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A key component to effective forest management is inventory.  The United States 

government regularly inventories forestland trees at present but efforts have begun to extend 

this monitoring effort to urban forests as well.   This study utilizes the first Urban Forest 

Inventory and Analysis (FIA) from the states of Washington, Oregon and California.  Not 

only does this inventory help to identify the structure, composition, health and benefit of 

urban forests in these states, but it also provides an unprecedented opportunity to develop 

regional urban tree attribute models. 

This work develops species-specific models for predicting tree height, height to crown 

base and largest crown width for five principal species represented in the inventory including 

Douglas-fir (Pseudotsuga menziesii), red alder (Alnus rubra), western redcedar (Thuja plicata), big 
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data and used for obtaining additional information on the structure of the urban forest when 

field measurements are unobtainable or costly.  Height and canopy attributes are important 

components for understanding the extent of the benefits imposed by the urban forest.  



 

 

 

 

 

 

©Copyright by Lacey M. Jeroue 
September 4, 2014 
All Rights Reserved  



 

 

Predicting Urban Tree Attributes for Major Species in Urbanized Areas of the Western 
Pacific States 

 

 

by 
Lacey M. Jeroue 

 

 

 

A THESIS 
 

submitted to 
 

Oregon State University 
 

 

 

in partial fulfillment of 
the requirements for the 

degree of 
 

Master of Science 
 

 

 

Presented September 4, 2014 
Commencement June 2015 

  



 

 

Master of Science thesis of Lacey M. Jeroue presented on September 4, 2014. 
 
 
APPROVED: 
 
 
 
________________________________________________________________________ 
Major Professor, representing Sustainable Forest Management 
 
 
________________________________________________________________________ 
Head of the Department of Forest Engineering, Resources and Management 
 
 
________________________________________________________________________ 
Dean of the Graduate School 
 
 
 
 
I understand that my thesis will become part of the permanent collection of Oregon State 
University libraries.  My signature below authorizes release of my thesis to any reader upon 
request. 
 
 
 
 
________________________________________________________________________ 

Lacey M. Jeroue, Author 
  



 

 

ACKNOWLEDGEMENTS 
 
 

The author expresses sincere appreciation to family and friends who offered support during 

graduate school.  Thank you to Dr. Temesegen Hailemariam for academic and personal 

guidance.  This project would not have been possible without funding funneled through 

Oregon Department of Forestry.  Thank you to Paul Ries.  Thank you to John Mills at the 

USDA Forest Service.  His ever-ready supply of data made this project possible.  Thank you 

to Dr. Charlotte Wickham and Dr. Bianca Eskelson for analytical advice on this work.   Thank 

you to Glenn Howe and the other committee members who provided comments on the initial 

drafts of this thesis.  The author thanks her parents, John and Linda Jeroue most of all who 

have always supported her goals in life. 

  



 

 

CONTRIBUTION OF AUTHORS 

 

Dr. Jacob Strunk, John Mills, Paul Ries and Dr. Temesgen Hailemariam made contributions 

to the second chapter of this thesis.  Dr. Charlotte Wickham and Dr. Temesgen Hailemariam 

contributed to the third chapter.  



 

 

TABLE OF CONTENTS 

 

Page 

 

1 General Introduction ………………………………………………………       1 

  1.1 Background ………………………………………………       1 

    Urban forest inventory and analysis ………………       2 
i-Tree ………………………………………………       3 

 

1.2 Urban Forest Benefits ………………………………………       4 

  Carbon storage and sequestration ………………       5 
  Pollution removal ………………………………       6 
  Building heating and cooling energy reduction ………       6 
  Stormwater mitigation  ………………………       8 

   

1.3 Study Objectives ………………………………………       8 

  1.4 Literature Reviewed ………………………………………       9 

    Modeling urban tree attributes ………………………       9 
    Modeling height ………………………………      10 
    Modeling largest crown width ………………………      12 
    Modeling height to crown base ………………      14 
   

1.5 References ………………………………………………      17 

2 Predicting height for major urban tree species in urbanized areas of the 
western pacific states ………………………………………………………      23 

       
2.1 Abstract ………………………………………………      23 

2.2 Introduction ………………………………………………      24 

2.3 Methods ………………………………………………      28 

2.4 Results and Discussion ………………………………………      39 

2.5 Conclusion ………………………………………………      51 

2.6 References ………………………………………………      53 

3 Predicting largest crown width and height to crown base for major urban tree        
species in urbanized areas of the western pacific states  ………………      57  

 

3.1 Abstract ………………………………………………      57 



 

 

TABLE OF CONTENTS (Continued) 
  

Page 

 

3.2 Introduction ………………………………………………      58 

3.3 Methods ………………………………………………      62 

3.4 Results and Discussion ………………………………………      71 

3.5 Conclusion ………………………………………………      80 

3.6 References ………………………………………………      82 

4 General Conclusions ………………………………………………………      85 

Bibliography ………………………………………………………………………      88 

Appendices 

 Map of urban FIA plot locations in Oregon and Washington ………………      94 

 List of h-d models attempted with fit statistics and ranking ………………      95 

 Fit statistics for height to crown base (HCB) models attempted ………      96 

 

  



 

 

LIST OF FIGURES 

 
 
Figure               Page 

 

2.1 Urban forest inventory and analysis plot design layout ………………………      30  

2.2 Distribution for major urban trees in California and combined Washington 
and Oregon ………………………………………………………………      33  
 

2.3 Relationship between height and dbh by tree species and land use ………      34  

2.4 Residual plots for Douglas-fir from [Eq. 2.3.0] and big leaf maple from  
[Eq. 2.4.0] verify homogeneous variance ………………………………      40   

 
2.5 Improved residual plots for base equation [2.4.0] by species using weighted  

regression ……………….…………………………………………........      40 
 

2.6 Boxplot comparison of explained variability between non-linear fixed effect 
(NLFE) and non-linear mixed effect (NLME) models by species ………      45 
  

2.7 Non-linear mixed effect model [2.3.02] for Douglas-fir and [2.4.02] for red  
alder allows flexibility between land use types ………………………………      46 
 

2.8 Height-diameter relationship with function [Eq. 2.5.0] and [Eq. 2.6.0] for 
urban and forestland tree species ………………………………………      48 

 
2.9 Relationship between estimated biomass and dbh from urban Douglas-fir 

using observed and predicted heights ………………………………………      50 
 
2.10 Douglas-fir height-diameter relationship: comparing three prediction 

strategies ………………………………………………………………      51 
 

3.1 Urban forest inventory and analysis plot design layout ………………………      63  

3.2 Relationship of LCW and dbh by species ………………………………      67  

3.3 Relationship between HCB and dbh by species ………………………      69  

3.4 Relationship between HCB and DHR for live oak ………………………      69  

3.5 Relationship of live oak LCW to HCB and crown length ………………      78 
 
3.6 Residuals plotted against predicted LCW by species for model with dbh  

and dbh2 ………………………………………………………………      79  
 

 



 

 

LIST OF FIGURES (Continued) 

 
 
Figure               Page 

 

3.7 Unweighted (right) and weighted in the form wi=1/dbhi (left) residuals   
plotted against predicted LCW by species ………………………………      79 

 

3.8 Weighted and unweighted residuals plotted against predicted live oak HCB  ..      80 

 

  



 

 

LIST OF TABLES 
 

 
Table               Page 

 

2.1 Summary of urban FIA sample by state ………………………………      29  

2.2 Summary of tree level data used for h-d modeling ………………………      31  

2.3 Summary of stand and tree level variables used in extended h-d models …….      31 

2.4 List of base non-linear height-diameter functions ………………………      35  

2.5 List of extended non-linear height-diameter functions ………………………      35 

2.6 List of height-diameter functions for non-linear mixed models including a 
random variable ………………………………………………………      36 
 

2.7 List of full and reduced models used for comparing urban and forestland 
tree height-diameter relationships ………………………………………      38 
 

2.8 Base h-d model fit statistics in meters by species ………………………      39  

2.9 Estimated parameters a, b and c for base models.  All estimated parameters 
are significantly different from zero (p < 0.05) ………………………………      41 
 

2.10 Model fit statistics in meters by species for extended and mixed effect  
versions of Eq. [2.4.0] ………………………………………………………      42 
 

2.11 Model fit statistics in meters for Douglas-fir using extended and mixed 
effect modeling versions of Eq. [2.3.0] ………………………………………      42 
 

2.12 Estimated parameters for selected mixed effect and extended height-diameter   
models ………………………………………………………………………      47 
 

2.13 Biomass and carbon storage estimates from urban Douglas-fir using observed 
and predicted heights ………………………………………………………      49 
 

3.1 Summary of urban FIA sample by state ………………………………      63  

3.2 Summary of observations used for LCW and HCB models ………………      66  

3.3 Summary of LCW, HCB and dbh variables used for crown models ………      67  

3.4 Fit statistics for base models [Eq. 3.1.0] including dbh as the only explanatory 
variable for predicting LCW ………………………………………………      71 
 

3.5 RMSE and percent improvement (Imp.) from base equation by explanatory 
variable and species ………………………………………………………      72 



 

 

LIST OF TABLES (Continued) 

 
 
Table               Page 

 

3.6 Fit statistics for the best species-specific LCW models, accompanying 
explanatory variables and percent improvement (Imp.) from base equation …      73 
 

3.7 Fit statistics for live oak HCB base models including either dbh or DHR 
as single explanatory variables ………………………………………………      75 
 

3.8 Fit statistics for live oak HCB [Eq. 3.1] by explanatory variable used ………      76  

 

 

 



 

 

1 General Introduction 
 

1.1 Background 
 

 
Urban forests are commonly confused with city parks and greenbelts.  By the usual 

notion of what makes a forest a forest, it is difficult to imagine a forest in the city apart from 

parks and other natural tracts intermittently dispersed throughout a city.  Two components 

are associated with the definition of forest; one is that a forest is composed of densely packed 

trees and shrubs and two, is that this vegetation spans over large areas.  Urban forests are 

composed of city parks and remnant natural areas, but it is important to recognize that the 

urban forest also includes the single planted tree in a backyard, the few trees in a row along 

the roadside, nicely manicured shrubs in the front of a business center and the various 

waterways in ditches of residential neighborhoods.  All trees, shrubs and water bodies that 

make up the green infrastructure throughout a city comprise the urban forest no matter how 

densely composed or widespread they are.  

Green infrastructure is an essential component to the livability of urban environments.  

Urban forests provide quantifiable social, economic and ecological benefits (Nowak and 

Dwyer 2007) apart from timber value.  More than 80 percent of the U.S. population reside in 

urban areas.   The result is over 250 million people in the U.S. that are directly impacted by 

urban forests and their associated benefit on a daily basis.  Due to the proximity of trees in 

cities to buildings, pollution sources and human traffic, they are uniquely positioned to provide 

beneficial environmental services but they can also present a liability to the grey infrastructure 

and humans they coexist with.  With such a substantial component of the urban landscape 

being composed of green infrastructure affecting the majority of the Nation’s population, 

effective urban forestry management that aims to maximize beneficial outcomes while 

minimizing costs is necessary.   

A key component to effective urban forest management is inventory.  The state of the 

current composition, structure and health of the urban forest is necessary in order to devise 

goals, schedule maintenance, assess progress and make management decisions.  Large cities 

generally conduct inventories for extensive management and strategic plans.  Smaller towns 
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may conduct inventories but funding is often preventative.  Inventories on public land on a 

long-term rotation (i.e. 10-year basis), principally for hazard tree identification are priorities.  

Most often, city inventories are restricted to public areas and mainly for street and park trees.  

Federal programs recognize the essentiality of inventorying and conduct them annually on 

forestlands but at this time not on our urban forests.   

There is no standard inventory protocol across cities nor does an inventory extend 

outside a given metropolitan area.  Sample designs, information collected and times of 

collection vary among cities.  The lack of cohesion among city inventories limits comparisons 

of regional urban forest populations and inhibits consistent periodic data collection.    

Inventorying urban forests at the national level could provide a basis for effective monitoring 

and management of the urban forest at a much greater scale. 

 

Urban Forest Inventory and Analysis 
 

The United States Department of Agriculture (USDA) Forest Service has initiated 

pilot urban forest inventory and analyses in several states across the nation.  Preliminary 

monitoring strategies for urban forest inventories at the state-level have been conducted for 

Indiana (Lake et al. 2006), Wisconsin (Cumming et al. 2007), New Jersey, Tennessee (Nowak 

et al. 2011), Colorado, California, Oregon, Washington, Alaska, and Hawaii by the USDA 

Forest Service.  Urban trees in these states were inventoried according to the USDA Forest 

Service Enhanced Forest Inventory and Analysis Program (FIA) and Forest Health 

Monitoring Program (FHM) protocols. 

FIA is the nationwide program used to collect, compile, archive, analyze and publish 

forest inventory data across varying spatial scales and ownership types continually throughout 

the nation.  Forestlands were recognized for providing substantial values to U.S. citizens in 

1929 when the federal FIA program began (Smith 2002).  The program persists today largely 

with support from the 1998 Farm Bill or more formally called the Agricultural Research, 

Extension, and Education Reform Act.   

 

At the federal level, the Farm Bill mandates (Smith 2002): 

1. Annualized state forest inventories with data collected in each state each year; 
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2. 5-year reports for each state and nationally including an analysis of forest health; 

and 

3. National standards and definitions, including a core set of variables to be measured 

on all sample plots and a standard set of tables to be included in 5-year reports  

 

Urban areas have historically been classified as nonforest and therefore have not been 

sampled through the FIA program.  Forestland is defined by the USDA Forest Service as land 

that is at least 0.405 hectares (one acre) in size and at least 10% stocked by trees of any size 

(Bechtold and Patterson 2005). 

The 2012 Farm Bill passed in early 2014.  Although the outcome is unknown at this 

time, the Sustainable Urban Forests Coalition (SURC) sought for the inclusion of revisions 

that could place urban forest programs on a mandatory federal agenda across the nation.  The 

Coalition is composed of 30 National Coalition Members from supportive organizations 

across the nation with an equal vision for bolstering urban forestry programs.  

 

The SUFC composed three recommendations for the 2012 Farm Bill:  

1. Encourage interagency coordination to protect urban-forest health; 

2. Address issues at the landscape level and promote urban forests and trees as green 

infrastructure; and 

3. Provide research, tools and resources that support local initiatives, minimizing 

overall costs and maximizing impacts for every dollar invested 

 

In the way that the Farm Bill has greatly influenced the capabilities of the FIA program 

for traditional forests (Smith 2002), the Farm Bill may also encourage effective management 

of urban forests at the national level.  The outcome of the new Farm Bill as it pertains to an 

urban FIA is unknown at this time. 

 

i-Tree 
 

i-Tree is a peer reviewed software suite developed by the USDA Forest Service and 

cooperators that analyzes and quantifies urban forest structure, composition and benefits 
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(USDA Forest Service 2012a).  It is public domain and has been employed by many cities in 

and outside of the U.S.  Three published pilot urban forest inventory and analyses used i-Tree 

Eco to analyze urban forest benefits. 

i-Tree hosts a suite of products including Eco, Streets, Hydro, Vue, Species Selector, 

Storm, Design and Canopy.  All of which have a specific purpose. i-Tree Eco is broadly 

focused to describe many attributes and benefits of an entire urban forest.  It uses local air 

pollution and meteorological data coupled with tree measurements to quantify amounts of 

pollution removal, carbon storage and sequestration, building energy reductions and other 

benefits (USDA Forest Service 2012a).  i-Tree Streets alone, a more focused product requiring 

a complete inventory, uses over 1,800 equations to describe urban street tree structure and 

benefits (McPherson and Peper 2012).   

Complete or sample inventories for cities (e.g., Ciecko 2012; Nowak et al. 2013) are 

relatively simple to handle with i-Tree.  i-Tree provides users with (1) a set of protocols for 

designing inventories, (2) an easy-to-use interface to input data and (3) an automated analysis 

and inventory report.  State inventories are not supported by the software interface at this 

time.  The three published state inventories were analyzed in line with i-Tree Eco methods 

with the data handled outside the software.  California, Oregon and Washington are 

undergoing the same process. 

The ability to quantify urban forest benefits is extremely valuable for managers and 

policy makers.  Inventory and analysis provides managers with a means to strategize decisions 

in a way that maximizes beneficial components.  Policy makers respond to monetary values 

for decisions and funding allocations.  Perhaps i-Tree’s most useful component is the ability 

to quantify and place monetary values on urban forest benefits. 

 
 

1.2 Urban forest benefits 
 
 
Urban forests perform ecosystem functions that translate into social, environmental 

and economic services.  Urban trees store and sequester carbon (Nowak 1993; Akbari 2002; 

Nowak and Crane 2002; Myeong et al. 2005), remove air pollution (Brack 2002; Nowak et al. 

2006; Escobedo and Nowak 2009; Morani et al. 2011), reduce building energy use (McPherson 
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1994a; Simpson and McPherson 1998; Akbari 2002; Sawka 2013), reduce the urban “heat 

island” effect (Shashua-Bar and Hoffman 2000), increase property values (Sander et al. 2010; 

Saphores and Li 2012) and intercept rainfall thereby attenuating stormwater runoff (Xiao et 

al. 1998; Gill et al. 2007).  Urban forests have additionally been suggested to improve 

commerce in business districts (Wolf 2003; 2005) and influence rental rates (Laverne and 

Winson-Geideman 2003).  Views of natural areas from windows may improve attention spans 

for students (Tennessen and Cimprich 1995; Faber et al. 2002) and increases recovery rates 

for patients in hospitals (Ulrich 1984).   

Ecosystem functions are natural processes working continuously at various temporal 

and spatial scales.  As a result of these functions, humans are granted with ecosystem services 

which can either be directly or indirectly beneficial (Farber et al. 2006).  Forest structure, 

composition and health will determine the degree of acting ecosystem services.  But there is 

more.  The proximity of the forest to society also influences the magnitude of their service.  

Since trees in urban areas are aggregated into society, they can be uniquely positioned to 

provide a wide range of beneficial services.  In Chicago the average monetary value benefit of 

a single tree is $402 after investment and maintenance costs (McPherson 1994b).  Nowak et 

al. (2002a) estimated the total compensatory value of urban trees in the U. S. to be $2.4 trillion.  

The ability to quantify the benefits in monetary terms delivers the message to managers, 

landowners and policy to effectively manage the urban forest in a way that maximized benefits 

and minimizes costs. 

 

Carbon Storage and Sequestration 
 

Carbon storage and sequestration by forests are valuable global and long-term scale 

services (Farber et al. 2006).  Carbon dioxide is thought to be a dominant greenhouse gas 

contributing to global climate change.  Trees uptake carbon dioxide from the atmosphere 

through photosynthesis and assimilate the carbon into their biomass, effectively storing 

carbon and sequestering it over time.  Urban forests in the U.S. store 25.1 tC/ha on average 

compared to 53.5 tC/ha in forestlands (Nowak and Crane 2002).  Though less than in 

forestlands, urban forests play an important role in decreasing atmospheric carbon dioxide. 
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Management practices could lead to a net loss of carbon storage from urban forests.  

Fossil-fuel use for tree maintenance could eventually lead to a net emission of carbon without 

secondary measures to reduce emissions (Nowak et al. 2002b).  In Seattle, Washington, urban 

expansion at the expense of forests was estimated to be at a rate of 1±0.6% per year reducing 

carbon stocks on average by 1.2 MgC/ha annually (Hutyra et al. 2011).  i-Tree uses the mean 

social cost of carbon dioxide gas emissions estimated at $22.80/tC by Fankhauser (1994).  

Planting long-lived, fast growing, low-maintenance trees species in urban areas mitigates the 

effect of carbon emission from maintenance activities and urban expansion (Nowak et al. 

2002b).  

 

Pollution Removal 
 

Trees provide a valuable ecosystem service by removing a host of pollutants.  Due to 

the proximity atmospheric pollution sources typically found in urban environments, urban 

trees are in an opportune position to reduce pollution.   

Leaves are sites of gas exchange.  The ecosystem service of removing harmful 

pollution can be attributed to the forest canopy.  Carbon monoxide (CO), nitrogen dioxide 

(NO2), ozone (O3), particulate matter less than 10µm (PM10) and sulfur dioxide (SO2) 

pollutants are removed primarily through uptake by stomata on tree leaves or by the plant 

surface (Nowak et al. 2006).  In the U.S., urban forests improve air quality by removing 711,000 

metric tons of pollution annually (Nowak et al., 2006).   

Improved air quality in turn, improves human health.  This can be extremely useful in 

geographically confined cities like Santiago Chile where air pollution is unable to escape and 

threatens human health (Escobedo et al. 2008).  Morani et al. (2011) incorporated pollution 

concentrations into a planting priority index to determine the best locations to plant trees in 

New York City.  On the other side, these same pollutants in urban areas can have 

concentrations that are damaging to tree health (Percy and Ferretti 2004).  Mortalities or 

damaged trees arising from high pollutant uptake could become liabilities and have costly 

impacts. 
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Building Heating and Cooling Energy Reduction 
 

Trees alter building energy use by modifying temperature and microclimates in urban 

areas (Simpson 2002; Donovan and Butry 2009; Pandit and Laband, 2010).  Through water 

transpiration, altering wind speed and direction, shading surfaces, and by modifying surface 

heat storage and exchanges, trees influence climate on a range of scales (Nowak and Dwyer 

2007).  In urban areas, these processes can beneficial by reducing energy costs and thereby 

reducing carbon emissions as well.   

Shade plays a significant role in altering microclimates.  During the summer, shade 

produced from urban trees decreases adjacent buildings’ energy use.  Summertime electricity 

use in Sacramento, California was reduced by 185 kWh with tree cover on the west and south 

west sides of residential homes (Donovan and Butry 2009).  Residential plantings in Toronto, 

Canada are estimated to contribute 167 kWh per tree in savings and between 435 and 483 

kWh per tree after a twenty-five year period (Sawka et al. 2013).  Baton Rouge LA, Sacramento 

CA and Salt Lake City UT may reduce power plant carbon emissions by 16,000, 41,000 and 

9,000 tons respectively by planting an average of four, 50 m2 crowned shade trees per 

residential home (Akbari 2002).  Dense shade may mean a $21.22 to $32.20 savings per month 

in the summer for households in Alabama (Pandit and Laband 2010). Shade has powerful 

implications for modifying energy consumption.   

Tree canopies and shade creation can have negative effects as well.  If shade is 

produced in the wintertime, household energy use could be exacerbated (Pandit and Laband 

2010).  Simpson and McPherson (1998) estimated a penalty of $5.25 per tree due to 

exacerbated energy use; however, annual savings were still $10.00 per tree for the average 

home due to shade. Tree location also plays a factor building energy use.  Plantings on the 

north side of homes in Sacramento, CA increased energy use by 55kWh or by 1.5% even in 

the summer months (Donovan and Butry 2009).  Savings from trees depend on species, pre-

existing canopy and placement with respect to direction and distance from buildings (Sawka 

et al. 2013).   

The other major factor effecting microclimate is wind (Nowak and Dwyer 2007).  In 

the wintertime, trees are beneficial by blocking wind and effectively buffering building cooling.  

Wind speeds in residential areas with 70% tree density were reduced by 65% in winter and 

75% in summer compared to 22% across both seasons in areas with no trees in Heisler’s 
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(1990) study.  Depending of tree directing and distance from the building, the effect of trees 

influence on wind can be both beneficial as well as a hindrance. 

Urban microclimate modification caused by trees has implications for management 

plans focused on urban energy use and carbon emission mitigation.  Canopy is the key to 

shade creation and wind modification creating microclimatic conditions, which if managed 

properly, can lead to beneficial energy savings. 

 

Stormwater Mitigation 
 
 Through rainfall interception, urban tree canopies attenuate runoff and mitigate fluxes 

of pollution saturated stormwater entering water bodies.  In summer, 36% of rainfall is 

intercepted by canopies dominated by large broadleaves deciduous trees and 18% is 

intercepted in urban canopies dominated by evergreens (Xiao et al. 1998).  Attenuating runoff 

and altering urban hydrology with urban trees also has implications for flood mitigation, 

stormwater treatment cost reductions, and other water quality issues (Nowak and Dwyer 

2007).  With increased precipitation expected in the future in the face of climate change, there 

will be increase surface runoff and the role of green infrastructure will become even more 

useful (Gill et al. 2007). 

 
 

1.3 Study Objectives 
 
 

The purpose of this study is to investigate strategies to predict height, height to crown 

base and largest crown diameter for trees in urbanized areas of California, Oregon and 

Washington.  Forestland tree attributes have been well modeled in the western pacific states 

but this study seeks to show that separate equations developed from the same species in urban 

areas are more suitable for the urban forest type.  The modeling strategies developed in this 

study can be employed with separate urban forest inventory data and subsample for a 

calibrated prediction or the coefficients can be used to predict tree attributes more generally 

in the urbanized western pacific states.  This study fills a gap in urban tree attribute modeling 
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and demonstrates the usefulness of an Urban Forest Inventory and Analysis (UFIA) at the 

national level.    

 

1.4 Literature Review 
 

Modeling Urban Tree Attributes 
 

Urban tree modeling is in its beginning stages (McPherson and Peper 2012).  Height, 

leaf area, biomass and crown width urban tree attribute models have been investigated 

however; there are few publications on this work (Nowak 1990; Nowak 1996; Pilsbury et al. 

1998; Peper et al. 2001a; 2001b; Martin et al. 2012; Troxel et al. 2013).  Dimensional 

relationship studies of municipal tree species that do exist are commonly developed without 

validation and are from observations subjectively selected (Peper et al. 2001a; 2001b).  Major 

forest inventory and analysis tools such as i-Tree, use equations developed from forestland 

tree species because regional models for urban specific trees simply do not exist in most cases.   

When biomass equations for example, are not available, forestland tree models are 

used (Nowak 1993).  The only biomass equations developed specifically for urban trees are 

those by Pilsbury et al. (1998) for 15 common California trees (McHale et al. 2009).  Those 

models were developed by measuring multiple tree segments and calculating geometric 

volumes for each. 

Biomass equations developed from forestland trees overestimate open-grown urban 

trees by 1.25 (Nowak 1994).  Carbon storage in urban areas was estimated from forestland 

biomass equations that were multiplied by a factor of 0.8 (Nowak and Crane 2002) or by 0.9 

(Nowak et al. 2002b) as in i-Tree to account for the differences.  Specific gravity, used for 

biomass equations, may be different in urban areas compared to forestlands for a given species 

as well due to more rapid growth rates from nutrient and water application (McHale et al. 

2009).  In many cases, even forestland biomass equations are not available for certain species.  

In this case, genera averages are used as a replacement and if those are non-existent, then 

hardwood or softwood equations are used (Nowak 1993).  McHale et al. (2009) investigated 

the variability in error of urban tree allometry associated with using models developed for trees 

in typical forestlands by comparing biomass predictions.  They suggest biomass estimates in 
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urban environments may be more accurate with the development of allometric equations 

specific to urban trees. 

Impermeable surfaces, fertilizer application, watering regimes, pollutions fluxes and 

pruning are all indicative of urban environments.  Crown width is influenced by soil, light, 

moisture and crown loss due to storms or pruning (Martin et al. 2012).  Urban forest 

conditions and the subsequent difference in tree allometric relationships from those in typical 

forestlands constitutes the need for using models developed specifically for urban tree species.  

Predictive equations are essential to growth modeling and can provide a means to evaluate 

management plans and the effects of climate change for urban forests (Peper et al. 2001a; 

2001b).   

 

Modeling Height 
 

Tree height is an essential component to describing the structure of the urban forest.  

Height is needed to estimate carbon storage, carbon sequestration and building energy 

reductions, and it is a required input variable for i-Tree Eco.  However, collecting tree height 

is time consuming and costly (Wang and Hann 1988; Dolph 1989, Hanus et al. 1999; 

Temesgen and Gadow 2004).  In urban areas it can be dangerous and unobtainable as well.  

Hazardous conditions such as highways or properties without owner-granted access may not 

allow for tree height collection or any other direct measurment.  Therefore, equations that 

predict height from a given set of variables obtained remotely would be useful.  When 

modeling tree growth, equations to predict tree height are necessary (Garman et al. 1995; 

Temesgen and Gadow 2004; Sharma and Parton 2007). 

Diameter at breast height is relatively quick and easy to measure making it inexpensive 

and a conventional forest measurement (Sharma and Parton 2007).  Because dbh is so strongly 

correlated with tree height and is a conventional, low-cost measurement, models for predicting 

height include at minimum, dbh as a predicting variable for forestlands (Larsen and Hann 

1987; Hanus et al. 1999). 

Separate equations to predict height of three maple species in Rochester and Syracuse, 

New York were fit to linear and a quadratic functions of dbh by Nowak (1990).  He concluded 

the species warranted separate equations and used the information to grow out trees to 
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determine suitable planting locations.  Warm-climate street trees in California were used to fit 

a height-diameter function by Peper et al. (2001a; 2001b).  They recommended a logarithmic 

function with dbh as the predictor variable.  Urban tree height and dbh were found to be 

strongly correlated. 

Functions used to model biological data should be flexible and produce a reasonable 

relationship even when the data do not fully define the curve (Curtis 1969; Yang et al. 1978).  

Polynomial equations were commonly used to model height and diameter (Curtis 1969) but in 

recent years asymptotic equations are almost exclusively employed for forestland modeling.  

Non-asymptotic equations such as polynomial functions are inadequate for extreme sizes of 

dbh (Garman et al. 1995) and do not allow for flexibility.  Asymptotic equations have the 

benefit of not allowing for unrealistic predictions when extrapolating beyond the original data 

used to develop them (Huang et al. 1992).  In addition to being flexible, a good function passes 

through the origin, is monotonic with a slope approaching zero as the predictor variable 

increases, and is fairly simple to fit.  Curves which take on a sigmoidal or concave form are 

asymptotic equations. 

A variety of asymptotic functions have been fitted to predict tree height in forestlands.  

Huang et al. (1992) compares 20 different functions to tree species of Ontario.  The most 

common and most recommended equation used in height-diameter modeling is that 

developed by Richards et al. (1959) called Chapman-Richards (e.g., Garman et al. 1995; Zhang 

1997; Temesgen and Gadow 2004; Temesgen et al. 2006; Newton and Amponsah 2007; 

Sharma and Parton 2007).  Though the function is well suited, it often approaches the 

asymptote too quickly when only a weak correlation exists between the dependent and 

independent variable.   

Temesgen et al. (2006) fitted models by Richards (1959), Yang et al. (1978), Ratkowsky 

(1990) and Hanus et al. (1999) for southwest Oregon tree species.  Wang and Hann (1988) fit 

data from tree species in Oregon’s Willamette valley to a model recommended by Larson and 

Hann (1987).   This same model was also fitted by Dolph (1989) to model red fir in northern 

California and southern Oregon.  Zhang (1996) fit six functions including the Yang and 

Ratkowsky functions with data from the inland Northwest. 

The addition of other predictor variables to base models is a common practice shown 

to improve predictive performance of height-diameter models in forestlands.  Stand level 
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predictor variables incorporate site quality and competition that can influence tree height.  

Basal area in larger trees, stand level basal area, crown competition factors and site index were 

added by Temesgen et al. (2006; 2008).  Sharma and Parton (2007) included basal area, trees 

per hectare, dominant stand height and site index as additional predictor variables with 

improved model performance.  Increased predictive performance with the addition of basal 

area and trees per hectare was achieved by Newton and Amponsah (2007) as well.  Larson and 

Hann (1987) used basal area and site index while Hanus et al. (1999) recommended adding the 

average diameter and height of the 40 largest diameter trees to the base model.  Wang and 

Hann (1988) found that the inclusion of site index improved parameter estimates but advise 

that the additional time required may not constitute the nominal benefit of the expanded 

model. 

Mixed effect modeling, models which use a random and fixed effects, has improved 

model performance.  Mixed effect models were preferred over fixed effect models by 

Robinson and Wykoff (2004) in predicting height.  Temesgen et al. (2008) assessed the 

predictive performance of the Chapman-Richards and Hanus equations across fixed and 

mixed non-linear models, with the inclusion of stand and tree level variables to conclude 

greatest performance in models which included a random stand variable as well as fixed stand 

and tree level variables.  Sharma and Parton (2007) found extended models which included a 

random effect to be better predictors of tree height. 

 

Modeling Largest Crown Width 
 

Few height and crown models exist for urban trees.  Peper et al. (2001a) were able to 

predict crown diameter as a function of dbh using a logarithmic regression function for 16 

species.  Sample sizes ranged from 27 to 33 roadsides trees from Santa Monica, California.  

Root mean square errors (RMSE) ranged from 0.12 and 0.22 meters and adjusted coefficients 

of determination between 0.57 and 0.95.  Peper et al. (2001b) predicted crown diameter as a 

function of dbh using the same logarithmic regression function for 12 common street tree 

species in Modesto, California with similar results as in Santa Monica, California.  Peper’s 

models are used in i-Tree Streets (McPherson and Peper 2012).  Martin et al. (2012) fit linear 

regression equations to predict crown width of three open-grown oak species common to the 
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south with dbh and a quadratic term for dbh to obtain adjusted coefficient of determination 

values between 0.91 and 0.96.  RMSE values are not presented.  Polynomial equations were 

fit for common urban tree species in New Haven, CT in northeastern U.S.A., to establish 

allometric relationships between age, dbh, crown diameter and crown volume by Troxel et al. 

(2013). 

Methods for predicting urban crown width are the same for forestland trees.  

Equations at minimum are linear with dbh as the single independent variable.  Commonly a 

quadratic term for dbh is also added along with additional independent variable will aid in 

better predictive performance. 

Hann (1997) developed largest-crown-width (LCW) models with the inclusion of 

maximum-crown-width (MCW) as a predictor variable multiplied by crown ratio with an 

exponent as a linear function of crown length and diameter to height ratio for 15 major tree 

species in western Oregon.  In the literature, MCW is used when describing crown width 

models which were fit with observations from open-grown trees.  Open-grown trees are 

assumed to not be in competition for resources and therefor represent the maximum size a 

crown can achieve for a given species.  LCW models are fit with data from stand-grown trees. 

Bechtold (2004) used the Forest Health and Monitoring (FHM) data set to develop 

regional LCW models for stand-grown trees in the Western states (CA, CO, ID, NV, OR, UT, 

WA, WY).  They evaluated stem diameter (D), live-crown ratio (CR), stand-level basal area 

(BA), latitude (LAT), longitude (LON), elevation (E) and Hopkins bioclimatic index (HI) as 

predictor variables in LCW models for western tree species and chose the best biologically 

justifiable model to be that which included the parameters for D, D2, CR, BA and HI.  Of the 

53 species fitted 26%, 74% and 36% had significant parameters for quadratic diameter, crown 

ratio and basal area respectively.  Weakly significant parameters for BA and unstable negative 

and positive parameters were attributed to collinearity with D and CR and therefore 

questionable as additional predictors (Bechtold 2004).  No clear pattern arose from the use of 

latitude, longitude or elevation and to not risk over-parameterizing, and avoid interactions 

between the terms, Bechtold (2004) used Hopkin’s bioclimatic index as an alternative to 

capture variation in environmental conditions. 

Gill et al. (2000) considered dbh, height, height-to-crown base, crown class, basal area 

and trees per hectare as predictor variables for crown radius models of common California 
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species.  Stem basal area and exposed crown area, a crude measurement of light availability, 

explain much of the variation in stem growth rate (Wychoff and Clark 2005).  Wychoff and 

Clark (2005) suggest that forest models will be improved by incorporating a variable for crown 

light exposure as knowledge advances in how trees of varying species, sizes and ages respond 

to light exposure.   

Individual tree LCW models are used to estimate canopy cover and determine crown 

profiles.  However, Marshall et al. (2003) found that crown profile models which incorporate 

a predicted LCW variable nearly double in residual.  Issues with canopy cover arise as simply 

summing the crown areas can lead to cover values greater than 100 percent.  Gill et al. (2000) 

suggest calibrating canopy cover models with the asymptotic ‘natural growth model’ from 

Parton and Innes (1972) to avoid this.  Canopy cover is a measure of stand density commonly 

used to indicate wildlife habitat in forestlands and an indicator of forest condition in urban 

areas.  Canopy cover is a performance benchmark in most urban forest management plans.  

 

Modeling Height to Crown Base 
 
 Height to live crown base (HCB) designates the height of the tree stem where the base 

of the live crown begins.  The height at which this occurs has been defined in several ways.  

Soares and Tome (2001) define the base of the crown to be at the lowest live branches 

occupying at least three quadrants of the stem base.  FIA defines a similar line at the beginning 

of the ‘obvious live crown’ where most live branches occur and are continuous for the 

remainder of the stem (U.S. Department of Agriculture Forest Service 2007).  Other measures 

visually compact the tree crown, moving lower branches into gaps and calling the crown base 

at the bottom of an ocularly compacted crown (Zumrawi and Hann 1989; Hanus et al. 2000).  

Furthermore, crown ratio (CR), the length of the crown divided by the entire stem length (H), 

is also dependent on an uncompacted or compacted crown.  CR is related to HCB as: 

 

𝐻𝐶𝐵 = 𝐻 − (𝐶𝑅 × 𝐻) 

 

In urban areas, modeling attempts for HCB have not been published but information 

for forestland HCB modeling is abundant.  HCB and the related CR have been modeled across 
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multiple regions in North America and for a variety of species (Rijal et al. 2012).  McAlpine 

and Hobbs (1994) fit a linear model to predict HCB but this seems to be outdated as nonlinear 

model forms dominate the literature. 

Nonlinear HCB model comparison commonly occur in the literature and the logistic 

form is most often preferred (e.g., Ritchie and Hann 1987; Zumrawi and Hann 1999; Hanus 

et al. 2000; Rijal et al. 2012).  The logistic equation has the benefit of being constrained in a 

way that allows reliable predictions that more closely resemble the biological relationships with 

the predictor variables, has better fit statistics compared to other nonlinear forms and is easy 

to interpret compared to modes with squared expressions (Ritchie and Hann 1987).    The 

logistic equation can be constrain so that CR cannot exceed 1 or be below zero, or to not allow 

HCB to be greater than the tree height.  Soares and Tome (2001) suggested the ‘Richards” 

function, a form of the logistic with constrained parameters which was later employed and 

recommended by Rijal et al. (2012). 

At minimum, the logistic equation includes height and dbh as explanatory variables 

but additional covariates are often included to improve model performance.  Explanatory 

variables can be thought of as three types; those which describe the tree size, competition or 

environmental conditions (Temesgen et al. 2005).  Among those commonly used in 

forestlands are tree height (H), diameter to height ratio (DHR), crown competition factor (ccf), 

ccf for large trees (ccfl), basal area (BA), BA for larger trees (BAL), site index (SI) and climatic 

site index (CSI).  Rijal et al. (2012) found H, DHR, CCF, BAL and CSI to be the most suitable 

with tree size covariates explaining between 40 and 77% variation in HCB models while 

Zumrawi and Hann (1999) found SI to be an insignificant contributor to explaining model 

variability.  Size variables may be better at explaining some variability in CR than competitions 

variables because size variables intrinsically reflect measures of competition (Temesgen et al. 

2005). 

Crown dimensions can be important components for forest growth and yield 

modeling in forestlands because crown size, in terms of foliage area or weight, determines 

growth capacity (Ritchie and Hann 1987).  Additionally, HCB is a critical component 

influencing initiation and propagation of a crown fire making HCB and important 

consideration for fire management (McAlpine and Hobbs 1994).  In urban areas, the single 

most important forest asset in providing social, environmental and economic benefits is the 
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crown (Nowak, 1996).  Since HCB is not a common measurement for forest inventory 

(McAlpine and Hobbs 1994; Soares and Tome 2001; USDA Forest Service 2012b), HCB or 

CR models are useful. 
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2 Predicting height for major urban tree species in urbanized areas 
of the western pacific states. 

 
 

2.1 Abstract 
 

Although regional height-diameter equations are developed for common tree species 

in the west, conditions resulting from the urban environment pose differences in urban tree 

allometry from typical forestlands.  Selected concave and sigmoidal height-diameter equations 

were fitted to data from five principal tree species in urbanized areas of Washington, Oregon 

and California.  Data came from a pilot urban forest inventory based on protocols set by the 

USDA Forest Service, Enhanced National Forest Inventory Analysis program.  Stand and tree 

characteristics (plot basal area, trees per hectare and crown light exposure) were investigated 

as additional predictor variables for improving height predictions for Douglas-fir (Pseudotsuga 

menziesii), red alder (Alnus rubra), western redcedar (Thuja plicata), big leaf maple (Acer 

macrophyllum) and oak (Quercus spp.).  A random land use variable was included in top 

performing base and extended equations for assessment of further improved predictive 

performance rendered through mixed effect models.   

Predictive performance of base, extended and mixed effect models is evaluated 

through residual plots, and root mean square error and bias fit statistics.  Four base equations 

are compared.  Crown light exposure and stand level basal area improve fit statistics from base 

models for three of the five species while the combination of trees per hectare and basal area 

aid in improvements for one species-specific model.  Mixed effect models outperform base 

and extended model forms for three of the five species.  A combined extended mixed effect 

model is best for one of the species.  Weighted regression in the form of 1/dbh (stem diameter 

at breast height) is applied for three of the five species.  Urban and forestland species height-

diameter relationships are different with significant p-values 0.03 to less than 0.0001.  

Coefficients resulting from the fitted equations are documented for future use. 
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2.2 Introduction 
 

 Social, economic and environmental benefits of urban forests are undisputed.  Like all 

trees, urban forests store and sequester carbon thereby reducing the amount of carbon in the 

atmosphere contributing to global climate change (Nowak 1993; Akbari 2002; Nowak and 

Crane 2002; Myeong et al. 2005).  Unique from typical forestland trees, urban trees have the 

added benefit of reducing building energy use (McPherson 1994a; Simpson and McPherson 

1998; Akbari 2002; Sawka 2013) and removing pollutants from the air (Brack 2002; Nowak et 

al. 2006; Escobedo and Nowak 2009; Morani et al. 2011).  Studies have shown that the urban 

forests reduce the urban “head-island” effect (Shashua-Bar and Hoffman 2000), mitigate 

stormwater runoff (Xiao et al. 1998; Gill et al. 2007), increase property values (Sander et al. 

2010; Saphores and Li 2012), improve commerce (Wolf 2003; 2005), influence rental rates 

(Laverne and Winson-Geideman 2003),  improve attention spans for students (Tennessen and 

Cimprich 1995; Faber et al. 2002) and increase recovery rates for patients in hospitals (Ulrich 

1984).   

 Forest structure, composition and health determine the magnitude of these beneficial 

ecosystem services as well as proximity of the forest to society.  Since trees in urban areas are 

aggregated into society, they can be uniquely positioned to provide a wide range of beneficial 

services.  With such a substantial component of the urban landscape being composed of green 

infrastructure affecting the 80% of the Nation’s population who reside in urban areas, effective 

urban forestry management that aims to maximize beneficial outcomes while minimizing costs 

is necessary.   

 A key component to effective urban forest management is inventory.  The state of the 

current composition, structure and health of the urban forest is necessary in order to devise 

goals, schedule maintenance, assess progress and make management decisions.  Over the past 

decade, the United States Department of Agriculture (USDA) Forest Service has initiated, for 

the first time, a pilot urban forest inventory and analyses in several states across the nation.  

Preliminary strategies for urban forest inventory and analyses at the state-level have been 

conducted for Indiana (Lake et al. 2006), Wisconsin (Cumming et al. 2007), New Jersey, 

Tennessee (Nowak et al. 2011), Colorado, California, Oregon, Washington, Alaska, and 

Hawaii. 
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 Three published pilot urban forest inventory and analyses used i-Tree Eco to analyze 

urban forest benefits.  i-Tree is a peer reviewed software suite developed by the USDA Forest 

Service and cooperators that analyzes and quantifies urban forest structure, composition and 

benefits (USDA Forest Service 2012a).  It is public domain and has been employed by many 

cities in and outside of the U.S. these are the first at the state level. 

Tree height is an essential component to describing the health and structure of the 

urban forest.  Height is needed to estimate beneficial ecosystem services.  Carbon storage, 

carbon sequestration and building energy reductions rely on tree height and height is a required 

input variable for i-Tree Eco.   

Most inventories collect tree height data however, measuring tree height is time 

consuming and thus costly (Wang and Hann 1988; Dolph 1989, Hanus et al. 1999; Temesgen 

and Gadow 2004).  In urban areas it can even be dangerous due to busy roads adjacent to 

trees, or unobtainable due to limited access created by buildings or industrial areas.  Therefore, 

equations that predict height from a given set of variables are useful. 

Height equations are useful for predicting missing data or lowing inventory cost by 

subsampling for height.  Height models are commonly used for volume and biomass 

equations, growth and yield modeling (Garman et al. 1995; Temesgen and Gadow 2004; 

Sharma and Parton 2007) and estimating site index (Curtis 1969) in forestlands.  In urban 

forests, height models can additionally be used to grow out trees to determine appropriate 

planting locations or future pruning requirements (Peper et al. 2001a; 2001b). 

Allometric functions establish a quantitative relationship between an organism’s size 

and some other attribute so that its size can be predicted when unknown.   The relationship 

of tree height and diameter is well documented for trees and allometric equations that predict 

height from stem diameter are well developed for forestland tree species (Curtis 1967; Huang 

et al. 1992; Hanus et al 1999; Temesgen et al. 2006; Sharma and Parton 2007; Gomez-Garcia 

et al. 2014).   However, due to differences in environmental conditions and the resulting 

disparity between allometric relationships of urban and forestland tree species (Nowak 1994; 

Close et al. 1996; McHale et al. 2009).  Predicting height for urban trees using forestland 

models is less than ideal. 

Urban trees are exposed to environmental conditions that are unlike conditions posed 

in typical forestlands.  A study of sugar maple site characteristics and tree growth by Close et 
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al. (1996) suggests that street trees have reduced growth rates due to prolonged water stress 

from high transpiration demand and chronic water deficits when compared to the same 

forestland species.  In another case, pruning has a significant impact on tree size (Nowak 1990; 

Peper et al. 2001).  Impermeable surfaces, soil compaction, fertilizer application, watering 

regimes, pollutions fluxes and pruning are all indicative of urban environments.  

Environmental variables influence tree growth allocation and phenology indicating that 

separate allometric equations, aside from those already developed for forestland species, are 

necessary to accurately estimate urban tree relationships (McHale et al. 2009).  Despite these 

differences, urban forestry is faced with using forestland models simply because models for 

urban tree attributes do not exist.  And because many ornamental species found in urban 

environments have not been studied, for many of those species a broad forestland model by 

genera or a model for hardwood or softwood are used instead (Nowak 1993). 

For example, the only biomass equations developed specifically for urban trees are 

those by Pilsbury et al. (1998) for 15 common California trees (McHale et al. 2009).  In most 

cases urban biomass equations are not available and forestland models are used to predict 

urban tree biomass (Nowak 1993).  Biomass equations developed from forestland trees 

however, overestimate open-grown urban tree biomass by 1.25 (Nowak 1994).  To account 

for this over prediction, biomass estimates are multiplied by a factor of 0.8 (Nowak and Crane 

2002) or by 0.9 by Nowak et al. (2002b) in i-Tree.  In addition, due to more rapid growth rates 

from nutrient and water application in urban areas, tree specific gravity used for biomass 

equations may be different in urban areas compared to forestlands.  (McHale et al. 2009).  

These methods indicate that there are uncertainties in biomass predictions and models 

developed from urban trees would provide better suited equations.  We assume this 

relationship holds for urban and forestland tree heights as well. 

Urban tree modeling is in its beginning stages (McPherson and Peper 2012).  As in 

forestland trees, urban tree height and dbh are strongly correlated (Nowak 1990; Peper et al. 

2001a; 2001b).  Equations to predict height of three maple species in Rochester and Syracuse, 

New York were fit to linear and a quadratic functions of dbh by Nowak (1990).  He concluded 

the species warranted separate equations and used the information to grow out trees in order 

to determine suitable planting locations.  Warm-climate street trees in California were used to 

fit a height-diameter function by Peper et al. (2001a; 2001b).  They recommended a logarithmic 
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function with dbh as the predictor variable and note the need for a pruning index to help 

explain variability in tree heights. 

Diameter at breast height is a relatively simple, inexpensive and a conventional forest 

measurement (Sharma and Parton 2007).  For these reasons, models for predicting height 

include at minimum, dbh as a predictor variable (Larsen and Hann 1987, Hanus et al. 1999). 

The relationship between height and diameter is positive and non-linear.  Asymptotic 

equations, those which approach a horizontal line with increasing values on the x-axis, assume 

the natural curvature of tree height-diameter relationships and do not allow for unrealistic 

predictions when extrapolating beyond the original data used to develop them due to their 

asymptotic behavior (Huang et al. 1992).  Non-asymptotic equations such as polynomial 

functions are inadequate for extreme sizes of dbh (Garman et al., 1995).  A good height-

diameter function, is flexible, passes through the origin, is monotonic with a slope approaching 

zero as the predictor variable increases, and is fairly simple to fit (Curtis 1969).  Asymptotic 

functions are just that. 

Asymptotic equations are commonly fit and used to predict tree height from dbh in 

forestlands.  Some perform better than others depending on the region and species.  The 

commonly recommended equation for forestland height-diameter modeling is the Chapman-

Richards equation (Richards et al. 1959; Huang et al. 1992; Temesgen et al. 2006; Sharma and 

Parton 2007).  Equations commonly compared for predicting height for common trees in the 

western U.S. were developed by Richards et al. (1959), Yang et al. (1978), Ratkowsky (1990) 

and Hanus et al. (1999). 

Incorporating stand-level predictor variables to the base equation (that which includes 

only dbh) often improves predictive ability of height-diameter models.  Large tree basal area 

(Temesgen et al. 2008), stand level basal area (Temesgen et al. 2006; Newton and Amponsah 

2007; Sharma and Parton 2007), crown competition factors (Temesgen et al. 2006; 2008), trees 

per hectare (Newton and Amponsah 2007; Sharma and Parton 2007), site index (Larson and 

Hann 1987; Wang and Hann 1988) and average diameter and height of the 40 largest trees 

(Hanus et al 1999) may improve model performance for forestland tree species.  Stand level 

predictor variables incorporate site quality and competition that can influence tree height.  

Adding these variables into equations helps explain variation in height and effectively allows 

the function to shift to suit the data. 
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Mixed effect models are another approach to improving predictive performance of 

height-diameter models.  The previously described are fixed effect models.  Including a 

random effect into those equations formulates a mixed model.  Due to the nature of typical 

sampling procedures from plots, mixed models deal with the inherit dependence between 

observations.  Data collected on the same plot is likely more similar than data from another 

plot.  Multiple observations on the same plot are not independent and this violates model 

assumptions.  Adding a random effect for stand or plot has been employed to model forestland 

tree height to deal with this violation.  Mixed effect models were preferred over fixed effect 

models by Robinson and Wykoff (2004), Sharma and Paron (2007) and by Temesgen et al. 

(2008).  A mixed-effect modeling approach requires a subsample of heights in order to predict 

the random effect allowing for the model to be calibrated to a specific stand or plot (Gomez-

Garcia et al. 2014). 

The principal objective of this study is to determine the most adequate modeling 

strategy to predict tree heights for five common urban tree species in the Western states.  The 

objectives of this study are 1) evaluate the relative predictive performance of a variety of 

height-diameter models 2) evaluate the inclusion of tree and stand level variables in providing 

better prediction strategies 3) evaluate the inclusion of a random effect in enhancing model 

prediction performance and 4) determine if separate height-diameter models are needed for 

trees in urban areas.  Further examination of the height-diameter relationships of the five 

species from forestland and urban forests are explored. 

 

2.3 Methods 
 

Data 
 

Permanent sample plots have been established throughout the U.S. by the USDA 

Forest Service Inventory and Analysis (FIA) program, starting over 80 years ago (U.S. 

Department of Agriculture Forest Service 1992).  Each plot is located within one of a 2402.62 

hectare (5,937 acre) hexagonal cell, uniformly arranged in a grid across the country.  Plots are 

assigned at random location within the cell and are therefore systematically located and evenly 

distributed.  Under objectives of the FIA program, other than pilot studies, plots not meeting 
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definitions of “forested” or not found on “forestland” are not currently sampled.  The data 

for this study came from a pilot project that measured the FIA plots that existed in the urban 

areas of Washington, Oregon and California. Though most plots did not contain enough cover 

to meet the definition of forestland, the urban plots often contained trees in addition to other 

urban features.  Urbanized areas are defined by the U.S. Census as areas within the boundaries 

of cities having a population of 50,000 or more people (U.S. Department of Commerce Bureau 

of the Census, 2002).  This is the first urban data collected from FIA plots in these states and 

the first urban forest inventory in the region of this scale.  A total of 190, 67, and 695 plots 

comprise the sample from urbanized areas of Washington, Oregon and California respectively 

(Table 2.1). 

 

Table 2.1.  Summary of urban FIA sample by state. 

 WA OR OR & WA CA 

Total no. plots 190 67 257 695 

Total no. trees 1163 298 1461 1871 

Plots with trees 126 45 171 382 

Proportion of treed plots 66% 67% 67% 55% 

 

 

 Each plot is composed of a cluster of four subplots and each subplot has a nested 

micro plot (Figure 2.1).  Trees between 2.54 cm and 12.6 cm (1 and 4.9 in) in diameter at 

breast height (dbh; 1.37 m above ground level) were measured on micro plots while all trees 

larger than 12.6 cm (5 in) were measured on subplots.  Each micro plot has a radius of 2.1 

meters (6.8 ft) and the four total .0053 hectares (.013 acre) per plot.  Each subplot has a radius 

of 7.3 meters (24 ft) and the four total .0672 hectares (1/6th acre) per plot. 
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Figure 2.1.  Urban forest inventory and analysis plot design layout 

  

Data were collected in 2012 in accordance with the FIA schematic (U.S. Department 

of Agriculture Forest Service, 2012) along with the protocols of the Forest Health Monitoring 

program (U.S. Department of Agriculture Forest Service. 2007).  Selected variables used for 

this study include height, diameter, crown light exposure (CLE) and land use.  CLE indicates 

the amount of light the crown receives on a scale from zero to five.  It is measured by dividing 

the crown into four quadrants.  One point is given for each quarter that is completely exposed 

to full light and one point is given for any direct light exposure to the tree center from above.  

Trees per hectare (TPH) and plot basal area (BA) were calculated from the data [Eq. 2.1] and 

[Eq. 2.2] and used as additional predictor variables for the extended models investigated. 

BA (m2/ha) is the sum of the cross sectional area of trees from a plot calculated as: 

 

𝐵𝐴 = [∑ 12.46𝜋
𝑛

𝑖=1
(

𝑑𝑏ℎ𝑖

2
)

2

+ ∑ 𝜋
𝑚

𝑗=1
(

𝑑𝑏ℎ𝑗

2
)

2

] 
[2.1] 

 

 

Where dbhj is tree dbh from of the jth tree from m trees in the four subplots and dbhi 

is dbh of the ith tree from n trees in the micro plots.  Each micro plot tree was expanded by 

12.46 to the plot level and plot BA were converted to a per hectare unit. 
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TPH was calculated for each plot from trees with a dbh greater than 2.5 cm as: 

 

𝑇𝑃𝐻 =
1

. 06725
[∑ 12.46𝑥𝑖 + ∑ 𝑥𝑗

𝑚

𝑗=1

𝑛

𝑖=1
] 

[2.2] 
 

 

Where xj is tree basal area from of the jth tree from m trees in the four subplots and xi 

is tree basal of the ith tree from n trees in the micro plots.  Expansion and unit conversion 

were as described above. 

 

 

Table 2.2. Summary of tree level data used for h-d modeling. 
 

    Diameter (cm)  Height (m) 

 tree plot         

Species  (n)  Mean S.D. Range  Mean S.D. Range 

Oak spp. 297 30  21.8 13.0 2.1 - 74.2  8.3 3.8 2.1 - 25.9 

Douglas-fir 262 28  36.3 23.2 3.8 - 139.2  24.8 11.4 2.7 - 60-7 

Red alder 223 21  24.9 12.5 2.6 - 84.9  19.9 6.8 3.0 - 40.8 

Big leaf maple 122 13  33.0 16.6 2.5 - 86.0  23.0 7.0 4.3 - 40.0 
Western 
redcedar 98 15 

 
38.3 25.0 4.1 - 114.8 

 
19.6 11.4 3.7 - 60.7 

 
 

 
Table 2.3. Summary of stand and tree level variables used in extended h-d models. 

 
Species Plot basal area (m2/ha)  Crown light exposure  Trees per hectare (>2.5cm) 

 Mean S.D. Range  Mean S.D. Range  Mean S.D. Range 

Oak spp. 12.9 9.9 1.9 - 41.9  1.5 1.1 0 - 5  516 1233 45 - 6,833 

Douglas-fir 31.0 19.9 5.0 - 86.9  2.2 1.5 0 - 5  439 380 60 - 1,535 

Red alder 24.7 15.1 3.7 – 63.3  2.2 1.6 0 - 5  485 388 89 - 1,535 
Big leaf 
maple 32.0 26.4 3.7 - 78.2 

 
1.7 1.1 0 - 5 

 
431 414 59 - 1,371 

Western 
redcedar 37.7 26.3 3.4 - 86.9 

 
2.0 1.2 0 - 5 

 
345 305 74 - 1,054 

 

 

Stem diameter was not collected at breast height (1.37 m) for some trees due to bole 

irregularities or branching.  Height to diameter measurement was recorded in the field and 

used to impute stem diameter at dbh.  Diameter measurements are brought to dbh by allowing 



32 
 

for a 1.27 centimeter change in diameter as appropriate for every 1.23 meters of stem length 

(Avery and Burkhart 2001).   

Dbh is calculated if not collected directly in the field using equation [2.3] where Htdbh 

is the height of measurement at stem diameter in meters and d is stem diameter in centimetres. 

 

𝑑𝑏ℎ = (1.37 − 𝐻𝑡𝑑𝑏ℎ) × 1.042 + 𝑑 [2.3] 
 

 

Land use classifications was recorded for each observation and grouped by: 

agriculture, commercial/industrial, forested, chaparral, park (undeveloped and developed 

areas as well as cemeteries), residential (single and multi-family structures), transportation 

(major and limited access roadways with related green spaces) and vacant lots.  

  

Omitted Data 
 

Observations were removed from the data set due to extreme values of height for a 

given dbh.  An outlier with a dbh or 27.4 cm and height of 31.4 meters was identified and 

removed in the western redcedar data set.  One outlier was also removed from the big leaf 

maple data set due to evidence of over estimation in the field.  Few other observations were 

removed with extreme values although no field or entry misconduct was evident. 

Trees with severe top pruning are removed from the data set.  In order to estimate the 

random effects, plots with less than two observations for a given species are removed from 

the data set as well. 

 

Species Selection 
 

Tree species occurring with the greatest frequency from our sample inventory were 

chosen for this study.  The four most common species sampled in urbanized areas of Oregon 

and Washington are all native to the region.  They include Douglas-fir (Pseudotsuga menziesii), 

red alder (Alnus rubra), big leaf maple (Acer macrophyllum) and western redcedar (Thuja plicata). 
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California live oak (Quercus agrifloia) was the most common tree species sampled in urbanized 

areas of California.  California live oak was combined with data for all oak species encountered 

in the sample including:  canyon live oak (Q. chrysolepis), blue oak (Q. Douglasii), roble negro (Q. 

ilex), scrub oak (Q. ilicifolia), white oak (Q. lobata), northern red oak (Q. rubra), cork oak (Q. 

suber) and live oak (Q. virginiana).  Oaks comprised the majority (18.7%) of the sampled trees 

in California urbanized areas. 

 
 
Oregon & Washington           California Oaks (18.7% total sample) 

                

Figure 2.2. Distribution of major urban trees in California and combined Washington and 
Oregon. 
 

 

Model Comparison and Selection 
 

We chose to use non-linear asymptotic equations that take the shape of the height-

diameter data cloud from the sample data (Figure 2.3).  These equations allow for flexibility 

and do not produce extreme predictions when dbh is large.  Four base equations were selected 

(Table 2.4).   These functions are commonly compared and recommended in the literature for 

predicting tree height for the same species from forestlands in the region (Huang et al. 1992; 

Douglas-fir
21%

Red alder
17%

Western red 
cedar 9%Big leaf maple 10%

other
43%

Cal. Live
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Blue
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Zhang 1997; Temesgen et al. 2008).  Where 𝐻̂ is predicted height, a, b and c are coefficients 

and D is dbh.  

 

  

  

 

Figure 2.3.  Relationship between height and dbh by tree species and land use.  Land use is: 
A=agriculture, C=commercial, F=forested, I=industrial, L=chaparral, P=park, 
R=residential, and T=transportation. 
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Table 2.4.  List of base non-linear base height-diameter functions. 

Eq. Model form Source 

1.0 𝐻̂ = 1.3 + 𝑎(1 − 𝑒𝑏𝐷)𝑐  Richards (1959) 

2.0 𝐻̂ = 1.3 + 𝑎(1 − 𝑒𝑏𝐷𝑐
)  Yang (1978) 

3.0 𝐻̂ = 1.3 + 𝑒[𝑎+𝑏𝐷𝑐]  Hanus (1999) 

4.0 𝐻̂ = 1.3 + 𝑒
[𝑎+

𝑏

𝐷+𝑐
]
  Ratkowsky (1990) 

 
 

Base models are extended to evaluate possible improvements in explanatory power 

with additional predictor variables (Table 2.5).  We evaluate the contribution of BA, TPH and 

CLE at improving model performance.  Where a, a2 and a3 are coefficients and all other 

notation is as defined previously. 

 

Table 2.5. List of extended non-linear height-diameter functions. 

Eq. Model form Description 

2.1.1 𝐻̂ = 1.3 + 𝑎 + 𝑎2 × 𝐶𝐿𝐸 + 𝑎3 × 𝐵𝐴(1 − 𝑒𝑏𝐷)𝑐  Eq. 2.1.0 with CLE and BA 

2.1.2 𝐻̂ = 1.3 + 𝑎 + 𝑎2 × 𝑇𝑃𝐻 + 𝑎3 × 𝐵𝐴(1 − 𝑒𝑏𝐷)𝑐  Eq. 2.1.0 with TPH and BA 

2.1.3 𝐻̂ = 1.3 + 𝑎 + 𝑎2 × 𝑇𝑃𝐻 + 𝑎3 × 𝐶𝐿𝐸(1 − 𝑒𝑏𝐷)𝑐  Eq. 2.1.0 with TPH and CLE 

2.2.1 𝐻̂ = 1.3 + 𝑎 + 𝑎2 × 𝐶𝐿𝐸 + 𝑎3 × 𝐵𝐴(1 − 𝑒𝑏𝐷𝑐
) Eq. 2.2.0 with CLE and BA 

2.2.2 𝐻̂ = 1.3 + 𝑎 + 𝑎2 × 𝑇𝑃𝐻 + 𝑎3 × 𝐵𝐴(1 − 𝑒𝑏𝐷𝑐
) Eq. 2.2.0 with TPH and BA 

2.2.3 𝐻̂ = 1.3 + 𝑎 + 𝑎2 × 𝑇𝑃𝐻 + 𝑎3 × 𝐶𝐿𝐸(1 − 𝑒𝑏𝐷𝑐
) Eq. 2.2.0 with TPH and CLE 

2.3.1 𝐻̂ = 1.3 + 𝑒[𝑎+𝑎2×𝐶𝐿𝐸+𝑎3×𝐵𝐴+𝑏𝐷𝑐] Eq. 2.3.0 with CLE and BA 

2.3.2 𝐻̂ = 1.3 + 𝑒[𝑎+𝑎2×𝑇𝑃𝐻+𝑎3×𝐵𝐴+𝑏𝐷𝑐]  Eq. 2.3.0 with TPH and BA 

2.3.3 𝐻̂ = 1.3 + 𝑒[𝑎+𝑎2×𝑇𝑃𝐻+𝑎3×𝐶𝐿𝐸+𝑏𝐷𝑐]  Eq. 2.3.0 with TPH and CLE 

2.4.1 𝐻̂ = 1.3 + 𝑒[𝑎+𝑎2×𝐶𝐿𝐸+𝑎3×𝐵𝐴+
𝑏

𝐷+𝑐
]
  Eq. 2.4.0 with BA and CLE 

2.4.2 𝐻̂ = 1.3 + 𝑒[𝑎+𝑎2×𝑇𝑃𝐻+𝑎3×𝐵𝐴+
𝑏

𝐷+𝑐
]
  Eq. 2.4.0 with TPH and BA 

2.4.3 𝐻̂ = 1.3 + 𝑒[𝑎+𝑎2×𝑇𝑃𝐻+𝑎3×𝐶𝐿𝐸+
𝑏

𝐷+𝑐
]
  Eq. 2.4.0 with TPH and CLE 
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Land use is evaluated as a random variable for mixed effect models.  Land use is 

inserted into the model in varying locations to assess the location most appropriate which 

allows for a shift in the shape (i.e. asymptote, curvature or steepness) of the function.  Because 

equation [2.0] produced similar fit as the Chapman-Richards model, this model was not 

adjusted to evaluate mixed effect modeling.   Mixed effect modeling methods are evaluated 

for equations [1.0], [3.0] and [4.0] (Table 2.6).  Where b0 is the random land use effect and all 

other notation is as defined previously. 

 
 
Table 2.6.  List of height-diameter functions for non-linear mixed models including a random 

variable (r.v.) 

Eq. Model form Description 

2.1.01 𝐻̂ = 1.3 + (𝑎 + 𝑏0)(1 − 𝑒𝑏𝐷)𝑐  Eq. 2.1.0 with r.v. in asymptote 

2.1.02 𝐻̂ = 1.3 + 𝑎(1 + 𝑏0 − 𝑒𝑏𝐷)𝑐 Eq. 2.1.0 with r.v. in steepness 

2.1.03 𝐻̂ = 1.3 + 𝑎(1 − 𝑒𝑏𝐷)𝑐+𝑏0 Eq. 2.1.0 with r.v. in curvature 

2.3.01 𝐻̂ = 1.3 + 𝑏0 + 𝑒[𝑎+𝑏0+𝑏𝐷𝑐] Eq. 2.3.0 with r.v. in location 1 

2.3.02 𝐻̂ = 1.3 + 𝑒[𝑎+𝑏0+𝑏𝐷𝑐] Eq. 2.3.0 with r.v. in location 2 

2.3.03 𝐻̂ = 1.3 + 𝑒[𝑎+𝑏𝐷𝑐+𝑏0] Eq. 2.3.0 with r.v. in location 3 

2.4.01 𝐻̂ = 1.3 + 𝑏0 + 𝑒[𝑎+
𝑏

𝐷+𝑐
]
  Eq. 2.4.0 with r.v. in location 1 

2.4.02 𝐻̂ = 1.3 + 𝑒[𝑎+𝑏0+
𝑏

𝐷+𝑐
]
 Eq. 2.4.0 with r.v. in location 2 

 
 

Root mean square error (RMSE) and bias are used as a basis for comparing predictive 

performance of the models.  RMSE is a measure of both variance and bias of the estimator.  

RMSE and bias were calculated from a leave one-out cross validation by plot.   The RMSE is 

not an unbiased estimator of the population variance but when the sample size is large, the 

bias is small.  Models with lower RMSE and bias have better predictive performance.  A 

model’s bias is considered a problem if it exceeds 0.50 meters (Temesgen et al. 2006). 
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RMSE is calculated as: 

 

𝑅𝑀𝑆𝐸 = √∑ (𝐻𝑖 − 𝐻̂𝑖)
2𝑛

𝑖=1

𝑛
 

 
[2.4] 

 

Bias is calculated as: 

 

𝐵𝑖𝑎𝑠 =  
∑ (𝐻𝑖 − 𝐻̂𝑖)

𝑛
𝑖=1

𝑛
 

 
[2.5] 

 

Where  𝐻𝑖 is the ith height observation and 𝐻̂𝑖 is the prediction of the ith height 

observation.  The denominator is n, the sample size. 

Residual plots were also assessed to determine if the model assumptions were upheld.  

We ensured that the errors were normally distributed with mean zero and equal variance. 

Predictor variables were evaluated with a t-test for significance. 

 

Parameter Estimation 
 

Equation parameters were estimated with nonlinear least squares using the nls function 

in R Statistical software (The R Foundation for Statistical Computing 2011) and the package 

nlme (Version 3.1-117) in R for mixed models.   A weight of 1.0/dbh based upon the findings 

of Larsen and Hann (1987) was used for oak spp., red alder and western redcedar to correct 

for unequal variance of the residuals.  Starting values were obtained from the literature. 

 

Evaluation of Urban and Forestland Tree Height-diameter Relationship 
 
 We compare Douglas-fir, red alder, big leaf maple and western redcedar height-

diameter relationships from urban and forestland forest types using and indicator variable in 

non-linear regression analysis.  A full model that includes an indicator for urban tree and it’s 
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interaction with dbh, is compared with an f-test to the reduced model.  The reduced model 

contains no indicator variable.  We used equation [3] for Douglas-fir and equation [4] for the 

remaining principal species in Oregon and Washington.  Forestland and urban oak spp. are 

not compared because California forestland data is not available.   

The equations are presented in Table 2.7.  Where hi is the height of the ith tree, di is the 

dbh of the ith tree, β are coefficients, zi is the indicator variable (zi = 1 when the ith tree is from 

an urban forest and 0 when the ith tree is from forestland) and εi is random error associated 

with the ith tree. 

 

 

Table 2.7.  List of full and reduced models used for comparing urban and forestland tree 
height-diameter relationships. 
 

Eq. Model form Description 

2.5.0 ℎ𝑖 = 1.3 + 𝑒𝛽1+𝛽2𝑑𝑖
𝛽3+𝛽4𝑧𝑖+𝛽5𝑑𝑖

𝛽3𝑧𝑖 + 𝜀𝑖 Full Model [Eq. 2.3.0] 

2.5.1 ℎ𝑖 = 1.3 + 𝑒𝛽1+𝛽2𝑑𝑖
𝛽3+ + 𝜀𝑖 

Reduced Model [Eq. 2.3.0] 

2.6.0  ℎ𝑖 = 1.3 + 𝑒
𝛽1+

𝛽2
𝑑𝑖+𝛽3

+𝛽4∗𝑧𝑖+𝛽5(
1

𝑑𝑖+𝛽3
)

+ 𝜀𝑖 
Full Model [Eq. 2.4.0] 

2.6.1 ℎ𝑖 = 1.3 + 𝑒
𝛽1+

𝛽2
𝑑𝑖+𝛽3 + 𝜀𝑖 

Reduced Model [Eq. 2.4.0] 

 
 

Forestland data came from a complete set of FIA plots measured from 2002 to 2012 

in Oregon and Washington.  We use data from plots west of the cascades and no further south 

than Lane county Oregon for both the urban FIA and forestland FIA data.  Damaged trees 

are not included in the FIA forestland data. 

To better understand the significance of these differences, we estimated carbon 

storage by urban Douglas-fir in urban areas of Oregon and Washington west of the Cascade 

Range and no further south than Eugen, Oregon.  Biomass equations from Zhou and 

Hemstorm (2010) were used and carbon was derived by multiplying biomass by 0.5.  The 

social cost of carbon is $20.30 per metric ton (Fankhouser 1994).  This value is employed in 

i-Tree.  Biomass equations require tree height and dbh.  We compared carbon estimates using 

(1) the observed height, (2) the predicted height using the height-diameter model developed 
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from urban Douglas-fir and (3) the predicted height using the height-diameter model 

developed from forestland Douglas-fir. 

 
 

2.4 Results and Discussion 
 

Evaluation of Base Equations 
 
 Across each of the five species, base model forms [3.0] and [4.0] are preferred.  Model 

form [3.0] had the lowest RMSE for Douglas-fir while RMSE values for red alder, western 

redcedar and big leaf maple were the lowest using model form [4.0].  Since each model form 

produced basically the same RMSE for oak spp. and equation [4.0] lead to the greatest model 

performance for three of the species, equation [4.0] was selected for oaks.  Estimated bias 

ranged from -0.01 to 0.41 meters for all species although it was big leaf maple with the largest 

bias.  According to Temesgen et al. (2006), a bias less than 0.5 meters is not a problem.    

 

 

Table 2.8. Base h-d model fit statistics in meters by species. Bold indicates lowest RMSE. 

Eq. Oak spp.* Douglas-fir Red alder* Big leaf maple 

Western  

redcedar* 

 RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias 

1.0 2.95 -0.005 5.00 0.005 5.07 0.159 5.47 0.407 4.99 0.185 

2.0 2.95 -0.011 5.00 0.003 5.08 0.159 5.47 0.409 5.00 0.190 

3.0 2.96 -0.008 4.96 0.013 5.07 0.143 5.48 0.411 5.12 0.192 

4.0 2.95 -0.010 5.01 -0.002 5.06 0.150 5.46 0.401 4.82 0.232 

* used weighted regression where wi = 1/dbhi 

 
 

Least square regression for prediction relies on the assumption that the random errors 

associated with each observation are distributed evenly.  Douglas-fir and big leaf maple 

displayed homogeneous variance in their residuals along the predicted values (Figure 2.4).  

Three of the species, however, displayed an uneven data cloud in residual plots.  In each case, 

variance increases with increasing values of predicted height.  Weighted regression was applied 

as suggested by the literature in the form of 1/dbh to improve residual plots for red alder, 

western redcedar and oak species (Figure 2.5).  Fit statistics can still be compared for weighted 
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regression models if the same weight is applied in each model (Huang et al. 1992).  In addition, 

validating a weighted regression model with weighted heights is appropriate for testing for bias 

and precision because this method more closely resembles how a model was fit (Larsen and 

Hann 1987).   

 
 
Figure 2.4.  Residual plots for Douglas-fir from [Eq. 2.3.0] and big leaf maple from [Eq. 2.4.0] 
verify homogeneous variance. 
 

 

 

 

 
 
Figure 2.5. Improved residual plots for base equation [2.4.0] by species using weighted 
regression. 
 
 
 

The estimated coefficients from the base equations are provided in Table 2.9.  We 

suggest subsampling tree height and using the data to fit model form [2.3.0] for Douglas-fir or 

form [2.4.0] for any of the remaining four species.  By using localized data, the model can be 

Oak spp. Red alder Western redcedar 

*weighted *weighted *weighted 

Douglas-fir Big leaf maple 
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calibrated to specific height-diameter relationships for a give urban forest.  If subsampling is 

not an option, the coefficients provided could be used with dbh input alone granted heights 

to be predicted are from an urban forest within the range of the models.  For oaks, the range 

is in urbanized California.  For the other four species, the range is in urbanized areas of Oregon 

and Washington.  If additional variables are collected in the field, extended model forms may 

be more appropriate. 

 
 
Table 2.9.  Estimated parameters a, b and c for base models.  All estimated parameters are 
significantly different from zero (p < 0.05). 
 

Equation [2.1.0] [2.2.0] [2.3.0] [2.4.0] 

Oak spp. a 43.1253 44.2932 3.8694 2.9230 

 b -0.0771 -0.1082 -5.5220 -25.4550 

 c 1.1190 1.1585 -0.3542 6.6160 

Douglas-fir a 57.5512 57.3251 4.9164 4.2730 

 b -0.0150 -0.0169 -7.8195 -50.4550 

 c 1.0195 1.0377 -0.4301 12.9850 

Red alder a 26.4509 26.6465 3.8654 3.5310 

 b -0.0487 -0.0624 -4.6681 -14.7900 

 c 1.0655 1.1000 -0.5265 3.6990 

Big leaf maple a 30.6887 30.7920 3.6870 3.6290 

 b -0.0463 -0.0406 -7.7220 -18.7330 

 c 0.9773 0.9350 -0.7570 5.1790 

Western redcedar a 56.9403 60.5514 7.5844 4.3780 

 b -0.0077 -0.0122 -8.9878 -80.1720 

 c 1.1061 1.1174 -0.1839 19.9310 

 

 
 

Evaluation of Expanded and Mixed-Effect Equations 
 

Base equations [2.3.0] for Douglas-fir and [2.4.0] for the other four principal species 

performed the best, so extended and mixed effect versions of these forms are chosen for 

evaluation.  Four models were improved with additional explanatory variables and three 

models are improved with a random effect (Table 2.10 and 2.11). 
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Table 2.10. Model fit statistics in meters by species for extended and mixed effect versions 
of Eq. [2.4.0]. Bold indicates lowest overall RMSE. 
 

  Oak spp.* Red alder* Big leaf maple 

Western 

redcedar* 

Eq. Description RMSE Bias RMSE Bias RMSE Bias RMSE Bias 

BASE MODEL 

4.0 base 2.95 -0.010 5.06 0.150 5.46 0.401 4.82 0.232 

EXTENDED MODELS 

4.1 CLE & BA 3.26 -0.375 5.17 0.054 3.82 0.233 3.54 .141 

4.2 TPH & BA 2.85 -0.182 5.45 0.040 ** ** 4.06 0.140 

4.3 CLE & TPH 4.41 -1.345 5.54 0.094 5.80 .551 ** ** 

MIXED MODELS 

4.01 r.v. in location 1 3.07 -0.303 4.91 0.060 4.99 0.295 5.07 0.396 

4.02 r.v. in location 2 3.59 -0.647 4.87 0.070 4.93 0.282 6.15 0.969 

4.11 

 

[Eq 4.1] with r.v. 

in location 1 3.47 -0.450 5.10 

-

0.001 3.828 0.230 3.61 0.182 

4.12 

 

[Eq 4.1] with r.v. 

in location 2 4.45 -1.069 5.11 0.002 3.83 0.230 3.61 0.182 

4.21 

 

[Eq 4.2] with r.v. 

in location 1 2.70 0.210 - - - - - - 

4.22 

 

[Eq 4.2] with r.v. 

in location 2 2.80 0.132 - - - - - - 

* used weighted regression where wi = 1/dbhi.  ** Unable to converge model, - model not attempted 

 
 
 
Table 2.11.  Model fit statistics in meters for Douglas-fir using extended and mixed effect 
modeling versions of Eq. [2.3.0]. Bold indicates lowest overall RMSE. 
 

Eq. Description RMSE Bias 

BASE MODEL 

3.0 base 4.96 0.013 

EXTENDED MODELS 

3.1 CLE & BA 4.86 0.019 

3.2 TPA & BA ** ** 

3.3 CLE & TPA 4.93 0.040 

MIXED MODELS 

3.01 r.v. in location 1 4.78 0.001 

3.02 r.v. in location 2 4.73 -0.049 

3.03 r.v. in location 3 4.75 -0.032 

3.11 [Eq 3.1] with r.v. in location 1 4.76 -0.041 

3.12 [Eq 3.2] with r.v. in location 2 4.85 -0.322 

** unable to converge model 
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CLE and BA improve model performance for three of the five species while BA and 

TPH improve performance for oak spp.  red alder is not improved with any combination of 

predictor variables.  RMSE is less for Douglas-fir, western redcedar, big leaf maple and oak 

models than for base equations indicating that the model is explaining more variability in 

predicted height.  The extended versions, with two variables, also explain more variability in 

the model than including one alone. 

BA and TPH had been used prior for extended models to predict height of forestland 

tree species.  This is the first time CLE was incorporated in a height-diameter model.   Exposed 

crown area is a crude measurement of light availability and Wychoff and Clark (2005) 

suggested that forest models will be improved by incorporating a variable for crown light 

exposure.  Our results indicate that this is a useful variable to improve model fit statistics.  We 

did not use a crown competition factor (ccfl) commonly employed in forestland height-

diameter models because open-grown crown models are not available for urban trees.   CLE 

may be well suited as an indicator of crown competition as it is a more direct measure of 

competition.   

CLE does not however, relay information about other site variables such as obstacles 

to root growth such as streets and sidewalks, soil nutrients, or soil moisture levels.  Other site 

conditions can be inferred by the measure of BA in meters per hectare or TPH which convey 

additional information regarding any trees neighboring trees measured on one of the subplots.   

We expect larger trees and a larger BA in areas with better growing conditions.  We also expect 

more trees, and therefore a larger TPH on sites with better growing conditions.  But in urban 

areas, due to a strong human influence, the quantity of trees on a site and their size may have 

more to do with land use than site growing conditions.  BA more often than TPH improved 

height-diameter models but weather these explained site conditions, land use practice or the 

interaction is unclear. 

Although the extended versions of base models resulted in improved predictive 

performance for four of the species, considerations should weigh the cost of additional data 

collection for only marginal improvements in predictions.  Wang and Hann (1988) advise that 

the additional time required may not support the nominal benefit of the expanded model.  

However, CLE is a quick measure and TPH and BA can be calculated from any randomized 

plot design that has dbh for each tree on the plot.   Due to the relative ease of collecting and 
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calculating these variables, it is worth the effort to incorporate them into height-diameter 

models for improved performance.  If CLE is not collected, the improvements from BA and 

TPH, though not as extensive as with CLE, are worth incorporating into the model. 

The addition of a random land use variable improved RMSE from the base equation 

for three species; Douglas-fir, red alder and big leaf maple (Table 2.10 and 2.11).  The 

improved fit statistics from mixed modeling for big leaf maple however, were not greater than 

the improvements with the extended model version.  Mixed models for red alder [Eq. 4.02] 

and big leaf maple [Eq. 3.02] were the overall best for these species compared to the other 

equations in this study.  The overall best equation for oak is the mixed model with BA and 

TPH [4.21].  Interestingly, the unextended mixed models [4.01 and 4.02] have no improvement 

in RMSE and bias from the base equation.   

A hierarchical data set of this nature leads to non-independent observations.  This is 

due to the plot structure with multiple observations for a give plot.  Trees from the same plot 

are likely similar to each other and are therefore not independent.  Non-independence between 

the sample units violates ordinary least square assumptions.  This is often times the case with 

forestry data and previous methods (e.g., Temesgen et al. 2008) have incorporated a random 

stand effect to mitigate this issue. 

Land use is used as the random effect in this study.  It is reasonable to assume that the 

structure and composition of the urban forest within each land use type varies less between 

the same land use and more between different land use types.  The variability is not 

homogeneous across the urban environment.  Trees from one land use type are more likely 

similar to trees from the same land use.  For this reason, we chose land use to act as a random 

variable.  Figure 2.6 shows the decrease in variability of the residuals by species and land use 

when a random land use effect is incorporated into the model.   
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Figure 2.6.  Box plot comparison of explained variability between non-linear fixed effect 
(NLFE) and non-linear mixed effect (NLME) models by species.  Land use is: A-agriculture, 
C-commercial, F-forested, I-industrial, L-chaparral, P-park, R-residential, T-transportation, 
V-vacant and W-water. 
 

 

Mixed models can be used only when a subset of heights is sampled.  The subsample 

is used to estimate the variance component of the model.  In this way, the mixed models allow 

for model calibration to a specific urban forest providing heightened predictive ability for the 

stand.  

Convergence was an issue for mixed models when land use was not well represented.  

Land use was aggregated in cases with few observations.  Those were aggregated by either (1) 

combining like land uses or (2) combining the two land uses types with the fewest 

representatives.  Future model fitting should consider using plot or city as the random effect 
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if the data set is unbalanced by land use and with few replicates in a given category.   Land use 

is not well represented and aggregation methods are not clearly interpretable as unlike groups 

are combined for this study.  For example, agriculture was combined with commercial for 

Douglas-fir and industrial was combined with vacant for red alder. 

In addition to correcting for the independence violation, we wanted the model to 

account for land use and be able to adjust with land use types.  While this was achieved (Figure 

2.7), the grouping is less than ideal.  Future modeling attempts should consider land use type 

as either a categorical or indicator variable to be included into an extended model.  

 

 

 

Figure 2.7.  Non-linear mixed effect model [2.3.02] for Douglas-fir and [4.02] for red alder 

allows flexibility between land use types.  Land use is: A-agriculture, C-commercial, I-

industrial, P-park, R-residential, T-transportation and V-vacant. 

 

 

Coefficients can be used for starting values for future modeling.  It is best to subsample 

tree height in order to calibrate these equations to a particular urban forest.  The coefficients 

are provided for the best extended and mixed effect model forms (Table 2.12). 
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Table 2.12. Estimated parameters for selected mixed effect and extended height-diameter 

models.  Where 𝜎𝑏0 is the estimated standard error associated with the random effect. 

 

Eq. Species a a2 a3 b c 𝜎𝑏0 

4.1 Big leaf maple 3.0200 0.0568 .0059 -11.2080 4.7390 - 

3.1 Douglas-fir 4.6745 -0.0194 .0018 -8.5989 -0.4986 - 

3.02 Douglas-fir 4.5608 - - -8.0171 -0.4846 0.1143 

4.2 Oak spp. 2.6516 -.0001 .0014 -20.2485 6.4495 - 

4.21 Oak spp. 2.5203 -0.0002 0.0161 -13.5258 -0.4089 1.3713 

4.02 Red alder 3.3791   -13.9807 3.7336 0.1212 

4.1 Western redcedar 4.1070 -0.0438 .0040 -65.5400 11.6380 - 

 

 

Urban vs. Forestland Trees 
 

 Western Washington and Oregon urban trees show differences in height-diameter 

relationships when compared to the same species in forestlands west of the Cascade Range.  

We tested for β4 and β5 from equations [2.5.0] and [2.6.0] equal to zero with an F-test.  

Evidence suggests that Douglas-fir, red alder, western redcedar and big leaf maple from urban 

environments have a different height-diameter relationship than in forestlands with 

significance level p <.0001, p=.0002, p < .0001 and p = .0313 respectively.   

 Figure 2.8 shows the height-diameter relationship for urban and forestland species.  

Urban redcedar and big leaf maple have greater heights for a given dbh than in forestlands.  

However, when dbh is small, these differences are less extreme.  The functions for urban and 

forestland Douglas-fir are nearly the same graphically unit around 30 cm dbh.  Urban Douglas-

fir is smaller than in forestland grown environments and this disparity grows with increasing 

dbh. 
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Figure 2.8.  Height-diameter relationship with function [Eq. 2.5.0] and [Eq. 2.6.0] for urban 
and forestland tree species. 
 

 

Height for urban red alder is smaller for large stem diameters than in forestlands but 

larger for smaller diameter trees.  The urban and forestland functions cross at around 30 

centimeters dbh.  Younger alders are taller in urban environments until they reach around 30 

centimeters dbh at which point, forestland alder has on average greater heights. 

 The reasons for these differences can only be speculative.  Data from urban trees 

comprises an array of land use and maintenance practices.  Whether fertilization, frequent 

watering, lack of competition or some other factor in urban environments account for 

differences in height for a give diameter is unknown.  Data from forestlands come from a 

range of ecotypes and land use practices on the west side as well.   

Of the 952 urban plots in California, Oregon and Washington, 67 did meet the 

definition of accessible forest land and were also visited by forest crews.  This is due to the 

Forest 
Urban 
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urban boundary layer that often included low density areas on the edge of populated suburbs.  

The inclusion of these plots in both our urban and forestland data set may affect the results 

however, there are so few plots that the effect is likely minimal especially for highly significant 

p-values. 

 Urbanized areas of Oregon and Washington, west of the Cascade Range and no 

further south than Eugen, Oregon total 516,261 hectares.  Carbon storage in this region from 

Douglas-fir is estimated to be 1,260,996 tons, a $25.6 million dollar gross value (Table 2.13).  

Using the predicted height from the model developed from urban Douglas-fir in place of that 

observed, results in a 0.10 ton biomass per hectare under estimate from that using observed 

values of height.  As tree diameter increases, the disparity between biomass estimates increases 

between prediction methods (Figure 2.9).  The difference is much greater, 7 tons per hectare, 

using the model developed from forestland trees.  Using height predicted from the forestland 

Douglas-fir model over estimates the total carbon estimate by nearly 2 million tons, a $37 

million dollar over estimate. 

 

Table 2.13. Biomass and carbon storage estimates from urban Douglas-fir using observed 
and predicted heights. 
. 
 Observed Urban Model Forestland Model 

 𝑯𝒐𝒃𝒔 𝑯̂𝑼 𝑯̂𝑭 

Mean Biomass (ton/ha) 
and 95% C.I. 

4.89 ± 0.132 4.79 ± 0.126 11.89 ± 0.164 

Total biomass (ton) 2,521,992 2,472,482 6,136,371 

Total carbon (ton) 1,260,996 1,236,241 3,068,186 

Carbon value (million $$) 25.6 25.1 62.3 
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Figure 2.9. Relationship between estimated biomass and dbh from urban Douglas-fir using 
observed and predicted heights. 

 

 

Biomass discrepancies into perspective the issue arising from using models developed 

from forestland trees for urban tree attribute predictions.  Average urban Douglas-fir height 

predicted by the forestland model is 26.13 meters, 1.11 meters greater than that observed.  For 

Douglas-fir, the over prediction in height leads to a 4.89 times (or a 148%) over estimate of 

tons biomass per hectare leading to further, substantially large, over predictions of carbon and 

associated monetary values.  On the other hand, the 95% confidence interval for tons biomass 

estimated with the urban model includes the mean estimated from observed values.  Although 

the urban model is under estimating mean biomass per hectare, the difference is not significant 

at the 95% confidence level.   

It should be noted that the biomass equations used for these estimates were developed 

from forestland Douglas-fir because equations for urban tree biomass do not exist.  Biomass, 

carbon and monetary values are likely overestimated even for estimates using observed data 

because of the biomass equations.  Since urban Douglas-fir height is less than forestland grown 

Douglas-fir height for a given stem diameter (Figure 2.8), it is reasonable to assume biomass 

will be as well.  Nowak (1994) found that a factor of 0.8 multiplied with urban tree biomass 

calculated from forestland equations was needed to adjust for this discrepancy.  Allometric 

relationships between height and diameter for the species in this study are different than for 

the same species in forestlands.  Simply multiplying height by a constant shifts the model but 

does not allow flexibility in shape of the nonlinear curve.  By multiplying the predicted height 

         𝐻𝑂𝑏𝑠 

o     𝐻̂𝑈 

+     𝐻̂𝐹 
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from the forestland model by 0.957, we obtain the same average height of that observed but 

the shift in the model does not account for the allometric relationship between height and 

diameter of urban Douglas-fir (Figure 2.10). 

 

 

 

Figure 2.10.  Douglas-fir height-diameter relationship: comparing three prediction strategies. 

 

 

2.5 Conclusion 
 

Height is essential to understanding the structure of the urban forest and a key 

component to assess the value of urban forests.  However, obtaining height is costly and 

sometime unobtainable.  This study assessed the predictive ability of four height-diameter 

functions commonly applied in forestlands at explaining variability in urban tree height.  The 

best base models were further assessed as extended and mixed effect model versions. 

The overall best equation, in terms of lowest RMSE and low bias for big leaf maple 

and western redcedar was extended model form [2.4.1].  The overall best equations for oak 

spp., Douglas-fir and red alder were mixed effect model forms [2.4.21], [2.3.02] and [2.4.02] 

respectively.  CLE and BA improved base equations for Douglas-fir, western redcedar and big 

leaf maple while TPH and BA improved the base equation for oak spp.  No extended model 

version improved the base equation for red alder.  The overall best equation for oak spp. was 

𝐻̂𝐹 

𝐻̂𝐹 × 0.958 

𝐻̂𝑈 

Observations 
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an extended and mixed effect model form.  Improvements from a mixed model exceeded 

improvements from the extended model form for Douglas-fir. 

Height-diameter models exist for the same species in forestlands but due to differences 

in environmental conditions forestland and urban tree allometric relationships differ.  We 

compared the height-diameter relationship of forestland and urban trees for Douglas-fir, red 

alder, western redcedar and big leaf maple west of the Cascade Range in Oregon and 

Washington.  Urban and forestland height-diameter relationship is statistically different with 

significance values of p <.0001, p=.0002, p < .0001 and p = .0313 respectively.   

An unprecedented opportunity to investigate the relationship of urban tree height and 

stem diameter for major species across a variety of land use types throughout West coast urban 

areas arose through analysis of this urban FIA data set.  The models and coefficients reported 

are the only species-specific height-diameter models developed for these urban trees in the 

region.  This is the first large scale-modeling attempt for urban tree height prediction. 
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3 Predicting largest crown width and height to crown base for major 
urban tree species in urbanized areas of the western pacific states. 

 
 

3.1 Abstract 
 

Height to crown base and crown radius are important variables for growth, carbon, 

pollution and ladder fuel modeling that have not been well modeled specifically for urban 

trees.  Although regional equations are developed to model common forestland tree species 

attributes in the west, conditions arising from the urban environment pose a divergence in 

urban tree allometry from typical forestlands.  Forestland models are not as suitable as models 

developed specifically to predict urban tree attributes.   

Selected crown radius and height to crown base equations are fitted for live oak 

(Quercus agrifolia), Douglas-fir (Pseudotsuga menziesii), red alder (Alnus rubra), western redcedar 

(Thuja plicata) and big leaf maple (Acer macrophyllum) tree species in urbanized areas of 

Washington, Oregon and California.  Data used to fit selected models come from an urban 

forest inventory based on protocols set by the USDA Forest Service, Enhanced National 

Forest Inventory Analysis (FIA) and Forest Health Monitoring program (FHM).  

Model forms and predictor variables are evaluated to improve root mean square error 

and bias.  Diameter at breast height, the squared diameter at breast height, an indicator for 

suppressed and park tree, tree height, the natural log of basal area, height to crown base and 

percent permeable surface covariates improved linear models for predicting largest crown 

width.  A non-linear exponential equation with a squared term is better suited than a logistic 

function for predicting height to crown base for live oak.   For predicting height to crown of 

live oak trees, diameter to height ratio, the log basal area, diameter at breast height and an 

indicator for suppression are the best predictor variables with a root mean square error of 1.8 

meters.  For largest crown width prediction, best models resulted in root mean square error 

values between 1.6 to 1.9 meters.  Weighted regression in the form of 1/diameter breast height 

is employed to correct heteroskedasistity of model error terms. 
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3.2 Introduction 
 
 

Social, economic and environmental benefits of urban forests are undisputed.  Like all 

trees, urban forests store and sequester carbon thereby reducing the amount of carbon in the 

atmosphere contributing to global climate change (Nowak 1993; Akbari 2002; Nowak and 

Crane 2002; Myeong et al. 2005).  Unique from typical forestland trees, urban trees have the 

added benefit of reducing building energy use (McPherson 1994a; Simpson and McPherson 

1998; Akbari 2002; Sawka 2013), removing pollutants from the air (Brack 2002; Nowak et al. 

2006; Escobedo and Nowak 2009; Morani et al. 2011), reducing the urban ‘heat island’ effect 

(Shashua-Bar and Hoffman 2000), increasing property values (Sander et al. 2010; Saphores 

and Li 2012), improving commerce (Wolf 2003; 2005) and mitigating stormwater runoff (Xiao 

et al. 1998; Gill et al. 2007).   It is due to the proximity of trees to buildings, pollution sources 

and human traffic that urban trees are uniquely positioned to provide much of the US 

population with benefits essential to the livability of urban environments. 

Tree canopy is the single most important urban forest asset in providing social, 

environmental and economic benefits (Nowak, 1996).  Canopy affects building heating and 

cooling energy use, is the site of pollution removal and carbon sequestration, and constitutes 

aesthetic value.  Branches and leaves that comprise the tree canopy block wind and create 

shade allowing near-by buildings to limit wintertime heating and summertime cooling energy 

consumption.  Leaves are the sites of stomatal conductance where airborne pollutants are 

absorbed and removed from the atmosphere.   Carbon dioxide enters trees through stomata, 

is broken down by the photosynthetic process.  The carbon is assimilated into the biomass of 

the tree while oxygen is released.  Rainwater is intercepted by canopy to slowly enter runoff 

channels and attenuate stormwater pollution entering water channels.  Canopies are 

esthetically pleasing and create habitable refuge for many avian species.  Urban tree canopies 

are important structural components of our urban forests and are therefore of interest to 

resource managers (Marshall et al. 2003). 

Crown dimensions provide a great amount of information about the structure, health 

and benefit of the urban forest.  They can be used to estimate crown cover, crown volume 

and solar, rainwater and wind interception potential.  Hence, it is common to measure crown 

dimensions for urban trees.  Unfortunately, crown measurements are relatively time 
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consuming and sometimes difficult to collect in urban environments.  Crowns can extend into 

streets with unsafe traffic conditions, adjacent properties where permissions may be an issue, 

or above or below rooftops where crown edges are unseen either by ground or aerial views.  

Somewhat accurate ocular estimates may be made in these cases.  Typically two measurements 

are collected to find an average and this is time consuming and can sometimes prove difficult 

when working in urban areas. 

The height to crown base (HCB), the point at which the crown begins on the stem or 

similarly, the crown ratio (CR), the proportion of the stem which carries the canopy, is 

important information that is also relatively time consuming to collect.  Several methods are 

used to collect this information.  If hypsometers are employed, some distance from the stem 

is needed to determine the height of the live crown base.  Again, issues may arise with safety, 

permissions or blocked lines of sight and as with any measurement, there are costs associated 

with additional field time. 

When this information is unobtainable or simply not available as in growth predictions, 

models for predicting these variables can be useful.  In urban areas, tree crown modeling is 

limited for crown diameter and not published for HCB or CR.   

Peper et al. (2001a) were able to predict crown diameter as a function of diameter at 

breast height (dbh) using a logarithmic regression function for 16 species in Santa Monica, 

California.  Sample sizes were small, ranging from 27 to 33 roadsides trees.  Root mean square 

errors (RMSE) ranged from 0.12 and 0.22 meters and adjusted coefficients of determination 

between 0.57 and 0.95.  Peper et al. (2001b) used the same methods for 12 common street 

trees in Modesto, California results similar to Santa Monica.   Martin et al. (2012) fit linear 

regression equations to predict crown width of three open-grown oak species common to the 

south using dbh and a quadratic term for dbh.  Adjusted coefficient of determination values 

between 0.91 and 0.96.  RMSE values are not presented.  Polynomial equations were used by 

Troxel et al. (2013) for common urban tree species in New Haven, CT in northeastern U.S. to 

establish allometric relationships between age, dbh, crown diameter and crown volume. 

In urban areas, modeling attempts for HCB have not been published but information 

for forestland HCB modeling is abundant.  HCB and the related CR have been modeled across 

multiple regions in North America and for a variety of species (Rijal et al. 2012).    
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Nonlinear HCB model comparison commonly occur in the literature and the logistic 

form is most often preferred (e.g., Ritchie and Hann 1987; Zumrawi and Hann 1999; Hanus 

et al. 2000; Rijal et al. 2012).  The logistic equation has the benefit of being constrained so that 

predictions more closely resemble the biological relationships with the predictor variables, 

producing better fit statistics compared to other nonlinear forms and being easy to interpret 

compared to modes with squared expressions (Ritchie and Hann 1987).    The logistic equation 

can be constrained so that CR cannot exceed 1 or be below zero, or to not allow HCB to be 

greater than the tree height.  Soares and Tome (2001) suggested the ‘Richards” function, a 

form of the logistic with constrained parameters which later was employed and recommended 

by Rijal et al. (2012). 

At minimum, the logistic equation includes height and dbh as explanatory variables 

but additional covariates are often included to improve model performance.  Explanatory 

variables can be thought of as three types; those which describe the tree size, competition or 

environmental conditions (Temesgen et al. 2005).  Among those commonly used in 

forestlands are tree height (H), diameter to height ratio (DHR), crown competition factor (ccf), 

ccf for large trees (ccfl), basal area (BA), BA for larger trees (BAL), site index (SI) and climatic 

site index (CSI).  Rijal et al. (2012) found H, DHR, CCF, BAL and CSI to be the most suitable 

and Zumrawi and Hann (1999) found SI to be an insignificant contributor.  Size variables may 

be better at explaining variability than competition type variables because size variables 

intrinsically reflect measures of competition (Temesgen et al. 2005). 

Crown diameter equations are linear and at minimum include dbh as the single 

independent variable as well.  They are well represented in the forestry literature.  Commonly 

a quadratic term for dbh is also added along with additional independent variable to aid in 

better predictive performance. 

Similar to this study, Bechtold (2004) used the Forest Health and Monitoring (FHM) 

data set to develop regional largest crown width (LCW) models for stand-grown trees in the 

Western states (CA, CO, ID, NV, OR, UT, WA, WY).  They found stem diameter (D), 

quadratic stem diameter (D2), live-crown ratio (CR), stand-level basal area (BA), and Hopkins 

bioclimatic index (HI) to be the most well suited predictor variables.  Earlier however, Gill et 

al. (2000) had found only modest improvements with extended models.   Sattler and LeMay 

(2011) fit crown length and LCW equations simultaneously using system equations to improve 
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model predictive ability.  Crown width and length are related.  Each influences the other and 

therefore a systems approach improves predictive performance and ensures logical 

consistency. 

In the literature, maximum crown width (MCW) is used when describing crown width 

models which were fit with observations from open-grown trees.  Open-grown trees are 

assumed to not be in competition for resources and therefor represent the maximum size a 

crown can achieve for a given species.  LCW models are fit with data from stand-grown trees 

in less than ideal growing conditions. 

Crown dimensions can be important components for forest growth and yield 

modeling in forestlands (Soares and Tome 2001; Temesgen et al. 2005; Rijal et al. 2012).  

Crown size, in terms of foliage area or weight, determines growth capacity (Ritchie and Hann 

1987).  Crown dimensions can be used to estimate crown cover, crown volume and solar, 

rainwater and wind interception potential.  Biomass and hence, carbon are an important reason 

for modeling crown volume.  Additionally, HCB is a critical component influencing initiation 

and propagation of a crown fire making HCB and important consideration for fire 

management (McAlpine and Hobbs 1994).  In urban areas, the single most important forest 

asset in providing social, environmental and economic benefits is the crown (Nowak, 1996).  

Since HCB is not a common measurement for forest inventory (McAlpine and Hobbs 1994; 

Soares and Tome 2001; USDA Forest Service 2012b), HCB or CR models are useful. 

Although these models are developed for many forestland species, conditions arising 

from the urban environment suggest differences in allometric relationships between forestland 

and urban trees.  Urban trees are exposed to environmental conditions that are unlike 

conditions posed in typical forestlands.  One large difference in urban areas is the potential 

less light competition as planting densities are much less than in forestlands (McHale et al. 

2009).  The authors also point out that urban trees receive fertilization and water.  A study of 

sugar maple site characteristics and tree growth by Close et al. (1996) suggests that street trees 

have reduced growth rates due to prolonged water stress from high transpiration demand and 

chronic water deficits when compared to the same forestland species.  In another case, pruning 

has a significant impact on tree size (Nowak 1990; Peper et al. 2001a; 2001b).  Human 

manipulation of the environment has a large influence on tree growth allocation and 

phenology indicating that separate allometric equations, aside from those already developed 
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for forestland species, are necessary to accurately estimate urban tree relationships (McHale et 

al. 2009).  Despite these differences, urban forestry is faced with using forestland models 

simply because models for urban tree attributes do not exist.  And because many ornamental 

species found in urban environments have not been studied, more broad forestland models 

by genera or for hardwood or softwood are used instead (Nowak 1993). 

The objective of this study is to develop LCW and HCB prediction models for urban 

Douglas-fir (Pseudotsuga menziessii), live oak (Quercus agrifolia), western redcedar (Thuja plicata), 

red alder (Alnus rubra) and big leaf maple (Acer macrophyllum), the principal tree species found 

in urbanized areas of Washington, Oregon and California.   

 
 

3.3 Methods 
 

Data 
 

Permanent sample plots have been established throughout the U.S. by the USDA 

Forest Service Inventory and Analysis (FIA) program, starting over 80 years ago (U.S. 

Department of Agriculture Forest Service, 1992).  Each plot is located within one of a 2402.62 

hectare (5,937 acre) hexagonal cell, uniformly arranged in a grid across the country.  Plots are 

assigned at random location within the cell and are therefore systematically located and evenly 

distributed.  Under objectives of the FIA program, other than pilot studies, plots not meeting 

definitions of “forested” or not found on “forestland” are not currently sampled.  The urban 

tree data for this study came from a pilot project that measured the FIA plots that existed in 

the urban areas of Washington, Oregon and California. Though most plots did not contain 

enough cover to meet the definition of forestland, the urban plots often contained trees in 

addition to other urban features.  Urbanized areas are defined by the U.S. Census as areas 

within the boundaries of cities having a population of 50,000 or more people (U.S. 

Department of Commerce Bureau of the Census, 2002).  This is the first urban data collected 

from FIA plots in these states and the first urban forest inventory in the region of this scale.  

A total of 190, 67, and 695 plots comprise the sample from urbanized areas of Washington, 

Oregon and California respectively (Table 3.1). 
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Table 3.1.  Summary of urban FIA sample by state. 

 WA OR OR & WA CA 

Total no. plots 190 67 257 695 

Total no. trees 1163 298 1461 1871 

Plots with trees 126 45 171 382 

Proportion of treed plots 66% 67% 67% 55% 

 

 

 Each plot is composed of a cluster of four subplots and each subplot has a nested 

micro plot (Figure 3.1).  Trees between 2.54 cm and 12.6 cm (1 and 4.9 in) in diameter at 

breast height (dbh; 1.37 m above ground level) were measured on micro plots while all larger 

trees were measured on subplots.  Each micro plot has a radius of 2.1 meters (6.8 ft) and the 

four total .0053 hectares (.013 acre) per plot.  Each subplot has a radius of 7.3 meters (24 ft) 

and the four total .0672 hectares (1/6th acre) per plot. 

 

 

Figure 3.1.  Urban forest inventory and analysis plot design layout. 

  

Data were collected in 2012 in accordance with the FIA schematic (U.S. Department 

of Agriculture Forest Service, 2012) along with the protocols of the Forest Health Monitoring 

program (U.S. Department of Agriculture Forest Service. 2007).  Selected variables from the 

inventory used for this study include crown diameter, uncompacted crown ratio (CR), stem 
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diameter, crown light exposure (CLE), percent permeable, impermeable and herbaceous 

surface, and land use types.  Land use classification was recorded for each observation and 

grouped by: agriculture, commercial/industrial, forested, chaparral, park (undeveloped and 

developed areas as well as cemeteries), residential (single and multi-family structures), 

transportation (major and limited access roadways with related green spaces) and vacant lots. 

We assessed the suitability of several variables for explaining variation in LCW or 

HCB.  For LCW, we examined size variables: dbh, and its quadratic form, stem height (H), 

HCB, CR, diameter to height ratio (DHR), competition variables: plot basal area (BA), the 

natural log BA, trees per hectare (TPH), CLE, a suppression indicator and environmental 

variables: percent permeable (Perm), impermeable (Imper) and herbaceous (Herb) surface in 

the plot and indicators for park, or west of the Cascade Range. For HCB models, we access 

all of these same variables as well as LCW but not HCB.  Several variables are calculated from 

the data. 

CLE indicates the amount of light the crown receives on a scale from zero to five.  It 

is measured by dividing the crown into four quadrants.  One point is given for each quadrant 

that is completely exposed to full light and one point is given for any direct light exposure to 

the tree center from above.  An indicator for suppression (Sup) was designated from CLE for 

each tree where Sup is one when CLE is less than two and zero otherwise. 

BA (m2/ha) is the sum of the cross sectional area of trees from a plot calculated as: 

 

𝐵𝐴 = [∑ 12.46𝜋
𝑛

𝑖=1
(

𝑑𝑏ℎ𝑖

2
)

2

+ ∑ 𝜋
𝑚

𝑗=1
(

𝑑𝑏ℎ𝑗

2
)

2

] 
[3.1] 

 

 Where dbhj is tree dbh from of the jth tree from m trees in the four subplots and dbhi 

is dbh of the ith tree from n trees in the micro plots.  Each micro plot tree was expanded by 

12.46 to the plot level and plot BA were converted to a per hectare unit. 

 

TPH was calculated for each plot from trees with a dbh greater than 2.5 cm as: 

 

𝑇𝑃𝐻 =
1

. 06725
[∑ 12.46𝑥𝑖 + ∑ 𝑥𝑗

𝑚

𝑗=1

𝑛

𝑖=1
] 

[3.2] 



65 

 

Where xj is tree basal area from of the jth tree from m trees in the four subplots and xi 

is tree basal of the ith tree from n trees in the micro plots.  Expansion and unit conversion 

were as described above. 

Height to crown base (HCB) is calculated as: 

 

𝐻𝐶𝐵𝑖 = 𝐻𝑖 − 𝐶𝑅𝑖(𝐻𝑖) 

 
[3.3] 

 

 

Where HCBi is the height to crown base of the ith tree, Hi is the height of the ith tree 

and CRi is the uncompacted crown ratio of the ith tree. 

Largest crown width (LCW) is calculated as the quadratic mean diameter by: 

 

𝐿𝐶𝑊𝑖 = √
𝐷𝑖1

2 + 𝐷𝑖2
2

2
 

 
[3.4] 

 
Where LCWi is the largest crown width of the ith tree, Di1 is the largest crown diameter 

from the ith tree and Di2 is the crown diameter 90o from Di1 of the ith tree. 

Diameter height ratio (DHR) is calculated as: 

 

𝐷𝐻𝑅𝑖 =
𝑑𝑏ℎ𝑖

𝐻𝑖
 

 
 

[3.5] 
 

Where DHRi is the diameter to height ratio of the ith tree.   

Stem diameter was not collected at breast height (1.37 m) for some trees due to bole 

irregularities or branching.  Height to diameter measurement was recorded in the field and 

used to impute stem diameter at dbh.  Diameter measurements are brought to dbh by allowing 

for a 1.27 centimeter change in diameter as appropriate for every 1.23 meters of stem length 

(Avery and Burkhart 2001).   

Dbh is calculated if not collected directly in the field using equation [3.6] where 𝐻𝑡𝑑𝑖
 

is the height of measurement at stem diameter in meters and di is stem diameter in centimetres. 
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𝑑𝑏ℎ𝑖 = (1.37 − 𝐻𝑡𝑑𝑖
) × 1.042 + 𝑑𝑖 [3.6] 

 

The data comes from a diverse array of land use and management practices and from 

open-grown and competitively-grown conditions.  Observations with severe top pruning or a 

lack of crown were removed.  Outliers outside the data cloud were identified ocularly and 

removed from the data set. 

 

Species Selection 
 

Tree species occurring with the greatest frequency from our sample inventory were 

chosen for this study.  The four most common species sampled in urbanized areas of Oregon 

and Washington are all native to the region.  They include Douglas-fir (Pseudotsuga menziesii) at 

21%, red alder (Alnus rubra) at 17%, big leaf maple (Acer macrophyllum) at 10%, and western 

redcedar (Thuja plicata) at 9%. California live oak (Quercus agrifolia) was the most common tree 

species at 14% of the sample in urbanized California.  The sample ranged from 121 to 278 

trees (Table 3.2).  A summary of the principal variables from this study is in Table 3.3. 

 

 

Table 3.2. Summary of observations used for LCW and HCB models. 
 

 Tree Plot (n) 

Douglas-fir 278 57 
Coastal live oak 259 38 

Red alder 226 38 
Western redcedar 121 36 

Big leaf maple 132 27 
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Table 3.3. Summary of LCW, HCB and dbh variables used for crown models. 
 

 Largest crown width (m) Height to crown base (m) Dbh (cm) 

Species Mean S.D. Range Mean S.D. Range Mean S.D. Range 

Douglas-fir 6.98 3.35 1.7 - 19.1 11.09 8.14 0.03 - 38.3 38.85 24.8 3.8 - 139.2 
Coastal live 

oak 4.99 3.09 0.3 - 16.8 3.15 2.83 0.02 - 20.70 21.9 14.5 2.1 - 102.9 

Red alder 6.88 2.64 1.4 - 13.5 10.09 5.54 0.03 - 27.20 24.3 12.1 2.6 - 84.8 
Western 
redcedar 7.07 2.98 1.4 - 14.2 3.48 4.40 0.05 - 24.69 37.6 27.0 4.1 - 137.2 
Big leaf 
maple 9.43 3.06 2.3 - 17.7 12.05 6.52 0.24 - 26.21 34.2 17.1 2.5 - 91.7 

 

 
 

Model Comparison and Selection 
 
 The models evaluated are common equations used for forestland tree species in the 

region.  LCW is modeled linearly or non-linearly when the quadratic term for dbh is included.  

For each of the urban species, LCW has generally a linear relationship with dbh although some 

relationships show signs of a non-linear relationship (i.e. western redcedar) (Figure 3.2).    

 

 

   

  
 
Figure. 3.2. Relationship of LCW and dbh by species. 
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 The general model form for LCW is given in equation [3.1.0] where xi is the ith 

explanatory variable, bi is the associated coefficient with the ith explanatory variable and k is 

the number of explanatory variables.  At minimum, xi includes dbh. 

 

𝐿𝐶𝑊̂ = ∑ 𝑏𝑖𝑥𝑖

𝑘

𝑖=1

 

 
[3.1.0] 

 

 

 

 For HCB, a logistic model form is most often recommended in the literature.  Here 

we compare the logistic [Eq. 3.2.0] and exponential [Eq. 3.3.0] non-linear models as in Rijal et 

al. (2012). 

 

𝐻𝐶𝐵̂ =
𝐻

[1 + a ∗ exp(−𝑐 ∑ 𝑏𝑖𝑥𝑖
𝑘
𝑖=1 )]

1/𝑚
 

 
[3.2.0] 

 

 

 

𝐻𝐶𝐵̂ = 𝐻 [1 − a ∗ ex p (−𝑐 (∑ 𝑏𝑖𝑥𝑖

𝑘

𝑖=1

)

w

)] 

 
[3.3.0] 

 

 

 
Where H is stem height, a and c are parameters set to 1, m is a parameter set to 0.5 

[Eq. 3.2.1] or set to 6 [Eq. 3.2.2], w is a parameter set to 2 [Eq. 3.3.1] or set to 10 [Eq. 3.3.2], 

and all else is a defined earlier. 

HCB and dbh are positively correlated though extremely variable (Figure 3.3).  We fit 

HCB models only for live oak in this study.  I similar relationship exists between HCB and 

DHR for live oak (Figure 3.4). 
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Figure 3.3. Relationship between HCB and dbh by species. 
 
 
 

 
 
Figure 3.4. Relationship between HCB and DHR for live oak. 
 
 

 Crown width and length are naturally associated with each other (Sattler and LeMay 

2011).  In a process known as epinastic control, lateral branch growth is maintained by the 

terminal leader.  The degree of epinastic control varies by species.  On the other hand, lateral 

branches, and the amount of potential light absorption, influence terminal growth.  As a result, 

crown length and width are playing a part in the growth of one another and therefor their size.  

This indicates that each would serve well as predictor variables in these predictive models.  

Because HCB is a function of crown length and stem height, it too has a natural association 
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with crown width.  We follow the methods of Sattler and LeMay (2011) to devise a system of 

nonlinear simultaneous equations for LCW and HCB to try to further improve model fit 

statistics. 

 First we fit linear models for LCW and HCB with the same predictor variables.  The 

variables chosen are those which produce the best fit for LCW modeling.  These new variables, 

LCW1 and HCB1 are added to the best LCW and HCB models so that LCW1 is a predictor for 

HCB and HCB1 is a predictor variables for the LCW model. 

Root mean square error (RMSE) and bias, are used as a basis for comparing predictive 

performance of the models.  RMSE is a measure of both variance and bias of the estimator.  

RMSE and bias were calculated from a leave one-out cross validation by plot.   The RMSE is 

not an unbiased estimator of the population variance but when the sample size is large, the 

bias is small.  Models with lower RMSE and bias have better predictive performance.  

 

RMSE is calculated as: 

 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖 − 𝑌̂𝑖)
2𝑛

𝑖=1

𝑛
 

 
[3.7] 

 

 

Bias is calculated as: 

𝐵𝑖𝑎𝑠 =  
∑ (𝑌𝑖 − 𝑌𝑖̂)

𝑛
𝑖=1

𝑛
 

 
 

[3.8] 
 

 

Where 𝑌𝑖 is the ith LCW or HCB observation and 𝑌̂𝑖 is the prediction of the ith LCW or 

HCB observation.  The denominator is n, the sample size. 

Residual plots were also assessed to determine if the model assumptions were upheld.  

We ensured that the errors were normally distributed with mean zero and equal variance. 

Predictor variables were evaluated with a t-test for significance. 
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Parameter Estimation 
 

Parameters were estimated with nonlinear least squares using the lm and nls function 

in R Statistical software (The R Foundation for Statistical Computing 2011) and the package 

nlme (Version 3.1-117) in R for non-linear models.   A weight of 1.0/dbh was applied in some 

cases to correct for unequal variance of the residuals.  Starting values were obtained from the 

linear models. 

 
 

3.4 Results and Discussion 

Evaluation of LCW Models 
 
 Largest crown width was predicted from dbh with simple linear regression.  RMSE 

values ranged from 1.66 to 2.06 meters and the adjusted coefficient of determination (R2) 

ranged from 0.57 to 0.76 (Table 3.4).  RMSE values decreased and adj. R2 increased with larger 

sample sizes.   The greatest model performance, with lowest RMSE, highest adj. R2 and low 

bias, was seen for Douglas-fir.  Douglas-fir was also the most represented species in the sample 

with 278 observations from 57 plots.  

 

 
Table 3.4. Fit statistics for base models [Eq. 3.1.0] including dbh as the only explanatory 
variable for predicting LCW. 
 

Species RMSE (m) Bias (m) Adj. R2 

Douglas-fir 1.66 -0.02 0.76 

Coast live oak 1.78 -0.07 0.71 

Red alder 1.84 -0.01 0.69 

Western redcedar 1.96 0.00 0.61 

Big leaf maple 2.06 0.04 0.57 

 

 
 
 For each species, additional explanatory variables improved model performance 

(Table 3.5).  The quadratic form of dbh is the best variable for improving model performance 

overall.  Dbh2 improved RMSE for four of the five species.  Improved RMSE values range 

between 2 and 10% better than the base model.  CLE also improved model performance.  
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Three of the five species LCW predictions were improved with CLE, however, the indicator 

for suppression derived from CLE, surpassed those improvements.  Suppression improved 

model fit for four species, of which red alder RMSE was improved by 10% from the base 

equation.  Tree height and the natural log of BA are both good explanatory variables as well.  

An indicator for park improves model fit only for western redcedar, however; the 

improvement is relatively large.  RMSE was improved by 7%.  Of the three surface covers, a 

variable for percent permeable influenced LCW the most though the improvement was 

moderate, ranging from 0.5 to 3.8%.  An indicator for Cascade west made no improvement 

for any species.  HCB and DHR improve model fit moderately while TPH is poorly suited as 

an explanatory variable for these urban species as no improvements were made with its 

addition.  Size and competition variables seem to be more important than site specific 

environmental factors at influencing LCW.  This may be due to size already explaining 

environmental conditions as size relies on growing conditions.   

 
 
Table 3.5. RMSE and percent improvement (Imp.) from base equation by explanatory variable 
and species. Bold indicates three most improved for a species. 
 

Explanatory 
Variable 

Douglas-fir Live oak * Red Alder* 
Western 
redcedar 

Big leaf maple 

RMSE Imp.  RMSE Imp.  RMSE Imp.  RMSE Imp. RMSE Imp.  

S
iz

e 

dbh2 1.63 1.81   1.68 8.70 1.9 3.06 1.98 3.88 

H   1.73 2.81 1.78 3.26   1.96 4.85 

HCB 1.65 0.60         

DHR   1.74 2.25   1.95 0.51 2.02 1.94 

CR 1.63 1.81 1.76 1.12 1.81 1.63         

C
o

m
p

et
it

io
n

 BA   1.75 1.69 1.8 2.17 1.94 1.02   

ln(BA)   1.73 2.81 1.79 2.72 1.86 5.10   

TPH           

CLE 1.66 0.00 1.76 1.12 1.69 8.15   2.05 0.49 

Sup 1.61 3.01 1.75 1.69 1.66 9.78     2.05 0.58 

E
n

v
ir

o
n

m
en

ta
l Park       1.82 7.14   

West   - -       

Imper. 1.66 0.00 - - 1.83 0.54     

Herb. 1.64 1.20 - - 1.77 3.80     

Perm. 1.66 0.00 - - 1.77 3.80 1.95 0.51     

* weighted regression; - no data; blank cell indicates no improvement  
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Whether a tree comes from a park or not is a major environmental variable influencing 

LCW for western redcedar but for no other species.  A large portion of the data came from 

park trees.  Since parks were so well represented and because trees from parks are assumed to 

be under less stress with better growing conditions then trees in other urban areas, we wanted 

to know if this was influential.  Western redcedar LCW is larger in parks than in the combined 

remaining land use types of commercial, residential and transportation.  In parks, the mean 

LCW of western redcedar is 7.76 m ± 2.85 compared to 6.21 m ± 2.96 western redcedar 

outside of parks.  This difference is statistically significant (p-value < 0.0001).   

Western redcedar is also unique in that it is the only species that LCW is not influenced 

by CLE or suppression.  These variables made no improvement to the model because western 

redcedar tolerates shade.  Red alder and live oak are shade intolerant, big leaf maple and 

Douglas-fir are intermediate and western redcedar is tolerant (USDA Plants Profile Data Base 

2014).  Since western redcedar is shade tolerant, it is within reason that CLE and suppression 

do not influence LCW. 

The dbh2 term is highly useful for predicting LCW for all species except live oak.  

Squared terms are difficult to interpret but the lack of influence from dbh2 may coincide with 

the relatively linear relationship of live oak LCW with dbh compared to the other species 

(Figure 3.2). 

 
 
Table. 3.6. Fit statistics for the best species-specific LCW models, accompanying explanatory 
variables and percent improvement (Imp.) from base equation. 
 

Species Explanatory Variables RMSE (m) Bias (m) Adj. R2 Imp. 

Douglas-fir dbh, dbh2, sup, HCB, Perm 1.57 -0.02 0.76 5.42 

Coastal live oak* dbh, log(BA), sup, H 1.70 0.14 0.76 4.49 

Red alder* dbh, dbh2, sup, perm 1.55 0.00 0.76 15.76 

Western redcedar dbh, dbh2, park 1.69 0.04 0.72 13.78 

Big leaf maple dbh, dbh2, sup, H 1.92 0.03 0.63 6.80 

* weighted regression 

 
 

Extending the model by including several explanatory variables further improves 

model performance (Table 3.6).  We selected top performing variables for final models and 

the final overall best combinations include between 3 and 5 variables.  Compared to the RMSE 
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for the base model, improvements in RMSE with the extended model forms are between 4.5 

and 15.8%.  The overall lowest RMSE values range from 1.55 to 1.92 meters using the 

extended models with three or more variables.  Adjusted R2 values are between 0.63 for big 

leaf maple and 0.76 for Douglas-fir.  Bias is extremely minimal except for a moderate 0.14 

meter bias for live oak which is 8% of the RMSE. 

Although, CLE improved LCW predictions for three species, we did not attempt to 

include this variable in an extended model version because the indicator for suppression was 

a direct function of CLE and suppression has a greater influence on improved model 

performance.  This reasoning was employed for BA and its natural log as well.  If log(BA) was 

used, BA was not. 

 On several attempts at model building, a variable that was significant became 

insignificant with the addition of another covariate.  This is because the variables are 

correlated.  Because the variables are correlated, a portion of variability in LCW being 

explained by the variables is shared.  Depending on how much is shared, or how correlated 

two variables are, determines if the addition of one or the other will explain additional variation 

in the predicted variables; LCW in this case.  For example, the natural log of BA for western 

redcedar improves model performance by 5% when using just dbh and log(BA) in the model.  

However, when log(BA) is included in the best extended model for western redcedar in Table 

3.6, the variable is no longer significant (p-value = 0.11) and RMSE improvement drops form 

14% to 9%.  This is due to any or each of the other three variables already in the model 

explaining variability in LCW. 

 

Evaluation of HCB Models 
 

 HCB predictions were attempted for live oak using several modeling strategies.  The 

base form of urban live oak HCB is better modeled with DHR than with dbh alone (Figure 

3.7).  RMSE values are around 2.5 meters using dbh compared to 2.3 meters using DHR.  This 

is an 8 to 11% improvement depending on equation.  Since DHR is calculated with 

information from both dbh and height, it is explaining more variability in HCB than dbh alone.  

The model bias is larger using DHR than dbh however, 0.1 meters is not large. 
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Table. 3.7. Fit statistics for live oak HCB base models including either dbh or DHR as single 
explanatory variables.  Percent improvement (Imp.) is relative to base model with dbh alone.  
Bold indicates best RMSE value. 
 

 dbh  DHR 

Eq. RMSE (m) Bias (m)   RMSE (m) Bias (m) Imp. 

3.2.1 2.548 -0.032  2.330 0.113 8.58 

3.2.2 2.505 -0.049  2.340 0.091 6.59 

3.3.1 2.595 -0.026  2.316 0.125 10.75 

3.3.3 2.537 -0.037   2.333 0.109 8.03 

 
 

 The best base model form is equation [3.3.1] with DHR as the single explanatory 

variable.  Interestingly, this model form was the worst when using only dbh (RMSE = 2.60) 

but the best using DHR.  To ensure this equation was the best for model building, other 

variables were evaluated (Appendix C).  Equation [3.3.1] consistently performed above the 

other equations.  We used DHR as the starting model and added variables to further improve 

fit statistics. 

 To assess contributions of each potential variable to explaining HCB variability, we 

start first by adding one at a time with DHR.  From there we choose the best performers and 

built the model until RMSE values no longer improved.  Since the variables are correlated to 

some degree, those that improved the model initially when coupled with DHR alone, may not 

have when three, four or five variables were combined.   

 The natural log of BA contributed the most.  It improved the base model (that with 

dbh alone) by 25% (Table 3.8).  An indicator for suppression improved RMSE by 21% and 

CLE made a 19% improvement from the base model.  LCW and H are not suitable as 

predictor variables.  They made no improvement in the model and actually increased RMSE 

values.  The natural log of BA was more suitable than BA and the suppression indicator more 

suitable than CLE.  Although BA and CLE improved model performance, because the 

variables derived from them performed better, they were not used for model building.  We 

were able to ultimately improve the model by nearly 30% from the base dbh model.  The 

combination of DHR, the natural log of BA, an indicator for suppression and dbh lowered 

the RMSE to 1.83 meters.  This is the best model form for predicting live oak HCB in our 

study.  Still the bias is larger but 0.26 meters is only 2.36% of the mean HCB for live oak.  To 
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verify that the function was indeed better, we acquired fit statistics from [Eq. 3.2.1] 

incorporating the same variables and confirmed that is still did not perform as well.  Using 

[Eq. 3.2.1] the RMSE was worse at 1.867 but the bias was better at -0.012 meters. 

 

Table 3.8.  Fit statistics for live oak HCB [Eq. 3.3.1] by explanatory variable used.  Percent 
improvement (Imp.) is relative to the base model [3.3.1] with dbh alone. 
 

  RMSE (m) Bias (m) Imp. (%) 

DHR, BA 2.128 -0.116 17.98 

DHR, ln(BA) 1.947 0.018 24.95 

DHR, CLE 2.096 0.150 19.22 

DHR, sup 2.037 0.128 21.49 

DHR, LCW 2.680 0.271 -3.28 

DHR, H 2.617 0.265 -0.86 

    

DHR, log(BA), sup 2.098 -0.043 19.13 

DHR, log(BA),  sup, dbh 1.834 0.209 29.33 

 
 
 

Simultaneous LCW and HCB Equations 
 
 The best predictive model for live oak LCW was achieved by using dbh, log(BA), 

height, and a suppression indicator variable.  These variables were therefore chosen for first-

stage nonlinear models of LCW and HCB in the first step for the simultaneous system of 

equations ([Eq. 3.4.0] and [Eq. 3.5.0]). 

 
 

𝐿𝐶𝑊1̂ = 𝑏0 + 𝑏1𝑑𝑏ℎ + 𝑏2 log(𝐵𝐴) + 𝑏3𝑆𝑢𝑝 + 𝑏4𝐻 [3.4.0] 
 

 

𝐻𝐶𝐵1̂ = 𝑏0 + 𝑏1𝑑𝑏ℎ + 𝑏2 log(𝐵𝐴) + 𝑏3𝑆𝑢𝑝 + 𝑏4𝐻 [3.5.0] 
 

 

Each of the variables in the first-stage models was significant (p-value < 0.01) from 

equation [3.4.0] and [3.5.0].  Weighted regression was employed in both models.  The residuals 

for the HCB1 model displayed hederoskedasticity even with weighted regression.  These new 
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variables, LCW1 and HCB1 were then incorporated into the best equations determined 

previously for the second step in the simultaneous system fitting.   

 

𝐿𝐶𝑊̂ = 𝑏0 + 𝑏1𝑑𝑏ℎ + 𝑏2 log(𝐵𝐴) + 𝑏3𝑆𝑢𝑝 + 𝑏4𝐻 + 𝑏5𝐻𝐶𝐵1̂ [3.6.0] 
 

 

Equation [3.6.0] made no additional improvements to model performance from the 

already establish LCW predictive equation.  With the addition of HCB1, height was no longer 

significant nor was HCB1 itself.  By adding HCB1, the RMSE changed from 1.70 to 1.72 

meters.  This was no improvement from the best model but was still a 3.37% improvement 

from the base simple linear equation.   The additional effort of the system equations is not 

necessary when the simpler method of multiple-linear regression proves a better model fit. 

 The best HCB prediction model was determined earlier to be the [Eq. 3.3.1] coupled 

with DHR, log(BA), dbh and the suppression indicator.  We found no improvement using 

this equation with these variables and the addition of LCW1 in the system equations method.  

RMSE was 1.93 for the systems approach compared to the already determined best equation 

providing an RMSE of 1.83 and bias of 0.21 meters previously.  However, when we used these 

same variables incorporated into model form [3.2.1] we were able to improve RMSE of the 

already determined best equation.  Equation [3.7.0] improved the original base equation with 

an RMSE value of 1.80 meters. 

 

𝐻𝐶𝐵̂ =
𝐻

[1 + exp − (𝑏0 + 𝑏1𝐷𝐻𝑅 + 𝑏2 log(𝐵𝐴) + 𝑏3𝑑𝑏ℎ + 𝑏4𝑆𝑢𝑝 + 𝑏5𝐿𝐶𝑊1̂)]
 

 
 

  

Although HCB is a function of crown length, the relationship between HCB and LCW 

does not as closely follow a concomitant relationship as with crown width and crown length.  

No clear trend was observed in plots of HCB and LCW (Figure 3.5) and their correlation was 

only 0.08.  On the other hand, crown length and LCW are have a strong relationship with a 

correlation factor of 0.65 and clear graphical trend (Figure 3.5).  The strategies from Sattler 

and LeMay (2011) are not useful for HCB and LCW modeling likely because the two variables 

[3.7.0] 
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are not closely associated.  However, this method may improve model performance and logical 

consistency for live oak LCW and crown length modeling instead. 

 

 

 

Figure 3.5. Relationship of live oak LCW to HCB and crown length. 

 

 

We saw no improvement in live oak LCW models and only marginal improvements in 

predictive HCB models.  Urban live oak, HCB and LCW modeling is not improved by fitting 

simultaneous equations. 

  

Weighted Regression 
 

Least square regression for prediction relies on the assumption that the random errors 

associated with each observation are distributed evenly.  Big leaf maple, western redcedar and 

Douglas-fir displayed homogeneous variance in their residuals along the predicted values 

(Figure 3.6).  Coastal live oak and red alder displayed an uneven data cloud in residual plots 

and weighted regression was employed.  Weighted regression was applied as suggested by the 

literature in the form of 1/dbh to improve residual plots (Figure 3.7).  Fit statistics can still be 

compared for weighted regression models if the same weight is applied in each model (Huang 

et al. 1992).  In addition, validating a weighted regression model with weighted heights is 

appropriate for testing for bias and precision because this method more closely resembles how 

a model was fit (Larsen and Hann 1987).   
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Figure 3.6. Residuals plotted against predicted LCW by species for model with dbh and dbh2. 
 

 
 

 

 
 
Figure 3.7. Unweighted (right) and weighted in the form wi=1/dbhi (left) residuals plotted 
against predicted LCW by species. 

 

 

HCB models for coastal live oak displayed hetroskedasisity as well.  The same weight 

of 1/dbh was applied to the HCB equation for coastal live oak.  We found that a weight in the 

form of 1/dbh was better than other suggestions of 1/dbh2 (Figure 3.6). 

 

 

Big leaf maple Western redcedar Douglas-fir 

Red alder 

Live oak 
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Figure 3.8. Weighted and unweighted residuals plotted against predicted HCB for live oak. 
 
 
 
 

3.5 Conclusion 
 

Urban forest canopy is a major provisionary component for beneficial ecosystem 

services.  The canopy is the source of pollution and carbon removal and the principal structure 

for creating shade and blocking wind to decrease building energy reduction.  The structure of 

the canopy indicates forest health and its area is a performance benchmark in most urban 

forest management plans.  Information regarding tree crown dimensions is a vital component 

for successful urban forest management driven by maximizing beneficial ecosystem services. 

When crown related information is unattainable or costly, predictive models can be 

employed.  This study developed species-specific regional models for predicting largest crown 

width and height to crown base for the five most common trees in urbanized areas of 

Washington, Oregon and California.   

We found LCW and HCB can be predicted using several predictor variables.  After 

dbh, dbh2 and the indicator for suppression contributed the most to improving LCW model 

performance although final selected HCB was improved with a suppression indicator as well.  

Suppressed live oak tend to have a larger LCW and smaller HCB.  It was DHR that made the 

greatest contribution to explaining live oak HCB predictions.  It was the exponential function 

that provided the best fit statistics rather than the logistic function as is most often 

recommended by the literature found for forestland HCB modeling.   

The data set came from a wide range of land used types across a broad region.  The 

heterogeneity within the environment is expected to impose upon the heterogeneity within 

weight = 1/dbh2 unweighted weight = 1/dbh 
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the forest population.  RMSE values between 1.6 to 1.9 meters for predicting LCW and of 1.8 

meters for predicting live oak HCB are good considering the variability in the population itself. 
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4.0  General Conclusions 
 

 

A key component to effective urban forest management is an inventory of the 

resource.  To determine management goals and devise activities for meeting those goals it is 

necessary to understand the extent of the resource.  Whether a Farm Bill passes revisions to 

mandate an urban forest inventory by the federally implemented FIA program seems 

inevitable.  However, funding is an issue as always.  The urban FIA projects in the works 

(Baltimore, Austin, and the state of Wisconsin) all have state or city backing.  In the west, 

clients of FIA are mostly forest based and do not want scarce resources spent on urban efforts.  

Near future urban work in the west will likely involve something in California as interest seems 

strongest there. 

Numerous pilot inventories have already been conducted in preparation for the future 

Urban Forest Inventory and Analysis (UFIA).  Is the cluster plot foot print appropriate in 

urban environments?  Is the sampling intensity providing an accurate representation of the 

forest resource in US cities?  How often do urban forest plots need to be sampled?  These are 

important questions for moving forward with UFIA. 

The sampling design developed for monitoring forestlands may not be appropriate for 

urban forests.  Urban areas are a patchwork or land use types ranging from transportation 

corridors to residential areas to parks.  The degree of maintenance varies from land use type.  

The amount of trees themselves vary by land use.  Urban environments are extremely 

heterogeneous and green infrastructure is exposed to the resulting wide range of conditions.  

It is reasonable to assume these conditions impose a range of stressors and influence the urban 

forest to be relatively variable even among the same species.   

In this study we saw variability in the form of RMSE values between 2.7 to 4.9 meters 

for tree height, 2.2 to 2.7 meters for largest crown width and of 1.8 meters for live oak height 

to crown base.  If these allometric relationships were less variable, more precise predictions 

could be obtained but it is not possible to change the intrinsic variation in the urban forest 

type.  Due to the variety of growing conditions across the heterogenic urban landscape, more 

precise predictions are difficult.  The natural variation of the urban forest cannot be changed, 

but the models can be more flexible to account for variability.  
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The answer is not simply increasing the sample size.  A more intensified sample 

inventory will be beneficial but if the range of urban land use is not represented, the 

heterogeneity in the population will not be accurately captured and understood.  In this study, 

park trees were disproportionally represented.  Most observations came from park trees not 

because more plots landed in parks, but because there are simply more trees in parks.  

Transportation corridors and residential areas were also well represented by urban trees but 

other land use types such as commercial and industrial were not.  Few trees exist in industrial 

and commercial zones.  The UFIA should move toward increasing sample intensity but in a 

way that allocates sampling efforts to represent the full variety of the urban landscape.   

Since few observations came from trees aside from those inhabiting park, residential 

and transportation corridors, it may not be appropriate to use models developed from the 

UFIA for all trees inhabiting other land use types in cities.  We saw in this study that western 

redcedar park tree LCW was different than the grouped remaining land use types in the sample. 

However, this was not the case for the other four species.  Whether allometric relationships 

differ between land use types and by what degree they differ is unknown. The FIA sampling 

design may not be capable at accommodating urban tree model modeling across all land uses 

unless (1) the model is flexible enough to shift by land use or (2) allometric relationships are 

similar enough between land use types for the same species that additional variation is not 

present.  I assume however, the latter may be the case for some land use types but not for 

other due to the heterogeneity in urban environments.  Future studies should investigate the 

allometric relationships of the same urban species between land use types. 

Forest management regimes differ among cities.  Although the climate is generally the 

same throughout Pacific Northwest, or Northwestern or Southwestern California regions, the 

degree of installation and maintenance may differ.  Biomass models from Zhou and 

Hemstrom (2010) for forestland Douglas-fir are regional.  For example, there is one 

specifically for Douglas-fir west of the Cascade Range in Oregon and Washington and another 

for the east side of the states.  Due to the influence of management on urban trees, regional 

equations may need to be more finely focused than in forestlands.  Perhaps the western region 

urbanized areas of Oregon and Washington is not enough.  It would be interesting to 

compared allometric relationships of urban trees across management types.  This may be 

across entire cities, jurisdictions, socioeconomic gradients or between different sized cities.  
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The underlying question is, what is influencing urban forest structure and how does structure 

shift under these influences?  If we can better understand this, we can develop better models 

and obtain more accurate estimates of the ecosystem services provided by our urban forest 

and ultimately improve urban forest management to maximize those benefits. 

Urban forestry is fairly new compared to what was traditionally considered forestry.  

It has been gaining attention as knowledge about the breadth of benefits, aside from timber 

value from trees, has become better understood.  Urban forest structure influences function 

resulting in beneficial ecosystem services.  This is why understanding forest structure at the 

individual tree level is important.  Models are a tool for understanding these structural 

attributes and allometric relationships.  They are tools to aid in effective urban forest 

management necessary for maximizing the benefit of this essential forest resource.   
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APPENDIX A: Map of urban FIA plot locations in Oregon and Washington 
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APPENDIX B: List of h-d models attempted with fit statistics (m) and ranking.      
Where ht2 is total tree height minus 1.3 (m2), DBH, BA and CLE are as defined in chapter 2, TPH is for trees 
with dbh > 12.7 cm, TPH2 is calculated for trees with dbh > 2.5, the coefficient holders are a, a1, a2, a3, b, and 
c, and the random effect of land use is noted by b0 and b1.  Blank cells were not attempted and bold indicates 
lowest RMSE.  * unable to converge validation, ** unable to converge model,  *** used weighted regression 
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APPENDIX C: Fit statistics for height to crown base (HCB) models attempted. 
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