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Magnetic composites containing anisotropic magnetic particles can achieve prop-
erties not possible in corresponding bulk or thin films of the magnetic material. In this
work, we discuss how planar magnetic anisotropy may be achieved in a composite by
aligning disk-shaped particles in an in-plane rotating magnetic field. Previous efforts
have reported a simple model of aligning particles in a high-frequency rotating mag-
netic field. However, no complete analytic solution was proposed. Here, we provide
a full analytic solution that describes the alignment dynamics of microdisks in a
rotating field that covers the entire frequency range. We also provide simplified solu-
tions at both high-frequency and low-frequency limits through asymptotic expansions
for easy implementation into industrial settings. The analytic solution is confirmed
by numerical simulation and shows agreement with experiments. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4953009]

I. INTRODUCTION

Anisotropic microscale architectures can provide directionally dependent bulk properties that
far exceed the functionality of the native material. These architectures are found in many natural
substances, including the prismatic layers of teeth1 and mollusk shells2 and the plywood fiber
structures in fish scales,3 insects,4 and plants.5 Inspired by the anisotropic architectures of the nat-
ural materials, people are committed to developing new materials that contain aligned particles.6–9

These materials can exhibit enhanced magnetic, mechanical, optical, and diffusive (heat and mass)
properties. For example, soft magnetic composites, consisting of magnetic particles embedded in
an insulating matrix, have great potential for a variety of breakthrough applications, including
magneto-optics,10 biological tissue scaffolds,11,12 drug targeting,13 and high-frequency applications
such as microwave absorption, electromagnetic shielding,14 inductors, and antennae.15,16

The anisotropic properties of non-spherical particles like rods and disks allow them to be
aligned by an external driving torque that can be generated by several techniques. Examples include
optical tweezers, which use a strongly focused beam of light to trap or move particles with sizes
ranging from nanometers to micrometers,17,18 electrorotation, which generates a rotating electric
field to rotate elongated metallic particles,19 and dielectrophoresis, which uses alternating electric
field to manipulate and assemble nanowires.20,21 Compared to these techniques, manipulation of
ferromagnetic nano- and micro-particles by using magnetic fields provides a low-cost, efficient, and
non-contact method that is easy to implement.22

In this study, aligned composites are created by orienting magnetic microdisks. Since the
particles have a high-susceptibility plane (χE

⊥) in the radial direction perpendicular to the orien-
tation vector, p, and a low-susceptibility axis (χE

∥ ) that is parallel to p as shown in Figure 1(a), a
planar rotating magnetic field can be used to align the particles in the plane (see Figure 1(b)). This
work presents a theoretical model that describes the dynamics associated with the orientation of a
magnetic oblate spheroid being aligned by a rotating magnetic field.
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FIG. 1. (a) Magnetic microdisk with in-plane susceptibility, χE
⊥ , and out-of-plane susceptibility, χE

∥ , where χE
⊥ > χE

∥ , and
with orientation vector, p. (b) Microdisks aligned by a rotating magnetic field into planar alignment. At first, the microdisks
have a random distribution of orientation in the absence of a magnetic field. Upon introducing a rotating magnetic field, the
microdisks are aligned such that their χE

∥ axis is perpendicular to the magnetic field plane. (c) The setup of the experiment–a
three-axis electromagnetic coil system mounted on an inverted microscope. The z-coil (not visible) is underneath the x-y coils
seen in the picture.

Kimura et al. studied the dynamics of diamagnetic polymer fibers under both static and dy-
namic magnetic fields.23,24 Since a diamagnetic fiber has a lower magnetic susceptibility in its long
axis than in its radial plane,25 its magnetic anisotropy is similar to a ferromagnetic disk, even though
the geometries differ. Kimura et al. provided an analytic model to describe the alignment dynamics
of diamagnetic rods in a static magnetic field.23 They also reported a simple model that describes
the alignment dynamics of diamagnetic rods at the high rotating-frequency limit.24 However, a
complete analytic model that covers all possible frequencies is needed to describe the alignment
dynamics of oblate spheroids or disks in a rotating field.

In this study, two types of magnetic fields – constant and rotating – are investigated. These
fields can be constructed in a single mathematical representation by designating the constant
field to have a rotating frequency of zero. For a microdisk in a constant magnetic field, the
low-susceptibility axis

(
χE
∥

)
quickly aligns perpendicular to the field direction in a short time, but

the disk still has the freedom to rotate within the plane that is perpendicular to the field direction.
In experiments observing Ni-Fe magnetic microdisks

(
χE
⊥ > χE

∥

)
in a rotating magnetic field,

the high-susceptibility plane of the microdisk is found to seek the shortest opportunity to be aligned
with the magnetic field, which is the short-term response driven by magnetics.15,26 While the mi-
crodisk is rotating with the magnetic field, it experiences a hydrodynamic drag caused by the fluid.
To reduce the drag, the microdisk will find a position where the drag can be minimized. Minimum
drag is achieved when the plane of the microdisk is aligned in the plane where the field rotates
(i.e., the microdisk reduces the amount of area that the bluff body projects perpendicular to the
flow that is caused by the particle’s rotation). This drag reduction is the long-term response driven
by hydrodynamics, allowing the orientation of magnetic microdisk. If the microdisks can then be
frozen in place, a composite with uniformly oriented microdisk fillers can be created as shown
in previous work.15,26 We provide analytic mathematical models that describe the dynamics in
both constant and rotating magnetic fields. The analytic models are confirmed by finite difference
numerical methods of the governing dynamical systems. Comparisons showing agreement between
the models and experiments are also presented. With the knowledge of dynamics of oblate spher-
oids in fluids, we can fabricate composites with oblate spheroids of different orientations. We can
also study the dependence of bulk rheological properties of composites on the orientation of the
particles.

II. EXPERIMENTAL METHODS AND MATERIALS

In this study, we will compare our mathematical models to experiments following the work of
Song et al.15,26 Ferromagnetic Ni-Fe microdisks with approximately 5 µm diameter and 150 nm
thickness (aspect ratio, ρ ≈ 33) are investigated. The Ni-Fe microdisks are fabricated by wet
etching photolithographically patterned permalloy thin films. The microdisks are suspended in a
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viscosity-standard silicon oil with viscosities of 215 cp and 550 cp (Brookfield Engineering Lab-
oratories, Inc.), which were measured using a rotational rheometer (DHR-3, TA Instruments). The
magnetic field is generated by a three-axis electromagnetic coil system. Initially, an out-of-plane
(1,3-plane) field is generated to align microdisks perpendicular to the plane of observation to maxi-
mize unalignment (see Figure 1(b)). Then, an in-plane (1,2-plane) field is generated to align the
microdisks into the plane of observation. To achieve a rotating magnetic field, the 1 and 2 axis
coils are driven in quadrature with cosinusoidal and sinusoidal current via a function generator. The
dynamics are observed using a Nikon Ti-S inverted microscope with a 40× objective and recorded
by a CCD camera (Guppy Pro 125B, Allied Vision). The setup of the experiment is shown in
Figure 1(c).

Ferromagnetic materials, such as the microdisks used in this study, can be magnetized by a
magnetic field, forming an induced dipole moment, µ j. Assuming the induced dipole moment is
below saturation (the saturation field is 100 mT for Ni-Fe, and the applied field is below 10 mT), the
induced moment scales linearly with external field, particle size, and effective susceptibility such
that

µ j =
V
µ0

χE
jnBn, (1)

where µ j is the induced dipole moment, V is the particle volume, µ0 is the free space permeability,
and Bn is the external magnetic field vector. The effective susceptibility, χE

jn, is a second-order
tensor that relates the particle geometry and the induced dipole moment, describing the degree of
magnetization of a material in response to an external field.27 Generally for ferromagnetic materials,
χE
i j depends on the magnitude of the external magnetic field; however, in the range of working fields

in this study (1–10 mT), χE
jn remains constant for the Ni-Fe microdisk, as determined by vibrating

sample magnetometry.

III. MODELING ALIGNMENT DYNAMICS

The goal of this work is to provide a theoretical description of the dynamics of the orientation
of microdisks under various external body forces. Here, we derive analytic expressions for the
dynamics of oblate spheroids with an induced magnetic dipole in constant and rotating magnetic
fields.

Since the aspect ratio of the microdisks used in this study is high, we assume that they can
be approximated as oblate spheroids. The microdisks are assumed to be suspended in a quiescent
Newtonian fluid. Upon applying a magnetic field, the particles are assumed to have no translational
motion, but they are free to rotate. The sedimentation time is at least 15 times as long as the align-
ment. Thus, the effect of gravity is neglected. The rotating motion of the particle is tracked by the
change of the orientation vector, p (see Figure 1(a)), a unit vector directed in the axis of symmetry
of the particle. Since the particle is axisymmetric, χE

i j can be decomposed into χE
∥ and χE

⊥ , where
χE
∥ is the effective susceptibility parallel to p, and χE

⊥ is the effective susceptibility perpendicular to
p. Following the work of Kim,28 the induced dipole moment can be written as

µ j =
V
µ0

(
χE
∥ pjpn + χE

⊥
�
δ jn − pjpn

�)
Bn. (2)

To model the alignment dynamics of the particles, a torque balance is developed to describe
the rotational motion of the particles such that the net torque on the particle is zero,


k T (k)

i = 0. In
our model, we will initially include three possible torques: TM

i is the magnetic torque that results
from the interaction of the external field and the corresponding induced dipole moment; TH

i is the
hydrodynamic torque that is created by the drag around the particles by the fluid; and TB

i is the
Brownian torque that is caused by thermal fluctuations of fluid molecules around the particles. Since
the particle Reynolds number is assumed to be very small, Rep ∼ O[10−7] for our experiments,
resulting from the small particle size and slow motion, the use of Stokes flow is valid to model the
hydrodynamic torque. The torques are modeled such that28
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TM
i = εi jkµ jBk, (3)

TH
i = Ci j

(
Ω
∞
j − ω j

)
+ Hi jkE∞jk, and (4)

TB
i = −εi jkpj

∂ [kBT logΨ]
∂pk

, (5)

where kB is the Boltzmann constant, T is the absolute temperature, and Ψ is the probability density
distribution of the particles orientation.28 In Stokes flow, the linearity of the Stokes equations leads
to a set of linear relations between moments and flow parameters, where the resistance tensors, Ci j

and Hi jk, relate the hydrodynamic torque to the particle motion.29 However, since microdisks are
assumed to be suspended in a quiescent fluid, the angular velocity, Ω∞j , and the rate of strain, E∞

jk
,

of fluid far from the microdisks are null. Thus, the torque balance provides the following expression
for angular velocity of the particle, ω j, as

Ci jω j = εi jkµ jBk − εi jkpj
∂ [kBT logΨ]

∂pk
. (6)

To model the dynamics of the spheroid during the alignment, the orientation vector is tracked
by solving the differential rate of change, such that

dpi
dt
= εi jkω jpk, (7)

where t is time. If the angular velocity can be written explicitly, a direct substitution into Eq. (7)
provides a complete derivation of the particle alignment dynamics. For an axisymmetric particle,
the resistance tensor, Ci j, can be written as

Ci j = 8πηa3 �XCpipj + YC
�
δi j − pipj

��
, (8)

where η is fluid viscosity; XC and YC are scalar resistances, which are functions of particle aspect
ratio; and a is one-half of the principal axis of the particle.29 Since an axisymmetric particle is
isotropic with respect to the rotation about its center,30 Ci j can be written as Ci j = ζrδi j such that
ζr = 8πηa3YC (see proof and details in Appendix A). By substituting the expressions for ω j, Ci j,
and µ j into Eq. (7) and by neglecting the Brownian term, since the Peclét number for the experi-
mental conditions considered here is large (see details in Appendix B), the governing equation is
given by

dpi
dt
= −

V
(
χE
⊥ − χE

∥

)
µ0ζr

Bnpn (Bi − Bkpkpi) . (9)

The leading term on the right-hand side contains all of the information regarding the particle
and the medium. Since the parameters are held constant for any specific experiment, we define the
following combined parameter:

A ≡
V

(
χE
⊥ − χE

∥

)
µ0ζr

. (10)

For the magnetic microdisks used in this work, the susceptibility in-plane is greater than that
out-of-plane

(
χE
⊥ > χE

∥

)
. We can now decouple the magnetic field by setting Bk ≡ Bbk, where B is

the magnitude of the magnetic field, and bk is a unit vector pointing in the direction of the magnetic
field. At this point in the derivation, the only time scale that is present is

�
AB2�−1, which is the

intrinsic time that the particle can be aligned in a specific experiment. Thus, the dimensionless time
τ can be defined such that

τ = AB2t . (11)

The dimensionless governing equation is then given by

dpi
dτ
= −bnpn (bi − bkpkpi) . (12)
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We can now solve this set of nonlinear ordinary differential equations for various magnitudes of
the frequency of the rotating magnetic field. For a dynamic field rotating in the 1, 2-plane, the field
direction vector, bi, is given by

bi = δi1 cosωt + δi2 sinωt, (13)

where ω is the rotating frequency in radians.

A. Constant field solution

A constant magnetic field is the special case of a rotating field where the frequency of rota-
tion is null (ω = 0); thus, the direction of bi is constant, and bi = δi1 is chosen for convenience.
Therefore, Eq. (12) becomes

dpi
dτ
= p1p1pi − p1δi1. (14)

Since p is restricted to the surface of a unit sphere, rewriting the equation in spherical coordi-
nates, where p = (sin θ cos φ,sin θ sin φ,cos θ), reduces the number of differential equations. Thus,
Eq. (14) then becomes

dφ
dτ
=

1
2

sin 2φ, and (15)

dθ
dτ
= −1

2
sin 2θ cos2 φ. (16)

Eqs. (15) and (16) can be solved analytically, such that

tan φ

tan φ0
= exp [τ] and (17)

tan θ
tan θ0

=


tan2 φ0 + exp [−2τ]

1 + tan2 φ0
, (18)

where tan φ0 =
p2
p1

���τ=0
and tan θ0 =

√
1−p3p3
p3

�����τ=0
are expressions for the initial orientation conditions

of the spheroid; and φ0 and θ0 are the initial azimuthal angle and polar angle respectively. The
solution can also be represented in terms of the components of the orientation vector pi as

p1 =


1

1 + p̄2 exp [2τ] , and (19)

√
p2p2 + p3p3 =

p̄
p̄2 + exp [−2τ] , (20)

where p̄2 =
1−p1p1
p1p1

���τ=0
is the initial orientation of the particle. The solution in Eq. (19) indicates that

as τ → ∞, p1 would vanish (see Figure 2). However, the steady-state values of p2 and p3 depend on
the initial value, which means that the low-susceptibility axis of the particle is free to rotate within
the plane that is perpendicular to the field direction. Thus, we call this situation one-dimensional
alignment, since only one major axis of the oblate spheroid is aligned with the magnetic field.

B. Rotating field solution

Now, we turn our focus to the problem where the frequency is not zero. In this case, a dimen-
sionless frequency, ξ, can be defined using the intrinsic time scale as

ξ =
2ω
AB2 . (21)

The dimensionless frequency can also be called “rotational” Mason number,31 which is the ratio be-
tween magnetic and viscous torques. Here, the factor of 2 is chosen in the dimensionless frequency
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FIG. 2. Evolution of p1, p2, and p3 in constant field. The initial value for p is set to be
(

2
3 ,

2
3 ,

1
3

)
. Thus, p1 goes to zero

regardless of its initial value, since the field is pointing to the direction of 1. The steady-state values of p2 and p3 depend on
the initial values.

for algebraic convenience, which is a result of the symmetry of the disk. The disk “sees” the field
rotate twice as fast, since the disk cannot distinguish the north pole from the south pole of the field
direction. Again, writing p in terms of spherical coordinates and rewriting Eq. (12) in terms of θ and
φ yields

dφ
dτ
=

1
2

sin [2φ − ξτ] and (22)

dθ
dτ
= −1

2
sin 2θ cos2


φ − ξτ

2


, (23)

which reduce to Eqs. (15) and (16) when ξ → 0. To ease issues with the oscillatory nature of the
problem, we define a new variable u, which is defined to be the angle between the magnetic field
direction and the projection of the orientation vector p on the 1, 2-plane, such that

u = φ − ξτ

2
. (24)

Thus, by shifting the frame of reference to the direction of the magnetic field, Eqs. (22) and (23)
become

du
dτ
=

1
2

sin 2u − ξ

2
and (25)

dθ
dτ
= −1

2
sin 2θ cos2 u. (26)

This fully nondimensionalized set of first-order, nonlinear ordinary differential equations can be
solved as a function of the one governing parameter, ξ, and the corresponding initial conditions, u0

and θ0.

1. Full analytic solution

The full analytic solution to Eqs. (25) and (26) is given for three cases of ξ. Detailed derivations
are provided in Appendix C.

a. Case ξ < 1. If ξ < 1, the observed field frequency, 2ω, is smaller than the intrinsic fre-
quency, AB2, which can be achieved either by making the field rotate slowly or by increasing the
field strength. The solution to Eqs. (25) and (26) for ξ < 1 is
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log


tan θ
tan θ0


= − τ

2
+

1
2

log



sinh2Π

sinh2Π0

*..
,

ξ2 +


1 − ξ2 cothΠ + 1
2

ξ2 +


1 − ξ2 cothΠ0 + 1
2

+//
-


, (27)

where

Π =
1
2

log


−ξ tan u + 1 −


1 − ξ2

−ξ tan u + 1 +


1 − ξ2


, (28)

Π0 =
1
2

log


−ξ tan u0 + 1 −


1 − ξ2

−ξ tan u0 + 1 +


1 − ξ2


, and (29)

Π =


1 − ξ2

2
τ + Π0. (30)

The change of the orientation vector, p, is shown in Figure 3 for ξ = 0.5 with an initial orien-
tation of φ0 =

π
4 ,cos θ0 = 1 × 10−4. Figure 3(a), showing the top view along the 3-direction which is

perpendicular to the plane of the rotating field, plots the trajectory of the orientation vector, showing
that p1 and p2 slowly vanish. Figures 3(b) and 3(c) plot the side view (along the 1- and 2-directions,
respectively) of the trajectory, showing that p3 limits to unity while p1 and p2 vanishes. Figure 3(d)
plots the change of p3 with respect to time τ, showing that p3 goes to unit at steady-state, implying
that the particle is aligned.

b. Case ξ = 1. If ξ = 1, the observed field frequency, 2ω, is equal to the intrinsic frequency,
AB2. The solution to Eqs. (25) and (26) for ξ = 1 is

FIG. 3. Evolution of orientation vector p at ξ = 0.5. (a) View perpendicular to the rotating field. The spiral trajectory shows
that p1 and p2 slowly limit to 0. (b) and (c) View parallel to the rotating field. At steady state, both p1 and p2 vanish, and p3
limits to 1. (d) Change of p3 with respect to τ. In long time p3 slowly limits to 1.
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log


tan θ
tan θ0


= − τ

2
+

1
2

log


2Λ2 + 2Λ + 1
2Λ2

0 + 2Λ0 + 1


, (31)

where

Λ =
1

cot u − 1
, (32)

Λ0 =
1

cot u0 − 1
, and (33)

Λ = − τ
2
+ Λ0. (34)

The ξ = 1 case occurs only when the observed field frequency is identical to the intrinsic frequency,
making it an unstable case.

c. Case ξ > 1. If ξ > 1, the observed field frequency, 2ω, is larger than the intrinsic frequency,
AB2, which can be obtained either by making the field rotate faster than that the particle can respond
to the field or by decreasing the field strength B. The solution to Eqs. (25) and (26) for ξ > 1 is

log


tan θ
tan θ0


= − τ

2
+

1
2

log



cos2 K
cos2 K0

*..
,

ξ2 +


ξ2 − 1 tan K − 1
2

ξ2 +


ξ2 − 1 tan K0 − 1
2

+//
-


, (35)

where

K = arctan


1 − ξ tan u
ξ2 − 1


, (36)

K0 = arctan


1 − ξ tan u0
ξ2 − 1


, and (37)

K =


ξ2 − 1

2
τ + K0. (38)

The change of the orientation vector, p, is shown in Figure 4 for ξ = 2 with an initial orientation
of φ0 =

π
4 ,cos θ0 = 1 × 10−4. At ξ = 2, the field rotates faster than the particle is able to respond.

Thus, the particle appears to “wobble” in response to the rotating field, and the trajectories of p1 and
p2 are not smooth, creating velocities that appear discontinuous in Figures 4(a)-4(c) and plateaus in
Figure 4(d). These characteristics are in direct contrast to the trajectories seen in Figure 3; however,
the overall trend of p3 in both cases is monotonically limiting to unity.

In each of the three cases, the values of u and θ are calculated using the initial value of the
azimuthal angle, u0 (which is equal to φ0). For the case of ξ < 1, u0 is substituted into Eq. (29)
to calculate Π0. Then, at a given time τ, the value of Π can be found by using Eq. (30). With the
knowledge of Π, at any given time, the value of θ can be found by Eq. (27). The value of azimuthal
angle u (or φ via Eq. (24)) can also be found by solving Eq. (28). Similar processes can be followed
to find u and θ for the cases ξ = 1 and ξ > 1.

To enable comparisons to experiments, an alignment time, ∆τ, is chosen arbitrarily to be the
difference in times as the particle aligns from a starting orientation p(1)

3 to a final orientation p(2)3 ,
where the alignment is considered to be complete, such that

∆τ = τ
(
p(2)3

)
− τ

(
p(1)

3

)
. (39)

In this work, p(1)3 is chosen to be 0.1, and p(2)3 is chosen to be 0.9. A cartoon representation of this
alignment time can be seen in Figure 5. In Figure 6, the alignment time is plotted as a function of
dimensionless frequency, ξ. At low ξ, ξ ≪ 1, ∆τ appears to scale as ξ−2, which is validated by the
asymptotic expansion on ξ < 1 analytic solution in Sec. III B 2 a. At high ξ, ξ ≫ 1, ∆τ is appears to
be constant, which is also shown in the asymptotic solution to Eqs. (25) and (26) in Sec. III B 2 b.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

128.193.162.224 On: Tue, 02 Aug 2016 17:10:50



062004-9 Tan et al. Phys. Fluids 28, 062004 (2016)

FIG. 4. Evolution of orientation vector p at ξ = 2. (a) View perpendicular to the rotating field. The shorter trajectory shows
that p1 and p2 rapidly limit to 0. (b) and (c) View parallel to the rotating field. At steady state, both p1 and p2 vanish, and
p3 limits to 1. (d) Change of p3 with respect to τ. In long time p3 rapidly limits to 1.

2. Asymptotic solutions

Though complete, the solutions derived in Sec. III B 1 are cumbersome to implement, disguis-
ing the simplicity of the effect of ξ on the alignment time. Simplified expressions would be more
manageable for implementation into industrial settings. Thus, in an attempt to make the solutions
more tractable, asymptotic expressions are derived for the two limiting cases of ξ visualized in
Figure 6.

a. Case ξ ≪ 1 (ξ → 0). Eq. (27), the full solution for ξ < 1, can be rewritten in terms of
exponentials to ease the asymptotics, such that

FIG. 5. The alignment time, ∆τ, is chosen to be time from p
(1)
3 = 0.1 to p

(2)
3 = 0.9.
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FIG. 6. The alignment time, ∆τ, chosen from p3= 0.1 to p3= 0.9 versus ξ from both analytics and asymptotics. Asymptotic
expansions show that ∆τ scales as ξ−2 at ξ ≪ 1 and ∆τ scales as ξ0 at ξ ≫ 1.

tan θ
tan θ0

= [Γ1 + Γ2 + Γ3]1/2, (40)

where

Γ1 = *
,

λ2 + λ0 − 2ξλ1

1 − ξ2 +
λ2 − λ0

1 − ξ2
+
-

exp

−τ(1 − 

1 − ξ2)

2
, (41)

Γ2 = *
,

λ2 + λ0 − 2ξλ1

1 − ξ2 +
λ0 − λ2

1 − ξ2
+
-

exp

−τ(1 + 

1 − ξ2)

2
, and (42)

Γ3 =

(
2λ1

ξ

1 − ξ2 −
ξ2

1 − ξ2

)
exp [−τ] , (43)

such that

λ0 =
1

1 + tan2 φ0
, (44)

λ1 =
tan φ0

1 + tan2 φ0
, and (45)

λ2 =
tan2 φ0

1 + tan2 φ0
. (46)

As ξ → 0, Γ2 and Γ3 decay much faster than Γ1, and at long time, Γ1 ≫ Γ2,Γ3. Thus, the
leading-order Taylor expansions of each of the Γ-terms results in the following simplification for
Eq. (40) (details provided in Appendix D), where

tan θ
tan θ0

=


λ2 exp


− ξ

2τ

2

 1/2

. (47)

The alignment time in Eq. (39) can be simplified to

∆τ =
−2
ξ2 log


tan2 θ2

tan2 θ1


, (48)

where θ2 = cos−1 p(2)3 and θ1 = cos−1 p(1)3 . The alignment time scales with ξ−2 at low ξ. Further, by
taking the limit of Eq. (40) as ξ → 0, the constant field solutions in Eqs. (17) and (18) are recovered,
confirming the low-ξ asymptotic solution.
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b. Case ξ ≫ 1 (ξ → ∞). If the magnetic field rotates much faster than the particle can respond
(ξ ≫ 1), the long-term response dominates. Starting with Eq. (25),

du
dτ
≈ − ξ

2
, (49)

since ξ ≫ sin 2u. This equation can be solved easily such that

u = φ0 −
ξ

2
, (50)

where φ0 (the initial azimuthal angle) is equal to u0 (the initial phase shift) by Eq. (24). Also, from
Eq. (24), the expression

φ = φ0 (51)

is a straightforward result, which means, at high ξ, the azimuthal angle does not change. Substitut-
ing Eq. (50) into Eq. (26) gives the following differential equation for the alignment:

dθ
dτ
= −1

2
sin 2θ cos2


φ0 −

ξτ

2


. (52)

Separating and integrating this expression gives

tan θ
tan θ0

= exp

− τ

2
+

φ0

ξ
+

sin [2φ0 − ξτ]
ξ


, (53)

which can be further simplified by assuming ξ → ∞, such that

tan θ
tan θ0

= exp

− τ

2


. (54)

The solution in Eq. (54), derived rigorously here, is consistent with the work of Kimura.24

IV. RESULTS AND DISCUSSION

In the constant-field solution, if we shift the dimensionless time by a factor of (− log p̄),
Eq. (19) becomes

p1 =


1

1 + exp [2τ] , (55)

which is independent of the initial value of p1. This result indicates that the particle follows the same
alignment path for any initial condition, which is consistent with general Stokes flow principles.

For ξ < 1, separate short-term and long-term responses are noticeable, resulting from motion
that is initially either in the azimuthal φ-direction or in the polar θ-direction, depending on the value
of φ0 and θ0. If θ0 <

π
2 − φ0, the shortest path to alignment is in the θ-direction, and a separate

short-term response is seen as a quick θ-motion, as visualized in trajectories for φ0 = 0 and φ0 =
π
4

in Figure 7. After the major axis of spheroid is locked into position with the field, the long-term
response proceeds to align the easy plane over a significantly longer time. If θ0 >

π
2 − φ0, the

short-term response will be in the azimuthal φ-direction, and no quick alignment motion will be
observed (viz. the

�
φ0 =

π
2

�
-case in Figure 7).

For ξ > 1, the field rotates so fast that it can be approximated as a planar field, and only
the long-term hydrodynamic response will be present. As derived in Eq. (54), the evolution of p3
becomes independent of ξ and φ0 as ξ grows large, as visualized in Figure 8, where the solutions
collapse into a single trajectory. In Figure 8, when ξ = 10, the particle “wobbles,” as previously
discussed, while it attempts to move with the field. When ξ = 103, the field rotates so fast that the
particle experiences the effects of the field in all directions, making the major axis always aligned
regardless of φ0.

To validate theory, we compare single particle experiments at varying ξ to the models. The
experiments show that the alignment time is constant at high ξ. At low ξ, where we predict that
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FIG. 7. The evolution of p3 at ξ = 0.01 with θ0=
π
4 for φ0 ∈

�
0, π4 ,

π
2
	
. A short-term response of θ-motion can be observed

for the φ0= 0 and π
4 cases. All cases limit to unity in long time.

the alignment time should scale as ξ−2, the experimental results confirm this theory as shown in
Figure 9. The high-ξ condition (practically larger than a value of 20) can provide a precise control
of the experiments and minimize the control parameters (e.g., φ0). Since τ = AB2t, at high ξ, where
∆τ is a constant, the processing alignment time ∆t scales linearly with 1/B2. Although the model is
based on single-particle dynamics, where the experimental data are collected from very dilute sam-
ples (0.001 vol. %), the high-ξ limit also agrees with higher-volume-fraction (0.1 vol. %) samples
shown in previous work.15,26

Beyond predicting single-particle dynamics, the model developed here can be used as a first-
order approximation to predict the probability of alignment in a multi-particle system where
particle-particle interaction is negligible. Suppose that the initial orientations of the particles follow
a uniform probability distribution on the surface of a unit hemisphere. For a given definition of
the alignment time ∆τ, the probability that the particles are aligned to or beyond the chosen final
orientation p(2)3 is

P =

 φ=2π
φ=0

 θ=arccos p(1)3
θ=0 sin θdθdφ φ=2π

φ=0

 θ=π/2
θ=0 sin θdθdφ

= 1 − p(1)
3 . (56)

FIG. 8. Evolution of p3 in rotating field at different ξ > 1 with φ0= 0. At ξ = 10 (the black dotted line), the microdisk
wobbles to follow the field. At ξ = 100 and ξ = 1000 (red dashed and blue solid lines, respectively), the microdisk “sees” the
field as a planar field, and the solutions collapse.
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FIG. 9. The alignment time, ∆τ, chosen from p
(1)
3 = 0.1 to p

(2)
3 = 0.9, versus dimensionless frequency ξ from both the

asymptotic solutions and the experiments. At high ξ, the experiments show that the dimensionless alignment time is constant.
At low ξ, the dimensionless alignment time grows with decreasing ξ, agreeing with the asymptotic expansion.

Thus, the particles whose initial orientation is smaller than the chosen p(1)3 are not considered to be
aligned after ∆τ.

We believe that variations in the experimental data result from the shape of the particle. In the
model, we assumed an axisymmetric disk, but the microdisks produced for this investigated are
not perfectly axisymmetric. If distortion from axisymmetry is present, a second axis of orientation
exists, and the particle will have a susceptibility to align this second orientation as well. The effect
of an extra axis of orientation in the plane is observed in the experiments. After the microdisks
are aligned into the field plane, they will continue to wobble in time with the rotating field. Other
possible sources of errors come from the assumptions of no random Brownian motion and no
translational motion via sedimentation.

V. CONCLUSION

Although the alignment of anisotropic particles has been previously studied experimentally
and theoretically, the full analytic solution to predict the orientation of magnetically susceptible
microdisks under a rotating magnetic field is presented in this work for the first time. Good agree-
ment with experimental results suggests that the model can be extended to composites with higher
volume fraction of particle dispersion and smaller particle size. The model also provides a direction
for optimizing the alignment process. In general, by keeping the dimensionless frequency ξ at a
high value, the processing alignment time, ∆t, can be reduced by increasing the field strength B.
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APPENDIX A: OBLATE SPHEROID RESISTANCE TENSOR

For any resistance tensor, Ci j, a corresponding mobility tensor, Mim, exists such that MimCi j =

δ jm.29 Multiplying both sides of Eq. (6) by Mim, the following expression is obtained for the
angular momentum:

ωm = Mimεi jkµ jBk − Mimεi jkpj
∂[kBT logΨ]

∂pk
. (A1)
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Substituting Eq. (A1) into Eq. (7) gives an explicit expression for the orientation rate of change,

dpℓ
dt
= Mimεℓmnεi jkµ jBkpn − Mimεℓmnεi jkpjpn

∂kBT logΨ
∂pk

. (A2)

If we force the mobility tensor to have the following form

Mim ≡ C1δim + C2pipm, (A3)

substitution into Eq. (A2) yields

dpℓ
dt
= C1εℓinεi jkµ jBkpn + C2εℓmnεi jkpmpnpiµ jBk

−C1εℓinεi jkpjpn
∂kBT logΨ

∂pk
− C2εℓmnεi jkpmpnpipj

∂kBT logΨ
∂pk

. (A4)

Since the product of a symmetric tensor and an anti-symmetric tensor is zero, the product εℓmnpmpn

is null, where εℓmn is anti-symmetric in m and n, while pmpn is symmetric in m and n. Thus, the
second and fourth terms of Eq. (A4) are zero, and only terms containing C1 remain. Therefore, only
the isotropic term of Mim, or equivalently Ci j, plays a role in the rotation of an oblate spheroid. We
can write

Ci j = ζrδi j, (A5)

where ζr is equal to 8πηa3YC from Eq. (8). If the aspect ratio is very large (ρ ≫ 1), then YC = 4
3π ,

and Ci j =
32ηa3

3 δi j.29

APPENDIX B: HIGH PECLÉT LIMIT

Next, we will derive the governing equation by substituting expressions for the induced mag-
netic dipole Eq. (2), the resistant tensor Eq. (A5), and the angular velocity Eq. (6) into Eq. (A4) to
obtain

dpi
dt
= −

(
χE
⊥ − χE

∥

)
V

µ0ζr
Bnpn(Bi − Bkpkpi) − kBT

ζr

∂ logΨ
∂pi

. (B1)

A “rotational Peclét number” is defined such that

Per =

(
χE
⊥ − χE

∥

)
V Bnpn (Bi − Bkpkpi)
µ0kBT

∼

(
χE
⊥ − χE

∥

)
V B2

µ0kBT
. (B2)

The Peclét number in this study is very high (O[104]). Thus, the torque caused by Brownian motion
can be neglected, and Eq. (B1) becomes Eq. (9).

APPENDIX C: SOLUTION TO ROTATING FIELD

To solve Eq. (25), separating the variables and integrating gives


du

sin 2u − ξ
=




1
ξ2 − 1

arctan


1 − ξ tan u
ξ2 − 1


, ifξ > 1,

− 1
cot u − 1

, if ξ = 1,

1

2


1 − ξ2
log



−ξ tan u + 1 −


1 − ξ2

−ξ tan u + 1 +


1 − ξ2


, if ξ < 1,

(C1)
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which provides the need for separate cases depending on the value of ξ.32 The solution to Eq. (25)
has the form

X = Dτ + X0, (C2)

as seen in Eqs. (30), (34), and (38), where D is a constant. Now, Eq. (26) can be integrated such that
dθ

sin 2θ
= −


1
2

cos2 udτ and

log[tan θ] = −


1
1 + tan2 u

dτ.
(C3)

Here
�
1 + tan2 u

�−1 is used instead of cos2 u, since Π and K are expressed as tan u, and the integrand
in Eq. (C3) can be transformed according to Eq. (28) or Eq. (36).

APPENDIX D: LOW-ξ EXPANSION

The alignment time appears to scale as ξ−2 at ξ ≪ 1. To validate the scaling constant, a Taylor
expansion around ξ = 0 on the low-ξ solution is necessary. Writing the Taylor expansion around
ξ = 0 for the Γ-terms gives

Γ1 =

(
λ2 − λ1ξ +

1
4
(3λ2 + λ0) ξ2 + O

�
ξ4�

)
exp


−τ

(
ξ2

2
+ O

�
ξ4�

)
, (D1)

Γ2 =

(
λ0 − λ1ξ +

1
4
(λ2 + 3λ0) ξ2 + O

�
ξ4�

) (
1 +

ξ2τ

2
+ O

�
ξ4�

)
exp [−2τ] , and (D2)

Γ3 =
�
2λ1ξ − (λ0 + λ2) ξ2 + O

�
ξ4�� exp [−τ] . (D3)

Because the exponentials in Γ2 and Γ3 decay much faster than the exponential decay in Γ1, the value
of Γ1 is much greater than the values of Γ2 and Γ3 when τ ≫ 1. Therefore, Eq. (40) can be simplified
to be

tan θ
tan θ0

≈ [Γ1]1/2. (D4)

Keeping the leading terms in Γ1 such that Γ1 ≈ λ2 exp

−τξ2

2


, Eq. (D4) becomes Eq. (47).
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