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ABSTRACT

Kalman filter thcory and autoregressive time series are used to map sea level height anomalies in the tropical
Pacific. Our Kalman filters are implemented with a linear state space model consisting of evolution equations
for the amplitudes of baroclinic Kelvin and Rossby waves and data from the Pacific tide gauge network. In this
study, three versions of the Kalman filter are evaluated through examination of the innovation sequences, that
is, the time serics of differences between the observations and the model predictions before updating. In a
properly tuned Kalman filter, one expects the innovation sequence to be white (uncorrelated, with zero mean).
A white innovation sequence can thus be taken as an indication that there is no further information to be extracted
from the sequence of observations. This is the basis for the frequent use of whiteness, that is, lack of autocor-
relation, in the innovation sequence as a performance diagnostic for the Kalman filter.

Our long-wave model embodies the conceptual basis of current understanding of the large-scale behavior of
the tropical ocean. When the Kalman filter was used to assimilate sea level anomaly data, we found the resulting
innovation séquence to be temporally correlated, that is, nonwhite and well fitted by an autoregressive process
with a lag of one month. A simple modification of the way in which sea level height anomaly is represented in
terms of the state vector for comparison to observation results in a slight reduction in the temporal correlation
of the innovation sequences and closer fits of the model to the observations, but significant autoregressive
structure remains in the innovation sequence. This autoregressive structure represents either a deficiency in the
model or some source of inconsistency in the data. X

When an explicit first-order autoregressive model of the innovation sequence is incorporated into the filter,
the new innovation sequence is white. In an experiment with the modified filter in which some data were held
back from the assimilation process, the sequences of residuals at the withheld stations were also white. To our
knowledge, this has not been achieved before in an ocean data assimilation scheme with real data. Implications

of our results for improved estimates of model error statistics and evaluation of adequacy of models are discussed
in detail,
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1. Introduction

Simple linear models capture much of the dynamics
of the long temporal and large spatial scale behavior of
the dynamic topography of the tropical ocean, but data
are too sparse to provide models with complete initial
and boundary conditions. Analyses based on spatial
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and temporal interpolation of the data alone without
reference to dynamics are also limited by the sparsity
of data. Data assimilation is therefore a particularly ap-
propriate tool for this purpose.

Miller and Cane (1989, hereafter MC) used the Kal-
man filter with a simple dynamical model driven by a
wind stress field derived from ship observations to as-
similate monthly sea surface height anomaly data from
island tide gauge stations. That data assimilation sys-
tem has since been used by Miller (1990) for an ob-
serving system simulation experiment with data from a
simulated array of moored instruments and by Fu et al.
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(1993) to assimilate altimetric data from Geosat. Such
a model was also applied to the tropical Indian Ocean
by Perigaud and Fu (1990). Results from a similar
model were presented by Kawabe (1994).

All data assimilation systems require hypotheses
about the residuals of the model proposed. These hy-
potheses can be tested to decide the adequacy of the
model, but there are few examples in the literature in
which such tests are performed in detail, and most of
these examples are taken from numerical weather pre-
diction, where data are much more plentiful.

It is commonly assumed that the model and obser-
vational errors are well described by stationary white
noise (i.e., temporally uncorrelated, with zero mean
and constant variance). There is, however, no partic-
ular reason to believe that this is the case, and there is
mounting evidence that it is not. Examination of the
residuals should contribute to fitting a better model to
the physical phenomenon. In this paper, we examine
the observed errors of the MC model and present two
modified Kalman filter models. The result is a formu-
lation of the Kalman filter that is optimal according to
the criterion of zero autocorrelation of the innovation
sequence (e.g., see Daley 1992b; Dee et al. 1985).

An intuitive justification for using the whiteness of
the residuals as a yardstick for optimality is that white
noise contains no systematic information; if the resid-
uals are white, then most of the signals in the data have
been extracted. We shall see that this criterion alone
does not guarantee that the filter has all the properties
one might desire, such as reliable basinwide estimates
of the error statistics. Further improvement of our as-
similation scheme by tuning parameters remains pos-
sible, but it is likely that our modified Kalman filters
are close to the best one can do with these data and this
simple assimilation framework. Better results would re-
quire more data and/or a much more intricate filtering
scheme, in particular, one which would accommodate
a more detailed noise model.

This paper is structured as follows: The data are pre-
sented in section 2. The model proposed by MC is re-
viewed and its performance is analyzed in section 3.
Section 4 contains descriptions of the suggested ap-
proach and discussion of the results of two data assim-
ilation experiments. Final remarks are presented in sec-
tion 5.

2. The data

The data are exactly those used in MC. We describe
them briefly here. Two types of datasets are involved
in this study: wind forcing data and sea level height
observations. The wind data consist of monthly pseu-
dostress maps provided by The Florida State Univer-
sity. These maps were derived by subjective analysis
from merchant ship observations (see Stricherz et al.
1992) and processed according to Zebiak (1989). The
resulting maps provide complete data coverage of the
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tropical Pacific, albeit with unknown error character-
istics. Only the zonal component of the wind stress is
considered, as in MC. Dimensional arguments support
this assumption, which results in considerable simpli-
fication of the error model. The most obvious conse-
quence of neglecting the meridional windstress is loss
of accuracy near the boundaries.

The sea level data consist of observations of the sea
level heights for a group of tide gauge stations in the
tropical Pacific. Station data from Rabaul, Nauru, Jar-
vis, Christmas, Santa Cruz, Callao, Kapingamarangi,
Tarawa, Canton, and Fanning were selected in the orig-
inal MC work because they are near the equator where
the model is expected to do its best, and they provide
long overlapping time series. For Rabaul, Nauru,
Christmas, and Tarawa the observations were taken
from 1974 to 1983; for Jarvis from 1977 to 1984; for
Santa Cruz from 1978 to 1983; for Callao from 1942
to 1984; for Kapingamarangi from 1978 to 1983; and
for Fanning from 1972 to 1983. Thus, the overlapping
period is 1978—83. The raw data for the MC model
consist of monthly means with tides removed (cf.
Wiyrtki et al. 1988).

3. Modeling the data
a. The physical model

The physical model used in MC is based on the lin-
earized primitive equations on the equatorial S plane,
further simplified by decomposition into vertical modes
and a long-wave approximation. The solution to these
equations can be expressed in terms of equatorial Kel-
vin waves and nondispersive Rossby waves, whose am-
plitudes evolve according to simple advection equa-
tions. The model is implemented from 125°E longitude
to 80°W in 5° intervals. At each grid point there are
two vertical modes and, for each vertical mode, there
are five meridional Rossby mode amplitudes and one
Kelvin wave amplitude. Thus, there are 12 values at
each of the 32 grid points in the model for a total of
384 values each month. We use typical Pacific values
for the Kelvin wave speeds and the length scales of the
two vertical modes: 2.91 m s ™! and 357 km for the first
vertical mode and 1.78 m s ™' and 279 km for the sec-
ond, cf. Cane (1984 ). Details are given in appendix A.
The evolution of the state vector W,, whose compo-
nents are the 384 wave amplitudes at time ¢, can be
written schematically as

Wi =LW, + T + €,
Y, =HW, + v,

where Y, is the observation vector, that is, the monthly
mean sea level height anomaly measured at a discrete
set of points, and H is the observation matrix (10 X 384
in this case), which maps a vector of wave amplitudes
into a vector whose components are the sea level height
anomalies at the ten selected island stations. Therefore,
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Fi6. 1. ACF of the sea level at Rabaul. Abscissa is time lag, in time intervals of one month for plot (a)
and 10 days for plot (b). Dashed lines denote the limit of the 95% confidence level for the ACF being
different from zero. (a) Monthly observations. (b) ten-day repeated observations. The ACF is given by ¥,

=Zint O = DO — I (3 — V1

H defines the functional relation between the state vec-
tor W,, whose components are wave amplitudes, and
Y,, whose components are the observed quantities, in
this case sea level height anomalies. We refer to the
explicit relation between the state vector and the vector
of observed quantities as the measurement model. Here
7, 1s the zonal component of the wind stress vector (384
X 1) transformed in the meridional direction to forcing
of the wave modes, ¢, is the state noise vector (384
X 1) with covariance matrix Q (384 X 384), and v, is
the observation noise vector (10 X 1) with covariance
matrix R (10 X 10). Both ¢, and v, are assumed to be
independent white noise sequences. The transition ma-
trix L (384 X 384) represents the discretized form of
the advection operator, which determines the evolution
of the wave amplitudes. Boundary conditions specify
that the zonal velocity must vanish everywhere on the
eastern boundary, and the meridionally integrated mass
flux must vanish on the western boundary. Here Q and
R are taken to be known and constant in time:

The observation vector Y, = [y, (1), - -+, y,(10)] is
a multivariate time series, y,(i) being the deviation
from the monthly mean sea level at time ¢ for the ith
station, cf. MC. The index i represents the stations Ra-
baul, Nauru, Jarvis, Christmas, Santa Cruz, Callao,

Kapingamarangi, Tarawa, Canton, and Fanning. In this

study we consider values of the data {Y,} from 1978
to 1983, one observation per month.

In the MC paper, the Kalman filter model was im-
plemented with time steps of ten days due to consid-
erations of numerical accuracy, but only monthly ob-
servations are available for this time period. Each
monthly observation was therefore repeated three times
within each month. Thus, at the end of the repetition
process, there are 214 observations Y, (t = 1, - -,
214). Originally, the temporal structure of the data over
a month’s time did not seem significant. High-fre-
quency motions are filtered in the data and in the model,
and there is little change in the quantities of interest
over the course of a month. It is, in fact, widely be-
lieved that the physical data do not contain timescales
shorter than seasonal. We shall see, however, that sig-
nificant improvement of the data assimilation scheme
can be achieved by introducing a measurement model
that more closely resembles the measurement process.
The repetition scheme not only introduces artificial data
into the model but also creates a time series with non-
stationary patterns, creating high-order autocorrela-
tions artificially. Figure 1 displays the empirical auto-
correlation function ¥, (ACF) of the sea level data at
Rabaul. The ACF is defined as

2 =V —Y)
r=k+1

)

")\/k = n
t§1 (yt - )_)-)2
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where {y,} are the observations and y is the sample
mean. Figure 1a shows the ACF for monthly observa-
tions and Fig. 1b presents the ACF for the ten-day re-
peated observations. Whereas the ACF of the monthly
observations decays to zero quickly, the ACF of the
ten-day repeated data converges more slowly, indicat-
ing possible nonstationary patterns.

In this paper, the repeated observation problem en-
countered in MC is circumvented by explicitly using
the one-month data approach given in section 4a, where
the monthly structure of the sea level data is incorpo-
rated into the state space system. As seen in section 4a
and appendix B, implementation of such a modified
algorithm is straightforward and propagation of the co-
variance error comes directly from the Kalman filter
equations.

b. The Kalman filter

The Kalman filter methodology can be used to esti-
mate the state vector and predict future observations.
In this approach, the state is estimated linearly from the
observation Y, and the previous estimated state W, ;,
where the subscript #| j denotes the estimation at time

* .t based on observations up to time j. For the filtering

process, j = ¢ and the recursive estimation equations
are given by (cf. Gelb 1974):
Wopo = 0
W = LW, + 7,
P =LP_ LT+ Q
P =Pm1 — P H'[HP,,_,H" + R]T'HP,|,_,
K =P,HR!
W,,, = W,|,_1 + Ky,
v,.=Y, — HW,|,_1,

where », is the observation residual sequence (10 X 1),
also known as the irnovation sequence, and K, is the
Kalman gain matrix (384 X 10); P,),_, is the covari-
ance matrix of the estimation error of W, based on ob-
servations Yy, ..., Y,_;:

Pt|t—l = E[(W, - Wt|t—l)(wt - thr«l)T]a

and P, , is the covariance matrix of the estimation error
of W, based on observations Y,, ..., Y,:

ptlt = E[(Wl - Wt|t)(Wr - Wtft)T]‘

Recursive numerical schemes to compute K, can be
found in Hannan and Deistler (1988), Gelb (1974),
Anderson and Moore (1979), or Goodwin and Sin
(1984). Description of the Kalman filter in the context
of modeling the ocean and the atmosphere can be found
in the texts by Bennett (1992) or Daley (1991), or in
the review article by Ghil and Malanotte-Rizzoli
(1991) and references therein.
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The Kalman estimator of Y, is given by \'é
= HW,|, 1. By means of a formula of this type, the
sea level anomaly can be calculated from the state
vector at any location in the grid and interpolated to
any time within 1978-83.

In order to compute W,|, and Y,, estimates of the
observation noise covariance matrix R = E(v,v;) and
the system noise covariance @ = E(e€,€)), where E(+)
represents expected value, are required. The observa-
tion error covariance matrix R is related to the instru-
mental error in the tide gauges at the stations and phys-
ical effects that are not represented in this state space.
This latter source of error includes what some authors
have termed error of representativeness; see Daley
(1993) and references therein. Here, as in MC, we be-
gin by assuming that the observation errors are white
in time and uncorrelated from station to station.

In MC, @ is derived from an assumption about the
error covariance of the wind data. Errors from other
sources such as computational errors or neglected phys-
ics are omitted. This assumption is supported by order
of magnitude calculations and by the posterior result
that errors in the wind data of reasonable magnitude
are sufficient to explain all of the discrepancy between
the model output and the tide gauge data. This as-
sumption is further borne out in comparisons between
a similar wind-driven model and dynamic height data
derived from expendable bathythermograph casts (Mil-
ler et al. 1995). The wind errors are assumed to have
homogeneous anisotropic Gaussian covariance struc-
ture. The zonal and meridional decorrelation scales L,
and L,, respectively, were determined by examination
of the sample covariance matrices of the series of dif-
ferences between the observed sea level anomalies and
the predictions of the model without updating. Details
of this parameterization are given in MC. The param-
eters L, and L, along with an estimate of the variance
of the wind stress errors, define @ and hence the re-
cursion equations for the state error covariance esti-
mation. In section 4 we present the results of an ex-
periment in which the assumptions of whiteness of the
system and observation noise sequences are relaxed.

Formally, the estimation also depends on the esti-
mates of the initial state W0|0 and the initial predlctlon
covariance for the state, Py = E[(Wow WO)(W0|0
— Wy)"1, but these dependences are of little conse-
quence in forced-dissipative systems such as this one.
Most of the dissipation in this model results from the
loss of energy at the western boundary; see, for ex-
ample, Cane and Sarachik (1977). The evolution of
the state vector is determined by a balance of the forc-
ing, dissipation and wave dynamics, and the influence

.of the initial state decays rapidly with time. The esti-

mated system error covariance P, |, reaches a stationary
state rapidly due to the dynamic balances in the model,
cf. MC section 5b. The initial error covariance Py, was
chosen to be equal to 20Q, a rough estimate of the error
covariance of a zero guess, hence the signal covariance.
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The quality of this estimate is not of great importance.
Following a short initial equilibration period, changes
in P,|, result from gaps in the data, and therefore
changes in H. This system reaches its stationary state
rapidly, and the estimates of the state for most of the
period of this study are not very sensitive to the choice
of Pyjo. According to MC and our experience, the sys-
tem can be considered stable after a few months.

4. Data assimilation experiments

Three sets of data assimilation experiments were per-
formed, one with the original MC model, the second
with the ‘‘Average’’ model, in which the averaging of
model outputs over a month was modeled explicitly,
‘and the third, the ‘““AR(1)’’ model, in which an auto-
regressive model of the innovation sequence was added
to the Average model. AR(1) is the standard termi-
nology for a first-order autoregressive process, that is,
one in which the current value can be expressed as the
sum of a proportion of its value at the previous time
and a random disturbance. More generally, we say that
the sequence {X,} is derived from an AR(p) process
if X, = 2%, aX,_; + ¢, where {¢,} is a stationary
white sequence and the a, are constant matrices. Each
of the three sets consisted of two experiments, one in
which data from six island stations were assimilated
and four held back for verification, and one in which
data from all ten available stations were assimilated.

The main instrument used for validation of the state
space model is the analysis of the innovation process
v, =Y, — Y,. Some of the features used to select a good
model include: few parameters (parsimony ), a station-
ary, white innovation sequence (independent, mean
zero, constant variance), and small error variance com-~
pared to the variance explained by the model or com-
pared to the total variance in the data. If the model
utilizes the data effectively, then the innovations will
be a white noise sequence. On the other hand, any other
pattern in the innovation process would indicate the
possibility of improving the model.

Several standard techmques are available to check
whether a sequence is white. The autocorrelation func-
tion (ACF) is useful for detecting nonstationary pat-
terns in the data or the presence of seasonal compo-
nents. The partial autocorrelation function (PACF) is
useful for detecting the presence of an autoregressive
(AR) structure.

For a given time series {Z,, Z,, . . .}, the PACF, py,
may be regarded as the correlation between Z; and Z;
after adjusting for the intermediate observations Z,,

, Z,. Specifically, consider regressing Z; ., based on
a linear function of {Z;, Z;.,,..., 2}, say, 51Z; +
+ Bi-1Z, with the 8’s chosen to minimize the mean
square error of prediction. Assuming such §’s have
been chosen and considering time running backward,
the best predictor of Z, with minimum mean square
error based on the same {Z;, Z,_,, ..., Z,} will then
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be 812, + ... + Bi-1Z;. The PACF at lag k is defined
as the correlation between these two prediction errors,
that is,

P = cort(Zyy — 14, —

T 5k—1zz, Z,
- ,8122 - T ﬂk—lzk)-

For a lucid discussion on p, see Cryer (1986). Equiv-
alently, if Z, is an AR(p) process, then the PACF at
lag p, p,,, will correspond to the last coefficient «, of
the autoregression

Zt = aIZt-—l + -+ apZt—p + €y

where ¢, is a white noise sequence, see Chatfield
(1994). It can be shown that p,; = O for k > p for an
AR(p) model. Consequently, if the data follows an
AR(p) process, its sample PACF will not differ sig-
nificantly from zero for lags k > p.

The portmanteau statistic is useful for testing the
whiteness of a sequence. It is a chi-square test applied
to the sample autocorrelations ¥,(i) at lag i of the re-
siduals »,:

0L = (l)

Tth

Asymptotically as N — =, Q; follows a chi-square dis-
tribution with L degrees of freedom for data from a
white noise sequence, where L is an appropriately cho-
sen integer and N is the sample size. Detailed descrip-
tions of these techniques can be found in Brockwell
and Davis (1991).

To compare the performance of the proposed mod-
els, we have included in sections 4a and 4c maps of the
estimated rms residual error. These maps illustrate the
propagation of the estimation error in the equatorial
region including the ten stations assimilated in this
study. We have also included detailed residual analyses
of the Kalman filter estimates at Rabaul. Residual anal-
yses carried out at the other stations produce similar
results as for Rabaul. Some of these results appear in
the tables.

In the work described in MC, the state space model
was implemented with observations from six selected
stations: Rabaul, Nauru, Jarvis, Christmas, Santa Cruz,
and Callao. The remaining stations were utilized to as-
sess the performance of the model in other locations.
They also used the repetition scheme discussed in sec-
tion 2 for the observations within a month.

In our experiments with the original MC model, cal-
culations were performed with updating at six and ten
tide gauge stations. Figures 2 and 3 display the perfor-
mance of the MC model at Rabaul, with assimilation
of data from six and ten stations respectively. The pre-
dictions follow the data closely in both cases, as ex-
pected for a station at which data were assimilated; see
Figs. 2a and 3a. From the ACF plots, Figs. 2¢ and 3c,
the residuals appear to be serially correlated. The Par-
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FIG. 2. Results from MC model at Rabaul (six stations): (a) Predictions. Ordinate is sea level height anomaly in cm, abscissa is time in
months. Solid line denotes model output, symbols denote observations. (b) Residuals. Axes as in (a). (¢) ACF of residuals. Abscissa is time
lag, in time intervals of 10 days. Dashed lines denote the limit of the 95% confidence level for the ACF being different from zero. (d) Partial
ACF of residuals. Legend as in panel (c). The ACF is given by %, = 2%, (3 — PGt = FVEL, (3, — F)2

tial ACF plots suggest a third-order autoregressive pro-
cess for the residuals, that is, the residuals are corre-
lated at a time lag of one month. Similar behavior of
the ACF and the PACF of the residuals is observed for
the remaining nine stations, as shown in Table 2 and
Table 3. The 95% confidence bands for the ACF and
PACF to be different from zero are +0.13.

Results of all three series of experiments are sum-
marized in Table 1. Standard deviations of the residuals
& are shown, along with the prior estimates &, of these
quantities. Examination of the second and third col-
umns shows that in the MC model with data from six
stations assimilated, data residuals from Kapingamar-
angi and Canton, which did not participate in the as-
similation process, have standard deviations that are
roughly in line with the corresponding prior estimates
and are comparable with the observed total standard
deviations. At Tarawa, the assimilation is evidently
most successful, with small residual standard deviation
and a reasonable accurate prior estimate. Of the four
stations which did not participate in the assimilation
process, the best results are found at Tarawa, as shown
in Table 2 of MC. At Fanning, the prior estimate of the

residual standard deviation is pessimistic, nearly dou-
ble the actual value in this realization. It is a measure
of the success of this system that the prior estimates of
the residual standard deviations are reasonably accurate
for the most part. We must conclude that the extrapo-
lation of the model to other locations gives predictable,
if not uniformly good, results.

a. The average approach

One conceptual problem with the MC model is that
the repetition of the monthly data at each ten-day time
interval is not a good representation of the measure-
ment process. It not only introduces artificial data into
the model, but also creates a time series with nonsta-
tionary patterns. Here our first alternative approach is
implemented, in which the observing model is more
faithful to the actual observation process. Assuming a
ten-day time step for the state evolution system, the
monthly observations can be regarded as an average of
three ten-day states. Formally, this time-averaged state
space system can be written as
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FiG. 3. MC model at Rabaul (ten stations). Legends as in Fig. 2. (a) Predictions, (b) residuals, (¢) ACF of residuals,
and (d) partial ACF of residuals. The ACF is given by ¥, = 2.y (3 — )3k — VWL, (v, — )2

X1 = LX, + %, + F£&,
Yk = Fle + ng,

fork =0, ---, 71, where

Wieet T3k+1
X, = Wisz ] 2 =1\ Tusz | »

Wikss T3r+3
€343 U341

§k =1 €344 ) §k =\ Uzss+2 ) >
€345 U3k+3

with system matrices

0 0 L 1 0 0
L=]o0o o L2, F=|L 1 o,
0 0 L3 L2 L 1
H=[H/3 H/3 H/3], G=[I/3 /3 I/3]

(1 denotes the 384 X 384 identity matrix ). The Kalman
filter is implemented in the same way as in section 3b.
It is not necessary to work with the full (3 X '384)
X (3 X 384) matrices in the defining equations. Prac-

tical implementation of the algorithm only requires
384 X 384 matrices, as in the MC model. Details of
the average algorithm implementation are given in ap-
pendix B.

The Average model was run with six and ten stations
data as was the original MC model. Figures 4 and 5
display the results for Rabaul. As before and as ex-
pected, the predictions are very close to the observed
data. Figures 4a and 5a differ little from the corre-
sponding panels in Figs. 2 and 3. Comparison of Figs.
4b and 5b with the corresponding panels in Figs. 2 and
3 shows that the residuals in the run with the Average
model are distinctly smaller than those from the origi-
nal MC model; note the difference in scale from Figs.
2b and 3b to Figs. 4b and 5b. Examination of Table 1

. shows that this is the case at five of the six assimilation

stations, the exception being Nauru. Since the Average
model represents a change in the measurement model
from MC, rather than a change in the observation or
system error models, this indicates that the filtering
scheme is overfitted. Recall that if the output of the
filter were to track the observation exactly, the result
would obviously contain the observation error, which
in this case has rms amplitude of 3 cm. The combina-
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TABLE 1. Statistical summary of residual analyses.
MC Average AR (1)
6 10 6 10 6 10
Observed total
Station or & Gest & Fest I et & Gest & Gest & Gest
Stations used
Rabaul 7.82 0.87 24 0.55 24 0.12 3.6 0.18 1.8 0.08 3.6 0.15 1.7
Nauru 10.2 1.8 24 2.0 2.1 2.1 2.2 2.2 1.1 2.1 2.0 1.5 1.0
Jarvis 7.64 1.2 2.0 14 2.0 0.57 2.0 0.74 1.2 0.48 2.0 0.62 1.1
Christmas 9.30 1.5 2.2 1.3 1.9 0.54 24 0.59 1.4 0.47 2.1 0.57 1.2
Santa Cruz 10.56 1.9 2.4 1.0 24 0.58 2.3 0.57 1.3 0.32 2.2 0.36 1.2
Callao 7.85 0.80 2.6 0.88 2.7 0.32 2.6 0.30 1.4 0.32 2.5 0.30 14
Stations withheld
Kapinga 6.03 5.5 3.9 1.3 2.3 6.0 4.0 0.72 1.3 44 3.7 0.66 1.1
Tarawa 8.0 3.7 3.2 1.4 2.1 3.8 3.8 0.82 1.3 2.9 3.6 0.73 1.2
Canton 7.0 5.0 5.5 0.82 2.4 5.0 4.6 0.25 1.5 3.7 4.4 0.21 1.4
Fanning 7.41 3.3 6.1 0.48 2.3 43 5.0 0.13 1.8 3.6 4.8 0.13 1.7

Note that 67 is the estimated standard deviation of the sea level observations, & is the estimated standard deviation of the residuals, and
8 represents the Kalman filter estimation of the standard deviation of the residual error. The stations used and withheld are for the six

station case.

tion of model and observation should be better than
either the model or the observation alone. This is re-
flected in the fact that the estimated rms errors in the
filtered model, &, in Table 1, are less than 3 cm.
Table 1 also shows that the standard deviations & of
the post-assimilation residuals Y, — HW,;, are in gen-
eral much smaller than we expect them to be; in other
words, our analysis is closer to the actual observations
than it should be and may contain too much of the
observation noise. Since the filter output is a weighted
sum of model output and observation, it is natural to
suspect that the observations are overweighted. The
weight on the model output is determined by our esti-
mate of the forecast error, which should represent the

cumulative effects of errors in the model itself, the forc-
ing imposed and the initial conditions, as well as the
salutary effect of past data assimilation. From the de-
fining equations of the filter given in section 3b, it is
clear that our estimate of the forecast error depends on
the evolution matrix L, the sequence of observation
matrices H, the observation noise covariance R, and
the system noise covariance @, which contains our
prior estimate of the errors in the model and the forcing
data. (As noted in that section, there is also a weak
dependence on the initial error, but that has little influ-
ence in the present case.) A value of @ with smaller
norm will result in a smaller value of B,;, = E[(W,
— W, )(W, — W, ,)T] at any given time, which will in

TaBLE 2. First and second component of the ACF.

MC Average AR (1)
6 10 6 10 6 10
Station 02 V2 Y1 Y2 02 Y2 04 Y2 02 Y2 i Y2
Rabaul 34 28 37 31 .67 .52 54 24 .01 .09 .04 =17
Nauru .73 .52 76 .59 .09 .07 44 .32 .10 .09 17 .18
Jarvis .81 .66 79 .63 45 .16 .55 21 .03 -.02 12 -.13
Christmas 73 61 .69 .54 .44 .24 .34 .12 .00 17 .01 .10
Santa Cruz .92 .87 91 .84 77 .66 77 .67 .00 .28 -.07 22
Callao 7 .61 .75 .56 .32 .35 .18 .23 -.08 27 -.03 23
Kapinga .84 .68 .70 49 57 .34 .49 32 .09 .18 .06 23
Tarawa .84 .68 .69 48 .55 40 .58 43 .04 22 .04 .19
Canton .84 71 .50 32 54 25 .52 21 .20 —.06 24 -.09
Fanning .83 .68 44 .28 .56 .28 17 .09 .04 —.14 —-.01 .03

Note that ¥; and ¥, are the sample estimated first- and second-order autocorrelations. The sample ACF is given by %, =211 (¥, — 7)Y«

= DEL - I
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TABLE 3. First and second component of the PACF.
MC Average AR (1)
6 10 6 10 6 10
Station P Pz P P P P22 P 22 P P22 Pt 23
Rabaul .35 18 .38 .20 .67 13 55 -.09 .01 .09 .04 -.17
Nauru .73 -.04 .76 .01 .09 .06 44 17 .10 .08 17 15
Jarvis .81 .04 79 .01 45 -.05 .55 -.15 .03 -.02 12 -.14
Christmas 73 17 .69 A2 44 .06 34 .01 .00 17 01 .10
Santa Cruz 92 .10 91 .07 77 15 77 20 .00 28 -.07 21
Callao 77 .03 75 .00 32 27 .18 21 —.08 26 -.03 23
Kapinga .84 -.11 .70 .01 .57 .02 49 11 .09 17 .06 22
‘Tarawa .84 -.07 .69 .00 55 .13 .58 15 .04 22 04 .19
Canton .84 .00 .50 .09 54 -.06 52 —-.08 .20 -.10 .24 -.16
Fanning .83 —.08 44 .10 56 —.04 .17 .06 .04 -.14 -.01 .03

Note that p,, and p,, are the sample estimated first- and second-order partial autocorrelations.

turn, result in smaller gain K,. This will lead to the end

_result of weakening the correction from W, ,_; to W,,.

In this case, more weight would then be given to the
model, and less to the observation.

With the exception of Nauru, the standard deviations

of the residuals, &, are consistently much smaller than
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the data errors or the expected errors in the model-data
combination &.y. A filtering scheme that embodied
more confidence in the dynamical model in the form of
a system noise covariance matrix Q with smaller norm
would give more weight to the model and less to the
observations, and yield a sequence of residuals with
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FI1G. 4. Average model at Rabaul (six stations): (a) Predictions, (b) residuals, (¢) ACF of residuals,
and (d) partial ACF of residuals. The ACF is given by ¥ = =iy (% — ¥ YVit — Y )20 (0 — ¥
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F1G. 5. Average model at Rabaul (ten stations): (a) Predictions, (b) residuals, (¢) ACF of residuals,
and (d) partial ACF of residuals. The ACF is given by 9, = Sy (v, — 7)YVt — FVEier (e — )2

greater rms amplitude than those found in the present
case, but still smaller than the expected observation er-
rors. The resulting overall field might well be more
accurate, since it would contain less of the observation
ITorS.

It is also interesting that the residuals seem to de-
crease steadily toward the end of the 1983. This pattern,
which appears more clearly in the residuals from the
experiment in which six stations were assimilated, may
be the consequence of the removal of -average values

in computing the wind stress and sea level anomalies,
since the averaging period includes the strong El Nifio
disturbance of 1982-83, cf. MC. It is interesting that
it does not appear clearly in the results from the MC
model; see Figs. 2b and 3b. Perhaps the effect is
masked by the artificial data introduced in MC.

In the experiments with data assimilated from six
stations, residuals at the four stations held back for ver-
ification have comparable rms amplitudes for the av-
erage method and the original MC method with six

140E 160E 180 160W

140W 120 100W

FiG. 6. Average model (six stations): Contour map of expected rms error.
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stations. The estimated errors for the average case are
a bit closer to the actual rms residual amplitudes except
at Kapingamarangi. The greatest improvement in the
estimated residual amplitude is at Fanning.

As shown in Table 1, the residuals of the average
model have markedly reduced serial correlation at
every station but Rabaul, even though they still seem
to be serially correlated. The improvement over the MC
model is shown by the partial ACF plots shown in Figs.
4d and 5d and in Table 1. The partial ACF plots suggest
a first-order autocorrelation model for the residuals in
both cases, instead of the third-order model, which was
suggested for the MC residuals, cf. Figs. 2d and 3d.
This is consistent with the general finding of a one-
month autoregressive structure. Tables 2 and 3 show
that in most cases the one-month and two-month au-
tocorrelations in the Average model were less than the
ten-day and twenty-day autocorrelations in the MC
model. The exceptions were at Rabaul, and at Canton,
where the one- and two-month lags in both experiments
with the Average model were similar to the ten- and
twenty-day lags in the MC experiment with assimila-
tion at ten stations. For the Average model, 95% con-
fidence bands for the ACF and PACF of the residuals
are =0.24. : ’

Maps of the estimated error of the Average model
are given in Figs. 6 and 7. Those are contour maps of
the expected residual standard deviation, given by
HPHT, where P is the stationary residual covariance
matrix of the state estimation for the average approach,
thatis, P = E[(X,,, — X,,,i)(X.,, — X,111,) "], where
t7, corresponds to the time of the last observation. The
estimated errors are quite a bit smaller than those found
in MC Fig. 5b, and are almost certainly overoptimistic,
especially in the data void between Santa Cruz and
Jarvis.

Using the fact that the partial autocorrelations drop
after the first lag, that is, one month in this formulation,
an AR (p) model, that is, an autoregressive model with
p lags, was fitted to each component of the residuals,
forp = 1, ---, 10. We selected the order of the AR
model by minimizing the Akaike Information Criterion
(AIC), which is equal to [—2 In(maximized likeli-
hood) + 2 (number of independent parameters esti-
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TABLE 4. Estimated autoregressive parameters.

AR(1) Model

6 10

Station $ a3 é a3
Rabaul 77 .08 .58 - .10
Nauru 31 12 .57 .10
Jarvis .60 11 .69 .10
Christmas .49 11 .39 1
Santa Cruz .89 .06 .87 .07
Callao 53 .10 45 11
Kapingamarangi 72 .09 .69 .10
Tarawa .66 11 .67 .10
Canton .76 .09 .81 .08
Fanning 57 .10 .18 12

Note that ¢ is the maximum likelihood estimator of the first-order
autoregressive parameter and & is the estimated standard deviation.

mated)]; see, for example, chapter 9 of Brockwell and
Davis (1991). The result was an AR (1) model for all
the stations:

1)

where ® = diag(¢,). The estimated coefficients and
their estimated standard deviations are displayed in Ta-
ble 4.

A multivariate AR(1) model to », was also fitted,
but the differences in performance between the scalar
model and the multivariate model were negligible.
Hence, we use the scalar model. There is no obvious
geographical pattern in ®. For the experiment with ten
stations, the Average model produces approximately
nonserially correlated residuals at Callao and Fanning.
Similarly, the Average model with six stations pro-
duces nearly nonserially correlated residuals at Nauru
and Callao.

v,=®y_, + @,

b. The AR(1) apf)roach

A greater improvement in the behavior of the resid-
uals is achieved by incorporating (1) into the Kalman
filter as follows. According to the diagnostic check of

1
o \ ‘

Santa Cruz ¢

NA6gls 15 14l

2 L

160E 180 160W

140W 120W 100W 80W

F1G. 7. Average model (ten stations): Contour map of expected rms error.
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the average model, the residual sequence v, is serially
correlated. Furthermore, it was found that an appropri-
ate model for the residuals sequence is an AR(1)
model: », = ®v,_; + w,, where w, is a white noise
sequence with covariance matrix B and ® is a diagonal
matrix (10 X 10).

Rather than rebuilding the Kalman filter model from
scratch, we incorporated the information provided by
the residuals into the model. We chose to do this by
modifying the Average model described in section 4
fort =0, ---, 71 as follows:

X, = LX, + # + Fg,
Yt = HX: + Y
Y= @y + o,

(2)

The AR(1) structure for vy, is suggested by the first-
order autoregressive model for the innovation », = Gg,.
In the modified model, vy, represents the error in the
observation equation, that is, ¥, = ¥, — HX,, the dif-
ference between the observation ¥, and its expected
value HX,. This is analogous to », = Y, — HX,|,_;,
which represents the observed difference between Y,
and its predicted value HX,,,-,, denoted by X, herein.
Let M denote the space generated by the history of the
observations Y,, ..., Y, ,,uptotimes— 1. A modified
estimator of Y, based on M is ¥, defined as

Y, = E(Y,| M)
= E(HX, + v,| M)
= HE(X,| M) + ®E(y,_; + w,| M)
=HEX,| M) + ®E(y,_,| M)
= HX, + ®E(Y,., — HX_,| M)
= HX, + ®v,_,
=Y, + ®v,_,.

Note that ¥, is the predictor produced by the modified
model described by Eq. (2). The new prediction error
isw,=Y,—-Y, =Y, -Y, — ®y,_, =v, — ®v_,.
Observe that var(v,) = var(®v,., + w,). Since v,_; and
w, are uncorrelated, var(v,) = var(®v,_;) + var(w,).
Thus, var(v,) = ® var(v,_;)®" + var(w,). Conse-
quently, the variance of the new estimation error e, is
less than or equal to the old estimation error v,.

¢. Performance of the AR( 1) model

Figures 8 and 9 show the performance of the AR(1)
approach at Rabaul, for experiments performed with
data assimilated at six and ten stations, respectively. As
was the case with the previous methods, the rms am-
plitude of the residuals was very small; see Figs. 8a and
9a. The residual plots do not present the clear patterns
shown in Figs. 4b and 5b. The evident negative trend
in the residuals during 1983 might still be present, but
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not so clearly as in the averaged case; compare Fig. 8b
to Fig. 4b. Contrary to the MC and simple average ap-
proaches, the ACF’s of the residuals in the two AR(1)
experiments, shown in Figs. 8c and 9c, decay to zero
after the lag at zero time steps, indicating approxi-
mately nonserially correlated errors. The Partial ACF,
Figs. 8d and 9d, show no significant autoregressive
components for the residuals. Thus, the residuals seem
to be white noise. As shown in Table 2 and Table 3,
the ACF and PACF of the residuals for the AR(1)
model in the other nine stations have similar behavior
to those of Rabaul. Analogously to the average model,
95% confidence bands for the ACF and PACF are
+0.24.

From Table 1, the residual standard deviations of the
AR( 1) approach are smaller than the residual standard
deviations of the two other methods at most of the sta-
tions. The greatest differences between the AR(1) ap-
proach and the average approach are at Santa Cruz in
the experiments with six and ten assimilation stations,
and at Rabaul and Kapingamarangi in the experiments
with six assimilation stations. This latter case is inter-
esting in that the rms error in the MC and average ap-
proaches at Kapingamarangi is as large as the signal
amplitude. This indicates that the model estimates are
useless there; an estimate of zero amplitude would do
as well. In the AR(1) case, the rms error is 25% less
than the signal amplitude, and is closer to the prior
estimate G, which is roughly the same in all three
experiments. :

It is worth noting that the smaller standard deviation
of the residuals and slightly better prior estimates at the
four stations omitted from the assimilation process is
achieved by introducing an additional vector of param-
eters ® to the Kalman filter model. The cost of having
a smaller variance is to entertain a slightly less parsi-
monious model.

Maps of the estimated error of the AR (1) model are
given in Figs. 10 and 11. These maps show generally
smaller rms amplitudes than those shown for the Av-
erage model in Figs. 6 and 7. At first glance these maps
appear overoptimistic, and perhaps they are, but Table
1 shows that the posterior estimates of the rms errors
at Kapingamarangi, Tarawa, Canton, and Fanning,
where no data were assimilated, are reasonably reliable.

5. Discussion

With the modified models, Average and Average
with AR(1) error, two main problems of the MC ap-
proach appear to be solved. The introduction of artifi-

-cial data into the model can be avoided by reformulat-

ing the MC approach as an average state space model.
The application of the average model with AR (1) error
produces nearly nonserially correlated residuals. This
has been suggested by some authors, for example,
Daley 1992b; Dee et al. 1985, as a criterion for opti-
mality, following the work of Kailath (1968). More-
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FiG. 8. AR(1) model at Rabaul (six stations): (a) Predictions, (b) residuals, (¢) ACF of residuals,
and (d) partial ACF of residuals. The ACF is given by 4, = 21 (3 — 7)Yz — )2y (3 — 3%

over, our finding of an autoregressive structure in the
residuals of the Kalman filter model suggests that its
state space is incomplete. As noted by MC, the physical
model of the sea level is highly simplified; gross effects
such as the spatial variation of the density structure of
the water column, and therefore the wave speeds, is
neglected, and the dynamics of the meridional variation
of the sea level height are approximated by a Kelvin
wave and five Rossby waves.

Another probably more important source of prob-
lems with the MC model is the assumption of temporal
independence of the wind stress error field. The as-
sumption of month to month independence of the wind
stress error seems unrealistic and better models for its
correlation structure should be investigated. In that
sense, it could be worth exploring a first-order autore-
gressive model for the system noise. This approach can
be handled through the Kalman filter theory with col-
ored noise; see, for example, chapter 5 of Chui and
Chen (1990). Even though the computations would be
more complex than those for the independent state
noise case, the incorporation of an autoregressive struc-
ture for the wind error could eventually improve the
performance of the Kalman filter.

Our AR(1) model is a model of the autocorrelation
of the innovation sequence. Such autocorrelation could
result from serial correlation in either the system noise
or the observation noise. Daley (1992a,b) suggested
diagnostic procedures for investigating the nature of the
noise series based on lagged innovation covariances,
but the lagged innovation covariances do not exhibit
any significant spatial structure in this system. This ap-
proach may well be fruitful for more recent, more dense
datasets.

Our finding that the expected analysis error variances
are not highly sensitive to serial correlation of the in-
novation sequences [ compare the values of 6. in Table
1 for corresponding experiments with the Average and
AR (1) models] is consistent with the theory presented
by Daley (1992a), In that paper, Daley argued that
when the advection speed U exceeds the quotient Ax/
At, where Ax is the spatial interval between obser-
vations and At is the assimilation interval, the expected
analysis error is not sensitive to serial correlation in the
observation errors. The first baroclinic mode Kelvin
wave in our model travels nearly 70° in longitude in a
month. Analysis errors stemming from errors in the
higher meridional mode and higher baroclinic mode
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FiG. 9. AR(1) model at Rabaul (ten stations): (a) Predictions, (b) residuals, (¢) ACF of residuals,
and (d) partial ACF of residuals. The ACF is given by ¥, = 2y (¥, — Tt — ¥ W20ey (3, — ¥

Rossby waves are most affected by serially correlated
observation errors. Subsequent studies with greater
spatial data density will also be more affected by seri-
ally correlated observation errors.

A modification of the state space model to consider
daily tide gauge data is another interesting focus for future
research. Although the physical model should be refor-
mulated and the noise correlation structure could be more
complicated, daily observations of the sea level could

eventually provide much more information than monthly
data and a better Kaiman model can be obtained.

The rms differences between the Kalman filter out-
put and the observations themselves at the assimilation
stations, with the exception of Nauru, are much smaller
than the prior estimates of these quantities or the rms
observation errors. This leads us to believe that the ob-
servations are overfitted, that is, the weight given to the
observations is too large relative to the model-derived
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FiG. 10. AR(1) model (six stations): Contour map of expected rms error.
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Fi1G. 11. AR(1) model (ten stations): Contour map of expected rms error.

prior estimate. A better model could probably be de-
rived by reducing Q and recalculating the values of
¢. Such a tuning process would be better performed on
a more extensive dataset.

Kelly and Qiu (1995), in their construction of a Kal-
man filter for assimilation satellite-derived temperature
and geostrophic velocities into a mixed layer model of
the North Atlantic, examined the spectra of the inno-
vation sequences that resulted from several parameter
choices and chose the one that yielded the spectrum
that was closest to being white. No tests were per-
formed to determine whether the observed color in the
spectrum was significant, but the shape of the spectrum
was adequately sensitive to the parameter choices. We
know of no other example of a model that has achieved
the goal of uncorrelated innovations with actual ob-
served data. Having achieved this goal, we can evaluate
the improvement that is available. Evidently, the orig-
inal MC model was fairly close to optimal for many
practical purposes. The additional information ex-
tracted from the data does not produce a dramatic
change in the actual forecasts or posterior error esti-
mates, even though these latter quantities are somewhat
improved. We are not sure whether this improvement
is important. It is noteworthy, however, that in the
AR (1) experiment with data assimilated at six stations,
the residuals at the four stations held back for verifi-
cation appear to be white. It is likely that Figs. 10 and
11 are overoptimistic, but we have no way of knowing
this without additional data.

With the addition of the new models, however, cer-
tain things become apparent. The most obvious of these
is the appearance of the trend in the innovation se-
quence at Rabaul in 1983, and its apparent susceptibil-
ity to modeling by a first-order autoregressive process.
It is this sort of finding, that we hope will lead to im-
provement in our physical models and enhancement of
our understanding of the physical processes, as well as
improved mapping of the relevant fields.

. Some may object to the approach here on the
grounds that our dynamical model does not contain suf-
ficient physical detail and is too coarsely resolved to
justify an elaborate statistical analysis such as this one.
It is worth noting, however, that this long-wave model

3

embodies a set of ocean physics that has for a decade
or more been the basis of our interpretation of the large
scale response of the tropical ocean to atmospheric
forcing. We believe the present work to contain the
essential step toward refinement of this model, whether
the deficiencies lie in the data or in the model itself.
As noted in MC, neither nonlinearities nor errors in the
wave speed could be expected to contribute as much to
the error amplitude as wind errors of the magnitude we
expect. But whatever the source of error, it is noteworthy
that it is not necessary to look beyond autoregressive
models with lags of one month to explain the innovation
sequence. Ultimately, we hope that analysis of time se-
ries characteristics of residual sequences from data as-
similation will lead us toward the most efficient ways to
improve the models. In future examination of possible
model improvements by addition of physical detail, we
might rule out as relatively unimportant refinements
which, if neglected, would be expected to lead to resid-
uals with autocorrelation times greater than one month.
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APPENDIX A
The Physical Model

The MC physical model, based on linearized equa-
tions of motion on an equatorial beta plane, may be
described by the following state space equations, cf.
Miller and Cane (1989):

W, =LW. +7+e€
Y, = HW, + v,.
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The physical model is derived from the linearized
primitive equations on the equatorial § plane. Sepa-
ration of variables in the vertical and horizontal di-
rections results in a decomposition in vertical modes,
the amplitude of which is governed by a set of equa-
tions formally identical to the linearized shallow water
equations, as described by Cane and Sarachik (1981)
and Cane (1984). The solution to the shallow water
equations on the equatorial § plane, further simplified
by a long-wave approximation, can be expressed as
the sum of Kelvin and nondispersive Rossby wave
amplitudes, whose evolution is described by simple
advection equations, with speeds determined from the
separation constants in the modal analysis. The con-
dition that the zonal velocity must vanish at the land
boundary determines the eastern boundary condition.
This condition cannot be satisfied in the context of the
long-wave approximation. The appropriate condition
at the western boundary is that the integral of the mass
flux into the boundary over the extent of the boundary
must vanish.

In the numerical scheme, two vertical modes are
included and for each vertical mode, the correspond-
ing series includes one Kelvin mode and five Rossby
modes. The advection equations for the wave ampli-
tudes are solved by the method of characteristics. The
boundary conditions provide relations between the
incident Rossby wave and the reflected Kelvin wave
at the western boundary, and the incident Kelvin
wave and the reflected Rossby waves at the eastern
boundary. Mass is not exactly conserved at the east-
ern boundary. Some energy is lost at the western
boundary. This contributes most of the dissipation in
the model.

APPENDIX B
Average State Space Algorithm

This appendix explains with some detail the imple-
mentation of the average algorithm. First, all the equa-
tions for the standard Kalman filter are provided, as in
Gelb (1974). Second, by using the mathematical struc-
ture of the average approach, the recursive equations
are greatly simplified. In particular, the average algo-
rithm is based on a number of 384 X 384 matrices
instead of 1152 X 1152 matrices, as required by the
original equations.

The state space equations for the average approach
are given by

Xk+] = ka + %k + ng,
Yk = FHXk + ng,
with the matrices [, F, F, and G defined as in section

4a. Following Gelb (1974 ), the Kalman recursions can
be written as:
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Initial state estimation: X, = Xom = (.
State noise covariance matrix:

Q = Fldiag {Q, Q, Q}]F"
Q@ @ Q
= QT Q;; Q4
Q] Qi G
State estimation:
Xklk—l = H;Xk—llk—l-
Given the state decomposition
x
Xk = X 562) ’
X 23)

this equation can be written as
& (1) & (3)
X klk=1 = LX k=1]k~1
& (2 _ pag 3
Kt = LXK D
&) g3 ®
X klk—1 = X k—1{k—1-
Error covariance estimation:
™ W= i T
Pri—1 = LByt + Q.
If B, |, is decomposed as
1 2 3
Paia Piier P
)T 4 5
Pin Pier Piiar |
HNT 5)T 6
Pl POl PO

Il

pk|k—1

then
Pl = LR LT+ Q
Pl(c?l)(—l = LP/EE)nk—leT + @,
Pﬁi;n = LP/EE)HA:ALH + @,
P/ET/Z—; = szlig)llk—lLZT + Qs
Pﬁi_l = tLvZPIEG—)1|k~1L3T + Q
Py = PP LT + Q.

However, it is only necessary to keep track of the fol-
lowing three matrices:

M ) 3 3)
Mij—1 = Primr + Prlier + Prlies
2) )T 4) (5)
Miliot = Pri=1 + Prjict + Pl
3) 3T (5)T 6)
Miii-1 = Pl + Priict + Prjes
Error covariance update:
Puir = Prir — Brpn HT[HP, |, HT + R]1THB, 1
If Py, is written as
(@) (2) (3)
S p
5 ( (5
Pklk = Pk|k pk|k Pk|k s
T (T (6)
Por Puk Pin
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and the following two matrices are defined
M1 = M;}IZ—I + MIETI)c—l + Mlﬁi-—l,
_ Z. -1 = HM, .. H + 3R,
then

() _ pb (n -1 (HT
Pklk - Pklk—l - Mklk—lzklk——lelk-—l
(2) (2) )] (Z)T
Pklk = klk—l - Mklk lzklk 1k -1
3) (3) -1 3)T
Pklk = ka— Mklk—lzklk——lelk——l

4) 4) (2) )T
Pklk = Pklk—l - Mklk lzklk—— Mklk——l

) _ p®
P Mk|k lzklk—-le[k—'

klk = ka—l
(6) (6) )T
Pklk = klk—l - Mklk 1 klk—le|k~1-

Similarly to the previous case, it is only needed to keep
track of the following three matrices:

M = P2+ PR + P
Mk = P + P + Pz
M = P + PO + P
Kalman gain matrix:
K, =P HR.

If
1
K
> 2
K, = Kl(c) ,
(3)
k
then
M _ MOHT
k= klkH R

Ki” = M ;H'R"!
K(3) — M(3)HTR—

State estimation update:

Xipe = Xipp—r + 7 + Kl ye — HX, iy — HF]
Given
1)
&)
%k = Tk
(3)
Tk

the state estimation update can be written as

X=X fclli—l (1)[yk H(X l(clli—

+X§c2|;c 1 klk )13 — Hr )
X=X + K& — HX ,i‘l;_

+ X/(c2|;c 1+ X Si )13 = Hr?
X=X + K e~ H(XEJ&_l

+ X i + X (/3 — HrlL
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Simplified recursive scheme:

The simplified scheme applies to the processes in-
volving the error covariance estimation and the error
covariance update. These are the most time and mem-
ory consuming sections of the average algorithm.

Define the following matrices:

N =L+ L7+,
QY =Q+Q, +Q,,
Q? = QT + Q; + Q,,
Q¥ =Q; + Qi + Qs.
Then the Error Covariance Estimation can be written as
Pili-i = PPl + Q.
M- = LP{_NT + Q)
Miji- = LPLiNT + Q2
Miiior = PN + Q9
and the error covariance update is given by
Mk = Miliot = Mo Zilh-MF e

M2 @) (@) -1 ART
M. = My — M- M

3) _ ap (3 (3) 51 T
Mklk = Mklk-—l = M1 Zi - 1 Mg et
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