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CAYIEY'S ABSOLUTE AND THE NON-EUCLIDEAN GECMETRIES

Introduction

A large part of Eueclid's geometry depends on his fifth
(perallel) postulste, the modern, less cumbersome version of which is:
Through s given point one and only one line can be drewn pernllel to
e given line, Becsuse so much depended on this one postulate, and
because of its lack of simpliecity, it was not acceptable to some
followers of Eueclid and many ingeniocus but unsucecessful attempts were
mede to deduce it from the other exioms, G. Saccheri (1667-1733)
proposed two alternative hypotheses, one lesding to two parallels to
e line through a peint end to hyperbolie geometry while the other
tie peometry in which two lines alweys meet, In his

attempt to vindicate Euclid, he "proved" his hypotheses false and
consequently failed to discover that each would lead to & self~
consistent geometry,

G, F, Gauss (1777-1855) end some of his students, including
Wolfgang Bolyai (1775-1856) of Hungary, worked on the problem but
failed o publish the resilis, It remsined for John Bolyai (1802-1860),
son of Wolfgang Bolyai, end N, I, Lobachevski (1793-1856) of Russia
to announce their independent and almost simultaneous discovery of
hyperbolic geometry, G, F. B, Riemamn {1826+1866) in 1854 showed
the existence of a comsistent geometry without {real) parallel lines,
His geometry was eaaantiaily that in which lines were grest circles
on a sphere, so that two lines alweys intersect in two points; however,
Felix Klein (1849-1925) conceived the elliptic (Riemann's) geometry in
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which two lines meet in a single point (12), Arthur Cayley (1821~1895)
introduced the notion of the absolute conic and showed the comnection
between non-Euclidesn ideas and projective geometry (2).

The existence of non~Euclideen geometry proves beyond a
doubt the impossibility of deriving the parallel postulate from the
other axioms, and as Coxeter says (6, p., 3) "Nowadays, snyone who tries
to prove Postulate V is classed with circle-squerers and angle«
trisectors",

Axiom A,3 of section I obviously does not necessarily hold
in Buclidean geometry, An exiom analgous to it was first used by
Moritz Pasch (1843-1931) in 1882, It put into writing whet Buelid
had tacitly assumed and used in proofs. Briefly, it emounts to this:
& line pessing through one side of a triangle and not passing through
eny vertex, must pass through another side of the triangle, It will
be the aim in this thesis to introduce the notion of the sbsolute, to
show briefly how it mmﬁians in deriving hyperbolic, persbolic, and
elliptic geometry from projective geometry, end them, to direct
specific attention upon Pasch's axiom, The stress placed upon this
axiom is justified because of the place it takes in meking clear the
fundamental conecept of‘ betweenness,
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I, The Axioms of Projective Geometry and Some of Their Consequences

Perhaps the two chief methods for spproaching the aub:]ncﬁ
of non-Euclidean geometry are those of Gauss, Lobachevski, Bolyai,
end Riemenn, who began by modifying the postulates of ordinary
Euclidesn geometry, and that of Cayley (2, pp. 561-592) end Klein
(12, pp. 573625 and 13, pp. 112-145) who regarded the resl projective
plane as a subspace of the complex projective plane and introduced
the notion of the absolute conic &s a possible means of deducing the
other geometries from the projective, Héra will be said sbout the
absolute htar, after we have defined complex projective space and
have eonsiéercd'a few of 1ts more elementary properties, In the
following assumptions of Veblen and Young (17, vol. 2, ¢ch, 1) the
point and the line are undefined elements, the line being regarded
as an undefined class of points, "Belonging to a class" is an
undefined relation,

Assumptions of Allgmnment, A.

4,1, If A and B ave distinct poinmts, there is st least one line
on both A and B, |

Ay2, If A end B are distinet points, there is not more than one
line on both &4 and B, ‘

;3. If A, B, G ere points not sll on the same line, and D and
E (DFE) ere points such that B, G, D are on a line and G, A, E are on
& line, there is & point F such that A, B, F are on a line and also

D, E, F are on & iine,



Assumptions of Extension, E,
E,0, There are at least three points on every line,
E,1. There exists at lemst one line,
E,2, All points are not on the seme line,
Ey3. All points are not on the same plane,
E,3's 1If 83 is a three-space, every point is on 84

Assvmption J. A geometrie number system (17, vol, 1, ch, 6) is
isomorphie (17, vol, 1, pps 149-150) with the complex number system
of snalysis,

This set of postulates, 4, E, end J, is sufficient for com-
plex projective geometry, That assumption J is & sweeping assumption
is quite obvious, and for a thorough study of it ome should consult
Veblen and Young (17, vol, 2, ¢k, 1), Had we desired to set up a
real projective space we could have used assumptione A aud E, but

instead of assumption J we would have needed the following assumption,

Assumption K, A geometric number system is isomorphic with the real
number system of anslysis.

Spaces setisfying A, E, and J or K will also setisfy the
following exiomsof order (7, pe 22).

Assumptions of Order, O,
0,1, If A, B, C are three distinet collinear points, there is at
least one point D such thet 4 and B ssparate C and D (written AB//GD);
0,2, If AB//CD, then A, B, C, D are distinct,



043, If AB//CD, then AB//DC,
Oy4s If AB//CD and AC//BE, then AB//DE,

Assumptions A and E are sufficient to prove many important
theorems of projective geometry, Among these theorems is that of
Desargues (1593-1662), which ia stated here for future reference,
For a complete proof see Veblen and Young (17, vole 1, pe 41)s

The Theorem of Desargues, If two triangles ABC, A'B'C' are situated
in the seme plane or in different planes end are such that BC, B'C!
meet in L, CA, C'A' meet in M, and AB, A'B' meet in N where L, M, N

ere collinear, then AA', BBY, CC' are concurrent, end conversely,

Two ranges (sets of points on different lines) are perspective from
a point P if they are in (1,1) correspondence and lines joining
corresponding points meet at P, The two ranges are then said to be
in perspective., A projectivity msy be defined as the product of
several perspectivities, i.e., the result of applying a number of

perspectivities,

Assumption of Projectivity, P, If a projectivity leaves each of
three distinet points of a line invariant, it lesves every point of
the line invariant,

Theorem A, Assumption P is valid in any spece satisfying assumptions
A and E end such thaet multiplication is commutative in & geometriec
number system (17, vol. 2, ps 3)e
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Since the complex number system, es well as the real number
system, obeys the commtative law of miltiplication, complex projective
geometry satlsfies P, end all the theorems of (17, vol, 1) apply
(17, vol, 2, ps 7)s

4 congruent transformation (a point-to-point correspondence
which preserves length) is & collineation (a projective transformation
sffecting e rearrangement of points) which preserves the absolute
(6, pe 126), end may be deseribed by virtue of theorem B as 8
projectivity of the conic itself,

Theorem B, Any projectivity on a conic determines s collinestion of
the whole plene (6, p, 60),

Theorem C, Any projectivity on a line may be expressed in the form
x® -ﬁg—. Conversely, every equation of this form represents a
projectivity 1f adebe ¥ 0 (17, vol, 1, p. 134). |

- In view of Steiner's theorem (7, pp. 75-76) or (17, vol, 1,
pe 111), which stetes that by joining all the points on & conie to any
two fixed points on the conie, we obtain two projectively related
pencils, the whole theory of projectivities on & line can be cerried
over to projectivities on a conic, lHence, to determine the nature of
the absolute we must find end exemine the fixed points of a one-
dimensional projectivity in the complex projective plane, since the
absolute constitutes the loous of such points, Sinee x and x' are
coordinates of corresponding points in theorem C, we will have fixed
points when x # x', Thus, the fixed points are given by the roots of
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the quadratic equation cx?+(dea)x-b ® 0, Collinestions may conse=
quently be clasgified according to the nature of the roots of this
equation, If the fixed points are real and distinet, the collineation
is hyperbolie; if they are reasl and coincident, the collinestion is
Jperebolie; end if they are conjugate imeginary, the collineation is
glliptic, We are thus led to the three types of absolute, a resl
conic in hyperbolie geometry, a
geometry, and an imaginary conie in elliptic geometry,

Before discussing the degenerate conie of the parabolic
case certain fundamentels are needed, The general equation of a

e conic in perabolic

¢irele in homogeneous coordinates is given by the equation
lc(xzar,v,vz)-f21‘5rwa’§gz*:::ws’2 ® 0, where the coefficients are sny complex
numbers, If k#0 this circle cuts the line at infinity (230) in

points given by x%y° % 0, or (x+iy)(x~iy) # 0, The coordinates of
intersection are thus (1,i,0) and (1,~i,0), If k®0 the line at
infinity is part of the locus and thus contains these same yaim.
Hence, since the equation taken for the circle was general, all circles
in the plane pass through the same two conjugate imaginary painrba at
infinity,

Further, if the genersl conic m@a—byzws&amﬁngm 80
pesses through the points (1,1,0) and (1,+1,0), &+2ih«b ® O and
e~2ih=b ® 0, Hence,e ® band h 80, If e, b, and h are real then
either of these equations requires that a ® b and h = 0, thus a conie
containing one of the points must contain both, Hence, & necessery
and sufficient condition for a conic to be a eirele is that it be on



the points (1,1,0) and (1,-1,0), These points are called the
gireular points, and any two conjugate imaginary lines which comnect
& point with the eireulaer points are called gireulsy rays. For
exemple, xe+iy ® O and x~iy 2 O are the circular rsys from the origin,
liore generally, any line on either of the cireular points is celled &n
isotropic line,

The absolute in parabolic geometry consists of & point pair
= the eireular points, It is therefore a degenerste line conic which

as a point conic appears as & repested line (the line at infinity).
Hence, its equation mist be of the form Ao B X4y 80, If we let

AZ x%4y2-ke® 2 0 be the equation of the absolute, then for it to be
real we must have k >0; for it to be imaginary we must have k<03 and
for it to be degenerate we must have k ® 0, in which case As 2,
Hence, in setting up the determinant Dof A, D = é g g & ok

we see that for D0, = O, or > 0 we obtain the sbsolutes for hyperbolig

0 0 =k

parabolie, and elliptic geometry respectively,  Thus, :.t appears that
parsbolic géometry is the limiting case between hyperbolic end elliptie
geometry,
Before studying the three geometries separately, some funda=

mental properties of distances and angles should be made clear,
Among the properties commonly attributed to distences on 2 line sres

1. The sdditive property, i.e., D(XY) D(YZ) ® D(XZ),

2, The distance from & point to itself is zero, i.e., D(XX) = 0,

3. The distance between any two points on & line is inveriant
under & transletion,
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The perabolic measure of distance is a oonsequence of property 3,
but to establish a hyperbolic or an elliptic scale along & line we
resort to en extension suggested by Edmond laguerre,

lsguerre's Theorem: The engle between two lines is e definite
mltiple of the logarithm of the cross~retiol of the two lines
Proof: Let the two intersecting
lines 1 and m have their vertex at the d *
origin forming the sngles, as in figure 1,
The equation of 1 is y # x tanx and the
equation of m is y & x tanp , while the
equations of the eireuler rays through B
the origin ere y » ix end y » =ix, Thus |
the crosswratio of the four lines is Figure 1

r 2 (tanx tanp /“"*") . gtm:((:ig éwp ﬂig

x-B =6 m

%%——*—r,,..t:.:" ‘ﬁ'r"fr e

PUX=P) 5 219 ynere ¢ 1s the Neperian base of logarithms,
m* lﬁgralﬁzﬁlziazziet or eg-s%-]mr)

mmxme« me+s. ma

1, The oross-ratio of four points x;, %o, :3, x@ in that order is

defined to be the mumber (x1x-/%x,) = X
TS 2 ) aym)
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The cireulsr rays mentioned in the theorem are the fixed
lines under a rotation of the penecil which asccompenies the angle
measurement, Thus, in defining the distance between any two points
(whose coordinates are x and y) on a line, we choose two fixed points
(the fixed points of a non-singuler collineetion of the lins) whose
coordinates ere p end q, D(xy) is then defined to be k log (xy/pa),
where k is a fixed but erbitrarily chosen constant,

If x, y, 3 ere any three points of a line, (xy/pa){yz/pq)

Thus taking the logarithms and maltiplying through by k, k log (xy/pa)
+x log (y2/pq) ® k log (xa/pq) or D(xy)+D(yz) = D(xx) and we see
thet the new distance reml# satisfies property 1, Fraparty 2 is
elso satisfied, for D(xx) = k log (xx/pq) = k lolg (E"ﬁ.;ll‘rﬁg s
o (x=q){x=p

k log 1 = 0, The new distance formila also satisfies a requirement
of which prapérty 3 is & special cese, namely: that the distance
between two points is fixed under & ¢ollinestion which leaves p and q
fixed, This is an immediate consequence of the inveriance of the
eraaawmtie. By en appropriate specialization (18, pp, 396«397) the
new distance formula can quite easily be reduced to the Euclidean
notion,

Perhaps at this point it would be well to illustrate the
distence formulse of Cayley and Klein (3.8:,3 pp,at.ﬂé-»w?)‘ let the

equation of the absolute be 4 = £(x) = X 2_ a;y%3xg 3 0, where
{21 j=1
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85 = 84 end let ‘xy represent the polarized from of A, i.,e.,
Axy ® ﬁ’(yls;;'* 3'23‘;;*-33*"“) £(x) lﬁyx—-ﬁ +yi--£ +}’ ~ Note
thet A 2 Agy ® £(x), end that A, = £(y). Ifxmdymtakanaa
the base points in & persmetric representation along the line,
£(txry) = Ay t3 24, tahyy ® 0, the roots of which ere the parameters
%ty end ty of the absolute points of the line xy. But the cross-ratio
of four imﬁ.nta ‘equals the eross-ratio of their pamte:rs (18, p. 94),

hence, (xy/aht) = (0w/tyty) = ty/tp. Then Dlxy) =X log (%,/t,) *

which is Klein's distence formuls,

But cos ix ® cog (~ix) S&%ﬁﬂeoshxawah (wx), or
~ix % are mm In this last equation let ¢* = VT and
x %= 4 log u, then -i-%lagawwaaaawgmwg“

end log u % ~2 arc cos ~2t1 _ .3 &arumau aimmm
~1 2V 24w

Using this form, Klein's formula becomes D(xy) 3% log (tl/tg) =
ik are cos v«-L-_.i_z; but t1+ 12 = ~RAxy/Ayy end t3% 2 Ayy/Amp
&smﬁ&, by teking the mat.m squaere root in Klein's farmla we have

Cayley's formala:

D(xy) = ik arc cos .....fﬂ....
Vixhyy
Now, if the absolute is referred tc a selfwpolsr trisngle,

its equetion becomes x°+ y=k°zio where the constent is introduced
so as to insure that the conic be real, Then, if the two points Pp be

(x,y,2) and (x',y',2'), D(gp') = ik arc cos vyl «kCagt
' ’ g (xz-u-yaukzaz)(x' y'za-};zgia)
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which is another form of Cayley's distence formuls, Note the form
of the equation of the absolute given here, es compared with the
oquatidn given previously, In actual history, Ceyley's formle ‘
seems to have been obtained first, but Klein's log expression which
followed shortly wes a great improvement over the cosine expression
since the additive property for lines became quite obvious,



II, Parabolic Geometry

Insteed of using Hilbert's axioms (9, pp, 1-26) to
characterize this geometry, I choose to use the modified list of
Hilbert and Cohn-Vossen (10, pp, 239-240).

Group 1, Axioms of Incidence,
1, Two points have one and only one straight line in ecommon,
2, Every straight line contains at least two points,
3. There are et least three points not lying on the same
straight line,

Group 2, Axioms of Order,

1, Of any three points on a straight line, one and only one
naa between the other two,

2, If A and B are two points, there is at least one point C
such that B lies between A end C, |

3. (Pasch's axiom), Any straight line intersecting the side
of a triengle (i.e., containing a point lying between two vertices)
either passes through the opposite vertex or intersects a second side,

Group 3, Axioms of Congruence,

ls On a streight line a given segment can be laid off on either
side of a given point; the segment thus constructed is called congruent
to the glven segment,

2, If two segments are congruent to a third segment, then they
are congruent to each other,
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3¢ 1If AB end A'B! are two congruent segments, and if the points
C anc C' lying on AB and A'B' respectively are such that one of the
segments into which AB is divided by C is congruent to one of the
segments into which A'B' is divided by C', then the other segment of
4B is also congruent to the other segment of A'B!Y, |

4e A given angle can be lald off in one end only one way on
either side of a given half-li.m; the angle thus drawn is called
congruent to the given angle,

5« If two sides of a given triangle are equal respectively to
two sides of another triengle, end if the included angles are equal,
the triangles are congruent,

Group 4s Axiom of Parallels,

1, Through any point not lying on a given straight line there
passes one end only one straight line that does not intersect the
given line,

Group 5, Axiems of Contimuity,

The way in which these axioms are formulated varies a great deal,
They may, for exsmple, be stated ss followss

1, (axiom of Archimedes) Every straight-line segment cen be
measured by any other straight-line segment, J

2, (Centor's axiom) Every infinite sequence of nested segments
(1.24y 2 sequence of segments such thet each contains all the {ollowing
ones) hes a ecommon point,

In Buclidean metric geometry there is no line at infinity,
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However, in dedueing Buclidean geometry by specislizing the projective,
metrical ideass such as parsllel lines, circle, parabols, asymptote,
focus, etc.; may be defined, The line at infinity is not exceptional
in projective geometry since sny line can be projected into any other,
A parabola, for exemple, loses its distinctive features end becomes
merely a conic tangent to & line, when the line at infinity is pro-
jected into en ordinsry line, Thus, if & geometric statement involve
the line at infinity, i.e., heve a special relation to the absolute,
it is mttim; otherwise projective,

The absolute thus furnishes a basis of distinction between
projective and metrie properties, Further, the transition from one
geometry to the other cen, as will be seen shortly, actually be
effected through its use, A projective theorem eoncerning eny plane
figure can, by isolating a pair of points for the cireulsr points, or
(whet, 1s more pertinent to the sequel) e line for the line at infinity,
be translated into a Euclidean theorem, Similarly, some Buclidean
theorems cen be stated projectively by considering the eirculer points
wmwﬁmwhtp&wwtham@mmtymanmmuma_
What is even more general will be done here, i.,e,, starting with the
exioms of projective ‘gamw, the axioms just given will be deduced
by isolating a degenerate conic (the line at infinity repested) for
the absolute, Thus, the absolute points of a parsbolic line coinecide
at ixzfihitya The line is of infinite extent, but the two ends "come
together at infinity", thus-leaving it without ultrs-infinite (ideal)
points, It is not possible, however, by continuous motion in one
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direction to traverse the entire line, The parabolic geometry of the
finite plane is thus Euclidean, Let us now see how the axioms just
given may be deduced from the projective,

Group 1', Axioms of Inecidence,

The axioms of Group A hold for all points of the projective plane,
By isolating the sbsolute we merely remove the points at infinity from
the plane, leaving only ordinary points, Hence, the first pert of
theorem 1 (17, vol, 1, p, 17), which stetes that two distinet points
are on one and only one line, becomes 1,1; E,1 becomes 1,2; and from
A,3 end the definition of a plane (17, vol, 1, p. 17) we can deduce 1,3,

Group 2Y, Axioms of Order,

By isolating the absclute cycliec order disappears snd the order
on a Buelidean line takes its place, i.e,, betweenness will then have
meaning, Thus, from Group O of the projective axioms, we can, by
isolating the absolute, obtain 2,1 end 2,2, Pasch's axiom, which is
not as obvious, will be deelt with seperately in section V,

Group 3', Axioms of Congruence,

The axioms given in section I make no reference whatsoever to
congruence, We may, however, introduce an algebra of segments, besed
upon Desargues' theorem, which is independent of the axioms of congrue
ence (9, pp. 79-82), Hilbert's development, though straightforward,
is done with a Euclidean point of view and for this reason & number
of changes would be needed in bringing it to a projective point of
view so that isolating the absolute would be of some significance,
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The latter will not be done here, but rather the simple development
of Hilbert will be used to show how Desargues' theorem, which is
valid in o1l three geometries, can be used in defining equality of
segments, |

Teke two fixed straight lines in the plane intersecting at
0y end congider only such line segments as have their origin et O and
their extremity in ome of the fixed lines, Point O is regerded as
the segment o, i,e., 00 R 0, If E ond E' are two definite points
lying on the respective lines through O (see figure 2), then define
the segments OE end OE' go that OE = (EV = 1,
The line EE' is called the unit line,
If & and AY ere points on the lines OB
end OE' respectively, end if line AA! is
parallel to EE' then we ssy that OA ® OA!, R

a,n
To define the sum of the segments o Aﬂ \> / \
& {

B
b

ath

2 = 0A and b 2 0B, construect AA' parallel
to OE, end through B a parallel to OBE', Figure 2
Let these last two parallels meet in A", Through A" drew & straight
line perellel to EE', cutting OE and OE' in C and G' respectively,
Thme‘%"i%' is called the sum of the segments a ® OA and b ® OB,
or ¢ ® a+by

In order to determine the product of a segment & = OA by a
segment b ® OB, the following construction is made (see figure 3):
determine on OE' a point A' such thet AA' is parellel to EE', and draw
A'E, Drew a straight line through B parallel to A'E intersecting OE!



in point C', Let ¢ = (G' be called
the product of segment a % CA by the
segnent b 2 (B, Indicate this relation
by writing e ® ab,

For a more complete discussion o
ef this algebrs of segments se well as

proofs of associetive and commtative Figure 3
laws in this algebra see Hilbert (1, pp, 79-89),

Similerly, equality of angles may be énﬂmd independently
of the congruence sxioms by means of Laguerre's thwmu.‘ Since the
engle between two lines is & definite miltiple of the logaritim of
the cross-ratio of these two lines end the ecireular rays through the
origin, two sngles may be seid to be equal if these respective cross~
ratlos are equal, Note, however, that if the angles do not have the
seme vertex, their respective circular rays must meet at infinity
(be parallel in a sense).

Gﬁup LY Axiom of Parallels,

In the projective plane there ere no lines threugh en externsl
point which can be drewn not intersecting & given line, By isolating
the absolute, the one line through an external point which previously
met the given line st infinity is now parsllel to it,

Group 5', Axioms of Continuity,
For a proof of Archimedes' axiom see Coxeter's development
(7, ppe 138-139). A study of deducing these axioms for parabolic,



19
hyperbolie, and elliptic geometry from the projective will not be
eonsidered in the sequel,
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III., Hyperbolic Geometry

In order to cheracterize hyperbolic geometry it is necessary
to have a postulate system, The following five sets of axioms ere
sufficient for this purpose, Where the axioms are identicel with
those of parebolic geometry (see section II) they will not be restated,

Group 1, Axioms of Incidence,
These axioms are the same as for psrabolic geometry,

Group 2, Axioms of Order,
These exioms are also the same as in the parsbolic case,

Group 3, Axioms of Congruence,
All five of these exioms hold in hyperbolic geometry
(10,pps 244=R45) ¢

Group 4., Axiom of Perasllels,

This axiom of Buclidesn geometry is not velid in the hyperbolie
plane, As a substitute for it, we have for the hyperbeliec plane:
Axiom X, Through a given point, not on & given line, two lines can
be drewn parallel (in the sense of Lobacheveki, i.e.,, meeting the
line in points at infinity) to the given line,

Group 5, Axioms of Continuity,
These two sxioms hold in hyperbolic geometry (10, pe 245).

Definition Hy. D(xy) ﬂ% log (xy/pq), where p and q ere the sbsolute
points collinesr with x end y; k is real and finite emd p and q sre



reel end distinet,

Note that D(xp) z%-w (xp/pa) 3% 10g (E=R)peg
end similerly, thet D(xq) s =0, Thus the lmaeﬁ line conteins
two real points at infinity, and the sbsolute must be the locus of
such points, (x7/pq) >0 end henve D(xy) is reel unless xy//pg, in
which cese (xy/pq)<0 and D(xy) is imsginary, Points imterior to
the sbsolute are called ordinery points end points exterior to it
are called ultreeinfinite or ideal, Similarly, there are three
classes of liness actual lines, which have two real (distinect)
points in common with the sbsolutej isotropie lines which ere

tangent to the absolute; and idesl lines which lie in the ideal

rogion and which cut the sbascolute in conjugate imsginary points,

Definition Hps L uv 2 ¢ log {uv/orot 1), where o end <! apre the
isotropic lines concurrent with u end v, 1,6,y the angle between
two lines is a constant multiple of the logsrithm of the crosseratic
- formed by the lines and the tengents to the ebsolute from thelr
points of intersection,

If u end v are perpendiculsr, (uv/o o) 2 «1, ILst the
unit of measure for e right angle be /2 (not radian meesure as in
trigonometry), thus fixing k, Since log (=1) = i, a right engle
formed by u end v equsls /2 ® k log (=1) ® kiT, or k ® 1/o4,
From these properties we may prove the following two theorems
(18, pe 403)3 |
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Theorem D. All lines perpendiculer to a given line 1 meet in a
point P, the pole of the line with respect to the absolute,

Theorem E, All lines through a point P are perpendicular to a
unique line l, the absolute polar of P, |

If P is actual, 1 is ideal; if P is at infinity, 1 is
isotropic (tangent to the absolute at P); and if P is ideal, 1 is
actual, Thus two lines always have a common perpendiculer, end
when these two lines ere parallel; the common perpendicular is
tangent to the absolute at their point of intersection, Thus
perallel lines do not have an infinity of common perpendiculars as
in Euclidean geometry,

Consider now the specific characteristics of the distance
between two pointe (18, pp. 405-408), From now on, instead of p and q
we ‘ahall use A and A' in the distance formula in order to emphasize
the pole and polar relationships of the A's end the o 's, The
distance between two points conjugate with respect to the sbsolute
is celled a quadrant, If x and y are conjugate points, (xy/AL!) = =1,
thus quadrent (Q) s.g log (=1) az:g.r.. If x is fixed y may be
anywhere on the polar of x, i.,e., the locus of points a ciuadrant
distance from a fixed point x is ther sbsolute polar of x, Two
distances whose sum is & quadrant sre called complementary, The
distance from a point to a line is the complement of the Gistance
from the point to the sbsolute pole of the line, The distance
between two points is proportional to the angle between their
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absolute polars, or the angle between two lines is proportional to
the distance between their absolute poles,

From & theorem of projective geometry (18, pp. 132-133) we
know that the polar lines of the points of & range constitute a peneil
projective with the renge, and duelly, Hence, the polars of x, y, A,
end A' form a pencil u, v, < , o« ' which is projective with the range.
Thus (xy/24%) = (uv/ < X ') & r, and D(xy) =§ log r = ik Luv,

With this background in mind we shall now see how the first
four groups of axioms for the hyperbolic geometry mey be deduced from
projective geometry, Since the sbsolute represents the locus of
points at infinity in the hyperbolic plene, isolating it will have
the same effect as isolating the line at infinity in the parabolic
case, When the arguments for the hyperbolic case are the same as
for the parabolic case, they will be omitted,

Group 1', Axioms of Incidence,

Since these axioms are the ssme as for the parsbolic case,
isolating the absolute, even though it is a real conic in this case,
has the same effect as the ebsolute of the parabolic case and hence

the arguments ere the same,

Group 2', Axioms of Order.
All these axioms can be deduced from projective geometry by the
same arguments as for the parsbolic case, See section Y concerning

Peach's axiom,
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Group 3', Axioms of Congruence,
Again, with definitions Hy and Hy teken into consideration,
the arguments would be the same as in the parsbolic case,

Group 4', Axiom of Parallels,

Within the ebsolute conic there are, quite obviously, two lines
through a ;min'ﬁ P which intersect a given line 1 in points at
infinity, Isolating the asbsolute removes the points at infinity
from the platie and consequently leaves two lines through point P
which do not meet line 1,
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IV, Elliptic Geometry

To characterize this geometry I agsin choose the sxioms
of Hilbert and Gohn-Vossen, modifying them where necessery,

Group 1, Axioms of Incidence,
These axioms ere all valid in elliptic geometry,

Group 2, mm of Order, .

The axioms of order do not hold in the elliptiec plsane; for
straight lines in this geometry ere closed (ecyelie in nature),
and it cannot be sald of three collinear points that one lies
between the other two, Instead, the sxioms of Group O for the
projective plane (see section I) may be used,

Like the corresponding Euclidean axioms, the elliptic axioms
or order (or seperstion) also lead to the definition of a straighte
line segment and to the other consepts used in the axioms of
congruence, Bul these definitions must be based on the fact that
two points A and B always define two segments rather than just one,
Only by recourse to & third point C of the straight line 4B cen we
distinguish between the two segments defined by A and B; one
segment consists of all those points that sre separated from G by
. A and By, end the other segment consists of the remaining points of
the straight line AB, Furthermore, it is necessary to stipulate
thet the interior engles of e triangle shall be less then a
straight angle, as two sides and the included angle would otherwise
determine not one triangle but two nonecongruent trisngles (see
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figures 4~& and 4~b) so that the side-angle-side theorem on congruence
would be violated, This last restriction is elso vital in connection

AN “
g = B 8
Figure 4=a Figure 4«b
with Pasch's axiom (see section V), If these restrictions are
observed, it is found (10, pps 240~241) that the analogy with a region
of the Euelidesn is preserved on every sufficiently smell portion of
the elliptic plane, and that the Euclidean exioms of congruence, and

the exioms of continuity as well, would remein velid in the elliptic
plene,

Group 3, Axioms of Congruence,
With the restrictions given in the proceeding paragraph, these
exioms will hold in elliptic geometry,

Group 4. Axiom of Parsllels,

This axiom does not remain velid, end must be replaced by the
followings
Axiom ¥, Through a given point P not on & given line 1 no line can
be drewn not meeting l.

Group 5, Axioms of Contimuity.
With the restrictions given in Greup 2 sbove, these axioms will

hold as in the parabolic case,
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Elliptic geometry elso has other important properties, For
example, in it we have:

Definition Ej. &L uv ﬂ-é%- log (uv/xe?), where X and o ! ere
the isotropic lines on the vertex of the angle,

The sbsolute points (p and q) of the elliptic line are conjugate
uimaginary (see section I), Since they are imaginsry we can write
(xy/pq) = e1® as wes done in Laguerre's theorem, Then, D(xy) =
k log (xy/pq) = k log 1@ = k10, For D(xy) to be real, k must be
teken as imaginm'y. If we agein use A and A' for p and q in order

to point out pole and polar relationships we haves

Definition E,, D(xy) = m% log (xy/aAt), where A end A' are the
absolute points collineer with x end y,

In this geometry, & quadrant (Q) 5-% log (=1) 3.% « iTT
3‘%1[' PFurther, if u and v are the polars of x and y, then D(xy) =
k& uv. The elliptic plane like the (resl) elliptic line is finite
but unbounded, It contains a single class of real points and real
lines, the sctual points and the actual lines respectively, Further,
there is but one type of line pair, the intersectors, In other words,
two lines always meet within & finite distance,

Two lines perpendicular to the same line 1 meet in = point P,
the absolute pole of 1, But these perpendiculars will meet in either
direction because of symmetry, Rather than to consider that the lines
meet in two points, assume that these two points ere identieal,

Hence, all lines in the eliiptic plane esre of the same finite length
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namely, two quadrants:
2 (Q) 22500 2 kT (18, pp. 413-415),

Let us now look briefly at the problem of deducing some of the
elliptic axioms from the projective by use of the absolute, The
sbsolute, while imaginary in this case, still represents the locms
of points at infinity, but on s complex projective line, The real
elliptic geometry mist be thought of as pertaining to the geometry
resulting from considering only the reel part of such lines, .

Group I, Axioms of Ineidence, :

Isolating an imeginary eonie.;ould not change the projedtive
exioms, Group 4 and their consequences, hence, the elliptic axioms
of incidence would follow directly from assumptions A for the projective

j& lane ™

Group 2%, &xioms of Order,

Isoleting the sbsolute leaves the real elliptic line which has
cyelic order, Thus, the axioms of order are the seme for elliptic
geometry as they are for projective geometry, See the next section
for a discussion of Pagsch's asxiom and the restrictions mentioned

previously,

Group 3%, Axioms of Congruence,

With the restrictions mentioned previously and with a proper
definition of equality of segments and angles, these axioms would be
deducible as menticned in the previous section,
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Group 4', Axiom of Parallels,
This axiom would follow directly from the projective theorem
that two lines always intersect,



V. Paschls Axiom

In deducing Pasch's axiom from the sxioms of projective
geometry it is convenient, not to use the exiom as stated by Hilbert,
but rether to reword it as followss
(1) Pasch's axioms If A, B, C are three nonecollinear points and
D, E are two points in the order BCD and CEA, then there is a point
F in the order AFB such that D, E, F are collinear, |

Before proceeding further, it ls necessary to establish a
number of properties concerning the cross-rastio, If A, B, C, D, E
are any five distinet points on a 1ine 1, then (AB/CD)(AB/DE)(AB/EC)
Gebitee) * (VeD) © Ao b e
(2) (4B/cD)(4B/IE)(4B/EC) = 1

Consider figure 5 which is used by Robinson (15, p, 101) in
extending the coordinate system from a line to 2 plane, By applying
(2) to the line AjI, we get, (AOIO/X’X'”)(%IO/X“I) (85I /1XY) = 1,
Projecting these cross-ratios from x,nz, and Ay respectively, we get
(A Ao/ %0T0) (Aghy/3p1s) (Arhp/XT7) = 1 or we may write it

(3) (a380/25T0) (Aoho/Xa13) (Aohy/%Ty) = 1
Pasch's axiom may now be deduced from the axioms of projective

geometry, along with Desergues' theorem in the plene and the assumption
(15, ps 113) that the coordinste field in projective geometry is
ordered, By epplying (3) to figure 6, which is used by Robinson

(18, p, 103) in comnection with Desergues' theorem, we have

(4) (Ayho/igTo) (Aho/UyT3) (Aphy/MT,) 1.



Figure 5

Figure 6
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Now lst (Aydo/Molo) = (AjA,/Molyt) (A4, M, T,)

(Aot Ty) = Ayl ') (Ryho/ty 1 T,)

(8540 M,1,) = CﬂgAl/ﬂzﬂg')(ﬁoAl/Mz'Iz)w
Substituting these in (4) we get, |
(Aol ") (Ayda/g"To) (Aao/yl 1) (Apho/lty 11y ) (B, LM, 1) (A Ay iy ' 1)
= 1o Buby (Mko/Nghy?) = (A24p/lhHy") = (A0Ay/lK,") = 1, since the
four points determined by a complete quadrangle on any diegonal form
& harmonic range, Hence,
(5) (Ayho/bio" To) (haho/tiy ' 1) (A /iy' L) = =1,

Thus, either (i) all the cross-ratios in (5) are negative
or (1i) one is negative and the other two are positive, Then, by
isolating a real conic or a degenerate conic (for both have the same
effect here) we can say that either (i) all three of the points
Mg*s My'y My' lie outside the segments Ahny Bohgy Aghq respectively,
or (ii) one lies outside and m ingide, Case (ii) thus gives Pasch's
axiom,

Isolating en imsginary eonic feils to sbolish eyelic order
and we are unable to say enything definite about segments, between-
ness, ete, Obvicusly, triangles could arise (figure 4~b, section IV)
80 that Pasch's axiom would not always hold in elliptie geometry
unless, of course, the restrictions given previously were imposed,
Limiting the size of the interior angles of a triangle has the same
effect as specifying what is meant by "the segment making up the side
of a triangle®,
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