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ABSTRACT

An idealized, linear model of the coastal ocean is used to assess the domain of influence of surface type data,
in particular how much information such data contain about the ocean state at depth and how such information
may be retrieved. The ultimate objective is to assess the feasibility of assimilation of real surface current data,
obtained from coastal radar measurements, into more realistic dynamical models. The linear model is used here
with a variational inverse assimilation scheme, which is optimal in the sense that under appropriate assumptions
about the errors, the maximum possible information is retrieved from the surface data. A comparison is made
between strongly and weakly constrained variational formulations. The use of a linear model permits significant
analytic progress. Analysis is presented for the solution of the inverse problem by expanding in terms of
representer functions, greatly reducing the dimension of the solution space without compromising the optimi-
zation. The representer functions also provide important information about the domain of influence of each data
point, about optimal location and resolution of the data points, about the error statistics of the inverse solution
itself, and how that depends upon the error statistics of the data and of the model. Finally, twin experiments
illustrate how well a known ocean state can be reconstructed from sampled data. Consideration of the statistics
of an ensemble of such twin experiments provides insight into the dependence of the inverse solution on the
choice of weights, on the data error, and on the sampling resolution.

1. Introduction

The capabilities of land-based high-frequency (HF)
radar systems to produce maps of surface currents in
coastal regions and the tremendous potential of these
measurements to increase understanding of coastal
ocean behavior are becoming increasingly well recog-
nized (e.g., see Paduan and Graber 1997; Kosro et al.
1997; and other papers in the Special Issue on High
Frequency Radars for Coastal Oceanography, Ocean-
ography, 10). Typically, these surface current maps ex-
tend over regions with horizontal scales of 20–50 km,
with resolution of 1–2 km, and are available at time
intervals of 20–60 min. Although the spatial and tem-
poral coverage of these measurements provide a great
amount of information on the state of the coastal ocean,
that information is limited to the surface. It is natural,
consequently, to enquire how that extensive surface in-
formation might be utilized together with a coastal
ocean circulation model to give more information about
the time-dependent subsurface flow. Motivated by that
consideration, Lewis et al. (1998) developed and applied
a nudging technique to assimilate HF radar surface cur-
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rent measurements into numerical ocean models. Here
we take an alternative, theoretical approach in an effort
to investigate some basic issues concerning assimilation
of surface current measurements.

To do this we consider an idealized linear model of
the coastal ocean and apply a formal inverse approach.
Our general objective is to determine how much infor-
mation at depth it is possible to obtain from knowledge
of surface currents. That an inverse method approach
is required stems from the ill-posed nature of the prob-
lem (illustrated in section 4 below) when knowledge of
surface currents is incorporated directly into the model.
One particular objective is to investigate exactly how
the inverse method resolves the ill-posedness and to
determine to what extent the resolution depends on the
choice of weights used in the inverse method. A related
issue is to determine how the choice of weights affect
the agreement of the inverse solution with a given,
known ocean state, in the case that the data used to
obtain the inverse solution was obtained from that
known state. In this example, knowledge of the surface
current field will be obtained from an exact solution of
the model equations and boundary conditions that form
the well-posed forward problem. The inverse calcula-
tion will then attempt to reconstruct the exact solution
of the forward problem when exact knowledge of one
boundary condition is discarded and replaced by the
additional knowledge of the surface current field.
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The machinery for inverse calculations is already well
established (e.g., Bennett 1992). However for most
problems of practical significance, the expressions are
too complicated to be solved analytically and numerical
methods must be used. The model used in this study
has the advantage that it allows analytic progress and
still represents two important physical features of the
coastal ocean: density stratification and friction, the lat-
ter through surface and bottom Ekman layers. One im-
portant feature that is not represented is realistic bottom
topography.

2. Formulation of the forward model

We wish to consider an idealized model of the coastal
ocean that represents enough physical features to be
relevant and yet is simple enough to allow analytic pro-
gress. To achieve this we follow Allen (1973) and con-
sider a two-dimensional, across-shelf slice of the ocean,
that is, a slice that contains vertical and offshore de-
pendence but no alongshore dependence. In particular
we consider a rectangular domain with uniform depth
H and offshore length L. The flow in such a domain is
forced by a given alongshore wind stress that induces
an across-shore Ekman transport and consequently an
interior flow field.

We start with the evolution equations that describe
an incompressible fluid satisfying the Boussinesq ap-
proximation on an f plane:

D 1 r
u 1 f k 3 u 5 2 =p 2 gk 1 F (2.1a)

Dt r r0 0

D
r 5 G (2.1b)

Dt

= · u 5 0, (2.1c)

where u 5 (u, y , w) is the velocity in (x, y, z) [ (off-
shore, alongshore, vertical) coordinate space, p is the
perturbation pressure, r is the density, r0 is a constant
reference density, F and G represent turbulent exchange
processes, f is the Coriolis parameter, g is gravity, and
k 5 (0, 0, 1).

We nondimensionalize the independent variables, x,
y, z, t, by

(x, y) 5 L(x*, y*), z 5 Hz*, t 5 f 21t*,

and the dependent variables u, y , w, p, r by

u 5 Uu*, y 5 Uy*, w 5 (H/L)Uw*,

UfL
r 5 r 1 r(z) 1 r r*0 0 gH

1
p 5 2 r 1 r(z) gHz* 1 r UfLp*,0 0[ ]2

where U is a characteristic horizontal velocity and r(z)
is a vertical density structure that depends linearly on

z. It is assumed that U depends on the magnitude of the
applied wind stress forcing through U 5 t 0/r0 fHEV,
where t 0 is a characteristic (dimensional) wind stress
and EV 5 AV/( fH 2) is the vertical Ekman number in
which AV is a constant vertical eddy coefficient.

To simplify (2.1a–c) we assume that the aspect ratio
H/L K 1 so the motion is in approximate hydrostatic
balance; that the Rossby number, Ro 5 U/ fL, is small
so that nonlinear terms can be neglected; and that the
horizontal and vertical Ekman numbers, EH and EV are
small with EH K EV K 1 so viscous terms can be ne-
glected (outside of surface and bottom boundary layers).
We also assume that there is no alongshore, y, depen-
dence. The resulting equations are (dropping the aster-
isks)

u 2 y 5 2p (2.3a)t x

y 1 u 5 0 (2.3b)t

r 2 Sw 5 0 (2.3c)t

u 1 w 5 0 (2.3d)x z

0 5 2p 2 r, (2.3e)z

where S 5 N 2H 2/ f 2L2 is a stratification parameter and
N 2 5 2gr z/r0 is a constant.

The model is forced with a wind stress that varies
harmonically in time with nondimensional frequency v
and nondimensional amplitude t(x). The time depen-
dence of all the model fields is also therefore harmonic
with frequency v. We consider only frequencies much
smaller than the inertial frequency, v K 1. Balancing
the terms in (2.3b) gives u 5 O(v)y , and consequently
(2.3a) becomes

y 5 px. (2.3a9)

With the above assumptions the system (2.3a9,b–e)
can be rewritten as a single equation for p(x, z, t):

]
21(p 1 S p ) 5 0. (2.4)xx zz]t

The boundary conditions at the coast (x 5 0) and at
the offshore boundary (x 5 1) are no normal flow, u 5
0. From (2.3a,b) with the above harmonic time-depen-
dence, u 5 0 is equivalent to the condition px 5 0. The
boundary conditions at the surface (z 5 1) and bottom
(z 5 0) must take into account the surface and bottom
Ekman layers of depth O( ) in the limit EV K 1.1/2E V

Under the assumption v K 1 the Ekman layers may be
regarded as quasi steady and their solutions give bound-
ary conditions on the vertical velocity, w (Pedlosky
1987). At the surface, a rigid lid is assumed and the
boundary condition is w 5 EVt x, where t(x) is assumed
to satisfy t(0) 5 1, t(1) 5 0. At the bottom, the Ekman
layer resulting from the no slip condition gives w 5

y x.1/2E V

Because of the approximations involved in repre-
senting the surface and bottom Ekman layers, modifi-
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cation of the coastal and offshore boundary conditions
is required. In particular, a concentrated inflow is re-
quired at (x, z) 5 (0, 1) so that the boundary condition
becomes u 5 2EVd(1 2 z). Note that no such modi-
fication is required at the offshore boundary, x 5 1,
because t(1) 5 0.

Reformulating the boundary conditions on w in terms
of pz using (2.3a9,c,e) and with the notation change
p(x, z, t) → p(x, z)eivt for all dependent variables, we
obtain

ivp 5 0 at x 5 1,x

ivp 5 E d(1 2 z) at x 5 0, (2.5a)x V

1/2ivp 5 2SE p at z 5 0,z V xx

ivp 5 2SE t at z 5 1 (2.5b)z V x

together with

pxx 1 S21pzz 5 0. (2.6)

Although it is possible to solve (2.6), (2.5a,b) directly,
it is more instructive to consider the solution obtained
by boundary layer methods, thereby isolating the rele-
vant coastal dynamics (Allen 1973). In particular, when
S K 1, there is a natural scale separation into an inner
(coastal) region with horizontal length scale O(S 1/2),
which is the dimensionless Rossby radius, and an outer
(open ocean) region with horizontal length scale O(1).
In the outer region (2.3e) becomes at leading order

pz 5 0, (2.7)

decoupling (2.3c) from the remaining equations. The
relevant boundary conditions for x 5 O(1) are the sur-
face and bottom conditions:

w 5 y x at z 5 0, w 5 EVt x at z 5 1.1/2E V

(2.8)

In terms of the velocities, the solution u0, y 0, w0 for x
5 O(1) satisfying the surface and bottom boundary con-
ditions is

iv
u 52E t (2.9a)0 V 1/2E 1 ivV

1
y 5 E t (2.9b)0 V 1/2E 1 ivV

1/2E 1 ivzVw 5 E t . (2.9c)0 V x 1/2E 1 ivV

We have assumed implicitly that the vertically integrated
u velocity is exactly balanced by the transport in the
surface and bottom Ekman layers. Since t(1) 5 0 the
solution (2.9a–c) satisfies identically the boundary con-
dition at the vertical offshore wall, x 5 1, so there is
no need for an additional boundary layer here. The
boundary condition at the vertical coast, x 5 0, on the
other hand, is not satisfied since t(0) 5 1.

To satisfy the boundary condition at x 5 0 we use a
boundary layer correction that satisfies the equations
(2.3a9,b–e) for x 5 O(S 1/2) K 1 and such that at x 5
0 the across-shore correction velocity, u9, balances both
the solution u0 and the transport due to the surface and
bottom Ekman layers. Such a balance will ensure no
normal flow integrated over the full vertical extent of
the coastal boundary, including the Ekman transports.
In fact, it turns out that the transport at the coast due
to the bottom Ekman layer is zero because at the coast/
bottom corner u(0, 0) 5 0 implies y t(0, 0) 5 0 and thus
y(0, 0) 5 0. It is therefore necessary to consider only
the surface Ekman layer transport at the coast. Thus the
boundary condition for the across-shore inner region
correction velocity is

iv
u 5 E 2 E d(1 2 z), at x 5 0. (2.10)V V1/2E 1 ivV

We now make the following rescaling, using primes
to denote variables in the inner region:

1/2 1/2x 5 S x9, z 5 z9, v 5 E v9,V

1/2 21/2u 5 E u9, y 5 E y9, w 5 E S w9,V V V

1/2 1/2 1/2 1/2r 5 E S r9, p 5 E S p9.V V

Under this scaling, the governing equations in the inner
region, or coastal boundary layer, become

2y9 5 2p9 (2.12a)x9

iv9y9 1 u9 5 0 (2.12b)

iv9r9 2 w9 5 0 (2.12c)

u9 1 w9 5 0 (2.12d)x9 z9

0 5 2p9 2 r9, (2.12e)z9

and the equation for the pressure becomes

1 5 0.p9 p9x9x9 z9z9 (2.13)

The relevant boundary conditions become

iv9
iv9p9 5 1 d(1 2 z9) at x9 5 0,x9 1 1 iv9

iv9p9 → 0 at x9 → `; (2.14a)x9

iv9p9 5 2p9 at z9 5 0,z9 x9x9

iv9p9 5 0 at z9 5 1. (2.14b)z9

Here x9 → ` represents the limit in which the outer
solution is valid.

3. The inner solution

From here on we shall be concerned mainly with the
flow in the coastal boundary layer, or inner region.
Matching the flow in the outer region, with the flow in
the inner region at the coast provides the coastal bound-
ary condition for the inner region solution, as described



2362 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

above. The domain of the inner region is specified as
follows. The vertical coordinate is z9 with z9 5 0 at the
bottom and z9 5 1 at the surface. The across-shore co-
ordinate is x9 with x9 5 0 at the coast and x9 → ` in
the outer region.

Rather than solve (2.13), (2.14a,b) directly, it is more
convenient to work in one or other of the two frequency
limits, v9 k 1 or v9 K 1. In the following we shall
restrict attention to the case v9 k 1, which corresponds
to a surface Ekman layer transport that is balanced by
an interior across-shelf transport. The balance is on a
shorter timescale than the spindown timescale for the
interior flow, so no bottom Ekman layer is present. (The
resulting implied frequency range for v is 1 k v k

.) In this case, taking the x derivative of (2.13), and1/2E V

absorbing the factor of iv9 in (2.14a,b) by the rescaling
y 5 px 5 iv9 and dropping the primes on the otherp9x
variables, we obtain

y 1 y 5 0 (3.1)xx zz

y 5 21 1 d(1 2 z) at x 5 0,

y → 0 at x → `,

y 5 0 at z 5 0, 1 (3.2)z

with the solution, obtained by Fourier expanding in the
vertical,

`

n 2np xy 5 2 (21) e cosnp z (3.3a)O
n51

2p x2e 2 cosp z
5 . (3.3b)

coshpx 1 cosp z

Note that r, and hence w, can be recovered from (3.3a)
by use of the relation y z 5 2rx and the condition r →
0 at x → `.

In section 7 we will use a version of (3.3a) that is
not singular at the coast/surface corner. Namely, we re-
place the coastal boundary condition in (3.2) with a
limiting form y(0, z) 5 21 1 d (k)(1 2 z), where

 1k, if |z| #
k(k)d (z) 5 (3.4)

0, otherwise.

The solution (3.3a) then becomes
` k np

(k) n 2np xy 5 22 (21) sin e cosnpz. (3.5)O
np kn51

This solution y (k) will be considered as the baroclinic
part of the ‘‘true ocean state’’ used in section 7. See
also appendix A for a discussion of how the barotropic
and baroclinic parts of any given data may be separated
in this boundary layer formulation.

4. The ill-posed data problem

Now suppose that we have additional surface current
information, or data. Real data obtained from HF radar

measurements typically represents currents in the top
meter of water. In this study, however, the relevant sur-
face boundary condition requires knowledge of the sur-
face currents below the Ekman layer. We assume here,
therefore, that the Ekman layer can be solved exactly
to provide surface currents below the Ekman layer in
terms of the measured surface currents above. We also
assume that data for the inner variables is provided over
the entire inner region, that is, out to distances greater
than the Rossby radius. Since by (2.12b) and the as-
sumption v9 k 1 we have that y k u in the inner region,
we obtain an additional boundary condition for (3.1) of
the form

y 5 d(x) at z 5 1, (4.1)

which makes the problem overspecified. When indexing
data (and the data representers in sections 5–7 below),
we will typically use the Greek letters x, h, etc., to
denote the independent variable along the surface, with
x 5 0 at the coast and x → ` in the outer region.

Recall now that the coastal boundary condition on y x

was derived from matching the inner region across-
shore velocity u9 with the outer region across-shore ve-
locity u0. Thus the coastal boundary condition for the
inner problem is based upon what we know about the
velocity field in the outer region, and in practice it is
likely that this information will be only poorly known.
Thus, the coastal boundary condition will be the least
reliable of all the boundary conditions for the inner
problem and therefore will be the natural choice to relax.
If we completely discard the boundary condition at the
coast in (3.2) the problem becomes one of solving an
elliptic equation, (3.1), with both Dirichlet and Neu-
mann conditions on one boundary segment and no con-
ditions on another boundary segment. Such a problem
is typically ill-posed: if a unique solution exists, then
it is unstable to small perturbations of the boundary
conditions (Hadamard 1952). To illustrate, we formally
construct the ill-posed solution to (3.1) with the bound-
ary conditions (3.2) and (4.1), but omitting the boundary
condition at x 5 0, and demonstrate that the solution is
unstable. In terms of y , we have

2¹ y 5 0, (4.2)

y → 0 at x → `, y 5 0 at z 5 0, 1 (4.3a)z

y 5 d(x) at z 5 1. (4.3b)

The solution is
`

2np xy(x, z) 5 B e cosnpz, (4.4)O n
n51

where the Bn must satisfy
`

2npx nB e (21) 5 d(x). (4.5)O n
n51

We now require that d(x) is finite and continuous for x
∈ [0, `) so that the sequence of partial sums of the form
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(4.5) converge uniformly in x. Further, we assume that
the barotropic component of the data has already been
removed (see appendix A) and so we require d(x) → 0
as x → `. Multiplying (4.5) by e2mpx and integrating
over [0, `) gives

`` 1
2mp xB9 5 d(x)e dx 5 d̃ , (4.6)O n E mn 1 mn51 0

where 5 Bn(21)n/p. This can be written as an infiniteB9n
matrix product

HB9 5 d̃, (4.7)

where B9 5 ( , , · · ·)T, d̃ 5 (d̃1, d̃2, · · ·)T, the su-B9 B91 2

perscript T denotes transpose, and H is the infinite Hil-
bert matrix, given by Hmn 5 (m 1 n)21, that is,

1 1 1 

2 3 4

1 1 1 
3 4 5 H 5 . (4.8)
1 1 1

4 5 6 
5 

One of the properties of the infinite Hilbert matrix is
that it does not have a formal matrix inverse, so direct
inversion of (4.7) is not possible. In fact even for the
finite dimensional N 3 N matrix, which has a well-
defined matrix inverse, [H (N )]21, the determinant of H (N )

tends rapidly to zero as N becomes even moderately
large; for example, for N 5 10, det(H (10)) ø 10258, which
is beyond the limit of current computer accuracy. We
note however that H can be written in the form H 5
AAT, where A is a lower triangular infinite matrix with
a well-defined formal inverse E 5 A21 (e.g., Choi 1983).
It follows that

HB9 5 d̃ ⇒ B9 5 ET(Ed̃), (4.9)

where the formal matrix multiplications on the rhs are
well-defined. (Note that ETE is not defined and that in-
finite matrix multiplication is not associative.) Thus al-
though (4.9) implies a unique solution of (4.7), the lack
of a well-defined matrix inverse of H means that the
solution must necessarily be unstable to small pertur-
bations of the data, d̃. The instability is a manifestation
of the ill-posed nature of solving an elliptic equation
with both Dirichlet and Newman boundary conditions
on a single boundary segment.

5. Resolution by a variational formulation
(strongly constrained)

To resolve difficulties associated with ill-posedness,
while still taking into account the extra information
available from knowledge of the surface velocity, we
consider formulation of an inverse problem. We assume

that the surface data is inexact, that is, that there are
data errors and that we also have some inexact infor-
mation about the across-shore velocity field at the coast-
al boundary. We then seek an ‘‘inverse solution’’ that
minimizes a measure of the data errors on the surface
and the velocity field errors at the coast. The actual form
of the measure, for example the relative importance, or
‘‘weight,’’ given to the surface data compared to the
coastal boundary condition, or the nature of the coastal
boundary condition itself, will depend upon our partic-
ular requirements for the inverse solution.

One possibility is that the across-shore velocity at the
coastal boundary is in some sense small. Recalling
(2.12b), this gives a boundary condition on the along-
shore velocity y of the form

y 5 0 1 «(z) at x 5 0, (5.1)

where « represents the errors in this assumption. We
then minimize a ‘‘penalty functional,’’ T [y], that de-
pends on the data errors d 5 y 2 d at the surface and
on the boundary condition error « at the coast:

1 `

2 2T [y] 5 w dz9« 1 w dxd , (5.2)c E d E
0 0

where wc and wd are weights and where the terminology
data errors includes observational errors as well as other
sources of model–data misfit.

In summary, our inverse solution is the unique so-
lution to the following system

2¹ y 5 0, (5.3)

y 5 «(z) at x 5 0,

y → 0 at x → `,

y 5 0 at z 5 0, 1 (5.4a)z

y 5 d(x) 1 d(x) at z 5 1 (5.4b)

that minimizes the penalty functional (5.2). Note that
for consistency we make the further assumption on «
that

1

«(z) dz 5 0 (5.5)E
0

and the assumptions on the data and data error that d
→ 0 and d → 0 as x → `. This is equivalent to con-
sidering only the baroclinic part of the data and resulting
inverse solution. See appendix A for details of how the
barotropic and baroclinic parts are separated.

The data error at the surface, d(x), and the value of
y at the coast, «(z) are not known a priori, but rather
are uniquely determined by requiring that the inverse
solution minimizes T . Note that T represents the de-
parture in a weighted least squares sense of the inverse
solution from the surface data with weight wd, and from
the coastal information with weight wc. Generalization
of the weights to take into account the covariances of
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data or boundary condition errors at one point with those
at another point complicates the analysis and is not es-
sential to the main theme of this paper.

In the above formulation we treat the model equation
(5.3) and the other boundary conditions at x → `, z 5
0 and z 5 1 in (5.4a) as exact, motivated by the specific
objective of determining how the inverse problem re-
solves difficulties with ill-posedness discussed in sec-
tion 4. As a result, the inverse problem is strongly con-
strained by the model equations. It is possible to relax
these conditions by the addition of suitable terms to the
penalty functional to allow for errors in the model equa-
tions. This weak constraint generalization, in which
model errors are included, is considered in section 6.

Our method of solution of the inverse problem utilizes
an expansion of the inverse solution in terms of ‘‘rep-
resenter functions’’ (see, e.g., Bennett 1992, sections
5.4–5.5 for an introduction). In addition to providing
the solution, the representer functions and the associated
representer matrix provides information about the range
of influence of data at a particular location. An alter-
native method of solution, which utilizes a Fourier series
expansion, is outlined in appendix A. Although it pro-
vides less information about data influence, it enables
a more direct minimization of T without the need for
functional variation.

The penalty function, T , is completely determined by
the value of y at the coast, x 5 0. That is, given «(z)
5 y(0, z), and temporarily dropping the other condition
(5.4b), we have a well-defined problem with a unique
solution. We call this well-defined problem, the unde-
termined forward problem, undetermined because we
do not yet know which realization of « will lead to the
minimization of T . Explicitly, the undetermined forward
problem is specified uniquely by (5.3) with (5.4a). Given
a particular realization of « we uniquely determine
y(x, z) and hence the y(x, 1) that appears in the second
integral of (5.2). [Note that the forward problem in the
usual sense is given by setting « [ 0 and has solution
y(x, z) [ 0.]

We can construct the solution to (5.3), (5.4a) in terms
of the Green’s function:

1

y(x, z) 5 dz9g(x, z; z9)«(z9), (5.6)E
0

where the Green’s function g(x, z; z9) satisfies

2¹ g 5 0 (5.7)

g 5 d(z 2 z9) 2 1 at x 5 0,

g → 0 at x → `,

g 5 0 at z 5 0, 1. (5.8)z

The system (5.7, 5.8) can be solved analytically:

`

2np xg(x, z; z9) 5 2 e cosnp z cosnp z9 (5.9a)O
n51

2p x1 cosp(z 1 z9) 2 e
5 [2 coshpx 2 cosp(z 1 z9)

2p xcosp(z 2 z9) 2 e
1 . (5.9b)]coshpx 2 cosp(z 2 z9)

We now establish a set of functions, the representer
functions, that will provide a natural basis in which to
express the solution that minimizes the penalty func-
tional. First we define an inner product over the coastal
domain (0, z9) by

1

^u, y& 5 dz9u(z9)y(z9), (5.10)c E
0

which enables us to write (5.6) as

y(x, z) 5 ^g(x, z; z9), «(z9)& 5 ^g(x, z; ·), «& . (5.11)c c

The inner product provides a Hilbert space structure, H,
over the vector space of continuous functions on [0, 1].
Setting z 5 1 in (5.11) shows that for each fixed x the
function r0(x; z9) 5 g(x, 1; z9) (an element of the Hil-
bert space of coastal boundary conditions H) is the rep-
resenter associated with the surface data point x (e.g.,
Renardy and Rogers 1993, section 6.3). That is, for x
∈ [0, `), r0(x; z9) is the unique function in H satisfying

y(x, 1) 5 ^r0(x; ·), «&c, (5.12)

for arbitrary « in H, with y and « related through (5.3)
and (5.4a). Thus, (5.2) can be rewritten using the inner
product and representer functions in the integrand:

T [y] 5 T [«]
`

25 w ^«, «& 1 w dx |^r (x ; ·), «& 2 d(x)| .c c d E 0 c

0

(5.13)

With the penalty functional written in the form (5.13),
it can be shown (Bennett 1992; or appendix B here)
that the undetermined boundary condition «(z) that min-
imizes T [«] can be written in the form

`

«(z) 5 dxn(x)r (x, z), (5.14)E 0

0

where n(x) satisfies
`

dxn(x)[R(x, n) 1 cd(x 2 h)] 5 d(h), (5.15)E
0

with the representer kernel R(x, h) defined by

R(x, h) 5 ^r0(x, ·), r0(h, ·)&c, (5.16)

and where c 5 wc/wd. The analysis leading to this result
is a straightforward extension of that described in Ben-
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nett (1992), from the case with discrete data to the case
of continuous data. For completeness, we outline the
procedure in appendix B; see also Bennett (1992, chap-
ter 8). In (5.14) and (5.15) we have used the fact that
the forward solution, that is, the solution to the system
(5.3), (5.4a) with e [ 0, is identically zero. This is in
accordance with only assuming that the value of y on
the coast is small and assuming nothing about the ver-
tical structure of y on the coast.

As noted above, the solution in the full model domain
is completely determined once «(z) is known. It follows
from (5.14) and (5.6) that the unique inverse solution

(x, z) that minimizes (5.2) and satisfies (5.3)–(5.5) isŷ

`

ŷ(x, z) 5 dxn(x)r (x ; x, z), (5.17)E c

0

where we define

rc(x; x, z) 5 ^g(x, z; ·), r0(x, ·)&c. (5.18)

Note that rc(x; x, z) is just the solution to (5.3) with the
coastal boundary condition in (5.4a) set to r0(x, z). For
consistency with the weak constraint case considered in
section 6 we refer to the functions rc(x; x, z) as the
representers, although more precisely the designation
should be applied to the closely related functions r0(x;
z).

With the explicit expression (5.9a) for the Green’s
function, (5.18) and (5.16) give respectively

`

2np (x1x) nr (x ; x, z) 5 2 e (21) cosnp z (5.19a)Oc
n51

2p (x1x)2e 2 cosp z
5 , (5.19b)

coshp(x 1 x) 1 cosp z
`

2np (x1h)R(x, h) 5 2 e (5.20a)O
n51

2p (x1h)e
5 2 . (5.20b)

2p (x1h)1 2 e

The representer functions provide a useful indication of
the relative influence of data at a particular location on
the inverse solution. For example, for a given x, rela-
tively large values of rc(x; x, z) indicate that the inverse
solution has significant dependence on the data at x,
whereas near-zero values of rc(x; x, z) indicate that the
solution has negligible dependence on the data at x; that
is, the data at x do not influence the solution at locations
where rc(x; x, z) is small. Further discussion is given in
section 7a.

A closed form analytic solution for the inverse so-
lution, (x, z), requires the determination of the func-ŷ
tion n(x) and hence the inversion of the integral equa-
tion (5.15). The problem of the inversion of (5.15)
can be reduced to a problem involving an infinite ma-
trix. The approach is to consider the Fourier series

representation of the inverse solution (5.17), that is,
to write

`

n 2np xŷ(x, z) 5 y (21) e cosnpz, (5.21)O n
n51

where the factor of (21)n has been included for later
convenience. Substituting the expression (5.19a) for
rc(x; x, z) into the solution (5.17) we have

` `

2np (x1x) nŷ(x, z) 5 dxn(x)2 e (21) cosnpz. (5.22)OE
n510

Since the series is uniformly convergent in x, we can
exchange integral and sum. Comparing (5.21) and (5.22)
we see that

`

2npxy 5 2 dxn(x)e . (5.23)n E
0

Using (5.20a), (5.15) is

` `

2np (x1x)dxn(x) 2 e 1 cd(x 2 h) 5 d(h). (5.24)OE [ ]n510

Multiplying both sides by e2mph and integrating over
[0, `) with respect to h gives

`` 1
2npx2 dxn(x)e (5.25)O E(m 1 n)pn51 0

` `

2mpx 2mph1 c dxn(x)e 5 dhd(h)eE E
0 0

[ d̃ . (5.26)m

Finally, substituting y n from (5.23) for the integrals on
the lhs of (5.25) gives

` 1 c
1 d y 5 d̃ . (5.27)O mn n m[ ](m 1 n)p 2n51

As in section 4, this can be written as an infinite
matrix product:

(H 1 C)y 5 pd, (5.28)

where C is defined by

p w pcC 5 cd 5 dmn mn mn1 22 w 2d

and otherwise with the same notation convention as
section 4. The difference here is that the infinite ma-
trix, H 1 C, has a well-defined inverse because of the
extra diagonal entries. Thus (5.28) can be inverted to
give an expression for y and therefore for each y n ,
that is stable to small perturbations of d̃. In the limit
of infinite data weight, c 5 wc /wd → 0 and the ill-
posed expression (4.7) is recovered. In the limit of
zero data weight, c → ` and we have y n [ 0; that
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is, the velocity at the coast, «, is minimized uncon-
ditionally to zero.

6. The weakly constrained variational problem

We now consider a variational formulation that takes
into account the errors in the model dynamics. As a
notational shorthand we use the following convention
for integrations over the whole domain:

` 1

u 5 dx dzu(x, z). (6.1)E E E
D 0 0

Similarly, integrations over the surface are written
#S u 5 dx u(x, 1) and integrations over the coast`# 0

are written #C u 5 dz u(0, z). In cases of ambiguity,1# 0

we use subscripts to indicate the variable of integra-
tion: Ku 5 # S dh K(x, h) u(h, 1) 5 dh`# #S 0h

K(x, h)u(h, 1).
The simplest approach for a weakly constrained

variational problem, allowing for model errors, is to
use the system (5.3) and (5.4a,b) but with ¹ 2 y 5 0
replaced by

¹2y 5 w (6.2)

and then to minimize the penalty functional defined by

2 2 2T [y] 5 w w 1 w « 1 w d . (6.3)m E c E d E
D C S

This provides the solution closest to the exact model,ŷ
the coastal boundary condition and the data. One draw-
back with this formulation is that by representing all the
different model errors in the single scalar w our inverse
solution only provides us with the alongshore velocity
field and we cannot recover the other fields self-con-ŷ
sistently. (See appendix C for discussion of an alter-
native approach.) Since we can achieve our objective
involving comparison of the strong and weak constraint
formulations by considering the alongshore velocity
alone we adopt the simplest approach.

Thus, the inverse solution is the unique solution to
(6.2) with boundary conditions

y → 0 at x → `,

y 5 0 at z 5 0, 1; (6.4a)z

y 5 «(z) at x 5 0,

y 5 d(x) 1 d(x) at z 5 1 (6.4b)

that minimizes (6.3).
Consistent with our treatment of the strong constraint

problem, we note that we can treat the barotropic and
baroclinic parts separately and insist upon the further
conditions

1 1

«(z) dz 5 0 and w(x, z) dz 5 0, (6.5)E E
0 0

for every x.

The method of solution is similar to that used in sec-
tion 5 for the strong constraint problem. First we define
an inner product by

2 2(u, y) 5 w (¹ u)(¹ y) 1 w uy (6.6)m E c E
D C

so that we can write T as

2T [y] 5 (y , y) 1 w (y 2 d) . (6.7)d E
S

By a procedure similar to that used in section 5, outlined
in appendix B, the solution that minimizes (6.7) is then
given by

ŷ 5 nr, (6.8)E
Sx

where r(x) 5 r(x; x, z), defined uniquely by

y(x, 1) 5 (r(x; ·), y), (6.9)

is the representer associated with the data point (x, z)
5 (x, 1), and where n 5 n(x,) are the representer co-
efficients satisfying

21n(h)[R(h, x) 1 w d(h 2 x)] 5 d(x). (6.10)E d

Sh

Here R 5 R(x, h) is the representer kernel defined by

R(x, h) 5 (r(x; ·), r(h; ·)) 5 r(x; h, 1). (6.11)

With the restrictions (6.5) it can be shown (appendix
B) that the representer functions, r(x), defined by (6.9)
satisfy the following system

2 21 †¹ r 5 w r (6.12)m

21 †r 5 2w r at x 5 0, r → 0 at x → `,c x

r 5 0 at z 5 0, 1, (6.13)z

where the adjoint representer functions, r†, satisfy
2 †¹ r 5 d(x 2 x)[d(1 2 z) 2 1] (6.14)

† †r 5 0 at x 5 0, r → 0 at x → `,
†r 5 0 at z 5 0, 1. (6.15)z

As in section 5 we define the undetermined forward
problem by the system (6.2) with the first four boundary
conditions of (6.4a,b), that is without the boundary con-
dition associated with the data. Again, this system has
a solution in terms of a Green’s function:

y(x, z) 5 dx9 dz9G(x, z; x9, z9)w(x9, z9)E
D

2 dz9G (x, z; 0, z9)«(z9), (6.16)E x9

C

where the Green’s function, G(x, z; x9, z9), satisfies
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2¹ G 5 d(x 2 x9)[d(z 2 z9) 2 1] (6.17)

G 5 0 at x 5 0, G → 0 at x → `,

G 5 0 at z 5 0, 1. (6.18)z

Note that the strong constraint solution (5.6) is recov-
ered in the special special case w 5 0, with the iden-
tification Gx9(x, z; 0, z9) 5 2 g(x, z; z9).

Comparison of the Green’s function system (6.17),
(6.18) with the adjoint representer system (6.14), (6.15)
shows that the adjoint representer functions satisfy

r†(x; x, z) 5 G(x, z; x, 1). (6.19)

Similarly, comparison of the undetermined forward
problem (6.2), (6.4a,b) with the representer system
(6.12), (6.13) shows that the representer functions can
be written, analogously to (6.16), in the form

21 †r(x ; x, z) 5 w dx9dz9G(x, z; x9, z9)r (x ; x9, z9)m E
D

21 †1 w dz9G (x, z; 0, z9)r (x ; 0, z9).c E x9 x9

C

(6.20)

Substituting (6.19) in (6.20) gives

21r(x ; x, z) 5 w dx9dz9G(x, z; x9, z9)G(x9, z9; x, 1)m E
D

211 w dz9G (x, z; 0, z9)G (0, z9; x, 1).c E x9 x9

C

(6.21)

Finally, the representer kernel defined in (6.11) can be
expressed as

21R(x, h) 5 w dx9dz9G(h, 1; x9, z9)G(x9, z9; x, 1)m E
D

211 w dz9G (h, 1; 0, z9)G (0, z9; x, 1).c E x9 x9

C

(6.22)

As in section 5, the Green’s function has a solution
in terms of a Fourier cosine series:

G(x, z; x9, z9)
` 1

2np (x1x9) 2np zx2x9z5 (e 2 e ) cosnp z cosnp z9,O
npn51

(6.23)

which leads to the following expressions for r(x; x, z)
and R(x, h):

` n(21) 1 1
21 2np (x1x) 2np zx2x zr(x ; x, z) 5 w 2 1 (x 1 x) e 1 1 |x 2 x | e cosnp zOm 2 2 1 2 1 2[ ]2n p np npn51

`

21 n 2np (x1x)1 w 2(21) e cosnpz, (6.24)Oc
n51

21 21R(x, h) 5 w R (x, h) 1 w R (x, h), (6.25)m m c c

where

` 1 1 1
2np (x1h) 2npzx2h zR (x, h) 5 2 1 (x 1 h) e 1 1 |x 2 h| e (6.26)Om 2 2 1 2 1 2[ ]2n p np npn51

`

2np (x1h)R (x, h) 5 2e . (6.27)Oc
n51

With the above expressions for r(x) and R(x, h), the
inverse solution is obtained by the inversion of theŷ
integral equation (6.10) for the representer coefficients
and the evaluation of (6.8). Because the expressions
above arising from the weak constraint formulation are
more complicated than those arising from the strong
constraint, a decomposition into an infinite matrix equa-
tion as in section 5 is no longer feasible.

Note how the addition of the model errors has mod-
ified the properties of the representer functions. Because

of the linearity of the inverse problem, the representer
function (6.24) is the sum of two separate terms: the
first arising from the errors in the model and the second
arising from the errors in the coastal boundary condi-
tion. The second term is thus the same as the representer
function obtained with the strong constraint formulation
in section 5, given by (5.19a). In the limit of infinite
model weight, wm → ` the representer function obtained
with the weak constraint approaches that obtained with
the strong constraint.
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FIG. 1. (Normalized) representer functions for surface data located at an offshore distance of x 5 0.2
(a–d) and x 5 0.5 (e–h), for different values of the ratio of model and coastal boundary condition error
weights, wm/wc: (a, e) is the strong constraint limit wm/wc → `, the remainder are for the weak constraint
as follows: (b, f ) wm/wc 5 0.1; (c, g) wm/wc 5 0.01; (d, h) wm/wc 5 0. Solid lines denote positive values,
dashed denote negative, and the contour interval is 0.1 in each case.

7. Properties of the inverse solution

In this section we look at the dependence of the in-
verse solution on the choice of weights, the data array,
and the differences between the strong and weak con-
straint formulations. Two particular aspects are of in-
terest: the success with which the velocity field at depth
can be constructed from the surface data and guidance
for the correct choice of weights in the absence of ex-
plicit prior error statistics. We examine these both by
considering the spectral decomposition of the repre-
senter matrices and by constructing suitable twin ex-
periments, in which we use synthetic surface data gen-
erated from a known ocean state.

a. Comparison of the strong and the weak
formulations

Typical representer functions, as functions of x and
z, for the particular cases x 5 0.2 and x 5 0.5, are
shown in Fig. 1. The representers also depend on the
ratio of the weights wm and wc through (6.24). In par-
ticular, the special case of the strong constraint, with
wm/wc → ` is shown in Figs. 1a,e, and different ex-
amples of the weak constraint are shown in Figs. 1b–d
and Figs. 1f–h.

The representers have a useful interpretation: for each
data point they tell us where that data point has greatest
influence on the inverse solution. Specifically, they may
be identified as the covariances of points at the data
locations with points in the rest of the domain, when
the weights in the penalty functional are taken to be the
inverse covariances of the error terms in the undeter-
mined forward model (e.g., Bennett 1992). Using spa-
tially uncorrelated weights, as we do here, corresponds
to assuming white noise error covariances in the un-
determined forward problem. Although, in general, the
weights should contain information about spatial cor-
relations, the use of uncorrelated weights here, and the
corresponding reduction in the number of parameters,
allows us to illustrate more clearly the properties of the
inverse solution.

Consider first the strong constraint. Notice that the
greatest influence of the data at x is on the values of
the inverse solution at the coast rather than the values
at the data point itself, as might be expected. This is a
consequence of the strong constraint of exact model
equations, which requires that all solutions must decay
exponentially from the coast. Thus the influence of data
must necessarily be greatest at the coast. Also notice
that for x 5 0.2, that is for a data point near the coast,
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the influence of the data on the inverse solution is greater
near the surface than at depth, whereas for x 5 0.5 the
influence is similar at the surface and at depth. Figures
1a,e have another interpretation. Since the dependence
of rc(x; x, z) on x and x is the same, Fig. 1 can be
regarded as the representer function as a function of x
and z for a particular x. This indicates which data lo-
cations have the most influence at a given x. Again
because of the strong constraint nature of the problem,
data located at the coast have the greatest influence on
the inverse solution at a given x.

In contrast, the first term in (6.24), multiplied by
, is plotted in Figs. 1d,h. This can be considered to21wm

be the representer function obtained with the weak con-
straint in the limit of infinite weight given to the coastal
boundary condition; that is, → 0 so that21w ŷ(x 5 0)c

[ 0. We see that data at an offshore location now has
greatest influence on the inverse solution near that same
offshore location. Similarly the inverse solution at an
offshore location is most influenced by data near that
same offshore location. That the influence of a data point
is not maximal at the data point, but farther offshore,
results from the constraint [ 0 together withŷ(x 5 0)
the required smoothness of the solution.

For intermediate, that is, finite, values of wm and wc

we obtain a weighted superposition of the two limiting
cases. As wm/wc increases, data at an offshore location
has increasing influence on the inverse solution at the
coast, and decreasing influence on the inverse solution
at the same off-shore location. Conversely as wm/wc

decreases, data at an offshore location has decreasing
influence on the inverse solution at the coast, and in-
creasing influence on the inverse solution at the same
offshore location.

Another clear difference between the two formula-
tions is the offshore decay of the representer. For illus-
tration we consider the representer evaluated at the sur-
face. The strong constraint representer decays on a
length scale that approaches p21 as the data point moves
farther offshore. This can also be seen from (5.19b),
which gives:

r(x, 1; x) 5 2e2p(x1x) 1 O(e22p(x1x)). (7.1)

Although the weak constraint representer has a similar
decay scale for x k x k 1, the decay is moderated for
x ; x by the term exp{2np |x 2 x| } in the summand
of (6.24). Thus data at a given offshore location have
a greater horizontal range of influence in the weak con-
straint formulation than in the strong. Additionally, the
decay of the influence in the weak constraint formula-
tion is from the data point, rather than from the coast.

The different properties of the strong and weak for-
mulations can also be investigated by considering the
spectral properties of the representer matrix (for the case
of discrete data). For definiteness suppose there are N
discrete data points, distributed over the surface. The N
3 N representer matrix may be interpreted as the co-
variance matrix of each data point with each other data

point, again assuming that the weights chosen in the
penalty functional are the inverses of the error covari-
ances in the forward model. Since we are now consid-
ering the case of discrete data, the integrals over the
surface become sums over the data points. In particular
our inverse solution, (6.8) and (6.10), becomes

5 rT(R 1 I)21d,21ŷ wd (7.2)

where d is a vector of length N, I is the N 3 N identity
matrix, r is a vector (of length N) valued function of
(x, z), and where matrix multiplication should be un-
derstood. We consider the inverse solution evaluated at
the data points:

21 21ŷ 5 ŷ | 5 R(R 1 w I ) d (7.3a)D d

T21 215 ZL(L 2 w I ) Z d, (7.3b)d

where L is a diagonal matrix composed of the eigen-
values li of R, and Z is an orthogonal transformation
matrix composed of the eigenvectors of R, and such that
R 5 ZLZT. We can write this as

liŷ 5 diag d̃, (7.4)
211 2l 1 wi d

where 5 is a vector composed of the projectionsTỹ Z ŷ
of onto the eigenvectors of R, and similarly for d̃ 5ŷ
ZTd. Because of the ill-posed nature of the strong con-
straint data problem, the condition number of the strong
constraint representer matrix is typically very large, in-
creasing for increasing number of data points and tend-
ing to infinity in the limit of continuous data. This is
reflected in (7.3a) in the ill-posed limit of perfect data,

→ 0, with R 5 Rc, the strong constraint representer21wd

matrix. To ensure a (strong constraint) inverse solution
that depends stably on the data, we therefore require

. 0. Since the li are a rapidly decreasing sequence,21wd

the condition that . 0 therefore means that the right-21wd

hand side of (7.4) contributes to the inverse solution
only through the largest eigenvalues of R. Further, both
the structure of the contribution and the structure of the
contributing data is the same as the structure of the
eigenvectors associated with these largest eigenvalues
because we have projected both the inverse solution and
the data onto these eigenvectors.

In light of the above, it is instructive to compare the
spectral properties of R between the strong and the weak
formulations. As an example, we use 50 data points
distributed evenly from x 5 0.2 to x 5 1. Recall that
in the weak constraint, R (6.25) was written as

R 5 Rm 1 Rc,21 21w wm c (7.5)

with the strong constraint as the limit → 0. We first21wm

note that the eigenvalues decay much more rapidly in
the strong (Rc) than in the weak (Rm) constraint (Figs.
2d–f ), which reflects the unstable data dependence of
the strong constraint with 5 0. On the other hand,21wd

the weak constraint formulation ( . 0) with →21 21w wm d

0 and → 0 does not have the same unstable data21wc
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FIG. 2. Eigenvectors (a–c) and eigenvalues (d–f ) of the 50 3 50 representer matrix R 5 Rm
21wm

1 Rc for the case of 50 data points distributed evenly between x 5 0.02 and x 5 1, for different21wc

values of wm/wc. Values of the weights are (a, d) wm/wc → ` (strong constraint); (b, e) wm/wc 5
0.001; (c, f ) wm/wc 5 0. In (a–c) the first six eigenvectors, associated with the six largest eigen-
values, are plotted. Since the eigenvectors are the same length as the number of data points we
identify each component of each vector with a data point, and so the x axis spans the offshore
region containing the data points. In (d–f ) the logarithm of the decreasing sequence of eigenvalues,
log(ln) (n 5 1, · · · , 50), is plotted.

dependence. Because the eigenvalues decay more rap-
idly in the strong constraint, the inverse solution con-
tains less horizontal structure: the smaller the eigen-
value, the greater the number of turning points of the
corresponding eigenvector. In the weak constraint, the
inverse solution can inherit more structure from the data.

Further, in the strong constraint, the largest eigen-
vectors of Rc are skewed towards the coast (Fig. 2a),
indicating both that the data contributes most infor-
mation to the inverse solution at the coast and that data
located near the coast contribute most to the inverse
solution. In the weak constraint, on the other hand, the
eigenvectors of Rm are distributed evenly over the whole
data array (Figs. 2b,c). Thus in the weak constraint, data
at all locations contribute equally to the inverse solution.
An alternative interpretation is that the choice of strong
or weak constraint formulation should be dependent on
our prior expectations of the spatial structure of the data
in that the spatial structure of the eigenvalues of R
should reflect that of the data.

b. Reconstructing a known ocean state:
Twin experiments

We now consider more explicitly how well the inverse
formulation does in recreating a given ocean state from

a data sample. That is, we sample a given ocean state
and compare the inverse solution obtained from the data
with the original ocean state. As a first example we use
data sampled from the ‘‘true’’ ocean state given by (3.5)
in section 3:

d 5 y (k)(x, z)|D 1 d, (7.6)

with k 5 10, where D is the set of data points, and
where d is the error associated with the data sampling.
Given this data, d, we construct the inverse solution,

We are now interested in how close the inverse so-ŷ .
lution, is to the true ocean state, , that we sampled.(k)ŷ , y
Note that and hence the closeness to y (k) , depends onŷ ,
the choice of model, coastal, and data weights through
the ratios wd/wm and wd/wc, which we donote by gdm

and gdc, respectively.
One possible quantity to evaluate the closeness to y (k)

is the total squared error, defined as

(k) 2Q 5 (ŷ 2 y ) . (7.7)E
D

Since Q 5 Q(gdm, gdc), the minimum of Q with respect
to the ratios gdm and gdc indicates the best possible re-
construction of y (k) . Note, however, that the minimum
does not provide information about which weights we
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FIG. 3. Plot of Q , Ee and ED as functions of the ratios gdm and gdc, for the case of 50 data points
distributed evenly between x 5 0.02 and x 5 1, sampled from y (k) with error variance s 2: (a) log10(Q )
for s 2 5 0.2; (b) log10(Q) for s 2 5 0.02; (c) log10(Ee); (d) log10(ED). The x axis is log10( ) 5 log10(wm/wd),21gdm

the y axis is log10( ) 5 log10(wc/wd), the contour interval is 0.5, and negative contours are dashed. In21gdc

(a) and (b) the cross depicts the minimum of log10(Q ).

should choose in a real assimilation situation since it
depends upon knowledge of y (k) , which is not available.

Since Q also depends upon the particular realization
of the data errors, d, we consider the ensemble average,
Q , with respect to multiple realizations of d. We assume
that d is a random, uncorrelated error, with mean d 5
0 and uniform variance var(d) 5 s 2. We can write Q
as the sum of two parts,

Q 5 s 2Ee 1 ED, (7.8)

where Ee 5 #D ee and ED 5 #D eD are defined by
21 T 21e (x, z) 5 tr(P rr P ) (7.9)e

0 (k) 2e (x, z) 5 (ŷ 2 y ) , (7.10)D

with P 5 R 1 I. Recall that r is a vector valued21wd

function of (x, z) of length N, the number of data points,
and that d 5 0. In (7.10) denotes the inverse solution0ŷ
obtained with d [ y (k)|D, that is with d 5 0 in (7.6).
The advantage of writing the total error, Q , as in (7.8),
is the separation into a contribution from the data error,
Ee, and a contribution from the resolution of the sam-
pling array, ED. Specifically, notice that both Ee and ED

are independent of the data and the data error.
First consider the ensemble averaged total error, Q ,

which is contoured in Figs. 3a,b for the case of 50 data
points spread evenly over [0, 1], with a uniform error
variance, s 2, of 0.2 and 0.02, respectively. For the case

s 2 5 0.2, we find that Q is smallest when the ratios
gdm 5 100 and gdc 5 5, and for the case s 2 5 0.02,
we find that Q is smallest when the ratios gdm 5 50 and
gdc 5 20. However, we see that the strong constraint
limit, gdm → 0, on the right sides of Figs. 3a,b, gives
values of Q only slightly larger than the minimum val-
ues; that is, the strong constraint does nearly as well as
the best weak constraint. That the strong constraint
should do so well is perhaps not surprising since the
data are sampled from a field that satisfies the model
equations exactly and since, by definition, the strong
constraint produces an inverse solution that also satisfies
the model equations exactly.

The inverse solutions themselves, corresponding to
the smallest Q for a given data variance, are shown in
Fig. 4 for a particular data realization. We can see that
for small error variance, s 2 5 0.02, the inverse solution

is successful at representing y (k), with greater accuracyŷ
near the surface than at depth. The inverse solution with
larger error variance, s 2 5 0.2, is less accurate but still
gives a reasonable approximation.

Returning to the decomposition (7.8), we plot Ee and
ED in Figs. 3c,d. In the ill-posed limit (strong constraint,
perfect data), and with continuous data, ED is identically
zero because [ y (k) , even though the inverse cal-0ŷ
culation is unstable. Thus the unstable dependence on
the data error enters only through the term Ee: for given
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FIG. 4. The true solution, y (k) (dashed), given by (3.5) with k 5
10 and the inverse solution, (solid), obtained with data taken fromdŷ
y (k) evaluated at the surface with a given error variance, s 2 5 var(d ).
The ratios gdm and gdc of the weights used in the inverse calculation
are those that give the minimum values of Q in Figs. 3a,b. (a) s 2 5
0.2, gdm 5 100, gdc 5 5; (b) s 2 5 0.02, gdm 5 50, gdc 5 20. The
contour interval is 0.2; contours above the zero contour are positive,
those below are negative.

data error variance, s 2, a large value of the ratio gdc

results in a large value of s 2Ee and hence large Q . Thus
knowledge of the data error variance together with (7.8)
gives a criterion for selecting the ratio gdc without the
need for knowledge of the coastal boundary error var-
iance. Namely, we choose gdc so that s 2Ee is not too
large compared with our prior expectations of the coast-
al ocean. For discrete data, the ill-posed limit no longer
gives [ y (k) because some information has been lost0ŷ
due to the sampling resolution. However, we still have
approximate equality if there are enough data points,
and again the unstable dependence on the data error
enters through the term Ee.

To illustrate, we consider the strong constraint, 21wm

5 0 so that gdm 5 0, and plot ee(x, z) and eD(x, z) for
different choices of gdc (Fig. 5). The limit of the ratio
gdc → ` corresponds to the ill-posed limit. Accordingly,
for gdc 5 1010, we have ee k eD everywhere in the
domain; that is, the instability due to data error is much
greater than the instability due to sampling resolution.
Further, the spatial structure of ee indicates that the so-
lution is most unstable at the coast. For smaller gdc 5
102, ee is smaller but it retains a similar spatial structure.
In the other limit, that of worthless data with the ratio

gdc → 0, we can show that ee → 0 and that eD → (y (k))2.
Thus there is some intermediate range of gdc where s 2Ee

and ED are of similar magnitude and it is for gdc in this
range that we obtain the minimum of Q . The interpre-
tation is that ED represents the least error achievable
given exact data, for a given choice of gdc. On the other
hand, Ee represents the stability of the dependence of
the solution on the data errors, again for a given choice
of gdc.

As a concrete example of how well the inverse so-
lution can reproduce the true state, y (k) , we have taken
one particular data realization, with a given error var-
iance, and have compared contour plots of and y (k)ŷ
for the values of wc and wm that give the least Q for
that error variance (Fig. 4). This has the disadvantage
of being dependent on the random data error (because

is). An alternative approach is to consider the meanŷ
squared error, q 5 ( 2 y (k))2 , which is plotted as aŷ
function of (x, z) in Fig. 6. The cases corresponding to
Fig. 4 are shown in Figs. 6a,b with 50 data points and
data error variances of s 2 5 0.2 and s 2 5 0.02. It is
seen that the maximum error in the inverse solution
occurs near the coast and near the surface. Figures 6c,d
show the mean squared error, q , for the case of 10 data
points, again with data error variance s 2 5 0.2 and s 2

5 0.02. The pattern of the errors is the same but values
are generally larger, especially in the case of s 5 0.2.
In both cases with 50 and 10 data points, the minimum
of Q is obtained for larger values of gdc and smaller
values of gdm when the error variance is smaller (better
data). Further, in the case of s 2 5 0.2 (noisy data) the
higher, N 5 50, data resolution requires smaller values
of gdc and gdm or, equivalently, a smaller data weight
wd, as expected from consideration of (7.2).

Finally we consider assimilating data that is sampled
from an ocean state that does not satisfy the model
equations exactly. For example, consider y a, that is a
solution to

y xx 1 ay zz 5 0, (7.11)

together with the boundary conditions (3.2) satisfied by
y (k) in section 3. Such a situation could arise, e.g., from
an incorrect choice of the stratification parameter, S. We
proceed as above by sampling y a to give data, d 5 y a|D
1 d, and constructing the inverse solution, 5adŷ
rTP21d. The contribution to Q a from Ee is the same as
before, depending only upon the representers and the
error weights. The contribution from ED is different,
however, depending upon both y a and . The depen-adŷ
dence of Q a on the model weight, coastal boundary
condition weight, and data weight, through the ratios
gdm and gdc, is shown in Fig. 7 for different values of
data error variance, s 2 with the special case s 2 5 0
corresponding to the field ED. There is now a clear min-
imum in ED for wm } , `, and therefore also in21gdm

Q a for small values of s 2. That is, the improvement of
the weak constraint over the strong constraint is sig-
nificantly greater here than previously when the data
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FIG. 5. Plot of ee and eD as functions of (x, z), for the case of 50 data points distributed evenly between
x 5 0.02 and x 5 1 sampled from y (k), in the strong constraint limit, gdm 5 0, and for different values of
gdc: (a) log10(ee) for gdc 5 1010; (b) log10(ee) for gdc 5 100; (c) log10(eD) for gdc 5 1010; (d) log10(eD) for gdc

5 100. The contour interval is 1 in (a, b) and 2 in (c, d); negative contours are dashed.

FIG. 6. Plot of q as a function of (x, z), for the cases of 50 data points distributed evenly between x 5
0.02 and x 5 1 (a, b), and 10 data points distributed evenly between x 5 0.1 and x 5 1 (c, d). The values
of gdm and gdc are those that give the minimum values of Q in each case. (a) 50 data points, s 2 5 0.2, gdm

5 100, gdc 5 5; (b) 50 data points, s 2 5 0.02, gdm 5 50, gdc 5 20; (c) 10 data points, s 2 5 0.2, gdm 5
1000, gdc 5 14; (d) 10 data points, s 2 5 0.01, gdm 5 20, gdc 5 20. The contour interval is 0.5 and negative
contours are dashed.
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FIG. 7. Plot of Q a, for a 5 1.5, as a function of the ratios gdm and gdc, for the case of 50 data points
distributed evenly between x 5 0.02 and x 5 1, sampled from y a with error variance s 2: (a) s 2 5 0.2; (b)
s 2 5 0.02; (c) s 2 5 0.002; (d) s 2 5 0. The x and y axes are as in Fig. 3; the contour interval is 0.2. The
cross depicts the minimum of log10(Q a).

was sampled from y (k) . The true and the inverse velocity
fields themselves are shown in Fig. 8, for a 5 1.5 and
s 2 5 0.02, for both the weak constraint minimum,

5 0.001, 5 0.2, and the strong constraint min-21 21g gdm dc

imum, → `, 5 2, illustrating the improvement21 21g gdm dc

of the weak constraint over the strong. Note that here
the inverse solutions are less successful than when the
data was sampled from an exact solution of the model
equations (Fig. 4).

8. Conclusions

We have used a highly idealized, linear, primitive
equation model together with an optimal, variational
data assimilation scheme, to evaluate the extraction of
a z-dependent flow field from surface type data. With
the physical simplifications made, the forward model
and inverse model can be formulated in terms of the
alongshore velocity alone, so attention is restricted to
the assimilation of a surface alongshore velocity field.
We have for the present left aside the issues associated
with the relation of the alongshore and across-shore sur-
face currents and with errors in the solution of a mixed
layer model to obtain the velocity field below the surface
boundary layer.

Our assimilation scheme uses an inverse formulation
to find the best fit to the model, to the coastal boundary
condition, which represents our knowledge of the open

ocean, and to the data. Without this inverse formulation,
simply replacing the coastal boundary condition with
an extra boundary condition consisting of the data re-
sults in an ill-posed problem. The ill-posedness is man-
ifested in the sensitive dependence of the solution at
depth upon the surface data. The inverse formulation
illustrates explicity how the ill-posedness is resolved:
through the regularization of an ill-conditioned linear
operator, whose inverse is a linear transformation from
the data to the solution at depth.

The inverse solution is constructed as a linear com-
bination of representer functions, with one representer
function for each data point. These representers can be
regarded as covariances between points in the domain
interior and surface data points. Thus they indicate the
influence of the surface data on the inverse solution at
depth. It turns out that in both the strong and in the
weak constraint inverse formulations there is consid-
erable influence at depth. In the case of the strong con-
straint, however, it is shown that the greatest data in-
fluence is always at the coast, a result of the restriction
that solutions to the exact model equations decay ex-
ponentially at infinity, in turn consistent with our sep-
aration into inner and outer regions. On the other hand,
in the case of the weak constraint the data has greatest
influence on the inverse solution close to the data point,
which is intuitively more reasonable. Thus we expect a
weak constraint formulation to be most successful in
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FIG. 8. The true solution, y a (dashed), that solves (7.11) for a 5
1.5, and the inverse solution, (solid), obtained with data takenadŷ
from y a evaluated at the surface with a given error variance, s 2 5
var(d ) 5 0.02: (a) 5 0.001 and 5 0.2, corresponding to the21 21g gdm dc

minimum of Q a in Fig. 7b; (b) → ` and 5 2, corresponding21 21g gdm dc

to the minimum of Q a restricted to the strong constraint. The con-
touring is as in Fig. 4.

general because the anomalously large data influence at
the coast is modified.

In the case of the strong-constraint inverse formu-
lation our inverse solution depends on a single param-
eter, the ratio of the data weight to the coastal boundary
condition weight. In the case of the weak constraint, in
which there are model errors, our inverse solution de-
pends on two parameters, the ratios of the data weight
both to the coastal boundary condition weight and to
the model weight. In each case the dependence on these
parameters is shown explicitly. For our inverse for-
mulation to be used as a hypothesis testing model, the
weights should be chosen according to prior estimates
of the error covariances of the data, model, and bound-
ary condition, derived from our assumptions about the
forward model and our knowledge of the real ocean.
However, in the absence of such estimates of error co-
variances, our inverse solution, regarded as a function
of the weights, can be compared with the features that
we expect a simplified coastal ocean to possess, and the
comparison can be used as guidance for selecting
weights. Although no prior estimates of error covari-
ances are made, our choice of weights is still based on
prior knowledge of the ocean state and, therefore, based

on the same information that is available for estimating
error covariances.

The above approach is particularly useful in this study
because of the analytic forms of the solution and of the
representer functions. Spectral decomposition of the
representer matrix illustrates the influence of the data
on the solution as a function of data location. Consid-
ering the eigenvectors in the weak constraint case sug-
gests a ratio of the model weight to the coastal boundary
condition weight, which ultimately depends upon our
prior knowledge of the relative influence of the data on
the interior and coastal boundary fields.

Similarly, twin experiments make use of the analytic
expressions for the representer functions and representer
matrix. When we consider a simple measure of the suc-
cess of the inverse solution as the squared difference
between the inverse solution and true ocean state, a
decomposition is possible into contributions from the
data error (Ee) and from the sampling resolution (ED).
In the particular case when the true ocean state is an
exact solution to our model equations, the contribution
from the sampling resolution is small: most of the de-
parture of the inverse solution is from errors in the data.
Again, prior knowledge of the typical spatial structure
of a simplified coastal ocean and comparison with the
spatial structure of E« leads to a suggested value of the
model and coastal boundary condition weights.

In the case when the true ocean state is an exact
solution to our model equations, the strong constraint
inverse formulation does nearly as well as the weak
constraint, provided the data error variance is not too
large. On the other hand, when the true ocean state is
not an exact solution, the weak constraint gives a sig-
nificant improvement over the strong constraint. In our
example the second ocean state was given by assuming
an error in our estimate of the stratification parameter,
but alternatives could also be given by including dy-
namics neglected in our simple model. Thus, except in
the unlikely case that the data is sampled from an ocean
state that closely fits the dynamical model, a weak con-
straint formulation is necessary to provide an accurate
inverse solution.
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APPENDIX A

Solution of the Inverse Problem by Fourier
Expansion: The ‘‘Poor Man’s Inverse’’

Here we outline an alternative minimization approach
that gives (5.28) more directly. For brevity we only
report the procedure for the strong constraint problem
but a similar prcedure can be applied to the weak con-
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straint, replacing the an below with an(x). Instead of
taking the variational derivative of the penalty func-
tional T [y] immediately, we first pose a Fourier series
expansion for y(x, z). This is possible because we re-
quire the governing equation, ¹2y 5 0, and boundary
conditions y z 5 0 at z 5 0, 1 to be satisfied exactly.
The functional dependence of T [y] on y now becomes
an ordinary dependence on the Fourier coefficients, an

of y , so that T 5 T [an], n 5 1, 2, · · ·, say. Minimization
of this penalty function is then achieved by requiring
that all partial derivatives with respect to the Fourier
coefficients equal zero.

Suppose there is an undetermined Fourier series ex-
pansion for y ,

`

2np xy(x, z) 5 a e cosnpz. (A.1)O n
n51

We want to choose the coefficients to minimize T 5
T [an], where

1

2T [a ] 5 w dz9(y(0, z9))n c E
0

`

21 w dx (y(x, 1) 2 d(x)) , (A.2)d E
0

21 `

5 w dz9 a cosnp z9Oc E n1 2n510

2` `

2npx n1 w dx a e (21) 2 d(x) . (A.3)Od E n1 2n510

Setting all partial derivatives with respect to the an equal
to zero,

]T [a ]n 5 0 (A.4)
]am

gives

1 `

w dz9 cosmp z9 a cosnp z9Oc E n1 2n510

`

2mpx m1 w dxe (21)d E
0

`

2npx n3 a e (21) 2 d(x) 5 0. (A.5)O n1 2n51

Rearranging and setting y n 5 an(21)n, (A.5) becomes

`` 1 p
2mpx1 cd y 5 p dxd(x)e , (A.6)O mn n E[ ](m 1 n) 2n51 0

which is the same as (5.27).
We now justify why it is possible to treat the baro-

clinic part of the inverse problem separately from the
barotropic part, both in the above formulation and in

the main text. Suppose the barotropic part of the velocity
and of the data is retained. Then the representation (A.1)
has an extra term, a0 5 const, in the summand repre-
senting the barotropic field. Also the data will, in gen-
eral, be nonvanishing at large x. For simplicity, we as-
sume that data is provided out to an offshore distance
L, where L k 1, that is large compared with the bar-
oclinic Rossby radius.

The penalty functional now has the form

21 `

T [a ] 5 w dz9 a 1 a cosnp z9On c E 0 n1 2n510

2L `

2npx n1 w dx a 1 a e (21) 2 d(x) .Od E 0 n1 2n510

(A.7)

Setting the partial derivative with respect to a0 to zero
then gives

L

w a 1 w dxc 0 d E
0

`

2npx n3 a 1 a e (21) 2 d(x) 5 0, (A.8)O0 n1 2n51

which in the limit L k 1 gives
21a 5 d 1 O(L ), (A.9)0

where
L1

d 5 dxd(x). (A.10)EL 0

In other words, the barotropic part of the inverse so-
lution is given approximately by the cross-shore average
of all the data. The remainder of the inverse calculation
then procedes as before but with the barotropic term d
subtracted from each original data value, that is with

d(x) → d(x) 2 d . (A.11)

APPENDIX B

Construction of the Inverse Solution

We outline the procedure for finding the minimum of
a penalty functional T of the form

2T [y] 5 (y , y) 1 w (y 2 d) . (B.1)d E
S

where (· , ·) is an inner product over a Hilbert space H
of admissible functions. The procedure is the same as
given in Bennett (1992, Chapter 5) except that the sec-
ond term in (B.1) is an integral over a continuous set
of data points, S, instead of a sum over a discrete set.

The Riesz representation theorem states that, for each
x ∈ S, and for each y ∈ H, there exists a unique function
rx (belonging to H) such that
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y |x 5 (rx, y), (B.2)

where y |x denotes the value of the function y evaluated
at the point x ∈ S (e.g., Renardy and Rogers 1993,
section 6.3), and rx 5 r(x; x, z). (Here and in the fol-
lowing we use Greek subscripts to indicate the depen-
dence on points in S.) With r so defined the penalty
functional, T , can be written

2T [y] 5 (y , y) 1 w ((y , r ) 2 d) . (B.3)d E x

S

An arbitrary y ∈ H can always be written in the form

y 5 y r 1 g (B.4)E x x

S

for some numbers (representer coefficients) nx and some

function g ∈ H orthogonal to all the rx that satisfies (rx,
g) 5 0 for all x ∈ S. Substituting (B.4) into (B.3) and
simplifying gives

T 5 n R nE E x xh h

S Sx h

1 w (R n 2 d )(R n 2 d ) 1 (g, g),d E E E xh h x xz z x

S S Sx h z

(B.5)

where

R 5 (r , r ) 5 r | . (B.6)xh x h x h

Since (g, g) $ 0 for any g, T is least when (g, g) 5 0,
which is true if, and only if, g 5 0. Completing the
square of (B.5) (and setting g 5 0) gives

T 5 (n 2 n̂ ) R 1 w R R (n 2 n̂ ) 2 n̂ R 1 w R R n̂ 1 w d d , (B.7)E E x x xh d E xz zh h h E E x xh d E xz zh h d E x x1 2 1 2
S S S S S S Sx h z x h z x

where is defined byn̂

R 1 w R R n̂ 5 w R d . (B.8)E xh d E xz zh x d E xh x1 2
S S Sx z x

Hence T is least when n 5 that is, whenn̂,

n 1 w R n 5 w d , (B.9)x d E xh h d x

Sh

or equivalently,

21(R 1 w d(x 2 h))n 5 d . (B.10)E xh d h x

Sh

This is the eq, (5.15) and (6.10) given in sections 5 and
6, for the representer coefficients n that minimize T .

Another approach to finding the minimum of T is to
use the calculus of variations to take the functional de-
rivative of (B.1) and solve the resulting Euler–Lagrange
equations, in our case,

2 21¹ y 5 w l (B.11a)m

2¹ l 5 2w [d(1 2 z) 2 1](y(x, 1) 2 d) (B.11b)d

21y 5 2w l at x 5 0, y → 0 at x → `,c x

y 5 0 at z 5 0, 1; (B.12a)z

l 5 0 at x 5 0, l → 0 at x → `,

l 5 0 at z 5 0, 1,z (B.12b)

where we have defined the adjoint variable, l, by l 5

wmw and where w 5 ¹2y represents the model errors.
Note that the strong constraint Euler-Lagrange equations
are obtained by taking the limit wm → `. One way to
solve (B.11a,b) with (B.12a,b) is to consider the fol-
lowing system for s(x; x, z) and s†(x; x, z):

2 21 †¹ s 5 w s (B.13a)m

2 †¹ s 5 [d(1 2 z) 2 1]d(x 2 x) (B.13b)

21 †s 5 2w s at x 5 0, s → 0 at x → `,c x

s 5 0 at z 5 0, 1; (B.14a)z

† †s 5 0 at x 5 0, s → 0 at x → `,
†s 5 0 at z 5 0, 1, (B.14b)z

and to show, by standard manipulation that the solution
of (B.11a,b) can be written as a superposition of so-ŷ

lutions s of (B.13a,b). That is is of the formŷ

`

ŷ(x, z) 5 dxa(x)s(x ; x, z). (B.15)E
0

In fact, the functions s(x; x, z) are the same as the
functions rx defined in (B.2) [when the inner product is
defined as in (6.6)], which is seen as follows. Defining

5 ¹2rx, we have, for arbitrary y21 †w rm x
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2 2y | 5 (r , y) 5 w ¹ r ¹ y 1 w r yx x m E x c E x

D C

† 25 r ¹ y 1 w r y (B.16)E x c E x

D C

and, additionally,

y | 5 d(x 2 x)[d(1 2 z) 2 1]y(x, z). (B.17)x E
D

Integrating (B.16) by parts and equating the result with
the right hand side of (B.17), and using the fact that y
is arbitrary, shows that r and r† satisfy a system of
equations and boundary conditions identical to
(B.13a,b) and (B.14a,b). Thus, (B.13a,b), provide a
means of obtaining the representer functions rx defined
by (B.2).

APPENDIX C

Alternative Model Errors in the Weak Constraint
Formulation

Since the analysis of sections 5 and 6 was concerned
only with reconstructing a given alongshore velocity
field it was natural to only consider errors in the equation
¹2y 5 0. A more thorough approach, and one which
allows reconstruction of the other fields, is to return to
the original approximate equations (2.12a–e) and in-
clude error terms to represent the terms neglected by
scaling arguments. For example, we might assume that
the greatest source of model error occurs in the hori-
zontal momentum equations (2.12a,b), and in the ther-
modynamic equation, (2.12c), and that the continuity
and hydrostatic equations, (2.12d,e) are exact. Consid-
ering only the inner, coastal region as above, we obtain
from (2.12a–e) the following equations:

r 2 y 5 w , (C.1a)z x 1

r 1 y 5 w , (C.1b)x z 2

where r is the density and where w1 and w2 represent
nonlinear and other small terms neglected in the deri-
vation of ¹2y 5 0 in section 3. The inverse solution is

then the solution that minimizes the penalty func-(r̂, ŷ)
tional defined by

2 2 2T [r, y] 5 w (w 1 w ) 1 w «m E 1 2 c E
D C

21 w d , (C.2)d E
S

subject to the appropriate boundary conditions. Here wm

is the weight associated with the model errors. Given
the remaining fields can then be calculated.(r̂, ŷ)

Problems occur, however in the use of (C.2) because
we are minimizing the norm of a gradient, namely the
gradients of r and y , and the norm of the model–data
misfit, with data that is given on the boundary and using
weights that are singular in their spatial influence. This
can lead to the unwanted situation where the functions
that minimize (C.2) do not belong to the class of ad-
missible functions for our problem, for example, they
are either not continuous or are inconsistent with the
boundary conditions. This could be resolved, for ex-
ample, by an additional term in the penalty functional
that penalizes discontinuities, or by using a model
weight that is spatially dependent.
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