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CAYIEV AB$OI1JTi AND T}iE NQ-EUOLIDEAN GLOJRIES 

Introduction 

A large part of Euclid' s geometry depends on his fifth 

(peraliel) postu1te, the modern, 1es cumbersome version of which is: 

Through s given point one and on.ly one line csn be drawn parallel to 

a given line. Bcaue o much depended on this one postulate, end 

because of its lack of simplicity, it was not acceptable to some 

followers of Euclid and many ingenious but unsuccessful attempts were 

made to deduce it from the other sdoms. G. aecheri (67-l733) 

proposed two alternative hypotheses, one leading to two parallele to 

a lina through a point and to hyperbolic geometry while the other 

leads to elliptic geometry in which two lines always meet. In his 

attempt to vindicate Eucitd, he "proved' bis hypotheses falso and 

consequently failed to discover that each would lead to a self- 

consistent ge orne try. 

G. F, Gauss (1777-1S55) ai. some of his students, including 

Wolfgang ßolyai ( 1775-18% ) of hungary, wor1ed on the problem but 

failed to publish the results. It remained for John ßolyai ( ]ß02-móO), 

son of 1olfgang Bolyai, and N. I. Lobachevaki (1793-1856) of Russia 

to announce their independent and almost simultaneous discovery of 

hyperbolic geometry. G. F. B. Riemann (l26-l866) in 1854 showed 

the existence of a consistent geometry without (real) parallel lines. 

RIa geometry was essentially that in which lines were great circles 

on a sphere, so that two lines always intersect in two points; however, 

Feliz Klein (Jß4l925) conceivect the elliptic (biemaxms) geomBtr7 in 
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which two lines meet in a single point (12). Arthur Cayley (1821-1895) 

introduced the notion of the absolute conic an showed the connection 

between non-.Euclidean ideas and projeotive geometry (2), 

The existence of non-Euolidesn geometry proves beyond a 

doubt the impossibility of deriving the parallel postulate from the 

other axiome, and as Coxeter says (6, p. 3) 'Nowedtys, anyone who tries 

to prove Postulate V is classed with circie-squerors and angle- 

trisectora", 

Axioxn A,3 of section I obviously does not necessarUy bold 

in Folidean geometry. An axiom analgous io it was tiret used by 

Loritz Paach ( 1843-1931) in 1882. It put into writing what Euclid 

had tacitly assumed and used in proofs. ßriefly, it amounts to this; 

a 1in passing through one side of a triangle and riot passing through 

any vertex, imist pass through another side of the triangle. It will 

be the aim in this thesis to introduce the notion of the absolute, to 

show briet1y how it functions in deriving hyperbolic, parabolic, and 

elliptic geometry from projective geometry, and then, to direct 

specific attention upon Pasch's axiom. The stress placed upon this 

axiom is justified because of the place it taa in rnking clear the 

fundsrnta1 concept of betweenness. 



I, The doms of Proj ective Geometry and Some of Their Consequences 

Perhaps the two chief methods for approaching the subject 

of non-Euclidean eome try are those of Gauss, Lobaehevaid, Bolysi, 

and Rimann, who began by modifying the postulates of ordinary 

Euclidean geometry, and that of Cayley (2, pp. 561.592) aai Klein 

(12, pp. 573.'625 and 13, pp. ll2-l45) who regarded the real projecti've 

plane as a subepace of the complex projective plane and introduced 

the notion of the absobxte conio as a poaøible insana of deducing the 

other geometries from the proj active. More will be said about the 

absolute later, after we have defined complex projective apace and 

have considered a few of its more elementary properties. In the 

following assumptions of Veblen and Young (1?, vol, 2, ch, 1) the 

point and the lino are undefined elements, the line being regarded 

as an undefined class of points, "Belonging to a class" is an 

undefined relation. 

Assumptions of Alignment, A. 

A,l. If A and B are distinct points, there is at least one line 

A,2. It A and B are diatinct points, there is not more than one 

line on both A and B. 

A,3, If A, B, C are points not ail on the same lina, and. D end 

B (1)/B) are points such that B, C, D are on a line and C, A, E are on 

a line, there is a point F such that A, B, F are on a line and also 

D, E, F are on a iine 



£SØUapt±Ons of Extension, E. 

E,O. There re at least three points on every line. 

E,l. There exists at least one line. 

E,2, AU points are not on the cerne line, 

E,3. AU points ere not on the seme plane. 

It is a threespace, every point is on 

Äariuiiption J. A geometric number 3yatem (17, vol, 1, ch. 6) i 

isoniorphic (17, vol, 1, pp. I9-l5O) with the complex number system 

of analysis, 

plex projective geometry, That assumption J is a sweeping assumption 

is quite obvious , axd for a thorough study of it one should. consult 

Veblen and iotrng (17, vol. 2, ch, 1), Had we desired to set up 

real projective space we could have used assuinptionE A sud E, but 

instead of assumption J we would have needed the following assumption. 

Assumption K, A geometric number system is isomorphic with the real 

number system of Rnalysis, 

paees satisfying A, E, and J or K will aleo satisfy the 

following axionisof order (7, p, 22). 

Assumptions of Oxdez', O, 

0,1, If A, C are three dIstinct collinear points, there is at 

0,2. If AB/lCD, then A, B, C, D ere distinct. 



0,4. If AB//CD and AC//BE, then AB//DE, 

Assumptions A and E sre sufficient to prote many important 

theorems of pr'ojective geometry, Among these theorems is that of 

Desargues (1593..1662), which is tted here for future reference. 

For a complete proof see Veblen and Young (17, vol. 1, p. 41), 

The Theorem of Desarguas, If two triangles ABC, A'B'C' are situated 

in the same plane or in different planes 8nd are euch that BC, B'C' 

meet in I CA, CtAt meet in M, and AB, A'B meet in N where L, M, N 

are oollinear, then W , BB' , CC' iø concurrent, end conversely. 

Two ranges (seta of points on different lines) are perspective from 

a point P if they are in ( 1, 1) correspondence and lines joining 

corespning points meet at P, The two ranges are then said to be 

in perspective. A projectivity may be defined as the product of 

several perspoctivities, i.e., the result of applying a number of 

perspectivities. 

Asumptiou of Projectivity, P. If a projectivity leaves each of 

three distinct points of a line invariant, it leaves every point of 

the line invariant. 

. 

A and E and such that multiplication is commutative in a geometric 

number system (17, 'vol, 2 p. 3). 



Since the complex number system, as wail as the rea]. number 

system, obeyø the commutative law of multiplication, complex projective 

geometry satisfies P, and ail the theorems of (17, vol. 1) app]r 

(17, vol, 2, p. 7). 

J corgruent transformation (a point..to..point correspondence 

which preserves length) is a collineation (a projective transformation 

effecting a rearrangement of points) which preserves the absolute 

(6, p. 126), and may be described by virtue of theorem B as a 

proj activity of the conic itself. 

Theorem B. Jny projectivity on a conic determines a collineation of 

the whole plane (6, p. 60). 

Theorem 0. Any projectivity on a line may be expressed in the form 

X $ 
:: Converse2r, every equation of this form represents a 

projeotivity if ad-bc O (17, vol. 1, p. 134). 

In view of Steinerts theorem ('i, pp. 75.'76) o (1'?, yol, l 

p, ill) , which tatos that by j olning ali the points on a conic to any 

two fixed pointa ori the conio, we obtain two projective]y related 

pencils, the whole theory of prejectivities on a line can be ca'ried 

over to projectivitics on a øittc. Hence, to determine the nature of 

the absolute we must find end examine the fixed points or a one-' 

dimensional projectivity in the complex projective plane, since the 

absolute constitutes the locus of such pointe. 8ince z and x1 aro 

coordinates of corresponding points in theorem C, we will have fixed 

points when x x . Thus, the fixed points are given by the roots ai' 



the quadratic equation o(d-a)x.b O. Co11inetion may conøe 

quently be classified according to the nature of the roota of thia 
equation. It the tixed points are real and distinct, the Oollineatiøn 

io porbo4; if they are real and coiniïdent, the coUineition is 

nd if they are conjugzite imaginary, the coilineation io 

We eire thus led to the three types of abßolute, a resi 
conic in hyperbolic eoinetry, a geziørat. conic in parabolic 

geometry, end an conic in elliptic geometry, 

Before discussing the degenerate conic of the parabolic 

caso certain fundamentals are needed, The generai equation of a 

circle in homogeneous coordinates is given by the equation 

k(xy)+2fyz+2gzxtoz *0, where the coefficients are eny complex 

numbers If k this . circle cuts the line at infinity ( z0) in 
pointa given by x+y O, or (x+iy)(x.-iy) O, The coordinates of 

intersection are thus (14,0) and (l,.i3O). If k0 the line at 

infinity is part of the locus and thus contains these same points, 

Hence, since the equation taken for the circle was generai, all circles 

in the plane pasa through the saxr two conjugate imaginary points at 

infinity. 

Further, it the general eanic a&b *cz2+2fy*2gz2hxy * O 
passes through the points (l,i3O) and (l,i3O), a+2ih..b O and 

a2th-b s Q, Hence, a b end h * O, If a, b, and h are real then 

either of these equations requires that a b and h O, thus a conic 

containing one of the points nuist contain both. Hence, a necessary 

and sufficient condition for s conic to be a circle is that it be on 



the points (l,i,o) and (l,-i,o). These points are called the 

circular pojnts. and any two conjugate imaginary lines which connect 

a paint with the circular pointa are called qrciiar For 

example, xiy * O and x.iy * O are the circular rays from the origin. 

More generally, any line on either of the circular points is called an 

isotropic line. 

The absolute in parabolic geometry consists of a point pair 

- the circular points. It is therefore a degenerate line conio which 

as a point conic appears as a repeated line (the line at infinity), 

Hence, its equation nst be of the form O. If we let 

: O be the equation of the bsolute, then for it to be 

real we must have k > O; for it to be imaginary we must have k <O; and 

for it to be degeirate we must have k O, in which case loo 
Hence, in setting up the determinant D of , D * C) 1 0 * i.k 

o o -k 
wo see that for D < O, * O, or > O obtain the absolttes for hyperboli3 

parabolic, and elliptic geometry respectively. Thus, it appears that 

parabolic geometry is the limiting case between byerbolic and elliptic 

geometxr, 

Before studying the three geometries separately, some funda- 

mental properties of distances and angles should be made olear. 

Among the properties commonly attributed to distances on a line ares 

1, The additive property, i.e., D(XY) 1(YZ) * D(XZ). 

2, The distance from a point to itself is zeros i.e., D(U O. 

3. The distanoe between any two points on a line iø invariant 

under a translation, 



t*tt to establisi a hrperbo1ic or an elliptic scale ilong a line we 

ruiltiple of the logarithrn of the crosa*mr'atio1 of the two hoes 

tmcì the circular points. 

Proof: Let the two intezecting 

* 

o(ßjfl(3-fj coaosthp 

?igux'e 1. 

iiat I 

rTßjiiW*' 
L '..W &__l144L J 

(pc!o+i sino()Çco8t3 ainß) . 
e-i, i« 

(coaci*i eino)(coe3+i cin ) 
*i« I ß10 e1 i e P 

2i( ° t3 ) e2 zex,e e ie the N,erian bwe of logarithms, 

Thus, log r : 1°e 
2i 2iQ , or _ log r, 

1 The croas*ratio of tour pointa xi,, X2, in that order is 

defined to be the nimber (xix/x2x4) 
*3X4 

(x1*x4) (x3*) 



The circu1r rays mentioned in the theorem are the fixed 

linea under a rotation of the pencil which accomparies the angle 

measurement. Thus, in defining the distance between any two points 

( whose coordinates are x and y) on a line, we choose two fixed pointa 

(the fixed points of a non-singular collineation of the lîns) whose 

coordinates re p and q, D(xy) is then aefined to be k log (xy/pq), 

where k ja a fixed t arbitrarily chosen constant. 

If x, y, zara an three points of a line, (xy/pq)(yz/pq) 

: e z-Q) _____ (xz/pq). 
(x-q)I%y-p) (y-qp%z-p) (x.qj(z..pj 

Thus taking the logarithms and multiplying through by k, k log (xy/pq) 

+k log (yz/pq) k log (xz/pq) or D(i)+D(yz) : D() and we see 

that the new distance formula satisfies property 1. Propert7 2 is 

also satisfied, for D(xx) : k log (xx1/pq) : k log (x-?(x-a) : 
(x-q)(x-p) 

k log i O. The new distance formula also satisfies a requirement 

of which propertj .3 is a special cáse, namely; that the distance 

between two points is fixed under a collineation which leaves p and q 

fixed. This is an ixmediate consequence of the invariance of the 

cross-ratio, By an appropriate specialization oB, pp. 396-397) the 

new distance formula can quite easily be reduced to the Euclidean 

notion. 

Perhaps at this point it would be weil to illustrate the 

distance formulae of Cayley and Klein (18, pp. 4O64O7). It the 33 
equation of the absolute be A : f(x) s . L ajjxjxj ¡ O, where 

1:1 j*l 



u 
au : and et represent the polarized from of A, i,e., 
&z7 *(+ rL+rL) x) i yLf Note 

that A A f(x), and that A fly). If x and y are taken as 

the baie points in a parametric representation along the 1ine 

f(tx+y) : &.t2Avt*¼. * o, the roots of which are the parameters 

ti siad t2 of the absobite points of the line xy. But the cross-ratio 

of four points eq.iais the croaa-ratio f their parameters (18, p. 94), 

hence, (V/AM) * (O co/t1t) : t/t. Then D(xy) log (t1/t2) 

log x74y2 -AA which is Klein' s distance f omla0 
A_IA/ -AAyy 

But ces ix coa (4x) * cosa x : cosii (uit'x), or 

4i a arc cas 0 In this last equation let eX 

z Z log u, then -i4 log u arc cos jc 008 

and log u - arc 003 U .À . arc cos U1I 2i arcoO 
-1 2.Ç i i 2.; 

Using this forni, Kiin'a formula becomes D(xy) z .: log (t1/t2) 

1k arc cos iut t1+t _2A/ and t1t A/L. 
Hence, by taking the negative square root in s formula we hava 

Oayley*s formula; 

A D(xy) 1k arc cos -V , 

y AAy 
Now, if the absolute is referred to a self-polar triangle, 

itE; eqwtion beconos x± -kz where the eontant is introduced 

so a to insure that the conic be real. Then, if the two points p,p' be 

(x,y,z) and (xt,yt,z1), (ppt) j rc cos -k2zz') 

(x2*_kz)(xtZ4y12_Iczt2) 



which is another forni of Cayley' s distance fornnila. Note the forni 

oZ the equation of the absolute given here, as compared with the 

equation given previously. In actual history, Cayley's formula 

seems to have been obtained first, but Klein's log expression Which 

followed shorty was a great improvement over the cosine expression 

since the additive prooerty for lines became quite obvious, 



II. Parabolic Geometry 

Instead of using Hubert's axioma (9, pp. 1-26) to 

characterize this geometry, I choose to use the modified list of 

Hubert and Cobn4essen (30, pp. 239-240). 

Group 1, Axioms of Incidence. 

1. Two points have one and only one straight line in common. 

2. every straight line contains at least two points. 

3. There are at least three points not 11ng on the asino 

straight Line. 

Group 2 Axioms of Qrder. 

1, Of any three pointa on a straight line, one and only one 

lies between the other two. 

2. If A and B aro two points, there is at least one point C 

such that B lies between A and C. 

3. (Pasch's axiom). Any straight line intersecting the side 

of a triaxg1e (i.e., containing a point lying betsn two vertices) 

either passes through the opposite vertex or intersects a second side. 

Group 3. Axioms of Congruence. 

1. a straight line a given seent can be laid off on either 

side of a given point; the segment thus constructed is called congruent 

to the given segment. 

2. If two segments are congruent to a third segment, then they 

are congruent to each other. 
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3. If AB &nd A'B' are two congruent segmenta, end if the points 

C ano C' lying on AB end I ' B ' respectively are suth that one of the 

segments into which AB is divided by C is congruent to one of the 

segments into which A'B' is divided by C', then the other segment of 

AB is also congruent to the other segment of A'B'. 

4. A given angle can be laid off in orto and onir oxte way on 

either side of a given halt..line; the angle thus drawn is cafled 

congruent to the given angle. 

5. If two sides of a given triangle are equal respectively to 

two aides of another triangle, and if the inc2nded angles are equal, 

the triangles are congruent. 

Group 4. Axiom of Parallels, 

1, Through any point not 1ing on s given straight line there 

passes one and on]y one straight line that does not intersect the 

given line. 

Group 5. Axioms of Continuity. 

The way in which those axioms are formulated varies a great deal. 

They may, for example, be stated as follows: 

1, (Axiom of Archimedes) Every straight.line segment can be 

measured by any other straight-line segment. 

2 (Cantorts axiom) Every infinite sequence of nested segments 

(i.e., a sequence of segments such that each contains aU the following 

ones) has a common point. 

Iii Euclidean metric geometry there is no line at infinity. 
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However, in deducing Euclidean geometry by specializing the projective, 

metrical ideas such as pare.11el lirieß, circle, parabola, asymptote, 

focus, etc. , may be defined. The line at infinity is not exceptional 

in projoctivo geometry since any line can be projected into any other. 

k parabola, for exe1e1 loses its distinctive features end becomes 

merely a conic tangent to a line, when the line at infinity is pro- 

jected into an ordinary line. Thus, if a geometric statement wo1ve 

the line at infinity, i.e., have a special relation to the absolute, 

it is metric, otherwise projective. 

The absoiute thus furnishes a basis of distinction between 

projective and metric properties. Further, the transition from one 

geometry to the other can, as will be seen shortly, actually be 

effected through its use. A projectie theorem concerning sny pinne 

figure can, by isolating a pair of points for the oirlar points, or 

(what is more perUrient to the septe1) a line for the lina at infinity, 

be trn1ated into a Eucidean theorem. Siinilar2y, soute &iclidean 

theorems can be stated projectively by considering the circular pointe 

as an ordinary point pair or the line at infinity as an ordinary line, 

What is even more general wiU be done here, i.e., starting with the 

nñoms of projective geometry, the axioms just given wifl be d1uced 

by isolating a degenerate conic (the line at infinity repeated) for 

the absolute. Thus, the absolute points of a parabolic line coincide 

st infinity. The line is of infinite extent, but the two ends ' come 

together at infinity, thus leaving it without ultra-infinite (ideal) 

points. It is not possible, however, by continuous motion in one 



direction to traverse the entire line. The parabolic geometry of the 

finite plane is thus Eucidean. J.t us now see bow the axioms just 

given may be deduced from the projective, 

Group I', Axioms of Incidence. 

The axioms of Group A hold for all points of the projective plane. 

By isolating the absolute we merely remove the points at infinity from 

the plane, leaving on3y ordinary points. Hence the first part of 

theorem i (17, vol. 1, p. 17), which states that two distinct pointa 

are on one and on3r one line, becomes 1,1; E,l becomes 1,2; and from 

A,3 and the definition of a plane (17, vol, 1, p. 17) we can deduce 1,3. 

Group 2', Axioms of Order. 

on a &ioidean line takes its place, i.e., betweenneas will then have 

meaning. Thus, from Group O of the projeotive axioma, we cari, by 

isolating the absolute, obtain 2,1 and 2,2. Peach's axiom, which is 

not as obvious, will be dealt with separately in section V. 

Group 31, Axioms of Congruence. 

The axioms given in section I make no reference whatsoever to 

congruence, IVe may, however, introduce an algebra of segments, based 

upon Desargues' theorem, which is independent of the axioma of congru- 

once (9 pp. 7982). }i1bert1s development, though straightforward, 

is done with a. Euclideen point of view and for this reason a number 

of changes would be needed in bringing it to a projective point of 

view so that isolating the absolute would be of sorno sigrmffioance. 



O, end conEider or 3u0h line sogments as have their origin at O and 

their extremity in one of the fixed linee, Point O is regarded s.s 

the segaent o, Le., 00 o, If E and L' are two defirite points 

lying on the respective lines through O (seo figure 2), then define 

the se t3 0E and ' so that 0E * * 

The line LE' is ocUed the unit line. 

If and A' are points on the lines 0E 

and 0E' respectively, end if lino AA1 is 

parallel to LE' then we say that OA * OA'. 

To define the sum of the segmenta o 

a OA and b Z OB, construct Aht parallel 
b 4b 

to 0E, and through R a parallel to 0E' Plgure 2 

Let these last two parallela meet in Ar', igJ tt draw a straight 

line parallel to W cutting ( and 0E' in C and C ' respectively. 

Then e * OC s Ø' j ø*Ued the sum of the seguente a * OA and. b * OB, 

or o ab. 

In order to determino the product of a segment a Oh by a 

segment b * OB, the following construction is made (see figure 3) s 

determine on 0E' a point A' suo that M' is parallel to ¡E', and draw 

A'L Draw a straight liria through B parallel to A'E intersecting 0E' 



iii point C'. Let o CC' be called 

the product of segment a CA by the 

segment b . Indicate this rel*tion 

by writing e * ab. 

cf this algebra of segments as well as 

proofs of associative nd coimitative Figure 3 

laws in this algebra see Hubert (1, pp. 79.89). 

Similarly, equeltty of ongles may be defined independently 

of the congruence axtoms by means oi Laguerre's theorelu. Since the 

sngle between two lix* is a definite mitiple of the logarithm of 

the crossu»ratio of these two lines and the circular rays through the 

origin, two angles may be said to be eccjal if these respective cross 

ratios are equal. Note, however, that if the anglos do not have the 

same vertex, their respective circular rays must meet at ixfinity 

(be parallel in a sense). 

Group 4' Id.cm of Parallels. 

In the proj ective plane there are no lines through an external 

point which can be dravm not intersecting a given Line. By isolating 

niet the giyen line at infinity is now paraflel to it. 

Group 5'. Axioma of Continuity. 

Por a proof of Archimedes' axiom see Coxeter's deolopment 

(7, pp. l38439). A study of deducing these axioms for parabolic, 



hrperbo1ic, and elliptic geometry fzom the projective will not be 

considered in the sequel, 



III. Hyperbolic Geometry 

In order to characterize hyperbolic geometry it is necessary 

to have a postulate system, The following five sets of axioms are 

sufficient for this purpose. Where the axiOme are identical with 

those of parabolic geoiietry (see section II) they win not be restated, 

Group i, Axioma of Incidence, 

These axioms are the saie as for parabolic geometry, 

Group 2, Axiorts of Order, 

These axioms are loo the seme as in the parabolic case, 

Group 3, Axioma of Congruence. 

All five of these xtoma hold in hyperbolic geometry 

(lo,pp. 214-245). 

Group 4. Axiom of Parallels, 

This axiom of Eucidean geometry is not valid in the hyperbolic 

plane. As a substitute for it, have for the hyperbolic plane s 

Axiom X, Through a given point, not on a given line, two lines can 

be drawn parallel (in the sen.e of Lobachevaki, i.e., meeting the 

line in points at infinity) to the givwi line. 

Group 5. Axioiiis of Continuity. 

These two axioms hold in byperbolic geometry (10, p, 245). 

Definition H1. D(xy) a J log (xy/pq), where p and q are the absolute 

points colliner with x and y; k is real and finite and p and q are 
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rerl and diatinet. 

Note that D(xp) Z . log (xp/pq) ' .og : log c 

&d similarly, that D(xq) oo Thus the hyperbolic line contains 

two x'eal pointe et intinity, and the 8bìoUìte muet be the 1o8 ot 

euch pointa. (Qr/pq) o erI hence D() is real unleas y//pq, in 

wh.tøh case (xy/pq) Ç o end D(r) is iiaagirury, Pointz intei'ior to 

the absoh&te are called ordiniary point8 and point8 exterior to it 

Eire esUed ultrsu.infinite ar ideAl, Sintlarly, there are thre 

classes of 1ixa: actual lir, bicth Iicvo two real (distinct) 

points in ooion with the 8bsolute; isotropic linea which are 

tangent to the abeolte; and ideal Unes whith lie in tua ideal 

region and which it the abaoiite in conjugate imaginary points, 

Definition H2 : e log ( uv/ci o ) , where o and ° ' cre the 

iaotropic linea concurrent with u and y, i.e., the ag10 between 

two linea s a constant imiltiple of the logarithm of the crooaaratio 

fornd by the linea and the tangente to the absolu.te tro thefr 

points ot intorascUon. 

It u end y are perpsndicx1ar, (uw/« ) 4, lat the 

unit of' measure for a right angle be fl/2 (not radien a*re ea in 

trigonometry) , thua fixing 1, Since log ( .1) s ill , a right angle 

forued by u and y ecals7U/2 * k log (-1) $ kilT, or k s 

From these properties we may prove the following two theorems 

(18, p. 403); 



'k. .1 

Theorem . AU linea through a potnt are perpendicular to a 

unique line 1, the absolute polar of P. 
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absolute polars, or the angle between two lines is proportional to 

the distance between their absolute poles. 

From a theorem of proj active geometry ß, pp. 132-133) we 

know that the polar lines of the points of a range constitute a pencil 

projeotive with the range, and dually. Hence, the polars of X, y, A, 

and A' form a pencil u, r, , c which is projective with the range. 

Thus (xy/W) : (uy,' ) r, and D (xy) log r ik Luv 

Yith this background in mind we shall now see how the first 

four groupa of axioms for the hyperbolic geometry may be deduced from 

projoctive geometry, since the absolute represents the locus of 

points at infinity in the hyperbolic plane, isolating it will have 

the same effect as isolating the line at infinity in the parabolic 

case When the arguments for the hyperbolic case are the sane as 

for the parabolic case, they will be omitted, 

Group 1'. Axioms of Incidence. 

Since these axioms aro the seme as for the parabolic case, 

isolating the absolute, even though it is a real conic in this case, 

has the same effect as the absolute of the parabolic case and hence 

the arguments are the same. 

Group 2', Axioms of Order. 

All these axioms can be deduced from projective geometry by the 

same arguments as for the parabolic case. See section '1 eoncerning 

Psech's axiom, 
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Group 3' Axioma of Congruence. 

Again, with definitions H1 and H2 taken into consideration, 

the arguments would be the same as in the parabolic case. 

Group 4 Axiom of Parallels. 

Within the absolute conic there are, quite obviously, two lines 

through a point P which intersect a given line 1 in points at 

infinity. Isolating the absolute removes the pointe at infinity 

from the plane and consequently leaves two liuss through point? 

which do not meet line 1. 



tv. Elliptic Geometry 

o characterize this geometry I again chooBe the scioins 

of hubert and Cohn-Vossen, modifying them where necessary. 

Group i £ziom of Incidence. 

These adoms are all valid i» elliptic geometry. 

Group 2. Adoins of Order. 

The axioms of order do not hold in the elliptic plane; for 

straight lines in this geometry are closed (cyclic in nature), 

and it cannot be said of three collincar points that one lies 

between the other two0 Instead, the xioias of Group O for the 

projectivo plane (see section I) may be used. 

Like the corresponding Eudlidean axioms, the elliptic axioma 

or order (or separation) also lead to the definition of a straight- 

line segment and to the other concepts used in the axioms of 

congruence. But these definitions must be based on the fact that 

two points A and 8 always define two segmente rather than just one 

Only by recourse to a third point C of the straight line ¡B can we 

distingu.ìsh between the two segments defined by and B; ono 

segment consists of al]. those points that aro separated frani C br 

k and B, and the other segment consists of the remaining points o 

the straight lino AB. Furthermore, it is necessary to atipxlate 

that the interior angles of a triangle shall be lees than a 

straight angle, as two sidos and the ineladod angle would otherwise 

determine not one triangle tait two non-congruent triangles (see 



would be violated. This last restriction is also rital in connection 

Figure .4-a Figure 4-b 

Group 3, ixionis of Congruence. 

With the restrictions given in the proceeding paragraph, these 

8xioms will hold in elliptic geometry, 

Group 4. ¡om of ParaUele, 

This axiom does not remain valid, and must be replaced by the 

following: 

Axiom Y. Through a given point F not on a given line i no line can 

be thwn not meeting 1, 

Group 5, Axioms of Continuity, 

With the restrictions given in Gøup 2 above, these axioms will 
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Elliptic geometzy also has other important properties. For 

example, in it we have: 

Definition E1, h. uy _ log (UV/«oC 1), where c and c 

the isotropic lines on the vertex of the angle. 

The absolute points (p arid q) of the elliptic line are conjugate 

imaginary (see section I). Since they are imaginary we can write 

(xy/pq) aa was done in Laguerre's theorem. Then, D(xy) 

k log (/pq) k log ete kiQ For D(xy) to be real, k mut be 

taken a imaginary. If we again use A and A' for p and q in order 

to point out pale and pol relationships we have; 

Definition E. D(xy) log (xy/AA'), where A and A' are the 

absolute points collinear with x and y. 

In this geontry, a adrant ( Q) log (..l) _ i lT 

: kil. Further, if u and y are the polars of x and y, then D(xy) 

k L uy. The elliptic plane like the (real) elliptic line is finite 
but unbounded, It contains a single class of real p4t$ and real 

Unes, the actual points and the actual lines respectively, Further, 

there lE; but one type of line pair, the intersectors. In other words, 

two lines always meet Within a finite distance. 

Two line9 perpendicular to the asine line J. zeet in a point P, 

the absolute polo of I. But these perpendiculars will meet in either 

direetion because of symmetry. Rather than to consider that the linea 

meet in two points, assui that these two points re identical, 

Hence, all lines in the elliptic plane are of the same finite lexgth 



namely, two quadranta: 

2 (Q) : 2 kiL k TI (18, pp. 413-415). 

elliptic rxiom from the projoctive ty use of the absolute. The 

abo1ute, while imaginnry in this case, still represents the 1ooa 

of pointa t i rf1r.tty, but on a complex projective line. The real 

elliptic geometry must be thought of a pertaining to the geoxnett7 

resulting from considering only the real part of such 1ine. 

Group :1!. Axiome of Incidence. 

of incidence would fo110 directly from assumptiona A for the projective 

plane, 

Group 21, Axiome of Order, 

Isolating the absolute leaves the resi elliptic line which has 

Group 3 Axioms of Congruence, 

With the rontrictions mentioned previously and with a proper 



Group 4, xioin of Paz'aUels, 

This ìx1orn would follow direct1r frou the projeotive theorem 

that two li lway ïrtersect 



V. Pasch1a Axiom 

In doducing Paseb's axiom from the axiorn of projectiva 

geoietry it :3 øoriveaient, not to use the axiom az tited by Hubert, 

hut rath6r to reword it as foflows: 

(1) Pathtb txïot: If A, B, C are three noncoUinear pont and 

D, E are two point$ in the order BC]) and OEA, then there is a point 

F in the order AFB such that D, E, F are collinear. 

Before proceeding further, it is necessary to establish a 

number of properties concerning the cross-ratio. If A, B, C, D, E 

are rìy five distinct pointa on a line 1, then ( AD/OD) C AB/DE) ( 44B/EC ) 

(Â:li.-D) . (d)i:E) s (k1) ì thus 
(A-D)(B-C) (aE)(B..D) (A-C)(B-) ' 

(2) 
(B/CD)(AB/DE)(A/4EC) 3- 

Consider figure 5 which is used by Robinson (15, p. 3.01) in 

extering the coordinate system from u iir to a plai*. By applying 

(2) to the line A010 we get, (kI/x?r)(AIjrI)(AoVIV) 1. 

Projecting these cross-ratios from X,A2, and A3- respectively, we get 

C 1A2/Xo10) (oAlI1I2 ) (AAjxI1) i or we may write it 

(3) (A1A2/kIo) (A2k/xi1i) (/x2i2) 3. 

Psch' s axion may now be deduced from the a-4ois of proj active 

geometry, along with Deaargu.es1 theorem in the plane and the assuuption 

(3.5, p. 3l3) that the coordinate field in projective geouetry is 

ordered, By applying ( 3) to figure 6, which is used by Robiion 

(1, p, 103) in connection with Desargues' theorem, we have 

(4) (A3.P/M0I0)(A 0/M3.I3-)CA1/M2z2) : 



Figure 5 

Figure 6 



E 
Now let (ktAz/o'o) ( M0' ) ( /t 

) 

(A/M1I1) a (A/MM' ) (Ä2Ac1/Mit I) 
(A0A1/M2I2) : (A/M' ) 

oA1'k2I 12). 

Substituting these in (4) we get, 

(A].A2IM0M0l ) (AA/M' )(AIM '12) 
: 1 But, (A1Â/0') (A2Wltl') s (A1/u2') 4, ainee the 
four points determined by a complete quadxang1e on ary diagonal form 

a harmonic range. Hence, 

(5) sï. 

Thus, either (i) all the 'oas-ratio in (5) are negative 
or (ii) one is negative and the other two are positive. Then, by 

isolating a real conio or a degenerate conic (for both have the safle 

effeøt hare) we can say that either (i) ali three of the points 

ot, 1lt, 2i lie outside the segments A1A, A2A0, ÂA respectively, 
or (ii) one lies outside and two inside, Case (ii) thus gives Pasob's 

axiom. 

Isolating an imaginary conic fails to abolish cyclic order 

and we are unable to say anything definite about segmenta, between- 

ness, etc. Obviously, triangles could arise (figure 4-b, section Iv) 

so that Peach' a axiom would not always hold in elliptic geometry 

unless, of course, the restrictions given previously were imposed. 

Limiting the size of the interior anglos of a triangle has the same 

effect as specifying what is meant by " the segment making up the side 

of a trianglo. 
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