variation point. Note that the concept of a dimension is independent of
and more general than the dimension declaration construct dim. This is
discussed in more depth in Section 8.2. CPP has no corresponding means of
organizing macros into related groups. However, external representations
can be used along with CPP to organize the variation space, such as feature
diagrams [Kang et al., 1990] or the Linux Kconfig tool [She et al., 2010]. These
have the advantage of being more expressive than dimensions (since they
can usually model arbitrary relationships between tags). However, unlike
choices and dimensions in the choice calculus, the consistent usage of CPP
macros in conditional compilation constructs is not enforced, which is known
to lead to bugs in practice [Tartler et al., 2009]. Relatedly, recall that CPP’s
conditional compilation directives are more flexible but less structured than



204

choices since they are based on arbitrary boolean inclusion conditions—the
trade-offs involved here have been discussed in more depth in Section 3.2.3.

CPP provides no mechanism for the explicit reuse of variational compo-
nents. That is, there is no feature that corresponds to the macro extension
introduced in Chapter 4. At this point we need to distinguish between the
two different roles of macros in CPP. One role is as variables in conditional
compilation constructs, which we have considered so far. We can call these
more specifically configuration macros. The other role is closer to the tradi-
tional use of the word “macro”, to represent text that is expanded in place of
the macro name; we will call these text macros. In CPP, the choice calculus
macro construct might correspond to expanding a text macro in multiple
places, with different settings of its enclosed configuration macros each time.
This is not possible since any conditional compilation directives in a macro
definition are resolved at the point of definition. This limitation of CPP
is addressed by the Boost Preprocessor [Karvonen and Mensonides, 2001,
Abrahams and Gurtovoy, 2004, p. 281], which provides many other features
and improvements over standard CPP for definining text macros. CPP can,
however, simulate the share extension in a relatively straightforward way by
wrapping a text macro definition in conditional compilation directives.

Both the choice calculus and CPP support external configuration. In
the choice calculus this is realized by tag selection, while in CPP macros
can be set at the command line or in a Makefile. Like the select extension
in Chapter 5, the CPP #define directive also provides syntactic support
for configuration within the language itself. However, #define is much
more complicated than select since (1) macros can be conditionally defined,
(2) macros can be defined in terms of other macros, (3) the value of a macro
can change during preprocessing, and (4) the order that files are processed
is significant. This complexity makes it difficult to reason about variability
in CPP-annotated code [Kästner et al., 2011a]. Consider the example in
Figure 8.2, which shows the interaction of two features defined by the macros
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void launch() {

#if SECURE

authorize();

#endif

initiate();

}

a. nukes.c

#if VERY_SECURE

#define SECURE 1

#endif

b. security.c

File* data() {

#if SECURE

authorize();

#endif

return d;

}

c. secrets.c

Figure 8.2: Ambiguity of internal configuration in CPP.

SECURE and VERY_SECURE. The file security.c declares that any program that
includes the VERY_SECURE feature also includes the SECURE feature by defining
SECURE to 1. However, since macros are globally scoped and their values
can change during preprocessing, this configuration depends crucially on
the order that the files are processed. If SECURE is initially unselected and
the files are processed in the order shown in the figure, then the security
functionality will be included in secrets.c but not in nukes.c, even though
they both refer to the same macro. The select extension in the choice calculus
provides a simpler, more structured view of configuration since a tag can be
selected precisely once and this selection will affect all choices bound to the
corresponding dimension.

8.2 Organizing the Variation Space

While variation implementation has been discussed in depth in Chapter 2 and
Chapter 6, the more abstract problem of organizing or modeling the variation
space has received comparatively little attention in this thesis. This section
will discuss work in this area, focusing in particular on the large body of
work on feature modeling [Lee et al., 2002] as used in the software product line
(SPL) [Pohl et al., 2005] and feature-oriented software development (FOSD)
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[Apel and Kästner, 2009] communities. Although feature modeling is only
partly about describing variability, that is the role we will focus on here.

Feature models describe variation in a system at a very high level in terms
of abstract features which may be included or not in a program. In contrast,
the choice calculus is more focused on how that variation is realized in the
artifact. However, the choice calculus does provide basic mechanisms for
organizing the variation space in terms of dimensions.

It is important to separate the concept of a dimension from the dimension
declaration construct dim. In instances of the choice calculus that do not
include the dim construct (such as variational types [Chen et al., 2012, 2013]),
each choice still refers to a dimension by name, and these dimensions still
structure and synchronize choices. Without dim, the namespace of these
dimensions is just uncontrolled, and the tags are unnamed.

While dimensions provide essential structure to the choice calculus, they
are somewhat limited compared to some of the feature modeling techniques
described in this section. Therefore we can imagine complementing a choice
calculus-based implementation with an external representation of the varia-
tion model. This would impose additional constraints on dimensions and
tags not encoded in the choice calculus representation itself.

Feature models are represented in a variety of ways. At the simplest end
of the spectrum is the applicative language of the GenVoca model of SPL
construction [Batory and O’Malley, 1992]. GenVoca’s modeling language
consists of two kinds of elements: a program is represented as a constant,
and a feature is represented as a function that takes a program and produces
a new program with the feature included. The only operation is function
application. Valid combinations of features are simply enumerated, though
naming can be used to abstract out common parts, leading to a hierarchical
description of the variants that can be produced.

The AHEAD tool suite Batory et al. [2004] generalizes the GenVoca model
to include sets of elements called refinements. It generalizes feature application
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to the refinement composition operator described in Section 6.1.1, which is
overloaded to implement different refinement operations for different kinds
of artifacts. This operator is reused in the semantics of the compositional
choice calculus in Section 6.5. The culmination of this approach is the feature
algebra described by Apel et al. [2008b], which describes feature composition
in terms of tree superimposition and describes its algebraic properties.

Since products are built up incrementally by applying features to pro-
grams, the feature algebras described above provide direct support for com-
positional feature implementations with ordering constraints. Their main
drawbacks are that each variant must be enumerated and ordering constraints
are not explicitly represented or enforced. Section 6.2 shows how the choice
calculus can be used to describe a variational feature algebra term so that
individual variants can be generated by first selecting a variant term, then
composing the variant accordingly. This also means that the ordering con-
straints must be considered only once in the variational expression and will
then be preserved in each selected variant.

Feature diagrams are an alternative, graphical notation for modeling the
relationships between features [Kang et al., 1990]. Although many different
notations and extensions have been developed [Schobbens et al., 2006], the
core language is relatively simple. In a feature diagram, features are arranged
hierarchically such that children are dependent on their parents. A feature
can be marked as mandatory or optional, and groups of features with a
common parent can be joined together as inclusive or exclusive alternatives.
This language is equivalent to several other representations of feature models,
including propositional formulas and tree grammars [Batory, 2005].

The basic relationships in feature diagrams loosely correspond to patterns
in the choice calculus. Dependencies between mandatory features correspond
to nested object structures, while dependencies between optional features cor-
respond to nested choices. Exclusive alternation corresponds to a dimension,
while optionality can be represented by a dimension with two alternatives,
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one that includes the feature and one that does not. Inclusive alternation can
also be expressed by nested choices, but this requires either the duplication
of alternatives or use of the share extension from Chapter 4.

Other feature diagram relationships are less straightforward to express
in the choice calculus. For example, most feature diagram notations allow
inclusion and exclusion conditions between arbitrary features called cross-tree
constraints. Simple cross-tree constraints can be simulated in the choice calcu-
lus with the select construct from Chapter 5—by nesting a select expression
within a choice of another dimension, we can enforce constraints between
otherwise unrelated dimensions. However, some feature diagrams also allow
constraints involving numeric values which have no direct correspondence
to the choice calculus.

Unlike the applicative feature algebras described above, feature diagrams
are usually not a processable part of a SPL system but rather employed
as design documents and developer specifications. In other words, the
constraints they describe are not enforced, leaving room for error in their
implementation. Although choice calculus dimensions are somewhat less
expressive than other variation modeling techniques, they have the advantage
of directly constraining the implementation. There has been quite a bit of
work on ensuring that variation implementations are consistent with the
feature models that describe them [Czarnecki and Pietroszek, 2006, Metzger
et al., 2007, Thaker et al., 2007]. A common class of problems is a dependency
between features at the implementation level that is not reflected at the model
level. Usually this dependency is only discovered when a variant that does
not satisfy the dependency is generated. Kästner et al. [2009c] describe how
to detect and resolve such cases.

The Linux Kconfig tool [Kconfig, She and Berger, 2010] is used to organize
the configuration space of the Linux kernel, making it a prominent example
of variation modeling in a large-scale, real-world application [She et al., 2010].
Kconfig uses a textual language that describes the type of each configuration
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option and the dependencies between them. Like feature diagrams, Kconfig’s
variation model is not enforced in the implementation of the kernel, which
leads to inconsistencies in practice [Tartler et al., 2009].

8.3 Internalized Selection

Besides variation modeling and implementation, the third role of variation
languages is to support the configuration, generation, or selection of individ-
ual variants (see Section 2.2). In the choice calculus, configuration is usually
considered to be an external operation. However, in Chapter 5 we introduced
an extension that internalized selection, making it an implementation-level
feature of the language itself. In this section, we look at work related to this
extension.

Some of the variation modeling languages described in the previous
section double as configuration languages. For example, AHEAD’s feature
algebra describes how individual variants should be assembled from compo-
nents. Similarly, the Kconfig tool is used to drive the process of configuring
a particular variant of the Linux kernel. However, these tools are purely
external to the languages used to implement the variability at the code level,
such as refinements and CPP.

More research has been done on external configuration at the modeling
level. For example, Czarnecki et al. [2005] enumerate the ways that variation
can be reduced in cardinality-based feature models. This effectively yields a
catalog of potential configuration operations, of which our select construct
is just a single instance. Subsequently, Classen et al. [2009] have provided a
formal semantics for the staged configuration of feature models.

Internalized selection has also been explored in some depth at the model-
ing level. Most relevant is research on nested SPLs (also called dependent or
multi-SPLs) [Krueger, 2006, Rosenmüller et al., 2008, Reiser, 2009, Haber et al.,
2011]. This research extends variation modeling languages with constructs to
represent the reuse of entire SPLs, their (potentially partial) configuration,
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and configuration constraints between them. For example, Reiser [2009]
shows how a UML-based feature modeling language can be extended with
a notion of a composite component defined by another feature model, and
configuration links that define configuration decisions or constraints between
components. In this way a multi-SPL is described by a hierarchical feature
model. Rosenmüller and Siegmund [2010] describe how to automatically
configure multi-SPLs based on such hierarchical models, bridging the gap
between modeling and configuration.

In the choice calculus, the reuse of variational components is supported
at the implementation level by the macro extension, while the ability to
internally configure these components was one of the major motivations
for the select extension (see Section 5.2). Recall from Section 8.1 that CPP
also supports internal configuration at the implementation level through
the #define directive, while the Boost Preprocessor supports the reuse of
variational components. There we argue that the select extension provides a
more structured and disciplined solution to the problem.

Another recent example of implementation-level internal configuration
can be found in the “variability” DSEL1 implemented in the SugarJ lan-
guage [Erdweg et al., 2011a,b]. The DSEL adds syntactic support to Java for
describing variation points, defining feature models, reusing variational com-
ponents, and locally configuring these components by individually enabling
or disabling features.

8.4 Combining Annotative and Compositional Variation

The trade-offs between the annotative and compositional approaches to fea-
ture implementation were discussed in depth in Section 6.1, which focused
especially on how they represent intended, structural feature interactions.

1No corresponding publication or release, but available online at: https://github.com/
seba--/sugarj/tree/master/case-studies/fosd. Discovered through private communica-
tion with Sebastian Erdweg.

https://github.com/seba--/sugarj/tree/master/case-studies/fosd
https://github.com/seba--/sugarj/tree/master/case-studies/fosd
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Many researchers have attempted to take advantage of the complementary
nature of these trade-offs by combining the two approaches into a single
representation, as we did with the compositional choice calculus (ccc) in
Chapter 6. In this section, we focus on some of these other attempts, compar-
ing them to ccc and to the choice calculus in general.

Kästner and Apel [2008] have suggested that their annotative CIDE tool
[Kästner et al., 2008a] could be integrated with the compositional AHEAD
tool suite [Batory et al., 2004] to achieve the benefits of each. They also discuss
the implications of such a merger, many of which we have not considered
here, for example, that an integrated model can support migrating from one
implementation approach to another (which might be especially desirable if
migrating away from CPP, for example). Elsewhere, they propose the idea of
a “virtual separation of concerns”, which attempts to bring the maintenance
and understandability benefits of separability in compositional approaches
to annotative approaches through tool support for working with projections
of annotated artifacts [Kästner and Apel, 2009].

Kästner et al. [2009a] have also created LJAR, a formal language for com-
bining annotative and compositional variation in Lightweight Java programs
(a formal subset of Java [Strniša et al., 2007]). While the semantics-preserving
transformation laws of the choice calculus and ccc describe the commutation
of annotative variation (in the form of choices) with and within compositional
components (object structures), LJAR supports refactorings for moving between
the two implementation approaches—that is, moving from an annotative
representation to a compositional one, or vice versa. Another difference is of
course that LJAR is specific to the object language of Lightweight Java.

The XML Variant Configuration Language (XVCL) [Zhang and Jarzabek,
2004] is another language-based attempt to merge the annotative and com-
positional approaches. Like CPP (but unlike the choice calculus and CIDE),
its in-place variation annotations are structurally undisciplined (that is, they
vary plain text rather than abstract syntax). Distributed variation is supported
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through named “breakpoint” annotations, where code specified elsewhere
can be automatically inserted. While these breakpoint-controlled insertions
provide separability, the need to insert breakpoint annotations means that
XVCL does not support stepwise refinement, a core tenet of compositional ap-
proaches. (However, the sometimes necessary “hook” method technique [Liu
et al., 2006] violates this in purely compositional approaches as well.) This
makes separability in XVCL more similar to share and macro expressions in
the choice calculus than to compositional approaches.
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Chapter 9 – Conclusion

This thesis has presented the choice calculus as a fundamental represen-
tation of variation in software and other artifacts. The choice calculus is
intended to fulfill a role in variation research similar to the lambda calculus
in programming language research. If successful, it can improve the state
of variation research in at least three ways. First, it can provide a common
language of discourse for researchers applying variation to different problems
and in different contexts, supporting the precise and effective communication
of ideas between fields. Second, it can provide a shared research platform that
supports the reuse of theoretical machinery and results, lowering the barrier
of entry for the description of new advanced variation features and sophisti-
cated analyses. Third, it can support the development of tools by providing an
established core of representations and operations to build on.

Section 9.1 discusses evidence that the choice calculus can achieve these
goals by describing some successful applications of the language and touch-
ing on how the choice calculus is already influencing the way other variation
researchers think and talk about variation. Section 9.2 briefly reviews the
most important contributions of this thesis, and Section 9.3 provides some
immediate directions for future work.

9.1 The Choice Calculus in Practice

The choice calculus is designed with a long-term vision of supporting varia-
tion research by providing a language that is simple and general enough to
support formal theoretical research, but that is also customizable enough—by
extending it with different language features and instantiating it with differ-
ent object languages—to support a broad range of sophisticated applications.
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In Section 9.1.1 we describe how the choice calculus helped us to solve the
problem of extending type inference to variational programs. In Section 9.1.2
we describe other applications of the choice calculus and share some quotes
that illustrate the impact that the choice calculus has had already.

9.1.1 Application to Variational Typing

Our work on variational typing [Chen et al., 2012, 2013] represents the most
substantial application of the choice calculus so far. More importantly, it
demonstrates the advantages of the choice calculus as a research platform by
directly reusing many of the ideas, formalisms, and results from this thesis.

The problem of typing variational software is important and difficult. The
traditional view of software product lines assumes that application engineers
will configure, supplement, compile, and test an individual variant before
distributing it to a client [Pohl et al., 2005, p. 30]. This makes the problem
of ensuring the type correctness of each variant manageable (although still
potentially costly) since type errors can be resolved before the variant is ever
released. However, a lot of variational software, especially in an open source
setting, is distributed directly to clients who will configure and compile their
own variant including precisely the features they need. A type error (or other
fault) that appears at this point is too late since the client is not in a position
to resolve or even understand the error.

Therefore, we want to ensure that every variant that can be generated
from a variational software project is well typed. The brute-force strategy of
generating all variants and typing each one individually is intractable since
the number of variants grows multiplicatively with respect to the arity of each
independent dimension of variation. The solution is to type the variational
program directly such that if the variational program is well typed, every
variant that can be selected from it is also well typed. Other researchers have
also addressed the problem of type checking variational software efficiently
[Thaker et al., 2007, Kenner et al., 2010, Kästner et al., 2012a]. Our work
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T ::= τ Constant Types
| a Type Variables
| T → T Function Types
| D〈T, T〉 Choice Types

Figure 9.1: Variational types.

distinguishes itself by solving the more difficult problem of type inference,
which leads to additional subtle issues, such as how to represent the type of a
variational program.

As the basis for this work, we use the variational lambda calculus (vlc),
which is just the choice calculus instantiated by the object language of the
lambda calculus, as described in Section 3.3.1. Already, we can reuse many
definitions from Chapter 3, such as the (instantiated) equivalence laws and
the formal semantics. For example, we can concisely express the important
property that our type system should support in terms of the semantics of
the choice calculus: if e is well typed, then ∀e′ ∈ rng([[e]]), e′ is well typed.

The next question is how to represent the types of vlc expressions. Since
different plain variants can have different plain types, the type of a vlc

expression must also be variational. Therefore, we use a second instantiation
of the choice calculus with the object language of types to produce the
language of variational types shown in Figure 9.1.

For each well-typed vlc expression e, our type system assigns a corre-
spondingly variational type T. The judgment Γ ` e : T states that e has type T
in environment Γ. Since the languages of e and T are both instances of the
choice calculus, we can reuse their respective semantics to precisely capture
the relationship between e and T in the following theorem.

Theorem. If Γ ` e : T and (δ, e′) ∈ [[e]], then Γ ` e′ : T′ where (δ, T′) ∈ [[T]].

This theorem describes the most important property of our type system,
which is that typing relations are preserved through the process of selection.
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T-App

Γ ` e : T′′ Γ ` e′ : T′ T′′ ≡ T′ → T

Γ ` e e′ : T

Figure 9.2: Typing rule for applications in vlc.

More plainly, it states that for any variant e′ of e, we can obtain its type T′

from T by simply applying the same decision to both e and T. Since the
variability in the two languages is expressed by the same metalanguage of
the choice calculus, we can describe this property quite simply in the theorem
in terms of the definitions in Chapter 3. The proof of this theorem (and many
other results) demonstrates the suitability of the choice calculus for rigorous
formal work [Chen et al., 2013].

The type system also makes critical reuse of the equivalence laws from
Section 3.5, instantiated for variational types. When typing an application
e e′ in the (plain) lambda calculus, we usually require that (1) the type of e
is a function type, T′ → T, and that (2) the type of e′ matches its argument
type, T′; then the result of the whole application has type T. However,
these requirements on e and e′ are too strict for vlc since either or both
of the expressions can be variational. What we want to say instead is that
the application can “never go wrong” in any of the variants. That is, if
we apply the same decision to both e and e′, we will get plain lambda
calculus expressions that satisfy the requirements above. We can express
this property precisely using the equivalence relation from Section 3.5, by
requiring that if e has type T′′ and e′ has type T′, then it must be the case
that T′′ ≡ T′ → T. This requirement is shown in the context of the actual
typing rule in Figure 9.2.

The type inference algorithm for vlc is an extension of algorithmW by
Damas and Milner [1982]. The extension consists mostly of an equational
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unification algorithm for variational types that supports the more flexible
typing of function applications shown in Figure 9.2. The equational theory
is defined by the equivalence laws in Section 3.5, instantiated for the object
language of variational types. The inference algorithm is more efficient
than a brute-force implementation since choices capture variation locally
within types (so we must only type their surrounding context once), and
since the Chc-Idemp equivalence law allows us to eliminate choices when two
alternatives have the same type [Chen et al., 2013].

In subsequent work we have extended this approach to be error-tolerant
in the sense that we can infer partial variational types that may contain
type errors in some variants [Chen et al., 2012]. This is useful not only for
locating type errors, but also for supporting the incremental development
of variational software. The implementation of this extension relies on
computing the error pattern associated with an expression. Error patterns
are represented by yet another instantiation of the choice calculus, this time
with the simple object language of boolean values, which represent whether
a variant contains a type error or not.

Our work on variational typing demonstrates that the choice calculus is a
suitable metalanguage for rigorous theoretical research involving variation.
Perhaps more importantly, it illustrates the value of foundational research
in this area, and its potential for reuse. When we first designed the choice
calculus and identified (and proved correct) the set of semantics-preserving
equivalence laws [Erwig and Walkingshaw, 2011b], we did not have any
particular application in mind. However, the equivalence laws turned out
to be the key to the unification of variational types, and so we were able to
reuse them. If not for this earlier work in a more general setting, we might
have arrived instead at a more specific solution to variational type unification,
which could not be easily reused in other contexts.
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9.1.2 Other Applications

In Chapter 7 we applied the choice calculus to the development of a domain-
specific language for exploring the idea of variational programming [Erwig and
Walkingshaw, 2012a]. This work led to design questions and insights that
support the development of variational data structures (see Section 9.3). For
example, it posed the question of how best to embed variation in an algebraic
data type, and presented one possible solution in Section 7.2.1.

The work on variational programming advocated a view of computing
with variation and mixing variation into all kinds of representations. This
contrasts with the typical view of variation as something that is resolved
statically, for example, configuring a software product line into a single
product which is only later executed. Kästner et al. have stated that their
solution to the problem of testing variational software more efficiently was
“inspired by variational programming by Erwig and Walkingshaw” [2012c].
Their approach is to use a variational interpreter that efficiently tracks the
evaluation of all variants simultaneously, allowing them to execute regular
unit tests (that is, unit tests that do not say anything about variation) on a
variational program directly.

We have also applied the choice calculus in the context of a user study on
understanding variation in software [Le et al., 2011]. Specifically, we developed
an interactive, visual representation of choice calculus expressions, then tested
two kinds of understanding against a corresponding representation in CPP.
First, we tested users’ ability to understand the behavior of a single program
variant. Second, we tested their ability to understand the overall space of
potential configurations, determined by counting the number of valid and
unique program variants.

The visual representation, shown in Figure 9.3, shows just one variant at
a time. This is intended to support a “virtual separation of concerns” (VSoC)
[Kästner and Apel, 2009] by allowing programmers to think, as much as
possible, in terms of the plain program that they are currently interested in.
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void step() {
    t_instr i = prog[ctr];
    if (i.code == ADD) {
        reg += i.arg;
    } else if (i.code == SKIP) {
    if (reg > i.arg)
        ctr++;
    } else if (i.code == JUMP) {
        ctr += i.arg;
    } else {
        return;
    }
    if (i.code != JUMP)
        ctr++;
}

HasSkip

HasJump

No
Yes

JumpBy

Relative

Absolute

No
Yes

Figure 9.3: Graphical representation of a choice calculus expression.

Dimensions are represented by colored panels in the side bar, with radio
buttons corresponding to each tag. Choices are represented by colored text
in the main text area, where the color corresponds to its dimension and the
text is the alternative corresponding to the currently selected tag.

The results of the study were that users were able to more quickly and
more accurately answer questions targeted at both kinds of understanding
described above, by statistically significant amounts. This supports claims
not only about our prototype visualization, but also about related represen-
tations that also rely on background colors to represent variability, such as
FeatureCommander [Feigenspan et al., 2011], and that support VSoC, such
as CIDE [Kästner et al., 2008a].

More importantly from the perspective of this thesis, it presents another
quite different application of the choice calculus, illustrating how it can
support the development of tools and other kinds of research on variation.
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9.2 Summary of Contributions

The main contribution of this work is the choice calculus, a formal language
for describing variation. In Chapter 3 we presented the choice calculus, its
denotational semantics, a set of semantics-preserving equivalence laws, and
a variation design theory supporting the elimination of redundancy in choice
calculus extensions.

The core calculus is generic in the sense that it is based on a simple
tree model of the artifact being varied. It is also intentionally minimalistic,
providing only two constructs in its simplest form: one for encoding the tree
structure of the object language, and one for capturing points of variation
within this tree (choices). These qualities support analytically rigorous work
by eliminating special cases introduced by a particular object language, and
by minimizing the number of constructs that must be considered when
introducing a new feature or property.

In order to support the broadest range of applications, however, the core
calculus can also be instantiated by specific object languages (Section 3.3.1).
This allows researchers to explore variation in the context of a particular
artifact type or research question. For example, in Section 9.1.1 we showed
how instantiating the choice calculus twice, once by lambda calculus and
once by its types, supported research on the interaction of variation and type
inference. Importantly, the instantiation process can be extended to other
definitions, such as the equivalence laws, enabling their reuse with different
object languages with relatively little additional effort.

In order to support research at the level of variation metalanguages,
the choice calculus can also be extended with new language features. The
semantics of the choice calculus is designed so that many language extensions
can be defined modularly, requiring minimal changes to existing definitions.
We have presented examples of three such extensions here (in Chapters 4

and 5), which can serve as templates for other researchers to add new features
to the choice calculus in order to support their own work.
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In Section 5.5 we presented a configuration type system. The type system
ensures that a choice calculus expression is well formed and associates with
that expression a configuration type that describes all of the decisions one
can make about the expression in order to resolve it into a plain variant.

In Chapter 6 we presented the compositional choice calculus (ccc). A lan-
guage based derived from the choice calculus that integrates that annotative
and compositional approaches to variation implementation.

Finally, in Chapter 7 we introduce the idea of variational programming and
a DSEL to support its exploration. The idea is that variation is not just a static
quality of software product lines, but something that can be computed with.
In principle, we can imagine making any data type variational and “lifting”
all of operations based on that data type so that they preserve the variability
of their arguments.

9.3 Future Work

Since the long-term vision of this thesis is to support all kinds of variation
research, we can imagine many applications for the choice calculus. A
measure of the success of this work will be if most of these ideas are pursued
by researchers that are not us. However, in this section, we will discuss a
few immediate applications of the choice calculus, and extensions to the choice
calculus that we plan on pursuing.

The idea of variational data structures, introduced in Chapter 7, has a
huge range of potential applications. The most immediate applications are
to support analyses on software product lines, such as variational graphs to
support control flow analyses [Bodden et al., 2013], and variational trees to
support parsing and type checking [Kästner et al., 2011b, 2012a]. However,
there are many other other applications for variational data structures not
concerned with software product lines. For example, navigation software
must compute several possible routes through a transportation network that
can change depending on road closures and user-defined settings—this can
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be viewed as a query over a variational graph that produces a variational
path as a result.

In our work on variational typing, we found that the local dimension
declarations (introduced by the dim construct) cannot be maintained in
variational types and pose a challenge for typing even when only part of the
term language of vlc. A detailed description of the problem is outside the
scope of this discussion but can be found, along with a partial solution, in
our previous work [Chen et al., 2013]. Since the alternative of global scoping
is undesirable for other reasons, this has led us to explore alternative means
of introducing and scoping new dimension names. One possibility is module
scoping. That is, we can extend the choice calculus with a new construct for
introducing a module boundary, and associating with that module several
dimension names and possibly the relationships between those dimensions.
Within the module, we do not have to deal with the complexity of local
dimension declarations, but the namespace is still managed explicitly.

A module system can provide other advantages too. For example, it can
provide an abstraction boundary limiting the scope of selections, macros, and
other features that have potentially far-reaching effects. We might also be
able to express more sophisticated relationships between dimensions than is
possible by nesting dimension declarations in choices. We have explored a
very simple module system already, in the context of the selection operation
[Erwig et al., 2013a], but it does not provide all of the features described here.

Finally, in Section 3.2.3 we discussed the design decision to base the
choice calculus on an alternative-based model of variation. We are currently
working on generalizing the notion of a choice in order to accommodate other
models, such as the one employed by Kästner et al. [2011b] that associates
arbitrary boolean expressions of tags with each subexpression of a choice.
On the one hand, this loses some of the simplicity of the choice calculus, but
on the other hand, it is more flexible and useful in some applications (such
as typing CPP-annotated code). Generalizing the representation of variation
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points will allow us to more easily interact with and support other variation
representations that already exist, increasing the applicability of the choice
calculus.
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Appendix A – Proof of Equivalence Laws

This appendix presents a mechanized proof of Theorem 3.5.1 for the unex-
tended core choice calculus, instantiated with binary trees, and restricted to
binary choices. The proof is written in the language of the Coq proof assistant
[Bertot and Castéran, 2004]. The source code of the proof is available online.1

The variant of the choice calculus used in this appendix is very simple.
This makes the task of writing automatically verifiable proofs easier, but also
means that we can only prove a subset of the equivalence rules presented
throughout the thesis. This is a typical sort of trade-off in tool-supported
theorem proving. However, the rules that we can prove with this simpli-
fied variant—related to the commutation, introduction, and elimination of
choices—are the most interesting from the perspective of developing a gen-
eral theory of variation. They are also the most generally applicable since
they can be used with every variant of the choice calculus.

Finally, this appendix does not describe Coq syntax or explain the proofs
in-depth. Coq proofs are developed interactively and have very limited
explanatory value. However, Section A.1 and Section A.2 describes the
representation of the choice calculus syntax and semantics, respectively,
used in the proof, and Section A.3 relates each proof to its corresponding
equivalence rule in Section 3.5.

A.1 Syntax Definition

Dimension names are mapped to the domain of natural numbers, and tags
(since we only consider binary dimensions) are mapped to the domain of

1https://github.com/walkie/CC-Coq

https://github.com/walkie/CC-Coq
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boolean values. The synonyms L and R refer to the left tag and the right tag
of a dimension, respectively.

Definition dim := nat.

Definition tag := bool.

Definition L : tag := true.

Definition R : tag := false.

The syntax of the choice calculus is defined as a simple inductive data type
with three constructors. The chc constructor represents a binary choice in the
given dimension, while leaf and node represent components in the object
language of binary trees of natural numbers.

Inductive cc : Type :=

| leaf : nat -> cc

| node : nat -> cc -> cc -> cc

| chc : dim -> cc -> cc -> cc.

We also declare a separate inductive data type for representing plain trees in
our object language. This clear separation, at the type level, of variational
and plain binary trees will make reasoning about the denotational semantics
of a variational expression much easier.

Inductive tree : Type :=

| t_leaf : nat -> tree

| t_node : nat -> tree -> tree -> tree.

A.2 Semantics Definition

The denotational semantics of a choice calculus expression is a function from
selections (decisions) to plain binary trees.

Definition denotation := selection -> tree.
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A selection is a total function from dimension names to the selected tags.
This is a slightly different view of decisions than presented in Section 3.4,
where we used lists of qualified tags. This representation ensures that any
selection will fully resolve a variational expression to a plain variant, once
again simplifying the proofs.

Definition selection := dim -> tag.

The source code linked to above provides several functions for constructing
selections. These are omitted here since they are not needed for the proofs.

Finally, the semantics function maps variational expressions to semantic
denotations. This is just a straightforward recursive function.

Fixpoint sem (e:cc) : denotation := fun s =>

match e with

| leaf a => t_leaf a

| node a l r => t_node a (sem l s) (sem r s)

| chc d l r => if s d then sem l s else sem r s

end.

A.3 Proofs that the Laws Preserve the Semantics

Two expressions are semantically equivalent if they yield the same plain
trees for all possible selections. The definition of equiv defines this property,
while the subsequent notation definition introduces an operator <=> that we
can can use to represent semantic equivalence. This corresponds to the ≡
operator used throughout this thesis.

Definition equiv e1 e2 := forall s, sem e1 s = sem e2 s.

Notation "e1 <=> e2" := (equiv e1 e2) (at level 75).

With this property, we can now state and prove many of the semantic equiva-
lence laws presented in Section 3.5.
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Note that since we are using a simpler syntax, only a subset of the rules are
applicable, namely Chc-Idemp, Chc-Chc-Merge, Chc-Chc-Swap, and Chc-Obj.
We also prove that the semantic equivalence relation is reflexive, symmetric,
and transitive. Finally, the congruence rule from Section 3.5 is split into two
rules for choice and tree congruence.

• Rule Chc-Idemp:

Theorem cIdemp d e :

chc d e e <=> e.

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); reflexivity. Qed.

• Rule Chc-Chc-Merge where the nested choice is in the left alternative:

Theorem ccMergeL d e1 e2 e3 :

chc d (chc d e1 e2) e3 <=> chc d e1 e3.

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); reflexivity. Qed.

• Rule Chc-Chc-Merge where the nested choice is in the right alternative:

Theorem ccMergeR d e1 e2 e3 :

chc d e1 (chc d e2 e3) <=> chc d e1 e3.

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); reflexivity. Qed.
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• Rule Chc-Chc-Swap where the nested choice is in the left alternative of
the simpler form:

Theorem ccSwapL d d’ e1 e2 e3 :

chc d’ (chc d e1 e3) (chc d e2 e3) <=>

chc d (chc d’ e1 e2) e3.

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); destruct (s d’); reflexivity. Qed.

• Rule Chc-Chc-Swap where the nested choice is in the right alternative
of the simpler form:

Theorem ccSwapR d d’ e1 e2 e3 :

chc d’ (chc d e1 e2) (chc d e1 e3) <=>

chc d e1 (chc d’ e2 e3).

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); destruct (s d’); reflexivity. Qed.

• Rule Chc-Obj where the choice is nested in the left branch of the tree:

Theorem cObjL d a e1 e2 e3 :

chc d (node a e1 e3) (node a e2 e3) <=>

node a (chc d e1 e2) e3.

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); reflexivity. Qed.
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• Rule Chc-Obj where the choice is nested in the right branch of the tree:

Theorem cObjR d a e1 e2 e3 :

chc d (node a e1 e2) (node a e1 e3) <=>

node a e1 (chc d e2 e3).

Proof.

unfold equiv. intros s. unfold sem.

destruct (s d); reflexivity. Qed.

• Choice congruence rule:

Theorem congChc d e1 e2 e3 e4 :

e1 <=> e3 / e2 <=> e4 ->

chc d e1 e2 <=> chc d e3 e4.

Proof.

unfold equiv. intros H.

elim H. intros H1 H2 s.

unfold sem. destruct (s d).

fold sem. apply H1.

fold sem. apply H2. Qed.

• Tree/object language congruence rule:

Theorem congObj a e1 e2 e3 e4 :

e1 <=> e3 / e2 <=> e4 ->

node a e1 e2 <=> node a e3 e4.

Proof.

unfold equiv. intros H.

elim H. intros H1 H2 s.

unfold sem. destruct (s d).

fold sem. apply H1.

fold sem. apply H2. Qed.
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• Reflexivity:

Theorem equivRefl e :

e <=> e.

Proof. unfold equiv. reflexivity. Qed.

• Symmetry:

Theorem equivSymm e e’ :

e <=> e’ -> e’ <=> e.

Proof.

unfold equiv. intros H s.

symmetry. apply H. Qed.

• Transitivity:

Theorem equivTrans e1 e2 e3 :

e1 <=> e2 / e2 <=> e3 -> e1 <=> e3.

Proof.

unfold equiv. intros H.

elim H. intros H1 H2 s.

rewrite -> H1. rewrite <- H2. reflexivity. Qed.

This represents a complete set of equivalence rules for the choice calculus
as defined in Section A.1, determined by enumerating all permutations of
the syntactic forms. Since all cases have been proved, the relevant subset of
Theorem 3.5.1 is also proved.
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