Effects of Perfluorinated Compounds on GnRH Gene Expression in vitro

Rebecca E. Bathke
Bioresource Research
Oregon State University
Perfluorinated Chemicals: What are they?

• Fluorine-saturated hydrocarbons of variable chain length
 – May be substituted with various functional groups
 • Hydroxyl, carbonyl, carboxylic acid, etc.

• Commonly used in consumer products
 – Teflon, ScotchGard, plastics, cosmetics, paper food wrappers, popcorn bags, flame retardants, cosmetics…

• No naturally occurring perfluoro chemicals exist
 – All are man-made
Physico-chemical Properties

- Biological metabolites of fluorotelomel alcohol
- Incredibly stable fluorine-saturated carbon compounds
 - Electronegativity of fluorine strengthens C-C bonds and lends strength to C-F bonds
- Immiscible in water and organic solvents
- Become amphipathic with addition of hydrophilic substituents
 - Difficult to determine compartmentalization in the body
OK... So what?

- Ubiquitous in world water supplies
 - Found in North Pacific and Arctic Oceans

- Classed as persistent organic pollutants
 - Capable of atmospheric transport
 - Resistant to degradation by:
 - Photolysis (direct and indirect)
 - Microbial degradation
 - Biological degradation/detoxification

- Tendency to bioaccumulate and biomagnify
 - Higher concentrations in the liver and serum of predatory animals
High rates of human exposure

- Experimentally confirmed to off-gas from non-stick cookware at normal cooking temperatures (Anyone use Teflon?)
- Frequent ingestion: drinking water, paper food wrappers, treated textiles...
- Epidemiological studies have approximated general population serum concentrations
 - 33.1 ng/mL PFOS
 - 4.5 ng/mL PFOA
- Children generally carry 5-10x higher chemical load
 - in utero exposure
 - Breast milk primary source of nutrition
 - Closer proximity to treated carpets, textiles
Biological Endpoints

• Immunotoxicity
 – Cell cycle arrest and apoptosis in spleen and thymus
 – Immunoglobulin reductions (IgM, IgY)
 – Suppression of lysozyme activity
 – Disruption of innate and adaptive immune response

• Developmental toxicity
 – Decreased body weight following in utero exposure
 – Increased neonatal mortality
 – Altered nutritional status
 – Brain asymmetry
 – Delayed sexual maturity
 – Adrenal and hepatocellular hypertrophy
Oh, wait... there's more!

• Neurotoxicity
 – Decreased DNA synthesis
 – Disruptions in neuronal differentiation
 • Decreased dopamine phenotype
 • Increase acetylcholine phenotype

• Endocrine disruption
 – Decreased free thyroid hormone
 – Decreased testosterone synthesis
 – Elevated estradiol
 – Estrus cycle interruption
 – Estrogenic activity
 • Induction of oocyte formation in dosed males
 • No action on ER-α or -β
Reproductive Toxicity

- Rats dosed with PFOS
 - 0, 1, or 10 mg/kg body weight x2 weeks
 - Persistent diestrus in 58% of high dose group
 - Irregular cycles or diestrus observed in 34% of low dose group

Austin et al., *Environmental Health Perspectives*, September 2003
Hypothalamo-pituitary-gonadal Axis Regulation

• SCN stimulates release of GnRH
• GnRH tells pituitary to secrete gonadotropins — FSH and LH
• FSH and LH stimulate androgen synthesis and secretion from the gonads
• Circulating estrogen reaches the hypothalamus, turns off GnRH signal
Mammalian Reproductive Signaling

Figure 3. Metestrus

SCN → DNS → GnRH
Mammalian Reproductive Signaling

SCN → DNS → GnRH

Figure 4. Proestrus
Generation of GT1-7 GnRH Immortalized Neurons

Immortalized GnRH neurons derived by targeted tumorigenesis

3kb GnRH regulatory region SV40 T antigen

Tumorigenic mouse expresses oncogene in hypothalamic neurons

Tumors are isolated and tumor cells cultured

Clonal hypothalamic neuronal cell lines
Generation of GnRH-MetLuc Subclone

- *Metridia longa* luciferase vector inserted into pBSK
 - *HincII*
- Firefly luciferase gene excised from GnRH-Fluc vector
 - *Xho* & *Xba*
- MetLuc excised from pBSK
 - *Xho* & *Xba*
- MetLuc inserted behind GnRH promoter
 - *Xho* & *Xba*
So, what’s luciferase good for?

- Secreteable reporter
- Light emitted from media after addition of reagent quantifies gene expression rates
- Superior method
 - No need to lyse cells
 - Measurements can be taken from same cell population
Initial testing of PFC activity on GnRH gene expression
Fold-increase of normalized PFOA and PFOS treatments over controls

- **Fold-increase over EtOH vehicle normalized values**
 - 10μM PFOA
 - 20μM PFOA
 - 10μM PFOS
 - 20μM PFOS

- **Fold-increase over estradiol control normalized values**
 - 10μM PFOA
 - 20μM PFOA
 - 10μM PFOS
 - 20μM PFOS
Net change of GnRH gene expression in cultures treated with PFOA and PFOS as compared to EtOH
Dose-response of GnRH expression following treatment of cell cultures with PFOA and PFOS
Dose-response curves generated for PFOA and PFOS treated GT1-7 cells.
Percent change in number of cells with DNA nicks/entering apoptosis vs DMSO control
TUNEL data vs. dose response

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fold-change over DMSO control</th>
<th>% cells in apoptotic phase compared to DMSO</th>
<th>Dose-response determined effect on GnRH gene expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>100mM PFOA</td>
<td>1.314</td>
<td>31.4</td>
<td>Very significant down-regulation</td>
</tr>
<tr>
<td>1mM PFOA</td>
<td>1.417</td>
<td>41.7</td>
<td>Very significant up-regulation</td>
</tr>
<tr>
<td>100μM PFOA</td>
<td>0.906</td>
<td>-8.4</td>
<td>No statistically significant changes</td>
</tr>
<tr>
<td>1μM PFOA</td>
<td>1.162</td>
<td>16.2</td>
<td>Significant up-regulation</td>
</tr>
<tr>
<td>100nM PFOA</td>
<td>1.186</td>
<td>18.6</td>
<td>No statistically significant changes</td>
</tr>
<tr>
<td>50μM PFOS</td>
<td>1.073</td>
<td>7.3</td>
<td>Very significant down-regulation</td>
</tr>
<tr>
<td>500nM PFOS</td>
<td>0.990</td>
<td>-1</td>
<td>No statistically significant changes</td>
</tr>
<tr>
<td>5nM PFOS</td>
<td>0.954</td>
<td>-4.6</td>
<td>Significant up-regulation</td>
</tr>
<tr>
<td>500pM PFOS</td>
<td>0.623</td>
<td>-37.7</td>
<td>Significant up-regulation</td>
</tr>
<tr>
<td>5pM PFOS</td>
<td>0.796</td>
<td>-20.4</td>
<td>Very significant up-regulation</td>
</tr>
</tbody>
</table>
What does it all mean?

• 1 mM and 1 μM concentrations of PFOA induced up-regulation of GnRH in conjunction with higher rates of DNA nicks
 – Cells producing much more GnRH as a result of PFOA treatment

• 100 mM PFOA treated cells demonstrated strong down-regulation of GnRH expression with high rates of DNA nicks
 – Possible correlation between rates of cell death and GnRH transcription

• Low and mid-range doses of PFOA elicited no change compared to DMSO control
What does it all mean?

• 50μM PFOS treatment caused significant down-regulation of GnRH gene expression with negligible cell death
 – Presumably inhibits gene transcription
• 5nM, 500pM, and 5pM PFOS all elicited significant up-regulation of GnRH gene expression with lower rates of apoptosis in culture
 – Protective effect?
 – More GnRH because comparatively more cells present?
Some questions to ask...

- If perfluoro chemicals are capable of disregulating GnRH gene expression, are the concentrations found in the general population adequate to elicit effects?
 - 33.1 ng/mL PFOS is equivalent to 66.1nM
 - significant up-regulation observed at much lower doses
 - Flanking doses elicited very different effects
 - 500nM dose saw no changes in GnRH gene expression or cell death
 - 5nM dose saw negligible apoptosis with significant up-regulation of GnRH gene expression
 - 4.5 ng/mL PFOA is equivalent to 10.9nM
 - Closest dose tested was 100nM; no changes in GnRH gene expression observed, but notable increase in cell death (approximately 20%)
Some questions to ask...

• Do those cells that demonstrated up-regulation of GnRH transcription maintain their secretory capacity?
 – More expression
 – More protein product
 – More secretion?
And some more questions to ask...

• Experimental data shows preferential formation of ACh phenotype in PC12 cell models
 – ACh has both stimulatory and inhibitory effects on GnRH neurons (Krsmanovic et al.)
 • Possibly via action on different cholaminergic receptors
 – How would this effect GnRH gene expression in vivo?
...and a few more...

• If estrogen receptors \(\alpha \) and \(\beta \) are non-responsive to perfluoro chemicals, what mechanisms lie behind GnRH gene disregulation? (Ishisbashi et al.)
 – Studies conducted in yeast
 • Appropriate model?
 • Equivalent receptor to humans, or just a homolog?
Where to next, Captain?

- Secretion rates indeterminable via tests conducted
 - Radioimmunoassay
- In vivo studies to check for biological consequences of GnRH disregulation
 - Polycystic ovaries
 - Precocious puberty
 - Fertility issues
 - Disrupted estrus cycling (Remember the Austin study?)

Austin et al., *Environmental Health Perspectives*, September 2003
Where to next, Captain?

• Other estrogen-responsive genes contribute to estrus cycles and time-keeping
 – Daily neuronal signals from master clock in SCN stimulate GnRH neurons
 – BMAL/MOP3
 – Mechanisms still under investigation
 – Preliminary data in RORE-MetLuc cells indicative of disregulation

![Graph showing fold-increase over DMSO vehicle normalized values]
Questions?