

A paper

A paper

presented at the

IIFET 2014

Australia

Conference,

7th - 11th, July,

2014

Evaluation of Feed-Type Choices and Performance of Fish Farming in Akure South Local Government Area of Ondo State, Nigeria

By Fatuase, A.I &

Ajibefun, I.; Bobola, O.M

Introduction Background Information

- Economic Importance of Fisheries and Aquaculture in Nigeria.
 - > Protein Requirement, Job Creation, Income Generation, Adding to GDP
- ➤ Demand-Supply gap
 - DD (1.5mMT); SS (0.51mMT); IMP (0.7mMT @ USD400m) –Vincent-Akpu (2013)
- World's fastest growing food production sector

Problem Statement

- Potential to Increase fish Production
- Low production level
- > Huge amount is spent in importing feeds
- Fish farmers could not afford imported feeds
- Let make use of our resource! cassava, groundnut, ²

Objectives:

- To ascertain socio-economic charateristics of the respondents
- To determine costs and returns of the fish farming
- To identify actual choice of feed-type employed by the farmers
- To determine factors that influence choice of feed-type employed by the respondents

MATERIALS AND METHODS

Analytical Tools

- Descriptive Statistics (such as frequency, %, table)
- Budgetary Analysis and Profitability Indicator Measures
- Multinomial Logit (MNL) Regression model
 - Model Specification

$$Y_i = f(X_i) \tag{1}$$

$$Prob\left(Y_{i} = \frac{j}{x_{i}}\right) = \frac{e^{\beta_{j}x_{i}}}{1 + \sum_{i=1}^{J} e^{\beta_{k}x_{i}}}, j = 0, 2 \dots J, \beta_{0} = 0$$
(2)

$$\delta_{j} = \frac{\delta P_{j}}{\delta x_{i}} = P_{j} \left[\beta_{j} - \sum_{k=0}^{J} P_{k} \beta_{k} \right] = P_{j} \left(\beta_{j} - \bar{\beta} \right) \tag{3}$$

Where:

$$Y_i = IFT (1); CLIFT (2); & LFT (3)$$

X_i = Age, marital status, income, education, experience, household size, pond size, fish price, cost of feeds & access to credit

RESULTS & DISCUSSION Socio-economic Characteristics of the Fish Farmers

	Variables	Majority (%)	Mean	Standard deviation
	Age	41 – 50 (46.9)	47.31	18.27
	Gender	Male (75.8)	-	-
	Househol d size	6 – 10 (48.3)	8.12	5.69
Asia to los	Marital status	Married (74.2)	-	-
	Fish farming experienc e	≤ 5 (45.0)	4.90	14.38
	Educatio nal level	Tertiary (35.8)	-	-

Socio-economic Charateristics Cont'd

Variables	Majority (%)
Type of fish	Juveniles (57.5)
cultured	
Water source	Stream/rivers
	(87.5)
Pond type	Earthen (85.8)
No. of ponds	4 – 6 ponds
	(45.0)
Source of credit	Personal
	savings (60.0)
Source of	Family (56.7)
labour	

Costs and Returns Analysis

N = 120

Variables/annum	Mean value in ₩ (%)
Total variable cost	280,304.31 (66.69)
Total fixed cost	140,018.21 (33.31)
Total cost of fish production	420,322.52 (100.00)
Total Revenue	812,112.67

Profitability measures

Gross margin (GM) = $TR - TVC = \frac{N}{5}31,808.36$ /annum

Profit(Π) = TR – TC = \mathbb{N} 391,790.15/annum

Benefit-cost-ratio (BCR) = TR/TC = 1.93

Expense structure ratio (ESR) = FC/VC = 0.50

% profit = $\Pi/TC \times 100 = 93\%$

Note: ₩163 is equivalent to 1USD

Fish Farmers' Preference for Feed Utilization

Reasons:

- ✓ Imported feed makes fishes grow rapidly and faster
- ✓ Floating pelletized feeds
- ✓ Rate of consumption and level of satisfaction
- ✓ Yield prediction
- ✓ Preservation/Expiring date
- ✓ High cost of feeds

Willingness to utilize Local Nigerian Feed Only

Results of marginal effects of the MNL model that determine the preference for feed types

Explanatory variables			Combined local and imported feed type (CLIFT)		
	Coefficient (P-value)	Marginal effects	Coefficient (P-value)	Marginal effects	
Age	-4.012 (0.123)	0.202	5.123 (0.101)	0.910	
Marital status	-0.183 (0.611)	-0.001	-0.231 (0.711)	-0.001	
Household income (₹)	6.23E-3* (0.049)	6.231	1.981 (0.101)	0.049	
Education	0.028* (0.010)	0.002	0.024** (0.002)	0.003	
Experience	0.588*(0.012)	0.043	0.036** (0.001)	0.007	
Household size	-0.026 (0.020)	-0.002	2.211 (0.101)	1.101	
Pond size	0.790* (0.041)	0.117	-0.567* (0.010)	-0.006	
Cost of feeds	3.412 (0.099)	0.071	-1.357* (0.037)	-0.009	
Fish price(N /kg)	0.044 (0.660)	0.003	1.193**(0.007)	0.006	
Access to credit	0.490* (0.031)	0.036	0.274 (0.144)	0.047	

Note: **significant at 1%, *significant at 5%; No.of observation = 120; LR chi-square (78) = 134.21**;

Log Likelihood = - 192.93; Pseudo- $R^2 = 0.271$

IFT= Imported feed type; CLIFT= Combine local and imported feed type; LFT = Local Nigerian feed type

Base category = LFT

CONCLUSION

- ➤ Based on the value of profitability measures, It reestablished the fact that Fish Farming is a lucrative venture that contributes to food security, poverty
- ➤ IFT was utilized mostly by the Fish Farmers➤ Majority are "WILLING TO GO FOR LFT" &

alleviation and the Nigerian economy.

- This is capable of creating more employment, augmenting income and improving the standard of living of the people.
- MNL Results: Edu., Expr. Incom., PondSiz., Credit ...

RECOMMENDATIONS

- Females need to be encouraged to participate in fish farming in the area as a means of augmenting their income and improve their standard of living.
- Making Credit Available, Affordable & Accessible
- Effort should be made to bring down the cost of feeds by exploring Local Nigerian feeds through well-funded researches.

Thanks for your attention

comments ??
Questions??

Acknowledgement: Many thanks to NORAD for a financial support that facilitated my attendance at this conference in Australia